This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robust and Secure Sum-Rate Maximization for Multiuser MISO Downlink Systems with Self-sustainable IRS

Shaokang Hu    Shaokang Hu,   Zhiqiang Wei,  Yuanxin Cai,  Chang Liu,  Derrick Wing Kwan  Ng,  and Jinhong Yuan,  This work has been presented in part at the IEEE Global Communications Conference, 2020[1].The work of Z. Wei was supported by Alexander von Humboldt Foundation. The work of C. Liu was supported by the National Natural Science Foundation of China under Grant 61801082. D. W. K. Ng is supported by funding from the UNSW Digital Grid Futures Institute, UNSW, Sydney, under a cross-disciplinary fund scheme and by the Australian Research Council’s Discovery Project (DP210102169). The work was partially supported by the Australian Research Council (ARC) Discovery Projects under Grant DP190101363 and by the ARC Linkage Project under Grant LP170101196. S. Hu, Y. Cai, C. Liu, D. W. K. Ng, and J. Yuan are with the School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia (e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]). C. Liu also with the National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China. Z. Wei is with the Institute for Digital Communications (IDC), Friedrich-Alexander University Erlangen-Nuremberg, Germany (e-mail: [email protected]).
Abstract

This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received signals. We study the joint design of beamformers at an access point (AP) and the phase shifts as well as the energy harvesting schedule at the IRS for maximizing the system sum-rate. The design is formulated as a non-convex optimization problem taking into account the wireless energy harvesting capability of IRS elements, secure communications, and the robustness against the impact of channel state information (CSI) imperfection. Subsequently, we propose a computationally-efficient iterative algorithm to obtain a suboptimal solution to the design problem. In each iteration, 𝒮\mathcal{S}-procedure and the successive convex approximation are adopted to handle the intermediate optimization problem. Our simulation results unveil that: 1) there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS; 2) the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements; 3) an IRS equipped with small bit-resolution discrete phase shifters is sufficient to achieve a considerable system sum-rate of the ideal case with continuous phase shifts.

I Introduction

The sixth-generation (6G) networks are expected to serve as a key enabler for realizing the future intelligent digital society in 2030, offering superior communication services compared with the current fifth-generation (5G) networks, such as ultra-high data rate, high energy efficiency, large global coverage, and highly secure communications [2]. To satisfy these requirements, various technologies have been proposed in recent years. In particular, massive multiple-input multiple-output (MIMO), millimeter wave (mmWave) communications, and ultra-dense networks (UDNs) are prominent candidates. Although these technologies are able to enhance the wireless network coverage and capacity to a certain extent, they generally incur increased hardware costs, energy consumption, and signal processing complexity, due to the aggressive deployment of large-scale antennas and active nodes in the systems [3, 4]. As such, it is still a fundamental challenge to achieve a sustainable capacity growth of future wireless networks in terms of the communication cost and energy efficiency.

To fulfill the stringent requirements of 6G networks[2], the emerging intelligent reflecting surface (IRS)-assisted wireless communications [5] have received an unprecedented upsurge of attentions recently. Specifically, an IRS consists of a large number of low-cost passive reflection elements which can independently reflect the incident electromagnetic wave with controlled phase shifts. By intelligently adapting the phase shift of each IRS element to the conditions of communication channels, the reflected signals can be coherently combined at the desired receivers. As such, IRSs are able to reshape the signal propagation and to establish a favorable communication environment for achieving various purposes, such as enhancing the physical layer security, harnessing multiple access interference, and improving the quality of communication in terms of both spectral efficiency and energy efficiency[6]. For example, [5] confirmed that IRS-assisted communication systems can extend the signal coverage compared with conventional systems where the IRS is absent. Furthermore, the results in [7] showed that the introduction of an IRS can significantly improve both the achievable system data rate and the total harvested power in simultaneous wireless information and power transfer (SWIPT) systems.

Despite the fruitful results in the literature, e.g. [8, 9, 10, 5, 6, 11, 12, 13], most of the works idealistically assumed that the energy consumption of the IRS is negligible. However, typical power consumption values of each phase shifter are 1.51.5, 4.54.5, 66, and 7.87.8 mW for 33-, 44-, 55-, and 66-bit resolution phase shifters, respectively [14, 15, 16, 17]. Considering a hundred of IRS elements, the operational power of IRS with 33-bit phase shifters becomes 0.150.15 W which is comparable to the radiated communication power. In fact, IRSs are expected to be battery- or grid- powered [18]. However, powering IRSs via conventional powerline networks would not only increase the implementation cost, but would also decrease the flexibility of IRS deployment. On the other hand, battery-powered IRS are usually equipped with a limited energy storage leading to restrictive operational lifetime that creates a bottleneck in communication networks. Moreover, manually replacing batteries of IRS may be costly or even impossible due to environmental hazards. As a result, the amalgamation of energy harvesting with IRSs is a promising alternative for providing self-sustainable and uninterrupted communication services. In practice, the availability of major conventional energy harvesting resources, such as wind, geothermal, and solar, are usually limited by the weather and energy source locations. As a result, harvesting energy from radio frequency (RF) in wireless communication systems is more reliable and suitable than that from natural sources, due to the controllability of wireless power transfer (WPT)[19]. To enable uninterrupted communication services, a self-sustainable IRS enabled by WPT was considered in [20, 21] for improving the system sum-rate and capacity, respectively. However, [20] focused on the resource allocation design of a single-antenna AP and the obtained results cannot be directly extended to the case adopting a multi-antenna transmitter. On the other hand, although a multi-antenna AP system was considered in [21], the obtained results were developed for the case of a single receiver system, which are not applicable to systems serving with multiple receivers. Moreover, all IRS elements in [20, 21] are forced to adopt the same operating mode in every time instant, which is a strictly suboptimal setting decreasing the flexibility in resource allocation. Furthermore, both [20, 21] ideally assumed a linear energy harvesting model for the conversion of the scavenged RF energy to the direct current (DC) power for simplicity. Yet, the conventional linear energy harvesting model fails to capture the non-linear features of practical energy harvesting circuits [22, 23] and resource allocation designs based on the simplified linear model can lead to severe resource allocation mismatches and performance degradation. Additionally, [20, 21] assumed the availability of continuous phase shifters at IRS which can hardly implemented in particle due to high hardware implementation cost. On the other hand, to facilitate effective energy harvesting, transmitters in SWIPT systems usually increase the power of the information-carrying signals, which may also increase the susceptibility to eavesdropping due to the higher potential of information leakage, which is not considered in [20, 21]. Thus, communication security is a fundamental issue in wireless-powered IRS-assisted systems.

Conventionally, security provisioning methods rely on cryptographic techniques applied at the upper layers of wireless networks, which require high computational complexity leading to a large amount of energy consumption. Fortunately, different from cryptographic techniques, physical layer security is computationally-efficient and effective to safe guard communications by exploiting the inherent randomness of wireless channels [24]. In particular, there are several methods to enhance the physical layer security in wireless networks, e.g. cooperative jamming[25] and artificial-noise (AN)-aided beamforming [26]. Indeed, exploiting AN or jamming signals in wireless networks is a double-edged sword. On the one hand, it can facilitate secure communications by degrading the quality of eavesdroppers’ channels. On the other hand, it may also cause inevitable interference to legitimate users. As a remedy, the application of IRS and AN has been investigated to guarantee secure communications, e.g. [27, 28]. In practice, the degrees of freedom (DoF) offered by the IRS can provide a better interference management which alleviates the negative impacts caused by AN transmission. Indeed, to unleash the potential gain brought by the IRS, accurate channel state information (CSI) is needed for effective beamforming design. However, numerous literature, e.g. [27, 28], over optimistically assumed that perfect CSI of eavesdropper channels is available at the AP which can hardly be obtained in practice. Especially, potential eavesdroppers may not interact with the AP and acquiring perfect CSI of the eavesdropping channel at the AP is challenging. In other words, adopting the results from [27, 28] for robust beamforming design may increase the risk of security breach even if an IRS is deployed. To this end, considering imperfect CSI of eavesdroppers, a secure IRS-assisted wireless network for maximizing the system sum-rate in the presence of multiple users and eavesdroppers was presented in [29]. Nevertheless, the design in [20, 21, 29] still required the availability of perfect CSI of IRS communication channels. Unfortunately, due to the nearly passive implementation of the IRS, obtaining perfect CSI for the IRS related links is challenging, if not impossible. Also, the authors in [30] showed that when the joint transmitter precoder and IRS phase shifts design ignores the existence of possible CSI errors, existing non-robust designs, e.g. [27, 28], cannot always guarantee the required target rate which jeopardizes the system performance significantly. As a result, an efficient robust beamforming design to strike a balance between the system sum-rate and the IRS self-sustainability for secure communication is desired which has not been reported in the literature, yet.

Motivated by the aforementioned observations, we consider a robust and secure IRS-assisted multiuser MISO downlink wireless system in the presence of multiple single-antenna potential eavesdroppers. In particular, by exploiting the large number of IRS elements, our design allows a portion of the IRS elements to reflect signals from the AP and the remaining to harvest energy for supporting the energy consumption of the IRS elements. To maximize the system sum-rate, we jointly optimize the beamforming for information signal and AN, the discrete phase shifts of the IRS, and the harvesting schedule at the IRS. The resource allocation design is formulated as a non-convex mixed-integer optimization problem takes into account the imperfect CSI of all wireless channels, the non-linearity of energy harvesting, and the communication security quality of service (QoS) requirement. To address the design problem at hand, this paper proposes a computationally-efficient iterative suboptimal algorithm. In particular, we first propose a series of transformations to resolve the coupling between the optimization variables which paves the way for the development of a computationally efficient iterative algorithm based on the successive convex approximation (SCA) and semi-definite relaxation (SDR). Unlike the conventional alternation optimization (AO) method [20, 21, 11, 5], which can be easily trapped in inefficient stationary points over iterations in practice, our proposed algorithm is able to jointly optimize all these optimization variables in each iteration enjoying a higher system sum-rate. Our results not only show the non-trivial trade-off between the system sum-rate and the self-sustainability of IRS, but also unveil the impact of limited bit resolution of the IRS phase shifters on the system performance. In addition, our results reveal that deploying self-sustainable IRS can significantly enhance the physical layer security in wireless communication systems.

Notations: The scalars, vectors, and matrices are represented by lowercase letter xx, boldface lowercase letter 𝐱\mathbf{x}, and boldface uppercase letter 𝐗\mathbf{X}, respectively. 𝔹N×M\mathbb{B}^{N\times M}, N×M\mathbb{R}^{N\times M}, and N×M\mathbb{C}^{N\times M} denote the space of N×MN\times M matrices with binary, real, and complex entries, respectively. N\mathbb{H}^{N} denotes the set of all N×NN\times N Hermitian matrices. The modulus of a complex-valued scalar is denoted by |||\cdot|. The Euclidean norm, spectral norm, nuclear norm, and Frobenius norm of a matrix are denoted by \|\cdot\|, 2\|\cdot\|_{2}, \|\cdot\|_{*}, and F\|\cdot\|_{\mathrm{F}}, respectively. The transpose, conjugate transpose, conjugate, expectation, rank, and trace of a matrix are denoted as ()T(\cdot)^{\mathrm{T}}, ()H(\cdot)^{\mathrm{H}}, ()(\cdot)^{*}, 𝔼{}\mathbb{E}\{\cdot\}, Rank()\mathrm{Rank}(\cdot), and Tr()\mathrm{Tr(\cdot)}, respectively. The maximum eigenvalue of a matrix is denoted by λmax(){\lambda}_{\max}(\cdot) and the eigenvector associated with the maximum eigenvalue is denoted by 𝝀max()\bm{\lambda}_{\max}(\cdot). [x]+[x]^{+} represents max{0,x}\max\{0,x\}. 𝐗𝟎\mathbf{X}\succeq\mathbf{0} and 𝐗𝟎\mathbf{X}\preceq\mathbf{0} mean that matrix 𝐗\mathbf{X} is positive semi-definite and negative semi-definite, respectively. Re()\mathrm{Re}(\cdot) stands for the real part of a complex number. diag(𝐱)\mathrm{diag(\mathbf{x})} denotes a diagonal matrix with its diagonal elements given by vector 𝐱N×1\mathbf{x}\in\mathbb{C}^{N\times 1} and vec(𝐗)\mathrm{vec}(\mathbf{X}) results in a column vector obtained by sequentially stacking of the columns of matrix 𝐗\mathbf{X}. Operator [𝐗]nm[\mathbf{X}]_{nm} returns the element at the nn-th row and the mm-th column of the matrix 𝐗\mathbf{X}. jj denotes the imaginary unit. For a continuous function f(𝐗)f(\mathbf{X}), 𝐗f()\nabla_{\mathbf{X}}f(\cdot) represents the gradient of f()f(\cdot) with respect to matrix 𝐗\mathbf{X}. The distribution of a circularly symmetric complex Gaussian (CSCG) random variable with mean μ\mu and variance σ2\sigma^{2} is denoted by 𝒞𝒩(μ,σ2)\mathcal{CN}(\mu,\sigma^{2}) and \sim stands for “distributed as”. 𝐈N\mathbf{I}_{N} denotes an N×NN\times N identity matrix. \otimes stands for the Kronecker product.

II System Model

II-A Signal Model

Refer to caption
Fig. 1: A downlink wireless communication system assisted by a self-sustainable IRS.

As shown in Fig. 1, this paper considers a downlink MISO system assisted by a wireless-powered IRS. An AP equipping with Mt>1M_{\mathrm{t}}>1 antennas transmits K>1K>1 independent data streams to KK single-antenna users simultaneously, denoted by a set 𝒦={1,,K}\mathcal{K}=\{1,\ldots,K\}. There are JJ potential eavesdroppers equipped with a single-antenna each, denoted by a set 𝒥={1,,J}\mathcal{J}=\{1,\ldots,J\}. We assume that all the eavesdroppers work independently and Mt>JM_{\mathrm{t}}>J holds to guarantee communication security, as commonly adopted in the literature[31, 32, 33]. Besides, the IRS panel consists of NN IRS elements, denoted by a set 𝒩={1,,N}\mathcal{N}=\{1,\ldots,N\}. The reflection matrix of the IRS is denoted as 𝚯N×N\bm{\Theta}\in\mathbb{C}^{N\times N} and its details will be discussed in Section II-B.

This paper assumes a quasi-static flat fading channel model. The baseband equivalent channels from the AP to the IRS (AP-IRS), from the IRS to the kk-th user (IRS-user), from the AP to the kk-th user (AP-user), from the IRS to the jj-th potential eavesdropper (IRS-Eve), and from the AP to the jj-th potential eavesdropper (AP-Eve) are denoted by 𝐆N×Mt\bm{\mathbf{G}}\in\mathbb{C}^{N\times M_{\mathrm{t}}}, 𝐡r,kN×1\mathbf{h}_{\mathrm{r},k}\in\mathbb{C}^{N\times 1}, 𝐡d,kMt×1\mathbf{h}_{\mathrm{d},k}\in\mathbb{C}^{M_{\mathrm{t}}\times 1}, 𝐡re,jN×1\mathbf{h}_{\mathrm{re},j}\in\mathbb{C}^{N\times 1} and 𝐡ed,jMt×1\mathbf{h}_{\mathrm{ed},j}\in\mathbb{C}^{M_{\mathrm{t}}\times 1}, respectively. The transmitted signal from the AP is given by

𝐱=k𝒦𝐰kxk+𝐳,\displaystyle\mathbf{x}=\sum_{k\in\mathcal{K}}\mathbf{w}_{k}x_{k}+\mathbf{z}, (1)

where 𝐰kMt×1\mathbf{w}_{k}\in\mathbb{C}^{M_{\mathrm{t}}\times 1} is the precoding vector for the kk-th user, xk𝒞𝒩(0,1)x_{k}\sim\mathcal{CN}(0,1), k𝒦\forall k\in\mathcal{K}, with 𝔼{|xk|2}=1\mathbb{E}\{|x_{k}|^{2}\}=1, is the modulated data symbol for the kk-th user, and 𝐳Mt×1\mathbf{z}\in\mathbb{C}^{M_{\mathrm{t}}\times 1} denotes the AN vector generated by the AP to deliberately combat the eavesdroppers. Specifically, 𝐳\mathbf{z} is a CSCG vector with 𝐳𝒞𝒩(𝟎,𝐙)\mathbf{z}\sim\mathcal{CN}(\mathbf{0},\mathbf{Z}), where 𝐙𝟎\mathbf{Z}\succeq\mathbf{0} is the covariance matrix of the AN vector. Note that the AN is assumed to be unknown to both the legitimate users and the potential eavesdroppers, which is to be optimized by the proposed algorithm to facilicate communication security provisioning and energy harvesting. We assume that the AP has a total transmit power PmaxP_{\max}, i.e., 𝔼{𝐱2}=k𝒦𝐰k2+Tr(𝐙)Pmax\mathbb{E}\{\|\mathbf{x}\|^{2}\}=\sum_{k\in\mathcal{K}}\|\mathbf{w}_{k}\|^{2}+\mathrm{Tr}(\mathbf{Z})\leq P_{\max}. In the system, each user receives signals via two links, i.e., from the indirect path via the IRS (AP-IRS-user) and the direct AP-user channel. Similarly, each potential eavesdropper also receives signals via two links, i.e., from the indirect path via the IRS (AP-IRS-Eve) and the direct AP-Eve channel. Thus, the signals received at the kk-th user and at the jj-th eavesdropper are given by111For a small-cell network with a cell radius of 200200 meters, the delay between the propagation path reflected by the IRS and the direct path is typically around 11 μs\mathrm{\mu s}, which is much shorter than a symbol duration, e.g. 7070 μs\mathrm{\mu s} in Long-Term Evolution systems[34]. Thus, the potential inter-symbol interference caused by the two paths is not considered in (2).

yk=(𝐡d,kH+𝐡r,kH𝚯𝐆)(i𝒦𝐰ixi+𝐳)+nk,k𝒦, and\displaystyle y_{k}\!\!=\!\!\Big{(}\!\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}\!+\!\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\bm{\Theta}\mathbf{G}\!\Big{)}\!\Big{(}\!\sum_{i\in\mathcal{K}}\!\mathbf{w}_{i}x_{i}\!+\!\mathbf{z}\Big{)}+n_{k},\forall k\in\mathcal{K},\text{ and} (2)
yeve,j=(𝐡ed,jH+𝐡re,jH𝚯𝐆)(i𝒦𝐰ixi+𝐳)+neve,j,k𝒦,j𝒥,\displaystyle y_{\mathrm{eve},j}\!\!=\!\!\Big{(}\!\mathbf{h}_{\mathrm{ed},j}^{\mathrm{H}}\!+\!\mathbf{h}_{\mathrm{re},j}^{\mathrm{H}}\bm{\Theta}\mathbf{G}\!\Big{)}\!(\!\sum_{i\in\mathcal{K}}\!\mathbf{w}_{i}x_{i}\!+\!\mathbf{z})\!+\!{n}_{\mathrm{eve},j},\forall k\!\in\!\mathcal{K},j\!\in\!\mathcal{J},

respectively. Variables nk𝒞𝒩(0,σk2)n_{k}\sim\mathcal{CN}(0,\sigma_{k}^{2}) and neve,j𝒞𝒩(0,σeve,j2){n}_{\mathrm{eve},j}\sim\mathcal{CN}(0,\sigma_{\mathrm{eve},j}^{2}) denote the background noise at the kk-th user with noise power σk2\sigma_{k}^{2} and at the jj-th eavesdropper with noise power σeve,j2\sigma_{\mathrm{eve},j}^{2}, respectively. Accordingly, the received signal-to-interference-plus-noise ratio (SINR) at the kk-th user, k𝒦\forall k\in\mathcal{K}, is given by

SINRk=|(𝐡d,kH+𝐡r,kH𝚯𝐆)𝐰k|2ikK|(𝐡d,kH+𝐡r,kH𝚯𝐆)𝐰i|2+|(𝐡d,kH+𝐡r,kH𝚯𝐆)𝐳|2+σk2.\displaystyle\mathrm{SINR}_{k}\!\!=\!\!\frac{|(\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}+\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\bm{\Theta}\mathbf{G})\mathbf{w}_{k}|^{2}}{\sum\limits_{i\neq k}^{K}\!|\!(\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}\!\!+\!\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\bm{\Theta}\mathbf{G})\mathbf{w}_{i}|^{2}\!\!+\!|(\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}\!\!+\!\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\bm{\Theta}\mathbf{G})\mathbf{z}|^{2}\!\!+\!\sigma_{k}^{2}}\text{.} (3)

The achievable rate (bits/s/Hz) of the kk-th user is given by Rk=log2(1+SINRk),k𝒦.R_{k}=\log_{2}\left(1+\mathrm{SINR}_{k}\right),\forall k\in\mathcal{K}\text{.} For security provisioning, we adopt the worst-case assumption on the eavesdropping capabilities of potential eavesdroppers. Specifically, the potential eavesdroppers are assumed to have unlimited computational resources such that they can cancel all the multiuser interference before decoding the desired information[29]. Therefore, the channel capacity between the AP and the jj-th potential eavesdropper for decoding the signal of the kk-th legitimate user is given by

Ck,j=log2(1+|(𝐡ed,jH+𝐡re,jH𝚯𝐆)𝐰k|2|(𝐡ed,jH+𝐡re,jH𝚯𝐆)𝐳|2+σeve,j2),k,j.\displaystyle C_{k,j}\!\!=\!\log_{2}\Big{(}1\!+\!\frac{|(\mathbf{h}_{\mathrm{ed},j}^{\mathrm{H}}+\mathbf{h}_{\mathrm{re},j}^{\mathrm{H}}\bm{\Theta}\mathbf{G})\mathbf{w}_{k}|^{2}}{|(\mathbf{h}_{\mathrm{ed},j}^{\mathrm{H}}+\mathbf{h}_{\mathrm{re},j}^{\mathrm{H}}\bm{\Theta}\mathbf{G})\mathbf{z}|^{2}+\sigma^{2}_{\mathrm{eve},j}}\Big{)},\forall k,j. (4)

Hence, the achievable secrecy rate between the AP and the kk-th legitimate user is Rs,k=[Rkmaxj𝒥{Ck,j}]+R_{\mathrm{s},k}\!\!=\!\!\Big{[}R_{k}\!\!-\!\!\underset{j\in\mathcal{J}}{\max}\{C_{k,j}\}\Big{]}^{+}, and the system sum secrecy rate is given by Rs=k𝒦Rs,kR_{\mathrm{s}}\!\!=\!\!\sum_{k\in\mathcal{K}}R_{\mathrm{s},k}[29, 35].

II-B IRS Model

In this paper, we consider a realistic model of the IRS to achieve self-sustainability, which contains discrete phase shifters and a non-linear energy222In this paper, the unit of energy consumption is Joule-per-second. Therefore, the terms “power” and “energy” are interchangeable. harvesting circuit.

Refer to caption
Fig. 2: Energy harvesting block diagram of the self-sustainable IRS.

II-B1 Phase Shift Model

The reflection matrix is defined as 𝚯=𝐀𝚽\bm{\Theta}=\mathbf{A}\mathbf{\Phi}, where 𝐀N×N\mathbf{A}\in\mathbb{R}^{N\times N} is an IRS mode selection matrix and 𝚽N×N\mathbf{\Phi}\in\mathbb{C}^{N\times N} is a diagonal matrix. Matrix 𝐀=diag(α1,,αn,,\mathbf{A}=\mathrm{diag}(\alpha_{1},\ldots,\alpha_{n},\ldots, αN)𝔹N×N\alpha_{N})\in\mathbb{B}^{N\times N}, n𝒩\forall n\in\mathcal{N}, and αn{0,1}\alpha_{n}\in\{0,1\} is an IRS mode selection variable which is defined as:

αn={1,Reflection mode at IRS elementn,0,Energy harvesting mode at IRS elementn.\displaystyle\alpha_{n}=\left\{\begin{array}[]{ll}1,&\text{Reflection mode at IRS element}\,n\text{,}\\ 0,&\text{Energy harvesting mode at IRS element}\,n\text{.}\end{array}\right. (7)

A simplified equivalent circuit of a self-sustainable IRS is shown in Fig. 2. Specifically, several positive-intrinsic-negative (PIN) diodes are embedded in each IRS element such that the IRS elements can be switched to different modes [18], i.e., energy harvesting mode or reflection modes333Note that the IRS is equipped with a controller which switches the operation mode of the IRS elements between the reflection mode and power harvesting mode[6].. In particular, IRS elements in reflection mode reflect all impinging signal waveforms, while the elements in energy harvesting mode harvest all the received energy carried by the signals. Once an IRS element is in reflection mode, all the received signals at that element are reflected and it cannot harvest any energy. Likewise, the elements operating in power harvesting mode do not reflect any received signal. Note that the mode selection policy will be optimized by the proposed algorithm to balance the number of energy harvesting and reflection IRS elements. The diagonal matrix 𝚽\mathbf{\Phi} is defined as 𝚽=\mathbf{\Phi}=diag(\mathrm{diag}(β1ejθ1,\beta_{1}e^{j\theta_{1}},,\ldots,βnejθn\beta_{n}e^{j\theta_{n}},,βNejθN),\ldots,\beta_{N}e^{j\theta_{N}})N×N\in\mathbb{C}^{N\times N} with a phase shift θn[0,2π)\theta_{n}\in[0,2\pi) and an amplitude coefficient βn[0,1],n𝒩\beta_{n}\in[0,1],\forall n\in\mathcal{N}. We assume that a discrete phase shifter is adopted in each IRS element and the phase shift interval [0,2π)[0,2\pi) is uniformly quantized, i.e., θn={0,,θ,,θ(B1)},n𝒩,\theta_{n}\in\mathcal{F}=\mathcal{\mathfrak{}}\Big{\{}0,\ldots,\bigtriangleup\theta,\ldots,\bigtriangleup\theta(B-1)\Big{\}},\forall n\in\mathcal{N}, where \mathcal{F} is a set of phase shifts, θ=2π/B\bigtriangleup\theta=2\pi/B, B=2bB=2^{b} is the total number of realizable phase shift levels, and bb is the given constant bit resolution. For practical implementation of the IRS, the reflection coefficient βn\beta_{n} is fixed to be 11 in this paper, as commonly adopted in the literature, e.g. [5, 7, 36, 17]. For the reflection mode, by varying the biasing voltage of each phase shifter via a direct current feeding line, the imping signals at each IRS element are reflected with some controlled phase shifts [18]. In particular, the power consumption of each IRS reflection element is related to its bit resolution [14, 15, 16, 17]. Thus, we denote PIRS(b)P_{\mathrm{IRS}}(b) as the amount of power consumed by each bb-bit resolution IRS reflection element.

II-B2 Non-linear Energy Harvesting Model

As for the energy harvesting mode, the signals go through the radio frequency (RF)-to-direct current (DC) power conversion circuit, which consists of three parts, i.e., a matching network, a voltage multiplier, and an energy storage. In particular, the matching network enables the maximum power transmission from the antenna to a voltage multiplier. Also, the voltage multiplier converts the incident RF power into DC power and an energy storage guarantees the smoothed DC power delivery to the load444Note that other advanced hardware circuit implementations of IRS are beyond the scope of the paper and interested readers may refer to [37, 38] for more details. [39]. The power consumed by the RF to DC power conversion circuit is denoted by Pc>0P_{\mathrm{c}}>0, which is a constant value depending on the detailed circuit specifications, e.g. resistance, capacitance, and inductance. The total received RF power at the IRS is given by

PPR=𝔼(𝐀EH(𝐆(k𝒦𝐰kxk+𝐳)+𝐧a)2),\displaystyle P_{\mathrm{PR}}=\mathbb{E}\Big{(}\|\mathbf{A}_{\mathrm{EH}}\Big{(}\mathbf{G}\Big{(}\sum_{k\in\mathcal{K}}\mathbf{w}_{k}x_{k}+\mathbf{z}\Big{)}+\mathbf{n}_{a}\Big{)}\|^{2}\Big{)}, (8)

where 𝐀EH=𝐈N𝐀\mathbf{A}_{\mathrm{EH}}=\mathbf{I}_{N}-\mathbf{A} is the energy harvesting binary-valued matrix. Vector 𝐧a𝒞𝒩(𝟎,σa2𝐈N)\mathbf{n}_{a}\sim\mathcal{CN}(\mathbf{0},\sigma_{a}^{2}\mathbf{I}_{N}) is the thermal noise at the IRS with per IRS element noise power σa2\sigma_{a}^{2}. In general, there are two tractable models for characterizing the property of RF-based energy harvesting in the literature, i.e., the linear model and the non-linear model[19]. However, the linear model fails to capture the characteristics of the inherent non-linearity of practical energy harvesting circuits[40]. Motivated by this, we adopt a more realistic non-linear energy harvesting model proposed in [40] at the IRS and it is given by

PPH=ΨMPΩ1Ω,\displaystyle P_{\mathrm{PH}}=\frac{\Psi-M_{\mathrm{P}}\Omega}{1-\Omega}, (9)

where Ω=11+exp(aq)\Omega=\frac{1}{1+\exp(aq)} and Ψ=MP1+exp(a(PPRq))\Psi=\frac{M_{\mathrm{P}}}{1+\exp\Big{(}-a(P_{\mathrm{PR}}-q)\Big{)}} is a sigmoidal function whose input is the received RF power, PPRP_{\mathrm{PR}}. Parameter MPM_{\mathrm{P}} is a nonnegative constant which determines the maximum harvestable power. Also, constants a>0a>0 and q>0q>0 capture the joint effects of resistance, capacitance, and circuit sensitivity of the energy harvesting circuit. Note that parameters MpM_{\mathrm{p}}, aa, and qq can be obtained easily via some standard curve fitting approach once the schematic of the adopted energy harvesting circuit is fixed.

II-C Channel State Information

In the literature, vaious approaches have been proposed for CSI estimation of individual links and/or cascaded links, e.g. [41, 42]. To isolate the robust resource allocation design from any specific channel estimation design details, e.g. [41, 43], we consider the bounded CSI error model555This model guarantees the performance even for the worst case of channel estimation error, as long as Δ𝐆cu,kFρcu,k\|\Delta\mathbf{G}_{\mathrm{cu},k}\|_{\mathrm{F}}\leq\rho_{\mathrm{cu},k}. [42] for the cascaded AP-IRS-user channels, the AP-IRS channel, and the direct AP-user channels. Specifically, we denote the cascaded AP-IRS-user channel for the kk-th user as

𝐆cu,k=\displaystyle\mathbf{G}_{\mathrm{cu},k}= diag(𝐡r,kH)𝐆=𝐆^cu,k+Δ𝐆cu,k,k\displaystyle\mathrm{diag}(\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}})\mathbf{G}=\hat{\mathbf{G}}_{\mathrm{cu},k}+\Delta\mathbf{G}_{\mathrm{cu},k},\forall k (10)
with 𝚼cu,k=Δ\displaystyle\text{ with }\mathbf{\Upsilon}_{\mathrm{cu},k}\overset{\Delta}{=} {Δ𝐆cu,kN×Mt:Δ𝐆cu,kFρcu,k},k,\displaystyle\Big{\{}\!\Delta\mathbf{G}_{\mathrm{cu},k}\in\mathbb{C}^{N\times M_{\mathrm{t}}}\!\!:\|\Delta\mathbf{G}_{\mathrm{cu},k}\|_{\mathrm{F}}\!\leq\!\rho_{\mathrm{cu},k}\Big{\}},\forall k,

where 𝐆^cu,k,k,\hat{\mathbf{G}}_{\mathrm{cu},k},\forall k, is the estimation of the corresponding channel 𝐆cu,k\mathbf{G}_{\mathrm{cu},k}. The channel estimation error of 𝐆cu,k,k\mathbf{G}_{\mathrm{cu},k},\forall k, is denoted by Δ𝐆cu,k\Delta\mathbf{G}_{\mathrm{cu},k}. The continuous set 𝚼cu,k,k,\mathbf{\Upsilon}_{\mathrm{cu},k},\forall k, collects all possible channel estimation errors, while constant ρcu,k,k,\rho_{\mathrm{cu},k},\forall k, denotes the maximum value of the norm of the CSI estimation error Δ𝐆cu,k,k\Delta\mathbf{G}_{\mathrm{cu},k},\forall k.

Since the positions of AP and IRS are usually fixed, the AP-IRS channel, 𝐆\mathbf{G}, is generally quasi-static[43]. Therefore, the channel matrix, 𝐆\mathbf{G}, can be estimated in a large timescale via existing algorithms, e.g. a dual-link pilot transmission scheme and a coordinate descent-based AP-IRS channel estimation algorithm[43]. As a result, to capture the CSI imperfectness of 𝐆\mathbf{G}, we express the AP-IRS channel as

𝐆=𝐆^+Δ𝐆 with 𝚼G=Δ{Δ𝐆N×Mt:Δ𝐆FρG},\displaystyle\mathbf{G}\!\!=\!\!\hat{\mathbf{G}}\!+\!\Delta\mathbf{G}\text{ with }\mathbf{\Upsilon}_{\mathrm{G}}\!\overset{\Delta}{=}\!\Big{\{}\!\Delta\mathbf{G}\!\in\!\mathbb{C}^{N\times M_{\mathrm{t}}}\!\!:\!\!\|\Delta\mathbf{G}\|_{\mathrm{F}}\!\leq\!\rho_{\mathrm{G}}\!\Big{\}}, (11)

where 𝐆^\hat{\mathbf{G}} is the estimation of channel 𝐆\mathbf{G}, Δ𝐆\Delta\mathbf{G} represents the estimation error of 𝐆\mathbf{G}, 𝚼G\mathbf{\Upsilon}_{\mathrm{G}} is a continuous set which collects all the possible channel estimation errors, and ρG\rho_{\mathrm{G}} is the maximum value of norm of the the estimation error Δ𝐆\Delta\mathbf{G}. Generally, we have ρcu,kρG,k\rho_{\mathrm{cu},k}\geq\rho_{\mathrm{G}},\forall k.

Moreover, the direct AP-user channel can be estimated by exploiting conventional uplink pilot transmission [43]. Similarly, we denote the direct AP-user channel for the kk-th user as

𝐡d,k=\displaystyle\mathbf{h}_{\mathrm{d},k}= 𝐡^d,k+Δ𝐡d,k\displaystyle\hat{\mathbf{h}}_{\mathrm{d},k}+\Delta\mathbf{h}_{\mathrm{d},k} (12)
with 𝚼d,k=Δ\displaystyle\text{ with }\mathbf{\Upsilon}_{\mathrm{d},k}\overset{\Delta}{=} {Δ𝐡d,kMt×1:Δ𝐡d,k2ρd,k},k,\displaystyle\Big{\{}\Delta\mathbf{h}_{\mathrm{d},k}\in\mathbb{C}^{M_{\mathrm{t}}\times 1}:\|\Delta\mathbf{h}_{\mathrm{d},k}\|_{2}\leq\rho_{\mathrm{d},k}\Big{\}},\forall k,

where 𝐡^d,k\hat{\mathbf{h}}_{\mathrm{d},k} is the estimate of corresponding channel 𝐡d,k\mathbf{h}_{\mathrm{d},k} and the corresponding channel estimation error is Δ𝐡d,k\Delta\mathbf{h}_{\mathrm{d},k}. The continuous set 𝚼d,k\mathbf{\Upsilon}_{\mathrm{d},k}, collects all the possible channel estimation errors, while constant ρd,k\rho_{\mathrm{d},k}, is the maximum value of the norm of the CSI estimation error. Similarly, the jj-th cascaded AP-IRS-Eve channel666Note that the CSI of active eavesdroppers can be estimated by their transmissions, while the CSI for passive eavesdroppers can be estimated through the local oscillator power leaked from the eavesdroppers’ receiver RF front end[44]. and the jj-th direct AP-Eve channel are denoted as 𝐆ce,j=diag(𝐡re,jH)𝐆=𝐆^ce,j+Δ𝐆ce,j\mathbf{G}_{\mathrm{ce},j}=\mathrm{diag}(\mathbf{h}_{\mathrm{re},j}^{\mathrm{H}})\mathbf{G}=\hat{\mathbf{G}}_{\mathrm{ce},j}+\Delta\mathbf{G}_{\mathrm{ce},j} with 𝚼ce,j=Δ{Δ𝐆ce,jN×Mr:Δ𝐆ce,jFρce,j},j\mathbf{\Upsilon}_{\mathrm{ce},j}\overset{\Delta}{=}\Big{\{}\Delta\mathbf{G}_{\mathrm{ce},j}\in\mathbb{C}^{N\times M_{\mathrm{r}}}:\|\Delta\mathbf{G}_{\mathrm{ce},j}\|_{\mathrm{F}}\leq\rho_{\mathrm{ce},j}\Big{\}},\forall j, and 𝐡ed,j=𝐡^ed,j+Δ𝐡ed,j\mathbf{h}_{\mathrm{ed},j}=\hat{\mathbf{h}}_{\mathrm{ed},j}+\Delta\mathbf{h}_{\mathrm{ed},j} with 𝚼ed,j=Δ{Δ𝐡ed,jMr×1:Δ𝐡ed,j2ρed,j},j,\mathbf{\Upsilon}_{\mathrm{ed},j}\overset{\Delta}{=}\Big{\{}\Delta\mathbf{h}_{\mathrm{ed},j}\in\mathbb{C}^{M_{\mathrm{r}}\times 1}:\|\Delta\mathbf{h}_{\mathrm{ed},j}\|_{2}\leq\rho_{\mathrm{ed},j}\Big{\}},\forall j, respectively. 𝐆^ce,j,Δ𝐆ce,j,𝚼ce,j,ρce,j\hat{\mathbf{G}}_{\mathrm{ce},j},\Delta\mathbf{G}_{\mathrm{ce},j},\mathbf{\Upsilon}_{\mathrm{ce},j},\rho_{\mathrm{ce},j}, 𝐡^ed,j,Δ𝐡ed,j,𝚼ed,j\hat{\mathbf{h}}_{\mathrm{ed},j},\Delta\mathbf{h}_{\mathrm{ed},j},\mathbf{\Upsilon}_{\mathrm{ed},j}, and ρed,j\rho_{\mathrm{ed},j} are defined in the similar manner as the AP-IRS-user link, 𝐆cu,k\mathbf{G}_{\mathrm{cu},k}, and the AP-user link, 𝐡d,k\mathbf{h}_{\mathrm{d},k}. Generally, we have ρce,jρG,j\rho_{\mathrm{ce},j}\geq\rho_{\mathrm{G}},\forall j.

III Problem Formulation

In this paper, we aim to maximize the system sum-rate while maintaining the self-sustainability of the IRS by jointly designing the precoding vector {𝐰k}k𝒦\{\mathbf{w}_{k}\}_{k\in\mathcal{K}}, the AN covariance matrix 𝐙\mathbf{Z}, the mode selection indicators {αn}n𝒩\{\alpha_{n}\}_{n\in\mathcal{N}}, and the discrete phase shifters {θn}n𝒩\{\theta_{n}\}_{n\in\mathcal{N}}. The joint design can be formulated as the following optimization problem777The considered problem formulation serves as a generalized optimization framework that subsumes various existing designs as subcases, e.g. robust precoding [30], secure precoding [28], or energy-harvesting IRS [20], etc.:

maximize𝐰k,𝐙,αn,θnk𝒦minΔ𝐡d,k,Δ𝐆cu,k{log2(1+SINRk)}\displaystyle\underset{\mathbf{w}_{k},\,\mathbf{Z},\,\alpha_{n},\,\theta_{n}}{\mathrm{maximize}}\,\,\sum_{k\in\mathcal{K}}\underset{\Delta\mathbf{h}_{\mathrm{d},k},\Delta\mathbf{G}_{\mathrm{cu},k}}{\min}\Big{\{}\log_{2}(1+\mathrm{SINR}_{k})\Big{\}} (13)
s.t.C1:k𝒦𝐰k2+Tr(𝐙)Pmax,C2:θn,n𝒩,\displaystyle\mathrm{s.t.}\,\,\mathrm{C1}:\sum_{k\in\mathcal{K}}\|\mathbf{w}_{k}\|^{2}+\mathrm{Tr}(\mathbf{Z})\leq P_{\max},\,\,\mathrm{C2}:\theta_{n}\in\mathcal{F},\forall n\in\mathcal{N},
C3:n𝒩αnPIRS(b)+PcminΔ𝐆{PPH},\displaystyle\hskip 17.07164pt\mathrm{C3}:\sum_{n\in\mathcal{N}}\alpha_{n}P_{\mathrm{IRS}}(b)+P_{\mathrm{c}}\leq\underset{\Delta\mathbf{G}}{\min}\big{\{}P_{\mathrm{PH}}\big{\}},
C4:αn{0,1},n,C5:maxΔ𝐡ed,j,Δ𝐆ce,j{Ck,j}τk,j,k,j.\displaystyle\hskip 17.07164pt\mathrm{C4}:\alpha_{n}\in\{0,1\},\forall n,\,\,\mathrm{C5}:\!\!\underset{\Delta\mathbf{h}_{\mathrm{ed},j},\Delta\mathbf{G}_{\mathrm{ce},j}}{\max}\!\!\{C_{k,j}\}\!\leq\!\tau_{k,j},\forall k,j.

The objective function in (13) maximizes the minimum value of all the possible sum-rate due to CSI errors. Constraint C1\mathrm{C1} ensures that the transmit power at the AP does not exceed its maximum transmit power budget PmaxP_{\max}. Constraint C2\mathrm{C2} specifies that the phase shift of a bb-bit resolution IRS reflecting element can only be selected from a discrete set \mathcal{F}. Constraint C3\mathrm{C3} indicates that the total power consumed at the IRS should not exceed its total harvested power888If the harvested energy by the IRS is not even enough to supply one IRS reflection element, the proposed problem (13) can be solved by ignoring constraint C3 and the related IRS cascaded links, which is essentially the case of beamforming design without the IRS. from the AP, PPHP_{\mathrm{PH}}, while taking into account the imperfect CSI knowledge. Constraint C4\mathrm{C4} is imposed to guarantee that each IRS element can only operate in either reflection mode or energy harvesting mode. Constant τk,j\tau_{k,j} in C5\mathrm{C5} is the maximum tolerable information leakage to the jj-th potential eavesdropper for wiretapping the signal transmitted to the kk-th legitimate user considering the CSI error in the AP-Eve channel and the cascaded AP-IRS-Eve link. In particular, C5\mathrm{C5} can guarantee that the system secrecy rate RsR_{\mathrm{s}} is bounded from below, i.e. Rsk𝒦[Rs,kτk,j]+R_{\mathrm{s}}\geq\sum_{k\in\mathcal{K}}\Big{[}R_{\mathrm{s},k}-\tau_{k,j}\Big{]}^{+}.

Remark 1.

The proposed formulation in (13) for maximizing the system sum-rate taking into account the information leakage constraints offers a higher flexibility in resources allocation than that of directly maximizing the system secrecy rate as in e.g. [45, 35]. In particular, the proposed problem formulation can control the levels of secrecy performance of individual eavesdropper via adjusting parameters τk,j,k,j\tau_{k,j},\forall k,j, which is a more flexible formulation for determining the levels of communication securities for heterogeneous practical applications and has been commonly adopted in the literature[29, 46, 42, 47].

IV Solution Of The Optimization Problem

Refer to caption
Fig. 3: A flow chart of the proposed algorithm.

The formulated problem is non-convex due to the coupling between variables 𝐰k\mathbf{w}_{k}, 𝐙\mathbf{Z}, θn\theta_{n}, and αn\alpha_{n} in constraints C3\mathrm{C3}, C5\mathrm{C5}, and the objective function in (13), the discrete phase shift in constraint C2\mathrm{C2}, and the binary variable αn\alpha_{n} in constraint C4\mathrm{C4}. Besides, there are infinitely many possibilities in the objective function, constraint C3\mathrm{C3}, and constraint C5\mathrm{C5}, due to the CSI uncertainties in continuous variable sets. In general, solving such a problem optimally requires the use of the exhaustive search method which is computationally intractable even for a moderate size system. As a compromise approach, we aim to design a computationally-efficient suboptimal algorithm to obtain an effective solution. Fig. 3 summarizes the procedure of the proposed problem solving methodology. In order to address the optimization problem without using the AO method, we firstly introduce a set of slack variables and reformulate the problem in (13) to problem in (24), which paves the way for decomposing the coupling variables {𝐰k\{\mathbf{w}_{k}, 𝐙,θn,\mathbf{Z},\theta_{n}, αn}\alpha_{n}\}. Secondly, we adopt the big-M reformulation to decouple the coupling between the discrete variables, i.e., the mode selection matrix, 𝐒\mathbf{S}, and the continuous variables, i.e., precoder, 𝐖k\mathbf{W}_{k}, and AN matrix, 𝐙\mathbf{Z}, in C3a¯\overline{\mathrm{C3a}} and C3b¯\overline{\mathrm{C3b}}. Besides, decomposing the coupling between the continuous variables in the objective function and constraints C5,C9\mathrm{C5},\mathrm{C9}, and C10\mathrm{C10} requires exploiting the properties of logarithm and Frobenius norm, respectively. Thirdly, after decomposing all these coupling variables, the 𝒮\mathcal{S}-procedure is adopted to tackle the infinite number of constraints caused by imperfect CSI in C3\mathrm{C3}, C5\mathrm{C5}, C9\mathrm{C9}, and C3\mathrm{C3}. Fourthly, we exploit the successive convex approximation (SCA) to deal with all functions in difference of convex (D.C.) form, i.e.,C4d\mathrm{C4d}, C5a\mathrm{C5a}, C9¯\overline{\mathrm{C9}}, C10¯\overline{\mathrm{C10}}, and C11b\mathrm{C11b}. Lastly, we apply the semi-definite relaxation (SDR) method to tackle the rank-one constraint, i.e., C8\mathrm{C8}, for the precoder design. As such, a computationally efficient suboptimal solution can be obtained.

IV-A Problem Transformation

To facilitate the design of discrete IRS phase shifts, we first handle the coupling of model selection variables and phase shifts matrix, 𝐀𝚽\mathbf{A}\mathbf{\Phi}, in the objective function, constraint C3\mathrm{C3}, and constraint C5\mathrm{C5}. To this end, we define an augmented mode selection matrix 𝐀~\tilde{\mathbf{A}} to replace 𝐀𝚽\mathbf{A}\mathbf{\Phi}. 𝐀~=diag(𝜶~)=diag(α~1,\tilde{\mathbf{A}}=\mathrm{diag}(\tilde{\bm{\alpha}})=\mathrm{diag}(\tilde{\alpha}_{1},,α~n,,\ldots,\tilde{\alpha}_{n},\ldots,α~N)\tilde{\alpha}_{N}), where α~n~={0,ej0,\tilde{\alpha}_{n}\in\tilde{\mathcal{F}}=\{0,e^{j0},,ejθ,,\ldots,e^{j\bigtriangleup\theta},\ldots,ejθ(B1)}\,e^{j\bigtriangleup\theta(B-1)}\} is the new mode selection optimization variable for the nn-th IRS element and ~\tilde{\mathcal{F}} is the generalized mode selection set with B+1B+1 modes. When α~n=0\tilde{\alpha}_{n}=0, the nn-th IRS element is in the energy harvesting mode, otherwise it is in the reflection mode. Then, we can express the received desired signal at the kk-th user as

|(𝐡d,kH+𝐡r,kH𝐀~𝐆)𝐰k|2\displaystyle|(\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}+\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\tilde{\mathbf{A}}\mathbf{G})\mathbf{w}_{k}|^{2}
=\displaystyle= 2Re{𝐯~H𝐆cu,k𝐖k𝐡d,k}+𝐯~H𝐆cu,k𝐖k𝐆cu,kH𝐯~+𝐡d,kH𝐖k𝐡d,k\displaystyle 2\mathrm{Re}\{\tilde{\mathbf{v}}^{\mathrm{H}}\!\mathbf{G}_{\mathrm{cu},k}\!\mathbf{W}_{k}\mathbf{h}_{\mathrm{d},k}\!\}\!+\!\tilde{\mathbf{v}}^{\mathrm{H}}\mathbf{G}_{\mathrm{cu},k}\!\mathbf{W}_{k}\mathbf{G}_{\mathrm{cu},k}^{\mathrm{H}}\tilde{\mathbf{v}}\!+\!\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}\!\mathbf{W}_{k}\mathbf{h}_{\mathrm{d},k}
=\displaystyle= Tr(𝐯H𝐅kH𝐖k𝐅k𝐯)=Tr(𝐅kH𝐖k𝐅k𝐕),\displaystyle\mathrm{Tr}(\mathbf{v}^{\mathrm{H}}\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{v})=\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V}), (14)

where 𝐯=\mathbf{v}=[𝐯~H,v]H[\tilde{\mathbf{v}}^{\mathrm{H}},v]^{\mathrm{H}}, |v|2=1|v|^{2}=1, 𝐯~=[α~1,,α~N]H\tilde{\mathbf{v}}=[\tilde{\alpha}_{1},\ldots,\tilde{\alpha}_{N}]^{\mathrm{H}}, and 𝐅k=[𝐆cu,kH𝐡d,k]\mathbf{F}_{k}=\begin{bmatrix}\mathbf{G}_{\mathrm{cu},k}^{\mathrm{H}}&\mathbf{h}_{\mathrm{d},k}\end{bmatrix}. Then, by defining 𝐅eve,j=[𝐆ce,jH𝐡ed,j]\mathbf{F}_{\mathrm{eve},j}=\begin{bmatrix}\mathbf{G}_{\mathrm{ce},j}^{\mathrm{H}}&\mathbf{h}_{\mathrm{ed},j}\end{bmatrix}, 𝐖=𝐰𝐰H\mathbf{W}=\mathbf{w}\mathbf{w}^{\mathrm{H}}, and 𝐕=𝐯𝐯H\mathbf{V}=\mathbf{v}\mathbf{v}^{\mathrm{H}}, SINRk\mathrm{SINR}_{k} in the objective function, Ck,jC_{k,j} in constraints C5, constraints C3, and constraints C4 in (13) can be equivalently rewritten as

SINRk=Tr(𝐅kH𝐖k𝐅k𝐕)ikTr(𝐅kH𝐖i𝐅k𝐕)+Tr(𝐅kH𝐙𝐅k𝐕)+σk2,k,\displaystyle\mathrm{SINR}_{k}\!\!=\!\frac{\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\!\mathbf{V})}{\sum\limits_{i\neq k}\!\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{i}\mathbf{F}_{k}\!\mathbf{V}\!)\!+\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{k}\mathbf{V})\!+\!\sigma_{k}^{2}},\forall k, (15)
Ck,j=log2(1+Tr(𝐅eve,jH𝐖k𝐅eve,j𝐕)Tr(𝐅eve,jH𝐙𝐅eve,j𝐕)+σeve,j2),k,j,\displaystyle C_{k,j}=\log_{2}\Big{(}1+\frac{\mathrm{Tr}(\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{\mathrm{eve},j}\mathbf{V})}{\mathrm{Tr}(\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{\mathrm{eve},j}\mathbf{V})+\sigma^{2}_{\mathrm{eve},j}}\Big{)},\forall k,j\text{,}
C3:n=1N|vn|PIRS(b)+PcminΔ𝐆{PPH}, and\displaystyle\mathrm{C3}:\sum_{n=1}^{N}|{v^{*}_{n}}|P_{\mathrm{IRS}}(b)+P_{\mathrm{c}}\leq\underset{\Delta\mathbf{G}}{\min}\{P_{\mathrm{PH}}\}\text{, and }
C4:vn~={0,ej0,ejθ,,ejθ(B1)},n𝒩,\displaystyle\mathrm{C4}:v^{*}_{n}\in\tilde{\mathcal{F}}=\{0,e^{j0},e^{j\bigtriangleup\theta},\ldots,e^{j\bigtriangleup\theta(B-1)}\},\forall n\in\mathcal{N},

respectively, where vnv_{n} is the nn-th element of vector 𝐯\mathbf{v}.

Next, to handle the discrete optimization variable α~n\tilde{\alpha}_{n} in C3 and C4, we further introduce a binary mode selection optimization variable si,n𝔹,i={1,,B+1},n𝒩s_{i,n}\in\mathbb{B},\forall i\in\mathcal{I}=\{1,\ldots,B+1\},n\in\mathcal{N}. si,n𝐒s_{i,n}\in\mathbf{S}, where 𝐒𝔹(B+1)×N\mathbf{S}\in\mathbb{B}^{(B+1)\times N} is a mode selection binary matrix. In particular, si,n=1s_{i,n}=1 indicates that the ii-th mode is selected for the nn-th element. Otherwise, si,n=0s_{i,n}=0. Thus, constraint C4 can be equivalently represented as:

C4a:isi,n1,nC4b:vn=isi,nfi,n𝒩,\displaystyle\mathrm{C4a}:\sum_{i\in\mathcal{I}}s_{i,n}\leq 1,\forall n\text{, }\mathrm{C4b}:v_{n}=\sum_{i\in\mathcal{I}}s_{i,n}f_{i}^{*},\forall n\in\mathcal{N}, (16)
and C4c:si,n{0,1},i,n,\displaystyle\text{and }\mathrm{C4c}:s_{i,n}\in\{0,1\},\forall i,n,

where fif_{i} is the ii-th element of the generalized mode selection set ~\tilde{\mathcal{F}} defined in (16). Furthermore, to tackle the binary constraint on si,ns_{i,n} in (16), we equivalently transform constraint C4c\mathrm{C4c} into the following two continuous constraints:

C4d:si,nsi,n20,i,n, and C4e:0si,n1,i,n.\displaystyle\!\!\mathrm{C4d}:s_{i,n}\!-\!s_{i,n}^{2}\leq 0,\forall i,n\text{, and }\mathrm{C4e}:0\!\leq\!s_{i,n}\!\leq\!1,\forall i,n. (17)

Meanwhile, the first row of mode selection binary matrix 𝐒\mathbf{S}, i.e., [s1,1,,s1,n,,s1,N][s_{1,1},\ldots,s_{1,n},\ldots,s_{1,N}], represents the activity statuses of all the IRS elements on energy harvesting mode. Therefore, the total received RF power at the IRS in (8) can be equivalently rewritten as follows:

PPR=n𝒩Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)s1,n+σa2n𝒩s1,n,\displaystyle\!\!\!\!P_{\mathrm{PR}}\!\!=\!\!\!\!\sum_{n\in\mathcal{N}}\!\!\mathrm{Tr}\Big{(}\!\mathbf{T}_{n}\mathbf{G}(\!\sum_{k\in\mathcal{K}}\!\mathbf{W}_{k}\!\!+\!\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}}\!\Big{)}s_{1,n}\!\!+\!\sigma_{a}^{2}\!\!\sum_{n\in\mathcal{N}}\!\!s_{1,n}, (18)

where 𝐓n=diag(𝐭n)\mathbf{T}_{n}=\mathrm{diag}(\mathbf{t}_{n}) is a N×NN\times N matrix, 𝐭n\mathbf{t}_{n} is a N×1N\times 1 vector with one on the nn-th element and zeros elsewhere, i.e., 𝐭n=[01 to n110n+1 to N]T\mathbf{t}_{n}=[\underbrace{0\ldots}_{1\text{ to }n-1}1\underbrace{\ldots 0}_{n+1\text{ to }N}]^{\mathrm{T}}. As a result, constraint C3\mathrm{C3} can be equivalently rewritten as

C3¯:\displaystyle\mathrm{\overline{C3}}: (Nn=1N(s1,n))PIRS(b)+PcminΔ𝐆{PPH}\displaystyle\Big{(}N-\sum_{n=1}^{N}(s_{1,n})\Big{)}P_{\mathrm{IRS}}(b)\!+\!P_{\mathrm{c}}\leq\underset{\Delta\mathbf{G}}{\min}\{P_{\mathrm{PH}}\}\Longleftrightarrow (19)
C3a¯:\displaystyle\mathrm{\overline{C3a}}: n=1Ns1,n+ea(βPRq){N+Pc+MPΩ(1Ω)PIRS(b)n=1Ns1,n}\displaystyle-\sum_{n=1}^{N}\!\!s_{1,n}+e^{-a(\beta_{\mathrm{PR}}-q)}\Big{\{}N+P_{\mathrm{c}}+\frac{M_{\mathrm{P}}\Omega}{(1-\Omega)P_{\mathrm{IRS}}(b)}\!\!-\sum_{n=1}^{N}\!\!s_{1,n}\Big{\}}
MPPcPIRS(b)NPIRS(b),\displaystyle\leq\frac{M_{\mathrm{P}}-P_{\mathrm{c}}-P_{\mathrm{IRS}}(b)N}{P_{\mathrm{IRS}}(b)},
C3b¯:\displaystyle\mathrm{\overline{C3b}}: βPRminΔ𝐆{n𝒩Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)s1,n}\displaystyle\beta_{\mathrm{PR}}\leq\underset{\Delta\mathbf{G}}{\min}\Big{\{}\sum_{n\in\mathcal{N}}\mathrm{Tr}(\mathbf{T}_{n}\mathbf{G}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}})s_{1,n}\Big{\}}
+σa2n𝒩s1,n,\displaystyle+\!\sigma_{a}^{2}\!\!\sum_{n\in\mathcal{N}}s_{1,n}, (20)

where βPR\beta_{\mathrm{PR}} is an auxiliary optimization variable to replace PPRP_{\mathrm{PR}}.

Since log2()\log_{2}(\cdot) is an increasing function, we can establish a lower bound of the objective function in (13) by applying the following commonly adopted inequality[48, 49]:

minΔ𝐆cu,k,Δ𝐡d,k{log2(1+Tr(𝐅kH𝐖k𝐅k𝐕)ikKTr(𝐅kH𝐖i𝐅k𝐕)+Tr(𝐅kH𝐙𝐅k𝐕)+σk2)}\displaystyle\!\!\!\!\!\min_{\begin{subarray}{c}\Delta\mathbf{G}_{\mathrm{cu},k},\\ \Delta\mathbf{h}_{\mathrm{d},k}\end{subarray}}\Big{\{}\!\!\log_{2}\Big{(}\!1\!+\!\!\frac{\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V})}{\!\!\sum\limits^{K}_{i\neq k}\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{i}\mathbf{F}_{k}\!\mathbf{V}\!)\!\!+\!\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{k}\!\mathbf{V}\!)\!+\!\sigma^{2}_{k}}\Big{)}\Big{\}} (21)
\displaystyle\geq log2(1+minΔ𝐆cu,k,Δ𝐡d,k{Tr(𝐅kH𝐖k𝐅k𝐕)}maxΔ𝐆cu,k,Δ𝐡d,k{ikKTr(𝐅kH𝐖i𝐅k𝐕)+Tr(𝐅kH𝐙𝐅k𝐕)+σk2}).\displaystyle\!\log_{2}\!\!\Big{(}\!1\!\!+\!\!\frac{\underset{\begin{subarray}{c}\Delta\mathbf{G}_{\mathrm{cu},k},\Delta\mathbf{h}_{\mathrm{d},k}\end{subarray}}{\min}\Big{\{}\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V})\Big{\}}}{\!\!\underset{\begin{subarray}{c}\Delta\mathbf{G}_{\mathrm{cu},k},\\ \Delta\mathbf{h}_{\mathrm{d},k}\end{subarray}}{\max}\Big{\{}\!\!\sum\limits^{K}_{i\neq k}\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{i}\mathbf{F}_{k}\mathbf{V})\!\!+\!\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{k}\mathbf{V})\!\!+\!\!\sigma^{2}_{k}\Big{\}}}\Big{)}.

By replacing the objective function in (13) with its lower bound (21), a performance lower bound of problem (13) can be obtained by solving the following optimization problem:

maximize𝐖kMt,𝐙Mt,𝐕N+1,𝐯,𝐒,ξk,ιk,βPRk𝒦log2(1+ξkιk+σk2)\displaystyle\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\\ \mathbf{V}\in\mathbb{H}^{N+1},\mathbf{v},\mathbf{S},\xi_{k},\iota_{k},\beta_{\mathrm{PR}}\end{subarray}}{\mathrm{maximize}}\,\,\sum_{k\in\mathcal{K}}\log_{2}\Big{(}1+\frac{\xi_{k}}{\iota_{k}+\sigma_{k}^{2}}\Big{)} (22)
s.t.\displaystyle\mathrm{s.t.}\,\, C3a¯,C3b¯,C4a,C4b,C4d,C4e,C5,\displaystyle\mathrm{\overline{C3a}},\mathrm{\overline{C3b}},\mathrm{C4a},\mathrm{C4b},\mathrm{C4d},\mathrm{C4e},\mathrm{C5},
C1:k𝒦Tr(𝐖k)+Tr(𝐙)Pmax,C6:𝐙𝟎,\displaystyle\mathrm{C1}:\sum_{k\in\mathcal{K}}\mathrm{Tr}(\mathbf{W}_{k})+\mathrm{Tr}(\mathbf{Z})\leq P_{\max},\mathrm{C6}:\mathbf{Z}\succeq\mathbf{0},
C7:𝐖k𝟎,k,C8:Rank(𝐖k)1,k,\displaystyle\mathrm{C7}:\mathbf{W}_{k}\succeq\mathbf{0},\forall k,\hskip 5.69054pt\mathrm{C8}:\mathrm{Rank}(\mathbf{W}_{k})\leq 1,\forall k,
C9:ξk+minΔ𝐆cu,k,Δ𝐡d,k{Tr(𝐅kH𝐖k𝐅k𝐕)}0,k,\displaystyle\mathrm{C9}:\xi_{k}+\underset{\Delta\mathbf{G}_{\mathrm{cu},k},\Delta\mathbf{h}_{\mathrm{d},k}}{\min}\Big{\{}-\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V})\Big{\}}\leq 0,\forall k,
C10:maxΔ𝐆cu,k,Δ𝐡d,k{ikKTr(𝐅kH𝐖i𝐅k𝐕)+Tr(𝐅kH𝐙𝐅k𝐕)}ιk,k,\displaystyle\mathrm{C10}:\underset{\begin{subarray}{c}\Delta\mathbf{G}_{\mathrm{cu},k},\\ \Delta\mathbf{h}_{\mathrm{d},k}\end{subarray}}{\max}\Big{\{}\sum\limits^{K}_{i\neq k}\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{i}\mathbf{F}_{k}\mathbf{V}\!)\!\!+\!\!\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{k}\mathbf{V})\!\Big{\}}\!\!\leq\!\!\iota_{k},\forall k,
C11:𝐕=𝐯𝐯H,\displaystyle\mathrm{C11}:\mathbf{V}=\mathbf{v}\mathbf{v}^{\mathrm{H}},

where ξk\xi_{k} and ιk\iota_{k} are two slack variables. Moreover, the non-convex constraint in C11\mathrm{C11} in (22) can be replaced by the following two constraints [50]:

C11a:𝐘=[𝐕𝐯𝐯H1]𝟎 and C11b:Rank(𝐘)=1.\displaystyle\!\!\!\!\mathrm{C11a}\!:\mathbf{Y}=\begin{bmatrix}\mathbf{V}&&\mathbf{v}\\ \mathbf{v}^{\mathrm{H}}&&1\end{bmatrix}\succeq\mathbf{0}\text{ and }\mathrm{C11b}\!:\mathrm{Rank}(\mathbf{Y})\!=\!1. (23)

Therefore, the optimization problem in (22) is equivalent to the following problem:

maximize𝐖kMt,𝐙Mt,𝐘N+2,𝐕N+1,𝐯,𝐒,ξk,ιk,βPRk𝒦log2(1+ξkιk+σk2)\displaystyle\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\\ \mathbf{Y}\in\mathbb{H}^{N+2},\mathbf{V}\in\mathbb{H}^{N+1},\mathbf{v},\mathbf{S},\xi_{k},\iota_{k},\beta_{\mathrm{PR}}\end{subarray}}{\mathrm{maximize}}\,\,\sum_{k\in\mathcal{K}}\log_{2}\Big{(}1+\frac{\xi_{k}}{\iota_{k}+\sigma_{k}^{2}}\Big{)} (24)
s.t.C1,C3a¯,C3b¯,C4a,C4b,C4d,C4e,C5C11b.\displaystyle\mathrm{s.t.}\,\,\mathrm{C1},\mathrm{\overline{C3a}},\mathrm{\overline{C3b}},\mathrm{C4a},\mathrm{C4b},\mathrm{C4d},\mathrm{C4e},\mathrm{C5}-\mathrm{C11b}.

IV-B Optimization Variables Decoupling

For the optimization problem in (24), the non-convexity arises from constraints C3a¯\mathrm{\overline{C3a}}, C3b¯\mathrm{\overline{C3b}}, C5\mathrm{C5}, C9\mathrm{C9}, C10\mathrm{C10}, and the objective function due to severely coupled variables. In particular, there are three types of variable couplings, i.e., the fractional form of two continuous variables in SINR, the multiplication between a binary and a continuous variable, and the multiplication between 𝐖k\mathbf{W}_{k}, 𝐙\mathbf{Z}, and 𝐕\mathbf{V}, e.g. Tr(𝐅kH𝐙𝐅k𝐕)\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{Z}\mathbf{F}_{k}\mathbf{V}) and Tr(𝐅kH𝐖k𝐅k𝐕)\mathrm{Tr}(\mathbf{F}_{k}^{\mathrm{H}}\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V}). To address the first type of coupling, we rewrite the SINR\mathrm{SINR} in (24) in its equivalent form of D.C. form[29]:

maximize𝐖kMt,𝐙Mt,𝐘N+2,𝐕N+1,𝐯,𝐒,ξk,ιk,βPRk𝒦log2(1+ξkιk+σk2)\displaystyle\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\\ \mathbf{Y}\in\mathbb{H}^{N+2},\mathbf{V}\in\mathbb{H}^{N+1},\mathbf{v},\\ \mathbf{S},\xi_{k},\iota_{k},\beta_{\mathrm{PR}}\end{subarray}}{\mathrm{maximize}}\,\,\sum_{k\in\mathcal{K}}\log_{2}\Big{(}1+\frac{\xi_{k}}{\iota_{k}+\sigma_{k}^{2}}\Big{)}
maximize𝐖kMt,𝐙Mt,𝐘N+2,𝐕N+1,𝐯,𝐒,ξk,ιk,βPRNobj(ξk,ιk)Dobj(ιk),\displaystyle\Leftrightarrow\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\\ \mathbf{Y}\in\mathbb{H}^{N+2},\mathbf{V}\in\mathbb{H}^{N+1},\mathbf{v},\\ \mathbf{S},\xi_{k},\iota_{k},\beta_{\mathrm{PR}}\end{subarray}}{\mathrm{maximize}}\,\,N_{\mathrm{obj}}(\xi_{k},\iota_{k})-D_{\mathrm{obj}}(\iota_{k}), (25)

where Nobj(ξk,ιk)=k𝒦log2(ξk+ιk+σk2) and Dobj(ιk)=k𝒦log2(ιk+σk2)N_{\mathrm{obj}}(\xi_{k},\iota_{k})=\sum_{k\in\mathcal{K}}\log_{2}(\xi_{k}+\iota_{k}+\sigma_{k}^{2})\text{ and }D_{\mathrm{obj}}(\iota_{k})=\sum_{k\in\mathcal{K}}\log_{2}(\iota_{k}+\sigma_{k}^{2}) are two functions which are both concave with respect to ξk\xi_{k} and ιk\iota_{k}, respectively.

Then, by introducing two auxiliary optimization variables UnESU_{n}^{\mathrm{ES}}, UnBSU_{n}^{\mathrm{BS}}, we adopt the big-M reformulation[26] to convert the logical constraints C3a¯\overline{\mathrm{C3a}} and C3b¯\overline{\mathrm{C3b}} to a set of equivalent constraints as follows:

C3a¯¯:n=1N(s1,n)+e(a(βPRq)){N+Pc+MPΩ(1Ω)PIRS(b)}\displaystyle\mathrm{\overline{\overline{C3a}}}:-\sum_{n=1}^{N}(s_{1,n})+e^{\Big{(}-a(\beta_{\mathrm{PR}}-q)\Big{)}}\Big{\{}N+P_{\mathrm{c}}+\frac{M_{\mathrm{P}}\Omega}{(1-\Omega)P_{\mathrm{IRS}}(b)}\Big{\}}\hskip 8.53581pt
n=1NUnESMPPcPIRS(b)NPIRS(b),\displaystyle\hskip 19.91692pt-\sum_{n=1}^{N}U_{n}^{\mathrm{ES}}\leq\frac{M_{\mathrm{P}}-P_{\mathrm{c}}-P_{\mathrm{IRS}}(b)N}{P_{\mathrm{IRS}}(b)}, (26)
C3b¯¯:βPRn𝒩UnBS+σa2n=1Ns1,n,C3c¯:UnESe(a(βPRq)),\displaystyle\mathrm{\overline{\overline{C3b}}}:\beta_{\mathrm{PR}}\leq\sum_{n\in\mathcal{N}}U_{n}^{\mathrm{BS}}+\sigma_{a}^{2}\sum_{n=1}^{N}s_{1,n},\mathrm{\overline{C3c}}:U_{n}^{\mathrm{ES}}\leq e^{\Big{(}-a(\beta_{\mathrm{PR}}-q)\Big{)}},
C3d¯:UnES0,n,C3e¯:UnESs1,nMBig,n,\displaystyle\mathrm{\overline{C3d}}:U_{n}^{\mathrm{ES}}\geq 0,\forall n,\mathrm{\overline{C3e}}:U_{n}^{\mathrm{ES}}\leq s_{1,n}M_{\mathrm{Big}},\forall n,
C3f¯:UnBSminΔ𝐠n{Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)},n,\displaystyle\mathrm{\overline{C3f}}:{U}_{n}^{\mathrm{BS}}\leq\underset{\Delta\mathbf{g}_{n}}{\min}\Big{\{}\mathrm{Tr}(\mathbf{T}_{n}\mathbf{G}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}})\Big{\}},\forall n,
C3g¯:UnBS0,n, and C3h¯:UnBSs1,nMBig,n,\displaystyle\mathrm{\overline{C3g}}:{U}_{n}^{\mathrm{BS}}\geq 0,\forall n\text{, and }\mathrm{\overline{C3h}}:{U}_{n}^{\mathrm{BS}}\leq s_{1,n}M_{\mathrm{Big}},\forall n,

where MBig1M_{\mathrm{Big}}\gg 1 is a sufficiently large constant number and Δ𝐠n\Delta\mathbf{g}_{n}==vec(𝐓nΔ𝐆)\mathrm{vec}(\mathbf{T}_{n}\Delta\mathbf{G}) denotes the channel estimation error for the channel between the AP and the nn-th IRS element.

Note that according to the definition of 𝐓n\mathbf{T}_{n} in (18), the term Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)s1,n,n\mathrm{Tr}(\mathbf{T}_{n}\mathbf{G}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}})s_{1,n},\forall n in (20) only depends on the nn-th row of the channel matrix 𝐆\mathbf{G}, which corresponds to the channel vector between the AP and the nn-th IRS element. Since the channel uncertainty of the AP to IRS elements links are assumed independent with each other, we have minΔ𝐆{n𝒩Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)s1,n}n𝒩minΔ𝐠n{Tr(𝐓n𝐆(k𝒦𝐖k+𝐙)𝐆H𝐓nH)s1,n}\underset{\Delta\mathbf{G}}{\min}\Big{\{}\sum_{n\in\mathcal{N}}\mathrm{Tr}(\mathbf{T}_{n}\mathbf{G}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}})s_{1,n}\Big{\}}\Leftrightarrow\sum_{n\in\mathcal{N}}\underset{\Delta\mathbf{g}_{n}}{\min}\Big{\{}\mathrm{Tr}(\mathbf{T}_{n}\mathbf{G}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z})\mathbf{G}^{\mathrm{H}}\mathbf{T}_{n}^{\mathrm{H}})s_{1,n}\Big{\}}.

Lastly, we adopt the transformation method in [51] to decompose the coupled variables between {𝐖k,𝐕}\{\mathbf{W}_{k},\mathbf{V}\} and {𝐙,𝐕}\{\mathbf{Z},\mathbf{V}\} in the objective function and constraints C5\mathrm{C5}, C9\mathrm{C9}, and C10\mathrm{C10} in (24). For illustration, we take constraint C9\mathrm{C9} in (24) as an example. The coupled terms on the left hand side of constraint C9\mathrm{C9} can be rewritten to two separated variables as follows:

Tr(𝐖k𝐅k𝐕𝐅kH)\displaystyle-\mathrm{Tr}(\mathbf{W}_{k}\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}) (27)
=12𝐖k𝐅k𝐕𝐅kHF212Tr(𝐖kH𝐖k)12Tr(𝐅k𝐕H𝐅kH𝐅k𝐕𝐅kH).\displaystyle=\frac{1}{2}\|\mathbf{W}_{k}\!\!-\!\!\mathbf{F}_{k}\!\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\!\|^{2}_{\mathrm{F}}\!\!-\!\!\frac{1}{2}\mathrm{Tr}(\!\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k})\!\!-\!\!\frac{1}{2}\mathrm{Tr}(\!\mathbf{F}_{k}\!\mathbf{V}^{\mathrm{H}}\mathbf{F}_{k}^{\mathrm{H}}\mathbf{F}_{k}\!\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\!).

Therefore, constraint C9\mathrm{C9} can be rewritten as the following equivalent form without couplings:

C9:\displaystyle\mathrm{C9}: ξk+minΔ𝐡d,k,Δ𝐆cu,k{𝐖k𝐅k𝐕𝐅kHF2Tr(𝐅k𝐕H𝐅kH𝐅k𝐕𝐅kH)2}\displaystyle\,\,\xi_{k}+\underset{\begin{subarray}{c}\Delta\mathbf{h}_{\mathrm{d},k},\\ \Delta\mathbf{G}_{\mathrm{cu},k}\end{subarray}}{\min}\Big{\{}\frac{\|\mathbf{W}_{k}-\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\|^{2}_{\mathrm{F}}-\mathrm{Tr}(\mathbf{F}_{k}\mathbf{V}^{\mathrm{H}}\mathbf{F}_{k}^{\mathrm{H}}\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}})}{2}\Big{\}}
12Tr(𝐖kH𝐖k)0,k.\displaystyle-\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k})\leq 0,\forall k. (28)

By using the same method, constraints C5\mathrm{C5} and C10\mathrm{C10} can be rewritten as

C5:\displaystyle\mathrm{C5}: minΔ𝐡ed,j,Δ𝐆ce,j[12𝐖k+𝐅eve,j𝐕𝐅eve,jHF212Tr(𝐖kH𝐖k)\displaystyle\underset{\begin{subarray}{c}\Delta\mathbf{h}_{\mathrm{ed},j},\\ \Delta\mathbf{G}_{\mathrm{ce},j}\end{subarray}}{\min}\Big{[}\frac{1}{2}\|\mathbf{W}_{k}+\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\|^{2}_{\mathrm{F}}-\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k})
12Tr(𝐅eve,j𝐕H𝐅eve,jH𝐅eve,j𝐕𝐅eve,jH)\displaystyle-\frac{1}{2}\mathrm{Tr}(\mathbf{F}_{\mathrm{eve},j}\mathbf{V}^{\mathrm{H}}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}})
+(2τk,j1){12𝐙𝐅eve,j𝐕𝐅eve,jHF212Tr(𝐙H𝐙)\displaystyle+(2^{\tau_{k,j}}-1)\Big{\{}\frac{1}{2}\|\mathbf{Z}-\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\|^{2}_{\mathrm{F}}-\frac{1}{2}\mathrm{Tr}(\mathbf{Z}^{\mathrm{H}}\mathbf{Z})
\displaystyle- 12Tr(𝐅eve,j𝐕H𝐅eve,jH𝐅eve,j𝐕𝐅eve,jH)}]\displaystyle\frac{1}{2}\mathrm{Tr}(\mathbf{F}_{\mathrm{eve},j}\mathbf{V}^{\mathrm{H}}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}})\Big{\}}\Big{]}
(2τk,j1)σeve,j20,k,j, and\displaystyle-(2^{\tau_{k,j}}-1)\sigma^{2}_{\mathrm{eve},j}\leq 0,\forall k,j\text{, and} (29)
C10:\displaystyle\mathrm{C10}: maxΔ𝐡d,k,Δ𝐆cu,k{ik{12𝐖i+𝐅k𝐕𝐅kHF2\displaystyle\underset{\Delta\mathbf{h}_{\mathrm{d},k},\Delta\mathbf{G}_{\mathrm{cu},k}}{\max}\Big{\{}\sum_{i\neq k}\{\frac{1}{2}\|\mathbf{W}_{i}+\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\|^{2}_{\mathrm{F}}
K2Tr(𝐅k𝐕H𝐅kH𝐅k𝐕𝐅kH)}+12𝐙+𝐅k𝐕𝐅kHF2}\displaystyle-\frac{K}{2}\mathrm{Tr}(\mathbf{F}_{k}\mathbf{V}^{\mathrm{H}}\mathbf{F}_{k}^{\mathrm{H}}\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}})\}+\frac{1}{2}\|\mathbf{Z}+\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\|^{2}_{\mathrm{F}}\Big{\}}
ik12Tr(𝐖iH𝐖i)12Tr(𝐙H𝐙)ιk,k,\displaystyle-\sum_{i\neq k}\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{i}^{\mathrm{H}}\mathbf{W}_{i})-\frac{1}{2}\mathrm{Tr}(\mathbf{Z}^{\mathrm{H}}\mathbf{Z})\leq\iota_{k},\forall k, (30)

respectively.

IV-C 𝒮\mathcal{S}-Procedure

On the other hand, due to the CSI uncertainty, there are infinity possibilities for constraints C3f¯\mathrm{\overline{C3f}}, C5\mathrm{C5}, C9\mathrm{C9}, and C10\mathrm{C10}. As a result, we adopt the 𝒮\mathcal{S}-procedure[52, 53] to tackle these issues. Firstly, to handle the challenge in constraints C3f¯\mathrm{\overline{C3f}}, we apply the following lemma to convert C3f¯\mathrm{\overline{C3f}} into a finite number of linear matrix inequalities (LMIs).

Lemma 1.

(𝒮\mathcal{S}-Procedure[52]): Let a function fm(𝐱),m{1,2}f_{m}(\mathbf{x}),m\in\{1,2\}, be defined as

fm(𝐱)=𝐱H𝐀m𝐱+2Re{𝐛mH𝐱}+cm,\displaystyle f_{m}(\mathbf{x})=\mathbf{x}^{\mathrm{H}}\mathbf{A}_{m}\mathbf{x}+2\mathrm{Re}\{\mathbf{b}_{m}^{\mathrm{H}}\mathbf{x}\}+c_{m}, (31)

where 𝐀mN,𝐛mN×1\mathbf{A}_{m}\in\mathbb{H}^{N},\mathbf{b}_{m}\in\mathbb{C}^{N\times 1}, and cmc_{m}\in\mathbb{R}. Then, the implication f1(𝐱)0f2(𝐱)0f_{1}(\mathbf{x})\geq 0\Longrightarrow f_{2}(\mathbf{x})\geq 0 holds if and only if there exists an ϵ0\epsilon\geq 0 such that

[𝐀2𝐛2𝐛2Hc2]ϵ[𝐀1𝐛1𝐛1Hc1]𝟎\displaystyle\begin{bmatrix}\mathbf{A}_{2}&\mathbf{b}_{2}\\ \mathbf{b}_{2}^{\mathrm{H}}&c_{2}\end{bmatrix}-\epsilon\begin{bmatrix}\mathbf{A}_{1}&\mathbf{b}_{1}\\ \mathbf{b}_{1}^{\mathrm{H}}&c_{1}\end{bmatrix}\succeq\mathbf{0} (32)

provided that there exists a point 𝐱^\hat{\mathbf{x}} such that fk(𝐱^)<0f_{k}(\hat{\mathbf{x}})<0.

To apply Lemma 1 to constraint C3f¯\mathrm{\overline{C3f}}, we rewrite the channel uncertainty (11) and reformulate constraint C3f¯\mathrm{\overline{C3f}}. In particular,

Δ𝐠nHΔ𝐠nρG2/N\displaystyle\Delta\mathbf{g}_{n}^{\mathrm{H}}\Delta\mathbf{g}_{n}\leq\rho_{\mathrm{G}}^{2}/N\Rightarrow (33)
Δ𝐠nH𝓦Δ𝐠n+2Re{𝐠^nH𝓦Δ𝐠n}+𝐠^nH𝓦𝐠^nUnBS0,n,\displaystyle\Delta\mathbf{g}_{n}^{\mathrm{H}}\bm{\mathcal{W}}\Delta\mathbf{g}_{n}+2\mathrm{Re}\{\hat{\mathbf{g}}_{n}^{\mathrm{H}}\bm{\mathcal{W}}\Delta\mathbf{g}_{n}\}+\hat{\mathbf{g}}_{n}^{\mathrm{H}}\bm{\mathcal{W}}\hat{\mathbf{g}}_{n}-{U}_{n}^{\mathrm{BS}}\geq 0,\forall n,

holds if and only if there exist ϵnC3f0,n\epsilon^{\mathrm{C3f}}_{n}\geq 0,\forall n, such that the following LMI constraints hold:

C3fa¯¯:𝒮C3f,n(𝓦,s1,n,ϵnC3f,UnBS)\displaystyle\mathrm{\overline{\overline{C3fa}}}:{\mathcal{S}}_{\mathrm{C3f},n}(\bm{\mathcal{W}},s_{1,n},\epsilon^{\mathrm{C3f}}_{n},{U}_{n}^{\mathrm{BS}}) (34)
=Δ[ϵnC3f𝐈NMt𝟎0UnBS+ϵnC3fρG2N]+𝐎𝐠^nH𝓦𝐎𝐠^n𝟎,n,\displaystyle\hskip 14.22636pt\overset{\Delta}{=}\begin{bmatrix}-\epsilon^{\mathrm{C3f}}_{n}\mathbf{I}_{NM_{\mathrm{t}}}&\mathbf{0}\\[-5.69054pt] {0}&-{U}_{n}^{\mathrm{BS}}+\epsilon^{\mathrm{C3f}}_{n}\frac{\rho_{\mathrm{G}}^{2}}{N}\end{bmatrix}+\mathbf{O}_{\hat{\mathbf{g}}_{n}}^{\mathrm{H}}\bm{\mathcal{W}}\mathbf{O}_{\hat{\mathbf{g}}_{n}}\succeq\mathbf{0},\forall n,
C3fb¯¯:ϵnC3f0,n,\displaystyle\mathrm{\overline{\overline{C3fb}}}:\epsilon^{\mathrm{C3f}}_{n}\geq 0,\forall n, (35)

where 𝐠^n\hat{\mathbf{g}}_{n}==vec(𝐓n𝐆^)\mathrm{vec}(\mathbf{T}_{n}\hat{\mathbf{G}}), 𝓦\bm{\mathcal{W}}==𝐈N(k𝒦𝐖k+𝐙)\mathbf{I}_{N}\otimes(\sum_{k\in\mathcal{K}}\mathbf{W}_{k}+\mathbf{Z}), and 𝐎𝐠^n=[𝐈NMt𝐠^n]\mathbf{O}_{\hat{\mathbf{g}}_{n}}=\begin{bmatrix}\mathbf{I}_{NM_{t}}&\hat{\mathbf{g}}_{n}\end{bmatrix}.

Then, for constraints C5\mathrm{C5}, C9\mathrm{C9}, and C10\mathrm{C10}, there are an infinitely number of quadratic matrix inequalities (QMIs)[31, 53] due to the CSI uncertainty set. To overcome the problem, we first introduce slack optimization variables {𝚿C9,k,k}\Big{\{}\mathbf{\Psi}_{\mathrm{C9},k},\forall k\Big{\}}, {𝚿C10,k,k}\Big{\{}\mathbf{\Psi}_{\mathrm{C10},k},\forall k\Big{\}}, and {𝚿eve,j,j}\Big{\{}\mathbf{\Psi}_{\mathrm{eve},j},\forall j\Big{\}} to replace the 𝐅k𝐕𝐅kH\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}} term in constraints C9\mathrm{C9} and C10\mathrm{C10} and the 𝐅eve,j𝐕𝐅eve,jH\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}} term in constraint C5\mathrm{C5}. Hence, constraints C5\mathrm{C5}, C9\mathrm{C9}, and C10\mathrm{C10} can be equivalently rewritten as:

C5a:12𝐖k+𝚿eve,jF212Tr(𝐖kH𝐖k)\displaystyle\mathrm{C5a}:\frac{1}{2}\|\mathbf{W}_{k}+\mathbf{\Psi}_{\mathrm{eve},j}\|^{2}_{\mathrm{F}}-\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k}) (36)
2τk,j1Tr(𝚿eve,jH𝚿eve,j)\displaystyle\hskip 22.76219pt-2^{\tau_{k,j}-1}\mathrm{Tr}(\mathbf{\Psi}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{eve},j})
+(2τk,j1){12𝐙𝚿eve,jF212Tr(𝐙H𝐙)}\displaystyle\hskip 22.76219pt+(2^{\tau_{k,j}}-1)\Big{\{}\frac{1}{2}\|\mathbf{Z}-\mathbf{\Psi}_{\mathrm{eve},j}\|^{2}_{\mathrm{F}}-\frac{1}{2}\mathrm{Tr}(\mathbf{Z}^{\mathrm{H}}\mathbf{Z})\Big{\}}
(2τk,j1)σeve,j20,k,j,\displaystyle\hskip 22.76219pt-(2^{\tau_{k,j}}-1)\sigma^{2}_{\mathrm{eve},j}\leq 0,\forall k,j,
C5b:𝚿eve,jmaxΔ𝐆ce,j,Δ𝐡ed,j{𝐅eve,j𝐕𝐅eve,jH},j,\displaystyle\mathrm{C5b}:\mathbf{\Psi}_{\mathrm{eve},j}\succeq\underset{\Delta\mathbf{G}_{\mathrm{ce},j},\Delta\mathbf{h}_{\mathrm{ed},j}}{\max}\Big{\{}\mathbf{F}_{\mathrm{eve},j}\mathbf{V}\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}}\Big{\}},\forall j,
C9¯:ξk+12𝐖k𝚿C9,kF212Tr(𝚿C9,kH𝚿C9,k)\displaystyle\overline{\mathrm{C9}}:\xi_{k}+\frac{1}{2}\|\mathbf{W}_{k}-\mathbf{\Psi}_{\mathrm{C9},k}\|^{2}_{\mathrm{F}}-\frac{1}{2}\mathrm{Tr}(\mathbf{\Psi}_{\mathrm{C9},k}^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C9},k})
12Tr(𝐖kH𝐖k)0,k,\displaystyle\hskip 22.76219pt-\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k})\leq 0,\forall k,
C10¯:i𝒦/{k}{12𝐖i+𝚿C10,kF2}K2Tr(𝚿C10,kH𝚿C10,k)\displaystyle\overline{\mathrm{C10}}:\sum_{i\in\mathcal{K}/\{k\}}\Big{\{}\frac{1}{2}\|\mathbf{W}_{i}+\mathbf{\Psi}_{\mathrm{C10},k}\|^{2}_{\mathrm{F}}\Big{\}}-\frac{K}{2}\mathrm{Tr}(\mathbf{\Psi}_{\mathrm{C10},k}^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C10},k})
+12𝐙+𝚿C10,kF2i𝒦/{k}12Tr(𝐖iH𝐖i)\displaystyle\hskip 22.76219pt+\frac{1}{2}\|\mathbf{Z}+\mathbf{\Psi}_{\mathrm{C10},k}\|^{2}_{\mathrm{F}}-\sum_{i\in\mathcal{K}/\{k\}}\frac{1}{2}\mathrm{Tr}(\mathbf{W}_{i}^{\mathrm{H}}\mathbf{W}_{i})
12Tr(𝐙H𝐙)ιk,k,\displaystyle\hskip 22.76219pt-\frac{1}{2}\mathrm{Tr}(\mathbf{Z}^{\mathrm{H}}\mathbf{Z})\leq\iota_{k},\forall k,
C12:𝚿C9,kminΔ𝐆cu,k,Δ𝐡d,k{𝐅k𝐕𝐅kH},k, and\displaystyle\mathrm{C12}:\mathbf{\Psi}_{\mathrm{C9},k}\preceq\underset{\Delta\mathbf{G}_{\mathrm{cu},k},\Delta\mathbf{h}_{\mathrm{d},k}}{\min}\{\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\},\forall k\text{, and }
C13:𝚿C10,kmaxΔ𝐆cu,k,Δ𝐡d,k{𝐅k𝐕𝐅kH},k,\displaystyle\mathrm{C13}:\mathbf{\Psi}_{\mathrm{C10},k}\succeq\underset{\Delta\mathbf{G}_{\mathrm{cu},k},\Delta\mathbf{h}_{\mathrm{d},k}}{\max}\{\mathbf{F}_{k}\mathbf{V}\mathbf{F}_{k}^{\mathrm{H}}\},\forall k,

respectively. Note that constraints C5b,C12\mathrm{C5b},\mathrm{C12}, and C13\mathrm{C13} still involve an infinite number of inequality constraints. To circumvent this difficulty, we convert the infinity number of constraints C5b,C12\mathrm{C5b},\mathrm{C12}, and C13\mathrm{C13} to an equivalent form with only a finite number of constraints by applying Lemma 2.

Lemma 2.

(Generalized S-procedure[53]): Let f(𝐱)=𝐗H𝐃𝐗+𝐗H𝐁+𝐁H𝐗+𝐄f(\mathbf{x})=\mathbf{X}^{\mathrm{H}}\mathbf{D}\mathbf{X}+\mathbf{X}^{\mathrm{H}}\mathbf{B}+\mathbf{B}^{\mathrm{H}}\mathbf{X}+\mathbf{E} and 𝐉𝟎\mathbf{J}\succeq\mathbf{0}. For some ϵ0,f(𝐗)𝟎,𝐗{𝐗|Tr(𝐉𝐗𝐗H)1}\epsilon\geq 0,f(\mathbf{X})\succeq\mathbf{0},\forall\mathbf{X}\in\Big{\{}\mathbf{X}|\mathrm{Tr}(\mathbf{J}\mathbf{X}\mathbf{X}^{\mathrm{H}})\leq 1\Big{\}}, is equivalent to

[𝐄𝐁H𝐁𝐃]ϵ[𝐈𝟎𝟎𝐉]𝟎.\displaystyle\begin{bmatrix}\mathbf{E}&\mathbf{B}^{\mathrm{H}}\\ \mathbf{B}&\mathbf{D}\end{bmatrix}-\epsilon\begin{bmatrix}\mathbf{I}&\mathbf{0}\\ \mathbf{0}&-\mathbf{J}\end{bmatrix}\succeq\mathbf{0}. (37)

Let us take constraint C12\mathrm{C12} as an example. After substituting (10) and (12) into (IV-C), for Δ𝐅k\Delta\mathbf{F}_{k}\in{Δ𝐅k|Tr(1ρcu,k2+ρd,k2Δ𝐅kΔ𝐅kH)1}\Big{\{}\Delta\mathbf{F}_{k}|\mathrm{Tr}(\frac{1}{\rho_{\mathrm{cu},k}^{2}+\rho_{\mathrm{d},k}^{2}}\Delta\mathbf{F}_{k}\Delta\mathbf{F}_{k}^{\mathrm{H}})\leq 1\}, constraint C12\mathrm{C12} is expressed as

C12:\displaystyle\mathrm{C12}: Δ𝐅k𝐕Δ𝐅kH+Δ𝐅k𝐕𝐅^kH+𝐅^k𝐕Δ𝐅kH\displaystyle\Delta\mathbf{F}_{k}\mathbf{V}\Delta\mathbf{F}_{k}^{\mathrm{H}}+\Delta\mathbf{F}_{k}\mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}+\hat{\mathbf{F}}_{k}\mathbf{V}\Delta\mathbf{F}_{k}^{\mathrm{H}}
+𝐅^k𝐕𝐅^kH𝚿C9,k𝟎,k,\displaystyle+\hat{\mathbf{F}}_{k}\mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}-\mathbf{\Psi}_{\mathrm{C9},k}\succeq\mathbf{0},\forall k, (38)

where 𝐅^k=[𝐆^cu,kH𝐡^d,k]\hat{\mathbf{F}}_{k}=\begin{bmatrix}\hat{\mathbf{G}}_{\mathrm{cu},k}^{\mathrm{H}}&\hat{\mathbf{h}}_{\mathrm{d},k}\end{bmatrix}, k\forall k and Δ𝐅k=[Δ𝐆cu,kHΔ𝐡d,k]\Delta\mathbf{F}_{k}=\begin{bmatrix}\Delta\mathbf{G}_{\mathrm{cu},k}^{\mathrm{H}}&\Delta\mathbf{h}_{\mathrm{d},k}\end{bmatrix}, k\forall k. Then, by applying Lemma 2, constraint C12\mathrm{C12} is equivalently transformed as

C12a¯:𝒮C12(𝐕,ϵkC12¯)=\displaystyle\overline{\mathrm{C12a}}:{\mathcal{S}}_{\mathrm{C12}}(\mathbf{V},\epsilon^{\mathrm{\overline{C12}}}_{k})= (39)
[𝐅^k𝐕𝐅^kH𝚿C9,kϵkC12¯𝐈Mt𝐅^k𝐕𝐕𝐅^kH𝐕+ϵkC12¯1ρcu,k2+ρd,k2𝐈N+1]𝟎,k,\displaystyle\begin{bmatrix}\hat{\mathbf{F}}_{k}\mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}-\mathbf{\Psi}_{\mathrm{C9},k}-\epsilon^{\mathrm{\overline{C12}}}_{k}\mathbf{I}_{M_{\mathrm{t}}}&&\hat{\mathbf{F}}_{k}\mathbf{V}\\ \mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}&&\mathbf{V}+\epsilon^{\mathrm{\overline{C12}}}_{k}\frac{1}{\rho_{\mathrm{cu},k}^{2}+\rho_{\mathrm{d},k}^{2}}\mathbf{I}_{N+1}\end{bmatrix}\!\!\succeq\!\!\mathbf{0},\forall k,
C12b¯:ϵkC12¯0,k.\displaystyle\overline{\mathrm{C12b}}:\epsilon^{\mathrm{\overline{C12}}}_{k}\geq 0,\forall k.

Similarly, constraints C5b\mathrm{C5b} and C13\mathrm{C13} can be equivalently represented as

C5b¯:𝒮C5b(𝐕,ϵjC5b¯)=\displaystyle\overline{\mathrm{C5b}}:{\mathcal{S}}_{\mathrm{C5b}}(\mathbf{V},\epsilon^{\mathrm{\overline{C5b}}}_{j})= (40)
[𝐅^eve,j𝐕𝐅^eve,jH+𝚿eve,jϵjC5b¯𝐈Mt𝐅^eve,j𝐕𝐕𝐅^eve,jHϵjC5b¯ρce,j2+ρed,j2𝐈N+1𝐕]𝟎,j,\displaystyle\begin{bmatrix}\!-\!\hat{\mathbf{F}}_{\mathrm{eve},j}\!\mathbf{V}\hat{\mathbf{F}}_{\mathrm{eve},j}^{\mathrm{H}}+\mathbf{\Psi}_{\mathrm{eve},j}-\epsilon^{\mathrm{\overline{C5b}}}_{j}\mathbf{I}_{\mathrm{M}_{t}}&&\!-\hat{\mathbf{F}}_{\mathrm{eve},j}\mathbf{V}\\ -\mathbf{V}\hat{\mathbf{F}}_{\mathrm{eve},j}^{\mathrm{H}}&&\!\!\!\!\frac{\epsilon^{\mathrm{\overline{C5b}}}_{j}}{\rho_{\mathrm{ce},j}^{2}+\rho_{\mathrm{ed},j}^{2}}\mathbf{I}_{N+1}-\mathbf{V}\end{bmatrix}\!\succeq\!\mathbf{0},\forall j,
C5c¯:ϵjC5b¯0,j,\displaystyle\overline{\mathrm{C5c}}:\epsilon^{\mathrm{\overline{C5b}}}_{j}\geq 0,\forall j,
C13a¯:𝓢C13(𝐕,ϵkC13¯)=\displaystyle\overline{\mathrm{C13a}}:\bm{\mathcal{S}}_{\mathrm{C13}}(\mathbf{V},\epsilon^{\mathrm{\overline{C13}}}_{k})=
[𝐅^k𝐕𝐅^kH+𝚿C10,kϵkC13¯𝐈Mt𝐅^k𝐕𝐕𝐅^kHϵkC13¯ρcu,k2+ρd,k2𝐈N+1𝐕]𝟎,k,\displaystyle\begin{bmatrix}-\hat{\mathbf{F}}_{k}\mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}+\mathbf{\Psi}_{\mathrm{C10},k}-\epsilon^{\mathrm{\overline{C13}}}_{k}\mathbf{I}_{\mathrm{M}_{t}}&&-\hat{\mathbf{F}}_{k}\mathbf{V}\\ -\mathbf{V}\hat{\mathbf{F}}_{k}^{\mathrm{H}}&&\frac{\epsilon^{\mathrm{\overline{C13}}}_{k}}{\rho_{\mathrm{cu},k}^{2}+\rho_{\mathrm{d},k}^{2}}\mathbf{I}_{N+1}-\mathbf{V}\end{bmatrix}\succeq\mathbf{0},\forall k,
and C13b¯:ϵkC13¯0,k.\displaystyle\text{and }\overline{\mathrm{C13b}}:\epsilon^{\mathrm{\overline{C13}}}_{k}\geq 0,\forall k.

where Δ𝐅eve,j=[Δ𝐆ce,jHΔ𝐡ed,j]\Delta\mathbf{F}_{\mathrm{eve},j}=\begin{bmatrix}\Delta\mathbf{G}_{\mathrm{ce},j}^{\mathrm{H}}&\Delta\mathbf{h}_{\mathrm{ed},j}\end{bmatrix}, j\forall j, for Δ𝐅eve,j\Delta\mathbf{F}_{\mathrm{eve},j}\in {Δ𝐅eve,j|Tr(1ρce,j2+ρed,j2\Big{\{}\Delta\mathbf{F}_{\mathrm{eve},j}|\mathrm{Tr}(\frac{1}{\rho_{\mathrm{ce},j}^{2}+\rho_{\mathrm{ed},j}^{2}}Δ𝐅eve,jΔ𝐅eve,jH)1}\Delta\mathbf{F}_{\mathrm{eve},j}\Delta\mathbf{F}_{\mathrm{eve},j}^{\mathrm{H}})\leq 1\} and 𝐅^eve,j=[𝐆^ce,jH𝐡^ed,j]\hat{\mathbf{F}}_{\mathrm{eve},j}=\begin{bmatrix}\hat{\mathbf{G}}_{\mathrm{ce},j}^{\mathrm{H}}&\hat{\mathbf{h}}_{\mathrm{ed},j}\end{bmatrix}.

IV-D SCA- and SDR-based Iterative Algorithm

Next, to tackle the non-convexity of constraints C4d\mathrm{C4d}, C5a\mathrm{C5a}, C9¯\overline{\mathrm{C9}}, C10¯\overline{\mathrm{C10}}, C11b{\mathrm{C11b}}, and the objective function in (24), we first transform them into a D.C. form such that SCA can be applied to obtain a suboptimal solution. Firstly, the rank-one constraint C11b{\mathrm{C11b}} is rewritten using lemma 3:

Lemma 3.

The rank-one constraint C11b\mathrm{C11b} is equivalent to the following D.C. form constraint:

C11b~:𝐘𝐘20.\displaystyle\widetilde{\mathrm{C11b}}:\|\mathbf{Y}\|_{*}-\|\mathbf{Y}\|_{2}\leq 0. (41)
Proof.

Since 𝐘\mathbf{Y} is a Hermitian matrix, the inequality 𝐘=iϱi𝐘2=max𝑖{ϱi}\|\mathbf{Y}\|_{*}=\sum_{i}\varrho_{i}\geq\|\mathbf{Y}\|_{2}=\underset{i}{\max}\{\varrho_{i}\} holds, where the ii-th singular value of 𝐘\mathbf{Y} is denoted by ϱi\varrho_{i}. So the inequality in (41) holds if and only if 𝐘\mathbf{Y} has a unit rank[29]. ∎

Now, we aim to propose an iterative algorithm based on SCA to tackle the D.C. form constraint C11b~\widetilde{\mathrm{C11b}}. To this end, for any feasible point 𝐘(t)\mathbf{Y}^{(t)}, where (t)(t) denotes the iteration index for the proposed algorithm summarized in Algorithm 1 (to be discussed in detail later), a lower bound of 𝐘2\|\mathbf{Y}\|_{2} is given by its first-order Taylor approximation:

𝐘2𝐘(t)2+Tr(𝝀max(𝐘(t))×𝝀maxH(𝐘(t))(𝐘𝐘(t))).\displaystyle\|\mathbf{Y}\|_{2}\!\geq\!\!\|\mathbf{Y}^{(t)}\!\|_{2}\!+\!\!\mathrm{Tr}\Big{(}\!\bm{\lambda}_{\max}(\mathbf{Y}^{(t)})\!\!\times\!\!\bm{\lambda}_{\max}^{\mathrm{H}}(\mathbf{Y}^{(t)}\!)(\mathbf{Y}\!\!-\!\mathbf{Y}^{(t)})\!\Big{)}. (42)

By applying SCA, a subset of constraint C11b~\widetilde{\mathrm{C11b}} can be obtained which is given by

C11b¯:\displaystyle\overline{\mathrm{C11b}}: 𝐘𝐘(t)2\displaystyle\|\mathbf{Y}\|_{*}-\|\mathbf{Y}^{(t)}\|_{2} (43)
Tr(𝝀max(𝐘(t))𝝀maxH(𝐘(t))×(𝐘𝐘(t)))0.\displaystyle-\mathrm{Tr}\Big{(}\bm{\lambda}_{\max}(\mathbf{Y}^{(t)})\bm{\lambda}_{\max}^{\mathrm{H}}(\mathbf{Y}^{(t)})\times(\mathbf{Y}-\mathbf{Y}^{(t)})\Big{)}\leq 0.

Since C11b¯C11b\overline{\mathrm{C11b}}\Rightarrow{\mathrm{C11b}}, replacing C11b\mathrm{C11b} with C11b¯\overline{\mathrm{C11b}} can ensure that the former is satisfied when the proposed algorithm converges. On the other hand, it can be observed that the non-convex objective function in (25), non-convex constraint C3c¯\overline{{\mathrm{C3c}}} in (26), and non-convex constraint C4d\mathrm{C4d} in (17) are also in D.C. form that are differentiable. Similarly, by deriving the first-order Taylor expansions corresponding to the non-convex component, for any feasible point ιk(t)\iota_{k}^{(t)}, βPR(t)\beta_{\mathrm{PR}}^{(t)}, and si,n(t)s_{i,n}^{(t)}, we have the following inequalities

Dobj(ιk)k𝒦(ιkHDobj(ιk(t))(ιkιk(t)))+Dobj(ιk(t)),\displaystyle D_{\mathrm{obj}}(\iota_{k})\leq\!\!\sum_{k\in\mathcal{K}}\!\!\Big{(}\nabla^{\mathrm{H}}_{\mathbf{\iota}_{k}}D_{\mathrm{obj}}(\iota_{k}^{(t)})(\iota_{k}-\iota_{k}^{(t)})\Big{)}\!+\!D_{\mathrm{obj}}(\iota_{k}^{(t)}), (44)
ea(βPRq)ea(βPR(t)q)aea(βPR(t)q(βPRβPR(t)), and\displaystyle e^{-a(\beta_{\mathrm{PR}}-q)}\!\geq\!e^{-a(\beta_{\mathrm{PR}}^{(t)}-q)}-ae^{-a(\beta_{\mathrm{PR}}^{(t)}-q}(\beta_{\mathrm{PR}}\!-\!\beta_{\mathrm{PR}}^{(t)})\text{, and }
si,n2(si,n(t))2+2si,n(t)(si,nsi,n(t)),i,n,\displaystyle s_{i,n}^{2}\geq\,(s_{i,n}^{(t)})^{2}+2s_{i,n}^{(t)}(s_{i,n}-s_{i,n}^{(t)}),\forall i,n,

respectively, where ιkHDobj(ιk)=1(ln2)(σk2+ιk)\nabla^{\mathrm{H}}_{\mathbf{\iota}_{k}}D_{\mathrm{obj}}(\iota_{k})=\frac{1}{(\ln 2)(\sigma^{2}_{k}+\iota_{k})}. As such, a lower bound of the objective function (25) and subsets of constraints C3c¯\overline{\mathrm{C3c}} and C4d\mathrm{C4d} are given by

Nobj(ξk,ιk)k𝒦(ιkHDobj(ιk(t))(ιkιk(t)))Dobj(ιk(t)),\displaystyle N_{\mathrm{obj}}(\xi_{k},\iota_{k})\!-\!\!\sum_{k\in\mathcal{K}}\!\!\Big{(}\!\nabla^{\mathrm{H}}_{\mathbf{\iota}_{k}}D_{\mathrm{obj}}(\iota_{k}^{(t)})(\iota_{k}\!-\!\iota_{k}^{(t)})\!\Big{)}\!\!-\!\!D_{\mathrm{obj}}(\iota_{k}^{(t)}), (45)
C3c¯¯:ea(βPR(t)q)+aea(βPR(t)q)(βPRβPR(t))+UnES0,n,\displaystyle\overline{\mathrm{\overline{C3c}}}:\!-e^{-a(\beta_{\mathrm{PR}}^{(t)}-q)}\!\!+\!ae^{-a(\beta_{\mathrm{PR}}^{(t)}-q)}(\beta_{\mathrm{PR}}\!-\!\beta_{\mathrm{PR}}^{(t)})\!+\!U_{n}^{\mathrm{ES}}\!\!\leq\!0,\forall n,
and C4d¯:si,n(si,n(t))22si,n(t)(si,nsi,n(t))0,i,n,\displaystyle\text{and }\overline{\mathrm{C4d}}:s_{i,n}-(s_{i,n}^{(t)})^{2}-2s_{i,n}^{(t)}(s_{i,n}-s_{i,n}^{(t)})\leq 0,\forall i,n,

respectively.

Algorithm 1 Proposed Resource Allocation Scheme
1: Initialize the maximum number of iteration tmaxt_{\max}, the initial iteration index t=0t=0, and variables ιkt\iota^{t}_{k}, βPRt\beta^{t}_{\mathrm{PR}}, si,nts^{t}_{i,n}, 𝐖kt\mathbf{W}^{t}_{k}, 𝐙t\mathbf{Z}^{t}, 𝚿C9,kt\mathbf{\Psi}^{t}_{\mathrm{C9},k}, 𝚿C10,kt\mathbf{\Psi}^{t}_{\mathrm{C10},k}, 𝚿eve,jt\mathbf{\Psi}^{t}_{\mathrm{eve},j}, and 𝐘t,k,j,i,n\mathbf{Y}^{t},\forall k,j,i,n.
2:repeat {Main Loop: SCA}
3:    Solve problem (50) with given variables ιkt\iota^{t}_{k}, βPRt\beta^{t}_{\mathrm{PR}}, si,nts^{t}_{i,n}, 𝐖kt\mathbf{W}^{t}_{k}, 𝐙t\mathbf{Z}^{t}, 𝚿C9,kt\mathbf{\Psi}^{t}_{\mathrm{C9},k}, 𝚿C10,kt\mathbf{\Psi}^{t}_{\mathrm{C10},k}, 𝚿eve,jt\mathbf{\Psi}^{t}_{\mathrm{eve},j}, and 𝐘t,k,j,i,n\mathbf{Y}^{t},\forall k,j,i,n, to obtain ιkt+1\iota^{t+1}_{k}, βPRt+1\beta^{t+1}_{\mathrm{PR}}, si,nt+1s^{t+1}_{i,n}, 𝐖kt+1\mathbf{W}^{t+1}_{k}, 𝐙t+1\mathbf{Z}^{t+1}, 𝚿C9,kt+1\mathbf{\Psi}^{t+1}_{\mathrm{C9},k}, 𝚿C10,kt+1\mathbf{\Psi}^{t+1}_{\mathrm{C10},k}, 𝚿eve,jt+1\mathbf{\Psi}^{t+1}_{\mathrm{eve},j}, and 𝐘t+1,k,j,i,n\mathbf{Y}^{t+1},\forall k,j,i,n;
4:    Set t=t+1t=t+1 and update variables;
5:until convergence or t=tmaxt=t_{\max}.

Similarly, to overcome the non-convexity of C5a\mathrm{C5a}, C9¯\overline{\mathrm{C9}}, and C10¯\overline{\mathrm{C10}} in (36), we construct their corresponding global underestimators by their first-order Taylor approximations, respectively. In particular, for any feasible point 𝐖i(t)\mathbf{W}_{i}^{(t)}, a lower bound of Tr(𝐖iH𝐖i)\mathrm{Tr}(\mathbf{W}_{i}^{\mathrm{H}}\mathbf{W}_{i}) is given by

Tr(𝐖iH𝐖i)𝐖i(t)F2+2Tr((𝐖i(t))H𝐖i).\displaystyle\mathrm{Tr}(\mathbf{W}_{i}^{\mathrm{H}}\mathbf{W}_{i})\geq-\|\mathbf{W}_{i}^{(t)}\|^{2}_{\mathrm{F}}+2\mathrm{Tr}\Big{(}(\mathbf{W}_{i}^{(t)})^{\mathrm{H}}\mathbf{W}_{i}\Big{)}. (46)

Following the same method, the lower bound of Tr(𝐖kH𝐖k)\mathrm{Tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{W}_{k}), Tr(𝚿eve,jH𝚿eve,j)\mathrm{Tr}(\mathbf{\mathbf{\Psi}}_{\mathrm{eve},j}^{\mathrm{H}}\mathbf{\mathbf{\Psi}}_{\mathrm{eve},j}), Tr(𝚿C9,kH𝚿C9,k)\mathrm{Tr}(\mathbf{\mathbf{\Psi}}_{\mathrm{C9},k}^{\mathrm{H}}\mathbf{\mathbf{\Psi}}_{\mathrm{C9},k}), Tr(𝐙H𝐙)\mathrm{Tr}(\mathbf{Z}^{\mathrm{H}}\mathbf{Z}), and Tr(𝚿C10,kH𝚿C10,k)\mathrm{Tr}(\mathbf{\mathbf{\Psi}}_{\mathrm{C10},k}^{\mathrm{H}}\mathbf{\mathbf{\Psi}}_{\mathrm{C10},k}) can be found. Therefore, the subsets of C5a\mathrm{C5a}, C9¯\overline{\mathrm{C9}}, and C10¯\overline{\mathrm{C10}} in (36) are given by

C5a¯:𝐖k+𝚿eve,jF2+𝐖k(t)F22Tr((𝐖k(t))H𝐖k)\displaystyle\overline{\mathrm{C5a}}:\|\mathbf{W}_{k}\!+\!\mathbf{\Psi}_{\mathrm{eve},j}\|^{2}_{\mathrm{F}}\!+\!\|\mathbf{W}_{k}^{(t)}\|^{2}_{\mathrm{F}}\!-\!2\mathrm{Tr}\Big{(}\!(\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k}\!\Big{)} (47)
+(2τk,j)𝚿eve,j(t)F2(2τk,j+1)Tr((𝚿eve,j(t))H𝚿eve,j)\displaystyle\hskip 19.91692pt+(2^{\tau_{k,j}})\|\mathbf{\Psi}_{\mathrm{eve},j}^{(t)}\|^{2}_{\mathrm{F}}-(2^{\tau_{k,j}+1})\mathrm{Tr}\Big{(}(\mathbf{\Psi}_{\mathrm{eve},j}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{eve},j}\Big{)}
(2τk,j+12)σeve2+(2τk,j1){𝐙𝚿eve,jF2+\displaystyle\hskip 19.91692pt-(2^{\tau_{k,j}+1}-2)\sigma^{2}_{\mathrm{eve}}+(2^{\tau_{k,j}}-1)\Big{\{}\|\mathbf{Z}-\mathbf{\Psi}_{\mathrm{eve},j}\|^{2}_{\mathrm{F}}+
𝐙(t)F22Tr((𝐙(t))H𝐙)}0,k,j,\displaystyle\hskip 19.91692pt\|\mathbf{Z}^{(t)}\|^{2}_{\mathrm{F}}-2\mathrm{Tr}\Big{(}(\mathbf{Z}^{(t)})^{\mathrm{H}}\mathbf{Z}\Big{)}\Big{\}}\leq 0,\forall k,j,
C9¯¯:ξk+12(𝐖k𝚿C9,kF2+𝚿C9,k(t)F2+𝐖k(t)F2)\displaystyle\overline{\overline{\mathrm{C9}}}:\xi_{k}+\!\!\frac{1}{2}\Big{(}\|\mathbf{W}_{k}-\mathbf{\Psi}_{\mathrm{C9},k}\|^{2}_{\mathrm{F}}+\|\mathbf{\Psi}_{\mathrm{C9},k}^{(t)}\|^{2}_{\mathrm{F}}\!+\!\|\mathbf{W}_{k}^{(t)}\|^{2}_{\mathrm{F}}\Big{)}\! (48)
Tr((𝚿C9,k(t))H𝚿C9,k)Tr((𝐖k(t))H𝐖k)0,k, and\displaystyle\hskip 14.22636pt-\!\mathrm{Tr}\Big{(}(\mathbf{\Psi}_{\mathrm{C9},k}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C9},k}\Big{)}\!-\!\mathrm{Tr}\Big{(}\!(\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k}\!\Big{)}\!\leq\!0,\forall k,\text{ and }
C10¯¯:i𝒦/{k}{12𝐖i+𝚿C10,kF2}+12𝐙+𝚿C10,kF2\displaystyle\overline{\overline{\mathrm{C10}}}:\sum_{i\in\mathcal{K}/\{k\}}\Big{\{}\frac{1}{2}\|\mathbf{W}_{i}+\mathbf{\Psi}_{\mathrm{C10},k}\|^{2}_{\mathrm{F}}\Big{\}}+\frac{1}{2}\|\mathbf{Z}+\mathbf{\Psi}_{\mathrm{C10},k}\|^{2}_{\mathrm{F}} (49)
+K2𝚿C10,k(t)F2KTr((𝚿C10,k(t))H𝚿C10,k)Tr((𝐙(t))H𝐙)\displaystyle+\frac{K}{2}\|\mathbf{\Psi}_{\mathrm{C10},k}^{(t)}\|^{2}_{\mathrm{F}}\!-\!K\mathrm{Tr}\Big{(}\!(\mathbf{\Psi}_{\mathrm{C10},k}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C10},k}\!\Big{)}\!-\!\mathrm{Tr}\Big{(}\!(\mathbf{Z}^{(t)})^{\mathrm{H}}\mathbf{Z}\!\Big{)}
+i𝒦/{k}{12𝐖i(t)F2Tr((𝐖i(t))H𝐖i)}+12𝐙(t)F2ιk,k,\displaystyle+\sum_{i\in\mathcal{K}/\{k\}}\Big{\{}\frac{1}{2}\|\mathbf{W}_{i}^{(t)}\|^{2}_{\mathrm{F}}\!-\!\mathrm{Tr}\Big{(}\!(\mathbf{W}_{i}^{(t)})^{\mathrm{H}}\mathbf{W}_{i}\!\Big{)}\Big{\}}\!+\!\frac{1}{2}\|\mathbf{Z}^{(t)}\|^{2}_{\mathrm{F}}\!\leq\!\iota_{k},\forall k,

respectively, where 𝐖k(t)\mathbf{W}_{k}^{(t)}, 𝐙(t)\mathbf{Z}^{(t)}, 𝚿eve,j(t)\mathbf{\Psi}_{\mathrm{eve},j}^{(t)}, 𝚿C9,k(t)\mathbf{\Psi}_{\mathrm{C9},k}^{(t)}, and 𝚿C10,k(t)\mathbf{\Psi}_{\mathrm{C10},k}^{(t)} are the solutions obtained in the tt-th iteration. For notational simplicity, we define ϵ={ϵk,nC3f,ϵjC5b¯,ϵkC12¯,ϵkC13¯}\epsilon=\{\epsilon^{\mathrm{C3f}}_{k,n},\epsilon^{\mathrm{\overline{C5b}}}_{j},\epsilon^{\mathrm{\overline{C12}}}_{k},\epsilon^{\mathrm{\overline{C13}}}_{k}\}, 𝚿={𝚿C9,k,𝚿C10,k,𝚿eve,j}\mathbf{\Psi}=\{\mathbf{\Psi}_{\mathrm{C9},k},\mathbf{\Psi}_{\mathrm{C10},k},\mathbf{\Psi}_{\mathrm{eve},j}\}, and 𝒰={UnES,UnBS}\mathcal{U}=\{U_{n}^{\mathrm{ES}},U_{n}^{\mathrm{BS}}\}. A lower bound of (24) can be obtained via solving the following optimization problem:

maximize𝐖kMt,𝐙Mt,𝐒,𝐘N+2,𝐕N+1,𝐯,ξk,ιk,βPR,𝒰,ϵ,𝚿\displaystyle\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\\ \mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\,\\ \mathbf{S},\mathbf{Y}\in\mathbb{H}^{N+2},\\ \mathbf{V}\in\mathbb{H}^{N+1},\\ \mathbf{v},\xi_{k},\iota_{k},\\ \beta_{\mathrm{PR}},\,\mathcal{U},\epsilon,\mathbf{\Psi}\end{subarray}}{\mathrm{maximize}} Nobj(ξk,ιk)k𝒦ιkHDobj(ιk(t))(ιkιk(t))Dobj(ιk(t))\displaystyle\,\,N_{\mathrm{obj}}(\xi_{k},\iota_{k})\!-\!\!\!\sum_{k\in\mathcal{K}}\!\nabla^{\mathrm{H}}_{\mathbf{\iota}_{k}}D_{\mathrm{obj}}(\iota_{k}^{(t)})(\iota_{k}\!-\!\iota_{k}^{(t)})\!-\!D_{\mathrm{obj}}(\iota_{k}^{(t)}) (50)
s.t.C1,C3a¯¯,C3b¯¯,C3c¯¯,C3d¯,C3e¯,C3fa¯¯,C3fb¯¯,\displaystyle\mathrm{s.t.}\,\,\mathrm{C1},\mathrm{\overline{\overline{C3a}}},\mathrm{\overline{\overline{C3b}}},\overline{\mathrm{\overline{C3c}}},\mathrm{\overline{C3d}},\mathrm{\overline{C3e}},\mathrm{\overline{\overline{C3fa}}},\mathrm{\overline{\overline{C3fb}}},
C3g¯,C3h¯,C4a,C4b,C4d¯,C4e,C5a¯,C5b¯,\displaystyle\hskip 17.07164pt\mathrm{{\overline{C3g}}},\mathrm{\overline{C3h}},\mathrm{C4a},\mathrm{C4b},\overline{\mathrm{C4d}},\mathrm{C4e},\overline{\mathrm{C5a}},\overline{\mathrm{C5b}},
C5c¯,C6,C7,C8,C9¯¯,C10¯¯,C11a,C11b¯,\displaystyle\hskip 17.07164pt\overline{\mathrm{C5c}},\mathrm{C6},\mathrm{C7},\mathrm{C8},\overline{\overline{\mathrm{C9}}},\overline{\overline{\mathrm{C10}}},\mathrm{C11a},\overline{\mathrm{C11b}},
C12a¯,C12b¯,C13a¯,C13b¯.\displaystyle\hskip 17.07164pt\overline{\mathrm{C12a}},\overline{\mathrm{C12b}},\overline{\mathrm{C13a}},\overline{\mathrm{C13b}}.

Since rank-one constraint C8\mathrm{C8} is the only non-convex part in optimization problem (50), we apply the SDR technique to drop the rank constraint in C8\mathrm{C8}, i.e., C8:Rank(𝐖k)1,k\mathrm{C8}:\mathrm{Rank}(\mathbf{W}_{k})\leq 1,\forall k, such that the rank constraint relaxed version of (50) can be solved by using standard numerical solver for convex programming. In the following theorem, the tightness of the adopted SDR is revealed.

Theorem 1.

For Pmax>0P_{\max}>0 and if (50) is feasible, the rank one constraint of Rank(𝐖k)1\mathrm{Rank}(\mathbf{W}_{k})\leq 1 in (50) can always be obtained.

Proof.

Please refer to Appendix A for the proof of Theorem 1. ∎

Due to the use of SCA, solving the problem in (50) provides a lower bound for the problem in (13). To tighten the obtained performance lower bound, we iteratively update the feasible solution by solving the optimization problem in (50) in the tt-th iteration. The proposed SCA-based algorithm is shown in Algorithm 1 and the proof of its convergence to a suboptimal solution can be found in [54] which is omitted here for brevity.

Table I: Computational complexity comparison between different algorithms
Algorithm Computational Complexity[55]
Exhaustive search 𝒪(2NBNPmaxΔMt2K+Mt2)\displaystyle\mathcal{O}\Big{(}2^{N}B^{N}\frac{P_{\max}}{\Delta}^{M_{t}^{2}K+M_{t}^{2}}\Big{)} (51)
AO algorithm 𝒪((N𝒪,AO1M𝒪,AO13+M𝒪,AO12N𝒪,AO12+N𝒪,AO13)\displaystyle\mathcal{O}\Bigg{(}\!\!\Big{(}\!N_{\mathcal{O},\mathrm{AO1}}M_{\mathcal{O},\mathrm{AO1}}^{3}\!+\!M_{\mathcal{O},\mathrm{AO1}}^{2}N_{\mathcal{O},\mathrm{AO1}}^{2}\!+\!N_{\mathcal{O},\mathrm{AO1}}^{3}\!\Big{)} (52) ×tmaxAO1M𝒪,AO1log1ϱ1+N𝒪,AO23M𝒪,AO22×tmaxAO2log1ϱ2)\displaystyle\!\times t_{\max}^{\mathrm{AO1}}\sqrt{M_{\mathcal{O},\mathrm{AO1}}}\log\frac{1}{\varrho_{1}}\!+\!N_{\mathcal{O},\mathrm{AO2}}^{3}M_{\mathcal{O},\mathrm{AO2}}^{2}\times t_{\max}^{\mathrm{AO2}}\log\frac{1}{\varrho_{2}}\Bigg{)}
The proposed algorithm 𝒪((N𝒪,PM𝒪,P3+M𝒪,P2N𝒪,P2+N𝒪,P3)×M𝒪,Plog1ϱ)\displaystyle\mathcal{O}\Bigg{(}\!\!\Big{(}\!N_{\mathcal{O},\mathrm{P}}M_{\mathcal{O},\mathrm{P}}^{3}\!+\!M_{\mathcal{O},\mathrm{P}}^{2}N_{\mathcal{O},\mathrm{P}}^{2}\!+\!N_{\mathcal{O},\mathrm{P}}^{3}\!\Big{)}\!\!\times\!\!\sqrt{M_{\mathcal{O},\mathrm{P}}}\log\frac{1}{\varrho}\!\!\Bigg{)} (53)

In practice, several methods [52] can be used to solve the convex problem in (13). Table I shows the computational complexity and performance comparison of the exhaustive search method, the AO approach, and the proposed algorithm of the optimization problem in (13). Since the precoder adopted at the AP, 𝐰k,k\mathbf{w}_{k},\forall k, and artificial noise vector at the AP, 𝐳\mathbf{z}, are continuous variables, to solve the problem in (13), the exhaustive search is performed by a grid search with a grid resolution of Δ>0\Delta>0. In particular, the exhaustive search enumerates all the variable combinations within the feasible set of problem in (13) and then returns the variable combination with the maximum system sum-rate. As such, the computational complexity of the exhaustive search method for the problem in (13) is given by (51) in Table I, where 𝒪\mathcal{O} is the big-O notation. Although the exhaustive search can obtain an optimal solution of the problem in (13), it is computationally intractable even for a moderate size system. In the following, we analyze the computational complexity of the AO algorithm and the proposed algorithm in details.
On the other hand, the computational complexity of each iteration of the conventional AO algorithm to solve problem (13) is given by (52) in Table I [55], where

M𝒪,AO1=\displaystyle M_{\mathcal{O},\mathrm{AO1}}= KJ+7K+2J+2 and\displaystyle KJ+7K+2J+2\text{ and } (54)
N𝒪,AO1=\displaystyle N_{\mathcal{O},\mathrm{AO1}}= (3K+J+1)Mt2+3K+2J\displaystyle(3K+J+1)M_{t}^{2}+3K+2J

are the number of inequalities and the number of variables (dominated terms) of subproblem 1 of the AO algorithm, respectively. Besides,

M𝒪,AO2=\displaystyle M_{\mathcal{O},\mathrm{AO2}}= 3+6N+4BN+2K+KJ and\displaystyle 3+6N+4BN+2K+KJ\text{ and } (55)
N𝒪,AO2=\displaystyle N_{\mathcal{O},\mathrm{AO2}}= N2+4N+2+BN+4K+J+(2K+J)Mt2\displaystyle N^{2}+4N+2+BN+4K+J+(2K+J)M_{t}^{2}

are the number of inequalities and the number of variables of subproblem 2 of (51) the AO algorithm, respectively. Note that ϱ1\varrho_{1} and ϱ2\varrho_{2} is the threshold of convergence tolerance of the subproblems 11 and 22 of the AO algorithm, respectively. Besides, tmaxAO1t_{\max}^{\mathrm{AO1}} and tmaxAO2t_{\max}^{\mathrm{AO2}} are the maximum iteration times of the subproblems 11 and 22 of the AO algorithm, respectively. Moreover, the computational complexity of each iteration of the proposed algorithm is given by (53) in Table I [55], where M𝒪,P=5+11N+2BN+KJ+2J+7KM_{\mathcal{O},\mathrm{P}}=5+11N+2BN+KJ+2J+7K and N𝒪,P=(3K+J+1)Mt2+7N+BN+N2+4K+2N_{\mathcal{O},\mathrm{P}}=(3K+J+1)M_{t}^{2}+7N+BN+N^{2}+4K+2 are the number of inequalities and the number of variables of the proposed scheme, respectively. Besides, ϱ\varrho is the threshold of convergence tolerance of the proposed algorithm. Note that the computational complexity of the proposed algorithm and the AO method both enjoy a polynomial time computational complexity which is known as fast algorithms for implementation [56] and the conclusion of their complexity comparison depends on the adopted parameters. It is worth to mention that the performance of the proposed algorithm outperforms that of the AO algorithm, which will be shown in the following simulations. Indeed, rather than separately and alternatively optimizing variables in each subproblem, the proposed algorithm can jointly optimize all optimization variables in every iteration for a better exploitation of the problem structure.

V Simulation Results

V-A Simulation Setup

Refer to caption
Fig. 4: Simulation setup.

This section evaluates the system performance of the proposed self-sustainable IRS scheme via simulation. The system setup is shown in Fig. 4. The KK users and J1J-1 the potential eavesdroppers are randomly distributed on the circumference of two concentric circles with radii of r=1r=1 m and re2=20r_{\mathrm{e2}}=20 m, respectively. The other potential eavesdropper is located on the circumference of a circle centered at the AP with a radii of re1=80r_{\mathrm{e1}}=80 m. The AP and the center point of the circle formed by users are located d0=60d_{0}=60 m apart. Also, the IRS lies on a horizontal line that is in parallel to the one that connects the AP and the centre point of the users formed concentric circle. The vertical distance between these two lines is dy=1d_{y}=1 m and the horizontal distance between the AP and the IRS is denoted by dd. The distance-dependent path loss model[57] is adopted with 1010 m reference distance. For ease of presentation, we define κcu,k,κG,κd,k,κce,j\kappa_{\mathrm{cu},k},\kappa_{\mathrm{G}},\kappa_{\mathrm{d},k},\kappa_{\mathrm{ce},j}, and κed,j\kappa_{\mathrm{ed},j} as the maximum normalized estimation error for the channel 𝐆cu,k,𝐆,𝐡d,k,𝐆ce,j\mathbf{G}_{\mathrm{cu},k},\mathbf{G},\mathbf{h}_{\mathrm{d},k},\mathbf{G}_{\mathrm{ce},j}, and 𝐡ed,j\mathbf{h}_{\mathrm{ed},j}, i.e., κcu,k=ρcu,k𝐆cu,kF,κG=ρG𝐆F,κd,k=ρd,k𝐡d,k2,κce,j=ρce,j𝐆ce,jF\kappa_{\mathrm{cu},k}=\frac{\rho_{\mathrm{cu},k}}{\|\mathbf{G}_{\mathrm{cu},k}\|_{\mathrm{F}}},\kappa_{\mathrm{G}}=\frac{\rho_{\mathrm{G}}}{\|\mathbf{G}\|_{\mathrm{F}}},\kappa_{\mathrm{d},k}=\frac{\rho_{\mathrm{d},k}}{\|\mathbf{h}_{\mathrm{d},k}\|_{2}},\kappa_{\mathrm{ce},j}=\frac{\rho_{\mathrm{ce},j}}{\|\mathbf{G}_{\mathrm{ce},j}\|_{\mathrm{F}}}, and κed,j=ρed,j𝐡ed,j2\kappa_{\mathrm{ed},j}=\frac{\rho_{\mathrm{ed},j}}{\|\mathbf{h}_{\mathrm{ed},j}\|_{2}}, respectively. Unless further specified, we fix κ=κcu,k=κG=κd,k=κce,j=κed,j\kappa=\kappa_{\mathrm{cu},k}=\kappa_{\mathrm{G}}=\kappa_{\mathrm{d},k}=\kappa_{\mathrm{ce},j}=\kappa_{\mathrm{ed},j} and κ2=0.1\kappa^{2}=0.1, which is the normalized mean square error based on channel estimation method in [43]. The maximum of tolerable channel capacity of potential eavesdroppers is τ=τk,j=1.5\tau=\tau_{k,j}=1.5 bits/s/Hz. Other important parameters are summarized in Table II.

Table II: System parameters
Antenna gains at the AP, the IRS and receivers 2020 dBi, 0 dBi, and 0 dBi
Systen carrier centre frequency 2.42.4 GHz
Number of antennas at AP MM 1010
Number of the IRS elements NN 5050
Number of users KK and the number of eavesdroppers JJ K=2K=2 and J=2J=2
Path loss exponents of AP-user links, AP-Eve links,
AP-IRS link, IRS-user links, and IRS-Eve links
αAU=αAE=3.6\alpha_{\mathrm{AU}}=\alpha_{\mathrm{AE}}=3.6[58],
αAI=αIU=αIE=2.2\alpha_{\mathrm{AI}}=\alpha_{\mathrm{IU}}=\alpha_{\mathrm{IE}}=2.2
Rician factors of of AP-user links, AP-Eve links,
AP-IRS link, IRS-user links, and IRS-Eve links
βAU=βAE=0\beta_{\mathrm{AU}}=\beta_{\mathrm{AE}}=0,
βAI=βIU=βIE=3\beta_{\mathrm{AI}}=\beta_{\mathrm{IU}}=\beta_{\mathrm{IE}}=3
Non-linear energy harvesting circuit parameters
Mp=80M_{\mathrm{p}}=80 mW, a=1,500a=1,500,
and q=0.0022q=0.0022 [23]
Maximum power budget at the AP PmaxP_{\max} Pmax=38P_{\max}=38 dBm
Noise power at users and eavesdroppers σk2=σeve,j2=90\sigma_{k}^{2}=\sigma_{\mathrm{eve},j}^{2}=-90 dBm
Power consumption consumed by power conversion circuit PcP_{\mathrm{c}} Pc=2.1P_{\mathrm{c}}=2.1 μW\mu W[59]
Phase shifter bit resolution of IRS elements bb b=3b=3 bits
Power consumption of each IRS reflection element PIRS(b)P_{\mathrm{IRS}}(b) PIRS(b)=1.5P_{\mathrm{IRS}}(b)=1.5 mW for b=3b=3 [17]
The maximum of tolerable channel capacity of eavesdroppers τ=τk,j=1.5\tau=\tau_{k,j}=1.5 bits/s/Hz

For comparison, we evaluate the system performance of five baseline schemes: 1) “Upper bound 11” has the same setting as the considered model expect that all IRS elements in this scheme adopt continuous phase shifters but without consuming any energy; 2) “Upper bound 22” is achieved by the IRS-assisted system with an energy harvesting IRS but without potential eavesdroppers; 3) “Baseline scheme 11” is a non-robust design for the case when the IRS is not deployed and the maximum ratio transmission (MRT) with respect to users is adopted as the precoder at the AP. In particular, this scheme treats the imperfect CSI as the perfect one and the direction of the precoder for the kk-th user is fixed to 𝐡d,kH𝐡d,k\frac{\mathbf{h}_{\mathrm{d},k}^{\mathrm{H}}}{\|\mathbf{h}_{\mathrm{d},k}\|}. Then, we optimize the power allocation for each user subject to constraint C1 in problem (13) for the maximization of system sum-rate; 4) “Baseline scheme 22” is the system with a self-sustainable IRS adopting the same MRT precoder at the AP as in baseline scheme 11 for non-robust transmission. Yet, its phase shifts of the IRS and the power allocation at the AP are jointly optimized by applying the method developed by the proposed scheme; 5) “Baseline scheme 33” is the same as the proposed scheme expect that it treats the estimated channel information as perfect channel information; 6) “Baseline scheme 44” focuses on the same setting as the proposed scheme except that all IRS elements in the former adopt random phase shifts but without consuming any energy; 7) “Baseline scheme 5” is the same as the proposed scheme expect that it does not take the existence of eavesdroppers into account. In other words, there is no communication security guaranteed; 8) “AO scheme” is the conventional algorithm which has been widely used in the literature [20, 21, 11, 5]. It has the same setting as the considered model except that AO is applied which splits the original problem into two sub-problems and optimizes the grouped variables {𝐰k\{\mathbf{w}_{k}, 𝐙}\mathbf{Z}\} and {θn,\{\theta_{n}, αn}\alpha_{n}\} in the subproblems, respectively, via an alternating manner. The resource allocation for the eight baselines scheme can be obtained by modifying the proposed scheme accordingly. Note that for all the schemes, if the joint design of precoder and phase shifts of IRS are unable to meet the requirements of constraints in (13), we set the system sum-rate for that channel realization to zero to account the penalty for the corresponding failure.

V-B Average System Sum-Rate versus the Distance Between AP and IRS

Refer to caption
Fig. 5: Average system sum-rate (bits/s/Hz) versus the distance between the AP and the IRS (m) for J=2J=2.
Refer to caption
Fig. 6: Average system sum-rate (bits/s/Hz) versus the number of IRS elements NN for Pmax=36P_{\max}=36 dBm.

Fig. 5 depicts the average system sum-rate versus the horizontal distance between the AP and the IRS for different schemes. It can be observed that the proposed scheme can achieve a substantially higher sum-rate than that of baseline scheme 11, which the IRS is not available. Indeed, the IRS provides an additional path gain, 𝐡r,kH𝚯𝐆,k\mathbf{h}_{\mathrm{r},k}^{\mathrm{H}}\mathbf{\Theta}\mathbf{G},\forall k, which can be exploited and optimized by the proposed scheme to improve the system performance. Besides, due to the joint optimization of the transmit beamforming and phase shifts, the proposed scheme can achieve a considerable performance gain compared with baseline scheme 22 adopting a fixed beamforming direction. In addition, we note that baseline scheme 44 has unsatisfactory performance compared with the proposed scheme. Indeed, since baseline scheme 44 adopts random phase shifts, the information beams reflected by the IRS do not always align with the direction of the desired channels such that the additional path gain cannot be fully exploited. Furthermore, since baseline scheme 5 does not take the existence of eavesdroppers into account while optimizing the precoder and IRS phase shifts, there is no power allocated to the artificial noise vector, 𝐳\mathbf{z}, which generally results in a high channel capacity at the potential eavesdroppers. Therefore, the resulting joint design of baseline scheme 5 is unable to fulfill the security QoS requirement, i.e., constraint C5 of the problem in (13), which leads to an unsatisfactory performance. Moreover, the proposed scheme outperforms the AO scheme. Indeed, AO splits the original problem in (13) into two subproblems and optimizes the grouped variables {𝐰k\{\mathbf{w}_{k}, 𝐙}\mathbf{Z}\} and {θn,\{\theta_{n}, αn}\alpha_{n}\} in the two subproblems, respectively, via an alternating manner. In particular, it is well-known that the AO method can be easily trapped in inefficient stationary points over iterations in practice, which leads to possible severe performance degradation. In contrast, our proposed algorithm is able to jointly optimize all these optimization variables in each iteration, which can better exploit the structure of the design problem resulting in a higher sum-rate than the conventional AO approach. Furthermore, since introducing more users to the system offers more multi-user diversity [60, 61] for the proposed resource allocation design to exploit, the system sum-rate of the case K=8K=8 and J=2J=2 is higher than that of K=2K=2 and J=2J=2.
On the other hand, for all schemes with IRS deployed except baseline scheme 5, the average system sum-rate is at its lowest when the IRS is close to the middle between the AP and the center point of users. In fact, when the IRS is neither close to the AP nor the users, both the AP-IRS path and the IRS-users paths would experience significant attenuations that decrease the capability of the IRS in focusing the reflected signals to the desired users. Besides, we can also observe from Fig. 5 that when the IRS is in close proximity to the AP, the performance of the proposed scheme approaches that of the upper bound. In contrast, as the distance dd further increases, the sum-rate gap between the proposed scheme and the upper bound is slightly enlarged. This is because as dd increases, each IRS element would harvest less power on average. As can be expected from constraint C3{\mathrm{C}3} in (13), more IRS elements are switched to the power harvesting mode to maintain the sustainability of the IRS resulting in a less number of IRS elements for improving the system sum-rate via signal reflection.

V-C Average System Sum-Rate versus the Number of IRS Elements

Refer to caption
(a) Average system sum-rate (bits/s/Hz) versus the maximum tolerable channel capacity of the potential eavesdroppers (bits/s/Hz).
Refer to caption
(b) Power allocated to information beamforming and AN of the proposed scheme versus the maximum tolerable channel capacity of the potential eavesdroppers (bits/s/Hz).
Fig. 7: The system parameters are set as N=20,J=2,K=2,d=15N=20,J=2,K=2,d=15 m, κ2=0.1\kappa^{2}=0.1, and Pmax=36P_{\max}=36 dBm.

Fig. 6 shows the variation of average system sum-rate with different numbers of IRS elements NN at d=15d=15 m. It can be observed that with an increasing number of IRS elements NN, the average system sum-rate of the proposed scheme increases. Indeed, the extra spatial degrees of freedom offered by the increased number of reflecting IRS elements provides a high flexibility in beamforming to enhance the channel quality of the end-to-end AP-IRS-user link for improving the system sum-rate. More interestingly, the system sum-rate is gradually saturated as the number of IRS elements NN increases. In practice, the number of activated IRS elements for reflection is constrained by both the total amount of energy harvested from the AP and the hardware limitation of the energy harvesting circuit. Although the increase of IRS elements can collect more energy at the input of the energy harvesting circuit, an exceeding large power can saturate the circuit due to its non-linearity. As such, the harvestable energy reaches its maximum which is unable to further support more activated IRS reflection elements. Also, Fig. 6 compares the performance of the proposed scheme with different bit resolutions, bb, of each IRS phase shifter. Note that the upper bound in Fig. 6 is the previously mentioned upper bound scheme 11 but with b=b=\infty. It can be observed that the performance of the IRS phase shifts with a bit resolution of b=2,3b=2,3 bits can approach that of the upper bound. In particular, increasing the bit resolution above 22 bits would only provide a marginal improvement in system sum-rate. In fact, the IRS-user links are dominated by LoS components in Rician fading channels. Thus, a small bit resolution of phase shifts is sufficient to facilitate the beamformer aligning the desired signals with the dominant channels.

V-D Sum-Rate Versus the Maximum Tolerable Channel Capacity of the Eavesdroppers

Fig. 7(a) depicts the average system sum-rate versus the maximum tolerable channel capacity of the potential eavesdroppers, τk,j\tau_{k,j}. As can be observed, thanks to the optimization of the transmit beanformer at the AP and the phase shifts at the IRS, the average system sum-rate of the proposed scheme outperforms that of the both baseline schemes 11 and 22. Moreover, the performance gap between the proposed scheme and upper bound 22 is generally small for τ>1.5\tau>1.5, which confirms the effectiveness of the proposed scheme to strike a balance between system sum-rate and security provisioning. Furthermore, the system sum-rate grows as τ\tau increases. Indeed, as shown in Fig. 7(b), when τ\tau is small, a large portion of the transmit power is allocated to transmitting AN to deteriorate the capacity of the potential eavesdroppers. As a result, less power is allocated to maximize the system sum-rate. As for large τ\tau, the information leakage constraints are less stringent, thus more power can be assigned to the precoder 𝐖k\mathbf{W}_{k}, which can effectively exploit the DoF brought by the AP antennas and IRS elements to create powerful and sharp beamforming for improving the system sum-rate.

V-E CSI Uncertainties

Refer to caption
Fig. 8: Average system sum-rate (bits/s/Hz) versus the maximum normalized channel estimation error variance, κ2\kappa^{2}.

Fig. 8 shows the average system sum-rate against different maximum normalized channel estimation error variance κ2\kappa^{2} when d=10d=10 m and Pmax=30P_{\max}=30 dBm. As can be observed, for all the schemes, the average sum-rates decline as the quality of CSI is degraded. This is because with the deteriorated CSI quality, both the AP and the IRS become less capable in creating energy-focused information carrying beams and more power is allocated to AN jamming to satisfy the secrecy constraint. On the other hand, since the proposed scheme can jointly optimize the IRS phase shifters and precoders, which exploits the spatial DoF more efficiently than that of baseline schemes 22 and 33, the performance of the proposed scheme significantly outperforms all baseline schemes over the entire range of the different channel error estimation variances, which confirms the robustness against the CSI imperfectness. Moreover, although the performance of baseline scheme 3 is as good as the proposed scheme at κ2=0\kappa^{2}=0, its sum-rate decreases rapidly as the value of κ2\kappa^{2} increases. Since baseline 3 treats imperfect CSI as the prefect one for beamforming design, the resource allocation mismatches are magnified and it is unable to fulfill the QoS requirement leading to unsatisfactory performance.

VI Conclusion

In this paper, we formulated the resource allocation algorithm design for robust and secure multiuser MISO downlink systems with self-sustainable IRS as a non-convex optimization problem. To maximize the system sum-rate, the transmit beamformers, AN covariance matrix, IRS phase shifts, and the power harvesting schedule were jointly optimized while satisfying secrecy constraints for the potential eavesdroppers and taking into account the imperfection of CSI of all channels. The proposed algorithm can achieve an effective solution to the formulated non-convex design problem. Simulation results demonstrated that the proposed scheme offers significant performance gain compared with the conventional MISO systems without IRS. Moreover, our results also unveiled the non-trivial trade-off between achieving IRS self-sustainability and the system sum-rate. In particular, the system sum-rate of a IRS-assisted system is gradually saturated as the number of energy harvesting IRS elements increased. Additionally, we confirmed that a small bit resolution of the IRS phase shifters can achieve a considerable average system sum-rate of the ideal case with continuous phase shifters. Lastly, our results verified the potential of IRSs to improve the physical layer security and confirmed that the robustness of the proposed scheme against the CSI imperfectness.

Appendix A Proof of Theorem 1

To facilicate the proof, we first introduce three slack optimization variables, i.e. 𝐂C5a¯,k,j\mathbf{C}_{\overline{\mathrm{C5a}},k,j}, 𝐂C9¯¯,k\mathbf{C}_{\overline{\overline{\mathrm{C9}}},k}, and 𝐂C10¯¯,i,k\mathbf{C}_{\overline{\overline{\mathrm{C10}}},i,k}, and three constraints, i.e. C14\mathrm{C14}, C15\mathrm{C15}, and C16\mathrm{C16}. Then, the rank constraint relaxed version of problem (50) can be transformed into its equivalent form, as shown in (56) at the top of next page.

maximize𝐖kMt,𝐙Mt,𝐒,𝐘N+2,𝐕N+1,𝐯,ξk,ιk,βPR,𝒰,ϵ,𝚿Nobj(ξk,ιk)k𝒦ιkHDobj(ιk(t))(ιkιk(t))Dobj(ιk(t))\displaystyle\underset{\begin{subarray}{c}\mathbf{W}_{k}\in\mathbb{H}^{M_{\mathrm{t}}},\mathbf{Z}\in\mathbb{H}^{M_{\mathrm{t}}},\,\mathbf{S},\mathbf{Y}\in\mathbb{H}^{N+2},\mathbf{V}\in\mathbb{H}^{N+1},\mathbf{v},\xi_{k},\iota_{k},\beta_{\mathrm{PR}},\,\mathcal{U},\epsilon,\mathbf{\Psi}\end{subarray}}{\mathrm{maximize}}\,\,N_{\mathrm{obj}}(\xi_{k},\iota_{k})\!\!-\!\!\!\!\sum_{k\in\mathcal{K}}\!\!\nabla^{\mathrm{H}}_{\mathbf{\iota}_{k}}D_{\mathrm{obj}}(\iota_{k}^{(t)}\!)(\iota_{k}\!-\!\iota_{k}^{(t)}\!)\!\!-\!\!D_{\mathrm{obj}}(\iota_{k}^{(t)}\!) (56)
s.t.C1,C3a¯¯,C3b¯¯,C3c¯¯,C3d¯,C3e¯,C3fa¯¯,C3fb¯¯,C3g¯,C3h¯,C4a,C4b,C4d¯,C4e,C5b¯,C5c¯,C6,C7,C11a,C11b¯,C12a¯,\displaystyle\mathrm{s.t.}\,\,\mathrm{C1},\mathrm{\overline{\overline{C3a}}},\mathrm{\overline{\overline{C3b}}},\overline{\mathrm{\overline{C3c}}},\mathrm{\overline{C3d}},\mathrm{\overline{C3e}},\mathrm{\overline{\overline{C3fa}}},\mathrm{\overline{\overline{C3fb}}},\mathrm{{\overline{C3g}}},\mathrm{\overline{C3h}},\mathrm{C4a},\mathrm{C4b},\overline{\mathrm{C4d}},\mathrm{C4e},\overline{\mathrm{C5b}},\overline{\mathrm{C5c}},\mathrm{C6},\mathrm{C7},\mathrm{C11a},\overline{\mathrm{C11b}},\overline{\mathrm{C12a}},
C12b¯,C13a¯,C13b¯.\displaystyle\hskip 17.07164pt\overline{\mathrm{C12b}},\overline{\mathrm{C13a}},\overline{\mathrm{C13b}}.
C5a¯~:𝐂C5a¯,k,jF2+𝐖k(t)F22Tr((𝐖k(t))H𝐖k)+(2τk,j)𝚿eve,j(t)F2(2τk,j+1)Tr((𝚿eve,j(t))H𝚿eve,j)(2τk,j+12)σeve2\displaystyle\widetilde{\overline{\mathrm{C5a}}}:\|\mathbf{C}_{\overline{\mathrm{C5a}},k,j}\|^{2}_{\mathrm{F}}+\|\mathbf{W}_{k}^{(t)}\|^{2}_{\mathrm{F}}-2\mathrm{Tr}\Big{(}(\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k}\Big{)}+(2^{\tau_{k,j}})\|\mathbf{\Psi}_{\mathrm{eve},j}^{(t)}\|^{2}_{\mathrm{F}}-(2^{\tau_{k,j}+1})\mathrm{Tr}\Big{(}(\mathbf{\Psi}_{\mathrm{eve},j}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{eve},j}\Big{)}-(2^{\tau_{k,j}+1}-2)\sigma^{2}_{\mathrm{eve}}
+(2τk,j1){𝐙𝚿eve,jF2+𝐙(t)F22Tr((𝐙(t))H𝐙)}0,k,j,\displaystyle\hskip 19.91692pt+(2^{\tau_{k,j}}-1)\Big{\{}\|\mathbf{Z}-\mathbf{\Psi}_{\mathrm{eve},j}\|^{2}_{\mathrm{F}}+\|\mathbf{Z}^{(t)}\|^{2}_{\mathrm{F}}-2\mathrm{Tr}\Big{(}(\mathbf{Z}^{(t)})^{\mathrm{H}}\mathbf{Z}\Big{)}\Big{\}}\leq 0,\forall k,j,
C9¯¯~:ξk+12𝐂C9¯¯,kF2+12𝚿C9,k(t)F2Tr((𝚿C9,k(t))H𝚿C9,k)+12𝐖k(t)F2Tr((𝐖k(t))H𝐖k)0,k,\displaystyle\widetilde{\overline{\overline{\mathrm{C9}}}}:\xi_{k}+\frac{1}{2}\|\mathbf{C}_{\overline{\overline{\mathrm{C9}}},k}\|^{2}_{\mathrm{F}}+\frac{1}{2}\|\mathbf{\Psi}_{\mathrm{C9},k}^{(t)}\|^{2}_{\mathrm{F}}-\mathrm{Tr}\Big{(}(\mathbf{\Psi}_{\mathrm{C9},k}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C9},k}\Big{)}+\frac{1}{2}\|\mathbf{W}_{k}^{(t)}\|^{2}_{\mathrm{F}}-\mathrm{Tr}\Big{(}(\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k}\Big{)}\leq 0,\forall k,
C10¯¯~:i𝒦/{k}{12𝐂C10¯¯,i,kF2}+12𝐙+𝚿C10,kF2+K2𝚿C10,k(t)F2KTr((𝚿C10,k(t))H𝚿C10,k)\displaystyle\widetilde{\overline{\overline{\mathrm{C10}}}}:\sum_{i\in\mathcal{K}/\{k\}}\Big{\{}\frac{1}{2}\|\mathbf{C}_{\overline{\overline{\mathrm{C10}}},i,k}\|^{2}_{\mathrm{F}}\Big{\}}+\frac{1}{2}\|\mathbf{Z}+\mathbf{\Psi}_{\mathrm{C10},k}\|^{2}_{\mathrm{F}}+\frac{K}{2}\|\mathbf{\Psi}_{\mathrm{C10},k}^{(t)}\|^{2}_{\mathrm{F}}-K\mathrm{Tr}\Big{(}(\mathbf{\Psi}_{\mathrm{C10},k}^{(t)})^{\mathrm{H}}\mathbf{\Psi}_{\mathrm{C10},k}\Big{)}
+i𝒦/{k}{12𝐖i(t)F2Tr((𝐖i(t))H𝐖i)}+12𝐙(t)F2Tr((𝐙(t))H𝐙)ιk,k,\displaystyle\hskip 19.91692pt+\sum_{i\in\mathcal{K}/\{k\}}\Big{\{}\frac{1}{2}\|\mathbf{W}_{i}^{(t)}\|^{2}_{\mathrm{F}}-\mathrm{Tr}\Big{(}(\mathbf{W}_{i}^{(t)})^{\mathrm{H}}\mathbf{W}_{i}\Big{)}\Big{\}}+\frac{1}{2}\|\mathbf{Z}^{(t)}\|^{2}_{\mathrm{F}}-\mathrm{Tr}\Big{(}(\mathbf{Z}^{(t)})^{\mathrm{H}}\mathbf{Z}\Big{)}\leq\iota_{k},\forall k,
C14:𝐂C5a¯,k,j𝐖k+𝚿eve,j,k,j,\displaystyle\mathrm{C14}:\,\,\mathbf{C}_{\overline{\mathrm{C5a}},k,j}\succeq\mathbf{W}_{k}+\mathbf{\Psi}_{\mathrm{eve,j}},\forall k,j,
C15:𝐂C9¯¯,k𝐖k𝚿C9¯¯,k,k,C16:𝐂C10¯¯,i,k𝐖i+𝚿C10,k,i,k.\displaystyle\mathrm{C15}:\,\,\mathbf{C}_{\overline{\overline{\mathrm{C9}}},k}\succeq\mathbf{W}_{k}-\mathbf{\Psi}_{\overline{\overline{\mathrm{C9}}},k},\forall k,\hskip 19.91692pt\mathrm{C16}:\,\,\mathbf{C}_{\overline{\overline{\mathrm{C10}}},i,k}\succeq\mathbf{W}_{i}+\mathbf{\Psi}_{\mathrm{C10},k},\forall i,k.

Since (56) is jointly convex with respect to the optimization variables and satisfies Slater’s constraint qualification, its strong duality holds. The Lagrangian function of problem (56) in terms of 𝐖k\mathbf{W}_{k} is given in (57).

=\displaystyle{\mathcal{L}}= δC1Tr(k𝒦𝐖k)+n𝒩Tr(𝓢C3f,n𝐃C3f,n)+k𝒦j𝒥2δC5a¯~,k,jTr((𝐖k(t))H𝐖k)+k𝒦Tr(𝐌C7,k𝐖k)\displaystyle-\delta_{\mathrm{C1}}\mathrm{Tr}(\sum_{k\in\mathcal{K}}\mathbf{W}_{k})+\sum_{n\in\mathcal{N}}\mathrm{Tr}(\bm{\mathcal{S}}_{{{\mathrm{C3f}}},n}\mathbf{D}_{{{\mathrm{C3f}}},n})+\sum_{k\in\mathcal{K}}\sum_{j\in\mathcal{J}}2\delta_{\widetilde{\overline{\mathrm{C5a}}},k,j}\mathrm{Tr}((\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k})+\sum_{k\in\mathcal{K}}\mathrm{Tr}(\mathbf{M}_{\mathrm{C7},k}\mathbf{W}_{k}) (57)
+k𝒦δC9¯¯~,kTr((𝐖k(t))H𝐖k)+k𝒦δC10¯¯~,ki𝒦/{k}Tr((𝐖i(t))H𝐖i)]j𝒥k𝒦Tr(𝐌C14,k,j𝐖k)\displaystyle+\sum_{k\in\mathcal{K}}\delta_{\widetilde{\overline{\overline{\mathrm{C9}}}},k}\mathrm{Tr}((\mathbf{W}_{k}^{(t)})^{\mathrm{H}}\mathbf{W}_{k})+\sum_{k\in\mathcal{K}}\delta_{\widetilde{\overline{\overline{\mathrm{C10}}}},k}\sum_{i\in\mathcal{K}/\{k\}}\mathrm{Tr}((\mathbf{W}_{i}^{(t)})^{\mathrm{H}}\mathbf{W}_{i})\Big{]}-\sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{K}}\mathrm{Tr}(\mathbf{M}_{\mathrm{C14},k,j}\mathbf{W}_{k})
k𝒦Tr(𝐌C15,k𝐖k)i𝒦k𝒦Tr(𝐌C16,i,k𝐖k)+Δ.\displaystyle-\sum_{k\in\mathcal{K}}\mathrm{Tr}(\mathbf{M}_{\mathrm{C15},k}\mathbf{W}_{k})-\sum_{i\in\mathcal{K}}\sum_{k\in\mathcal{K}}\mathrm{Tr}(\mathbf{M}_{\mathrm{C16},i,k}\mathbf{W}_{k})+\Delta.

Δ\Delta in (57) denotes the collection of terms that are irrelevant to 𝐖k\mathbf{W}_{k}. In (57), δC1,k,δC5a¯~,k,j,δC9¯¯~,k\delta_{\mathrm{C1},k},\delta_{\widetilde{\overline{\mathrm{C5a}}},k,j},\delta_{\widetilde{\overline{\overline{\mathrm{C9}}}},k}, and δC10¯¯~,k\delta_{\widetilde{\overline{\overline{\mathrm{C10}}}},k} are the Lagrange multiplier for the constraints C1,C5a¯~,C9¯¯~\mathrm{C1},\widetilde{\overline{\mathrm{C5a}}},\widetilde{\overline{\overline{\mathrm{C9}}}}, and C10¯¯~\widetilde{\overline{\overline{\mathrm{C10}}}}, respectively. 𝐃C3f,n\mathbf{D}_{{{\mathrm{C3f}}},n}, 𝐌C7,k\mathbf{M}_{\mathrm{C7},k}, 𝐌C14,k,j\mathbf{M}_{\mathrm{C14},k,j}, 𝐌C15,k\mathbf{M}_{\mathrm{C15},k}, and 𝐌C16,i,k\mathbf{M}_{\mathrm{C16},i,k} are the Lagrange multiplier matrices corresponding to constraints C3f¯¯\overline{\overline{\mathrm{C3f}}}, C7\mathrm{C7}, C14\mathrm{C14}, C15\mathrm{C15}, and C16\mathrm{C16} respectively. Then, examining the Karush-Kuhn-Tucker (KKT) conditions for problem (56) yields

K1:\displaystyle\mathrm{K1}: 𝐃C3f,n𝟎,𝐌C7,k𝟎,𝐌C14,k,j𝟎,𝐌C15,k𝟎,\displaystyle\,\mathbf{D}_{{{\mathrm{C3f}}},n}^{*}\!\succeq\!\mathbf{0},\mathbf{M}_{\mathrm{C7},k}^{*}\!\succeq\!\mathbf{0},\mathbf{M}_{\mathrm{C14},k,j}^{*}\!\succeq\!\mathbf{0},\mathbf{M}_{\mathrm{C15},k}^{*}\!\succeq\!\mathbf{0}, (58)
𝐌C16,i,k𝟎,δC1,k0,δC5a¯,k,j0,δC9¯¯,k0,δC10¯¯,k0\displaystyle\mathbf{M}_{\mathrm{C16},i,k}^{*}\!\succeq\!\mathbf{0},\delta_{\mathrm{C1},k}\!\geq\!0,\delta_{\overline{\mathrm{C5a}},k,j}\!\geq\!0,\delta_{\overline{\overline{\mathrm{C9}}},k}\geq 0,\delta_{\overline{\overline{\mathrm{C10}}},k}\!\geq\!0
K2:\displaystyle\mathrm{K2}: 𝐌C7,k𝐖k=𝟎,𝐌C14,k,j𝐖k=𝟎,𝐌C15,k𝐖k=𝟎,\displaystyle\,\mathbf{M}_{\mathrm{C7},k}^{*}\mathbf{W}_{k}^{*}\!=\!\mathbf{0},\mathbf{M}_{\mathrm{C14},k,j}^{*}\mathbf{W}_{k}^{*}\!=\!\mathbf{0},\mathbf{M}_{\mathrm{C15},k}^{*}\mathbf{W}_{k}^{*}\!=\!\mathbf{0}, (59)
𝐌C16,i,k𝐖k=𝟎,i,k, and\displaystyle\mathbf{M}_{\mathrm{C16},i,k}^{*}\mathbf{W}_{k}^{*}=\mathbf{0},\forall i,k\text{, and }
K3:\displaystyle\mathrm{K3}: 𝐖k=𝟎.\displaystyle\,\nabla_{\mathbf{W}_{k}}\mathcal{L}=\mathbf{0}. (60)

For ease of presentation, the K3 in (60) can be recast as:

δC1,k𝐈Mt𝚼k=𝐌C7,k,\displaystyle\delta_{\mathrm{C1},k}^{*}\mathbf{I}_{M_{t}}-\mathbf{\Upsilon}^{*}_{k}=\mathbf{M}_{\mathrm{C7},k}^{*}, (61)

where 𝚼k=𝐁+2k𝒦j𝒥δC5a¯,k,j𝐖k(t)k𝒦𝐌C15,k+k𝒦δC9¯¯,k𝐖k(t)+δC10¯¯,ki𝒦/{k}𝐖i(t)j𝒥k𝒦𝐌C14,k,ji𝒦k𝒦𝐌C16,i,k\mathbf{\Upsilon}^{*}_{k}=\mathbf{B}^{*}+2\sum_{k\in\mathcal{K}}\sum_{j\in\mathcal{J}}\delta_{\overline{\mathrm{C5a}},k,j}^{*}\mathbf{W}_{k}^{(t)}-\sum_{k\in\mathcal{K}}\mathbf{M}_{\mathrm{C15},k}^{*}+\sum_{k\in\mathcal{K}}\delta_{\overline{\overline{\mathrm{C9}}},k}^{*}\mathbf{W}_{k}^{(t)}+\delta_{\overline{\overline{\mathrm{C10}}},k}^{*}\sum_{i\in\mathcal{K}/\{k\}}\mathbf{W}_{i}^{(t)}-\sum_{j\in\mathcal{J}}\sum_{k\in\mathcal{K}}\mathbf{M}_{\mathrm{C14},k,j}^{*}-\sum_{i\in\mathcal{K}}\sum_{k\in\mathcal{K}}\mathbf{M}_{\mathrm{C16},i,k}^{*} and 𝐁=Tr(𝐎𝐠^n𝐃C3f,n𝐎𝐠^nH)𝐈Mt\mathbf{B}^{*}=\mathrm{Tr}(\mathbf{O}_{\hat{\mathbf{g}}_{n}}\mathbf{D}_{{{\mathrm{C3f}}},n}^{*}\mathbf{O}_{\hat{\mathbf{g}}_{n}}^{\mathrm{H}})\mathbf{I}_{M_{t}}.

From (59), we know that matrix 𝐖k\mathbf{W}^{*}_{k} lies in the null space of 𝐌C7,k\mathbf{M}_{\mathrm{C7},k}^{*}. To reveal the rank of 𝐖k\mathbf{W}^{*}_{k}, we first investigate the structure of 𝐌C7,k\mathbf{M}_{\mathrm{C7},k}^{*}. When δC1,k=0\delta_{\mathrm{C1},k}^{*}=0, 𝚼k𝟎\mathbf{\Upsilon}^{*}_{k}\preceq\mathbf{0} which leads to the dual problem of problem (56) unbounded. Thus δC1,k>0\delta_{\mathrm{C1},k}^{*}>0 holds. According to (61), if λmax(𝚼k)>δC1,k\lambda_{\max}(\mathbf{\Upsilon}^{*}_{k})>\delta_{\mathrm{C1},k}^{*}, then λmax(𝐌C7,k)<0\lambda_{\max}(\mathbf{M}_{\mathrm{C7},k}^{*})<0, which contradicts K1\mathrm{K1} in (58). If λmax(𝚼k)<δC1,k\lambda_{\max}(\mathbf{\Upsilon}^{*}_{k})<\delta_{\mathrm{C1},k}^{*}, 𝐌C7,k\mathbf{M}_{\mathrm{C7},k}^{*} is a positive definite matrix with full rank, which yields the solution 𝐖k=𝟎\mathbf{W}^{*}_{k}=\mathbf{0} and Rank(𝐖k)=0\mathrm{Rank}(\mathbf{W}^{*}_{k})=0. If λmax(𝚼k)=δC1,k\lambda_{\max}(\mathbf{\Upsilon}^{*}_{k})=\delta_{\mathrm{C1},k}^{*} holds at the optimal solution, in order to have a bounded optimal dual solution, the null space of 𝐌C7,k\mathbf{M}_{\mathrm{C7},k}^{*} is spanned by vector 𝐫maxMt+1\mathbf{r}_{\max}\in\mathbb{C}^{M_{t}+1}, which is a unit-norm eigenvector of 𝚼k\mathbf{\Upsilon}^{*}_{k} associated with eigenvalue λmax(𝚼k)\lambda_{\max}(\mathbf{\Upsilon}^{*}_{k}). As a result, there exists the optimal beamforming matrix given by 𝐖k=ν𝐫max𝐫maxH\mathbf{W}^{*}_{k}=\nu\mathbf{r}_{\max}\mathbf{r}_{\max}^{\mathrm{H}}, where ν\nu is a parameter which makes the power consumption of transmitter satisfies constraint C1.

References

  • [1] S. Hu, Z. Wei, Y. Cai, D. W. K. Ng, and J. Yuan, “Sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS,” in GLOBECOM 2020 - 2020 IEEE Global Commun. Conf., pp. 1–7, Dec. 2020.
  • [2] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, pp. 28–41, Sep. 2019.
  • [3] Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An overview of sustainable green 5G networks,” IEEE Wirel. Commun., vol. 24, pp. 72–80, Aug. 2017.
  • [4] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Select. Areas Commun., vol. 35, pp. 1201–1221, Apr. 2017.
  • [5] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, pp. 5394–5409, Aug. 2019.
  • [6] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface aided wireless communications: A tutorial,” arXiv preprint arXiv:2007.02759, 2020.
  • [7] Q. Wu and R. Zhang, “Weighted sum power maximization for intelligent reflecting surface aided SWIPT,” IEEE Wireless Commun. Lett., pp. 1–1, Dec. 2019.
  • [8] C. Liu, X. Liu, Z. Wei, S. Hu, D. W. K. Ng, and J. Yuan, “Deep learning-empowered predictive beamforming for IRS-assisted multi-user communications,” arXiv preprint arXiv:2104.12309, 2021.
  • [9] X. Yu, V. Jamali, D. Xu, D. W. K. Ng, and R. Schober, “Smart and reconfigurable wireless communications: From IRS modeling to algorithm design,” arXiv preprint arXiv:2103.07046, 2021.
  • [10] Y. Cai, Z. Wei, S. Hu, D. W. K. Ng, and J. Yuan, “Resource allocation for power-efficient IRS-assisted UAV communications,” in Proc. IEEE Intern. Commun. Conf. Workshops (ICC Workshops), pp. 1–7, Jun. 2020.
  • [11] S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Jun. 2020.
  • [12] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5218–5233, May 2020.
  • [13] Z. Zhang and L. Dai, “A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network,” arXiv preprint arXiv:2002.03744, 2020.
  • [14] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath, “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?,” IEEE Access, vol. 4, pp. 247–267, Jan. 2016.
  • [15] L. N. Ribeiro, S. Schwarz, M. Rupp, and A. L. de Almeida, “Energy efficiency of mmwave massive MIMO precoding with low-resolution DACs,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 298–312, May 2018.
  • [16] C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen, “Energy efficient multi-user MISO communication using low resolution large intelligent surfaces,” in 2018 IEEE Globe. Commun. Workshops, pp. 1–6, Dec. 2018.
  • [17] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, pp. 4157–4170, Jun. 2019.
  • [18] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, pp. 106–112, Nov. 2019.
  • [19] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V. Poor, “Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs,” IEEE J. Select. Areas Commun., vol. 37, pp. 4–33, Sep. 2018.
  • [20] B. Lyu, P. Ramezani, D. T. Hoang, S. Gong, Z. Yang, and A. Jamalipour, “Optimized energy and information relaying in self-sustainable IRS-empowered WPCN,” arXiv preprint arXiv:2004.03108, Apr. 2020.
  • [21] Y. Zou, S. Gong, J. Xu, W. Cheng, D. T. Hoang, and D. Niyato, “Wireless powered intelligent reflecting surfaces for enhancing wireless communications,” IEEE Trans. Veh. Technol, vol. 69, no. 10, pp. 12369–12373, Jul. 2020.
  • [22] T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE J. Solid-State Circuits, vol. 43, pp. 1287–1302, Apr. 2008.
  • [23] J. Guo and X. Zhu, “An improved analytical model for RF-DC conversion efficiency in microwave rectifiers,” in 2012 IEEE/MTT-S International Microwave Symposium Digest, pp. 1–3, IEEE, Aug. 2012.
  • [24] X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, “Physical layer security in UAV systems: Challenges and opportunities,” IEEE Wirel. Commun., vol. 26, pp. 40–47, Oct. 2019.
  • [25] L. Dong, Z. Han, A. P. Petropulu, and H. V. Poor, “Cooperative jamming for wireless physical layer security,” in 2009 IEEE/SP 15th Workshop Statistical Signal Process., pp. 417–420, IEEE, Aug. 2009.
  • [26] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Robust and secure resource allocation for full-duplex MISO multicarrier NOMA systems,” IEEE Trans. Commun., vol. 66, pp. 4119–4137, Sep. 2018.
  • [27] H. Shen, W. Xu, S. Gong, Z. He, and C. Zhao, “Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications,” IEEE Wireless Commun. Lett., vol. 23, pp. 1488–1492, Jun. 2019.
  • [28] M. Cui, G. Zhang, and R. Zhang, “Secure wireless communication via intelligent reflecting surface,” IEEE Wireless Commun. Lett., vol. 8, pp. 1410–1414, May 2019.
  • [29] X. Yu, D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, “Robust and secure wireless communications via intelligent reflecting surfaces,” IEEE J. Select. Areas Commun., vol. 38, pp. 2637–2652, Jul. 2020.
  • [30] G. Zhou, C. Pan, H. Ren, K. Wang, M. Di Renzo, and A. Nallanathan, “Robust beamforming design for intelligent reflecting surface aided MISO communication systems,” IEEE Commun. Lett., vol. 9, pp. 1658–1662, Jun. 2020.
  • [31] Y. Sun, D. W. K. Ng, J. Zhu, and R. Schober, “Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems,” IEEE Trans. Wireless Commun., vol. 15, Apr. 2016.
  • [32] X. Zhao, J. Xiao, Q. Li, Q. Zhang, and J. Qin, “Joint optimization of AN-aided transmission and power splitting for MISO secure communications with SWIPT,” IEEE Commun. Lett., vol. 19, pp. 1969–1972, Sep. 2015.
  • [33] H. Zhang, Y. Huang, C. Li, and L. Yang, “Secure beamforming design for SWIPT in MISO broadcast channel with confidential messages and external eavesdroppers,” IEEE Trans. Wireless Commun., vol. 15, pp. 7807–7819, Sep. 2016.
  • [34] G. Arunabha, J. Zhang, J. G. Andrews, and R. Muhamed, “Fundamentals of LTE,” The Prentice Hall communications engineering and emerging technologies series, 2010.
  • [35] R. Li, Z. Wei, L. Yang, D. W. K. Ng, J. Yuan, and J. An, “Resource allocation for secure Multi-UAV communication systems with multi-eavesdropper,” IEEE Trans. Commun., vol. 68, pp. 4490–4506, Mar. 2020.
  • [36] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reflecting surface with discrete phase shifts,” in Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Process., pp. 7830–7833, May 2019.
  • [37] S. H. Abdelhalem, P. S. Gudem, and L. E. Larson, “An RF-DC converter with wide-dynamic-range input matching for power recovery applications,” IEEE Trans. Circuits Syst. II Express Briefs IEEE T CIRCUITS-II, vol. 60, pp. 336–340, Apr. 2013.
  • [38] Z. Hameed and K. Moez, “Hybrid forward and backward threshold-compensated RF-DC power converter for RF energy harvesting,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 3, pp. 335–343, Jul. 2014.
  • [39] P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, “Design optimization and implementation for RF energy harvesting circuits,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 1, pp. 24–33, Feb. 2012.
  • [40] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for SWIPT systems,” IEEE Commun. Lett., vol. 19, pp. 2082–2085, Sep. 2015.
  • [41] J. Chen, Y.-C. Liang, H. V. Cheng, and W. Yu, “Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems,” arXiv preprint arXiv:1912.03619, 2019.
  • [42] D. W. K. Ng and R. Schober, “Secure and green SWIPT in distributed antenna networks with limited backhaul capacity,” IEEE Trans. Wireless Commun., vol. 14, pp. 5082–5097, May 2015.
  • [43] C. Hu, L. Dai, S. Han, and X. Wang, “Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications,” IEEE Trans. Commun., pp. 1–1, Apr. 2021.
  • [44] A. Mukherjee and A. L. Swindlehurst, “Detecting passive eavesdroppers in the MIMO wiretap channel,” in 2012 IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), pp. 2809–2812, IEEE, Mar. 2012.
  • [45] P. Zhao, M. Zhang, H. Yu, H. Luo, and W. Chen, “Robust beamforming design for sum secrecy rate optimization in MU-MISO networks,” IEEE Trans. Inf. Forensics Secur., vol. 10, pp. 1812–1823, Apr. 2015.
  • [46] F. Zhou, Z. Chu, H. Sun, R. Q. Hu, and L. Hanzo, “Artificial noise aided secure cognitive beamforming for cooperative MISO-NOMA using SWIPT,” IEEE J. Select. Areas Commun., vol. 36, Apr. 2018.
  • [47] H. Qin, X. Chen, Y. Sun, M. Zhao, and J. Wang, “Optimal power allocation for joint beamforming and artificial noise design in secure wireless communications,” in 2011 IEEE Int. Conf. Commun. Workshops (ICC), Jul. 2011.
  • [48] D. Li, C. Shen, and Z. Qiu, “Sum rate maximization and energy harvesting for two-way af relay systems with imperfect CSI,” in 2013 IEEE Int. Conf. Acoustics, Speech and Signal Process., pp. 4958–4962, May 2013.
  • [49] Y. Tang, J. Xiong, D. Ma, and X. Zhang, “Robust artificial noise aided transmit design for MISO wiretap channels with channel uncertainty,” IEEE Commun. Lett., vol. 17, pp. 2096–2099, Oct. 2013.
  • [50] J. B. Moore and D. Jiang, “A rank preserving flow algorithm for quadratic optimization problems subject to quadratic equality constraints,” in 1997 IEEE Int. Conf. Acoustics, Speech, and Signal Process., vol. 1, pp. 67–70, IEEE, 1997.
  • [51] X. Yu, D. Xu, D. W. K. Ng, and R. Schober, “Power-efficient resource allocation for multiuser MISO systems via intelligent reflecting surfaces,” arXiv preprint arXiv:2005.06703, 2020.
  • [52] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
  • [53] Z.-Q. Luo, J. F. Sturm, and S. Zhang, “Multivariate nonnegative quadratic mappings,” SIAM J. Optim., vol. 14, no. 4, pp. 1140–1162, 2004.
  • [54] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Am. Math. Soc., vol. 73, no. 4, pp. 591–597, 1967.
  • [55] I. Pólik and T. Terlaky, “Interior point methods for nonlinear optimization,” in Nonlinear optimization, pp. 215–276, Springer, Jul. 2010.
  • [56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press, Jul. 2009.
  • [57] A. Goldsmith, Wireless Communications. Cambridge university press, 2005.
  • [58] R. Mardeni and T. S. Priya, “Optimised COST-231 hata models for WiMAX path loss prediction in suburban and open urban environments,” Mod. Appl. Sci., vol. 4, no. 9, p. 75, Sep. 2010.
  • [59] Y. Yao, J. Wu, Y. Shi, and F. F. Dai, “A fully integrated 900-MHz passive RFID transponder front end with novel zero-threshold RF-DC rectifier,” IEEE Trans. Ind. Electron., vol. 56, pp. 2317–2325, Nov. 2008.
  • [60] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.
  • [61] Z. Wei, D. W. K. Ng, J. Yuan, and H.-M. Wang, “Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information,” IEEE Trans. Commun., vol. 65, pp. 3944–3961, May 2017.
[Uncaptioned image] Shaokang Hu (S’20) received the B.S. degree in Engineering and Telecommunication from the University of New South Wales, Australia, Sydney in 2017 and the M.E. degree in Electrical Engineering and Telecommunication from the University of New South Wales, Sydney, Australia, in 2018. She is currently pursuing the Ph.D. degree in Telecommunication at the University of New South Wales, Sydney, Australia. Her current research interests include convex and non-convex optimization, IRS-assisted communication, resource allocation, physical-layer security, and green (energy-efficient) wireless communications.
[Uncaptioned image] Zhiqiang Wei (S’16–M’19) received the B.E. degree in information engineering from Northwestern Polytechnical University (NPU), Xi’an, China, in 2012, and the Ph.D. degree in electrical engineering and telecommunications from the University of New South Wales, Sydney, Australia, in 2019. From 2019 to 2020, he was a Postdoctoral Research Fellow with the University of New South Wales. He is currently a Humboldt Postdoctoral Research Fellow with the Friedrich-Alexander University Erlangen-Nuremberg. His current research interests include convex/non-convex optimization, resource allocation design, intelligent reflecting surface, millimeter-wave communications, and orthogonal time-frequency space (OTFS) modulation. He received the Best Paper Award from the IEEE International Conference on Communications (ICC), in 2018.
[Uncaptioned image] Yuanxin Cai (S’19) received the B.S. degree in Optical Information Science and Technology from the University of Electronic and Technology of China, Sichuan, China, in 2015 and the M.E. degree in Electrical Engineering and Telecommunication from the University of New South Wales, Sydney, Australia, in 2018. She is currently pursuing the Ph.D. degree in Telecommunication with the University of New South Wales, Sydney, Australia. Her current research interests include convex and non-convex optimization, UAV-assisted communication, resource allocation, physical-layer security, and green (energy-efficient) wireless communications.
[Uncaptioned image] Chang Liu (M’19) received the B.E. degree in electronic information engineering from Dalian Maritime University, Dalian, China, in 2012, and the Ph.D. degree in signal and information processing from Dalian University of Technology, China, in 2017. He is currently a Postdoctoral Research Fellow with the University of New South Wales, Sydney, Australia. He was a visiting scholar in department of electrical engineering and computer science at University of Tennessee, Knoxville, USA, and a postdoctoral research fellow with the National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China. His research interests include Machine Learning for Communications, Statistical Signal Processing, IRS-assisted Communications, UAV-assisted Communications, Internet-of-Things, and Spectrum Sensing and Sharing in Cognitive Radio.
[Uncaptioned image] Derrick Wing Kwan Ng (S’06-M’12-SM’17-F’21) received the bachelor degree with first-class honors and the Master of Philosophy (M.Phil.) degree in electronic engineering from the Hong Kong University of Science and Technology (HKUST) in 2006 and 2008, respectively. He received his Ph.D. degree from the University of British Columbia (UBC) in 2012. He was a senior postdoctoral fellow at the Institute for Digital Communications, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany. He is now working as a Senior Lecturer and a Scientia Fellow at the University of New South Wales, Sydney, Australia. His research interests include convex and non-convex optimization, physical layer security, IRS-assisted communication, UAV-assisted communication, wireless information and power transfer, and green (energy-efficient) wireless communications. Dr. Ng received the Australian Research Council (ARC) Discovery Early Career Researcher Award 2017, the Best Paper Awards at the WCSP 2020, IEEE TCGCC Best Journal Paper Award 2018, INISCOM 2018, IEEE International Conference on Communications (ICC) 2018, IEEE International Conference on Computing, Networking and Communications (ICNC) 2016, IEEE Wireless Communications and Networking Conference (WCNC) 2012, the IEEE Global Telecommunication Conference (Globecom) 2011, and the IEEE Third International Conference on Communications and Networking in China 2008. He has been serving as an editorial assistant to the Editor-in-Chief of the IEEE Transactions on Communications from Jan. 2012 to Dec. 2019. He is now serving as an editor for the IEEE Transactions on Communications, the IEEE Transactions on Wireless Communications, and an area editor for the IEEE Open Journal of the Communications Society. Also, he has been listed as a Highly Cited Researcher by Clarivate Analytics since 2018.
[Uncaptioned image] Jinhong Yuan (M’02–SM’11–F’16) received the B.E. and Ph.D. degrees in electronics engineering from the Beijing Institute of Technology, Beijing, China, in 1991 and 1997, respectively. From 1997 to 1999, he was a Research Fellow with the School of Electrical Engineering, University of Sydney, Sydney, Australia. In 2000, he joined the School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia, where he is currently a Professor and Head of Telecommunication Group with the School. He has published two books, five book chapters, over 300 papers in telecommunications journals and conference proceedings, and 50 industrial reports. He is a co-inventor of one patent on MIMO systems and two patents on low-density-parity-check codes. He has co-authored four Best Paper Awards and one Best Poster Award, including the Best Paper Award from the IEEE International Conference on Communications, Kansas City, USA, in 2018, the Best Paper Award from IEEE Wireless Communications and Networking Conference, Cancun, Mexico, in 2011, and the Best Paper Award from the IEEE International Symposium on Wireless Communications Systems, Trondheim, Norway, in 2007. He is an IEEE Fellow and currently serving as an Associate Editor for the IEEE Transactions on Wireless Communications and IEEE Transactions on Communications. He served as the IEEE NSW Chapter Chair of Joint Communications/Signal Processions/Ocean Engineering Chapter during 2011-2014 and served as an Associate Editor for the IEEE Transactions on Communications during 2012-2017. His current research interests include error control coding and information theory, communication theory, and wireless communications.