This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robust Approximate Simulation for Hierarchical Control of Piecewise
Affine Systems under Bounded Disturbances

Zihao Song, Vince Kurtz, Shirantha Welikala, Panos J. Antsaklis and Hai Lin This work was supported by the National Science Foundation under Grant IIS1724070, Grant CNS-1830335, and Grant IIS-2007949. The authors are with the Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]). The first author sincerely appreciates Dr. P. M. Wensing for several fruitful discussions.
Abstract

Piecewise affine (PWA) systems are widely applied in many practical cases such as the control of nonlinear systems and hybrid dynamics. However, most of the existing PWA control methods have poor scalability with respect to the number of modes and system dimensions and may not be robust to the disturbances in performance. In this paper, we present a robust approximate simulation based control method for PWA systems under bounded external disturbances. First, a lower-dimensional linear system (abstraction) and an associated interface are designed to enable the output of the PWA system (concrete system) to track the output of the abstraction. Then, a Lyapunov-like simulation function is designed to show the boundedness of the output errors between the two systems. Furthermore, the results obtained for linear abstraction are extended to the case that a simpler PWA system is the abstraction. To illustrate the effectiveness of the proposed approach, simulation results are provided for two design examples.

I Introduction

Piecewise Affine (PWA) systems are an important and powerful modeling tool that can globally approximate nonlinear systems with finite number of linear characteristics on partitions [1]. In this case, controllers can be designed based on linear system control theories and better accommodate the existing nonlinearities. Because of this advantage, PWA systems are applicable in many engineering fields, and thus have attracted a plenty of attention since it was first proposed. Moreover, PWA systems are particularly used in situations where a plant operates in different modes or under physical constraints such as in robot locomotion [2], manipulation with contacts [3] and hybrid control systems [4].

In recent years, together with Mixed Logical Dynamical (MLD) systems, PWA systems are the most popular modeling framework for hybrid systems in Model Predictive Control (MPC) [5]. However, such on-line optimal control methods typically lead to the synthesis of very inefficient Mixed-Integer Convex Programs (MICPs) with large computational price [6]. To reduce the complexity of computing the convex polyhedra for PWA systems, an optimal sampling-based controller is proposed in [7], which can be cast into a single MICP problem. Nevertheless, for general PWA systems, the aforementioned on-line control strategies deteriorate with the number of partitions and the dimension of the systems. Similarly, the existing off-line controller design approaches for PWA (e.g., the LMI based controller synthesis approaches [8]) scale poorly for high dimensional PWA systems. Therefore, the controller synthesis for high-dimensional PWA systems with a great number of partitions is still an open problem.

Approximate simulation is an extension of simulation relations from formal methods to continuous systems. It is a powerful tool often used for hierarchical control of complex and high-dimensional systems [9, 10, 11]. This approximate simulation framework defines an approximate relationship between two systems, i.e. the full-order (concrete) system and the reduced-order system (abstraction). By constructing an abstraction and a corresponding interface between this abstraction and the concrete system, the outputs of both systems can be guaranteed to remain close within some certain error bound characterized by a Lyapunov-like simulation function. Different from the asymptotic model matching [12] that enforces output global asymptotic stability of the involved systems, it is not required in approximate simulation framework that the trajectories of the system and its abstraction match exactly but only approximately. This relaxation allows us to consider simpler abstractions and thus simplify the design of high-level control tasks.

Motivated by the above observations, we extend the results in [11] to consider the case where the concrete system is a PWA system. Our primary contributions can be summarized as follows:

  1. 1.

    A novel robust approximate simulation based control strategy is proposed for the control of PWA systems using a linear system as the abstraction;

  2. 2.

    The results obtained in the linear system abstraction approach is generalized for the case that the abstraction is a simpler PWA system.

The remainder of this paper is organized as follows. The problem formulation and some necessary preliminaries are presented in Section II. Our main results are presented in Section III, and are supported by simulation examples in Section IV. Finally, concluding remarks are provided in Section V.

II Background

II-A Problem Formulation

Consider a piecewise-affine (PWA) system as follows

Σ:{𝐱˙1=𝐀i𝐱1+𝐁i𝐮1+𝐜i𝐲1=𝐂i𝐱1\Sigma:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{1}=\mathbf{A}_{i}\mathbf{x}_{1}+\mathbf{B}_{i}\mathbf{u}_{1}+\mathbf{c}_{i}&\\ \mathbf{y}_{1}=\mathbf{C}_{i}\mathbf{x}_{1}&\end{array}\right. (1)

where the system state 𝐱1𝒳1i:={𝐱1n|𝐄i𝐱1𝐟i}\mathbf{x}_{1}\in\mathcal{X}_{1}^{i}:=\{\mathbf{x}_{1}\in\mathbb{R}^{n}|\ \mathbf{E}_{i}\mathbf{x}_{1}\geq\mathbf{f}_{i}\}, and 𝐄ib×n\mathbf{E}_{i}\in\mathbb{R}^{b\times n}, 𝐟ib\mathbf{f}_{i}\in\mathbb{R}^{b}, 𝐀in×n\mathbf{A}_{i}\in\mathbb{R}^{n\times n}, 𝐁in×p\mathbf{B}_{i}\in\mathbb{R}^{n\times p} and 𝐂ik×n\mathbf{C}_{i}\in\mathbb{R}^{k\times n} are given, for i:={1,,s}i\in\mathcal{I}:=\{1,...,s\}. The system output is 𝐲1k\mathbf{y}_{1}\in\mathbb{R}^{k}. The term 𝐜in\mathbf{c}_{i}\in\mathbb{R}^{n}, which represents the lumped bounded external disturbances and piecewise linearization error, is assumed to be bounded such that 𝐜ic¯i||\mathbf{c}_{i}||_{\infty}\leq\bar{c}_{i}, where c¯i\bar{c}_{i} is known. The cell bounding [13] is defined as 𝐄¯i=[𝐄i𝐟i]\mathbf{\bar{E}}_{i}=\begin{bmatrix}\mathbf{E}_{i}&-\mathbf{f}_{i}\end{bmatrix} for the partitions with some of the boundaries not crossing the origin (denoted as 1\mathcal{I}_{1}), with 𝐄¯i[𝐱1T1]T𝟎\mathbf{\bar{E}}_{i}\begin{bmatrix}\mathbf{x}_{1}^{T}&1\end{bmatrix}^{T}\geq\mathbf{0} and it reduces to 𝐄i\mathbf{E}_{i} for the partitions with all their boundaries crossing the origin (denoted as 0\mathcal{I}_{0}), with 𝐄i𝐱1𝟎\mathbf{E}_{i}\mathbf{x}_{1}\geq\mathbf{0}. Besides, the continuity matrix [13] is defined as 𝐉¯i=[𝐉ihi]\mathbf{\bar{J}}_{i}=\begin{bmatrix}\mathbf{J}_{i}&h_{i}\end{bmatrix} for i1i\in\mathcal{I}_{1} (and 𝐉i\mathbf{J}_{i} for i0i\in\mathcal{I}_{0}), with 𝐉¯i1[𝐱1T1]T=𝐉¯i2[𝐱1T1]T\mathbf{\bar{J}}_{i_{1}}\begin{bmatrix}\mathbf{x}_{1}^{T}&1\end{bmatrix}^{T}=\mathbf{\bar{J}}_{i_{2}}\begin{bmatrix}\mathbf{x}_{1}^{T}&1\end{bmatrix}^{T} for 𝒳1i1𝒳1i2\mathcal{X}_{1}^{i_{1}}\cap\mathcal{X}_{1}^{i_{2}}, i1i_{1}, i2i_{2}\in\mathcal{I}.

In this paper, we first consider the abstraction as a linear system of the following form

Σ:{𝐱˙2=𝐅𝐱2+𝐆𝐮2𝐲2=𝐇𝐱2\Sigma^{\prime}:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{2}=\mathbf{F}\mathbf{x}_{2}+\mathbf{G}\mathbf{u}_{2}&\\ \mathbf{y}_{2}=\mathbf{H}\mathbf{x}_{2}&\end{array}\right. (2)

where 𝐱2m\mathbf{x}_{2}\in\mathbb{R}^{m} is the state of system (2), 𝐲2k\mathbf{y}_{2}\in\mathbb{R}^{k} is the system output. The matrices 𝐅m×m\mathbf{F}\in\mathbb{R}^{m\times m}, 𝐆m×q\mathbf{G}\in\mathbb{R}^{m\times q} and 𝐇k×m\mathbf{H}\in\mathbb{R}^{k\times m} are free to select. The abstraction (2) is typically simpler than each mode of the PWA system Σ\Sigma in terms of system dimension, i.e., mnm\leq n.

Then, if a single linear abstraction may not be completely adequate (typically if the concrete PWA system Σ\Sigma has many modes), the abstraction can be selected as a simpler PWA system of the form

Σ′′:{𝐱˙2=𝐅j𝐱2+𝐆j𝐮2𝐲2=𝐇j𝐱2\Sigma^{\prime\prime}:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{2}=\mathbf{F}_{j}\mathbf{x}_{2}+\mathbf{G}_{j}\mathbf{u}_{2}&\\ \mathbf{y}_{2}=\mathbf{H}_{j}\mathbf{x}_{2}&\end{array}\right. (3)

where 𝐱2𝒳2j:={𝐱2m|𝐄aj𝐱2𝐟aj}\mathbf{x}_{2}\in\mathcal{X}_{2}^{j}:=\{\mathbf{x}_{2}\in\mathbb{R}^{m}|\ \mathbf{E}_{aj}\mathbf{x}_{2}\geq\mathbf{f}_{aj}\}, 𝐄ajd×m\mathbf{E}_{aj}\in\mathbb{R}^{d\times m}, 𝐟ajd\mathbf{f}_{aj}\in\mathbb{R}^{d}, 𝐲2k\mathbf{y}_{2}\in\mathbb{R}^{k}, for ja:={1,,r}j\in\mathcal{I}_{a}:=\{1,...,r\} with rsr\leq s. The matrices 𝐅jm×m\mathbf{F}_{j}\in\mathbb{R}^{m\times m}, 𝐆jm×q\mathbf{G}_{j}\in\mathbb{R}^{m\times q} and 𝐇jk×m\mathbf{H}_{j}\in\mathbb{R}^{k\times m} are free to select, for jaj\in\mathcal{I}_{a}. Let us denote the partitions with all their boundaries crossing the origin as a0\mathcal{I}_{a0} and the partitions with some of the boundaries not crossing the origin as a1\mathcal{I}_{a1}. It is important to note that the abstraction Σ′′\Sigma^{\prime\prime} has less modes and much simpler dynamics than the concrete system Σ\Sigma. The details of the partitions of the abstract PWA system will be studied in Section III.

Consider the abstraction in (2). Define 𝐱~=𝐱1𝐏i𝐱2\mathbf{\tilde{x}}=\mathbf{x}_{1}-\mathbf{P}_{i}\mathbf{x}_{2}, where 𝐏in×m\mathbf{P}_{i}\in\mathbb{R}^{n\times m} is an injective map from the state space of 𝐱2\mathbf{x}_{2} to that of 𝐱1\mathbf{x}_{1} for ii\in\mathcal{I}. Then,

𝐱~˙\displaystyle\mathbf{\dot{\tilde{x}}} =𝐱˙1𝐏i𝐱˙2\displaystyle=\mathbf{\dot{x}}_{1}-\mathbf{P}_{i}\mathbf{\dot{x}}_{2}
=(𝐀i𝐱1+𝐁i𝐮1+𝐜i)𝐏i(𝐅𝐱2+𝐆𝐮2)\displaystyle=(\mathbf{A}_{i}\mathbf{x}_{1}+\mathbf{B}_{i}\mathbf{u}_{1}+\mathbf{c}_{i})-\mathbf{P}_{i}(\mathbf{F}\mathbf{x}_{2}+\mathbf{G}\mathbf{u}_{2})
=𝐀i𝐱~+𝐁i𝐮v+𝐀i𝐏i𝐱2+𝐜i𝐏i(𝐅𝐱2+𝐆𝐮2)\displaystyle=\mathbf{A}_{i}\mathbf{\tilde{x}}+\mathbf{B}_{i}\mathbf{u}_{v}+\mathbf{A}_{i}\mathbf{P}_{i}\mathbf{x}_{2}+\mathbf{c}_{i}-\mathbf{P}_{i}(\mathbf{F}\mathbf{x}_{2}+\mathbf{G}\mathbf{u}_{2})

where 𝐮v:=𝐮1(𝐱~,𝐱2,𝐮¯2)\mathbf{u}_{v}:=\mathbf{u}_{1}(\mathbf{\tilde{x}},\mathbf{x}_{2},\mathbf{\bar{u}}_{2}) is the control input of the concrete system, which is also known as the interface that we need to design. For the abstraction (2), an input transformation law is designed as

𝐮2=𝐋𝐱2+𝐮¯2\mathbf{u}_{2}=\mathbf{L}\mathbf{x}_{2}+\mathbf{\bar{u}}_{2} (4)

where the matrix 𝐋q×m\mathbf{L}\in\mathbb{R}^{q\times m} is selected such that all the eigenvalues of the matrix 𝐅+𝐆𝐋\mathbf{F}+\mathbf{G}\mathbf{L} of the transformed abstraction Σ\Sigma^{\prime} have negative real parts, and 𝐮¯2q\mathbf{\bar{u}}_{2}\in\mathbb{R}^{q} is the transformed input. Thus, we define our robust approximate simulation framework as the following joint system

{𝐱~˙=𝐀i𝐱~+𝐁i𝐮v[𝐁i𝐐i+𝐏i𝐆𝐋]𝐱2𝐏i𝐆𝐮¯2+𝐜i𝐱˙2=(𝐅+𝐆𝐋)𝐱2+𝐆𝐮¯2𝐞=𝐲1𝐲2=𝐂i𝐱~\left\{\begin{array}[]{ll}\mathbf{\dot{\tilde{x}}}=\mathbf{A}_{i}\mathbf{\tilde{x}}+\mathbf{B}_{i}\mathbf{u}_{v}-[\mathbf{B}_{i}\mathbf{Q}_{i}+\mathbf{P}_{i}\mathbf{G}\mathbf{L}]\mathbf{x}_{2}-\mathbf{P}_{i}\mathbf{G}\mathbf{\bar{u}}_{2}+\mathbf{c}_{i}&\\ \mathbf{\dot{x}}_{2}=(\mathbf{F}+\mathbf{G}\mathbf{L})\mathbf{x}_{2}+\mathbf{G}\mathbf{\bar{u}}_{2}&\\ \mathbf{e}=\mathbf{y}_{1}-\mathbf{y}_{2}=\mathbf{C}_{i}\mathbf{\tilde{x}}&\end{array}\right. (5)

for ii\in\mathcal{I}, where 𝐏in×m\mathbf{P}_{i}\in\mathbb{R}^{n\times m} and 𝐐in×m\mathbf{Q}_{i}\in\mathbb{R}^{n\times m} satisfy the conditions:

𝐇=𝐂i𝐏i,𝐏i𝐅=𝐀i𝐏i+𝐁i𝐐i\mathbf{H}=\mathbf{C}_{i}\mathbf{P}_{i},\ \mathbf{P}_{i}\mathbf{F}=\mathbf{A}_{i}\mathbf{P}_{i}+\mathbf{B}_{i}\mathbf{Q}_{i} (6)

Define the state of the joint system as 𝝎=[𝐱~T𝐱2T]T\bm{\omega}=\begin{bmatrix}\mathbf{\tilde{x}}^{T}&\mathbf{x}_{2}^{T}\\ \end{bmatrix}^{T}. Then, the joint partitions can be written as

𝝎𝛀i:={𝐄i(𝐱1𝐏i𝐱2)+𝐄i𝐏i𝐱2𝐟i}={[𝐄i𝐄i𝐏i]𝝎𝐟i}\begin{split}\bm{\omega}\in\mathbf{\Omega}_{i}:&=\{\mathbf{E}_{i}(\mathbf{x}_{1}-\mathbf{P}_{i}\mathbf{x}_{2})+\mathbf{E}_{i}\mathbf{P}_{i}\mathbf{x}_{2}\geq\mathbf{f}_{i}\}\\ &=\{[\mathbf{E}_{i}\ \mathbf{E}_{i}\mathbf{P}_{i}]\bm{\omega}\geq\mathbf{f}_{i}\}\end{split} (7)

Note that the joint partition (7) can be equivalently represented by:

𝝎¯𝛀¯i:={[𝐄i𝐟i][𝝎1]𝟎}={𝐄¯i𝝎¯𝟎}\begin{split}\bm{\bar{\omega}}\in\mathbf{\bar{\Omega}}_{i}:&=\{\begin{bmatrix}\mathbf{E}^{\prime}_{i}&\mathbf{f}^{\prime}_{i}\end{bmatrix}\begin{bmatrix}\bm{\omega}\\ 1\end{bmatrix}\geq\mathbf{0}\}=\{\mathbf{\bar{E}}_{i}\bm{\bar{\omega}}\geq\mathbf{0}\}\end{split} (8)

where 𝐄i=[𝐄i𝐄i𝐏i]\mathbf{E}^{\prime}_{i}=\begin{bmatrix}\mathbf{E}_{i}&\mathbf{E}_{i}\mathbf{P}_{i}\end{bmatrix} and 𝐟i=𝐟i\mathbf{f}^{\prime}_{i}=-\mathbf{f}_{i}.

The joint system (5) corresponding to the PWA system abstraction (3) is similar to that of the linear system abstraction (2). In particular, it will result in a joint system of the form (5) for each tuple (𝐅j\mathbf{F}_{j}, 𝐆j\mathbf{G}_{j}, 𝐋j\mathbf{L}_{j}), for jaj\in\mathcal{I}_{a}, and the conditions in (6) become

𝐇j=𝐂i𝐏i,𝐏i𝐅j=𝐀i𝐏i+𝐁i𝐐i\mathbf{H}_{j}=\mathbf{C}_{i}\mathbf{P}_{i},\ \mathbf{P}_{i}\mathbf{F}_{j}=\mathbf{A}_{i}\mathbf{P}_{i}+\mathbf{B}_{i}\mathbf{Q}_{i} (9)

for ii\in\mathcal{I}. In other words, for each ii\in\mathcal{I} we need to determine matrices 𝐏i\mathbf{P}_{i} and 𝐐i\mathbf{Q}_{i} such that (9) holds true for a pair (𝐅j\mathbf{F}_{j}, 𝐇j\mathbf{H}_{j}), jaj\in\mathcal{I}_{a}. The details of the joint partitions corresponding to this case will be discussed in Section III.

Remark 1

The input transformation law (4) is introduced to increase the tunability of the matrix 𝐅\mathbf{F} (or 𝐅j\mathbf{F}_{j} for the PWA abstraction (3)). Besides, it will be shown in Section III that some LMI based conditions should be satisfied with all the eigenvalues of (𝐅+𝐆𝐋\mathbf{F}+\mathbf{G}\mathbf{L}) (or (𝐅j+𝐆j𝐋j\mathbf{F}_{j}+\mathbf{G}_{j}\mathbf{L}_{j}) for the PWA abstraction (3)) having negative real parts.

The objective of this paper is to design an interface 𝐮v:=𝐮1(𝐱~,𝐱2,𝐮¯2)\mathbf{u}_{v}:=\mathbf{u}_{1}(\mathbf{\tilde{x}},\mathbf{x}_{2},\mathbf{\bar{u}}_{2}) for the joint system (5) over the joint partitions (e.g.,(7)) to guarantee the boundedness of output error between 𝐲1\mathbf{y}_{1} and 𝐲2\mathbf{y}_{2}, i.e., 𝐞=𝐲1𝐲2δ||\mathbf{e}||=||\mathbf{y}_{1}-\mathbf{y}_{2}||\leq\delta, where δ0\delta\in\mathbb{R}_{\geq 0} is some certain error bound. The basic control architecture proposed in this paper is shown in Figure 1.

Interface 𝐮v=𝐮1(𝐱~,𝐱2,𝐮¯2)\mathbf{u}_{v}=\mathbf{u}_{1}(\mathbf{\tilde{x}},\mathbf{x}_{2},\mathbf{\bar{u}}_{2})Concrete System 𝐱1\mathbf{x}_{1}Transformed Abstraction 𝐱2\mathbf{x}_{2}𝐮¯2\mathbf{\bar{u}}_{2}𝐱2\mathbf{x}_{2}𝐮1\mathbf{u}_{1}𝐱1\mathbf{x}_{1}𝐜i\mathbf{c}_{i}𝐲2\mathbf{y}_{2}𝐲1\mathbf{y}_{1}
Figure 1: Hierarchical control system architecture considered in this work. We extend the robust approximate simulation [11] to consider the case where the concrete system is a PWA system.

II-B Robust Approximate Simulation

Definition 1

(Approximate Simulation [9]) A relation m×n\mathcal{R}\subseteq\mathbb{R}^{m}\times\mathbb{R}^{n} is an approximate simulation relation of precision δ\delta between Σ\Sigma and Σ\Sigma^{\prime} if for all (𝐱20,𝐱10)(\mathbf{x}_{20},\ \mathbf{x}_{10})\in\mathcal{R},

1)1) 𝐲10𝐲20δ||\mathbf{y}_{10}-\mathbf{y}_{20}||\leq\delta, where 𝐲10\mathbf{y}_{10} and 𝐲20\mathbf{y}_{20} are the initial values of 𝐲1\mathbf{y}_{1} and 𝐲2\mathbf{y}_{2} at 𝐱10\mathbf{x}_{10} and 𝐱20\mathbf{x}_{20}, respectively;

2)2) For any state trajectory 𝐱2(t)\mathbf{x}_{2}(t) of Σ\Sigma^{\prime} such that 𝐱2(0)=𝐱20\mathbf{x}_{2}(0)=\mathbf{x}_{20}, there exists a state trajectory 𝐱1(t)\mathbf{x}_{1}(t) of Σ\Sigma such that 𝐱1(0)=𝐱10\mathbf{x}_{1}(0)=\mathbf{x}_{10} and (𝐱2(t),𝐱1(t))(\mathbf{x}_{2}(t),\mathbf{x}_{1}(t))\in\mathcal{R}, for all t0t\geq 0.

Definition 2

(Robust Approximate Simulation [14]) The relation \mathcal{R} is a robust approximate simulation relation if the approximate simulation relation still hold for any disturbances 𝐜i\mathbf{c}_{i} in some set 𝒟n\mathcal{D}\subseteq\mathbb{R}^{n}.

III Main Results

In this section, we first analyze the case where the linear system is the abstraction. Then, we extend the established theoretical results to the case where the PWA system is the abstraction. In each case, we first design an interface (𝐮v\mathbf{u}_{v} in (5)) that enable the concrete system to track the abstraction, and then design a Lyapunov-like simulation function to characterize the formal output tracking errors between the concrete system and the abstraction.

III-A Linear Abstraction for a PWA System Under Disturbances

In this part, we first design an interface for the joint system (5) for the linear abstraction in the form (2), and then a Lyapunov-like simulation function is presented to guarantee a formal error bound for the output tracking errors.

Interface

Considering the joint system (5) under the linear abstraction (2), we propose to design the associated interface as

𝐮v(𝐱~,𝐱2,𝐮¯2)=𝐑i𝐮¯2+(𝐐i+𝐑i𝐋)𝐱2+𝐊i𝐱~\mathbf{u}_{v}(\mathbf{\tilde{x}},\mathbf{x}_{2},\mathbf{\bar{u}}_{2})=\mathbf{R}_{i}\mathbf{\bar{u}}_{2}+(\mathbf{Q}_{i}+\mathbf{R}_{i}\mathbf{L})\mathbf{x}_{2}+\mathbf{K}_{i}\mathbf{\tilde{x}} (10)

for ii\in\mathcal{I}, where 𝐑ip×q\mathbf{R}_{i}\in\mathbb{R}^{p\times q} is an arbitrary matrix and 𝐊ip×n\mathbf{K}_{i}\in\mathbb{R}^{p\times n} is a tunable parameter matrix. Then, note that the joint system (5) under the interface (10) can be written as

{𝝎¯˙=𝐀¯i𝝎¯+𝐁¯1i𝐱2+𝐁¯2i𝐮¯2+𝐜¯i𝐞=𝐂¯i𝝎¯\left\{\begin{array}[]{ll}\bm{\dot{\mathbf{\bar{\omega}}}}=\mathbf{\bar{A}}_{i}\bm{\bar{\omega}}+\mathbf{\bar{B}}_{1i}\mathbf{x}_{2}+\mathbf{\bar{B}}_{2i}\mathbf{\bar{u}}_{2}+\mathbf{\bar{c}}_{i}&\\ \mathbf{e}=\mathbf{\bar{C}}_{i}\bm{\bar{\omega}}&\end{array}\right. (11)

where the state 𝝎¯=[𝝎T1]T\bm{\bar{\omega}}=\begin{bmatrix}\bm{\omega}^{T}&1\\ \end{bmatrix}^{T}, 𝐀¯i=[𝐀i𝟎𝟎0]\mathbf{\bar{A}}_{i}=\begin{bmatrix}\mathbf{A}^{\prime}_{i}&\mathbf{0}\\ \mathbf{0}&0\end{bmatrix}, 𝐀i=[𝐀i+𝐁i𝐊i𝟎𝟎𝐅+𝐆𝐋]\mathbf{A}^{\prime}_{i}=\begin{bmatrix}\mathbf{A}_{i}+\mathbf{B}_{i}\mathbf{K}_{i}&\mathbf{0}\\ \mathbf{0}&\mathbf{F}+\mathbf{G}\mathbf{L}\end{bmatrix}, 𝐁¯1i=[𝐁1i𝟎]\mathbf{\bar{B}}_{1i}=\begin{bmatrix}\mathbf{B}^{\prime}_{1i}\\ \mathbf{0}\end{bmatrix}, 𝐁1i=[(𝐁i𝐑𝐏i𝐆)𝐋𝟎]\mathbf{B}^{\prime}_{1i}=\begin{bmatrix}(\mathbf{B}_{i}\mathbf{R}-\mathbf{P}_{i}\mathbf{G})\mathbf{L}\\ \mathbf{0}\end{bmatrix}, 𝐁¯2i=[𝐁2i𝟎]\mathbf{\bar{B}}_{2i}=\begin{bmatrix}\mathbf{B}^{\prime}_{2i}\\ \mathbf{0}\end{bmatrix}, 𝐁2i=[𝐁i𝐑𝐏i𝐆𝐆]\mathbf{B}^{\prime}_{2i}=\begin{bmatrix}\mathbf{B}_{i}\mathbf{R}-\mathbf{P}_{i}\mathbf{G}\\ \mathbf{G}\end{bmatrix}, 𝐜¯i=[𝐜iT0]T\mathbf{\bar{c}}_{i}=\begin{bmatrix}\mathbf{c^{\prime}}_{i}^{T}&0\end{bmatrix}^{T}, 𝐜i=[𝐜i𝟎]\mathbf{c}^{\prime}_{i}=\begin{bmatrix}\mathbf{c}_{i}\\ \mathbf{0}\end{bmatrix}, 𝐂¯i=[𝐂i0]\mathbf{\bar{C}}_{i}=\begin{bmatrix}\mathbf{C}^{\prime}_{i}&0\end{bmatrix}, 𝐂i=[𝐂i𝟎]\mathbf{C}^{\prime}_{i}=\begin{bmatrix}\mathbf{C}_{i}&\mathbf{0}\end{bmatrix}, and the joint partition is defined as (8).

Simulation Function

In order to guarantee a formal error bound, we propose a Lyapunov-like simulation function as

𝒱(𝝎):=1κ𝝎T𝐌i𝝎,for𝝎𝛀i,i0\mathcal{V}(\bm{\omega}):=\frac{1}{\kappa}\sqrt{\bm{\omega}^{T}\mathbf{M}_{i}\bm{\omega}},\ \mbox{for}\ \bm{\omega}\in\mathbf{\Omega}_{i},\ i\in\mathcal{I}_{0} (12)
𝒱(𝝎¯):=1κ𝝎¯T𝐌¯i𝝎¯,for𝝎¯𝛀¯i,i1\mathcal{V}(\bm{\bar{\omega}}):=\frac{1}{\kappa}\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\bm{\bar{\omega}}},\ \mbox{for}\ \bm{\bar{\omega}}\in\mathbf{\bar{\Omega}}_{i},\ i\in\mathcal{I}_{1} (13)

where κ>0\kappa>0 is some adjustable parameter, each 𝐌¯i=𝐉¯iT𝐓𝐉¯i\mathbf{\bar{M}}_{i}=\mathbf{\bar{J}}_{i}^{T}\mathbf{T}\mathbf{\bar{J}}_{i} is a diagonal block matrix, i.e., 𝐌¯i=[𝐌i𝟎𝟎mi]\mathbf{\bar{M}}_{i}=\begin{bmatrix}\mathbf{M}_{i}&\mathbf{0}\\ \mathbf{0}&m_{i}\end{bmatrix} with 𝐌i(n+m)×(n+m)\mathbf{M}_{i}\in\mathbb{R}^{(n+m)\times(n+m)} being positive definite and mi>0m_{i}>0, 𝐉¯i\mathbf{\bar{J}}_{i} is the continuity matrix of the joint system (5), and 𝐓\mathbf{T} is some symmetric free parameter matrix, and 𝐌¯i\mathbf{\bar{M}}_{i} should satisfy the following linear matrix inequalities:

𝐌¯i𝐂¯iT𝐂¯i0,𝐌¯i𝐄¯iT𝐔i𝐄¯i>0\mathbf{\bar{M}}_{i}-\mathbf{\bar{C}}_{i}^{T}\mathbf{\bar{C}}_{i}\geq 0,\ \mathbf{\bar{M}}_{i}-\mathbf{\bar{E}}_{i}^{T}\mathbf{U}_{i}\mathbf{\bar{E}}_{i}>0 (14)
𝐀¯iT𝐌¯i+𝐌¯i𝐀¯i+𝐄¯iT𝐖i𝐄¯i+𝝀¯𝐌¯i0\mathbf{\bar{A}}_{i}^{T}\mathbf{\bar{M}}_{i}+\mathbf{\bar{M}}_{i}\mathbf{\bar{A}}_{i}+\mathbf{\bar{E}}_{i}^{T}\mathbf{W}_{i}\mathbf{\bar{E}}_{i}+\bm{\bar{\lambda}}\mathbf{\bar{M}}_{i}\leq 0 (15)

where 𝝀¯=[λ𝐈𝟎𝟎0]\bm{\bar{\lambda}}=\begin{bmatrix}\lambda\mathbf{I}&\mathbf{0}\\ \mathbf{0}&0\end{bmatrix}, λ>0\lambda>0 is some parameter free to choose. 𝐄¯i\mathbf{\bar{E}}_{i} is the cell bounding in (8), and 𝐔i\mathbf{U}_{i} and 𝐖i\mathbf{W}_{i} are symmetric free parameter matrices with nonnegative entries.

Theorem 1

Assume there exists a matrix 𝐏in×m\mathbf{P}_{i}\in\mathbb{R}^{n\times m} and a matrix 𝐐ip×m\mathbf{Q}_{i}\in\mathbb{R}^{p\times m} such that the linear matrix equations in (6) hold for ii\in\mathcal{I}. Then, for the associated interface given by (10), there exists a robust approximate simulation relation of Σ\Sigma by Σ\Sigma^{\prime}, of a precision δ\delta as

δ:={κ𝒱(𝝎),𝒱(𝝎)b0,i0κb0,𝒱(𝝎)<b0,i0κ𝒱(𝝎¯),𝒱(𝝎¯)b1,i1κb1,𝒱(𝝎¯)<b1,i1\delta:=\left\{\begin{array}[]{ll}\ \kappa\mathcal{V}(\bm{\omega}),&\ \ \mathcal{V}(\bm{\omega})\geq b_{0},\ i\in\mathcal{I}_{0}\\ \ \kappa b_{0},&\ \ \mathcal{V}(\bm{\omega})<b_{0},\ i\in\mathcal{I}_{0}\\ \ \kappa\mathcal{V}(\bm{\bar{\omega}}),&\ \ \mathcal{V}(\bm{\bar{\omega}})\geq b_{1},\ i\in\mathcal{I}_{1}\\ \ \kappa b_{1},&\ \ \mathcal{V}(\bm{\bar{\omega}})<b_{1},\ i\in\mathcal{I}_{1}\end{array}\right. (16)

where b0=γ1(𝐮¯2)+γ2(𝐜i)+γ3(𝐱2)b_{0}=\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{c}^{\prime}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty}), b1=γ1(𝐮¯2)+γ2(𝐜¯i)+γ3(𝐱2)+mib_{1}=\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{\bar{c}}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty})+\sqrt{m_{i}} with γ1()\gamma_{1}(\cdot), γ2()\gamma_{2}(\cdot) and γ3()\gamma_{3}(\cdot) being some class-𝒦\mathcal{K} functions, and 𝒱(𝛚)\mathcal{V}(\bm{\omega}) and 𝒱(𝛚¯)\mathcal{V}(\bm{\bar{\omega}}) are Lyapunov-like simulation function as in (12) and (13), respectively.

Proof:

First, note that the simulation function (13) can bound the output error under (14) by

𝒱(𝝎¯)=1κ𝝎¯T𝐌¯i𝝎¯1κ𝐂¯i𝝎¯=1κ𝐞\mathcal{V}(\bm{\bar{\omega}})=\frac{1}{\kappa}\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\bm{\bar{\omega}}}\geq\frac{1}{\kappa}||\mathbf{\bar{C}}_{i}\bm{\bar{\omega}}||=\frac{1}{\kappa}||\mathbf{e}|| (17)

Similarly, the simulation function (12) can bound the output error by the reduced condition 𝐌i𝐂iT𝐂i0\mathbf{M}_{i}-\mathbf{C}_{i}^{\prime T}\mathbf{C}_{i}^{\prime}\geq 0 in (14).

For the case i1i\in\mathcal{I}_{1}, take the directional derivative of the simulation function (13) along (11),

𝒱˙(𝝎¯)=𝝎¯T𝐌¯i(𝐀¯i𝝎¯+𝐁¯1i𝐱2+𝐁¯2i𝐮¯2+𝐜¯i)κ𝝎¯T𝐌¯i𝝎¯\displaystyle\mathcal{\dot{V}}(\bm{\bar{\omega}})=\frac{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}(\mathbf{\bar{A}}_{i}\bm{\bar{\omega}}+\mathbf{\bar{B}}_{1i}\mathbf{x}_{2}+\mathbf{\bar{B}}_{2i}\mathbf{\bar{u}}_{2}+\mathbf{\bar{c}}_{i})}{\kappa\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\bm{\bar{\omega}}}}
=𝝎¯T𝐌¯i𝐀¯i𝝎¯+𝝎¯T𝐌¯i𝐁¯1i𝐱2+𝝎¯T𝐌¯i𝐁¯2i𝐮¯2+𝝎¯T𝐌¯i𝐜¯iκ𝝎¯T𝐌¯i𝝎¯\displaystyle=\frac{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\mathbf{\bar{A}}_{i}\bm{\bar{\omega}}+\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\mathbf{\bar{B}}_{1i}\mathbf{x}_{2}+\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\mathbf{\bar{B}}_{2i}\mathbf{\bar{u}}_{2}+\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\mathbf{\bar{c}}_{i}}{\kappa\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\bm{\bar{\omega}}}}

Based on (15), 𝐌¯i𝐀¯i12𝐄¯iT𝐖i𝐄¯i12𝝀¯𝐌¯i\mathbf{\bar{M}}_{i}\mathbf{\bar{A}}_{i}\leq-\frac{1}{2}\mathbf{\bar{E}}_{i}^{T}\mathbf{W}_{i}\mathbf{\bar{E}}_{i}-\frac{1}{2}\bm{\bar{\lambda}}\mathbf{\bar{M}}_{i}, and thus,

𝒱˙(𝝎¯)\displaystyle\mathcal{\dot{V}}(\bm{\bar{\omega}})\leq 𝝎¯T[12𝐄¯iT𝐖i𝐄¯i12𝝀¯𝐌¯i]𝝎¯κ𝝎¯T𝐌¯i𝝎¯+1κ𝐌¯i𝐁¯1i𝐱2\displaystyle\frac{\bm{\bar{\omega}}^{T}\left[-\frac{1}{2}\mathbf{\bar{E}}_{i}^{T}\mathbf{W}_{i}\mathbf{\bar{E}}_{i}-\frac{1}{2}\bm{\bar{\lambda}}\mathbf{\bar{M}}_{i}\right]\bm{\bar{\omega}}}{\kappa\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{i}\bm{\bar{\omega}}}}+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{1i}||||\mathbf{x}_{2}||
+1κ𝐌¯i𝐁¯2i𝐮¯2+1κ𝐌¯i𝐜¯i\displaystyle+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{2i}||||\mathbf{\bar{u}}_{2}||+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}||||\mathbf{\bar{c}}_{i}||

Then, by the definition of the simulation function (13) and the parameter matrix 𝝀¯\bm{\bar{\lambda}}, we have

𝒱˙(𝝎¯)\displaystyle\mathcal{\dot{V}}(\bm{\bar{\omega}})\leq λ2κ𝒱(𝝎¯)+λ2κ2mi𝒱(𝝎¯)+1κ𝐌¯i𝐁¯1i𝐱2\displaystyle-\frac{\lambda}{2\kappa}\mathcal{V}(\bm{\bar{\omega}})+\frac{\lambda}{2\kappa^{2}}\frac{m_{i}}{\mathcal{V}(\bm{\bar{\omega}})}+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{1i}||||\mathbf{x}_{2}||
+1κ𝐌¯i𝐁¯2i𝐮¯2+1κ𝐌¯i𝐜¯i\displaystyle+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{2i}||||\mathbf{\bar{u}}_{2}||+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}||||\mathbf{\bar{c}}_{i}||

According to (13), we know that 𝒱(𝝎¯)1κmi\mathcal{V}(\bm{\bar{\omega}})\geq\frac{1}{\kappa}\sqrt{m_{i}}, and therefore we have

𝒱˙(𝝎¯)\displaystyle\mathcal{\dot{V}}(\bm{\bar{\omega}})\leq λ2κ𝒱(𝝎¯)+λ2κmi+1κ𝐌¯i𝐁¯1i𝐱2\displaystyle-\frac{\lambda}{2\kappa}\mathcal{V}(\bm{\bar{\omega}})+\frac{\lambda}{2\kappa}\sqrt{m_{i}}+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{1i}||||\mathbf{x}_{2}||
+1κ𝐌¯i𝐁¯2i𝐮¯2+1κ𝐌¯i𝐜¯i\displaystyle+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{2i}||||\mathbf{\bar{u}}_{2}||+\frac{1}{\kappa}||\sqrt{\mathbf{\bar{M}}_{i}}||||\mathbf{\bar{c}}_{i}||

For 𝒱˙(𝝎¯)<0\mathcal{\dot{V}}(\bm{\bar{\omega}})<0, we need 𝒱(𝝎¯)>γ1(𝐮¯2)+γ2(𝐜¯i)+γ3(𝐱2)+mi\mathcal{V}(\bm{\bar{\omega}})>\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{\bar{c}}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty})+\sqrt{m_{i}}, where γ1(s)=2𝐌¯i𝐁¯2iλs\gamma_{1}(s)=\frac{2||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{2i}||}{\lambda}s, γ2(s)=2𝐌¯iλs\gamma_{2}(s)=\frac{2||\sqrt{\mathbf{\bar{M}}_{i}}||}{\lambda}s and γ3(s)=2𝐌¯i𝐁¯1iλs\gamma_{3}(s)=\frac{2||\sqrt{\mathbf{\bar{M}}_{i}}\mathbf{\bar{B}}_{1i}||}{\lambda}s are class-𝒦\mathcal{K} functions.

For the case i0i\in\mathcal{I}_{0}, the above results will reduce to

𝒱˙(𝝎)\displaystyle\mathcal{\dot{V}}(\bm{\omega})\leq λ2κ𝒱(𝝎)+1κ𝐌i𝐁1i𝐱2\displaystyle-\frac{\lambda}{2\kappa}\mathcal{V}(\bm{\omega})+\frac{1}{\kappa}||\sqrt{\mathbf{M}_{i}}\mathbf{B}^{\prime}_{1i}||||\mathbf{x}_{2}||
+1κ𝐌i𝐁2i𝐮¯2+1κ𝐌i𝐜i\displaystyle+\frac{1}{\kappa}||\sqrt{\mathbf{M}_{i}}\mathbf{B}^{\prime}_{2i}||||\mathbf{\bar{u}}_{2}||+\frac{1}{\kappa}||\sqrt{\mathbf{M}_{i}}||||\mathbf{c}^{\prime}_{i}||

For 𝒱˙(𝝎)<0\mathcal{\dot{V}}(\bm{\omega})<0, we have 𝒱(𝝎)>γ1(𝐮¯2)+γ2(𝐜i)+γ3(𝐱2)\mathcal{V}(\bm{\omega})>\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{c}^{\prime}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty}), where γ1(s)=2𝐌i𝐁2iλs\gamma_{1}(s)=\frac{2||\sqrt{\mathbf{M}_{i}}\mathbf{B}^{\prime}_{2i}||}{\lambda}s, γ2(s)=2𝐌iλs\gamma_{2}(s)=\frac{2||\sqrt{\mathbf{M}_{i}}||}{\lambda}s and γ3(s)=2𝐌i𝐁1iλs\gamma_{3}(s)=\frac{2||\sqrt{\mathbf{M}_{i}}\mathbf{B}^{\prime}_{1i}||}{\lambda}s are class-𝒦\mathcal{K} functions.

Therefore, we know that for i0i\in\mathcal{I}_{0}, the set

0={𝝎𝛀i|𝒱(𝝎)b0}\mathcal{R}_{0}=\{\bm{\omega}\in\bm{\Omega}_{i}|\ \mathcal{V}(\bm{\omega})\leq b_{0}\} (18)

and for i1i\in\mathcal{I}_{1}, the set

1={𝝎¯𝛀¯i|𝒱(𝝎¯)b1}\mathcal{R}_{1}=\{\bm{\bar{\omega}}\in\bm{\bar{\Omega}}_{i}|\ \mathcal{V}(\bm{\bar{\omega}})\leq b_{1}\} (19)

are both forward invariant [15]. Thus, we know that 0\mathcal{R}_{0} and 1\mathcal{R}_{1} satisfy robust approximate simulation relation with precision κb0\kappa b_{0} and κb1\kappa b_{1}, respectively. Furthermore, from (17), we also know that 1κ𝐲1𝐲2𝒱(𝝎)\frac{1}{\kappa}||\mathbf{y}_{1}-\mathbf{y}_{2}||\leq\mathcal{V}(\bm{\omega}) for i0i\in\mathcal{I}_{0} and 1κ𝐲1𝐲2𝒱(𝝎¯)\frac{1}{\kappa}||\mathbf{y}_{1}-\mathbf{y}_{2}||\leq\mathcal{V}(\bm{\bar{\omega}}) for i1i\in\mathcal{I}_{1}. Thus, we know that κ𝒱(𝝎)\kappa\mathcal{V}(\bm{\omega}) and κ𝒱(𝝎¯)\kappa\mathcal{V}(\bm{\bar{\omega}}) can bound the output errors and the robust approximate simulation relation can be satisfied when 𝒱(𝝎)>b0\mathcal{V}(\bm{\omega})>b_{0} and 𝒱(𝝎¯)>b1\mathcal{V}(\bm{\bar{\omega}})>b_{1}. Thus, all the cases in (16) now have been proven and this completes the proof. ∎

Note that the error bound in (16) is dependent on 𝐱2||\mathbf{x}_{2}||_{\infty}. However, it can be computed since 𝐱2\mathbf{x}_{2} is always available.

III-B PWA Abstraction for a PWA System Under Disturbances

In this part, we consider the case where the abstraction is in form (3)(\ref{eq:PWA_abstraction}), where we are free to choose the partitions as well as the system matrices on each partition. Compared to the previous part, the main difference in this part lies in the computation of the cell boundings of the joint system since the partitions of the abstract PWA system should be involved in the computation of the joint 𝐄¯ij\mathbf{\bar{E}}_{ij} as 𝝎¯𝛀¯ij\bm{\bar{\omega}}\in\mathbf{\bar{\Omega}}_{ij}, where

𝛀¯ij:={[𝐄i𝐄cj](𝐱1𝐏i𝐱2)+[𝐄i𝐏i𝐄cj𝐏i]𝐱2[𝐟i𝐟cj]}={[𝐄i𝐄i𝐏i𝐄cj𝐄cj𝐏i]𝝎[𝐟i𝐟cj]}={𝐄¯ij𝝎¯𝟎}\begin{split}\mathbf{\bar{\Omega}}_{ij}:&=\Big{\{}\begin{bmatrix}\mathbf{E}_{i}\\ \mathbf{E}_{cj}\end{bmatrix}(\mathbf{x}_{1}-\mathbf{P}_{i}\mathbf{x}_{2})+\begin{bmatrix}\mathbf{E}_{i}\mathbf{P}_{i}\\ \mathbf{E}_{cj}\mathbf{P}_{i}\end{bmatrix}\mathbf{x}_{2}\geq\begin{bmatrix}\mathbf{f}_{i}\\ \mathbf{f}_{cj}\end{bmatrix}\Big{\}}\\ &=\Big{\{}\begin{bmatrix}\mathbf{E}_{i}&\mathbf{E}_{i}\mathbf{P}_{i}\\ \mathbf{E}_{cj}&\mathbf{E}_{cj}\mathbf{P}_{i}\end{bmatrix}\bm{\omega}\geq\begin{bmatrix}\mathbf{f}_{i}\\ \mathbf{f}_{cj}\end{bmatrix}\Big{\}}\\ &=\{\mathbf{\bar{E}}_{ij}\bm{\bar{\omega}}\geq\mathbf{0}\}\end{split} (20)

where ii\in\mathcal{I}, jaj\in\mathcal{I}_{a} and the matrices 𝐄cjl×n\mathbf{E}_{cj}\in\mathbb{R}^{l\times n} and 𝐟cjl\mathbf{f}_{cj}\in\mathbb{R}^{l} construct the desired partitions of 𝐱2\mathbf{x}_{2} in the state space of 𝐱1\mathbf{x}_{1} (i.e., 𝐱1𝒳1i:={𝐱1n|𝐄i𝐱1𝐟i}\mathbf{x}_{1}\in\mathcal{X}_{1}^{i}:=\{\mathbf{x}_{1}\in\mathbb{R}^{n}|\ \mathbf{E}_{i}\mathbf{x}_{1}\geq\mathbf{f}_{i}\}, ii\in\mathcal{I}). In particular, the desired partitions of 𝐱2\mathbf{x}_{2} in the state space of 𝐱1\mathbf{x}_{1} can be written in closed form as 𝐄cj𝐱1𝐟cj\mathbf{E}_{cj}\mathbf{x}_{1}\geq\mathbf{f}_{cj}, i.e., 𝐄cj𝐱~+𝐄cj𝐏i𝐱2𝐟cj\mathbf{E}_{cj}\mathbf{\tilde{x}}+\mathbf{E}_{cj}\mathbf{P}_{i}\mathbf{x}_{2}\geq\mathbf{f}_{cj}, for jaj\in\mathcal{I}_{a}.

In fact, the partition of 𝐱2\mathbf{x}_{2} can be viewed as 𝐄aj𝐱2𝐟aj\mathbf{E}_{aj}\mathbf{x}_{2}\geq\mathbf{f}_{aj} as in (3), where 𝐄aj=𝐄cj𝐏i\mathbf{E}_{aj}=\mathbf{E}_{cj}\mathbf{P}_{i} and 𝐟aj=𝐟cj𝐄cj𝐱~\mathbf{f}_{aj}=\mathbf{f}_{cj}-\mathbf{E}_{cj}\mathbf{\tilde{x}}. It is not surprising that the partition of 𝐱2\mathbf{x}_{2} varies with 𝐱~\mathbf{\tilde{x}} because we know that there must exist some linear transformation 𝚷m×n\mathbf{\Pi}\in\mathbb{R}^{m\times n} between two different spaces, i.e. 𝐱2=𝚷𝐱1\mathbf{x}_{2}=\mathbf{\Pi}\mathbf{x}_{1} from Lemma 1 of [16]. However, this relation cannot hold for our case where the disturbances exist in the state space of 𝐱1\mathbf{x}_{1} or it may hold with very restrictive conditions (see proposition 4.1 of [17]). The relations 𝐄aj=𝐄cj𝐏i\mathbf{E}_{aj}=\mathbf{E}_{cj}\mathbf{P}_{i} and 𝐟aj=𝐟cj𝐄cj𝐱~\mathbf{f}_{aj}=\mathbf{f}_{cj}-\mathbf{E}_{cj}\mathbf{\tilde{x}} can be viewed as an online estimate to reshape the partitions of 𝐱2\mathbf{x}_{2} in our case.

Remark 2

It seems unreasonable to express the partitions of 𝐱2\mathbf{x}_{2} in the state space of 𝐱1\mathbf{x}_{1} as 𝐄cj𝐱1𝐟cj\mathbf{E}_{cj}\mathbf{x}_{1}\geq\mathbf{f}_{cj} for jaj\in\mathcal{I}_{a} because the combinations of the successive partitions of 𝐱1\mathbf{x}_{1} may not always be convex and thus the partitions may not be written in this closed form. However, we can always convexify the combinations of the successive partitions of 𝐱1\mathbf{x}_{1} by manually adding more edges to the original partitions. In this case, we can describe the joint partitions in terms of the equivalent partitions of 𝐱1\mathbf{x}_{1}.

Remark 3

In (20), we use the joint partitions of the joint system because the partitions of 𝐱2\mathbf{x}_{2} are hard to determine. However, we know that the partitions of 𝐱1\mathbf{x}_{1} can be predefined and thus the desired partitions of 𝐱2\mathbf{x}_{2} in the state space of 𝐱1\mathbf{x}_{1} can also be determined. In order to do so, we first use the conditions in (6) to check the approximate simulation relations between the concrete system (1) and the abstraction (3). Once the relations can be found, the corresponding successive partitions of 𝐱1\mathbf{x}_{1} can be combined together. Then, we can analyze these combinations in two cases. For the case that the combinations of the successive partitions of 𝐱1\mathbf{x}_{1} are still convex, the combined partitions of 𝐱1\mathbf{x}_{1} can be used to describe the desired partitions of 𝐱2\mathbf{x}_{2}, i.e., 𝐄cj𝐱~+𝐄cj𝐏i𝐱2𝐟cj\mathbf{E}_{cj}\mathbf{\tilde{x}}+\mathbf{E}_{cj}\mathbf{P}_{i}\mathbf{x}_{2}\geq\mathbf{f}_{cj}, for jaj\in\mathcal{I}_{a}. For the case that the combinations of the successive partitions of 𝐱1\mathbf{x}_{1} are non-convex, we can first convexify the combinations of the successive partitions by adding edges and then follow the same processes as the previous case. Designing systematic convexification approaches is a subject of future research.

Interface

Considering the abstraction being in the form as (3), an associated interface can be designed as

𝐮v(𝐱~,𝐱2,𝐮¯2)=𝐑ij𝐮¯2+(𝐐i+𝐑ij𝐋j)𝐱2+𝐊i𝐱~\mathbf{u}_{v}(\mathbf{\tilde{x}},\mathbf{x}_{2},\mathbf{\bar{u}}_{2})=\mathbf{R}_{ij}\mathbf{\bar{u}}_{2}+(\mathbf{Q}_{i}+\mathbf{R}_{ij}\mathbf{L}_{j})\mathbf{x}_{2}+\mathbf{K}_{i}\mathbf{\tilde{x}} (21)

for the pairs (i,j)(i,j), ii\in\mathcal{I} and jaj\in\mathcal{I}_{a}, where 𝐑ijp×q\mathbf{R}_{ij}\in\mathbb{R}^{p\times q} is an arbitrary matrix and 𝐊ip×n\mathbf{K}_{i}\in\mathbb{R}^{p\times n} is a tunable parameter matrix. Then, joint system under the interface (21) can be written in the following form

{𝝎¯˙=𝐀¯ij𝝎¯+𝐁¯1ij𝐱2+𝐁¯2ij𝐮¯2+𝐜¯i𝐞=𝐂¯ij𝝎¯\left\{\begin{array}[]{ll}\bm{\dot{\mathbf{\bar{\omega}}}}=\mathbf{\bar{A}}_{ij}\bm{\bar{\omega}}+\mathbf{\bar{B}}_{1ij}\mathbf{x}_{2}+\mathbf{\bar{B}}_{2ij}\mathbf{\bar{u}}_{2}+\mathbf{\bar{c}}_{i}&\\ \mathbf{e}=\mathbf{\bar{C}}_{ij}\bm{\bar{\omega}}&\end{array}\right. (22)

for ii\in\mathcal{I}, jaj\in\mathcal{I}_{a}, where the state 𝝎¯=[𝝎T1]T\bm{\bar{\omega}}=\begin{bmatrix}\bm{\omega}^{T}&1\\ \end{bmatrix}^{T}, 𝐀¯ij=[𝐀ij𝟎𝟎0]\mathbf{\bar{A}}_{ij}=\begin{bmatrix}\mathbf{A}^{\prime}_{ij}&\mathbf{0}\\ \mathbf{0}&0\end{bmatrix}, 𝐀ij=[𝐀i+𝐁i𝐊i𝟎𝟎𝐅j+𝐆j𝐋j]\mathbf{A}^{\prime}_{ij}=\begin{bmatrix}\mathbf{A}_{i}+\mathbf{B}_{i}\mathbf{K}_{i}&\mathbf{0}\\ \mathbf{0}&\mathbf{F}_{j}+\mathbf{G}_{j}\mathbf{L}_{j}\end{bmatrix}, 𝐁¯1ij=[𝐁1ij𝟎]\mathbf{\bar{B}}_{1ij}=\begin{bmatrix}\mathbf{B}^{\prime}_{1ij}\\ \mathbf{0}\end{bmatrix}, 𝐁1ij=[(𝐁i𝐑ij𝐏i𝐆j)𝐋j𝟎]\mathbf{B}^{\prime}_{1ij}=\begin{bmatrix}(\mathbf{B}_{i}\mathbf{R}_{ij}-\mathbf{P}_{i}\mathbf{G}_{j})\mathbf{L}_{j}\\ \mathbf{0}\end{bmatrix}, 𝐁¯2ij=[𝐁2ij𝟎]\mathbf{\bar{B}}_{2ij}=\begin{bmatrix}\mathbf{B}^{\prime}_{2ij}\\ \mathbf{0}\end{bmatrix}, 𝐁2ij=[𝐁i𝐑ij𝐏i𝐆j𝐆j]\mathbf{B}^{\prime}_{2ij}=\begin{bmatrix}\mathbf{B}_{i}\mathbf{R}_{ij}-\mathbf{P}_{i}\mathbf{G}_{j}\\ \mathbf{G}_{j}\end{bmatrix}, 𝐜¯i=[𝐜iT0]T\mathbf{\bar{c}}_{i}=\begin{bmatrix}\mathbf{c^{\prime}}_{i}^{T}&0\end{bmatrix}^{T}, 𝐜i=[𝐜i𝟎]\mathbf{c}^{\prime}_{i}=\begin{bmatrix}\mathbf{c}_{i}\\ \mathbf{0}\end{bmatrix}, 𝐂¯ij=[𝐂ij0]\mathbf{\bar{C}}_{ij}=\begin{bmatrix}\mathbf{C}^{\prime}_{ij}&0\end{bmatrix}, 𝐂ij=[𝐂ij𝟎]\mathbf{C}^{\prime}_{ij}=\begin{bmatrix}\mathbf{C}_{ij}&\mathbf{0}\end{bmatrix} and the joint partition is defined as (20).

Simulation Function

Similar as the linear abstraction case in previous part, to guarantee a formal error bound, the Lyapunov-like simulation function is presented as

𝒱(𝝎):=1κ𝝎T𝐌ij𝝎,for𝝎𝛀ij,i0,ja0\mathcal{V}(\bm{\omega}):=\frac{1}{\kappa}\sqrt{\bm{\omega}^{T}\mathbf{M}_{ij}\bm{\omega}},\ \mbox{for}\ \bm{\omega}\in\mathbf{\Omega}_{ij},\ i\in\mathcal{I}_{0},j\in\mathcal{I}_{a0} (23)
𝒱(𝝎¯):=1κ𝝎¯T𝐌¯ij𝝎¯,for𝝎¯𝛀¯ij,i1,ja1\mathcal{V}(\bm{\bar{\omega}}):=\frac{1}{\kappa}\sqrt{\bm{\bar{\omega}}^{T}\mathbf{\bar{M}}_{ij}\bm{\bar{\omega}}},\ \mbox{for}\ \bm{\bar{\omega}}\in\mathbf{\bar{\Omega}}_{ij},\ i\in\mathcal{I}_{1},j\in\mathcal{I}_{a1} (24)

where κ>0\kappa>0 is some adjustable parameter, with each 𝐌¯ij=𝐉¯ijT𝐓𝐉¯ij=[𝐌ij𝟎𝟎mij]\mathbf{\bar{M}}_{ij}=\mathbf{\bar{J}}_{ij}^{T}\mathbf{T}\mathbf{\bar{J}}_{ij}=\begin{bmatrix}\mathbf{M}_{ij}&\mathbf{0}\\ \mathbf{0}&m_{ij}\end{bmatrix}, where 𝐌ij\mathbf{M}_{ij} is a positive definite matrix, mij>0m_{ij}>0 and the matrix 𝐌¯ij\mathbf{\bar{M}}_{ij} should satisfy the following linear matrix inequalities:

𝐌¯ij𝐂¯ijT𝐂¯ij0,𝐌¯ij𝐄¯ijT𝐔ij𝐄¯ij>0\mathbf{\bar{M}}_{ij}-\mathbf{\bar{C}}^{T}_{ij}\mathbf{\bar{C}}_{ij}\geq 0,\ \mathbf{\bar{M}}_{ij}-\mathbf{\bar{E}}_{ij}^{T}\mathbf{U}_{ij}\mathbf{\bar{E}}_{ij}>0 (25)
𝐀¯ijT𝐌¯ij+𝐌¯ij𝐀¯ij+𝐄¯ijT𝐖ij𝐄¯ij+𝝀¯𝐌¯ij0\mathbf{\bar{A}}_{ij}^{T}\mathbf{\bar{M}}_{ij}+\mathbf{\bar{M}}_{ij}\mathbf{\bar{A}}_{ij}+\mathbf{\bar{E}}_{ij}^{T}\mathbf{W}_{ij}\mathbf{\bar{E}}_{ij}+\bm{\bar{\lambda}}\mathbf{\bar{M}}_{ij}\leq 0 (26)

for the pairs (i,j)(i,j), ii\in\mathcal{I} and jaj\in\mathcal{I}_{a}, where 𝝀¯=[λ𝐈𝟎𝟎0]\bm{\bar{\lambda}}=\begin{bmatrix}\lambda\mathbf{I}&\mathbf{0}\\ \mathbf{0}&0\end{bmatrix}, for λ>0\lambda>0 free to be selected, 𝐄¯ij\mathbf{\bar{E}}_{ij} is the cell bounding in (20), 𝐔ij\mathbf{U}_{ij} and 𝐖ij\mathbf{W}_{ij} are some symmetric free parameter matrices with nonnegative entries.

With the joint partitions in (20), we now provide a generalized version of Theorem 1 in the following theorem.

Theorem 2

For a given tuple of the concrete system (𝐀i,𝐁i,𝐂i)(\mathbf{A}_{i},\ \mathbf{B}_{i},\ \mathbf{C}_{i}), ii\in\mathcal{I}, assume there exists a matrix 𝐏in×m\mathbf{P}_{i}\in\mathbb{R}^{n\times m} and a matrix 𝐐ip×m\mathbf{Q}_{i}\in\mathbb{R}^{p\times m} such that the linear matrix equations in (9) hold for a pair of (𝐅j,𝐇j)(\mathbf{F}_{j},\ \mathbf{H}_{j}) of the abstraction, jaj\in\mathcal{I}_{a}. Then, for the associated interface given by (21), there exists a robust approximate simulation relation of Σ\Sigma by Σ′′\Sigma^{\prime\prime}, of the precision δ\delta as

δ:={κ𝒱(𝝎),𝒱(𝝎)b0,i0,ja0κb0,𝒱(𝝎)<b0,i0,ja0κ𝒱(𝝎¯),𝒱(𝝎¯)b1,i1,ja1κb1,𝒱(𝝎¯)<b1,i1,ja1\delta:=\left\{\begin{array}[]{ll}\ \kappa\mathcal{V}(\bm{\omega}),&\ \ \mathcal{V}(\bm{\omega})\geq b_{0},\ i\in\mathcal{I}_{0},\ j\in\mathcal{I}_{a0}\\ \ \kappa b_{0},&\ \ \mathcal{V}(\bm{\omega})<b_{0},\ i\in\mathcal{I}_{0},\ j\in\mathcal{I}_{a0}\\ \ \kappa\mathcal{V}(\bm{\bar{\omega}}),&\ \ \mathcal{V}(\bm{\bar{\omega}})\geq b_{1},\ i\in\mathcal{I}_{1},\ j\in\mathcal{I}_{a1}\\ \ \kappa b_{1},&\ \ \mathcal{V}(\bm{\bar{\omega}})<b_{1},\ i\in\mathcal{I}_{1},\ j\in\mathcal{I}_{a1}\end{array}\right. (27)

where b0=γ1(𝐮¯2)+γ2(𝐜i)+γ3(𝐱2)b_{0}=\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{c}^{\prime}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty}) and b1=γ1(𝐮¯2)+γ2(𝐜¯i)+γ3(𝐱2)+mijb_{1}=\gamma_{1}(||\mathbf{\bar{u}}_{2}||_{\infty})+\gamma_{2}(||\mathbf{\bar{c}}_{i}||_{\infty})+\gamma_{3}(||\mathbf{x}_{2}||_{\infty})+\sqrt{m_{ij}}, with γ1()\gamma_{1}(\cdot), γ2()\gamma_{2}(\cdot) and γ3()\gamma_{3}(\cdot) being some class-𝒦\mathcal{K} functions, and 𝒱(𝛚)\mathcal{V}(\bm{\omega}) and 𝒱(𝛚¯)\mathcal{V}(\bm{\bar{\omega}}) are Lyapunov-like simulation functions as in (23) and (24), respectively.

Proof:

The proof of Theorem 2 is similar to that of Theorem 1, and thus is omitted here. ∎

IV Simulation Examples

In this section, we use two simulation examples to illustrate the effectiveness of the proposed robust approximate simulation based control method developed for PWA systems.

IV-A Case 1: PWA by Linear

In this part, we consider an example of a robot tracking a 3-part road section. The robot must navigate the path with different dynamics in each part. The output of both concrete and abstract systems represent the position of the robot in the plane. The control objective is to make the robot track the planned path in 𝐱2\mathbf{x}_{2}, meanwhile the output errors maintain bounded.

The concrete system was selected as a triple integrator, but its dynamics is different on each part of the path in terms of the input mapping matrix 𝐁i\mathbf{B}_{i}, i.e.,

Σ:{𝐱˙1=𝐀i𝐱1+𝐁i𝐮1+𝐜i𝐲1=𝐂i𝐱1\Sigma:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{1}=\mathbf{A}_{i}\mathbf{x}_{1}+\mathbf{B}_{i}\mathbf{u}_{1}+\mathbf{c}_{i}&\\ \mathbf{y}_{1}=\mathbf{C}_{i}\mathbf{x}_{1}&\end{array}\right. (28)

with the parameters of the system as follows

𝐀i=[𝟎2𝐈2𝟎2𝟎2𝟎2𝐈2𝟎2𝟎2𝟎2],𝐁1=0.5𝐁2=2𝐁3=[𝟎2𝟎2𝐈2],\mathbf{A}_{i}=\begin{bmatrix}\mathbf{0}_{2}&\mathbf{I}_{2}&\mathbf{0}_{2}\\ \mathbf{0}_{2}&\mathbf{0}_{2}&\mathbf{I}_{2}\\ \mathbf{0}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2}\end{bmatrix},\ \mathbf{B}_{1}=0.5\mathbf{B}_{2}=2\mathbf{B}_{3}=\begin{bmatrix}\mathbf{0}_{2}\\ \mathbf{0}_{2}\\ \mathbf{I}_{2}\end{bmatrix},\
𝐂i=[𝐈2𝟎2𝟎2],𝐜i=(0.1+0.05sin(t))𝟏6×1\mathbf{C}_{i}=\begin{bmatrix}\mathbf{I}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2}\end{bmatrix},\ \mathbf{c}_{i}=(-0.1+0.05sin(t))\mathbf{1}_{6\times 1}

for i=1,2,3i=1,2,3, and the partitions are set based on the position of the robot as

𝐄i=[𝐄i1𝟎2𝟎2𝟎2𝟎2𝟎2𝟎2𝟎2𝟎2],𝐟i=𝟎, for i=1,2,3,\mathbf{E}^{\prime}_{i}=\begin{bmatrix}\mathbf{E}^{\prime}_{i1}&\mathbf{0}_{2}&\mathbf{0}_{2}\\ \mathbf{0}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2}\\ \mathbf{0}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2}\end{bmatrix},\ \mathbf{f}^{\prime}_{i}=\mathbf{0},\mbox{ for $i=1,2,3$,}

where 𝐄11=𝐄31=[1111]\mathbf{E}^{\prime}_{11}=-\mathbf{E}^{\prime}_{31}=\begin{bmatrix}-1&1\\ -1&-1\end{bmatrix} and 𝐄21=[1111]\mathbf{E}^{\prime}_{21}=\begin{bmatrix}-1&1\\ 1&1\end{bmatrix}.

The abstract system was selected as a single integrator, i.e.,

Σ:{𝐱˙2=𝐮2𝐲2=𝐱2\Sigma^{\prime}:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{2}=\mathbf{u}_{2}&\\ \mathbf{y}_{2}=\mathbf{x}_{2}&\end{array}\right. (29)

where the input transformation law was designed as 𝐮2=𝐱2+𝐮¯2\mathbf{u}_{2}=-\mathbf{x}_{2}+\mathbf{\bar{u}}_{2}. The control parameters for i=1,2,3i=1,2,3 were selected as

𝐏i=[𝐈2𝟎2𝟎2]T,𝐐i=𝟎2,𝐑i=𝐁iT[𝐁i𝐁iT]1𝐏i𝐆,\mathbf{P}_{i}=\begin{bmatrix}\mathbf{I}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2}\end{bmatrix}^{T},\ \mathbf{Q}_{i}=\mathbf{0}_{2},\ \mathbf{R}_{i}=\mathbf{B}_{i}^{T}[\mathbf{B}_{i}\mathbf{B}_{i}^{T}]^{-1}\mathbf{P}_{i}\mathbf{G},\
𝐊1=2𝐊2=0.5𝐊3=[52𝐈252.3𝐈213𝐈2]\mathbf{K}_{1}=2\mathbf{K}_{2}=0.5\mathbf{K}_{3}=-\begin{bmatrix}52\mathbf{I}_{2}&52.3\mathbf{I}_{2}&13\mathbf{I}_{2}\end{bmatrix}

The observed simulation results under these system and control parameters are shown in Figures 2, 3 and 4.

Refer to caption
Figure 2: The output of the concrete system Σ\Sigma and the abstraction Σ\Sigma^{\prime}, starting from the green circular region and ending at the yellow circular target region. The boundaries of the partitions are shown in green dashed lines.
Refer to caption
Figure 3: The simulated output error 𝐲1𝐲2||\mathbf{y}_{1}-\mathbf{y}_{2}|| between the concrete system Σ\Sigma and the abstraction Σ\Sigma^{\prime} and the value of simulation function using (12) with κ=8\kappa=8. Boundary crossing soon after green dashed lines.
Refer to caption
Figure 4: The computed error bound using b0b_{0}. Boundary crossing soon after green dashed lines.

In Figure 2, it can be seen that the output of the concrete system Σ\Sigma starts from the green colored initial region and successfully tracks the output of the abstraction Σ\Sigma^{\prime} and the two trajectories remain considerably close to each other until the robot reaches the yellow colored target region. More precisely, the output tracking error is shown in Figure 3, which is bounded by the simulation function 𝒱\mathcal{V} (obtained with κ=8\kappa=8). Thus, the proposed method is effective. In Figure 3, it can also be seen that when Σ\Sigma^{\prime} crosses the boundary of the partitions, the value of the simulation function increases. The reason is that 𝐱2\mathbf{x}_{2} is not slowly varying and the amplitude of 𝐱2||\mathbf{x}_{2}|| also increases at the boundary, which will cause the joint state 𝝎\bm{\omega} to increase. In Figure 4, the computed error bound is relatively large with respect to the simulation function and the value of this computed bound also changes around the instants that Σ\Sigma^{\prime} and Σ\Sigma cross a boundary. At the time instant around 7 sec, there is a chattered switching between two different values of the error bounds, which is because the concrete system temporarily moves back and forth across a boundary of two different partitions. From Figure 3 and 4, we can also see that the simulation function remains bounded within the computed error bound.

IV-B Case 2: PWA by PWA

In this part, we consider the case that a simpler PWA system is the abstraction for the concrete PWA system. Therefore, we consider a more complicated tracking example with 5-parts road section, while the control objective is similar to the Case 1 discussed before.

The concrete PWA system was chosen to be in the same form as (28), but its parameters were selected as

𝐀i=ηi1[𝐈2𝐈2𝟎2𝐈2],𝐁i=ηi2[𝟎2𝐈2],\mathbf{A}_{i}=\eta_{i1}\begin{bmatrix}\mathbf{I}_{2}&\mathbf{I}_{2}\\ \mathbf{0}_{2}&\mathbf{I}_{2}\end{bmatrix},\ \mathbf{B}_{i}=\eta_{i2}\begin{bmatrix}\mathbf{0}_{2}\\ \mathbf{I}_{2}\end{bmatrix},\
𝐂i=[𝐈2𝟎2],𝐜i=(0.1+0.05sin(t))𝟏4×1\mathbf{C}_{i}=\begin{bmatrix}\mathbf{I}_{2}&\mathbf{0}_{2}\end{bmatrix},\ \mathbf{c}_{i}=(-0.1+0.05sin(t))\mathbf{1}_{4\times 1}

for i=1,2,,5i=1,2,...,5.

The abstraction was selected as a simpler PWA system,

Σ′′:{𝐱˙2=𝐅j𝐱2+𝐆j𝐮2𝐲2=𝐇j𝐱2\Sigma^{\prime\prime}:\left\{\begin{array}[]{ll}\mathbf{\dot{x}}_{2}=\mathbf{F}_{j}\mathbf{x}_{2}+\mathbf{G}_{j}\mathbf{u}_{2}&\\ \mathbf{y}_{2}=\mathbf{H}_{j}\mathbf{x}_{2}&\end{array}\right. (30)

where the parameters were chosen as

𝐅j=ηi1𝐈2,𝐆j=𝐈2,𝐇j=𝐈2,\mathbf{F}_{j}=\eta_{i1}\mathbf{I}_{2},\ \mathbf{G}_{j}=\mathbf{I}_{2},\ \mathbf{H}_{j}=\mathbf{I}_{2},\

for j=1,2,3j=1,2,3, with η11=η21=1\eta_{11}=\eta_{21}=1, η31=2\eta_{31}=2, η41=η51=0.5\eta_{41}=\eta_{51}=0.5, η12=η22=1\eta_{12}=\eta_{22}=1, η32=2\eta_{32}=2, η42=η52=0.5\eta_{42}=\eta_{52}=0.5, and the input transformation law was designed as 𝐮2=ki𝐱2+𝐮¯2\mathbf{u}_{2}=-k_{i}\mathbf{x}_{2}+\mathbf{\bar{u}}_{2}, where k1=k2=3k_{1}=k_{2}=3, k3=4k_{3}=4, k4=k5=2.5k_{4}=k_{5}=2.5.

The joint partitions were selected as

𝐄¯ij=[𝐄ij𝟎2𝐟ij𝟎2𝟎2𝟎2×1],\mathbf{\bar{E}}_{ij}=\begin{bmatrix}\mathbf{E}^{\prime}_{ij}&\mathbf{0}_{2}&\mathbf{f}^{\prime}_{ij}\\ \mathbf{0}_{2}&\mathbf{0}_{2}&\mathbf{0}_{2\times 1}\end{bmatrix},\

for i=1,,5i=1,...,5 and j=1,2,3j=1,2,3, where 𝐄11=[1000]\mathbf{E}^{\prime}_{11}=\begin{bmatrix}-1&0\\ 0&0\end{bmatrix}, 𝐄21=[1010]\mathbf{E}^{\prime}_{21}=\begin{bmatrix}1&0\\ -1&0\end{bmatrix}, 𝐄32=[1010]\mathbf{E}^{\prime}_{32}=\begin{bmatrix}1&0\\ -1&0\end{bmatrix}, 𝐄43=[1010]\mathbf{E}^{\prime}_{43}=\begin{bmatrix}1&0\\ -1&0\end{bmatrix}, 𝐄53=[1000]\mathbf{E}^{\prime}_{53}=\begin{bmatrix}1&0\\ 0&0\end{bmatrix}, 𝐟11=[1.50]\mathbf{f}^{\prime}_{11}=\begin{bmatrix}1.5\\ 0\end{bmatrix}, 𝐟21=[1.50.5]\mathbf{f}^{\prime}_{21}=\begin{bmatrix}-1.5\\ 0.5\end{bmatrix}, 𝐟32=[0.50.5]\mathbf{f}^{\prime}_{32}=\begin{bmatrix}-0.5\\ -0.5\end{bmatrix}, 𝐟43=[0.51.5]\mathbf{f}^{\prime}_{43}=\begin{bmatrix}0.5\\ -1.5\end{bmatrix} and 𝐟53=[1.50]\mathbf{f}^{\prime}_{53}=\begin{bmatrix}1.5\\ 0\end{bmatrix}. The output of both systems represents the position of the robot in the plane. The control parameters for i=1,,5i=1,...,5 and j=1,2,3j=1,2,3 were selected as

𝐏i=[𝐈2𝟎2]T,𝐐i=𝟎2,𝐑ij=𝐁iT[𝐁i𝐁iT]1𝐏i𝐆j\mathbf{P}_{i}=\begin{bmatrix}\mathbf{I}_{2}&\mathbf{0}_{2}\end{bmatrix}^{T},\ \mathbf{Q}_{i}=\mathbf{0}_{2},\ \mathbf{R}_{ij}=\mathbf{B}^{T}_{i}[\mathbf{B}_{i}\mathbf{B}_{i}^{T}]^{-1}\mathbf{P}_{i}\mathbf{G}_{j}
𝐊1=𝐊2=2𝐊3=0.5𝐊4=0.5𝐊5=[50𝐈210𝐈2]\mathbf{K}_{1}=\mathbf{K}_{2}=2\mathbf{K}_{3}=0.5\mathbf{K}_{4}=0.5\mathbf{K}_{5}=-\begin{bmatrix}50\mathbf{I}_{2}&10\mathbf{I}_{2}\end{bmatrix}

Under these system and the control parameters, the observed simulation results are shown in Figures 5, 6 and 7.

In Figure 5, it can be seen that the output of the concrete system Σ\Sigma can track the output of the abstraction Σ′′\Sigma^{\prime\prime}, starting from the green colored initial region and ending at the yellow colored target region, and in-between, the two trajectories remain close. The output tracking error is shown in Figure 6, which is bounded by the simulation function 𝒱\mathcal{V} (obtained with κ=12\kappa=12), which implies that the proposed method is effective. In Figure 6, it can also be seen that the value of simulation function changes when Σ′′\Sigma^{\prime\prime} crosses the boundary of a partition and the reason is similar to that of Case 1. According to Figure 6 and 7, the simulation function is bounded by the computed error bound and the value of this computed error bound also change around the instants where Σ′′\Sigma^{\prime\prime} and Σ\Sigma cross a boundary.

Refer to caption
Figure 5: The output of the concrete system Σ\Sigma and the abstraction Σ′′\Sigma^{\prime\prime}, starting from the green circular region and ending at the yellow target region. The boundaries of the partitions are shown in green dashed lines.
Refer to caption
Figure 6: The simulated output error 𝐲1𝐲2||\mathbf{y}_{1}-\mathbf{y}_{2}|| between the concrete system Σ\Sigma and the abstraction Σ′′\Sigma^{\prime\prime} and the value of simulation function using (24) with κ=12\kappa=12. Boundary crossing soon after green dashed lines.
Refer to caption
Figure 7: The computed error bound using b1b_{1}. Boundary crossing soon after green dashed lines.

V Conclusion

In this paper, a novel control strategy was presented for the control of PWA systems based on robust approximate simulation framework. First, we designed the interface and the simulation function for a configuration where the concrete system is a known PWA system and the abstraction is a linear system with the system matrices free to choose. Then, the proposed design procedure was generalized for a configuration where the abstraction is a PWA system with the system matrices free to choose under some constraints on its partitions. Finally, we used two simulation examples to illustrate the effectiveness of the proposed method. Future work aim to improve the established formal error bound such that the proposed approximate simulation based control method can be applied to address more general planning tasks.

References

  • [1] L. Rodrigues and J. How, “Automated control design for a piecewise-affine approximation of a class of nonlinear systems,” in Proceedings of the American Control Conference, vol. 4, 2001, pp. 3189–3194.
  • [2] W. Han and R. Tedrake, “Feedback design for multi-contact push recovery via LMI approximation of the Piecewise-Affine Quadratic Regulator,” in Proceedings of the 17th International Conference on Humanoid Robotics, 2017, pp. 842–849.
  • [3] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive Planar Manipulation with Convex Hybrid MPC,” in Proceedings of the International Conference on Robotics and Automation, 2018, pp. 247–253.
  • [4] L. Habets, P. Collins, and J. van Schuppen, “Reachability and control synthesis for piecewise-affine hybrid systems on simplices,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp. 938–948, 2006.
  • [5] E. Camacho, D. Ramirez, D. Limon, D. Muñoz de la Peña, and T. Alamo, “Model predictive control techniques for hybrid systems,” Annual Reviews in Control, vol. 34, no. 1, pp. 21–31, 2010.
  • [6] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal control of piecewise-affine systems,” in Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, 2019, p. 230–239.
  • [7] S. Sadraddini and R. Tedrake, “Sampling-based polytopic trees for approximate optimal control of piecewise affine systems,” arXiv e-prints, p. 1809.09716, 2018. [Online]. Available: https://arxiv.org/abs/1809.09716
  • [8] A. Hassibi and S. Boyd, “Quadratic stabilization and control of piecewise-linear systems,” in Proceedings of the American Control Conference., vol. 6, 1998, pp. 3659–3664.
  • [9] A. Girard and G. J. Pappas, “Hierarchical control using approximate simulation relations,” in Proceedings of the 45th Conference on Decision and Control, 2006, pp. 264–269.
  • [10] A. Girard and G. J. Pappas., “Hierarchical control system design using approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571, 2009.
  • [11] V. Kurtz, P. M. Wensing, and H. Lin, “Robust approximate simulation for hierarchical control of linear systems under disturbances,” in Proceedings of the American Control Conference, 2020, pp. 5352–5357.
  • [12] M. Di Benedetto and J. Grizzle, “Asymptotic model matching for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 39, no. 8, pp. 1539–1550, 1994.
  • [13] M. Johansson, Piecewise linear control systems: a computational approach.   Springer, 2003, vol. 284.
  • [14] V. Kurtz, P. M. Wensing, and H. Lin, “Approximate simulation for template-based whole-body control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 558–565, 2021.
  • [15] H. K. Khalil, Nonlinear systems.   Pretince Hall, 2002.
  • [16] S. Sadraddini and R. Tedrake, “Sampling-based polytopic trees for approximate optimal control of piecewise affine systems,” in Proceedings of the International Conference on Robotics and Automation, 2019, pp. 7690–7696.
  • [17] S. Raković, E. Kerrigan, D. Mayne, and K. Kouramas, “Optimized robust control invariance for linear discrete-time systems: Theoretical foundations,” Automatica, vol. 43, no. 5, pp. 831–841, 2007.