This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robust Marginal Fermi Liquid In Birefringent Semimetals

Ipsita Mandal Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
Abstract

We investigate the interplay of Coulomb interactions and correlated disorder in pseudospin-3/2 semimetals, which exhibit birefringent spectra in the absence of interactions. Coulomb interactions drive the system to a marginal Fermi liquid, both for the two-dimensional (2d) and three-dimensional (3d) cases. Short-ranged correlated disorder in 2d, or a power-law correlated disorder 3d, has the same engineering dimension as the Coulomb term, in a renormalization group (RG) sense. In order to analyze the combined effects of these two kinds of interactions, we apply a dimensional regularization scheme and derive the RG flow equations. The results show that the marginal Fermi liquid phase is robust against disorder.

I Introduction

Quasiparticles with pseudospin-3/2 and having a birefringent linear spectrum with two distinct Fermi velocities, can be realized from simple tight-binding models in both two-dimensional (2d) and three-dimensional (3d) systems. Examples in 2d include decorated π\pi-flux square lattice [1, 2, 3], honeycomb lattices [4, 5], and shaken optical lattices [6, 7]. The 3d counterparts are captured in various systems having strong spin-orbit coupling [8, 9], such as the antiperovskite family [10] (with the chemical formula A3BX) and the CaAgBi-family materials with a stuffed Wurtzite structure [11]. We consider the low-energy effective Hamiltonian of such semimetals and investigate the phases resulting from the interplay of Coulomb interactions and correlated disorder.

In both 2d and 3d, Coulomb interactions drive a clean system (i.e. without disorder) into a marginal Fermi liquid phase [12], which we rederive here in order to correct some minor algebraic factors in the loop calculations of Ref. [12], and also to set up our minimal subtraction scheme to obtain the renormalized action. Next, we add disorder to the system. In 2d, a short-ranged correlated disorder has the same engineering dimension as the Coulomb term, in a renormalization group (RG) sense. However, in 3d, this has a lower scaling dimension (and hence it is an irrelevant operator), and that is why we consider a power-law correlated disorder with the same scaling dimension as the Coulomb terms. Since the added disorder and Coulomb interactions have the same scaling dimension, we treat them on an equal footing in the RG scheme. By implementing a controlled ε\varepsilon-expansion below the upper critical dimension, we derive the RG flow equations at leading order (i.e. by employing the corrections coming from the logarithmically divergent one-loop Feynman diagrams), which are valid when Coulomb interactions and disorder are both weak. The stable fixed points of the coupled differential equations show that the marginal Fermi liquid phase is not destroyed by disorder. This is in contrast with other four-band semimetal phases considered earlier [13, 14]. As a result, the birefringent spectrum pseudospin-3/2 semimetals are a promising platform to observe the putative marginal Fermi liquid phases arising at band-touching points.

The paper is organized as follows. In Sec. II, we describe the system in 2d and 3d, in the presence of Coulomb interactions. In Sec. III, we show the emergence of the marginal Fermi liquid phase due to the Coulomb terms. In Sec. IV, we add disorder and compute the one-loop diagrams. In Sec. V, we derive the coupled RG equations due to the interplay of Coulomb interactions and disorder. The fixed points of the RG equations and their stability indicate the resulting phases. Finally, we end with a summary and outlook in Sec. VI.

II Model

Refer to caption
Figure 1: Birefringent semimetals show conical energy dispersions with two different slopes, when the energy eigenvalues are plotted against the kxk_{x}-kyk_{y} plane.

The Hamiltonian describing the pseudospin-3/2 fermions in d0d_{0} spatial dimensions is given by [1, 12]

0(𝐤)=H1(𝐤)+H2(𝐤),H1(𝐤)=vj=1d0Γj0kj,H2(𝐤)=vj=1d0ζΓ0jkj,Γμν=σμσν,\displaystyle\mathcal{H}_{0}(\mathbf{k})=H_{1}(\mathbf{k})+H_{2}(\mathbf{k})\,,\quad H_{1}(\mathbf{k})=v\sum_{j=1}^{d_{0}}\Gamma_{j0}\,k_{j}\,,\quad H_{2}(\mathbf{k})=v\sum_{j=1}^{d_{0}}\zeta\,\Gamma_{0j}\,k_{j}\,,\quad\Gamma_{\mu\nu}=\sigma_{\mu}\otimes\sigma_{\nu}\,, (1)

where σ0\sigma_{0} is the 2×22\times 2 identity matrix, d0d_{0} takes the value 22 (for 2d) or 33 (for 3d), and σj\sigma_{j} are the Pauli matrices (with j=1,2,3j=1,2,3). The four eigenvalues are given by ±v(1±ζ)|𝐤|\pm v\left(1\pm\zeta\right)|\mathbf{k}|. Hence, the emergent quasiparticles have birefringent spectra with linear dispersions (see Fig. 1). Here ζ\zeta is the birefringence parameter, with |ζ|<1|\zeta|<1. In the following, we rescale the spatial momenta such that vv is equal to one.

The Coulomb interaction can be written as an effective four-fermion term, such that the total action takes the form:

𝒮0=dk0dd0𝐤(2π)d0+1ψ~(k0,𝐤)[ik0+0(𝐤)]ψ~(k0,𝐤)\displaystyle\mathcal{S}_{0}=\int\frac{dk_{0}\,d^{d_{0}}{\mathbf{k}}}{(2\,\pi)^{d_{0}+1}}\,{\tilde{\psi}}^{{\dagger}}(k_{0},\mathbf{k})\left[-i\,k_{0}+\mathcal{H}_{0}(\mathbf{k})\right]{\tilde{\psi}}(k_{0},\mathbf{k})
e2dq0dk0dk0dd0𝐪dd0𝐤dd0𝐤(2π)3(d0+1)V(|𝐪|)ψ~(k0,𝐤)ψ~(k0,𝐤)ψ~(k0+q0,𝐤+𝐪)ψ~(k0q0,𝐤𝐪),\displaystyle\qquad-e^{2}\int\frac{dq_{0}\,dk_{0}\,dk_{0}^{\prime}\,d^{d_{0}}{\mathbf{q}}\,d^{d_{0}}{\mathbf{k}}\,d^{d_{0}}{\mathbf{k}^{\prime}}}{(2\pi)^{3\left(d_{0}+1\right)}}\,V(|\mathbf{q}|)\,\tilde{\psi}^{{\dagger}}(k_{0},\mathbf{k})\,\tilde{\psi}^{{\dagger}}(k_{0}^{\prime},{\mathbf{k}}^{\prime})\,\tilde{\psi}(k_{0}+q_{0},{\mathbf{k}}+\mathbf{q})\,\tilde{\psi}(k_{0}^{\prime}-q_{0},{\mathbf{k}}^{\prime}-\mathbf{q})\,,
V(|𝐪|)={1|𝐪| for d0=21|𝐪|2 for d0=3.\displaystyle V(|\mathbf{q}|)=\begin{cases}\frac{1}{|\mathbf{q}|}\text{ for }d_{0}=2\\ \frac{1}{|\mathbf{q}|^{2}}\text{ for }d_{0}=3\end{cases}. (2)

in the momentum space. The tilde over ψ\psi indicates that it is the Fourier-transformed version. To avoid confusion between the actual (physical) spatial dimension, and the artificial spatial dimension used to perform a dimensional regularization (for a system of a given physical dimensionality), we have used use d0d_{0} for the former and will use dd for the latter. From the non-interacting part of the action, the bare Green’s function is given by

G0(k0,𝐤)=[ik0+H1(𝐤)+H2(𝐤)][k02+(1+ζ2)𝐤22H1(𝐤)H2(𝐤)][k02+(1+ζ)2𝐤2][k02+(1ζ)2𝐤2].\displaystyle G_{0}(k_{0},\mathbf{k})=\frac{\left[i\,k_{0}+H_{1}(\mathbf{k})+H_{2}(\mathbf{k})\right]\left[k_{0}^{2}+\left(1+\zeta^{2}\right)\mathbf{k}^{2}-2\,H_{1}(\mathbf{k})\,H_{2}(\mathbf{k})\right]}{\left[k_{0}^{2}+\left(1+\zeta\right)^{2}\mathbf{k}^{2}\right]\left[k_{0}^{2}+\left(1-\zeta\right)^{2}\mathbf{k}^{2}\right]}\,. (3)

Let us determine the engineering dimensions of the fields and coupling constants at the non-interacting Gaussian fixed point (e2=0e^{2}=0), by setting [𝐤]=1[\mathbf{k}]=1 in the kinetic term. Then, from the fermion dispersion, we get [k0]=1[k_{0}]=1. This leads to [ψ~]=d21[\tilde{\psi}]=-\frac{d}{2}-1 and [ζ]=0[\zeta]=0. Finally, [e2]={2d for d0=23d for d0=3,[e^{2}]=\begin{cases}2-d&\text{ for }d_{0}=2\\ 3-d&\text{ for }d_{0}=3\end{cases}\,, which means that the Coulomb interaction is marginal at the upper critical dimension dc=d0d_{c}=d_{0}. We will employ the dimensional regularization scheme which involves continuing to (dcε)\left(d_{c}-\varepsilon\right) dimensions, while assuming that the angular and spinorial (matrix) structure remains the same as in d0d_{0}. In other words, the radial momentum integrals are performed with respect to a (dcε)(d_{c}-\varepsilon)-dimensional measure ddcε𝐤(2π)dcε\int\frac{d^{d_{c}-\varepsilon}\mathbf{k}}{(2\,\pi)^{d_{c}-\varepsilon}}.

III Marginal Fermi liquid in the clean system

In this section, we will compute the one-loop corrections arising due to the Coulomb interactions, and determine the RG flow equations. We introduce a mass scale μ\mu to make the coupling constants dimensionless [15, 16, 17, 18]. Therefore, in Eq. (2), we replace e2e^{2} by e2μεe^{2}\,\mu^{\varepsilon}.

III.1 One-loop contributions

The one-loop contribution to the fermion self-energy due to the long-range Coulomb interaction is

Σc(k0,𝐤)\displaystyle\Sigma_{c}(k_{0},\mathbf{k}) =e2H1(𝐤)cd0ε(μ|𝐤|)ε+𝒪(ε0),where cd0={4π for d0=23π2 for d0=3.\displaystyle=-\frac{e^{2}\,H_{1}(\mathbf{k})}{c_{d_{0}}\,\varepsilon}\left(\frac{\mu}{|\mathbf{k}|}\right)^{\varepsilon}+\mathcal{O}(\varepsilon^{0})\,,\text{where }c_{d_{0}}=\begin{cases}{4\,\pi}&\text{ for }d_{0}=2\\ {3\,\pi^{2}}&\text{ for }d_{0}=3\end{cases}\,. (4)

Ref. [12] missed a factor of 22 which comes from the two possible exchange contractions 111 There are two possible contractions (matching one ψ~\tilde{\psi}^{{\dagger}} with one ψ~\tilde{\psi}) of the interaction term in Eq. (2) that gives the fermion self-energy. In the real space, the ‘Hartree’ contractions are of the form ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t,x)\,\psi(t,x)\rangle\,\psi^{{\dagger}}(t^{\prime},{x^{\prime}})\,\psi(t^{\prime},{x^{\prime}}), and correspond to tadpole diagrams. These simply shift the overall chemical potential, and can be ignored (since we assume that the renormalized chemical potential is at the band-crossing point). However, the ‘exchange’ contractions contribute (cannot be ignored). These latter contributions are of the form ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t,x)\,\psi(t^{\prime},{x^{\prime}})\rangle\,\psi^{{\dagger}}(t^{\prime},{x^{\prime}})\,\psi(t,x), and ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t^{\prime},x^{\prime})\,\psi(t,{x})\rangle\,\psi^{{\dagger}}(t,{x})\,\psi(t^{\prime},x^{\prime}). Due to two ways of contractions, we get a factor of 2. .

Since V(|𝐪|)V(|\mathbf{q}|) is an analytic function of momentum in d0=3d_{0}=3, we need to compute the corrections to the Coulomb interaction coming from fermion loops. On the other hand, the Coulomb interaction does not receive any correction in d0=2d_{0}=2, as it is non-analytic, implying a non-local term in the position space. This is because a fermion loop can only yield corrections that are analytic in momentum. The absence of corrections in 2d is also clearly demonstrated by explicitly computing the loop-integrals.

  1. 1.

    First let us consider the ZS diagram, where the contractions of the fermion lines can be made in four distinct ways. Including the proper combinatorial factor, we get the correction

    ΠccZS(q0,𝐪)=4e4μ2ε2𝐪4dk0ddcε𝐤(2π)dc+1εTr[G0(k0,𝐤+𝐪)G0(k0,𝐤)]=e4με3π2𝐪2ε(μ|𝐪|)εδd0,3+𝒪(ε0).\displaystyle\Pi_{cc}^{ZS}(q_{0},\mathbf{q})=-\frac{4\,e^{4}\,\mu^{2\,\varepsilon}}{2\,\mathbf{q}^{4}}\int\frac{dk_{0}\,d^{d_{c}-\varepsilon}{\mathbf{k}}}{(2\,\pi)^{d_{c}+1-\varepsilon}}\text{Tr}\left[G_{0}(k_{0},\mathbf{k}+\mathbf{q})\,G_{0}(k_{0},\mathbf{k})\right]=\frac{e^{4}\,\mu^{\varepsilon}}{3\,\pi^{2}\,{\mathbf{q}^{2}}\,\varepsilon}\left(\frac{\mu}{|\mathbf{q}|}\right)^{\varepsilon}\,\delta_{d_{0},3}+\mathcal{O}(\varepsilon^{0})\,. (5)
  2. 2.

    The second is the vertex correction (VC) diagram, which gives

    ΓccVC(q0,𝐪)=e4μ2ε𝐪2dk0ddcε𝐤(2π)dc+1εG0(k0,𝐤+𝐪)G0(k0,𝐤)𝐤2=0+𝒪(ε0).\displaystyle\Gamma_{cc}^{VC}(q_{0},\mathbf{q})=\frac{e^{4}\,\mu^{2\,\varepsilon}}{\mathbf{q}^{2}}\int\frac{dk_{0}\,d^{d_{c}-\varepsilon}{\mathbf{k}}}{(2\,\pi)^{d_{c}+1-\varepsilon}}\frac{G_{0}(k_{0},\mathbf{k}+\mathbf{q})\,G_{0}(k_{0},\mathbf{k})}{\mathbf{k}^{2}}=0+\mathcal{O}(\varepsilon^{0})\,. (6)
  3. 3.

    Finally, we can show that the ZS and BCS diagrams do not contribute to the clean-system RG flows, as the concerned loop-integrals are convergent.

III.2 RG equations using the minimal subtraction scheme

For the clean system with Coulomb interactions, the counterterm action is given by

Scleanc\displaystyle S^{c}_{clean} =dk0dd𝐤(2π)d+1ψ~(k0,𝐤)(iA1k0+A2Γj0kj+A3ζΓ0jkj)ψ~(k0,𝐤)\displaystyle=\int\frac{dk_{0}\,d^{d}{\mathbf{k}}}{(2\,\pi)^{d+1}}\,{\tilde{\psi}}^{{\dagger}}(k_{0},\mathbf{k})\left(-i\,A_{1}\,k_{0}+A_{2}\,\Gamma_{j0}\,k_{j}+A_{3}\,\zeta\,\Gamma_{0j}\,k_{j}\right){\tilde{\psi}}(k_{0},\mathbf{k})
e2μεdq0dk0dk0dd𝐪dd𝐤dd𝐤(2π)3(d+1)A4V(|𝐪|)ψ~(k0,𝐤)ψ~(k0,𝐤)ψ~(k0+q0,𝐤+𝐪)ψ~(k0q0,𝐤𝐪),\displaystyle\qquad-e^{2}\,\mu^{\varepsilon}\int\frac{dq_{0}\,dk_{0}\,dk_{0}^{\prime}\,d^{d}{\mathbf{q}}\,d^{d}{\mathbf{k}}\,d^{d}{\mathbf{k}^{\prime}}}{(2\pi)^{3(d+1)}}\,A_{4}\,V(|\mathbf{q}|)\,\tilde{\psi}^{{\dagger}}(k_{0},\mathbf{k})\,\tilde{\psi}^{{\dagger}}(k_{0}^{\prime},{\mathbf{k}}^{\prime})\,\tilde{\psi}(k_{0}+q_{0},{\mathbf{k}}+\mathbf{q})\,\tilde{\psi}(k_{0}^{\prime}-q_{0},{\mathbf{k}}^{\prime}-\mathbf{q})\,,
An\displaystyle A_{n} Zn1=λ=1Zn,λελ with n=1,2,3,4,\displaystyle\equiv\,Z_{n}-1=\sum_{\lambda=1}^{\infty}\frac{Z_{n,\lambda}}{\varepsilon^{\lambda}}\text{ with }n=1,2,3,4\,, (7)

and d=dcεd=d_{c}-\varepsilon.

Adding the counterterms to the original 𝒮0\mathcal{S}_{0}, and denoting the bare quantities by the index “B”, we obtain the renormalized action as:

𝒮cleanren\displaystyle{\mathcal{S}}^{ren}_{clean} =dk0Bdd𝐤B(2π)d+1ψ~B(k0B,𝐤B)[ik0B+Γj0kjB+ζBΓ0jkjB]ψ~(k0B,𝐤B)\displaystyle=\int\frac{d{k_{0}}_{B}\,d^{d}{\mathbf{k}}_{B}}{(2\,\pi)^{d+1}}\,{\tilde{\psi}}_{B}^{{\dagger}}({k_{0}}_{B},{\mathbf{k}}_{B})\left[-i\,{k_{0}}_{B}+\Gamma_{j0}\,{k_{j}}_{B}+\zeta_{B}\,\Gamma_{0j}\,{k_{j}}_{B}\right]{\tilde{\psi}}({k_{0}}_{B},\mathbf{k}_{B})
eB2μεdq0Bdk0Bdk0Bdd𝐪Bdd𝐤Bdd𝐤B(2π)3(d+1)V(|𝐪B|)ψ~B(k0B,𝐤B)\displaystyle\quad-e_{B}^{2}\,\mu^{\varepsilon}\int\frac{d{q_{0}}_{B}\,d{k_{0}}_{B}\,d{k_{0}^{\prime}}_{B}\,d^{d}{\mathbf{q}}_{B}\,d^{d}{\mathbf{k}}_{B}\,d^{d}{\mathbf{k}^{\prime}}_{B}}{(2\pi)^{3(d+1)}}\,V(|\mathbf{q}_{B}|)\,\tilde{\psi}_{B}^{{\dagger}}({k_{0}}_{B},\mathbf{k}_{B})\,
×ψ~B(k0B,𝐤B)ψ~B(k0B+q0B,𝐤B+𝐪B)ψ~B(k0Bq0B,𝐤B𝐪B).\displaystyle\hskip 56.9055pt\times\tilde{\psi}_{B}^{{\dagger}}({k_{0}^{\prime}}_{B},{\mathbf{k}}^{\prime}_{B})\,\tilde{\psi}_{B}({k_{0}}_{B}+{q_{0}}_{B},{\mathbf{k}}_{B}+{\mathbf{q}}_{B})\,\tilde{\psi}_{B}({k_{0}^{\prime}}_{B}-{q_{0}}_{B},{\mathbf{k}}^{\prime}_{B}-\mathbf{q}_{B})\,. (8)

The bare and renormalized quantities are related by the following convention:

k0B=Z1k0,𝐤B=Z2𝐤,ψ~B=Zψ1/2ψ~,Zψ=1Z1Z22ε,ζB=Z3ζZ2,eB2=Z4e2μεZ1Z21ε.\displaystyle{k_{0}}_{B}=Z_{1}\,k_{0}\,,\quad\mathbf{k}_{B}={Z_{2}}\,\mathbf{k}\,,\quad\tilde{\psi}_{B}=Z_{\psi}^{1/2}\tilde{\psi}\,,\quad Z_{\psi}=\frac{1}{Z_{1}\,Z_{2}^{2-\varepsilon}}\,,\quad\zeta_{B}=\frac{Z_{3}\,\zeta}{Z_{2}}\,,\quad e^{2}_{B}=\frac{Z_{4}\,e^{2}\,\mu^{\varepsilon}}{Z_{1}\,Z_{2}^{1-\varepsilon}}\,. (9)

Note that if we had kept the velocity vv in Eq. (2), we would obtain vB=vv_{B}=v, which means that it does not flow under RG, which also justifies our setting v=1v=1 at the outset. To one-loop order, we have Zn=1+Zn,1εZ_{n}=1+\frac{Z_{n,1}}{\varepsilon}, where

Z1,1\displaystyle Z_{1,1} =0,Z2,1=e2cd0,Z3,1=0,Z4,1=e23π2δd0,3.\displaystyle=0\,,\quad Z_{2,1}=-\frac{e^{2}}{c_{d_{0}}}\,,\quad Z_{3,1}=0\,,\quad Z_{4,1}=\frac{e^{2}}{3\,\pi^{2}}\,\delta_{d_{0},3}\,. (10)

Let us define:

z=1ln(Z2Z1)lnμ,η=12lnZψlnμ,\displaystyle z=1-\frac{\partial\ln\left(\frac{Z_{2}}{Z_{1}}\right)}{\partial\ln\mu}\,,\quad\eta=\frac{1}{2}\frac{\partial\ln Z_{\psi}}{\partial\ln\mu}\,, (11)

where zz is the dynamical critical exponent, and η\eta is the anomalous dimension of the fermions. Since the bare quantities do not depend on μ\mu, their total derivative with respect to μ\mu should vanish. Therefore, dlnζBdlnμ=0\frac{d\ln\zeta_{B}}{d\ln\mu}=0 and dlneB2dlnμ=0\frac{d\ln e^{2}_{B}}{d\ln\mu}=0 give:

ζlnμβζ=(lnZ2lnμlnZ3lnμ)ζ, and e2lnμβe=[εlnZ1lnμ(1ε)lnZ2lnμ+lnZ4lnμ]e2,\displaystyle\frac{\partial\zeta}{\partial\ln\mu}\equiv\beta_{\zeta}=\left(\frac{\partial\ln Z_{2}}{\partial\ln\mu}-\frac{\partial\ln Z_{3}}{\partial\ln\mu}\right)\zeta\,,\text{ and }\frac{\partial e^{2}}{\partial\ln\mu}\equiv\beta_{e}=-\left[\varepsilon-\frac{\partial\ln Z_{1}}{\partial\ln\mu}-\left(1-\varepsilon\right)\frac{\partial\ln Z_{2}}{\partial\ln\mu}+\frac{\partial\ln Z_{4}}{\partial\ln\mu}\right]e^{2}\,, (12)

respectively.

Using the expansions z=z(0),z=z^{(0)}, and βζ=βζ(0)+εβζ(1),\beta_{\zeta}=\beta_{\zeta}^{(0)}+\varepsilon\,\beta_{\zeta}^{(1)}, and βe=βe(0)+εβe(1),\beta_{e}=\beta_{e}^{(0)}+\varepsilon\,\beta_{e}^{(1)}, and comparing the powers of ε\varepsilon from the regular (non-divergent) terms of the equations

Z1Z2(z1)=Z2Z1lnμZ1Z2lnμ,Z2Z3βζ=(Z3Z2lnμZ2Z3lnμ)ζ,\displaystyle Z_{1}\,Z_{2}\left(z-1\right)=Z_{2}\,\frac{\partial Z_{1}}{\partial\ln\mu}-Z_{1}\,\frac{\partial Z_{2}}{\partial\ln\mu}\,,\quad Z_{2}\,Z_{3}\,\beta_{\zeta}=\left(Z_{3}\,\frac{\partial Z_{2}}{\partial\ln\mu}-Z_{2}\,\frac{\partial Z_{3}}{\partial\ln\mu}\right)\zeta\,,
Z1Z2Z4βe=[Z1Z2Z4εZ2Z4Z1lnμZ1Z4(1ε)Z2lnμ+Z1Z2Z4lnμ]e2.\displaystyle Z_{1}\,Z_{2}\,Z_{4}\,\beta_{e}=-\left[Z_{1}\,Z_{2}\,Z_{4}\,\varepsilon-Z_{2}\,Z_{4}\frac{\partial Z_{1}}{\partial\ln\mu}-Z_{1}\,Z_{4}\left(1-\varepsilon\right)\frac{\partial Z_{2}}{\partial\ln\mu}+Z_{1}\,Z_{2}\,\frac{\partial Z_{4}}{\partial\ln\mu}\right]e^{2}\,. (13)

we get:

z=1e2cd0,dζdl=e2ζcd0,de2dl={(εe24π)e2 for d0=2(ε2e23π2)e2 for d0=3,\displaystyle z=1-\frac{e^{2}}{c_{d_{0}}}\,,\quad\frac{d\zeta}{dl}=-\frac{e^{2}\,\zeta}{c_{d_{0}}}\,,\quad\frac{de^{2}}{dl}=\begin{cases}\left(\varepsilon-\frac{e^{2}}{4\,\pi}\right)e^{2}&\text{ for }d_{0}=2\\ \left(\varepsilon-\frac{2\,e^{2}}{3\,\pi^{2}}\right)e^{2}&\text{ for }d_{0}=3\end{cases}\,, (14)

where l=lnμl=-\ln\mu is the RG flow parameter (or the floating length scale).

There are two fixed points: (1) the Gaussian fixed point at which ζ=0\zeta=0, e2=0e^{2}=0, z=1z=1, and η=0\eta=0; and (2) the marginal Fermi liquid fixed point at which ζ=0\zeta=0, e2={4πε for d0=23π2ε2 for d0=3,e^{2}=\begin{cases}4\,\pi\,\varepsilon&\text{ for }d_{0}=2\\ \frac{3\,\pi^{2}\,\varepsilon}{2}&\text{ for }d_{0}=3\end{cases}\,, z={1ε for d0=21ε2 for d0=3,z=\begin{cases}1-\varepsilon&\text{ for }d_{0}=2\\ 1-\frac{\varepsilon}{2}&\text{ for }d_{0}=3\end{cases}\,, and η={ε for d0=23ε4 for d0=3.\eta=\begin{cases}-\varepsilon&\text{ for }d_{0}=2\\ -\frac{3\,\varepsilon}{4}&\text{ for }d_{0}=3\end{cases}\,. The former is unstable, while the latter is a stable fixed point. This can be confirmed by writing down the linearized flow equations in the vicinity of the fixed points, and computing the stability matrix. This matrix has all negative eigenvalues for the marginal Fermi liquid fixed point.

IV Addition of disorder

We now consider the effect of correlated disorder on the non-interacting system. We find that the engineering dimension for a short-ranged disorder coupling is given by 2d0+ε2-d_{0}+\varepsilon. Therefore, disorder is marginal in 2d, whereas irrelevant in 3d. Therefore, in 3d, it is expected that the marginal Fermi liquid behaviour will be unchanged up to a critical strength of the disorder. Hence, we will focus on d0=2d_{0}=2 for short-ranged correlated disorder. On the other hand, we focus on power-law correlated disorder for d0=3d_{0}=3, such that the disorder realizations have a zero mean and a disorder correlation function proportional to 1|𝐤|\frac{1}{|\mathbf{k}|} in the momentum space. This power-law correlated disorder has a coupling constant with the engineering dimension 3d0+ε3-d_{0}+\varepsilon, which is the same as the Coulomb interactions in d0=3d_{0}=3. We note that even when considering initial conditions for the RG with only long-range correlated disorder, short-range correlated disorder is generated perturbatively already at one-loop order, and should be kept in the space of couplings. By contrast, long-range correlated disorder cannot be generated perturbatively from short-range correlated disorder.

We now consider the 2d and 3d cases in two separate subsections. We will consider a minimum set of disorder realizations to keep the calculations simple.

IV.1 2d case

If we consider disorder which is a scalar both in the spinor and position spaces (i.e. Γ00\Gamma_{00}), then we find that the loop corrections generate disorder terms having all possible matrix structures in the spinor space, captured by the generic matrix Γμν\Gamma_{\mu\nu}. Hence, we need to keep all these couplings from the start. This makes the calculation unwieldy. In order to keep it simple, while still being to extract the essential physics, we will then set ζ=0\zeta=0 and analyze the system for which the two velocities coincide. This seems to be a reasonable simplification to employ, as for the clean system with Coulomb interactions, ζ\zeta is marginal and indeed flows to zero under RG.

For the ζ=0\zeta=0 Hamiltonian, the minimal set of disorder couplings we need to consider is given by

𝒮dis2d\displaystyle\mathcal{S}^{2d}_{\text{dis}} =μεa,b=1ndτdτd2ε𝐱[W0(ψaψa)𝐱,τ(ψbψb)𝐱,τ+W1(ψaΓ30ψa)𝐱,τ(ψbΓ30ψb)𝐱,τ\displaystyle=-\mu^{\varepsilon}\sum\limits_{a,b=1}^{n}\int d\tau\,d\tau^{\prime}\,d^{2-\varepsilon}\mathbf{x}\,\Big{[}\,W_{0}\left(\psi_{a}^{{\dagger}}\,{\psi_{a}}\right)_{\mathbf{x},\tau}\left(\psi_{b}^{{\dagger}}\,\psi_{b}\right)_{\mathbf{x},\tau^{\prime}}+W_{1}\left(\psi_{a}^{{\dagger}}\,\Gamma_{30}\,{\psi_{a}}\right)_{\mathbf{x},\tau}\left(\psi_{b}^{{\dagger}}\,\Gamma_{30}\,\psi_{b}\right)_{\mathbf{x},\tau^{\prime}}
+W2j=1,2(ψaΓj0ψa)𝐱,τ(ψbΓj0ψb)𝐱,τ],\displaystyle\hskip 128.0374pt+W_{2}\sum\limits_{j=1,2}\left(\psi_{a}^{{\dagger}}\,\Gamma_{j0}\,{\psi_{a}}\right)_{\mathbf{x},\tau}\left(\psi_{b}^{{\dagger}}\,\Gamma_{j0}\,\psi_{b}\right)_{\mathbf{x},\tau^{\prime}}\Big{]}\,, (15)

after disorder-averaging using the replica trick. Here, the replica indices have been indicated by aa and bb, which run over nn replicas of the fermion fields. The limit n0n\rightarrow 0 has to be taken at the end of the computations. We have assumed that the disorder terms respect the isotropy (rotational invariance) in the 2d position space.

Using the ansatz of a replica-diagonal solution, and taking the limit n0n\rightarrow 0, we obtain a self-energy that is diagonal in the replica space, and can be written as

Σdis2d(k0,𝐤)\displaystyle\Sigma^{2d}_{\text{dis}}(k_{0},\mathbf{k}) =2μεd2ε𝐪(2π)2εG0(k0,𝐪)=ik0(μ|k0|)επε(W0+W1+2W2)+𝒪(ε0).\displaystyle=2\,\mu^{\varepsilon}\int\frac{d^{2-\varepsilon}\mathbf{q}}{(2\,\pi)^{2-\varepsilon}}\,G_{0}(k_{0},\mathbf{q})=\frac{i\,k_{0}\left(\frac{\mu}{|k_{0}|}\right)^{\varepsilon}}{\pi\,\varepsilon}\left(W_{0}+W_{1}+2\,W_{2}\right)+\mathcal{O}(\varepsilon^{0})\,. (16)

Next let us consider the loop corrections to the disorder lines themselves. A ZS diagram comes with a factor of nn, which vanishes upon taking the replica limit n0n\rightarrow 0. The contributions from the VC, BCS, and ZS diagrams are shown in Tables 1 and 2 respectively.

Coupling W0W_{0} W1W_{1} W2W_{2}
W0W_{0} δW0=2W02πε\delta W_{0}=-\frac{2\,W_{0}^{2}}{\pi\,\varepsilon} δW0=2W0W1πε\delta W_{0}=-\frac{2\,W_{0}\,W_{1}}{\pi\,\varepsilon} δW0=4W0W2πε\delta W_{0}=-\frac{4\,W_{0}\,W_{2}}{\pi\,\varepsilon}
W1W_{1} δW1=2W0W1πε\delta W_{1}=\frac{2\,W_{0}\,W_{1}}{\pi\,\varepsilon} δW1=2W12πε\delta W_{1}=\frac{2\,W_{1}^{2}}{\pi\,\varepsilon} δW1=4W0W2πε\delta W_{1}=-\frac{4\,W_{0}\,W_{2}}{\pi\,\varepsilon}
W2W_{2} δW2=2W0W2πε\delta W_{2}=-\frac{2\,W_{0}\,W_{2}}{\pi\,\varepsilon} δW2=2W1W2πε\delta W_{2}=\frac{2\,W_{1}\,W_{2}}{\pi\,\varepsilon} 0
Table 1: Corrections to disorder couplings in 2d from the VC diagrams involving disorder only.
Coupling W0W_{0} W1W_{1} W2W_{2}
W0W_{0} δW1=2W02πε\delta W_{1}=-\frac{2\,W_{0}^{2}}{\pi\,\varepsilon} 0 δW0=4W0W2πε\delta W_{0}=-\frac{4\,W_{0}\,W_{2}}{\pi\,\varepsilon}
W1W_{1} - δW2=W12πε\delta W_{2}=-\frac{W_{1}^{2}}{\pi\,\varepsilon} δW0=2W1W2πε,δW1=6W1W2πε\delta W_{0}=\frac{2\,W_{1}\,W_{2}}{\pi\,\varepsilon},\,\delta W_{1}=-\frac{6\,W_{1}\,W_{2}}{\pi\,\varepsilon}
W2W_{2} - - δW2=8W22πε\delta W_{2}=-\frac{8\,W_{2}^{2}}{\pi\,\varepsilon}
Table 2: Corrections to disorder couplings in 2d from the BCS and ZS diagrams involving disorder only. Only the upper triangular part is populated as the lower triangular part contains duplicate entries.

Lastly, we need to consider the loop-diagrams, each of which originates from a Coulomb vertex and a disorder vertex. The loop integrals for the ZS diagrams vanish. The VC diagrams add a correction term of 2e2(W0+W1+2W2)πε\frac{2\,e^{2}\left(W_{0}+W_{1}+2\,W_{2}\right)}{\pi\,\varepsilon} to the bare coupling of e2-e^{2}. The BCS and ZS diagrams have no logarithmic divergence.

IV.2 3d case

The minimal set of disorder, including a scalar vertex, is given by

𝒮dis3d\displaystyle\mathcal{S}^{3d}_{\text{dis}} =a,b=1n𝑑τ𝑑τd3ε𝐱(𝒱¯με1+𝒱με|𝐱|2)(ψaψa)𝐱,τ(ψbψb)𝐱,τ,\displaystyle=-\sum\limits_{a,b=1}^{n}\int d\tau\,d\tau^{\prime}\,d^{3-\varepsilon}\mathbf{x}\left({\bar{\mathcal{V}}\,\mu^{\varepsilon-1}}+\frac{{\mathcal{V}}\,\mu^{\varepsilon}}{|\mathbf{x}|^{2}}\right)\left(\psi_{a}^{{\dagger}}\,{\psi_{a}}\right)_{\mathbf{x},\tau}\left(\psi_{b}^{{\dagger}}\,\psi_{b}\right)_{\mathbf{x},\tau^{\prime}}, (17)

with the Fourier transformed expression

𝒮dis3d\displaystyle\mathcal{S}^{3d}_{\text{dis}} =a,bdk0dk0d3ε𝐪d3ε𝐤d3ε𝐤(2π)3(3ε)+2{ψ~a(k0,𝐤)ψ~a(k0,𝐤+𝐪)}{ψ~b(k0,𝐤)ψ~b(k0,𝐤𝐪)}(𝒱¯με1+𝒱με|𝐪|).\displaystyle=-\sum\limits_{a,b}\int\frac{dk_{0}\,dk_{0}^{\prime}\,d^{3-\varepsilon}{\mathbf{q}}\,d^{3-\varepsilon}{\mathbf{k}}\,d^{3-\varepsilon}{\mathbf{k}^{\prime}}}{(2\pi)^{3\left(3-\varepsilon\right)+2}}\,\left\{\tilde{\psi}_{a}^{{\dagger}}(k_{0},\mathbf{k})\,\tilde{\psi}_{a}(k_{0},{\mathbf{k}}+\mathbf{q})\right\}\left\{\tilde{\psi}^{{\dagger}}_{b}(k_{0}^{\prime},{\mathbf{k}}^{\prime})\,\tilde{\psi}_{b}(k_{0}^{\prime},{\mathbf{k}}^{\prime}-\mathbf{q})\right\}\left(\bar{\mathcal{V}}\,\mu^{\varepsilon-1}+\frac{{\mathcal{V}}\,\mu^{\varepsilon}}{|\mathbf{q}|}\right). (18)

The fermion self-energy correction from disorder takes the form:

Σdis3d(k0,𝐤)\displaystyle\Sigma^{3d}_{dis}(k_{0},\mathbf{k}) =ik0(1+ζ23ζj=13Γjj)𝒱(μ|k0|)ε2π(1ζ2)2ε.\displaystyle=\frac{i\,k_{0}\left(1+\zeta^{2}-3\,\zeta\sum\limits_{j=1}^{3}\Gamma_{jj}\right)\mathcal{V}\left(\frac{\mu}{|k_{0}|}\right)^{\varepsilon}}{2\,\pi\left(1-\zeta^{2}\right)^{2}\varepsilon}\,. (19)

The presence of the term j=13Γjj\sum\limits_{j=1}^{3}\Gamma_{jj} indicates that a mass term is generated, which however does not fully gap out all the bands (as it does not anticommute with all terms of the Hamiltonian). We will ignore this term in our RG framework.

The disorder-disorder ZS contribution vanishes as we take the number of replicas n0n\rightarrow 0 limit. For the disorder-only VC diagrams, we get the correction 2(1+ζ2)π2(1ζ2)2ε𝒱𝒱¯\frac{2\,\left(1+\zeta^{2}\right)}{\pi^{2}\left(1-\zeta^{2}\right)^{2}\varepsilon}\,\mathcal{V}\,\bar{\mathcal{V}} and 2(1+ζ2)π2(1ζ2)2ε𝒱2,\frac{2\,\left(1+\zeta^{2}\right)}{\pi^{2}\left(1-\zeta^{2}\right)^{2}\varepsilon}\,\mathcal{V}^{2}\,, to the bare couplings 𝒱¯-\bar{\mathcal{V}} and 𝒱-{\mathcal{V}}, respectively. The disorder-disorder BCS and ZS diagrams have no logarithmic divergences.

Lastly, we consider the mixed Coulomb-disorder diagrams. The ZS ones contribute to δ𝒱¯=e2𝒱¯3π2ε\delta{\bar{\mathcal{V}}}=\frac{e^{2}\,\bar{\mathcal{V}}}{3\,\pi^{2}\,\varepsilon} and δ𝒱=e2𝒱3π2ε.\delta{\mathcal{V}}=\frac{e^{2}\,\mathcal{V}}{3\,\pi^{2}\,\varepsilon}\,. The VC diagrams shift the Coulomb coupling by δ(e2)=2(1+ζ2)π2(1ζ2)2εe2𝒱\delta(e^{2})=-\frac{2\left(1+\zeta^{2}\right)}{\pi^{2}\left(1-\zeta^{2}\right)^{2}\varepsilon}\,e^{2}\,\mathcal{V}. The BCS and ZS diagrams have no logarithmic divergence.

V RG flow analysis

Using the results from the one-loop calculations, we now compute the RG flow equations to determine the fixed points. We analyze the equations in two separate subsections for the 2d and 3d systems, respectively.

V.1 2d case

To the counterterm action in Eq. (III.2), we now add the one required for the disorder. This is represented by

𝒮dis2d,c\displaystyle\mathcal{S}^{2d,c}_{\text{dis}} =μεa,b=1ndk0dp0(η=14d2ε𝐤η)δ2ε(𝐤1+𝐤3𝐤2𝐤4)(2π)2+3(2ε)[A5W0{ψ~a(k0,𝐤1)ψ~a(k0,𝐤2)}{ψ~b(p0,𝐤3)ψ~b(p0,𝐤4)}\displaystyle=-\mu^{\varepsilon}\sum\limits_{a,b=1}^{n}\int d{k_{0}}\,d{p_{0}}\,\left(\prod\limits_{\eta=1}^{4}\int d^{2-\varepsilon}{\bf k}_{\eta}\right)\frac{\delta^{2-\varepsilon}\left({\bf k}_{1}+{\bf k}_{3}-{\bf k}_{2}-{\bf k}_{4}\right)}{\left(2\,\pi\right)^{2+3\left(2-\varepsilon\right)}}\Big{[}\,A_{5}\,{W_{0}}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}},\mathbf{k}_{1})\,{\tilde{\psi}_{a}}({k_{0}},\mathbf{k}_{2})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}},\mathbf{k}_{3})\,\tilde{\psi}_{b}({p_{0}},\mathbf{k}_{4})\right\}
+A6W1{ψ~a(k0,𝐤1)Γ30ψ~a(k0,𝐤2)}{ψ~b(p0,𝐤3)Γ30ψ~b(p0,𝐤4)}\displaystyle\hskip 170.71652pt+A_{6}\,{W_{1}}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}},\mathbf{k}_{1})\,\Gamma_{30}\,{\tilde{\psi}_{a}}({k_{0}},\mathbf{k}_{2})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}},\mathbf{k}_{3})\,\Gamma_{30}\,\tilde{\psi}_{b}({p_{0}},\mathbf{k}_{4})\right\}
+A7W2j=1,2{ψ~a(k0,𝐤1)Γj0ψ~a(k0,𝐤2)}{ψ~b(p0,𝐤3)Γj0ψ~b(p0,𝐤4)}],\displaystyle\hskip 170.71652pt+A_{7}\,{W_{2}}\sum\limits_{j=1,2}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}},\mathbf{k}_{1})\,\Gamma_{j0}\,{\tilde{\psi}_{a}}({k_{0}},\mathbf{k}_{2})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}},\mathbf{k}_{3})\,\Gamma_{j0}\,\tilde{\psi}_{b}({p_{0}},\mathbf{k}_{4})\right\}\Big{]}\,,
AnZn1=λ=1Zn,λελ with n=5,6,7,\displaystyle A_{n}\equiv\,Z_{n}-1=\sum_{\lambda=1}^{\infty}\frac{Z_{n,\lambda}}{\varepsilon^{\lambda}}\text{ with }n=5,6,7\,, (20)

where

W0B=Z5Z2ε2W0με,W1B=Z6Z2ε2W1με,W2B=Z7Z2ε2W2με.\displaystyle{W_{0}}_{B}=Z_{5}\,Z_{2}^{\varepsilon-2}\,W_{0}\,\mu^{\varepsilon}\,,\quad{W_{1}}_{B}=Z_{6}\,Z_{2}^{\varepsilon-2}\,W_{1}\,\mu^{\varepsilon}\,,\quad{W_{2}}_{B}=Z_{7}\,Z_{2}^{\varepsilon-2}\,W_{2}\,\mu^{\varepsilon}\,. (21)

We then get the corresponding renormalized action as

𝒮dis2d,ren\displaystyle\mathcal{S}^{2d,ren}_{\text{dis}} =a,b=1n𝑑k0B𝑑p0B(η=14d2ε𝐤ηB)δ2ε(𝐤1B+𝐤3B𝐤2B𝐤4B)(2π)2+3(2ε)\displaystyle=-\sum\limits_{a,b=1}^{n}\int dk_{0_{B}}\,dp_{0_{B}}\,\left(\prod\limits_{\eta=1}^{4}\int d^{2-\varepsilon}{\bf k}_{\eta_{B}}\right)\frac{\delta^{2-\varepsilon}\left({\bf k}_{1_{B}}+{\bf k}_{3_{B}}-{\bf k}_{2_{B}}-{\bf k}_{4_{B}}\right)}{\left(2\,\pi\right)^{2+3\left(2-\varepsilon\right)}}
×[W0B{ψ~a(k0B,𝐤1B)ψ~a(k0B,𝐤2B)}{ψ~b(p0B,𝐤3B)ψ~b(p0B,𝐤4B)}\displaystyle\hskip 56.9055pt\times\Big{[}\,{W_{0}}_{B}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}}_{B},\mathbf{k}_{1_{B}})\,{\tilde{\psi}_{a}}({k_{0}}_{B},\mathbf{k}_{2_{B}})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}}_{B},\mathbf{k}_{3_{B}})\,\tilde{\psi}_{b}({p_{0}}_{B},\mathbf{k}_{4_{B}})\right\}
+W1B{ψ~a(k0B,𝐤1B)Γ30ψ~a(k0B,𝐤2B)}{ψ~b(p0B,𝐤3B)Γ30ψ~b(p0B,𝐤4B)}\displaystyle\hskip 71.13188pt+{W_{1}}_{B}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}}_{B},\mathbf{k}_{1_{B}})\,\Gamma_{30}\,{\tilde{\psi}_{a}}({k_{0}}_{B},\mathbf{k}_{2_{B}})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}}_{B},\mathbf{k}_{3_{B}})\,\Gamma_{30}\,\tilde{\psi}_{b}({p_{0}}_{B},\mathbf{k}_{4_{B}})\right\}
+W2Bj=1,2{ψ~a(k0B,𝐤1B)Γj0ψ~a(k0B,𝐤2B)}{ψ~b(p0B,𝐤3B)Γj0ψ~b(p0B,𝐤4B)}].\displaystyle\hskip 71.13188pt+{W_{2}}_{B}\sum\limits_{j=1,2}\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}}_{B},\mathbf{k}_{1_{B}})\,\Gamma_{j0}\,{\tilde{\psi}_{a}}({k_{0}}_{B},\mathbf{k}_{2_{B}})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}}_{B},\mathbf{k}_{3_{B}})\,\Gamma_{j0}\,\tilde{\psi}_{b}({p_{0}}_{B},\mathbf{k}_{4_{B}})\right\}\,\Big{]}\,. (22)

Since we have set ζ=0\zeta=0, the Z3Z_{3} is no longer in consideration. To one-loop order, we now have

Z1,1=W0+W1+2W2π,Z2,1=e24π,Z4,1=2(W0+W1+2W2)π,\displaystyle Z_{1,1}=-\frac{W_{0}+W_{1}+2W_{2}}{\pi}\,,\quad Z_{2,1}=-\frac{e^{2}}{4\,\pi}\,,\quad Z_{4,1}=-\frac{2(W_{0}+W_{1}+2W_{2})}{\pi}\,,
Z5,1=2W022W0W14W0W24W0W2+2W1W2πW0,Z6,1=2W02+2W0W14W0W2+2W126W1W2πW1,\displaystyle Z_{5,1}=\frac{-2\,W_{0}^{2}-2W_{0}\,W_{1}-4W_{0}\,W_{2}-4\,W_{0}\,W_{2}+2\,W_{1}\,W_{2}}{\pi\,W_{0}}\,,\quad Z_{6,1}=\frac{-2\,W_{0}^{2}+2\,W_{0}\,W_{1}-4\,W_{0}\,W_{2}+2\,W_{1}^{2}-6\,W_{1}\,W_{2}}{\pi\,W_{1}}\,,
Z7,1=2W0W2W12+2W1W28W22πW2.\displaystyle Z_{7,1}=\frac{-2\,W_{0}\,W_{2}-W_{1}^{2}+2\,W_{1}\,W_{2}-8W_{2}^{2}}{\pi W_{2}}\,. (23)

We have used the results from Tables 1 and 2.

The beta functions are calculated in the same way as in the clean case. We get:

de2dl=e2[ε+e2+4(W0+W1+2W2)4π],dW0dl=εW0+4[W02+W0(W1+4W2)W1W2]e2W02π,\displaystyle\frac{de^{2}}{dl}=e^{2}\left[\varepsilon+\frac{-e^{2}+4\left(W_{0}+W_{1}+2\,W_{2}\right)}{4\,\pi}\right],\quad\frac{dW_{0}}{dl}=\varepsilon\,W_{0}+\frac{4\left[W_{0}^{2}+W_{0}\left(W_{1}+4\,W_{2}\right)-W_{1}\,W_{2}\right]-e^{2}\,W_{0}}{2\,\pi}\,,
dW1dl=εW1+4(W02W0W1+2W0W2W12+3W1W2)e2W12π,\displaystyle\frac{dW_{1}}{dl}=\varepsilon\,W_{1}+\frac{4\left(W_{0}^{2}-W_{0}\,W_{1}+2\,W_{0}\,W_{2}-W_{1}^{2}+3\,W_{1}\,W_{2}\right)-e^{2}\,W_{1}}{2\,\pi}\,,
dW2dl=εW2+2[2W2(W0+4W2)+W122W1W2]e2W22π.\displaystyle\frac{dW_{2}}{dl}=\varepsilon\,W_{2}+\frac{2\left[2\,W_{2}\left(W_{0}+4W_{2}\right)+W_{1}^{2}-2\,W_{1}\,W_{2}\right]-e^{2}\,W_{2}}{2\,\pi}\,. (24)

The fixed points are given by the zeros of the above derivatives of the four coupling constants. We get several fixed points, where the values of the coupling constants {e2,W0,W1,W2}\left\{{e^{2}},W_{0},W_{1},W_{2}\right\} are given by:

{0,0,0,0},{4πε,0,0,0},{6πε,0,0,πε4},{34.74ε,1.02ε,1.10ε,1.71ε},{71.27ε,8.93ε,3.76ε,0.99ε}.\displaystyle\left\{0,0,0,0\right\},\quad\left\{4\,\pi\,\varepsilon,0,0,0\right\},\quad\left\{6\,\pi\,\varepsilon,0,0,\frac{\pi\,\varepsilon}{4}\right\},\quad\left\{34.74\,\varepsilon,1.02\,\varepsilon,1.10\,\varepsilon,1.71\,\varepsilon\right\},\quad\left\{71.27\,\varepsilon,8.93\,\varepsilon,3.76\,\varepsilon,0.99\,\varepsilon\right\}. (25)

Expanding the coupling constants about each fixed point, we determine the stability matrix. Only for the fixed point {4πε,0,0,0}\left\{4\,\pi\,\varepsilon,0,0,0\right\}, all eigenvalues of the stability matrix are negative, implying that it is the stable fixed point. The RG flows in three different planes are shown in Fig. 2. Hence, the marginal Fermi liquid fixed point survives in the presence of disorder.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 2: 2d case: Panels (a), (b), and (c) show the RG flows and fixed points (represented by white discs) in the W1=W2=0W_{1}=W_{2}=0, W0=W2=0W_{0}=W_{2}=0, and W0=W1=0W_{0}=W_{1}=0 planes, respectively. We have set ε=103\varepsilon=10^{-3} for all the plots.

V.2 3d case

To the counterterm action in Eq. (III.2), we now add the one required for the disorder. This is represented by

𝒮dis3d,c\displaystyle\mathcal{S}^{3d,c}_{\text{dis}} =a,b=1n𝑑k0𝑑p0(η=14d3ε𝐤η)δ3ε(𝐤1+𝐤3𝐤2𝐤4)(2π)2+3(2ε)(A5𝒱¯με1+A6𝒱με|𝐪|)\displaystyle=-\sum\limits_{a,b=1}^{n}\int d{k_{0}}\,d{p_{0}}\,\left(\prod\limits_{\eta=1}^{4}\int d^{3-\varepsilon}{\bf k}_{\eta}\right)\frac{\delta^{3-\varepsilon}\left({\bf k}_{1}+{\bf k}_{3}-{\bf k}_{2}-{\bf k}_{4}\right)}{\left(2\,\pi\right)^{2+3\left(2-\varepsilon\right)}}\left(A_{5}\,\bar{\mathcal{V}}\,\mu^{\varepsilon-1}+\frac{A_{6}\,{\mathcal{V}}\,\mu^{\varepsilon}}{|\mathbf{q}|}\right)
×{ψ~a(k0,𝐤1)ψ~a(k0,𝐤2)}{ψ~b(p0,𝐤3)ψ~b(p0,𝐤4)},\displaystyle\hskip 142.26378pt\times\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}},\mathbf{k}_{1})\,{\tilde{\psi}_{a}}({k_{0}},\mathbf{k}_{2})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}},\mathbf{k}_{3})\,\tilde{\psi}_{b}({p_{0}},\mathbf{k}_{4})\right\},
AnZn1=λ=1Zn,λελ with n=5,6,\displaystyle A_{n}\equiv\,Z_{n}-1=\sum_{\lambda=1}^{\infty}\frac{Z_{n,\lambda}}{\varepsilon^{\lambda}}\text{ with }n=5,6\,, (26)

where

𝒱¯B=Z5Z2ε3𝒱¯με1,𝒱B=Z6Z2ε2𝒱με.\displaystyle{\bar{\mathcal{V}}}_{B}=Z_{5}\,Z_{2}^{\varepsilon-3}\,{\bar{\mathcal{V}}}\,\mu^{\varepsilon-1}\,,\quad{\mathcal{V}}_{B}=Z_{6}\,Z_{2}^{\varepsilon-2}\,{\mathcal{V}}\,\mu^{\varepsilon}\,. (27)

We then get the corresponding renormalized action as

𝒮dis3d,ren\displaystyle\mathcal{S}^{3d,ren}_{\text{dis}} =a,b=1n𝑑k0B𝑑p0B(η=14d3ε𝐤ηB)δ3ε(𝐤1B+𝐤3B𝐤2B𝐤4B)(2π)2+3(3ε)(𝒱¯B+𝒱B|𝐪B|)\displaystyle=-\sum\limits_{a,b=1}^{n}\int dk_{0_{B}}\,dp_{0_{B}}\,\left(\prod\limits_{\eta=1}^{4}\int d^{3-\varepsilon}{\bf k}_{\eta_{B}}\right)\frac{\delta^{3-\varepsilon}\left({\bf k}_{1_{B}}+{\bf k}_{3_{B}}-{\bf k}_{2_{B}}-{\bf k}_{4_{B}}\right)}{\left(2\,\pi\right)^{2+3\left(3-\varepsilon\right)}}\left(\bar{\mathcal{V}}_{B}+\frac{{\mathcal{V}}_{B}}{|\mathbf{q}_{B}|}\right)
×{ψ~a(k0B,𝐤1B)ψ~a(k0B,𝐤2B)}{ψ~b(p0B,𝐤3B)ψ~b(p0B,𝐤4B)}.\displaystyle\hskip 142.26378pt\times\left\{\tilde{\psi}_{a}^{{\dagger}}({k_{0}}_{B},\mathbf{k}_{1_{B}})\,{\tilde{\psi}_{a}}({k_{0}}_{B},\mathbf{k}_{2_{B}})\right\}\left\{\tilde{\psi}_{b}^{{\dagger}}({p_{0}}_{B},\mathbf{k}_{3_{B}})\,\tilde{\psi}_{b}({p_{0}}_{B},\mathbf{k}_{4_{B}})\right\}. (28)

To one-loop order, we have

Z1,1\displaystyle Z_{1,1} =(1+ζ2)𝒱2π(1ζ2)2,Z2,1=e23π2,Z3,1=0,Z4,1=e23π22(1+ζ2)𝒱π2(1ζ2)2,\displaystyle=-\frac{\left(1+\zeta^{2}\right)\mathcal{V}}{2\,\pi\left(1-\zeta^{2}\right)^{2}}\,,\quad Z_{2,1}=-\frac{e^{2}}{3\,\pi^{2}}\,,\quad Z_{3,1}=0\,,\quad Z_{4,1}=\frac{e^{2}}{3\,\pi^{2}}-\frac{2\left(1+\zeta^{2}\right)\mathcal{V}}{\pi^{2}\left(1-\zeta^{2}\right)^{2}}\,,
Z5,1\displaystyle Z_{5,1} =2(1+ζ2)𝒱π2(1ζ2)2+e23π2,Z6,1=2(1+ζ2)𝒱π2(1ζ2)2+e23π2.\displaystyle=-\frac{2\,\left(1+\zeta^{2}\right)\mathcal{V}}{\pi^{2}\left(1-\zeta^{2}\right)^{2}}+\frac{e^{2}}{3\,\pi^{2}}\,,\quad Z_{6,1}=-\frac{2\,\left(1+\zeta^{2}\right)\mathcal{V}}{\pi^{2}\left(1-\zeta^{2}\right)^{2}}+\frac{e^{2}}{3\,\pi^{2}}\,. (29)

The full set of beta functions is given by:

de2dl=e2[ε4e2+3(π4)(1+ζ2)𝒱(1ζ2)26π2],dζdl=e2ζ3π2,\displaystyle\frac{de^{2}}{dl}=e^{2}\left[\varepsilon-\frac{4\,e^{2}+\frac{3(\pi-4)\left(1+\zeta^{2}\right)\mathcal{V}}{\left(1-\zeta^{2}\right)^{2}}}{6\,\pi^{2}}\right],\quad\frac{d\zeta}{dl}=-\frac{e^{2}\,\zeta}{3\,\pi^{2}}\,,
d𝒱¯dl=𝒱¯[ε1+2{3π(ζ2+1)𝒱(1ζ2)22e2}3π2],d𝒱dl=𝒱[ε+2π(1+ζ2)𝒱(1ζ2)2e2π2].\displaystyle\frac{d\bar{\mathcal{V}}}{dl}=\bar{\mathcal{V}}\left[\varepsilon-1+\frac{2\left\{\frac{3\,\pi\left(\zeta^{2}+1\right)\mathcal{V}}{\left(1-\zeta^{2}\right)^{2}}-2\,e^{2}\right\}}{3\,\pi^{2}}\right],\quad\frac{d\mathcal{V}}{dl}=\mathcal{V}\left[\varepsilon+\frac{\frac{2\,\pi\left(1+\zeta^{2}\right)\mathcal{V}}{\left(1-\zeta^{2}\right)^{2}}-e^{2}}{\pi^{2}}\right]. (30)

The fixed points of the beta functions are given by:

{0,0,0,0},{32π2ε,0,0,0}.\displaystyle\left\{0,0,0,0\right\},\quad\left\{\frac{3}{2}\,\pi^{2}\,\varepsilon,0,0,0\right\}. (31)

Only for the non-Gaussian fixed point, all eigenvalues of the stability matrix are negative, implying that it is the stable fixed point. The RG flows in three different planes are shown in Fig. 3. Hence, the marginal Fermi liquid fixed point survives in the presence of disorder.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Figure 3: 3d case: Panels (a), (b), and (c) show the RG flows and fixed points (represented by white discs) in the 𝒱¯=𝒱=0\bar{\mathcal{V}}={\mathcal{V}}=0, ζ=𝒱=0\zeta={\mathcal{V}}=0, and ζ=𝒱¯=0\zeta=\bar{\mathcal{V}}=0 planes, respectively. We have set ε=103\varepsilon=10^{-3} for (a) and (c), and ε=102\varepsilon=10^{-2} for (b).

VI Summary and Outlook

We have considered effective low-energy Hamiltonians which give rise to pseudospin-3/2 quasiparticles with birefringent spectra, in both 2d and 3d. First, we have computed the stable phases of these systems in the presence of Coulomb interactions by using the RG scheme. Although this question was considered earlier [12], we have found it essential to repeat the derivations to correct some algebraic factors in the loop-calculations, and also to set up our minimal subtraction scheme. The results show that a marginal Fermi liquid emerges both in 2d and 3d, driven by the Coulomb interactions, which is a stable interacting fixed point of the RG equations. Interestingly, this is an example where a marginal Fermi liquid emerges even in 2d, where for other systems we usually find a non-Fermi liquid phase [15, 16, 17, 18, 20].

The focal point of our work is to analyze if this non-Gaussian fixed point survives the addition of disorder, which would be ubiquitous in realistic scenarios. We have treated disorder on an equal footing with the Coulomb terms, and have re-derived the RG equations, now in the presence of disorder vertices. The stable fixed points of the RG equations show that the marginal Fermi liquid is robust against disorder.

In future, it will be useful to compute the close-to-zero temperature transport properties, by using methods like Kubo formula [21, 22], and the invariant measure approach (IMA) [23]. The finite-temperature transport characteristics can be calculated by using the memory matrix formalism [24, 25]. In particular, since the marginal Fermi liquid phase is unaffected by disorder, there is no subtlety (unlike in similar non-Fermi liquid phases in other semimetals, considered earlier [24, 25]) in applying the memory matrix formalism, where we usually couple the system with weak disorder in order to provide a relaxation mechanism for all the nearly-conserved operators. Another interesting direction will be to consider the effect of disorder in the presence of various order parameters / mass terms [12, 26, 27].

VII Acknowledgments

We thank Klaus Ziegler and Vladimir Juričić for useful comments.

References

  • Kennett et al. [2011] M. P. Kennett, N. Komeilizadeh, K. Kaveh, and P. M. Smith, Birefringent breakup of dirac fermions on a square optical lattice, Phys. Rev. A 83, 053636 (2011).
  • Roy et al. [2012] B. Roy, P. M. Smith, and M. P. Kennett, Asymmetric spatial structure of zero modes for birefringent dirac fermions, Phys. Rev. B 85, 235119 (2012).
  • Komeilizadeh and Kennett [2014] N. Komeilizadeh and M. P. Kennett, Instabilities of a birefringent semimetal, Phys. Rev. B 90, 045131 (2014).
  • Dóra et al. [2011] B. Dóra, J. Kailasvuori, and R. Moessner, Lattice generalization of the dirac equation to general spin and the role of the flat band, Phys. Rev. B 84, 195422 (2011).
  • Watanabe et al. [2011] H. Watanabe, Y. Hatsugai, and H. Aoki, Manipulation of the dirac cones and the anomaly in the graphene related quantum hall effect, Journal of Physics: Conference Series 334, 012044 (2011).
  • Lan et al. [2011a] Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Öhberg, Dirac-weyl fermions with arbitrary spin in two-dimensional optical superlattices, Phys. Rev. B 84, 165115 (2011a).
  • Lan et al. [2011b] Z. Lan, A. Celi, W. Lu, P. Öhberg, and M. Lewenstein, Tunable multiple layered dirac cones in optical lattices, Phys. Rev. Lett. 107, 253001 (2011b).
  • Bradlyn et al. [2016] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353, aaf5037 (2016).
  • Ezawa [2016] M. Ezawa, Pseudospin-32\frac{3}{2} fermions, type-ii weyl semimetals, and critical weyl semimetals in tricolor cubic lattices, Phys. Rev. B 94, 195205 (2016).
  • Hsieh et al. [2014] T. H. Hsieh, J. Liu, and L. Fu, Topological crystalline insulators and dirac octets in antiperovskites, Phys. Rev. B 90, 081112 (2014).
  • Chen et al. [2017] C. Chen, S.-S. Wang, L. Liu, Z.-M. Yu, X.-L. Sheng, Z. Chen, and S. A. Yang, Ternary wurtzite caagbi materials family: A playground for essential and accidental, type-i and type-ii dirac fermions, Phys. Rev. Materials 1, 044201 (2017).
  • Roy et al. [2018] B. Roy, M. P. Kennett, K. Yang, and V. Juričić, From birefringent electrons to a marginal or non-fermi liquid of relativistic spin-1/21/2 fermions: An emergent superuniversality, Phys. Rev. Lett. 121, 157602 (2018).
  • Nandkishore and Parameswaran [2017] R. M. Nandkishore and S. A. Parameswaran, Disorder-driven destruction of a non-fermi liquid semimetal studied by renormalization group analysis, Phys. Rev. B 95, 205106 (2017).
  • Mandal and Nandkishore [2018] I. Mandal and R. M. Nandkishore, Interplay of coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands, Phys. Rev. B 97, 125121 (2018).
  • Dalidovich and Lee [2013] D. Dalidovich and S.-S. Lee, Perturbative non-fermi liquids from dimensional regularization, Phys. Rev. B 88, 245106 (2013).
  • Mandal and Lee [2015] I. Mandal and S.-S. Lee, Ultraviolet/infrared mixing in non-fermi liquids, Phys. Rev. B 92, 035141 (2015).
  • Mandal [2016] I. Mandal, UV/IR Mixing In Non-Fermi Liquids: Higher-Loop Corrections In Different Energy Ranges, Eur. Phys. J. B 89, 278 (2016).
  • Mandal [2020] I. Mandal, Critical fermi surfaces in generic dimensions arising from transverse gauge field interactions, Phys. Rev. Research 2, 043277 (2020).
  • Note [1] There are two possible contractions (matching one ψ~\tilde{\psi}^{{\dagger}} with one ψ~\tilde{\psi}) of the interaction term in Eq. (2\@@italiccorr) that gives the fermion self-energy. In the real space, the ‘Hartree’ contractions are of the form ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t,x)\,\psi(t,x)\rangle\,\psi^{{\dagger}}(t^{\prime},{x^{\prime}})\,\psi(t^{\prime},{x^{\prime}}), and correspond to tadpole diagrams. These simply shift the overall chemical potential, and can be ignored (since we assume that the renormalized chemical potential is at the band-crossing point). However, the ‘exchange’ contractions contribute (cannot be ignored). These latter contributions are of the form ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t,x)\,\psi(t^{\prime},{x^{\prime}})\rangle\,\psi^{{\dagger}}(t^{\prime},{x^{\prime}})\,\psi(t,x), and ψ(t,x)ψ(t,x)ψ(t,x)ψ(t,x)\langle\psi^{{\dagger}}(t^{\prime},x^{\prime})\,\psi(t,{x})\rangle\,\psi^{{\dagger}}(t,{x})\,\psi(t^{\prime},x^{\prime}). Due to two ways of contractions, we get a factor of 2.
  • Pimenov et al. [2018] D. Pimenov, I. Mandal, F. Piazza, and M. Punk, Non-fermi liquid at the fflo quantum critical point, Phys. Rev. B 98, 024510 (2018).
  • Eberlein et al. [2016] A. Eberlein, I. Mandal, and S. Sachdev, Hyperscaling violation at the ising-nematic quantum critical point in two-dimensional metals, Phys. Rev. B 94, 045133 (2016).
  • Mandal [2017] I. Mandal, Scaling behaviour and superconducting instability in anisotropic non-fermi liquids, Annals of Physics 376, 89–107 (2017).
  • Mandal and Ziegler [2021] I. Mandal and K. Ziegler, Robust quantum transport at particle-hole symmetry, EPL (Europhysics Letters) 135, 17001 (2021).
  • Mandal and Freire [2021] I. Mandal and H. Freire, Transport in the non-fermi liquid phase of isotropic luttinger semimetals, Phys. Rev. B 103, 195116 (2021).
  • Freire and Mandal [2021] H. Freire and I. Mandal, Thermoelectric and thermal properties of the weakly disordered non-fermi liquid phase of luttinger semimetals, Physics Letters A 407, 127470 (2021).
  • Roy and Juričić [2020] B. Roy and V. Juričić, Relativistic non-fermi liquid from interacting birefringent fermions: A robust superuniversality, Phys. Rev. Research 2, 012047 (2020).
  • Mandal [2018] I. Mandal, Fate of superconductivity in three-dimensional disordered luttinger semimetals, Annals of Physics 392, 179–195 (2018).