This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\copyyear

2023 \startpage1

\authormark

CARABALLO et al. \titlemarkBiot–Brinkman equations in vorticity form

\corres

Corresponding author Ricardo Ruiz-Baier.

\fundingInfo

Chilean Research and Technology Council through the ANID program for international research visits; by the Australian Government through the National Computational Infrastructure (NCI) under the ANU Merit Allocation Scheme (ANUMAS); and by the Australian Research Council through the Future Fellowship grant FT220100496 and Discovery Project grant DP22010316.

Robust finite element methods and solvers for the Biot–Brinkman equations in vorticity form

Ruben Caraballo    Chansophea Wathanak In    Alberto F. Martín    Ricardo Ruiz-Baier \orgdivGIMNAP, Departamento de Matemática, \orgnameUniversidad del Bío-Bío, \orgaddress\stateConcepción, \countryChile \orgdivSchool of Mathematics, \orgnameMonash University, \orgaddress\state9 Rainforest Walk, Melbourne VIC 3800, \countryAustralia \orgdivSchool of Computing, \orgnameAustralian National University, \orgaddress\stateActon ACT 2601, \countryAustralia \orgnameUniversidad Adventista de Chile, \orgaddress\stateCasilla 7-D, Chillán, \countryChile [email protected]    Caraballo R    In CW    Martín AF    Ruiz-Baier R
(Date Month Year; Date Month Year)
Abstract

[Abstract]In this paper, we propose a new formulation and a suitable finite element method for the steady coupling of viscous flow in deformable porous media using divergence-conforming filtration fluxes. The proposed method is based on the use of parameter-weighted spaces, which allows for a more accurate and robust analysis of the continuous and discrete problems. Furthermore, we conduct a solvability analysis of the proposed method and derive optimal error estimates in appropriate norms. These error estimates are shown to be robust in a variety of regimes, including the case of large Lamé parameters and small permeability and storativity coefficients. To illustrate the effectiveness of the proposed method, we provide a few representative numerical examples, including convergence verification and testing of robustness of block-diagonal preconditioners with respect to model parameters.

\jnlcitation\cname

, , , and . \ctitleRobust finite element methods and solvers for the Biot–Brinkman equations in vorticity form. \cjournalNumer Methods PDEs. \cvol2023;00(00):1–18.

keywords:
Biot–Brinkman coupled problem, deformable porous media, vorticity-based formulation, mixed finite element methods.
Mathematics Subject Classifications (2000): 65N30, 65N15, 76S05, 35Q74.
articletype: Article Typejournal: Numerical Methods for Partial Differential Equationsvolume: 00

1 Introduction

We address the analysis of the Biot–Brinkman equations, which serve as a model for filtration of viscous flow in deformable porous media 3, 22, 54, 55. The system has been recently analysed in 35 for the case of multiple network poroelasticity, using 𝐇(div,Ω)\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega)-conforming displacements and filtration fluxes (or seepage velocities) for each compartment, also designing robust preconditioners. Here we propose a reformulation for only one fluid compartment but using the vorticity field (defined as the curl of the filtration velocity) as an additional unknown in the system, and we also include the total pressure, following 50, 42. Such an approach enables us to avoid the notorious problem of locking or non-physical pressure oscillations when approximating poroelastic models and it has led to a number of developments including extensions to multiple network models, interfacial free-flow and poromechanics coupling, nonlinear interaction with species transport, reformulations into four and more fields systems, and using other discretisations such as discontinuous Galerkin, nonconforming FEM, weak Galerkin, and virtual elements. See, e.g., 16, 20, 36, 38, 41, 43, 51, 52, 56, 58, 59.

The formulation of viscous flow equations using vorticity, velocity and pressure has been used and analysed (in terms of solvability of the continuous and discrete formulations and deriving error estimates) extensively in, e.g., 1, 2, 7, 8, 6, 9, 14, 23, 27, 28, 57. Methods based on vorticity formulations are useful for visualisation of rotational flows and they are convenient when dealing with rotation-based boundary conditions. The coupling with other effects such as mass and energy transport has also been addressed, see for example 4, 15, 44. These contributions include fully mixed finite elements, augmented forms, spectral methods, and Galerkin least-squares stabilised types of discretisations. At the continuous level, one appealing property of some of these vorticity formulations is that the 𝐇1\mathbf{H}^{1}-conformity of the filtration flux is relaxed and velocity is sought in 𝐇(div,Ω)\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega) and the vorticity is sought in either 𝐇(𝐜𝐮𝐫𝐥,Ω)\mathbf{H}(\mathop{\mathbf{curl}}\nolimits,\Omega) or 𝐋2(Ω)\mathbf{L}^{2}(\Omega). Then, using simply a conforming method, resulting discretisations are readily mass conservative. Also, mixed methods that look for both vorticity and velocity will typically deliver approximate vorticity with the same accuracy as velocity (as opposed to schemes needing numerical differentiation to get vorticity from approximate velocity). Another advantage of using a vorticity-based method is that an exactness sequence exists between the spaces for velocity, vorticity, and pressure, yielding a framework that can be straightforwardly analysed with finite element exterior calculus 34. We also stress that solving directly for vorticity enables a more thorough investigation of vortical patterns, interactions at boundary layers, and the formation of turbulent eddies, all of which are crucial in a diverse array of applications.

Note however that, differently from the aforementioned works, in the case of the Biot–Brinkman problem, the divergence of the fluid velocity is not zero (or a prescribed fluid source), but it depends on the velocity of the solid and on the rate of change of fluid pressure. Also, an additional term of grad–div type appears in the momentum balance for the fluid.

In this paper, we prove the well-posedness of the continuous and discrete formulations for the coupling of mechanics and fluid flow in fluid-saturated deformable porous media using Banach–Nečas–Babuška theory in parameter-weighted Hilbert spaces. The appropriate choice of weighting parameters yields automatically a framework for robust operator preconditioning in the Biot equations, following the approach from 42. This operator scaling yields robustness with respect to the elastic parameters, storativity, Biot–Willis coefficient, and with respect to permeability. For the Brinkman component, our present formulation is such that the filtration flux terms have a different weight in their 𝐋2(Ω)\mathbf{L}^{2}(\Omega) and 𝐇(div,Ω)\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega) contributions, which requires a different treatment for the analysis of the pore pressure terms. To address this issue it suffices to appeal to the recent theory in 13 (see also 46), which was developed for Darcy equations using non-standard sum spaces, and we appropriately modify the scalings in the momentum equation. This modification entails the use of (discontinuous) Laplacian operators in the fluid pressure preconditioning.

Our proposed approach also offers a novel contribution to the field of operator preconditioning for the interaction of mechanics and fluid flow in fluid-saturated deformable porous media, which are challenging to solve, and the design of efficient preconditioners is highly problem-dependent 29. Previous works have explored the use of block-diagonal preconditioners, Schur complements, and pressure-correction methods, which have improved the convergence rate and computational efficiency of numerical solutions for poromechanics problems 24, 32, 37, 45. In this work, we also derive parameter-robust solvers, but following 35 and also 38, 43, 51. Our results confirm that, additionally to the Laplacian contribution needed in the Riesz preconditioner associated with the fluid pressure mentioned above, we also require off-diagonal contributions in the total pressure and fluid pressure coupling terms (as employed in 16). The overall parameter scalings that we propose are motivated by the stability analysis and we verify computationally that robustness holds for this particular choice. Note that we only discuss one type of boundary conditions, but the extension to other forms can be adapted accordingly.

Research on preconditioning techniques for advanced discretisations of block multiphysics systems has also crystallised in a number of high quality open source software packages. One of the earliest efforts was the BKPIT C++ package 25 which, following an object-oriented approach, provides an extensible framework for the implementation of algebraic block preconditioners, such as block Jacobi or block Gauss–Seidel. More recently, as the field of physics-based and discretisation tailored preconditioners has evolved with breakthrough inventions in approximate block factorisation and Schur-complement methods towards ever faster and scalable iterative solvers for large-scale systems, more sophisticated block preconditioning software is available. The widely-used PETSc package offers the PCFIELDSPLIT subsystem 19 to design and compose complex block preconditioners. The Firedrike library extends PETSc block preconditioning capabilities and algebraic composability further 40. Another tightly-related effort is the Teko Trilinos package 26, which provides a high-level interface to compose block preconditioners using a functional programming style in C++. The authors in 10 present a generic software framework in object-oriented Fortran to build block recursive algebraic factorisation preconditioners for double saddle-point systems, as those arising in MagnetoHydroDynamics (MHD).

In this paper, we build upon the high momentum gained in the last years by the Julia programming language for scientific and numerical computing. In particular, the realisation of the numerical discretisation and preconditioning algorithms is conducted with the Gridap finite element software package 11. We leverage the flexibility of this framework, and its composability with others in the Julia package ecosystem, such as LinearOperators 49, to prototype natural Riesz map preconditioners in the sum spaces described above, leading to complex multiphysics coupling solvers that are robust with respect to physical parameters variations and mesh resolution. For the sake of reproducibility, the Julia software used in this paper is available publicly/openly at 21.

The remainder of this article is organised as follows. The presentation of the new form of Biot–Brinkman equations and its weak formulation are given in Section 2. The modification of the functional structure to include parameter weights and the unique solvability analysis for the continuous problem are addressed in Section 3. The definition of the finite element discretisation and the specification of the well-posedness theory for the discrete problem is carried out in Section 4. The error analysis (tailored for a specific family of finite elements but applicable to other combinations of discrete spaces as well) is detailed also in that section. Numerical experiments are collected in Section 5 and we close in Section 6 with a brief summary and a discussion on possible extensions.

2 Model problem and its weak formulation

2.1 Preliminaries

Let us consider a simply connected bounded and Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d{2,3}d\in\{2,3\} occupied by a poroelastic domain with one incompressible fluid network incorporating viscosity. The domain boundary is denoted as Γ:=Ω\Gamma:=\partial\Omega. Throughout the text, given a normed space SS, by 𝐒\mathbf{S} and 𝕊\mathbb{S} we will denote the vector and tensor extensions, SdS^{d} and Sd×dS^{d\times d}, respectively. In addition, by L2(Ω)\mathrm{L}^{2}(\Omega) we will denote the usual Lebesgue space of square integrable functions and Hm(Ω)\mathrm{H}^{m}(\Omega) denotes the usual Sobolev space with weak derivatives of order up to m0m\geq 0 in L2(Ω)\mathrm{L}^{2}(\Omega), and use the convention that H0(Ω)=L2(Ω)\mathrm{H}^{0}(\Omega)=\mathrm{L}^{2}(\Omega).

Next, we recall the definition of the following Hilbert spaces

𝐇1+m(Ω):={𝜸𝐇m(Ω):𝜸m(Ω)},\displaystyle\mathbf{H}^{1+m}(\Omega):=\{\boldsymbol{\gamma}\in\mathbf{H}^{m}(\Omega):\boldsymbol{\nabla}\boldsymbol{\gamma}\in\mathbb{H}^{m}(\Omega)\},
𝐇m(div,Ω):={𝜻𝐇m(Ω):div𝜻Hm(Ω)},𝐇m(𝐜𝐮𝐫𝐥,Ω):={𝜽𝐇m(Ω):𝐜𝐮𝐫𝐥𝜽𝐇m(Ω)},\displaystyle\mathbf{H}^{m}(\mathop{\mathrm{div}}\nolimits,\Omega)\!:=\!\{\boldsymbol{\zeta}\in\mathbf{H}^{m}(\Omega)\!:\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\in\mathrm{H}^{m}(\Omega)\},\quad\mathbf{H}^{m}(\mathop{\mathbf{curl}}\nolimits,\Omega)\!:=\!\{\boldsymbol{\theta}\in\mathbf{H}^{m}(\Omega)\!:\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\in\mathbf{H}^{m}(\Omega)\},

and in the case that m=0m=0 the latter two spaces are denoted 𝐇(div,Ω)\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega) and 𝐇(𝐜𝐮𝐫𝐥,Ω)\mathbf{H}(\mathop{\mathbf{curl}}\nolimits,\Omega), and we use the following notation for the typical norms associated with such spaces

𝒖1,Ω2:=𝒖0,Ω2+𝒖0,Ω2,𝒗div,Ω2:=𝒗0,Ω2+div𝒗0,Ω2,𝜻𝐜𝐮𝐫𝐥,Ω2:=𝜻0,Ω2+𝐜𝐮𝐫𝐥𝜻0,Ω2,\displaystyle\left\|\boldsymbol{u}\right\|_{1,\Omega}^{2}:=\left\|\boldsymbol{u}\right\|^{2}_{0,\Omega}+\left\|\boldsymbol{\nabla}\boldsymbol{u}\right\|^{2}_{0,\Omega},\qquad\left\|\boldsymbol{v}\right\|_{\mathop{\mathrm{div}}\nolimits,\Omega}^{2}:=\left\|\boldsymbol{v}\right\|^{2}_{0,\Omega}+\left\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\right\|^{2}_{0,\Omega},\qquad\left\|\boldsymbol{\zeta}\right\|_{\mathop{\mathbf{curl}}\nolimits,\Omega}^{2}:=\left\|\boldsymbol{\zeta}\right\|^{2}_{0,\Omega}+\left\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\zeta}\right\|^{2}_{0,\Omega},

respectively. Furthermore, in view of the boundary conditions on Γ\Gamma (to be made precise below), we also use the following notation for relevant subspaces

𝐇01(Ω)\displaystyle\mathbf{H}^{1}_{0}(\Omega) :={𝜸𝐇1(Ω):𝜸=𝟎 on Γ},\displaystyle:=\{\boldsymbol{\gamma}\in\mathbf{H}^{1}(\Omega):\boldsymbol{\gamma}=\boldsymbol{0}\text{ on }\Gamma\},
𝐇0(div,Ω)\displaystyle\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega) :={𝜻𝐇(div,Ω):𝜻𝒏=0 on Γ},\displaystyle:=\{\boldsymbol{\zeta}\in\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega):\boldsymbol{\zeta}\cdot\boldsymbol{n}=0\text{ on }\Gamma\}, (2.1)
𝐇0(𝐜𝐮𝐫𝐥,Ω)\displaystyle\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega) :={𝜽𝐇(𝐜𝐮𝐫𝐥,Ω):𝜽×𝒏=𝟎 on Γ},\displaystyle:=\{\boldsymbol{\theta}\in\mathbf{H}(\mathop{\mathbf{curl}}\nolimits,\Omega):\boldsymbol{\theta}\times\boldsymbol{n}=\boldsymbol{0}\text{ on }\Gamma\},
L02(Ω)\displaystyle\mathrm{L}^{2}_{0}(\Omega) :={ζL2(Ω):Ωζ=0}.\displaystyle:=\{\zeta\in\mathrm{L}^{2}(\Omega):\int_{\Omega}\zeta=0\}.

For a generic functional space XX and a scalar η>0\eta>0, the weighted space ηX\eta X refers to the same XX but endowed with the norm ηX\eta\|\cdot\|_{X}. In addition, we recall the definition of the norm of intersection XYX\cap Y and sum X+YX+Y of Hilbert spaces X,YX,Y

zXY2=zX2+zY2,zX+Y2=infz=x+yxX,yYxX2+yY2.\|z\|^{2}_{X\cap Y}=\|z\|^{2}_{X}+\|z\|^{2}_{Y},\qquad\|z\|^{2}_{X+Y}=\inf_{\small\begin{array}[]{c}z=x+y\\ x\in X,y\in Y\end{array}}\|x\|^{2}_{X}+\|y\|^{2}_{Y}. (2.2)

2.2 The governing equations

The viscous filtration flow through the deformed porous skeleton can be described by the following form of the Biot–Brinkman equations in steady form, representing the mixture momentum, fluid momentum, and mixture mass balance, respectively

𝐝𝐢𝐯(2μ𝜺(𝒖)+[λdiv𝒖αp]𝐈)\displaystyle-\mathop{\mathbf{div}}\nolimits(2\mu\boldsymbol{\varepsilon}(\boldsymbol{u})+[\lambda\mathop{\mathrm{div}}\nolimits\boldsymbol{u}-\alpha p]\mathbf{I}) =𝒃,\displaystyle=\boldsymbol{b}, (2.3a)
1κ𝒗νκ𝚫𝒗+p\displaystyle{\frac{1}{\kappa}}\boldsymbol{v}-{\frac{\nu}{\kappa}}\boldsymbol{\Delta}\boldsymbol{v}+{\nabla p} =𝒇^,\displaystyle=\widehat{\boldsymbol{f}}, (2.3b)
c0pαdiv𝒖div𝒗\displaystyle-c_{0}p-\alpha\mathop{\mathrm{div}}\nolimits\boldsymbol{u}-\mathop{\mathrm{div}}\nolimits\boldsymbol{v} =g,\displaystyle=g, (2.3c)

where 𝒖\boldsymbol{u} is the displacement of the skeleton, 𝜺(𝒖)=12(𝒖+𝒖𝚝)\boldsymbol{\varepsilon}(\boldsymbol{u})=\frac{1}{2}(\boldsymbol{\nabla}\boldsymbol{u}+\boldsymbol{\nabla}\boldsymbol{u}^{\tt t}) is the tensor of infinitesimal strains, 𝒗\boldsymbol{v} is the filtration flux, and pp is the pressure head. The parameters are the external body load 𝒃\boldsymbol{b}, the external force applied on the fluid 𝒇^\widehat{\boldsymbol{f}}, the kinematic viscosity of the interstitial fluid ν\nu, the hydraulic conductance (permeability field, here assumed a positive constant) κ\kappa, the Lamé coefficients of the solid structure λ,μ\lambda,\mu, the storativity c0c_{0}, and the Biot–Willis modulus α\alpha. Equations (2.3a) are equipped with boundary conditions of clamped boundary for the solid phase and slip filtration velocity

𝒖=𝟎and𝒗𝒏=0onΓ.\boldsymbol{u}=\boldsymbol{0}\quad\text{and}\quad\boldsymbol{v}\cdot\boldsymbol{n}=0\quad\text{on}\quad\Gamma.

Next we introduce the rescaled filtration vorticity vector

𝝎:=νκ𝐜𝐮𝐫𝐥𝒗,\boldsymbol{\omega}:={\sqrt{\frac{\nu}{\kappa}}}\mathop{\mathbf{curl}}\nolimits\boldsymbol{v}, (2.4)

which has a different weight than that used in 9 for Brinkman flows. We also define, following the developments in 50, 43, the additional total pressure field

φ:=λdiv𝒖+αp.\varphi:=-\lambda\mathop{\mathrm{div}}\nolimits\boldsymbol{u}+\alpha p.

In order to rewrite the fluid momentum balance in terms of the rescaled filtration vorticity (2.4), we employ the following vector identity, valid for a generic vector field 𝒗\boldsymbol{v}:

𝐜𝐮𝐫𝐥𝐜𝐮𝐫𝐥𝒗=𝚫𝒗+(div𝒗).\mathop{\mathbf{curl}}\nolimits\mathop{\mathbf{curl}}\nolimits\boldsymbol{v}=-\boldsymbol{\Delta}\boldsymbol{v}+\nabla(\mathop{\mathrm{div}}\nolimits\boldsymbol{v}).

These steps, together with a rescaling of the external force 𝒇=ν𝒇^\boldsymbol{f}={\nu}\widehat{\boldsymbol{f}}, lead to the following equations (mixture momentum, constitutive equation for total pressure, fluid momentum, constitutive equation for filtration vorticity, and mixture mass balance)

𝐝𝐢𝐯(2μ𝜺(𝒖)φ𝐈)\displaystyle-\mathop{\mathbf{div}}\nolimits(2\mu\boldsymbol{\varepsilon}(\boldsymbol{u})-\varphi\mathbf{I}) =𝒃,\displaystyle=\boldsymbol{b}, (2.5a)
1λφ+αλpdiv𝒖\displaystyle-\frac{1}{\lambda}\varphi+\frac{\alpha}{\lambda}p-\mathop{\mathrm{div}}\nolimits\boldsymbol{u} =0,\displaystyle=0, (2.5b)
1κ𝒗+νκ𝐜𝐮𝐫𝐥𝝎νκ(div𝒗)+p\displaystyle{\frac{1}{\kappa}}\boldsymbol{v}+{\sqrt{\frac{\nu}{\kappa}}}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}-{\frac{\nu}{\kappa}}\nabla(\mathop{\mathrm{div}}\nolimits\boldsymbol{v})+\nabla p =𝒇,\displaystyle=\boldsymbol{f}, (2.5c)
𝝎+νκ𝐜𝐮𝐫𝐥𝒗\displaystyle-\boldsymbol{\omega}+{\sqrt{\frac{\nu}{\kappa}}}\mathop{\mathbf{curl}}\nolimits\boldsymbol{v} =𝟎,\displaystyle=\boldsymbol{0}, (2.5d)
(c0+α2λ)p+αλφdiv𝒗\displaystyle-(c_{0}+\frac{\alpha^{2}}{\lambda})p+\frac{\alpha}{\lambda}\varphi-\mathop{\mathrm{div}}\nolimits\boldsymbol{v} =g;\displaystyle=g; (2.5e)
and the boundary conditions now read
𝒖=𝟎and𝒗𝒏=0and𝝎×𝒏=𝟎onΓ.\boldsymbol{u}=\boldsymbol{0}\quad\text{and}\quad\boldsymbol{v}\cdot\boldsymbol{n}=0\quad\text{and}\quad\boldsymbol{\omega}\times\boldsymbol{n}=\boldsymbol{0}\qquad\text{on}\quad\Gamma. (2.5f)

2.3 Weak formulation

Let us assume that 𝒃,𝒇𝐋2(Ω)\boldsymbol{b},\boldsymbol{f}\in\mathbf{L}^{2}(\Omega), gL2(Ω)g\in\mathrm{L}^{2}(\Omega) and that all other model coefficients are positive constants. We proceed to multiply the governing equations by suitable test functions and to integrate by parts over the domain. Note that for the divergence-based terms we appeal to the usual form of the Gauss formula, whereas for curl-based terms we use the following result from, e.g., 33:

Ω𝐜𝐮𝐫𝐥𝜸𝜽=Ω𝜸𝐜𝐮𝐫𝐥𝜽+Ω(𝜽×𝒏)𝜸𝜽𝐇(𝐜𝐮𝐫𝐥,Ω),𝜸𝐇1(Ω),\int_{\Omega}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\gamma}\cdot\boldsymbol{\theta}=\int_{\Omega}\boldsymbol{\gamma}\cdot\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}+\int_{\partial\Omega}(\boldsymbol{\theta}\times\boldsymbol{n})\cdot\boldsymbol{\gamma}\qquad\forall\boldsymbol{\theta}\in\mathbf{H}(\mathop{\mathbf{curl}}\nolimits,\Omega),\ \boldsymbol{\gamma}\in\mathbf{H}^{1}(\Omega),

together with the scalar triple product identity

(𝜽×𝒏)𝒗=𝜽(𝒏×𝒗).(\boldsymbol{\theta}\times\boldsymbol{n})\cdot\boldsymbol{v}=\boldsymbol{\theta}\cdot(\boldsymbol{n}\times\boldsymbol{v}).

We observe in advance that equations (2.5b),(2.5e) suggest that, in the limit of c00,λc_{0}\to 0,\lambda\to\infty, both pressures are not uniquely defined and so we require to add a constraint on their mean value (to be zero, for example). We then arrive at the following weak formulation for (2.5a): Find (𝒖,𝒗,𝝎,φ,p)𝐇01(Ω)×𝐇0(div,Ω)×𝐇0(𝐜𝐮𝐫𝐥,Ω)×L02(Ω)×L02(Ω)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{H}^{1}_{0}(\Omega)\times\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\times\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega)\times\mathrm{L}^{2}_{0}(\Omega)\times\mathrm{L}^{2}_{0}(\Omega) such that

2μΩ𝜺(𝒖):𝜺(𝜸)Ωφdiv𝜸\displaystyle 2\mu\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u}):\boldsymbol{\varepsilon}(\boldsymbol{\gamma})-\int_{\Omega}\varphi\mathop{\mathrm{div}}\nolimits\boldsymbol{\gamma} =Ω𝒃𝜸𝜸𝐇01(Ω),\displaystyle=\int_{\Omega}\boldsymbol{b}\cdot\boldsymbol{\gamma}\quad\forall\boldsymbol{\gamma}\in\mathbf{H}^{1}_{0}(\Omega), (2.6a)
1κΩ𝒗𝜻+νκΩ𝐜𝐮𝐫𝐥𝝎𝜻+νκΩdiv𝒗div𝜻Ωpdiv𝜻\displaystyle{\frac{1}{\kappa}}\int_{\Omega}\!\boldsymbol{v}\cdot\boldsymbol{\zeta}+{\sqrt{\frac{\nu}{\kappa}}}\int_{\Omega}\!\!\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}\cdot\boldsymbol{\zeta}+{\frac{\nu}{\kappa}}\int_{\Omega}\!\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}-\int_{\Omega}p\,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta} =Ω𝒇𝜻𝜻𝐇0(div,Ω),\displaystyle=\int_{\Omega}\boldsymbol{f}\cdot\boldsymbol{\zeta}\quad\forall\boldsymbol{\zeta}\in\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega), (2.6b)
Ω𝝎𝜽+νκΩ𝐜𝐮𝐫𝐥𝜽𝒗\displaystyle-\int_{\Omega}\boldsymbol{\omega}\cdot\boldsymbol{\theta}+{\sqrt{\frac{\nu}{\kappa}}}\int_{\Omega}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\cdot\boldsymbol{v} =0𝜽𝐇0(𝐜𝐮𝐫𝐥,Ω),\displaystyle=0\quad\forall\boldsymbol{\theta}\in\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega), (2.6c)
1λΩφψ+αλΩpψΩψdiv𝒖\displaystyle-\frac{1}{\lambda}\int_{\Omega}\varphi\,\psi+\frac{\alpha}{\lambda}\int_{\Omega}p\psi-\int_{\Omega}\psi\,\mathop{\mathrm{div}}\nolimits\boldsymbol{u} =0ψL02(Ω),\displaystyle=0\quad\forall\psi\in\mathrm{L}_{0}^{2}(\Omega), (2.6d)
(c0+α2λ)Ωpq+αλΩφqΩqdiv𝒗\displaystyle-(c_{0}+\frac{\alpha^{2}}{\lambda})\int_{\Omega}p\,q+\frac{\alpha}{\lambda}\int_{\Omega}\varphi\,q-\int_{\Omega}q\,\mathop{\mathrm{div}}\nolimits\boldsymbol{v} =ΩgqqL02(Ω),\displaystyle=\int_{\Omega}g\,q\quad\forall q\in\mathrm{L}_{0}^{2}(\Omega), (2.6e)

where we have also used the boundary conditions (2.5f).

Let us now define the following bilinear forms and linear functionals

a1(𝒖,𝜸):=2μΩ𝜺(𝒖):𝜺(𝜸),b1(𝜸,ψ):=Ωψdiv𝜸,b^1(𝜻,q):=Ωqdiv𝜻,\displaystyle a_{1}(\boldsymbol{u},\boldsymbol{\gamma}):=2\mu\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u}):\boldsymbol{\varepsilon}(\boldsymbol{\gamma}),\qquad b_{1}(\boldsymbol{\gamma},\psi):=-\int_{\Omega}\psi\mathop{\mathrm{div}}\nolimits\boldsymbol{\gamma},\qquad\hat{b}_{1}(\boldsymbol{\zeta},q):=-\int_{\Omega}q\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta},
a2(𝒗,𝜻):=1κΩ𝒗𝜻+νκΩdiv𝒗div𝜻,b2(𝜽,𝜻):=νκΩ𝐜𝐮𝐫𝐥𝜽𝜻,\displaystyle a_{2}(\boldsymbol{v},\boldsymbol{\zeta}):={\frac{1}{\kappa}}\int_{\Omega}\boldsymbol{v}\cdot\boldsymbol{\zeta}+{\frac{\nu}{\kappa}}\int_{\Omega}\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta},\qquad b_{2}(\boldsymbol{\theta},\boldsymbol{\zeta}):={\sqrt{\frac{\nu}{\kappa}}}\int_{\Omega}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\cdot\boldsymbol{\zeta},
a3(𝝎,𝜽):=Ω𝝎𝜽,a4(φ,ψ):=1λΩφψ,b3(q,ψ):=αλΩqψ,a5(p,q):=(c0+α2λ)Ωpq,\displaystyle a_{3}(\boldsymbol{\omega},\boldsymbol{\theta}):=\int_{\Omega}\boldsymbol{\omega}\cdot\boldsymbol{\theta},\qquad a_{4}(\varphi,\psi):=\frac{1}{\lambda}\int_{\Omega}\varphi\,\psi,\qquad b_{3}(q,\psi):=\frac{\alpha}{\lambda}\int_{\Omega}q\,\psi,\qquad a_{5}(p,q):=\biggl{(}c_{0}+\frac{\alpha^{2}}{\lambda}\biggr{)}\int_{\Omega}p\,q,
B(𝜸):=Ω𝒃𝜸,F(𝜻):=Ω𝒇𝜻,G(q):=Ωgq,\displaystyle B(\boldsymbol{\gamma}):=\int_{\Omega}\boldsymbol{b}\cdot\boldsymbol{\gamma},\qquad F(\boldsymbol{\zeta}):=\int_{\Omega}\boldsymbol{f}\cdot\boldsymbol{\zeta},\qquad G(q):=\int_{\Omega}g\,q,

with which (2.6) is rewritten as follows: find (𝒖,𝒗,𝝎,φ,p)𝐇01(Ω)×𝐇0(div,Ω)×𝐇0(𝐜𝐮𝐫𝐥,Ω)×L02(Ω)×L02(Ω)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{H}^{1}_{0}(\Omega)\times\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\times\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega)\times\mathrm{L}_{0}^{2}(\Omega)\times\mathrm{L}_{0}^{2}(\Omega) such that

a1(𝒖,𝜸)\displaystyle a_{1}(\boldsymbol{u},\boldsymbol{\gamma}) +b1(𝜸,φ)\displaystyle+\;b_{1}(\boldsymbol{\gamma},\varphi) =\displaystyle= B(𝜸)\displaystyle\;B(\boldsymbol{\gamma}) 𝜸𝐇01(Ω),\displaystyle\qquad\forall\boldsymbol{\gamma}\in\mathbf{H}^{1}_{0}(\Omega), (2.7a)
a2(𝒗,𝜻)\displaystyle a_{2}(\boldsymbol{v},\boldsymbol{\zeta}) +b2(𝝎,𝜻)\displaystyle+\;b_{2}(\boldsymbol{\omega},\boldsymbol{\zeta}) +b^1(𝜻,p)\displaystyle+\;\hat{b}_{1}(\boldsymbol{\zeta},p) =\displaystyle= F(𝜻)\displaystyle\;F(\boldsymbol{\zeta}) 𝜻𝐇0(div,Ω),\displaystyle\qquad\forall\boldsymbol{\zeta}\in\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega), (2.7b)
b2(𝜽,𝒗)\displaystyle b_{2}(\boldsymbol{\theta},\boldsymbol{v}) a3(𝝎,𝜽)\displaystyle-\;a_{3}(\boldsymbol{\omega},\boldsymbol{\theta}) =\displaystyle=  0\displaystyle\;0 𝜽𝐇0(𝐜𝐮𝐫𝐥,Ω),\displaystyle\qquad\forall\boldsymbol{\theta}\in\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega), (2.7c)
b1(𝒖,ψ)\displaystyle b_{1}(\boldsymbol{u},\psi) a4(φ,ψ)\displaystyle-\;a_{4}(\varphi,\psi) +b3(p,ψ)\displaystyle+\;b_{3}(p,\psi) =\displaystyle=  0\displaystyle\;0 ψL02(Ω),\displaystyle\qquad\forall\psi\in\mathrm{L}_{0}^{2}(\Omega), (2.7d)
b^1(𝒗,q)\displaystyle\hat{b}_{1}(\boldsymbol{v},q) +b3(q,φ)\displaystyle+\;b_{3}(q,\varphi) a5(p,q)\displaystyle-\;a_{5}(p,q) =\displaystyle= G(q)\displaystyle\;G(q) qL02(Ω).\displaystyle\qquad\forall q\in\mathrm{L}_{0}^{2}(\Omega). (2.7e)

3 Solvability analysis

3.1 Preliminaries

The well-posedness analysis for (2.7) will be put in the framework of the abstract Banach–Nečas–Babuška theory, which we state next (see, e.g., 30).

Theorem 3.1.

Let (E1,E1)(E_{1},\|\cdot\|_{E_{1}}) be a reflexive Banach space, (E2,E2)(E_{2},\|\cdot\|_{E_{2}}) a Banach space, and T:E1E2T:E_{1}\rightarrow E_{2}^{\prime} a bounded, linear form satisfying the followings conditions:

  1. (BNB1) For each yE2{0}y\in E_{2}\setminus\{0\}, there exists xE1x\in E_{1} such that

    T(x),yE2,E20.\langle T(x),y\rangle_{E_{2}^{\prime},E_{2}}\neq 0. (3.1)
  2. (BNB2) There exists c>0c>0 such that

    T(x)E2cxE1 for all xE1.\|T(x)\|_{E_{2}^{\prime}}\geq c\|x\|_{E_{1}}\text{ for all }x\in E_{1}. (3.2)

    Then, for every xE2x^{*}\in E_{2}^{\prime} there exists a unique xE1x\in E_{1} such that

    T(x)=x.T(x)=x^{*}.

Let us first consider the product space

𝐗\displaystyle\mathbf{X} :=𝐇01(Ω)×𝐇0(div,Ω)×𝐇0(𝐜𝐮𝐫𝐥,Ω)×L02(Ω)×L02(Ω),\displaystyle:=\mathbf{H}^{1}_{0}(\Omega)\times\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\times\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega)\times\mathrm{L}_{0}^{2}(\Omega)\times\mathrm{L}_{0}^{2}(\Omega),

and, using the notation 𝒙:=(𝒖,𝒗,𝝎,φ,p)𝐗\vec{\boldsymbol{x}}:=(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{X}, we proceed to equip this space with the norm

𝒙𝐗2\displaystyle\|\vec{\boldsymbol{x}}\|_{\mathbf{X}}^{2} :=2μ𝜺(𝒖)0,Ω2+1κ𝒗0,Ω2+νκdiv𝒗0,Ω2+𝝎0,Ω2+ν𝐜𝐮𝐫𝐥𝝎0,Ω2+c0p0,Ω2+1λφ+αp0,Ω2.\displaystyle:=2\mu\|\boldsymbol{\varepsilon}(\boldsymbol{u})\|^{2}_{0,\Omega}+{\frac{1}{\kappa}}\|\boldsymbol{v}\|^{2}_{0,\Omega}+{\frac{\nu}{\kappa}}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\|^{2}_{0,\Omega}+\|\boldsymbol{\omega}\|^{2}_{0,\Omega}+\nu\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}\|^{2}_{0,\Omega}+{c_{0}\|p\|^{2}_{0,\Omega}+\frac{1}{\lambda}\|\varphi+\alpha p\|^{2}_{0,\Omega}.} (3.3)
Remark 3.2.

Note that the scaling of the vorticity seminorm with the viscosity (fifth term in the right-hand side of (3.3) is not readily apparent from the weak formulation (2.7), but it is suggested by the stability analysis in Lemma 3.3, below.

Let us also introduce the bilinear form

𝒜ϵ(𝒙),𝒚\displaystyle\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle :=a1(𝒖,𝜸)+b1(𝜸,φ)+a2(𝒗,𝜻)+b2(𝝎,𝜻)+b^1(𝜻,p)+b2(𝜽,𝒗)a3(𝝎,𝜽)\displaystyle:=a_{1}(\boldsymbol{u},\boldsymbol{\gamma})+b_{1}(\boldsymbol{\gamma},\varphi)+a_{2}(\boldsymbol{v},\boldsymbol{\zeta})+b_{2}(\boldsymbol{\omega},\boldsymbol{\zeta})+\hat{b}_{1}(\boldsymbol{\zeta},p)+b_{2}(\boldsymbol{\theta},\boldsymbol{v})-a_{3}(\boldsymbol{\omega},\boldsymbol{\theta})
+b1(𝒖,ψ)a4(φ,ψ)+b3(p,ψ)+b^1(𝒗,q)+b3(q,φ)a5(p,q),\displaystyle\qquad+b_{1}(\boldsymbol{u},\psi)-a_{4}(\varphi,\psi)+b_{3}(p,\psi)+\hat{b}_{1}(\boldsymbol{v},q)+b_{3}(q,\varphi)-a_{5}(p,q), (3.4)

induced by the operator 𝒜ϵ:𝐗𝐗\mathcal{A}_{\epsilon}:\mathbf{X}\rightarrow\mathbf{X}^{\prime} (where the subscript ϵ\epsilon indicates dependence with respect to the model parameters κ,α,μ,ν,c0,λ\kappa,\alpha,\mu,\nu,c_{0},\lambda), and again we emphasise that we have different scalings than those used in 5, 35.

From the Cauchy–Schwarz inequality we readily have the following bounds for the bilinear forms in (2.7)

a1(𝒖,𝜸)2μ|𝒖|1,Ω|𝜸|1,Ω,b1(𝜸,φ)φ0,Ω|𝜸|1,Ω,b^1(𝜻,q)q0,Ωdiv𝜻0,Ω,\displaystyle a_{1}(\boldsymbol{u},\boldsymbol{\gamma})\leq 2\mu|\boldsymbol{u}|_{1,\Omega}|\boldsymbol{\gamma}|_{1,\Omega},\qquad b_{1}(\boldsymbol{\gamma},\varphi)\leq\|\varphi\|_{0,\Omega}|\boldsymbol{\gamma}|_{1,\Omega},\qquad\hat{b}_{1}(\boldsymbol{\zeta},q)\leq\|q\|_{0,\Omega}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega},
a2(𝒗,𝜻)1κ𝒗0,Ω𝜻0,Ω+νκdiv𝒗0,Ωdiv𝜻0,Ω,b2(𝜽,𝜻)νκcurl𝜽0,Ω𝜻0,Ω,\displaystyle a_{2}(\boldsymbol{v},\boldsymbol{\zeta})\leq\dfrac{1}{\kappa}\|\boldsymbol{v}\|_{0,\Omega}\|\boldsymbol{\zeta}\|_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\|_{0,\Omega}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega},\qquad b_{2}(\boldsymbol{\theta},\boldsymbol{\zeta})\leq\sqrt{\frac{\nu}{\kappa}}\|\mathop{\mathrm{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}\|\boldsymbol{\zeta}\|_{0,\Omega},
a3(𝝎,𝜽)𝝎0,Ω𝜽0,Ω,a4(φ,ψ)1λφ0,Ωψ0,Ω,\displaystyle a_{3}(\boldsymbol{\omega},\boldsymbol{\theta})\leq\|\boldsymbol{\omega}\|_{0,\Omega}\|\boldsymbol{\theta}\|_{0,\Omega},\qquad a_{4}(\varphi,\psi)\leq\dfrac{1}{\lambda}\|\varphi\|_{0,\Omega}\|\psi\|_{0,\Omega},
b3(q,ψ)αλq0,Ωψ0,Ω,a5(p,q)(c0+α2λ)p0,Ωq0,Ω,\displaystyle b_{3}(q,\psi)\leq\frac{\alpha}{\lambda}\|q\|_{0,\Omega}\|\psi\|_{0,\Omega},\qquad a_{5}(p,q)\leq\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}\right)\|p\|_{0,\Omega}\|q\|_{0,\Omega}, (3.5)

for all 𝒖,𝜸𝐇1(Ω)\boldsymbol{u},\boldsymbol{\gamma}\in\mathbf{H}^{1}(\Omega), 𝒗,𝜻𝐇(div,Ω)\boldsymbol{v},\boldsymbol{\zeta}\in\mathbf{H}(\mathop{\mathrm{div}}\nolimits,\Omega), 𝝎,𝜽𝐇(𝐜𝐮𝐫𝐥,Ω)\boldsymbol{\omega},\boldsymbol{\theta}\in\mathbf{H}(\mathop{\mathbf{curl}}\nolimits,\Omega), φ,ψ,p,qL2(Ω)\varphi,\psi,p,q\in\mathrm{L}^{2}(\Omega).

Lemma 3.3.

Consider the bilinear form defined in (3.4). For all 𝐱𝐗\vec{\boldsymbol{x}}\in\mathbf{X}, there exists 𝐲𝐗\vec{\boldsymbol{y}}\in\mathbf{X} such that

𝒜ϵ(𝒙),𝒚𝒙𝐗2 and 𝒚𝐗2𝒙𝐗.\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle\gtrsim\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}\quad\text{ and }\quad\|\vec{\boldsymbol{y}}\|_{\mathbf{X}}\leq\sqrt{2}\|\vec{\boldsymbol{x}}\|_{\mathbf{X}}. (3.6)
Proof 3.4.

Using first and second Young’s inequalities it is not difficult to assert that

(𝜻,𝐜𝐮𝐫𝐥𝜽)0,Ω12𝜻0,Ω2+12𝐜𝐮𝐫𝐥𝜽0,Ω2 and (q,ψ)0,Ωε2q0,Ω2+12εψ0,Ω2.(\boldsymbol{\zeta},\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta})_{0,\Omega}\leq{\dfrac{1}{2}}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+{\dfrac{1}{2}}\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}^{2}\quad\text{ and }\quad(q,\psi)_{0,\Omega}\leq\dfrac{\varepsilon}{2}\|q\|_{0,\Omega}^{2}+\dfrac{1}{2\varepsilon}\|\psi\|_{0,\Omega}^{2}. (3.7)

Next, for a given 𝐳:=(𝛄,𝛇,𝛉,ψ,q)\vec{\boldsymbol{z}}:=(\boldsymbol{\gamma},\boldsymbol{\zeta},\boldsymbol{\theta},\psi,q) we can construct 𝐲:=(𝛄,𝛇+12κν𝐜𝐮𝐫𝐥𝛉,𝛉,ψ,q)\vec{\boldsymbol{y}}:=\bigl{(}\boldsymbol{\gamma},\boldsymbol{\zeta}+\frac{1}{2}\sqrt{\kappa\nu}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta},-\boldsymbol{\theta},-\psi,-q\bigr{)}. We then invoke (3.7), so that we can ensure that

𝒜ϵ(𝒛),𝒚\displaystyle\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{z}}),\vec{\boldsymbol{y}}\rangle =2μ|𝜸|1,Ω2+1κ𝜻0,Ω2+ν2κ(𝜻,𝐜𝐮𝐫𝐥𝜽)0,Ω+νκdiv𝜻0,Ω2+ν2𝐜𝐮𝐫𝐥𝜽0,Ω2\displaystyle=2\mu|\boldsymbol{\gamma}|_{1,\Omega}^{2}+\dfrac{1}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\sqrt{\nu}}{2\sqrt{\kappa}}(\boldsymbol{\zeta},\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta})_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\nu}{2}\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}^{2}
+𝜽0,Ω2+1λψ0,Ω2αλ(q,ψ)0,Ωαλ(q,ψ)+(c0+α2λ)q0,Ω2\displaystyle\qquad+\|\boldsymbol{\theta}\|_{0,\Omega}^{2}+\dfrac{1}{\lambda}\|\psi\|_{0,\Omega}^{2}-\dfrac{\alpha}{\lambda}(q,\psi)_{0,\Omega}-\dfrac{\alpha}{\lambda}(q,\psi)+\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}\right)\|q\|_{0,\Omega}^{2}
2μ|𝜸|1,Ω2+1κ𝜻0,Ω2+ν2κ(𝜻,𝐜𝐮𝐫𝐥𝜽)0,Ω+νκdiv𝜻0,Ω2+ν2𝐜𝐮𝐫𝐥𝜽0,Ω2+𝜽0,Ω2\displaystyle\geq 2\mu|\boldsymbol{\gamma}|_{1,\Omega}^{2}+\dfrac{1}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\sqrt{\nu}}{2\sqrt{\kappa}}(\boldsymbol{\zeta},\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta})_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\nu}{2}\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}^{2}+\|\boldsymbol{\theta}\|_{0,\Omega}^{2}
+(c0+α2λεα2λ)q0,Ω2+(1λα2λε)ψ0,Ω2.\displaystyle\qquad+\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}-\dfrac{\varepsilon\alpha}{2\lambda}\right)\|q\|_{0,\Omega}^{2}+\left(\dfrac{1}{\lambda}-\dfrac{\alpha}{2\lambda\varepsilon}\right)\|\psi\|_{0,\Omega}^{2}.

Now, taking ε:=5α4+λc0α\varepsilon:=\dfrac{5\alpha}{4}+\dfrac{\lambda c_{0}}{\alpha} we can deduce that

c0+α2λεα2λ\displaystyle c_{0}+\dfrac{\alpha^{2}}{\lambda}-\dfrac{\varepsilon\alpha}{2\lambda} 38(c0+α2λ),\displaystyle\geq\dfrac{3}{8}\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}\right), (3.8a)
1λα2λε=14+λc0α254+λc0α21λ\displaystyle\dfrac{1}{\lambda}-\dfrac{\alpha}{2\lambda\varepsilon}=\dfrac{\dfrac{1}{4}+\dfrac{\lambda c_{0}}{\alpha^{2}}}{\dfrac{5}{4}+\dfrac{\lambda c_{0}}{\alpha^{2}}}\dfrac{1}{\lambda} 151λ,\displaystyle\geq\dfrac{1}{5}\dfrac{1}{\lambda}, (3.8b)

and using (3.8a) and (3.8b) we readily obtain the bound

𝒜ϵ(𝒛),𝒚110𝒛𝐗2.\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{z}}),\vec{\boldsymbol{y}}\rangle\geq\dfrac{1}{10}\|\vec{\boldsymbol{z}}\|_{\mathbf{X}}^{2}.

Finally, the definition of the preliminary 𝐗\mathbf{X}-norm (3.3) and triangle inequality yield the estimates

𝒚𝐗2\displaystyle\|\vec{\boldsymbol{y}}\|_{\mathbf{X}}^{2} =2μ|𝜸|1,Ω2+1κ𝜻+κν2𝐜𝐮𝐫𝐥𝜽0,Ω2+νκdiv𝜻0,Ω2+ν𝐜𝐮𝐫𝐥𝜽0,Ω2+𝜽0,Ω2+(c0+α2λ)q0,Ω2+1λψ0,Ω2\displaystyle=2\mu|\boldsymbol{\gamma}|_{1,\Omega}^{2}+\frac{1}{\kappa}\left\|\boldsymbol{\zeta}+\dfrac{\sqrt{\kappa\nu}}{2}\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\right\|_{0,\Omega}^{2}+{\dfrac{\nu}{\kappa}}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\nu\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}^{2}+\|\boldsymbol{\theta}\|_{0,\Omega}^{2}+\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}\right)\|q\|_{0,\Omega}^{2}+\dfrac{1}{\lambda}\|\psi\|_{0,\Omega}^{2}
2μ|𝜸|1,Ω2+2νκ𝜻0,Ω2+νκdiv𝜻0,Ω2+3ν2𝐜𝐮𝐫𝐥𝜽0,Ω2+𝜽0,Ω2+(c0+α2λ)q0,Ω2+1λψ0,Ω2\displaystyle\leq 2\mu|\boldsymbol{\gamma}|_{1,\Omega}^{2}+\dfrac{2\nu}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+{\dfrac{\nu}{\kappa}}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{3\nu}{2}\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\theta}\|_{0,\Omega}^{2}+\|\boldsymbol{\theta}\|_{0,\Omega}^{2}+\left(c_{0}+\dfrac{\alpha^{2}}{\lambda}\right)\|q\|_{0,\Omega}^{2}+\dfrac{1}{\lambda}\|\psi\|_{0,\Omega}^{2}
2𝒛𝐗2,\displaystyle\leq 2\|\vec{\boldsymbol{z}}\|_{\mathbf{X}}^{2},

which completes the proof.

Using the Banach–Nečas–Babuška result, from (3.1) and (3.6) we immediately conclude that problem (2.7) has a unique solution (𝒖,𝒗,𝝎,φ,p)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p) in the space 𝐗\mathbf{X}. However we can note that the bound on (𝒖,𝒗,𝝎,φ,p)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p) in the 𝐗\mathbf{X}-norm will degenerate with ε\varepsilon (tending either to zero or to infinity).

As a preliminary result required in the sequel, we recall the following classical inf-sup condition for the bilinear form b^1\hat{b}_{1} (which coincides with that of the Stokes problem, see, e.g., 33).

Lemma 3.5.

There exists β1>0\beta_{1}>0 such that

sup𝜸𝐇01(Ω){𝟎}b^1(ψ,𝜸)|𝜸|1,Ω=sup𝜸𝐇01(Ω){𝟎}(ψ,div𝜸)0,Ω|𝜸|1,Ωβ1ψ0,Ω for all ψL02(Ω).\sup_{\boldsymbol{\gamma}\in\mathbf{H}^{1}_{0}(\Omega)\setminus\{\boldsymbol{0}\}}\dfrac{\hat{b}_{1}(\psi,\boldsymbol{\gamma})}{|\boldsymbol{\gamma}|_{1,\Omega}}=\sup_{\boldsymbol{\gamma}\in\mathbf{H}^{1}_{0}(\Omega)\setminus\{\boldsymbol{0}\}}\dfrac{-(\psi,\mathop{\mathrm{div}}\nolimits\boldsymbol{\gamma})_{0,\Omega}}{|\boldsymbol{\gamma}|_{1,\Omega}}\geq\beta_{1}\|\psi\|_{0,\Omega}\qquad\text{ for all }\psi\in\mathrm{L}_{0}^{2}(\Omega).

3.2 Parameter-robust well-posedness

Before addressing the well-posedness of (2.7) robustly with respect to ε\varepsilon, we first note that the bilinear forms defining the solution operator suggest to modify the metric in 𝐗\mathbf{X} and include the following particular parameter-weighting of the functional spaces

𝐗ϵ\displaystyle\mathbf{X}_{\epsilon} :=2μ𝐇01(Ω)×[1κ𝐋2(Ω)νκ𝐇0(div,Ω)]×[𝐋2(Ω)ν𝐇0(𝐜𝐮𝐫𝐥,Ω)]\displaystyle:={\sqrt{2\mu}}\mathbf{H}^{1}_{0}(\Omega)\times\biggl{[}{\sqrt{\frac{1}{\kappa}}}\mathbf{L}^{2}(\Omega)\cap\sqrt{\frac{\nu}{\kappa}}\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\biggr{]}\times\biggl{[}\mathbf{L}^{2}(\Omega)\cap\sqrt{\nu}\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega)\biggr{]}
×[1λL2(Ω)12μL02(Ω)]×[c0+α2λL2(Ω)(κH01(Ω)+κνL02(Ω))].\displaystyle\qquad\times\biggl{[}{\sqrt{\frac{1}{\lambda}}}\mathrm{L}^{2}(\Omega)\cap{\sqrt{\frac{1}{2\mu}}}\mathrm{L}_{0}^{2}(\Omega)\biggr{]}\times\biggl{[}{\sqrt{c_{0}+\frac{\alpha^{2}}{\lambda}}}\mathrm{L}^{2}(\Omega)\cap\left(\sqrt{\kappa}\mathrm{H}^{1}_{0}(\Omega)+\sqrt{\frac{\kappa}{\nu}}\mathrm{L}_{0}^{2}(\Omega)\right)\biggr{]}.

An important observation is that 𝐗ϵ\mathbf{X}_{\epsilon} contains the same vectors 𝒙\vec{\boldsymbol{x}} that are in 𝐗\mathbf{X}, but which are bounded in the norm ϵ\|\cdot\|_{\epsilon} to be defined later.

Note also that, proceeding similarly as in 13 (see also 46), we have decomposed the space for fluid pressure as the sum

L02(Ω)=κνL02(Ω)+κH01(Ω)L02(Ω),\mathrm{L}_{0}^{2}(\Omega)={\sqrt{\dfrac{\kappa}{\nu}}}\mathrm{L}_{0}^{2}(\Omega)+{\sqrt{\kappa}}{\mathrm{H}^{1}_{0}(\Omega)}\cap\mathrm{L}_{0}^{2}(\Omega),

and have endowed it with the norm r\|\cdot\|_{r} defined, thanks to (2.2), as follows

qr2:=infsκH01(Ω)L02(Ω){(κν+c0)qs0,Ω2+c0s0,Ω2+κs0,Ω2}.\|q\|^{2}_{r}:=\inf_{\displaystyle{s\in\sqrt{\kappa}\mathrm{H}^{1}_{0}(\Omega)\cap\mathrm{L}_{0}^{2}(\Omega)}}\left\{\left(\dfrac{\kappa}{\nu}+c_{0}\right)\|q-s\|_{0,\Omega}^{2}+c_{0}\|s\|_{0,\Omega}^{2}+\|\sqrt{\kappa}\nabla s\|_{0,\Omega}^{2}\right\}. (3.9)

With this norm we see that, for example, the boundedness of the bilinear form b^1(,)\hat{b}_{1}(\cdot,\cdot) can be written as follows

(q,div𝜻)0,Ω\displaystyle(q,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta})_{0,\Omega} =(qs+s,div𝜻)0,Ω=(s,𝜻)0,Ω+(qs,div𝜻)0,Ω\displaystyle=(q-s+s,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta})_{0,\Omega}=-(\nabla s,\boldsymbol{\zeta})_{0,\Omega}+(q-s,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta})_{0,\Omega}
{κ|s|1,Ω2+κνqs0,Ω2}1/2{1κ𝜻0,Ω2+νκdiv𝜻0,Ω2}1/2,\displaystyle\leq\left\{\kappa|s|_{1,\Omega}^{2}+\dfrac{\kappa}{\nu}\|q-s\|_{0,\Omega}^{2}\right\}^{1/2}\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}\right\}^{1/2},

for all sH01(Ω)s\in\mathrm{H}_{0}^{1}(\Omega), so from (3.9) we have

(q,div𝜻)0,Ωqr{1κ𝜻0,Ω2+νκdiv𝜻0,Ω2}1/2.(q,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta})_{0,\Omega}\leq\|q\|_{r}\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}\right\}^{1/2}.

On the other hand, we have the following robust-in-ϵ\epsilon inf-sup condition for b^1(,)\hat{b}_{1}(\cdot,\cdot).

Lemma 3.6.

There exists β0>0\beta_{0}>0 independent of the parameters in ϵ\epsilon, such that

sup𝜻𝐇0(div,Ω){𝟎}(q,div𝜻){1κ𝜻0,Ω2+νκdiv𝜻0,Ω2}1/2β0qr for all qL02(Ω).\sup_{\boldsymbol{\zeta}\in\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\setminus\{\boldsymbol{0}\}}\dfrac{-(q,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta})}{\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}\|_{0,\Omega}^{2}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}\|_{0,\Omega}^{2}\right\}^{1/2}}\geq\beta_{0}\|q\|_{r}\qquad\text{ for all }q\in\mathrm{L}_{0}^{2}(\Omega). (3.10)
Proof 3.7.

Owing to 33, we know that there exists β1>0\beta_{1}>0 (independent of the parameters) such that

q1,Ωβ1q0,Ω for all qL02(Ω).\|\nabla q\|_{-1,\Omega}\geq\beta_{1}\|q\|_{0,\Omega}\text{ for all }q\in\mathrm{L}_{0}^{2}(\Omega).

Then, for the operator 1:L02(Ω)L02(Ω)\nabla^{-1}:\nabla\mathrm{L}_{0}^{2}(\Omega)\rightarrow\mathrm{L}_{0}^{2}(\Omega) (where L02(Ω)\nabla\mathrm{L}_{0}^{2}(\Omega) is a closed subspace of 𝐇1(Ω)\mathbf{H}^{-1}(\Omega)), we can deduce that

1(L02(Ω),L02(Ω))β11.\|\nabla^{-1}\|_{\mathcal{L}(\nabla\mathrm{L}_{0}^{2}(\Omega),\mathrm{L}_{0}^{2}(\Omega))}\leq\beta_{1}^{-1}.

Using the Poincaré inequality we can find a positive constant c:=c(Ω)c:=c(\Omega) such that

q0,Ωc|q|1,Ω for all qH1(Ω)L02(Ω),\|q\|_{0,\Omega}\leq c|q|_{1,\Omega}\text{ for all }q\in{\mathrm{H}^{1}(\Omega)}\cap\mathrm{L}_{0}^{2}(\Omega),

or, equivalently,

1((H1(Ω)L02(Ω)),H1(Ω)L02(Ω))c.\|\nabla^{-1}\|_{\displaystyle\mathcal{L}(\nabla(\mathrm{H}^{1}(\Omega)\cap\mathrm{L}_{0}^{2}(\Omega)),\mathrm{H}^{1}(\Omega)\cap\mathrm{L}_{0}^{2}(\Omega))}\leq c. (3.11)

Then, we have that

q𝐋2(Ω)+ν1/2𝐇1(Ω)max{c,β11}infq=q1+q2q1H01(Ω)L02(Ω),q2L02(Ω){|q1|1,Ω2+1νq20,Ω2}1/2.\|\nabla q\|_{\mathbf{L}^{2}(\Omega)+\nu^{-1/2}\mathbf{H}^{-1}(\Omega)}\geq\max\{c,\beta_{1}^{-1}\}\displaystyle\inf_{{\begin{subarray}{c}q=q_{1}+q_{2}\\ q_{1}\in\mathrm{H}_{0}^{1}(\Omega)\cap\mathrm{L}_{0}^{2}(\Omega),\\ q_{2}\in\mathrm{L}_{0}^{2}(\Omega)\end{subarray}}}\left\{|q_{1}|_{1,\Omega}^{2}+\dfrac{1}{\nu}\|q_{2}\|_{0,\Omega}^{2}\right\}^{1/2}. (3.12)

Multiplying (3.12) by κ\sqrt{\kappa} and applying algebraic manipulations, we can conclude that the inf-sup condition (3.10) holds with β0:=max{c,β11}\beta_{0}:=\max\{c,\beta_{1}^{-1}\}.

As done in the previous subsection, the unique solvability analysis will also follow from the Banach–Nečas–Babuška theory, but now using the space 𝐗ϵ\mathbf{X}_{\epsilon} endowed with the new norm

𝒙ϵ2:=𝒙𝐗2+pr2+12μφ0,Ω2.\|\vec{\boldsymbol{x}}\|_{\epsilon}^{2}:=\|\vec{\boldsymbol{x}}\|_{\mathbf{X}}^{2}+\|p\|_{r}^{2}+\dfrac{1}{2\mu}\|\varphi\|_{0,\Omega}^{2}. (3.13)

Problem (2.7) is written as: Find 𝒙𝐗ϵ\vec{\boldsymbol{x}}\in\mathbf{X}_{\epsilon} such that

𝒜ϵ(𝒙),𝒚=(𝒚)for all 𝒚𝐗ϵ,\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle=\mathcal{F}(\vec{\boldsymbol{y}})\qquad\text{for all }\vec{\boldsymbol{y}}\in\mathbf{X}_{\epsilon},

or in operator form as follows

𝒜ϵ(𝒙)=in 𝐗ϵ,\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}})=\mathcal{F}\qquad\text{in $\mathbf{X}^{\prime}_{\epsilon}$}, (3.14)

and the norm of the solution operator is defined as

𝒜ϵ(𝐗ϵ,𝐗ϵ):=sup𝒙,𝒚𝐗ϵ{𝟎}|𝒜(𝒙),𝒚|𝒙ϵ𝒚ϵ.\|\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}_{\epsilon}^{\prime})}:=\sup_{\vec{\boldsymbol{x}},\vec{\boldsymbol{y}}\in\mathbf{X}_{\epsilon}\setminus\{\vec{\boldsymbol{0}}\}}\frac{|\langle\mathcal{A}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle|}{\|\vec{\boldsymbol{x}}\|_{\epsilon}\|\vec{\boldsymbol{y}}\|_{\epsilon}}.

Translating Theorem 3.1 to the present context, we aim to prove that the operator 𝒜ϵ\mathcal{A}_{\epsilon} is continuous, that is

𝒜ϵ(𝒙),𝒚𝒙ϵ𝒚ϵ𝒙,𝒚𝐗ϵ,\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle\lesssim\|\vec{\boldsymbol{x}}\|_{\epsilon}\|\vec{\boldsymbol{y}}\|_{\epsilon}\qquad\forall\vec{\boldsymbol{x}},\vec{\boldsymbol{y}}\in\mathbf{X}_{\epsilon}, (3.15)

and that the following global inf-sup condition is satisfied

sup𝒚𝐗ϵ{𝟎}𝒜ϵ(𝒙),𝒚𝒚ϵ𝒙ϵ𝒙𝐗ϵ.\sup_{\vec{\boldsymbol{y}}\in\mathbf{X}_{\epsilon}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle}{\|\vec{\boldsymbol{y}}\|_{\epsilon}}\gtrsim\|\vec{\boldsymbol{x}}\|_{\epsilon}\qquad\forall\vec{\boldsymbol{x}}\in\mathbf{X}_{\epsilon}. (3.16)
Theorem 3.8.

Let ϵ\|\cdot\|_{\epsilon} be defined as in (3.13). Then the bilinear form induced by 𝒜ϵ\mathcal{A}_{\epsilon} (cf. (3.4)) is continuous and inf-sup stable under the norm ϵ\|\cdot\|_{\epsilon}, i.e., the conditions (3.15) and (3.16) are satisfied.

Proof 3.9.

For the continuity of 𝒜ϵ\mathcal{A}_{\epsilon}, it suffices to use (3.1), the norm definition (3.13), Cauchy–Schwarz inequality, the definition of 𝒜ϵ\mathcal{A}_{\epsilon}, and (3.10), to arrive at

𝒜ϵ(𝒙),𝒚2𝒙ϵ𝒚ϵ.\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle\leq 2\|\vec{\boldsymbol{x}}\|_{\epsilon}\|\vec{\boldsymbol{y}}\|_{\epsilon}.

For the global inf-sup, we take a given 𝐱𝐗ϵ\vec{\boldsymbol{x}}\in\mathbf{X}_{\epsilon}, and for lemma 3.3, there exists 𝐲1𝐗\vec{\boldsymbol{y}}_{1}\in\mathbf{X} such that

𝒜ϵ(𝒙),𝒚1110𝒙𝐗2and𝒚1𝐗2𝒙𝐗.\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}_{1}\rangle\geq\dfrac{1}{10}\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}\quad\text{and}\quad\|\vec{\boldsymbol{y}}_{1}\|_{\mathbf{X}}\leq\sqrt{2}\|\vec{\boldsymbol{x}}\|_{\mathbf{X}}.

Using Lemma 3.6 and Lemma 3.5 we can find 𝛇2\boldsymbol{\zeta}_{2}, 𝛄3\boldsymbol{\gamma}_{3} and constants C1C_{1}, C2C_{2}, C^1\hat{C}_{1}, C^2\hat{C}_{2} such that

(p,div𝜻2)C1pr2and{1κ𝜻20,Ω+νκdiv𝜻20,Ω2}1/2C2pr.-(p,\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{2})\geq C_{1}\|p\|_{r}^{2}\quad\text{and}\quad\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}_{2}\|_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{2}\|_{0,\Omega}^{2}\right\}^{1/2}\leq C_{2}\|p\|_{r}.

and

(φ,div𝜸)C^112μφ0,Ω2and2μ|𝜸3|1,ΩC^212μφ0,Ω.-(\varphi,\mathop{\mathrm{div}}\nolimits\boldsymbol{\gamma})\geq\hat{C}_{1}\frac{1}{2\mu}\|\varphi\|_{0,\Omega}^{2}\quad\text{and}\quad\sqrt{2\mu}|\boldsymbol{\gamma}_{3}|_{1,\Omega}\leq\hat{C}_{2}\frac{1}{\sqrt{2\mu}}\|\varphi\|_{0,\Omega}.

Taking 𝐲2:=(𝟎,𝛇2,𝟎,0,0)\vec{\boldsymbol{y}}_{2}:=(\boldsymbol{0},\boldsymbol{\zeta}_{2},\boldsymbol{0},0,0), 𝐲3:=(𝛄3,𝟎,𝟎,0,0)\vec{\boldsymbol{y}}_{3}:=(\boldsymbol{\gamma}_{3},\boldsymbol{0},\boldsymbol{0},0,0), δ>0\delta>0, and δ^>0\hat{\delta}>0, we have that

𝒜ϵ(𝒙),10𝒚1+δ𝒚2+δ^𝒚3\displaystyle\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),10\vec{\boldsymbol{y}}_{1}+\delta\vec{\boldsymbol{y}}_{2}+\hat{\delta}\vec{\boldsymbol{y}}_{3}\rangle 𝒙𝐗2+δ(a2(𝒗,𝜻2)+b2(𝝎,𝜻2)+b^1(𝜻2,p))+δ^(a1(𝒖,𝜸3)+b1(𝜸3,φ))\displaystyle\geq\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}+\delta(a_{2}(\boldsymbol{v},\boldsymbol{\zeta}_{2})+b_{2}(\boldsymbol{\omega},\boldsymbol{\zeta}_{2})+\hat{b}_{1}(\boldsymbol{\zeta}_{2},p))+\hat{\delta}(a_{1}(\boldsymbol{u},\boldsymbol{\gamma}_{3})+b_{1}(\boldsymbol{\gamma}_{3},\varphi))
𝒙𝐗2δ{1κ𝒗0,Ω+νκdiv𝒗0,Ω2}1/2{1κ𝜻20,Ω+νκdiv𝜻20,Ω2}1/2\displaystyle\geq\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}-\delta\left\{\dfrac{1}{\kappa}\|\boldsymbol{v}\|_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\|_{0,\Omega}^{2}\right\}^{1/2}\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}_{2}\|_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{2}\|_{0,\Omega}^{2}\right\}^{1/2}
δνκcurl𝝎0,Ω𝜻20,Ω+δC1pr22μδ^|𝒖|1,Ω|𝜸3|1,Ω+δ^C^12μφ0,Ω2\displaystyle\qquad-\delta\dfrac{\nu}{\sqrt{\kappa}}\|\mathop{\mathrm{curl}}\nolimits\boldsymbol{\omega}\|_{0,\Omega}\|\boldsymbol{\zeta}_{2}\|_{0,\Omega}+\delta C_{1}\|p\|_{r}^{2}-2\mu\hat{\delta}|\boldsymbol{u}|_{1,\Omega}|\boldsymbol{\gamma}_{3}|_{1,\Omega}+\hat{\delta}\frac{\hat{C}_{1}}{2\mu}\|\varphi\|_{0,\Omega}^{2}
𝒙𝐗212(1κ𝒗0,Ω+νκdiv𝒗0,Ω2)ν2curl𝝎0,Ω2μ|𝒖|1,Ω2+δC1pr2\displaystyle\geq\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}-\dfrac{1}{2}\left(\dfrac{1}{\kappa}\|\boldsymbol{v}\|_{0,\Omega}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}\|_{0,\Omega}^{2}\right)-\dfrac{\nu}{2}\|\mathop{\mathrm{curl}}\nolimits\boldsymbol{\omega}\|_{0,\Omega}^{2}-\mu|\boldsymbol{u}|_{1,\Omega}^{2}+\delta C_{1}\|p\|_{r}^{2}
+δ^C^12μφ0,Ω2δ21κ𝜻20,Ωδ2ν2κdiv𝜻20,Ω22μδ^2|𝜸3|1,Ω2\displaystyle\qquad+\hat{\delta}\frac{\hat{C}_{1}}{2\mu}\|\varphi\|_{0,\Omega}^{2}-\delta^{2}\dfrac{1}{\kappa}\|\boldsymbol{\zeta}_{2}\|_{0,\Omega}-\delta^{2}\dfrac{\nu}{2\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{2}\|_{0,\Omega}^{2}-2\mu\hat{\delta}^{2}|\boldsymbol{\gamma}_{3}|_{1,\Omega}^{2}
12𝒙𝐗2+δ(C1δC22)pr2+δ^12μ(C^1δ^C2^2)φ0,Ω2.\displaystyle\geq\dfrac{1}{2}\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}+\delta(C_{1}-\delta C_{2}^{2})\|p\|_{r}^{2}+\hat{\delta}\frac{1}{2\mu}\left(\hat{C}_{1}-\hat{\delta}\hat{C_{2}}^{2}\right)\|\varphi\|_{0,\Omega}^{2}.

Then, choosing δ:=C12C22\delta:=\dfrac{C_{1}}{2C_{2}^{2}} and δ^:=C^12C^22\hat{\delta}:=\dfrac{\hat{C}_{1}}{2\hat{C}_{2}^{2}}, we can deduce the estimates

𝒜ϵ(𝒙),10𝒚1+δ𝒚2+δ^𝒚3\displaystyle\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),10\vec{\boldsymbol{y}}_{1}+\delta\vec{\boldsymbol{y}}_{2}+\hat{\delta}\vec{\boldsymbol{y}}_{3}\rangle 12𝒙𝐗2+C124C22pr2+C^124C^2212μφ0,Ω212min{1,C122C22,C^122C^22}𝒙ϵ2,and\displaystyle\geq\dfrac{1}{2}\|\vec{\boldsymbol{x}}\|^{2}_{\mathbf{X}}+\dfrac{C_{1}^{2}}{4C_{2}^{2}}\|p\|_{r}^{2}+\dfrac{\hat{C}_{1}^{2}}{4\hat{C}_{2}^{2}}\frac{1}{2\mu}\|\varphi\|_{0,\Omega}^{2}\geq\dfrac{1}{2}\min\left\{1,\dfrac{C_{1}^{2}}{2C_{2}^{2}},\dfrac{\hat{C}_{1}^{2}}{2\hat{C}_{2}^{2}}\right\}\|\vec{\boldsymbol{x}}\|^{2}_{\epsilon},\qquad\text{and}
10𝒚1+δ𝒚2+δ^𝒚3ϵ\displaystyle\|10\vec{\boldsymbol{y}}_{1}+\delta\vec{\boldsymbol{y}}_{2}+\hat{\delta}\vec{\boldsymbol{y}}_{3}\|_{\epsilon} 102𝒙ϵ+δC2pr+δ^C^212μφ0,Ωmax{102,C12C2,C^12C^2}𝒙ϵ.\displaystyle\leq 10\sqrt{2}\|\vec{\boldsymbol{x}}\|_{\epsilon}+\delta C_{2}\|p\|_{r}+\hat{\delta}\hat{C}_{2}\frac{1}{\sqrt{2\mu}}\|\varphi\|_{0,\Omega}\leq\max\left\{10\sqrt{2},\dfrac{C_{1}}{2C_{2}},\dfrac{\hat{C}_{1}}{2\hat{C}_{2}}\right\}\|\vec{\boldsymbol{x}}\|_{\epsilon}.

And from these relations we can conclude that:

sup𝒚𝐗ϵ{𝟎}𝒜ϵ(𝒙),𝒚𝒚ϵ𝒜ϵ(𝒙),10𝒚1+δ𝒚2+δ^𝒚310𝒚1+δ𝒚2+δ^𝒚3ϵ12min{1,C122C22,C^122C^22}𝒙ϵ2max{102,C12C2,C^12C^2}𝒙ϵ𝒙ϵ.\sup_{\vec{\boldsymbol{y}}\in\mathbf{X}_{\epsilon}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}\rangle}{\|\vec{\boldsymbol{y}}\|_{\epsilon}}\geq\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),10\vec{\boldsymbol{y}}_{1}+\delta\vec{\boldsymbol{y}}_{2}+\hat{\delta}\vec{\boldsymbol{y}}_{3}\rangle}{\|10\vec{\boldsymbol{y}}_{1}+\delta\vec{\boldsymbol{y}}_{2}+\hat{\delta}\vec{\boldsymbol{y}}_{3}\|_{\epsilon}}\geq\dfrac{1}{2}\dfrac{\min\left\{1,\dfrac{C_{1}^{2}}{2C_{2}^{2}},\dfrac{\hat{C}_{1}^{2}}{2\hat{C}_{2}^{2}}\right\}\|\vec{\boldsymbol{x}}\|^{2}_{\epsilon}}{\max\left\{10\sqrt{2},\dfrac{C_{1}}{2C_{2}},\dfrac{\hat{C}_{1}}{2\hat{C}_{2}}\right\}\|\vec{\boldsymbol{x}}\|_{\epsilon}}\gtrsim\|\vec{\boldsymbol{x}}\|_{\epsilon}.

3.3 Operator preconditioning

We recall from, e.g., 39, 46, that since 𝒜ϵ\mathcal{A}_{\epsilon} maps 𝐗ϵ\mathbf{X}_{\epsilon} to its dual, when solving the discrete version of (3.14), iterative methods are not directly applicable unless a modified problem is considered, for example

𝒜ϵ(𝒙)=in 𝐗ϵ,\mathcal{B}\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}})=\mathcal{B}\mathcal{F}\qquad\text{in $\mathbf{X}_{\epsilon}$,}

where :𝐗ϵ𝐗ϵ\mathcal{B}:\mathbf{X}_{\epsilon}^{\prime}\to\mathbf{X}_{\epsilon} is an appropriately defined isomorphism. As usual, one can take \mathcal{B} as the Riesz map (self-adjoint and positive definite) whose inverse defines a scalar product (,)𝐗ϵ(\cdot,\cdot)_{\mathbf{X}_{\epsilon}} on 𝐗ϵ\mathbf{X}_{\epsilon}, and the operator 𝒜ϵ\mathcal{B}\mathcal{A}_{\epsilon} is also self-adjoint with respect to this inner product. Then

𝒜ϵ(𝒙),𝒚=(𝒜ϵ(𝒙),𝒚)𝐗ϵand𝒜ϵ(𝒙)𝐗ϵ=𝒜ϵ(𝒙)𝐗ϵ,\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\boldsymbol{y}\rangle=(\mathcal{B}\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}})_{\mathbf{X}_{\epsilon}}\quad\text{and}\quad\|\mathcal{B}\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}})\|_{\mathbf{X}_{\epsilon}}=\|\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}})\|_{\mathbf{X}_{\epsilon}^{\prime}},

and therefore, using the definition of the operator norms, it is readily deduced that

𝒜ϵ(𝐗ϵ,𝐗ϵ)=𝒜ϵ(𝐗ϵ,𝐗ϵ)and(𝒜ϵ)1(𝐗ϵ,𝐗ϵ)=𝒜ϵ1(𝐗ϵ,𝐗ϵ).\|\mathcal{B}\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}_{\epsilon})}=\|\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}_{\epsilon}^{\prime})}\quad\text{and}\quad\|(\mathcal{B}\mathcal{A}_{\epsilon})^{-1}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}_{\epsilon})}=\|\mathcal{A}_{\epsilon}^{-1}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}_{\epsilon}^{\prime})}.

Then, if an appropriate metric is chosen such that the norms of 𝒜ϵ\mathcal{A}_{\epsilon} and of 𝒜ϵ1\mathcal{A}_{\epsilon}^{-1} are bounded by constants independent of the model parameters ϵ\epsilon, then the condition number of the preconditioned system will also be independent of the model parameters.

Proceeding then similarly as in, e.g., 43, 13, 16, we consider the following block-diagonal preconditioners focusing on the case of mixed boundary conditions (and therefore not including contributions related to the zero-mean value of fluid and total pressure)

1\displaystyle\mathcal{B}_{1} =((𝐝𝐢𝐯(2μ𝜺))100000(κ1𝐈νκdiv)100000(𝐈+ν𝐜𝐮𝐫𝐥)100000((1λ+12μ)I)100000((c0+α2λ+κ)I)1),\displaystyle=\begin{pmatrix}{(-\mathop{\mathbf{div}}\nolimits(2\mu\boldsymbol{\varepsilon}))}^{-1}&0&0&0&0\\ 0&\!\!\bigl{(}{\kappa^{-1}\mathbf{I}-\frac{\nu}{\kappa}\nabla}\mathop{\mathrm{div}}\nolimits\bigr{)}^{-1}&0&0&0\\ 0&0&\!\!(\mathbf{I}+{\nu}\mathop{\mathbf{curl}}\nolimits)^{-1}&0&0\\ 0&0&0&\!\!\bigl{(}\bigl{(}\frac{1}{\lambda}+\frac{1}{2\mu}\bigr{)}I\bigr{)}^{-1}&0\\ 0&0&0&0&\!\!\bigl{(}\bigl{(}c_{0}+\frac{\alpha^{2}}{\lambda}+{{\kappa}}\bigr{)}I\bigr{)}^{-1}\end{pmatrix}, (3.17a)
2\displaystyle\mathcal{B}_{2} =((𝐝𝐢𝐯(2μ𝜺))100000(κ1𝐈νκdiv)100000(𝐈+ν𝐜𝐮𝐫𝐥)100000((1λ+12μ)I)100000((c0+α2λ)IκΔ)1),\displaystyle=\begin{pmatrix}{(-\mathop{\mathbf{div}}\nolimits(2\mu\boldsymbol{\varepsilon}))}^{-1}&0&0&0&0\\ 0&\!\!\bigl{(}{\kappa^{-1}}\mathbf{I}-\frac{\nu}{\kappa}\nabla\mathop{\mathrm{div}}\nolimits\bigr{)}^{-1}&0&0&0\\ 0&0&\!\!(\mathbf{I}+{\nu}\mathop{\mathbf{curl}}\nolimits)^{-1}&0&0\\ 0&0&0&\!\!\bigl{(}\bigl{(}\frac{1}{\lambda}+\frac{1}{2\mu}\bigr{)}I\bigr{)}^{-1}&0\\ 0&0&0&0&\!\!\bigl{(}(c_{0}+\frac{\alpha^{2}}{\lambda})I-{\kappa}\Delta\bigr{)}^{-1}\end{pmatrix}, (3.17b)
3\displaystyle\mathcal{B}_{3} =((𝐝𝐢𝐯(2μ𝜺))100000(κ1𝐈(1+νκ)div)100000(𝐈+ν𝐜𝐮𝐫𝐥)100000^000),\displaystyle=\begin{pmatrix}{(-\mathop{\mathbf{div}}\nolimits(2\mu\boldsymbol{\varepsilon}))}^{-1}&0&0&0&0\\ 0&\bigl{(}{\kappa^{-1}}\mathbf{I}-{\bigl{(}1+\frac{\nu}{\kappa}\bigr{)}\nabla}\mathop{\mathrm{div}}\nolimits\bigr{)}^{-1}&0&0&0\\ 0&0&(\mathbf{I}+{\nu}\mathop{\mathbf{curl}}\nolimits)^{-1}&0&0\\ 0&0&0&\lx@intercol\hfil\hbox{\multirowsetup{$\widehat{\mathcal{B}}$}}\hfil\lx@intercol\\ 0&0&0&\end{pmatrix}, (3.17c)

with

^=((1λ+12μ)IαλIαλI(1+c0+α2λ)I)1+((1λ+12μ)IαλIαλI(c0+α2λ)IκΔ)1.{\widehat{\mathcal{B}}=\begin{pmatrix}\biggl{(}\displaystyle{\frac{{\displaystyle{1}}}{{\displaystyle{\lambda}}}}+\displaystyle{\frac{{\displaystyle{1}}}{{\displaystyle{2\mu}}}}\biggr{)}I&\displaystyle{\frac{{\displaystyle{\alpha}}}{{\displaystyle{\lambda}}}}I\\ \displaystyle{\frac{{\displaystyle{\alpha}}}{{\displaystyle{\lambda}}}}I&\biggl{(}1+c_{0}+\displaystyle{\frac{{\displaystyle{\alpha^{2}}}}{{\displaystyle{\lambda}}}}\biggr{)}I\end{pmatrix}^{-1}+\begin{pmatrix}\biggl{(}\displaystyle{\frac{{\displaystyle{1}}}{{\displaystyle{\lambda}}}}+\displaystyle{\frac{{\displaystyle{1}}}{{\displaystyle{2\mu}}}}\biggr{)}I&\displaystyle{\frac{{\displaystyle{\alpha}}}{{\displaystyle{\lambda}}}}I\\ \displaystyle{\frac{{\displaystyle{\alpha}}}{{\displaystyle{\lambda}}}}I&\biggl{(}c_{0}+\displaystyle{\frac{{\displaystyle{\alpha^{2}}}}{{\displaystyle{\lambda}}}}\biggr{)}I-{\kappa}\Delta\end{pmatrix}^{-1}}.

Note that only 3\mathcal{B}_{3} results from the Riesz map corresponding to 𝐗ϵ\mathbf{X}_{\epsilon} with the complete norm as in (3.13), while 1,2\mathcal{B}_{1},\mathcal{B}_{2} are approximations of 3\mathcal{B}_{3}. In particular, 1\mathcal{B}_{1} simply considers the parameter weighting suggested by the weak formulation (2.6) (but taking into account the scaling of the vorticity seminorm according to Remark 3.2) combined with the Riesz map associated with the natural regularity of that formulation, and 2\mathcal{B}_{2} includes also the sum of spaces leading to the pressure Laplacian forms which are key in achieving robustness for Darcy-type problems 13. The full form 3\mathcal{B}_{3} also includes the non-standard Brezzi–Braess type of block ^\widehat{\mathcal{B}} for total and fluid pressures, which is needed in perturbed saddle-point problems with penalty as proposed in 16 Section 4 (see also 17).

4 Analysis of a finite element method

Let 𝒯h\mathcal{T}_{h} denote a family of tetrahedral meshes (triangular in 2D) on Ω\Omega and denote by h\mathcal{E}_{h} the set of all facets (edges in 2D) in the mesh. By hKh_{K} we denote the diameter of the element KK and by hFh_{F} we denote the length/area of the facet FF. As usual, by hh we denote the maximum of the diameters of elements in 𝒯h\mathcal{T}_{h}. For all meshes we assume that they are sufficiently regular (there exists a uniform positive constant η1\eta_{1} such that each element KK is star-shaped with respect to a ball of radius greater than η1hK\eta_{1}h_{K}). It is also assumed that there exists η2>0\eta_{2}>0 such that for each element and every facet FKF\in\partial K, we have that hFη2hKh_{F}\geq\eta_{2}h_{K}, see, e.g., 53, 30. By Pk(Θ)\mathrm{P}_{k}(\Theta) we will denote be the space of polynomials of total degree at most kk defined locally on the domain Θ\Theta, and denote by 𝐏k(Θ)\mathbf{P}_{k}(\Theta) and k(Θ)\mathbb{P}_{k}(\Theta) their vector- and tensor-valued counterparts, respectively. By h\mathcal{E}_{h} we will denote the set of all facets and will distinguish between facets lying on the interior and the two sub-boundaries h=hinthΓ\mathcal{E}_{h}=\mathcal{E}_{h}^{\mathrm{int}}\cup\mathcal{E}_{h}^{\Gamma}.

For smooth scalar fields ww defined on 𝒯h\mathcal{T}_{h}, the symbol w±w^{\pm} denotes the traces of 𝒘\boldsymbol{w} on ee that are the extensions from the interior of the two elements K+K^{+} and KK^{-} sharing the facet ee. The symbols {{}}\left\{\!\!\left\{\cdot\right\}\!\!\right\} and [[]]\left[\!\left[\cdot\right]\!\right] denote, respectively, the average and jump operators defined as {{w}}:=12(w+w+)\left\{\!\!\left\{w\right\}\!\!\right\}:=\frac{1}{2}(w^{-}+w^{+}), [[w]]:=(ww+)\left[\!\left[w\right]\!\right]:=(w^{-}-w^{+}). The element-wise action of a differential operator is denoted with a subindex hh, for example, h\nabla_{h} will denote the broken gradient operator.

The discrete spaces that we consider herein correspond, for k0k\geq 0, to the generalised Taylor–Hood element pair (𝐏k+2Pk+1\mathbf{P}_{k+2}-\mathrm{P}_{k+1}) for the displacement / total pressure approximation, the H(div)-conforming Raviart–Thomas elements of degree kk (denoted 𝐑𝐓k\mathbf{RT}_{k}) for velocity approximation, the H(curl)-conforming Nédélec elements of the first kind and order k+1k+1 (denoted 𝐍𝐃k+1\mathbf{ND}_{k+1}) for filtration vorticity (see, e.g., 18, 31 for precise definitions of these families of spaces), and piecewise polynomials of degree kk for the approximation of interstitial pressure

𝐔h\displaystyle\mathbf{U}_{h} :={𝒖h𝐇01(Ω):𝒖h|K𝐏k+2(K),K𝒯h},\displaystyle:=\{\boldsymbol{u}_{h}\in\mathbf{H}^{1}_{0}(\Omega):\boldsymbol{u}_{h}|_{K}\in\mathbf{P}_{k+2}(K),\quad\forall K\in\mathcal{T}_{h}\},
𝐕h\displaystyle\mathbf{V}_{h} :={𝒗h𝐇0(div,Ω):𝒗h|K𝐑𝐓k(K),K𝒯h},\displaystyle:=\{\boldsymbol{v}_{h}\in\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega):\boldsymbol{v}_{h}|_{K}\in\mathbf{RT}_{k}(K),\quad\forall K\in\mathcal{T}_{h}\},
𝐖h\displaystyle\mathbf{W}_{h} :={𝝎h𝐇0(𝐜𝐮𝐫𝐥,Ω):𝝎h|K𝐍𝐃k+1(K),K𝒯h},\displaystyle:=\{\boldsymbol{\omega}_{h}\in\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega):\boldsymbol{\omega}_{h}|_{K}\in\mathbf{ND}_{k+1}(K),\quad\forall K\in\mathcal{T}_{h}\},
𝐌hm\displaystyle{\mathbf{M}^{m}_{h}} :={𝒖h𝐋2(Ω):𝒖h|K𝐏m(K),K𝒯h},\displaystyle:={\{\boldsymbol{u}_{h}\in\mathbf{L}^{2}(\Omega):\boldsymbol{u}_{h}|_{K}\in\mathbf{P}_{m}(K),\quad\forall K\in\mathcal{T}_{h}\}}, (4.1)
Uh\displaystyle\mathrm{U}_{h} :={uhH01(Ω):uh|KPk(K),K𝒯h},\displaystyle:=\{u_{h}\in\mathrm{H}^{1}_{0}(\Omega):u_{h}|_{K}\in\mathrm{P}_{k}(K),\quad\forall K\in\mathcal{T}_{h}\},
Zh\displaystyle\mathrm{Z}_{h} :={ψhC0(Ω):ψh|KPk+1(K),K𝒯h},\displaystyle:=\{\psi_{h}\in{C^{0}(\Omega)}:\psi_{h}|_{K}\in{\mathrm{P}_{k+1}(K)},\quad\forall K\in\mathcal{T}_{h}\},
Qh\displaystyle\mathrm{Q}_{h} :={qhL2(Ω):qh|KPk(K),K𝒯h}.\displaystyle:=\{q_{h}\in\mathrm{L}^{2}(\Omega):q_{h}|_{K}\in\mathrm{P}_{k}(K),\quad\forall K\in\mathcal{T}_{h}\}.

Note that other combinations of finite element families are feasible as well (as long as appropriate discrete inf-sup conditions are satisfied). In 2D we will consider the same space Qh\mathrm{Q}_{h} for both total and fluid pressures and we will use the 𝐏2P0\mathbf{P}_{2}-\mathrm{P}_{0} pair for displacement and total pressure approximation.

The (conforming) finite element scheme associated with (2.7) reads: Find

(𝒖h,𝒗h,𝝎h,φh,ph)𝐗h:=𝐔h×𝐕h×𝐖h×Zh×Qh,(\boldsymbol{u}_{h},\boldsymbol{v}_{h},\boldsymbol{\omega}_{h},\varphi_{h},p_{h})\in\mathbf{X}_{h}:=\mathbf{U}_{h}\times\mathbf{V}_{h}\times\mathbf{W}_{h}\times\mathrm{Z}_{h}\times\mathrm{Q}_{h},

such that

a1(𝒖h,𝜸h)\displaystyle a_{1}(\boldsymbol{u}_{h},\boldsymbol{\gamma}_{h}) +b1(𝜸h,φh)\displaystyle+\;b_{1}(\boldsymbol{\gamma}_{h},\varphi_{h}) =\displaystyle= B(𝜸h)\displaystyle\;B(\boldsymbol{\gamma}_{h}) 𝜸h𝐔h,\displaystyle\qquad\forall\boldsymbol{\gamma}_{h}\in\mathbf{U}_{h}, (4.2a)
a2(𝒗h,𝜻h)\displaystyle a_{2}(\boldsymbol{v}_{h},\boldsymbol{\zeta}_{h}) +b2(𝝎h,𝜻h)\displaystyle+\;b_{2}(\boldsymbol{\omega}_{h},\boldsymbol{\zeta}_{h}) +b^1(𝜻h,ph)\displaystyle+\;\hat{b}_{1}(\boldsymbol{\zeta}_{h},p_{h}) =\displaystyle= F(𝜻h)\displaystyle\;F(\boldsymbol{\zeta}_{h}) 𝜻h𝐕h,\displaystyle\qquad\forall\boldsymbol{\zeta}_{h}\in\mathbf{V}_{h}, (4.2b)
b2(𝜽h,𝒗h)\displaystyle b_{2}(\boldsymbol{\theta}_{h},\boldsymbol{v}_{h}) a3(𝝎h,𝜽h)\displaystyle-\;a_{3}(\boldsymbol{\omega}_{h},\boldsymbol{\theta}_{h}) =\displaystyle=  0\displaystyle\;0 𝜽h𝐖h,\displaystyle\qquad\forall\boldsymbol{\theta}_{h}\in\mathbf{W}_{h}, (4.2c)
b1(𝒖h,ψh)\displaystyle b_{1}(\boldsymbol{u}_{h},\psi_{h}) a4(φh,ψh)\displaystyle-\;a_{4}(\varphi_{h},\psi_{h}) +b3(ph,ψh)\displaystyle+\;b_{3}(p_{h},\psi_{h}) =\displaystyle=  0\displaystyle\;0 ψhZh,\displaystyle\qquad\forall\psi_{h}\in\mathrm{Z}_{h}, (4.2d)
b^1(𝒗h,qh)\displaystyle\hat{b}_{1}(\boldsymbol{v}_{h},q_{h}) +b3(qh,φh)\displaystyle+\;b_{3}(q_{h},\varphi_{h}) a5(ph,qh)\displaystyle-\;a_{5}(p_{h},q_{h}) =\displaystyle= G(qh)\displaystyle\;G(q_{h}) qhQh.\displaystyle\qquad\forall q_{h}\in\mathrm{Q}_{h}. (4.2e)

Similarly as in the continuous case, we define

𝐗ϵ,h\displaystyle\mathbf{X}_{\epsilon,h} :=2μ𝐔h×[1κ𝐌hk+1νκ𝐕h]×[𝐌hk+1ν𝐖h]×[1λQh12μZh]×[c0Qh(κνQh+κUh)],\displaystyle:={2\mu}\mathbf{U}_{h}\times\left[\sqrt{\frac{1}{\kappa}}\mathbf{M}_{h}^{k+1}\cap\sqrt{\dfrac{\nu}{\kappa}}\mathbf{V}_{h}\right]\times[\mathbf{M}_{h}^{k+1}\cap\sqrt{\nu}\mathbf{W}_{h}]\times\left[{\dfrac{1}{\lambda}}\mathrm{Q}_{h}\cap{\dfrac{1}{2\mu}}\mathrm{Z}_{h}\right]\times\left[\sqrt{c_{0}}\mathrm{Q}_{h}\cap\left(\sqrt{\dfrac{\kappa}{\nu}}\mathrm{Q}_{h}+\sqrt{\kappa}\mathrm{U}_{h}\right)\right],

and the associated discrete norm is

𝒙hε,h2\displaystyle\|\vec{\boldsymbol{x}}_{h}\|_{\varepsilon,h}^{2} :=2μ𝜺(𝒖h)0,Ω2+1κ𝒗h0,Ω2+νκdiv𝒗h0,Ω2+𝝎h0,Ω2+ν𝐜𝐮𝐫𝐥𝝎h0,Ω2+12μφh0,Ω2\displaystyle:=2\mu\|\boldsymbol{\varepsilon}(\boldsymbol{u}_{h})\|^{2}_{0,\Omega}+\frac{1}{\kappa}\|\boldsymbol{v}_{h}\|^{2}_{0,\Omega}+\frac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}_{h}\|^{2}_{0,\Omega}+\|\boldsymbol{\omega}_{h}\|^{2}_{0,\Omega}+\nu\|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}_{h}\|^{2}_{0,\Omega}+\frac{1}{2\mu}\|\varphi_{h}\|_{0,\Omega}^{2}
+infshUh[(c0+κν)phsh0,Ω2+c0sh2+κhsh0,Ω2]+1λφh+αph0,Ω2+c0ph0,Ω2.\displaystyle\quad+\inf_{s_{h}\in\mathrm{U}_{h}}\biggl{[}\left(c_{0}+\frac{\kappa}{\nu}\right)\|p_{h}-s_{h}\|_{0,\Omega}^{2}+c_{0}\|s_{h}\|^{2}+\bigl{\|}\sqrt{\kappa}\nabla_{h}s_{h}\bigr{\|}^{2}_{0,\Omega}\biggr{]}+\frac{1}{\lambda}\|\varphi_{h}+\alpha p_{h}\|^{2}_{0,\Omega}+c_{0}\|p_{h}\|^{2}_{0,\Omega}. (4.3)

As in the continuous case, now problem (4.2) is written as: Find 𝒙h𝐗ϵ,h\vec{\boldsymbol{x}}_{h}\in\mathbf{X}_{\epsilon,h} such that

𝒜ϵ(𝒙h),𝒚h=h(𝒚h)for all 𝒚h𝐗ϵ,h,\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{y}}_{h}\rangle=\mathcal{F}_{h}(\vec{\boldsymbol{y}}_{h})\qquad\text{for all }\vec{\boldsymbol{y}}_{h}\in\mathbf{X}_{\epsilon,h},

or in operator form as follows

𝒜ϵ(𝒙h)=hin 𝐗ϵ,h.\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h})=\mathcal{F}_{h}\qquad\text{in $\mathbf{X}^{\prime}_{\epsilon,h}$}. (4.4)
Lemma 4.1.

There exists β1>0\beta_{1}>0 independent of the parameters in ϵ\epsilon and hh, such that

sup𝜻h𝐕h{𝟎}(qh,div𝜻h)0,Ω{1κ𝜻h0,Ω2+νκdiv𝜻h0,Ω2}1/2β1qhr for all qhQh.\sup_{\boldsymbol{\zeta}_{h}\in\mathbf{V}_{h}\setminus\{\boldsymbol{0}\}}\dfrac{-(q_{h},\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{h})_{0,\Omega}}{\left\{\dfrac{1}{\kappa}\|\boldsymbol{\zeta}_{h}\|_{0,\Omega}^{2}+\dfrac{\nu}{\kappa}\|\mathop{\mathrm{div}}\nolimits\boldsymbol{\zeta}_{h}\|_{0,\Omega}^{2}\right\}^{1/2}}\geq\beta_{1}\|q_{h}\|_{r}\qquad\text{ for all }q_{h}\in\mathrm{Q}_{h}. (4.5)
Proof 4.2.

The proof requires to assume that the continuous inf-sup condition holds. Then, similarly to the proof of that result (Lemma 3.6), the first part (steps until (3.11)) is a consequence of the fact that the spaces 𝐕h\mathbf{V}_{h} and Qh\mathrm{Q}_{h} satisfy the usual discrete inf-sup condition for the Stokes problem. Then, it suffices to follow the scaling argument in (3.12), also valid at the discrete level, to complete the desired condition.

Analogously to the continuous case, we need the following conditions to be satisfied to guarantee existence and uniqueness to problem (4.4):

𝒜ϵ(𝒙h),𝒚h\displaystyle\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{y}}_{h}\rangle 𝒙hϵ𝒚hϵ,h𝒙h,𝒚h𝐗ϵ,h,\displaystyle\lesssim\|\vec{\boldsymbol{x}}_{h}\|_{\epsilon}\|\vec{\boldsymbol{y}}_{h}\|_{\epsilon,h}\qquad\forall\vec{\boldsymbol{x}}_{h},\vec{\boldsymbol{y}}_{h}\in\mathbf{X}_{\epsilon,h}, (4.6a)
sup𝒚h𝐗ϵ,h{𝟎}𝒜ϵ(𝒙h),𝒚h𝒚hϵ,h\displaystyle\sup_{\vec{\boldsymbol{y}}_{h}\in\mathbf{X}_{\epsilon,h}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{y}}_{h}\rangle}{\|\vec{\boldsymbol{y}}_{h}\|_{\epsilon,h}} 𝒙hϵ,h𝒙h𝐗ϵ,h.\displaystyle\gtrsim\|\vec{\boldsymbol{x}}_{h}\|_{\epsilon,h}\qquad\forall\vec{\boldsymbol{x}}_{h}\in\mathbf{X}_{\epsilon,h}. (4.6b)
Theorem 4.3.

Let ϵ,h\|\cdot\|_{\epsilon,h} be defined as in (4.3). Then the bilinear form induced by 𝒜ϵ\mathcal{A}_{\epsilon} (cf. (3.4)) is continuous and inf-sup stable under the norm ϵ,h\|\cdot\|_{\epsilon,h}, i.e., the conditions (4.6a) and (4.6b) are satisfied.

Proof 4.4.

We use again that the pairs (𝐔h,Zh)(\mathbf{U}_{h},\mathrm{Z}_{h}) and (𝐕h,Qh)(\mathbf{V}_{h},\mathrm{Q}_{h}) are inf-sup stable spaces for the usual bilinear form in Stokes problem, which ensures that we can find discrete versions 𝐲h,2\vec{\boldsymbol{y}}_{h,2}, 𝐲h,3\vec{\boldsymbol{y}}_{h,3} of the tuples 𝐲2\vec{\boldsymbol{y}}_{2} and 𝐲3\vec{\boldsymbol{y}}_{3}, respectively, constructed in Theorem 3.8. We also note that 𝐜𝐮𝐫𝐥𝐖h𝐕h\mathop{\mathbf{curl}}\nolimits\mathbf{W}_{h}\subset\mathbf{V}_{h}, and therefore we can prove the discrete version of Lemma 3.3. Then the desired result is a consequence of repeating the arguments used in the proof of Theorem 3.8.

Theorem 4.5.

For given 𝐛,𝐟𝐋2(Ω)\boldsymbol{b},\boldsymbol{f}\in\mathbf{L}^{2}(\Omega) and gL2(Ω)g\in L^{2}(\Omega), problem (4.2) has a unique solution (𝐮h,𝐯h,𝛚h,φh,qh)𝐗ϵ,h(\boldsymbol{u}_{h},\boldsymbol{v}_{h},\boldsymbol{\omega}_{h},\varphi_{h},q_{h})\in\mathbf{X}_{\epsilon,h}. In addition, the solution satisfies the following continuous dependence on data

(𝒖h,𝒗h,𝝎h,φh,ph)ϵ(𝒃0,Ω+𝒇0,Ω+g0,Ω),\|(\boldsymbol{u}_{h},\boldsymbol{v}_{h},\boldsymbol{\omega}_{h},\varphi_{h},p_{h})\|_{\epsilon}\lesssim(\|\boldsymbol{b}\|_{0,\Omega}+\|\boldsymbol{f}\|_{0,\Omega}+\|g\|_{0,\Omega}),

and the following Céa estimate

(𝒖𝒖h,𝒗𝒗h,𝝎𝝎h,φφh,pph)ϵ(1+α1𝒜ϵ(𝐗ϵ,𝐗ϵ))(𝒖𝜸h,𝒗𝜻h,𝝎𝜽h,φψh,pqh)ϵ,\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{v}-\boldsymbol{v}_{h},\boldsymbol{\omega}-\boldsymbol{\omega}_{h},\varphi-\varphi_{h},p-p_{h})\|_{\epsilon}\leq\bigl{(}1+\alpha^{-1}\|\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}^{\prime}_{\epsilon})}\bigr{)}\|(\boldsymbol{u}-\boldsymbol{\gamma}_{h},\boldsymbol{v}-\boldsymbol{\zeta}_{h},\boldsymbol{\omega}-\boldsymbol{\theta}_{h},\varphi-\psi_{h},p-q_{h})\|_{\epsilon},

for all (𝛄h,𝛇h,𝛉h,ψh,qh)𝐗ϵ,h(\boldsymbol{\gamma}_{h},\boldsymbol{\zeta}_{h},\boldsymbol{\theta}_{h},\psi_{h},q_{h})\in\mathbf{X}_{\epsilon,h}, where α\alpha is the positive constant associated with (4.6b).

Proof 4.6.

The existence and uniqueness of the solution is obtained in a similar way to its counterpart in the continuous level. For the corresponding Céa estimate, we proceed to denote as 𝐱:=(𝐮,𝐯,𝛚,φ,p)\vec{\boldsymbol{x}}:=(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p), 𝐱𝐡:=(𝐮h,𝐯h,𝛚h,φh,ph)\vec{\boldsymbol{x_{h}}}:=(\boldsymbol{u}_{h},\boldsymbol{v}_{h},\boldsymbol{\omega}_{h},\varphi_{h},p_{h}) and 𝐲h:=(𝛄h,𝛇h,𝛉h,ψh,qh)\vec{\boldsymbol{y}_{h}}:=(\boldsymbol{\gamma}_{h},\boldsymbol{\zeta}_{h},\boldsymbol{\theta}_{h},\psi_{h},q_{h}). From (4.6b), we can infer that there exists a positive constant α\alpha independent of the parameters such that

sup𝒛h𝐗ϵ,h{𝟎}𝒜ϵ(𝒙h),𝒛h𝒛hϵα𝒙hϵ𝒙h𝐗ϵ,h.\sup_{\vec{\boldsymbol{z}}_{h}\in\mathbf{X}_{\epsilon,h}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{z}}_{h}\rangle}{\|\vec{\boldsymbol{z}}_{h}\|_{\epsilon}}\geq\alpha\|\vec{\boldsymbol{x}}_{h}\|_{\epsilon}\qquad\forall\vec{\boldsymbol{x}}_{h}\in\mathbf{X}_{\epsilon,h}.

Using the error equation, we readily obtain that 𝒜ϵ(𝐱),𝐲h=𝒜ϵ(𝐱h),𝐲h\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}),\vec{\boldsymbol{y}}_{h}\rangle=\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{y}}_{h}\rangle. Furthermore, since 𝐲h𝐱h𝐗ϵ,h\vec{\boldsymbol{y}}_{h}-\vec{\boldsymbol{x}}_{h}\in\mathbf{X}_{\epsilon,h} we can deduce that

𝒙𝒙hϵ\displaystyle\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{x}}_{h}\|_{\epsilon} 𝒙𝒚hϵ+𝒚h𝒙hϵ\displaystyle\leq\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{y}}_{h}\|_{\epsilon}+\|\vec{\boldsymbol{y}}_{h}-\vec{\boldsymbol{x}}_{h}\|_{\epsilon}
𝒙𝒚hϵ+α1sup𝒛h𝐗ϵ,h{𝟎}𝒜ϵ(𝒚h𝒙h),𝒛h𝒛hϵ\displaystyle\leq\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{y}}_{h}\|_{\epsilon}+\alpha^{-1}\sup_{\vec{\boldsymbol{z}}_{h}\in\mathbf{X}_{\epsilon,h}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{y}}_{h}-\vec{\boldsymbol{x}}_{h}),\vec{\boldsymbol{z}}_{h}\rangle}{\|\vec{\boldsymbol{z}}_{h}\|_{\epsilon}}
𝒙𝒚hϵ+α1sup𝒛h𝐗ϵ,h{𝟎}𝒜ϵ(𝒚h𝒙),𝒛h𝒛hϵ\displaystyle\leq\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{y}}_{h}\|_{\epsilon}+\alpha^{-1}\sup_{\vec{\boldsymbol{z}}_{h}\in\mathbf{X}_{\epsilon,h}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\langle\mathcal{A}_{\epsilon}(\vec{\boldsymbol{y}}_{h}-\vec{\boldsymbol{x}}),\vec{\boldsymbol{z}}_{h}\rangle}{\|\vec{\boldsymbol{z}}_{h}\|_{\epsilon}}
𝒙𝒚hϵ+α1sup𝒛h𝐗ϵ,h{𝟎}𝒜ϵ(𝐗ϵ,𝐗ϵ)𝒚h𝒙ϵ𝒛hϵ𝒛hϵ\displaystyle\leq\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{y}}_{h}\|_{\epsilon}+\alpha^{-1}\sup_{\vec{\boldsymbol{z}}_{h}\in\mathbf{X}_{\epsilon,h}\setminus\{\vec{\boldsymbol{0}}\}}\frac{\|\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}^{\prime}_{\epsilon})}\|\vec{\boldsymbol{y}}_{h}-\vec{\boldsymbol{x}}\|_{\epsilon}\|\vec{\boldsymbol{z}}_{h}\|_{\epsilon}}{\|\vec{\boldsymbol{z}}_{h}\|_{\epsilon}}
(1+α1𝒜ϵ(𝐗ϵ,𝐗ϵ))𝒙𝒚hϵ,\displaystyle\leq(1+\alpha^{-1}\|\mathcal{A}_{\epsilon}\|_{\mathcal{L}(\mathbf{X}_{\epsilon},\mathbf{X}^{\prime}_{\epsilon})})\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{y}}_{h}\|_{\epsilon},

which finishes the proof.

Let us recall, from, e.g., 30 Chapters 16, 17 and 22, the following approximation properties of the finite element subspaces (4.1), which are obtained using the classical interpolation theory. Assume that (𝒖,𝒗,𝝎,φ,p)𝐇1+s(Ω)×𝐇s(div,Ω)×𝐇s(𝐜𝐮𝐫𝐥,Ω)×Hs(Ω)×Hs(Ω)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{H}^{1+s}(\Omega)\times{\mathbf{H}^{s}(\mathop{\mathrm{div}}\nolimits,\Omega)\times\mathbf{H}^{s}(\mathop{\mathbf{curl}}\nolimits,\Omega)}\times{H}^{s}(\Omega)\times{H}^{s}(\Omega), for some s(1/2,k+1]s\in(1/2,k+1]. Then there exists C>0C>0, independent of hh, such that

𝜺(𝒖h(𝒖))0,Ω\displaystyle\|\boldsymbol{\varepsilon}(\boldsymbol{u}-\mathcal{I}_{h}(\boldsymbol{u}))\|_{0,\Omega} Chs|𝒖|1+s,Ω,\displaystyle\leq Ch^{s}|\boldsymbol{u}|_{1+s,\Omega}, (4.7a)
pΠh(p)0,Ω\displaystyle\|p-\Pi_{h}(p)\|_{0,\Omega} Chs|p|s,Ω,\displaystyle\leq Ch^{s}|p|_{s,\Omega}, (4.7b)
𝒗hRT(𝒗)0,Ω\displaystyle\|\boldsymbol{v}-\mathcal{I}_{h}^{RT}(\boldsymbol{v})\|_{0,\Omega} Chs|𝒗|s,Ω,\displaystyle\leq Ch^{s}|\boldsymbol{v}|_{s,\Omega}, (4.7c)
𝝎hN(𝝎)0,Ω\displaystyle\|\boldsymbol{\omega}-\mathcal{I}_{h}^{N}(\boldsymbol{\omega})\|_{0,\Omega} Chs|𝝎|s,Ω,\displaystyle\leq Ch^{s}|\boldsymbol{\omega}|_{s,\Omega}, (4.7d)

where Πh:L02ZhQh\Pi_{h}:\mathrm{L}_{0}^{2}\rightarrow\mathrm{Z}_{h}\subset\mathrm{Q}_{h} is the L2L^{2}-projection and h:𝐇1(Ω)𝐔h\mathcal{I}_{h}:\mathbf{H}^{1}(\Omega)\rightarrow\mathbf{U}_{h}, hRT:𝐇0(div,Ω)𝐕h\mathcal{I}_{h}^{RT}:\mathbf{H}_{0}(\mathop{\mathrm{div}}\nolimits,\Omega)\rightarrow\mathbf{V}_{h}, hN:𝐇0(𝐜𝐮𝐫𝐥,Ω)𝐖h\mathcal{I}_{h}^{N}:\mathbf{H}_{0}(\mathop{\mathbf{curl}}\nolimits,\Omega)\rightarrow\mathbf{W}_{h} are the Lagrange, Raviart–Thomas and Nédelec interpolators respectively.

Theorem 4.7.

Let (𝐮,𝐯,𝛚,φ,p)𝐗ϵ(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{X}_{\epsilon} and (𝐮h,𝐯h,𝛚h,φh,ph)𝐗ϵ,h(\boldsymbol{u}_{h},\boldsymbol{v}_{h},\boldsymbol{\omega}_{h},\varphi_{h},p_{h})\in\mathbf{X}_{\epsilon,h} be the unique solutions to the continuous and discrete problems (2.7) and (4.2), respectively. Assume that (𝐮,𝐯,𝛚,φ,p)𝐇1+s(Ω)×𝐇s(div,Ω)×𝐇s(𝐜𝐮𝐫𝐥,Ω)×Hs(Ω)×Hs(Ω)(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\in\mathbf{H}^{1+s}(\Omega)\times{\mathbf{H}^{s}(\mathop{\mathrm{div}}\nolimits,\Omega)\times\mathbf{H}^{s}(\mathop{\mathbf{curl}}\nolimits,\Omega)}\times{H}^{s}(\Omega)\times{H}^{s}(\Omega), for some s(1/2,k+1]s\in(1/2,{k+1}]. Then, there exists C>0C>0, independent of the mesh size hh and of the model parameters ϵ\epsilon, such that

(𝒖𝒖h,𝒗𝒗h,𝝎𝝎h,φφh,pph)ϵChs(𝒖,𝒗,𝝎,φ,p)s,ϵ,\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{v}-\boldsymbol{v}_{h},\boldsymbol{\omega}-\boldsymbol{\omega}_{h},\varphi-\varphi_{h},p-p_{h})\|_{\epsilon}\leq Ch^{s}\|(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\|_{s,\epsilon},

where

(𝒖,𝒗,𝝎,φ,p)s,ϵ2:=\displaystyle\|(\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)\|_{s,\epsilon}^{2}:= 2μ|𝒖|1+s,Ω2+1κ|𝒗|s,Ω2+νκ|div𝒗|s,Ω2+|𝝎|s,Ω2+ν|𝐜𝐮𝐫𝐥𝝎|s,Ω2+12μ|φ|s,Ω2+(c0+κν)|p|s,Ω2+1λ|φ+αp|s,Ω2.\displaystyle 2\mu|\boldsymbol{u}|_{1+s,\Omega}^{2}+\frac{1}{\kappa}|\boldsymbol{v}|_{s,\Omega}^{2}+\frac{\nu}{\kappa}|\mathop{\mathrm{div}}\nolimits\boldsymbol{v}|_{s,\Omega}^{2}+|\boldsymbol{\omega}|_{s,\Omega}^{2}+\nu|\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}|_{s,\Omega}^{2}+\frac{1}{2\mu}|\varphi|_{s,\Omega}^{2}+\left(c_{0}+\frac{\kappa}{\nu}\right)|p|_{s,\Omega}^{2}+\frac{1}{\lambda}|\varphi+\alpha p|_{s,\Omega}^{2}.
Proof 4.8.

This result follows immediately after choosing the tuple

(𝜸h,𝜻h,𝜽h,ψh,qh):=(h(𝒖),hRT(𝒗),hN(𝝎),Πh(φ),Πh(p)),(\boldsymbol{\gamma}_{h},\boldsymbol{\zeta}_{h},\boldsymbol{\theta}_{h},\psi_{h},q_{h}):=(\mathcal{I}_{h}(\boldsymbol{u}),\mathcal{I}_{h}^{RT}(\boldsymbol{v}),\mathcal{I}_{h}^{N}(\boldsymbol{\omega}),\Pi_{h}(\varphi),\Pi_{h}(p)),

in Theorem 4.5, and then using the estimates (4.7a)-(4.7d) together with the following commuting properties of the Raviart–Thomas and Nédélec operators

divhRT(𝒗)=Πh(div𝒗),𝐜𝐮𝐫𝐥hN(𝝎)=Πh(𝐜𝐮𝐫𝐥𝝎).\mathop{\mathrm{div}}\nolimits\mathcal{I}_{h}^{RT}(\boldsymbol{v})=\Pi_{h}(\mathop{\mathrm{div}}\nolimits\boldsymbol{v}),\qquad\mathop{\mathbf{curl}}\nolimits\mathcal{I}_{h}^{N}(\boldsymbol{\omega})=\Pi_{h}(\mathop{\mathbf{curl}}\nolimits\boldsymbol{\omega}).

Finally, it suffices to invoke the fact that qr(κν+c0)q0,Ω\|q\|_{r}\leq\left(\frac{\kappa}{\nu}+c_{0}\right)\|q\|_{0,\Omega}.

Remark 4.9.

The error estimate above holds true also in the limit cases of near incompressibility (λ\lambda\to\infty) and near impermeability (κ0\kappa\to 0). This robustness in these cases (along with variations in other parameters) is explored in Section 5.2. We also stress that in the non-viscous regime (ν=0\nu=0) we do not have a velocity Laplacian in the fluid momentum equation (2.3b), and no vorticity is required. In that case the formulation in (2.7) recovers the 4-field Biot formulation from 16. Optimal convergence for the Biot limit is confirmed numerically in Section 5.1, below.

5 Numerical verification

The aim of this section is to experimentally validate the theoretical results presented in Section 4. We certify by error convergence verification the proposed finite element method, and then we apply the formulation in the simulation of a representative viscous flow in a poroelastic channel. We also evaluate the robustness of the preconditioners in (3.17). The numerical implementation uses the open-source finite element framework Gridap 11, and is available in the public domain 21. For the solution of the linear systems in the accuracy verification tests we employ the sparse direct method MUMPS, while in the preconditioner tests we use the preconditioner MINRES iterative solver; see the corresponding section below for the full details underlying the set up of the preconditioner tests.

Table 5.1: Accuracy test in 2D. Error history (errors for each field variable on a sequence of successively refined grids) using non-weighted spaces, convergence rates, and \ell^{\infty}-norm of the loss of mass (the residual of the mass conservation equation at the discrete level, eqn. (5.1)).
DoF hh e1(𝒖)e_{1}(\boldsymbol{u})\! r ediv(𝒗)e_{\mathop{\mathrm{div}}\nolimits}(\boldsymbol{v})\! r e𝐜𝐮𝐫𝐥(𝝎)e_{\mathop{\mathbf{curl}}\nolimits}(\boldsymbol{\omega}) r e0(φ)e_{0}(\varphi) r e0(p)e_{0}(p) r lossh\mathrm{loss}_{h}
Discretisation with k=0k=0
93 0.7071 2.36e+00 \star 1.98e+00 \star 8.43e+00 \star 3.10e+00 \star 4.77e-01 \star 2.66e-15
309 0.3536 1.04e+00 1.18 1.36e+00 0.53 6.74e+00 0.32 1.75e+00 0.83 2.59e-01 0.88 8.88e-15
1125 0.1768 4.68e-01 1.16 6.94e-01 0.98 3.47e+00 0.96 8.98e-01 0.96 9.13e-02 1.50 1.66e-14
4293 0.0884 2.27e-01 1.04 3.49e-01 0.99 1.74e+00 0.99 4.52e-01 0.99 3.87e-02 1.24 3.68e-14
16773 0.0442 1.13e-01 1.01 1.74e-01 1.00 8.73e-01 1.00 2.26e-01 1.00 1.84e-02 1.08 1.20e-13
66309 0.0221 5.65e-02 1.00 8.73e-02 1.00 4.37e-01 1.00 1.13e-01 1.00 9.05e-03 1.02 1.99e-13
Discretisation with k=1k=1
221 0.7071 8.54e-01 \star 1.27e+00 \star 5.40e+00 \star 1.26e+00 \star 2.04e-01 \star 8.95e-15
789 0.3536 1.90e-01 2.17 3.01e-01 2.07 1.47e+00 1.87 3.92e-01 1.69 3.72e-02 2.46 2.30e-14
2981 0.1768 4.80e-02 1.99 7.75e-02 1.96 3.86e-01 1.93 1.01e-01 1.96 7.69e-03 2.27 5.56e-14
11589 0.0884 1.20e-02 2.00 1.95e-02 1.99 9.84e-02 1.97 2.54e-02 1.99 1.82e-03 2.08 1.15e-13
45701 0.0442 3.00e-03 2.00 4.89e-03 2.00 2.48e-02 1.99 6.36e-03 2.00 4.50e-04 2.02 2.40e-13
181509 0.0221 7.50e-04 2.00 1.22e-03 2.00 6.23e-03 1.99 1.59e-03 2.00 1.12e-04 2.00 5.00e-13
{tablenotes}

The symbol \star denotes that no experimental convergence rate has been computed at the first refinement level.

5.1 Accuracy tests

Let us consider the unit square domain Ω=(0,1)2\Omega=(0,1)^{2} together with the manufactured solutions

𝒖(x,y)=(sin(π[x+y])cos(π[x2+y2])),p(x,y)=sin(πx+y)sin(πy),\displaystyle\boldsymbol{u}(x,y)=\begin{pmatrix}\sin(\pi[x+y])\\ \cos(\pi[x^{2}+y^{2}])\end{pmatrix},\qquad p(x,y)=\sin(\pi x+y)\sin(\pi y),
𝒗(x,y)=(sin(πx)sin(πy)cos(πx)cos(2πy)),ω(x,y)=νκcurl𝒗,φ(x,y)=λdiv𝒖+αp.\displaystyle\boldsymbol{v}(x,y)=\begin{pmatrix}\sin(\pi x)\sin(\pi y)\\ \cos(\pi x)\cos(2\pi y)\end{pmatrix},\qquad\omega(x,y)={\sqrt{\frac{\nu}{\kappa}}}\mathrm{curl}\,\boldsymbol{v},\qquad\varphi(x,y)=-\lambda\mathop{\mathrm{div}}\nolimits\boldsymbol{u}+\alpha p.

The model parameters assume the arbitrary values ν=1\nu=1, λ=1\lambda=1, μ=1\mu=1, κ=1\kappa=1, c0=1c_{0}=1, α=1\alpha=1; and the loading and source terms, together with essential boundary conditions are computed from the manufactured solutions above. The mean value of fluid and total pressure is prescribed to coincide with the mean values of the manufactured pressures, which is implemented by means of a real Lagrange multiplier. Sequences of successively refined uniform tetrahedral meshes are used to compute approximate solutions and to generate the error history (error decay with the mesh size hh and experimental convergence rates, using norms in non-weighted spaces for each individual unknown and at each refinement level). We display the error history in Table 5.1, where the method confirms an asymptotic optimal convergence of O(hk+1)O(h^{k+1}) for each variable and for both polynomial degrees. We remark that for this test we use continuous and piecewise polynomials of degree k+2k+2 for displacement and discontinuous piecewise polynomials of degree kk for total pressure. Note that in 2D, the filtration vorticity is a scalar field ω=νκcurl𝒗\omega=\sqrt{\frac{\nu}{\kappa}}\mathrm{curl}\,\boldsymbol{v} and the appropriate functional space is H01(Ω)\mathrm{H}^{1}_{0}(\Omega). In the discrete setting we then select

Wh:={ωhH01(Ω):ωh|KP1(K),K𝒯h}.\mathrm{W}_{h}:=\{\omega_{h}\in{\mathrm{H}^{1}_{0}(\Omega)}:\omega_{h}|_{K}\in\mathrm{P}_{1}(K),\ \forall K\in\mathcal{T}_{h}\}.

Moreover, to strengthen the numerical evidence, in the last column of the table we report the (L2L^{2}-projection onto Zh\mathrm{Z}_{h} of the) loss of mass

lossh:=(c0+α2λ)ph+αλφhdiv(𝒗h)g,\mathrm{loss}_{h}:=-(c_{0}+\frac{\alpha^{2}}{\lambda})p_{h}+\frac{\alpha}{\lambda}\varphi_{h}-\mathop{\mathrm{div}}\nolimits(\boldsymbol{v}_{h})-g, (5.1)

for each refinement level, confirming a satisfaction of the mass conservation equation on the order of machine accuracy. This test has been performed using pure Dirichlet boundary conditions.

In regards to Remark 4.9, we perform exactly the same error history as reported in Table 5.1, now in the non-viscous regime (setting ν=0\nu=0). Of course, then vorticity is zero and optimal convergence is attained for all other fields also in this case, as shown in Table 5.2.

Table 5.2: Accuracy test in 2D. Error history for the non-viscous regime with ν=0\nu=0 (errors for each field variable except vorticity on a sequence of successively refined grids) using non-weighted spaces, convergence rates, and \ell^{\infty}-norm of the loss of mass (the residual of the mass conservation equation at the discrete level, eqn. (5.1)).
DoF hh e1(𝒖)e_{1}(\boldsymbol{u})\! r ediv(𝒗)e_{\mathop{\mathrm{div}}\nolimits}(\boldsymbol{v})\! r e0(φ)e_{0}(\varphi) r e0(p)e_{0}(p) r lossh\mathrm{loss}_{h}
Discretisation with k=0k=0
93 0.7071 2.36e+00 \star 1.93e+00 \star 3.08e+00 \star 2.61e-01 \star 2.61e-15
309 0.3536 1.04e+00 1.18 1.34e+00 0.52 1.74e+00 0.83 1.40e-01 0.90 1.04e-14
1’125 0.1768 4.68e-01 1.15 6.91e-01 0.96 8.97e-01 0.95 7.15e-02 0.97 8.17e-14
4’293 0.0884 2.27e-01 1.04 3.48e-01 0.99 4.52e-01 0.99 3.59e-02 0.99 3.37e-13
16’773 0.0442 1.13e-01 1.01 1.74e-01 1.00 2.26e-01 1.00 1.80e-02 1.00 3.64e-12
66’309 0.0221 5.65e-02 1.00 8.73e-02 1.00 1.13e-01 1.00 9.00e-03 1.00 2.43e-11
Discretisation with k=1k=1
221 0.7071 8.54e-01 \star 1.26e+00 \star 1.25e+00 \star 9.43e-02 \star 7.75e-15
789 0.3536 1.90e-01 2.17 3.01e-01 2.06 3.90e-01 1.68 2.54e-02 1.89 2.37e-14
2’981 0.1768 4.81e-02 1.99 7.76e-02 1.95 1.01e-01 1.96 6.48e-03 1.97 5.83e-14
11’589 0.0884 1.20e-02 2.00 1.96e-02 1.99 2.53e-02 1.99 1.63e-03 1.99 1.25e-13
45’701 0.0442 3.00e-03 2.00 4.91e-03 2.00 6.35e-03 2.00 4.07e-04 2.00 4.19e-13
181’509 0.0221 7.51e-04 2.00 1.23e-03 2.00 1.59e-03 2.00 1.02e-04 2.00 7.12e-12
{tablenotes}

The symbol \star denotes that no experimental convergence rate has been computed at the first refinement level.

5.2 Robustness of the convergence rates

Table 5.3: Accuracy test in 3D. Error history (total error in the weighted norm that leads to the definition of 3\mathcal{B}_{3} on a sequence of successively refined grids).
DoF hh e((𝒖,𝒗,𝝎,φ,p))e((\boldsymbol{u},\boldsymbol{v},\boldsymbol{\omega},\varphi,p)) r
Discretisation with k=0k=0
4’675 0.6124 1.02e+01 \star
19’939 0.3062 3.87e+00 1.402
11’0083 0.1531 1.18e+00 1.718
718’339 0.0765 3.24e-01 1.862
5’162’755 0.0383 8.51e-02 1.928
Discretisation with k=1k=1
12’766 0.6124 3.03e+00 \star
55’514 0.3062 7.32e-01 2.048
310’450 0.1531 1.34e-01 2.454
2’041’058 0.0765 2.03e-02 2.715
{tablenotes}

The symbol \star denotes that no experimental convergence rate has been computed at the first refinement level.

Next we conduct a second test of convergence, now in the unit cube domain Ω=(0,1)3\Omega=(0,1)^{3} and with mixed boundary conditions (displacement, normal velocity and tangential vorticity are prescribed on the sides x=0x=0, y=0y=0, z=0z=0 and known normal stress, flux, and pressures are imposed on the remainder of the boundary) considering closed-form solutions to the vorticity-based Biot–Brinkman equations as follows

𝒖(x,y,z)=110(sin(π[x+y+z])cos(π[x2+y2+z2])sin(π[x+y+z])cos(π[x+y+z])),p(x,y,z)=sin(πx)cos(πy)sin(πz),\displaystyle\boldsymbol{u}(x,y,z)=\frac{1}{10}\begin{pmatrix}\sin(\pi[x+y+z])\\ \cos(\pi[x^{2}+y^{2}+z^{2}])\\ \sin(\pi[x+y+z])\cos(\pi[x+y+z])\end{pmatrix},\qquad p(x,y,z)=\sin(\pi x)\cos(\pi y)\sin(\pi z),
𝒗(x,y,z)=(sin2(πx)sin(πy)sin(2πz)sin(πx)sin2(πy)sin(2πz)[sin(2πx)sin(πy)+sin(πx)sin(2πy)]sin2(πz)),𝝎(x,y,z)=νκ𝐜𝐮𝐫𝐥𝒗,φ(x,y,z)=λdiv𝒖+αp.\displaystyle\boldsymbol{v}(x,y,z)=\begin{pmatrix}\sin^{2}(\pi x)\sin(\pi y)\sin(2\pi z)\\ \sin(\pi x)\sin^{2}(\pi y)\sin(2\pi z)\\ -[\sin(2\pi x)\sin(\pi y)+\sin(\pi x)\sin(2\pi y)]\sin^{2}(\pi z)\end{pmatrix},\qquad\boldsymbol{\omega}(x,y,z)={\sqrt{\frac{\nu}{\kappa}}}\mathop{\mathbf{curl}}\nolimits\boldsymbol{v},\qquad\varphi(x,y,z)=-\lambda\mathop{\mathrm{div}}\nolimits\boldsymbol{u}+\alpha p.

The 3D example uses generalised Taylor–Hood elements for the displacement/total pressure pair, but differently from (4.1), we take one polynomial degree higher for the approximation of velocity, vorticity and fluid pressure. This to maintain an overall O(hk+2)O(h^{k+2}) convergence. This time we consider the parameter values ν=0.1\nu=0.1, λ=100\lambda=100, μ=10\mu=10, κ=103\kappa=10^{-3}, c0=0.1c_{0}=0.1, α=0.1\alpha=0.1, and in Table 5.3 we only show the error decay measured in the total weighted norm that leads to the definition of 3\mathcal{B}_{3}, that is 𝒙𝒙hε=(𝒙𝒙h)31(𝒙𝒙h)\|\vec{\boldsymbol{x}}-\vec{\boldsymbol{x}_{h}}\|_{\varepsilon}=\sqrt{(\vec{\boldsymbol{x}}-\vec{\boldsymbol{x}_{h}})\cdot\mathcal{B}_{3}^{-1}(\vec{\boldsymbol{x}}-\vec{\boldsymbol{x}_{h}})}. This shows an asymptotic hk+2h^{k+2} order of convergence. For sake of illustration, we depict in Figure 5.1 the approximate solutions obtained after 4 levels of uniform refinement.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5.1: Accuracy test in 3D. Approximate solutions of the Biot–Brinkman equations on a relatively coarse mesh. Displacements on the deformed configuration, velocity streamlines, vorticity vectors, total and fluid pressures computed with the lowest-order method.

We also explore the dependence of the order of convergence upon variation of the base-line parameter values used in Table 5.3. We consider several sample values of model parameters μ[1,108]\mu\in[1,10^{8}], λ[1,108]\lambda\in[1,10^{8}], ν[106,1]\nu\in[10^{-6},1], κ[108,1]\kappa\in[10^{-8},1], α[0,1]\alpha\in[0,1], and c0[108,1]c_{0}\in[10^{-8},1]. These ranges are encountered in typical applications of poromechanics of subsurface flows and of linear Biot consolidation of soft tissues 16, 24, 43, 47, 56. For the sake of brevity, however, we only report a subset of representative results we obtained with μ=1\mu=1, α=1\alpha=1, λ={1,108}\lambda=\{1,10^{8}\}, ν={108,1}\nu=\{10^{-8},1\}, κ={108,1}\kappa=\{10^{-8},1\}, and c0={108,1}c_{0}=\{10^{-8},1\}. In any case, the software in 21 is written such that the reader might also run additional tests with other parameter values as per-required. We consider the unit cube domain discretised into uniform tetrahedral meshes. In particular, we consider four mesh resolutions, from one up to four levels of uniform refinement of the unit cube discretised with two tetrahedra. We use mixed boundary conditions, with Γ\Gamma being conformed by the faces x=0x=0, y=0y=0, z=0z=0 and Σ\Sigma the remainder of the boundary.

The results are shown in Figure 5.2 for k=0k=0. Overall, the different convergence curves confirm O(hk+2)O(h^{k+2}) convergence in the weighted norm that leads to the definition of 3\mathcal{B}_{3} regardless of the parameter values, as predicted by the theoretical analysis.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5.2: Error convergence curves in 3D for k=0k=0 and different combinations of the physical parameters values. The errors are measured in the weighted norm that leads to the definition of 3\mathcal{B}_{3}.

5.3 Preconditioner robustness with respect to model parameters

Finally, we proceed to study the robustness of j1\mathcal{B}_{j}^{-1} in (3.17) with respect to varying model parameters and increasing mesh resolution. We use the same combination of parameter values as in the previous section, namely μ=1\mu=1, α=1\alpha=1, λ={1,108}\lambda=\{1,10^{8}\}, ν={108,1}\nu=\{10^{-8},1\}, κ={108,1}\kappa=\{10^{-8},1\}, and c0={108,1}c_{0}=\{10^{-8},1\}, and five levels of uniform refinement of the unit cube discretised with two tetrahedra. We used the same boundary conditions as in the previous section. We used the definition of FE spaces in (4.1) for k=0k=0. The action of the different inverses arising in the diagonal blocks of j1\mathcal{B}_{j}^{-1} in (3.17) is implemented with the UMFPACK direct solver. For each combination of parameter values and mesh resolution, we used these preconditioners to accelerate the convergence of the MINRES iterative solver. Convergence is claimed whenever the Euclidean norm of the (unpreconditioned) residual of the whole system is reduced by a factor of 10610^{6}, and stopped otherwise if the number of iterations reaches an upper bound of 500 iterations. The (discrete) Laplacian operator required for 2,3\mathcal{B}_{2},\mathcal{B}_{3} acts on discontinuous pore pressure approximations so we use (for a given piecewise-defined field η\eta) the following form (see 13)

(ηΔhph,qh)0,Ω=K𝒯h(ηhph,hph)0,K+ehint{{η}}{{he}}[[ph]],[[qh]]e+ehΓηheph,qhe,\bigl{(}-\eta\Delta_{h}p_{h},q_{h}\bigr{)}_{0,\Omega}=\sum_{K\in\mathcal{T}_{h}}(\eta\nabla_{h}p_{h},\nabla_{h}p_{h})_{0,K}{+\sum_{e\in\mathcal{E}^{\mathrm{int}}_{h}}\bigl{\langle}\frac{\left\{\!\!\left\{\eta\right\}\!\!\right\}}{\left\{\!\!\left\{h_{e}\right\}\!\!\right\}}\left[\!\left[p_{h}\right]\!\right],\left[\!\left[q_{h}\right]\!\right]\bigr{\rangle}_{e}}+\sum_{e\in\mathcal{E}^{\Gamma}_{h}}\langle\frac{\eta}{h_{e}}{p_{h}},{q_{h}}\rangle_{e}, (5.2)

while for the lowest-order case we only keep the second and third terms on the right-hand side of (5.2).

In Figures 5.3-5.4 we show the number of preconditioned MINRES iterations versus number of DoFs for the 1\mathcal{B}_{1}, 2\mathcal{B}_{2}, and 3\mathcal{B}_{3} preconditioners with the particular parameter value combinations mentioned above. Each of the plots in these figures contain 4 curves corresponding each to one of the four combinations of κ={108,1}\kappa=\{10^{-8},1\}, and c0={108,1}c_{0}=\{10^{-8},1\}. To facilitate the comparison among 1\mathcal{B}_{1}, 2\mathcal{B}_{2}, and 3\mathcal{B}_{3}, the 6 plots in each figure are grouped into two groups of three horizontally adjacent plots each. Each group correspond to a combination of λ={1,108}\lambda=\{1,10^{8}\}, ν={108,1}\nu=\{10^{-8},1\}; the particular combination corresponding to a group is indicated in the title of the three plots in the group.

Refer to caption
Refer to caption
Figure 5.3: Comparison of parameter robustness for preconditioners 1\mathcal{B}_{1}, 2\mathcal{B}_{2}, and 3\mathcal{B}_{3}.
Refer to caption
Refer to caption
Figure 5.4: Comparison of parameter robustness for preconditioners 1\mathcal{B}_{1}, 2\mathcal{B}_{2}, and 3\mathcal{B}_{3}.

From Figures 5.3-5.4, we observe that the number of MINRES iterations with 3\mathcal{B}_{3} reaches an asymptotically constant regime with increasing mesh resolution for all combinations of parameter values tested. This is also the case of 1\mathcal{B}_{1} and 2\mathcal{B}_{2} in the majority of cases, except for some combinations of parameter values in which ν=108\nu=10^{-8} (see, e.g., 1\mathcal{B}_{1} and μ=1\mu=1, λ=1\lambda=1, α=1\alpha=1, ν=108\nu=10^{-8}, κ=1\kappa=1, and c0={108,1}c_{0}=\{10^{-8},1\}), where preconditioner efficiency (number of MINRES iterations) significantly degrades (increases) with mesh resolution. (We recall from Remark 4.9 that in the limit ν0\nu\rightarrow 0 the system at hand becomes a four-field Biot system 16.) For these combinations of parameters, the coupling among the two pressures in the last leading block of 3\mathcal{B}_{3} is essential to retain mesh independence convergence. This observation agrees with the experiments in 16 for four-field formulations of Biot poroelasticity and simpler problems (including Herrmann elasticity and reaction-diffusion equation), where comparisons were performed against sub-optimal preconditioners. On the other hand, we observe a relatively low sensitivity of the number of MINRES iterations (and thus robustness) with respect to the value of the model of parameters for all preconditioners (leaving aside the aforementioned combination of parameter values). For example, for μ=1\mu=1, λ=108\lambda=10^{8}, α=1\alpha=1, ν=108\nu=10^{-8}, 3\mathcal{B}_{3}, and finest mesh resolution, the number of iterations varies between 40 and 50 despite the disparity of scales in the values of c0c_{0} and κ\kappa. It is worth noting that 1\mathcal{B}_{1} and 2\mathcal{B}_{2} lead to a similar or even lower number of iterations than 3\mathcal{B}_{3} in most cases, despite it being a computationally cheaper preconditioner. This is the case, e.g., for and 1\mathcal{B}_{1}, μ=1\mu=1, λ=1\lambda=1, α=1\alpha=1, ν=1\nu=1, and all combinations of κ\kappa and c0c_{0} tested.

6 Concluding remarks

We have presented a new formulation for the Biot–Brinkman problem using rescaled vorticity and total pressure, and have carried out the stability and solvability analysis of the continuous and discrete problems using parameter-weighted norms. We have derived theoretical error estimates and have subsequently confirmed them numerically; and we have constructed suitable preconditioners that achieve mesh-robustness iteration numbers when varying elastic and porous media flow model parameters. In order to be able to apply these algorithms to more realistic problems one needs to efficiently exploit the vast amount of hardware parallelism available in high-end supercomputers. As future work, we plan to address the parallelisation of the algorithms proposed using the GridapDistributed.jl package 12.

Parts of the theoretical framework advanced herein (in particular, the use of a vorticity-based formulation for the filtration equation) extend naturally to more complex setups, for example to the multiple network generalised Biot–Brinkman model from 35. Further improvements to the model and to the theory include the rigorous treatment of different types of boundary conditions, the interfacial coupling with free-flow or with elasticity, and robust a posteriori error estimates.

\bmsection

*Financial disclosure

None reported.

\bmsection

*Conflict of interest

The authors declare no potential conflict of interests.

References

  • 1 M. Amara, D. Capatina-Papaghiuc, and D. Trujillo, Stabilized finite element method for Navier-Stokes equations with physical boundary conditions. Math. Comp., 76(259) (2007) 1195–1217.
  • 2 M. Amara, E. Chacón Vera, and D. Trujillo, Vorticity–velocity–pressure formulation for Stokes problem. Math. Comp., 73(248) (2004) 1673–1697.
  • 3 I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino, Simulation of flow in fractured poroelastic media: A comparison of different discretization approaches. In: I. Dimov, I. Faragó, and L. Vulkov (eds). Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science, vol 9045. Springer, Cham (2015) 3–14.
  • 4 V. Anaya, M. Bendahmane, D. Mora, and R. Ruiz-Baier, On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Netw. Heterog. Media, 13(1) (2018) 69–94.
  • 5 V. Anaya, A. Bouharguane, D. Mora, C. Reales, R. Ruiz-Baier, N. Seloula and H. Torres, Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations. J. Sci. Comput., 88(3) (2019) 1577–1606.
  • 6 V. Anaya, R. Caraballo, B. Gómez-Vargas, D. Mora, and R. Ruiz-Baier, Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity. Calcolo, 58(4) (2021) e44(1–25).
  • 7 V. Anaya, R. Caraballo, S. Caucao, L.F. Gatica, R. Ruiz-Baier, and I. Yotov, A vorticity-based mixed formulation for the unsteady Brinkman–Forchheimer equations. Comput. Methods Appl. Mech. Engrg., 404 (2023) e115829(1–30).
  • 8 V. Anaya, G.N. Gatica, D. Mora, and R. Ruiz-Baier, An augmented velocity-vorticity-pressure formulation for the Brinkman equations. Int. J. Numer. Methods Fluids, 79(3) (2015) 109–137.
  • 9 V. Anaya, D. Mora, R. Oyarzúa, and R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math., 133(4) (2016) 781–817.
  • 10 S. Badia, A. F. Martín, and R. Planas, Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem. J. Comput. Phys., 274 (2014), 562–591.
  • 11 S. Badia and F. Verdugo, Gridap: An extensible finite element toolbox in julia. J. Open Source Softw., 5 (2020), 2520.
  • 12 S. Badia, A. F. Martín, and F. Verdugo, GridapDistributed: a massively parallel finite element toolbox in Julia, J. Open Source Softw., 7(74) (2022), 4157.
  • 13 T. Bærland, M. Kuchta, K.-A. Mardal, and T. Thompson, An observation on the uniform preconditioners for the mixed Darcy problem, Numer. Methods PDEs, 36(6) (2020), 1718–1734.
  • 14 C. Bernardi and N. Chorfi, Spectral discretization of the vorticity, velocity, and pressure formulation of the Stokes problem. SIAM J. Numer. Anal., 44(2) (2007) 826–850.
  • 15 C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat, and T. Sayah, Finite element methods for Darcy’s problem coupled with the heat equation. Numer. Math., 139 (2018) 315–348.
  • 16 W. Boon, M. Kuchta, K.-A. Mardal, and R. Ruiz-Baier, Robust preconditioners and stability analysis for perturbed saddle-point problems – application to conservative discretizations of Biot’s equations utilizing total pressure, SIAM J. Sci. Comput., 43 (2021) B961–B983.
  • 17 D. Braess, Stability of saddle point problems with penalty. RAIRO Modél. Math. Anal. Numér., 30 (1996) 731–742.
  • 18 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.
  • 19 J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith, Composable linear solvers for multiphysics, In 2012 11th International Symposium on Parallel and Distributed Computing, (2012) 55–62
  • 20 R. Bürger, S. Kumar, D. Mora, R. Ruiz-Baier, and N. Verma, Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv. Comput. Math., 47 (2021) e2.
  • 21 R. Caraballo, C. W. In, A. F. Martín, R. Ruiz-Baier, Software used in “Robust finite element methods and solvers for the Biot-Brinkman equations in vorticity form”, DOI: https://doi.org/10.5281/zenodo.10078398 (2023)
  • 22 F.J. Carrillo and I.C. Bourg, Capillary and viscous fracturing during drainage in porous media. Phys. Rev. E, 103 (2021) e063106.
  • 23 C.L. Chang, and B.-N. Jiang, An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for the Stokes problem. Comput. Methods Appl. Mech. Engrg., 84(3) (1990) 247–255.
  • 24 S. Chen, Q. Hong, J. Xu, and K. Yang, Robust block preconditioners for poroelasticity. Comput. Methods Appl. Mech. Engrg., 369 (2020) e113229.
  • 25 E. Chow, and M. A. Heroux, An object-oriented framework for block preconditioning. ACM Trans. Math. Softw., 24(2) (1998) 159–183.
  • 26 E.C Cyr, J. N. Shadid, and R. S. Tuminaro, Teko: A Block Preconditioning Capability with Concrete Example Applications in Navier–Stokes and MHD. SIAM J. Sci. Comput., 38(5) (2016) S307–S331.
  • 27 H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations. SIAM J. Numer. Anal., 41(6) (2003) 2114–2130.
  • 28 F. Dubois, M. Salaün, and S. Salmon, First vorticity-velocity-pressure numerical scheme for the Stokes problem. Comput. Methods Appl. Mech. Engrg., 192(44–46) (2003) 4877–4907.
  • 29 Y. Efendiev, J. Galvis, and Y. Vassilevski, Preconditioning of coupled systems and applications. Numer. Linear Alg. Appl., 16(7–8) (2009) 899–924.
  • 30 A. Ern and J.-L. Guermond, Finite Elements I: Approximation and Interpolation. Vol. 72 of Texts in Applied Mathematics. Springer, Cham (2021).
  • 31 G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics. Springer, Cham, 2014.
  • 32 L. Giraud, C. Geuzaine, and J. Dominguez, An efficient preconditioner for elasto-poroelasticity based on the pressure-correction method. Int. J. Numer. Methods Engrg., 89(10) (2011) 1139–1164.
  • 33 V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer, Berlin (1986).
  • 34 M.-L. Hanot, An arbitrary order and pointwise divergence-free finite element scheme for the incompressible 3D Navier–Stokes equations. SIAM J. Numer. Anal., 61(2) (2023), 784–811.
  • 35 Q. Hong, J. Kraus, M. Kuchta, M. Lymbery, K.-A. Mardal and M. E. Rognes, Robust approximation of generalized Biot-Brinkman problems, J. Sci. Comput., 93 (2022) e77.
  • 36 Q. Hong, J. Kraus, M. Lymbery, and F. Philo, Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models, Numer. Linear Algebra Appl., 26 (2019) e2242.
  • 37 S.K. Jha, Y Efendiev, J. Galvis, and Y. Vassilevski, Block-diagonal preconditioning for coupled systems in subsurface flow simulation. J. Comput. Phys., 299 (2015) 203–224.
  • 38 G. Ju, M. Cai, J. Li, and J. Tian, Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation. Math. Comput. Simul., 177 (2020) 385–403.
  • 39 R.C. Kirby, From functional analysis to iterative methods. SIAM Rev., 52(2) (2010) 269–293.
  • 40 R.C. Kirby and L. Mitchell, Solver Composition Across the PDE/Linear Algebra Barrier. SIAM J. Sci. Comput. 40(1) (2018) C76–C98.
  • 41 S. Kumar, R. Oyarzúa, R. Ruiz-Baier, and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM: Math. Model. Numer. Anal., 54 (2020) 273–299.
  • 42 J. Lee, K.-A. Mardal, and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput., 39 (2017) A1–A24.
  • 43 J. J. Lee, E. Piersanti, K.-A. Mardal, and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41 (2019) A722–A747.
  • 44 P. Lenarda, M. Paggi, and R. Ruiz-Baier, Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows. J. Comput. Phys., 344 (2017) 281–302.
  • 45 X. Liu, Y. Zhang, and Z. Chen, A block-diagonal preconditioner for the solution of coupled PDEs in poromechanics. Numer. Methods PDEs, 36(4) (2020) 1407–1425.
  • 46 K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations, Numer. Linear Alg. Appl., 18 (2011) 1–40.
  • 47 A. Mikelic, M.F. Wheeler, and T. Wick, Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci., 19(6) (2015) 1171–1195.
  • 48 P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003.
  • 49 D. Orban, and A. S. Siqueira, LinearOperators.jl, DOI: https://doi.org/10.5281/zenodo.2559294 (2020)
  • 50 R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal., 54 (2016) 2951–2973.
  • 51 E. Piersanti, J.J. Lee, T. Thompson, K.-A. Mardal, and M.E. Rognes, Parameter robust preconditioning by congruence for multiple-network poroelasticity. SIAM J. S. Comput., 43 (2021) B984–B1007.
  • 52 W. Qi, P. Seshaiyer, and J. Wang, Finite element method with the total stress variable for Biot’s consolidation model. Numer. Methods PDEs, 37(3) (2021) 2409–2428.
  • 53 A. Quarteroni, Numerical Models for Differential Problems. Springer-Verlag Milano (2009).
  • 54 K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Model. Methods Appl. Sci., 17 (2007) 215–252.
  • 55 E. Rohan, J. Turjanicová, and V. Lukeš, The Biot–Darcy–Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. Comput. Math. Appl., 78 (2019) 3044–3066.
  • 56 R. Ruiz-Baier, M. Taffetani, H.D. Westermeyer, and I. Yotov, The Biot–Stokes coupling using total pressure: formulation, analysis and application to interfacial flow in the eye. Comput. Methods Appl. Mech. Engrg., 389 (2022) e114384.
  • 57 M. Salaün, and S. Salmon, Low-order finite element method for the well-posed bidimensional Stokes problem. IMA J. Numer. Anal., 35 (2015) 427–453.
  • 58 N. Verma, B. Gómez-Vargas, L. M. De Oliveira Vilaca, S. Kumar, and R. Ruiz-Baier, Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media, Appl. Anal., 101(14) (2022) 4914–4941.
  • 59 J. Zhang, C. Zhou, Y. Cao, and A.J. Meir, A locking free numerical approximation for quasilinear poroelasticity problems. Comput. Math. Appl., 80(16) (2020) 1538–1554.