This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robba’s method on Exponential sums

Peigen Li Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, P. R. China [email protected]
Abstract.

In this article, we use Robba’s method to give an estimate of the Newton polygon for the LL-function and we can draw the Newton polygon in some special cases.

1. Introduction

The basic objects of this study are exponential sums on a torus of dimension nn defined over a finite field kk with char(k)=p\textrm{char}(k)=p. Our methods are based on the work of Dwork, Adolphson and Sperber. In [4], Robba gives an explicit calculation of one variable twisted exponential sums. In fact, his method can be applied to the case of multi-variables.

Let ζp\zeta_{p} be a primitive pp-th root of unity. Let ψ\psi be the additive character of kk given by ψ(t)=ζpTrk/𝐅p(t)\psi(t)=\zeta_{p}^{\operatorname{Tr}_{k/\mathbf{F}_{p}}(t)}. Let ff be a Laurent polynomial and write

f=i=1Naixwik[x1,,xn,x11,,xn1].f=\sum_{i=1}^{N}a_{i}x^{w_{i}}\in k[x_{1},\cdots,x_{n},x_{1}^{-1},\cdots,x_{n}^{-1}].

We assume that ai0a_{i}\neq 0 for all ii. Define exponential sums

Si(f)=x𝐓n(ki)ψ(Trki/k(f(x))),S_{i}(f)=\sum_{x\in\mathbf{T}^{n}(k_{i})}\psi(\operatorname{Tr}_{k_{i}/k}(f(x))),

where kik_{i} are the extensions of kk of degree ii. The LL-function is defined by

L(f,t)=exp(i=1Si(f)ti/i).L(f,t)=\exp\Big{(}\sum_{i=1}^{\infty}S_{i}(f)t^{i}/i\Big{)}.

In [1, section 2], Adolphson and Sperber use Dwork’s method to prove that L(f,t)(1)n1L(f,t)^{(-1)^{n-1}} is a polynomial when ff is nondegenerate. Moreover, they give a low bound of the Newton polygon of L(f,t)(1)n1L(f,t)^{(-1)^{n-1}} in [1, section 3], which we call Hodge polygon in this article. In our study, we want to give a more precise result about the Newton polygon when ff has only nn terms, that is N=nN=n. Note that if we assume that J=(w1,,wn)J=(w_{1},\cdots,w_{n}) is invertible in 𝐌n(𝐑)\mathbf{M}_{n}(\mathbf{R}), we can found a solution b=(b1,,bn)k¯×b=(b_{1},\cdots,b_{n})\in\bar{k}^{\times} such that aibwi=1a_{i}b^{w_{i}}=1 for all ii. From now on, we assume that (p,detJ)=1(p,\det J)=1, k=𝐅pk=\mathbf{F}_{p} and

f=i=1nxwi.f=\sum_{i=1}^{n}x^{w_{i}}.

Let Δ(f)\Delta(f) be the Newton polyhedron at \infty of ff which is defined to be the convex hull in 𝐑n\mathbf{R}^{n} of the set {wj}j=1n{(0,,0)}\left\{w_{j}\right\}_{j=1}^{n}\cup\left\{(0,\cdots,0)\right\} and let C(f)C(f) be the convex cone generated by {wj}j=1n\left\{w_{j}\right\}_{j=1}^{n} in 𝐑n\mathbf{R}^{n}. Let Vol(Δ(f))\operatorname{Vol}(\Delta(f)) be the volume of Δ(f)\Delta(f) with respect to Lebesgue measure on 𝐑n\mathbf{R}^{n}. We say ff is nondegenerate with respect to Δ(f)\Delta(f) if for any face σ\sigma of Δ(f)\Delta(f) not containing the origin, the Laurent polynomials fσxi\frac{\partial f_{\sigma}}{\partial x_{i}}, i=1,,ni=1,\cdots,n have no common zero in (k¯×)n(\bar{k}^{\times})^{n}, where fσ=wjσajxwjf_{\sigma}=\sum_{w_{j}\in\sigma}a_{j}x^{w_{j}}. Set M(f)=C(f)𝐙nM(f)=C(f)\cap\mathbf{Z}^{n}. Note that (p,detJ)=1(p,\det J)=1 implies that ff is nondegenerate. Since we have assumed that JJ is invertible, any element uM(f)u\in M(f) can be uniquely written

(1.1) u=i=1nriwi.u=\sum_{i=1}^{n}r_{i}w_{i}.

We define a weight on M(f)M(f)

w(u):=i=1nri.w(u):=\sum_{i=1}^{n}r_{i}.

Note that the set of all elements uM(f)u\in M(f) such that all 0ri<10\leq r_{i}<1 in the expression (1.1) form a fundamental domain of the lattice M(f)M(f). Denote it by S(Δ)S(\Delta). Note that card(S(Δ))=n!VolΔ(f)=det(J)\operatorname{card}(S(\Delta))=n!\operatorname{Vol}{\Delta(f)}=\det(J) and (p,detJ)=1(p,\det J)=1 imply that S(Δ)S(\Delta) has a natural pp-action. For any u=r1w1++rnwnS(Δ)u=r_{1}w_{1}+\cdots+r_{n}w_{n}\in S(\Delta), define

p.u=i=1n{pri}wi,p.u=\sum_{i=1}^{n}\left\{pr_{i}\right\}w_{i},

where {pri}\left\{pr_{i}\right\} is the fractional part of pripr_{i} for each ii. We say S(Δ)S(\Delta) is pp-stable under weight function if w(u)=w(p.u)w(u)=w(p.u) for any uS(Δ)u\in S(\Delta). Now we give our main result.

Theorem 1.1.

Suppose that f=xw1++xwnf=x^{w_{1}}+\cdots+x^{w_{n}} with wi𝐙nw_{i}\in\mathbf{Z}^{n} and (p,detJ)=1(p,\det J)=1. The Newton polygon of L(f,t)(1)n1L(f,t)^{(-1)^{n-1}} coincides with the Hodge polygon of Δ(f)\Delta(f) if and only if S(Δ)S(\Delta) is pp-stable under weight function.

Wan uses the Gauss sum to give an explicit formula of the LL-function for the diagonal Laurent polynomial. Then he uses Stickelberger’s theorem to give a proof of above theorem. See [5, Theorem 3.4]. In this article, we use Robba’s method to prove above theorem. Indeed, Robba’s method can also be applied to prove [1, Theorem 3.10] and it is easier than the method used in [1, §3].

2. p-adic estimates

Let 𝐐p\mathbf{Q}_{p} be the pp-adic numbers. Let Ω\Omega be the completion of the algebraic closure of 𝐐p\mathbf{Q}_{p}. Denote by “ord” the additive valuation on Ω\Omega normalized by ord(p)=1\operatorname{ord}(p)=1. The norm on Ω\Omega is given by |u|=pord(u)|u|=p^{-\operatorname{ord}(u)} for any uΩu\in\Omega.

Note that there is an integer MM such that w(M(f))1M𝐙w(M(f))\subset\frac{1}{M}\mathbf{Z}. In [1, section 1], Adolphson and Sperber introduce a filtration on R(f):=k[xM(f)]R(f):=k[x^{M(f)}] given by

R(f)i/M={uM(f)buxu|w(u)i/Mfor all u withbu0}.R(f)_{i/M}=\left\{\sum_{u\in M(f)}b_{u}x^{u}|w(u)\leq i/M~{}\textrm{for all $u$ with}~{}b_{u}\neq 0\right\}.

The associated graded ring is

R¯=i𝐙0R¯i/M,\bar{R}=\bigoplus_{i\in\mathbf{Z}_{\geq 0}}\bar{R}^{i/M},

where

R¯i/M=R(f)i/M/R(f)(i1)/M.\bar{R}^{i/M}=R(f)_{i/M}/R(f)_{(i-1)/M}.

For 1in1\leq i\leq n, let f¯i\bar{f}_{i} be the image of xifxiR(f)1x_{i}\frac{\partial f}{\partial x_{i}}\in R(f)_{1} in R¯1\in\bar{R}^{1}. Let I¯\bar{I} be the ideal generated by f¯1,,f¯n\bar{f}_{1},\dots,\bar{f}_{n} in R¯\bar{R}. By [1, Theorem 2.14] and [1, Theorem 2.18], f¯1,,f¯n\bar{f}_{1},\dots,\bar{f}_{n} in R¯\bar{R} form a regular sequence in R¯\bar{R} and dimkR¯/I¯=n!Vol(Δ(f))\dim_{k}\bar{R}/\bar{I}=n!\operatorname{Vol}(\Delta(f)). For each integer ii, we have a decomposition

(2.1) R¯i/M=V¯i/M(R¯i/MI¯).\bar{R}^{i/M}=\bar{V}^{i/M}\oplus(\bar{R}^{i/M}\cap\bar{I}).

Set aia_{i}=dimkV¯i/M\dim_{k}\bar{V}^{i/M}.

For a non-negative integer ll, set

W(l)=card{uM(f)|w(u)=lM}.W(l)=\operatorname{card}\left\{u\in M(f)|w(u)=\frac{l}{M}\right\}.

Note that this is a finite number for each ll. Set

H(i)=l=0n(1)l(nl)W(ilM).H(i)=\sum_{l=0}^{n}(-1)^{l}\binom{n}{l}W(i-lM).
Lemma 2.1.

With the notation above. Suppose that ff is nondegenerate. Then H(i)=aiH(i)=a_{i} for all integer i0i\geq 0. Moreover, we have

H(k)=0fork>nM,k=0nMH(k)=n!Vol(Δ(f)).H(k)=0~{}\mathrm{for}~{}k>nM,\quad\sum_{k=0}^{nM}H(k)=n!\operatorname{Vol}(\Delta(f)).
Proof.

By [1, Theorem 2.14], {f¯i}i=1n\left\{\bar{f}_{i}\right\}_{i=1}^{n} form a regular sequence in R¯\bar{R}. So

PR¯/I¯(t)=PR¯(t)(1tM)n,P_{\bar{R}/\bar{I}}(t)=P_{\bar{R}}(t)(1-t^{M})^{n},

where PR¯/I¯P_{\bar{R}/\bar{I}} (resp. PR¯P_{\bar{R}}) is the Poincaré series of R¯/I¯\bar{R}/\bar{I} (resp. R¯\bar{R}). On the other hand, we have

PR¯/(f¯1,,f¯n)=i=0aiti,PR¯(t)=i=0W(i)ti.P_{\bar{R}/(\bar{f}_{1},\dots,\bar{f}_{n})}=\sum_{i=0}^{\infty}a_{i}t^{i},~{}P_{\bar{R}}(t)=\sum_{i=0}^{\infty}W(i)t^{i}.

Hence

ai=l=0n(1)l(nl)W(ilM)=H(i).a_{i}=\sum_{l=0}^{n}(-1)^{l}\binom{n}{l}W(i-lM)=H(i).

The second assertion follows from [3, Lemma 2.9]. ∎

Note that R¯/I¯\bar{R}/\bar{I} has a finite basis S={xu|uS(Δ)}S=\left\{x^{u}|u\in S(\Delta)\right\} and card(S)=n!Vol(Δ(f))\operatorname{card}(S)=n!\operatorname{Vol}(\Delta(f)).

Definition 2.2.

The Hodge polygon HP(Δ)HP(\Delta) of Δ(f)\Delta(f) is defined to be the convex polygon in 𝐑2\mathbf{R}^{2} with vertices (0,0)(0,0) and

(k=0mH(k),1Mk=0mkH(k)).\Big{(}\sum_{k=0}^{m}H(k),\frac{1}{M}\sum_{k=0}^{m}kH(k)\Big{)}.

Consider the Artin-Hasse exponential series: E(t)=exp(i=0tpipi).E(t)=\exp\Big{(}\sum_{i=0}^{\infty}\frac{t^{p^{i}}}{p^{i}}\Big{)}. By [2, Lemma 4.1], the series i=0tpipi\sum_{i=0}^{\infty}\frac{t^{p^{i}}}{p^{i}} has a zero at γΩ\gamma\in\Omega such that ordγ=1/(p1)\operatorname{ord}\gamma=1/(p-1) and ζp1+γmodγ2\zeta_{p}\equiv 1+\gamma\mod\gamma^{2}. Set

θ(t)=E(γt)=i=0citi.\theta(t)=E(\gamma t)=\sum_{i=0}^{\infty}c_{i}t^{i}.

The series θ(t)\theta(t) is a splitting function in Dwork’s terminology [2, §4a]. In particular, we have ordcii/(p1)\operatorname{ord}c_{i}\geq i/(p-1), θ(t)𝐐p(ζp)[[t]]\theta(t)\in\mathbf{Q}_{p}(\zeta_{p})[[t]] and θ(1)=ζp\theta(1)=\zeta_{p}. Fix an MM-th root γ~\widetilde{\gamma} of γ\gamma in Ω\Omega. Let K=𝐐p(γ~)K=\mathbf{Q}_{p}(\widetilde{\gamma}), and 𝒪K\mathcal{O}_{K} the ring of integers of KK. Let a^jK\hat{a}_{j}\in K be the Techmüller lifting of aja_{j} and set

f^(x)=j=1Na^jxωjK[x1,x11,,xn,xn1].\hat{f}(x)=\sum_{j=1}^{N}\hat{a}_{j}x^{\omega_{j}}\in K[x_{1},x_{1}^{-1},\cdots,x_{n},x_{n}^{-1}].

Consider the following spaces of pp-adic functions

B0={uM(f)Auγ~Mw(u)xu|Au𝒪K,Au0asu0},B_{0}=\left\{\sum_{u\in M(f)}A_{u}\widetilde{\gamma}^{Mw(u)}x^{u}|A_{u}\in\mathcal{O}_{K},A_{u}\rightarrow 0~{}\textrm{as}~{}u\rightarrow 0\right\},
B={uM(f)Auγ~Mw(u)xu|AuK,Au0asu0}.B=\left\{\sum_{u\in M(f)}A_{u}\widetilde{\gamma}^{Mw(u)}x^{u}|A_{u}\in K,A_{u}\rightarrow 0~{}\textrm{as}~{}u\rightarrow 0\right\}.

Set γl=i=0lγpi/pi,h(t)=l=0γltpl\gamma_{l}=\sum\limits_{i=0}^{l}\gamma^{p^{i}}/p^{i},h(t)=\sum\limits_{l=0}^{\infty}\gamma_{l}t^{p^{l}}. Define

H(x)=j=1nh(xwj),F0(x)=i=1nθ(xwi)=vM(f)hvxv.H(x)=\sum_{j=1}^{n}h(x^{w_{j}}),~{}F_{0}(x)=\prod_{i=1}^{n}\theta(x^{w_{i}})=\sum_{v\in M(f)}h_{v}x^{v}.

Define an operator ψ\psi on formal Laurent series by

ψ(u𝐙nauxu)=u𝐙napuxu.\psi(\sum_{u\in\mathbf{Z}^{n}}a_{u}x^{u})=\sum_{u\in\mathbf{Z}^{n}}a_{pu}x^{u}.

Let α=ψF0(x)\alpha=\psi\circ F_{0}(x). For i=1,,ni=1,\cdots,n, define operators

Ei=xi/xi,D^i=Ei+Ei(H)E_{i}=x_{i}\partial/\partial x_{i},~{}\hat{D}_{i}=E_{i}+E_{i}(H)

By [1, Corollary 2.9], we have

L(f,t)(1)n1=det(1tα|B/i=1nD^iB).\displaystyle L(f,t)^{(-1)^{n-1}}=\det(1-t\alpha|B/\sum_{i=1}^{n}\hat{D}_{i}B).

By [1, Therorem 2.18, Theorem A.1], S={xu}uS(Δ)S=\left\{x^{u}\right\}_{u\in S(\Delta)} is a free basis of B/i=1nD^iBB/\sum_{i=1}^{n}\hat{D}_{i}B. For any uM(f),uS(Δ)u\in M(f),u^{\prime}\in S(\Delta), define A(u,u)A(u,u^{\prime}) by the relations

xuuS(Δ)A(u,u)xumodi=1nD^iB.x^{u}\equiv\sum_{u^{\prime}\in S(\Delta)}A(u,u^{\prime})x^{u^{\prime}}\mod\sum_{i=1}^{n}\hat{D}_{i}B.

For any u,uS(Δ)u,u^{\prime}\in S(\Delta), define γ(u,u)\gamma(u,u^{\prime}) by the relations

α(xu)uS(Δ)γ(u,u)xumodi=1nD^iB.\alpha(x^{u})\equiv\sum_{u^{\prime}\in S(\Delta)}\gamma(u,u^{\prime})x^{u^{\prime}}\mod\sum_{i=1}^{n}\hat{D}_{i}B.

The main purpose is to give estimate for the pp-adic valuations of the coefficients γ(u,u)\gamma(u,u^{\prime}).

For any uM(f)u\in M(f), there is a unique uS(Δ)u^{\prime}\in S(\Delta) such that

uSu={u+i=1n𝐙0wi}.u\in S_{u^{\prime}}=\left\{u^{\prime}+\sum_{i=1}^{n}\mathbf{Z}_{\geq 0}w_{i}\right\}.

Set Ru={ξ=auxuB0|uSu}R_{u^{\prime}}=\left\{\xi=\sum a_{u}x^{u}\in B_{0}|u\in S_{u^{\prime}}\right\}.

Lemma 2.3.

For any uM(f)u\in M(f), we have A(u,u)=0A(u,u^{\prime})=0 if uSuu\notin S_{u^{\prime}}, ord(A(u,u))w(u)w(u)p1\operatorname{ord}(A(u,u^{\prime}))\geq\frac{w(u^{\prime})-w(u)}{p-1} if uSuu\in S_{u^{\prime}}.

Proof.

The first assertion follows from the facts that

B0=uS(Δ)RuB_{0}=\bigoplus_{u^{\prime}\in S(\Delta)}R_{u^{\prime}}

and D^i(Ru)Ru\hat{D}_{i}(R_{u^{\prime}})\subset R_{u^{\prime}} for any ii and uu^{\prime}. Suppose that uSuu\in S_{u^{\prime}}. By [1, Proposition 3.1], there exit A𝒪KA\in\mathcal{O}_{K} and ξ1,,ξnB0\xi_{1},\cdots,\xi_{n}\in B_{0} such that

γ~Mw(u)xu=Aγ~Mw(u)xu+i=1nD^iξi.\widetilde{\gamma}^{Mw(u)}x^{u}=A\widetilde{\gamma}^{Mw(u^{\prime})}x^{u^{\prime}}+\sum_{i=1}^{n}\hat{D}_{i}\xi_{i}.

Hence, we have

ord(A(u,u))=ord(Aγ~Mw(u)Mw(u))w(u)w(u)p1.\operatorname{ord}(A(u,u^{\prime}))=\operatorname{ord}(A\widetilde{\gamma}^{Mw(u^{\prime})-Mw(u)})\geq\frac{w(u^{\prime})-w(u)}{p-1}.

Proposition 2.4.

For any u,uS(Δ)u,u^{\prime}\in S(\Delta), we have

ord(γ(u,u))={+if p.uu0,pw(u)w(u)p1if p.uu=0.\operatorname{ord}(\gamma(u,u^{\prime}))=\left\{\begin{array}[]{cc}+\infty&\hbox{if }p.u^{\prime}-u\neq 0,\\ \frac{pw(u^{\prime})-w(u)}{p-1}&\hbox{if }p.u^{\prime}-u=0.\end{array}\right.

ord(γ(u,u))=+\operatorname{ord}(\gamma(u,u^{\prime}))=+\infty means that γ(u,u)=0\gamma(u,u^{\prime})=0.

Proof.

Note that

α(xu)\displaystyle\alpha(x^{u}) =\displaystyle= ψ(xuF0(x))=vM(f)hpvuxv\displaystyle\psi(x^{u}F_{0}(x))=\sum_{v\in M(f)}h_{pv-u}x^{v}
\displaystyle\equiv uS(Δ)vM(f)hpvuA(v,u)xumodi=1nD^iB.\displaystyle\sum_{u^{\prime}\in S(\Delta)}\sum_{v\in M(f)}h_{pv-u}A(v,u^{\prime})x^{u^{\prime}}\mod\sum_{i=1}^{n}\hat{D}_{i}B.

By Lemma 2.3, A(v,u)=0A(v,u^{\prime})=0 when vSuv\notin S_{u^{\prime}}. Hence, we have

(2.2) γ(u,u)=hpuu+vM(f)S(Δ)hpvuA(v,u).\gamma(u,u^{\prime})=h_{pu^{\prime}-u}+\sum_{v\in M(f)-S(\Delta)}h_{pv-u}A(v,u^{\prime}).

Assume that v=u+i=1nsiwiv=u^{\prime}+\sum\limits_{i=1}^{n}s_{i}w_{i} with si𝐙0s_{i}\in\mathbf{Z}_{\geq 0}. Note that

hpvu=j=1nckj,h_{pv-u}=\prod_{j=1}^{n}c_{k_{j}},

where (k1,,kn)𝐙0n(k_{1},\dots,k_{n})\in\mathbf{Z}_{\geq 0}^{n} satisfies the equation

(2.3) i=1nkiwi=pvu=puu+pi=1nsiwi.\sum_{i=1}^{n}k_{i}w_{i}=pv-u=pu^{\prime}-u+p\sum_{i=1}^{n}s_{i}w_{i}.

If p.uu0p.u^{\prime}-u\neq 0, the above equation has no integer solution which implies that γ(u,u)=0\gamma(u,u^{\prime})=0. If p.uu=0p.u^{\prime}-u=0, suppose that puu=r1w1++rnwnpu^{\prime}-u=r_{1}w_{1}+\cdots+r_{n}w_{n} with ri𝐙0r_{i}\in\mathbf{Z}_{\geq 0} for all ii. Note that rip1r_{i}\leq p-1 for all ii and w(puu)=pw(u)w(u)=r1++rnw(pu^{\prime}-u)=pw(u^{\prime})-w(u)=r_{1}+\cdots+r_{n}. By (2.3), we have ki=ri+psik_{i}=r_{i}+ps_{i} for each ii. Hence, by Lemma 2.3 and the estimate ord(ci)ip1\operatorname{ord}(c_{i})\geq\frac{i}{p-1}, we have

ord(hpvuA(v,u))i=1nkisip1=i=1nsi+pw(u)w(u)p1.\displaystyle\operatorname{ord}(h_{pv-u}A(v,u^{\prime}))\geq\sum_{i=1}^{n}\frac{k_{i}-s_{i}}{p-1}=\sum_{i=1}^{n}s_{i}+\frac{pw(u^{\prime})-w(u)}{p-1}.

If vS(Δ)v\notin S(\Delta), there is some ii such that si>0s_{i}>0, we have

ord(hpvuA(v,u))>pw(u)w(u)p1.\operatorname{ord}(h_{pv-u}A(v,u^{\prime}))>\frac{pw(u^{\prime})-w(u)}{p-1}.

If v=uS(Δ)v=u^{\prime}\in S(\Delta), we have ki=rip1k_{i}=r_{i}\leq p-1 for all ii. Note that

θ(t)exp(γt)modtp.\theta(t)\equiv\exp(\gamma t)\mod t^{p}.

We have ord(ci)=ord(γii!)=ip1\operatorname{ord}(c_{i})=\operatorname{ord}(\frac{\gamma^{i}}{i!})=\frac{i}{p-1} for any ip1i\leq p-1. Hence

ord(hpuu)=i=1nord(cri)=1p1i=1nri=pw(u)w(u)p1.\operatorname{ord}(h_{pu^{\prime}-u})=\sum_{i=1}^{n}\operatorname{ord}(c_{r_{i}})=\frac{1}{p-1}\sum_{i=1}^{n}r_{i}=\frac{pw(u^{\prime})-w(u)}{p-1}.

By (2.2), we have

ord(γ(u,u))=ord(hpuu)=pw(u)w(u)p1.\operatorname{ord}(\gamma(u,u^{\prime}))=\operatorname{ord}(h_{pu^{\prime}-u})=\frac{pw(u^{\prime})-w(u)}{p-1}.

Theorem 2.5.

Suppose that f=j=1nxwjf=\sum_{j=1}^{n}x^{w_{j}} and (p,detJ)=1(p,\det J)=1. The Newton polygon of L(𝐓n,f,t)(1)n1L(\mathbf{T}^{n},f,t)^{(-1)^{n-1}} coincides with the Hodge polygon HP(Δ)HP(\Delta) if and only if S(Δ)S(\Delta) is pp-stable under weight function.

Proof.

By [1, Corollary 3.11], the Newton polygon of L(𝐓n,f,t)(1)n1L(\mathbf{T}^{n},f,t)^{(-1)^{n-1}} lies above the Hodge polygon of HP(Δ)HP(\Delta) with same endpoints and the matrix Γ:=(γ(u,u))u,uS(Δ)\Gamma:=(\gamma(u,u^{\prime}))_{u,u^{\prime}\in S(\Delta)} is invertible. By Proposition 2.4, γ(u,u)0\gamma(u,u^{\prime})\neq 0 if and only if p.uu=0p.u^{\prime}-u=0. Hence there is exactly one non zero element in every column and row of Γ\Gamma. Let S(d,u)S(d,u) be the orbit of uu under the pp-action with exactly dd elements. Suppose that S(d,u)={u1,,ud}S(d,u)=\left\{u_{1},\cdots,u_{d}\right\}, where ui=pi1.uu_{i}=p^{i-1}.u. By Proposition 2.4, we have

α(xu1,,xud)=(xu1,,xud)(0γ2100γdd1γ1d0)\alpha(x^{u_{1}},\cdots,x^{u_{d}})=(x^{u_{1}},\cdots,x^{u_{d}})\left(\begin{array}[]{ccc}0&\gamma_{21}&\dots\\ 0&0&\dots\\ \vdots&\vdots&\gamma_{dd-1}\\ \gamma_{1d}&\cdots&0\\ \end{array}\right)

where γij=γ(ui,uj)\gamma_{ij}=\gamma(u_{i},u_{j}). Thus

det(1αt)=S(d,u)(1tdλu),\det(1-\alpha t)=\prod_{S(d,u)}(1-t^{d}\lambda_{u}),

where the above product runs through all the obits of S(Δ)S(\Delta) under the pp-action and λu=γ1dγ21γdd1\lambda_{u}=\gamma_{1d}\gamma_{21}\cdots\gamma_{dd-1} with

ord(λu)\displaystyle\operatorname{ord}(\lambda_{u}) =\displaystyle= ord(γ1dγ21γdd1)\displaystyle\operatorname{ord}(\gamma_{1d}\gamma_{21}\cdots\gamma_{dd-1})
=\displaystyle= pw(ud)w(u1)p1++pw(ud1)w(ud)p1\displaystyle\frac{pw(u_{d})-w(u_{1})}{p-1}+\cdots+\frac{pw(u_{d-1})-w(u_{d})}{p-1}
=\displaystyle= i=0d1w(pi.u).\displaystyle\sum_{i=0}^{d-1}w(p^{i}.u).

Set fu,d=1tdλuf_{u,d}=1-t^{d}\lambda_{u^{\prime}} and

gu,d=i=0d1(1tpw(pi.u)).g_{u,d}=\prod_{i=0}^{d-1}(1-tp^{w(p^{i}.u)}).

Note that the Newton polygon of fu,df_{u,d} always lies above the Newton polygon of gu,dg_{u,d} and the Newton polygon of the polynomial S(d,u)gu,d\prod_{S(d,u)}g_{u,d} is HP(Δ)HP(\Delta). Hence HP(Δ)HP(\Delta) coincides with the Newton polygon of det(1αt)\det(1-\alpha t) if and only if the Newton polygons of gu,dg_{u,d} and fu,df_{u,d} coincide for each uu.

When S(Δ)S(\Delta) is pp-stable under weight function. We have w(u)=w(p.u)==w(pd1.u)w(u)=w(p.u)=\cdots=w(p^{d-1}.u) for each uu. Hence, the Newton polygons of gu,dg_{u,d} and fu,df_{u,d} coincides for each uu.

Conversely, if the Newton polygons of gu,dg_{u,d} and fu,df_{u,d} coincide for each uu. Since both polygons have same endpoints, we have w(u)=w(p.u)==w(pd1.u)w(u)=w(p.u)=\cdots=w(p^{d-1}.u) for each uu. Hence S(Δ)S(\Delta) is pp-stable under weight function. ∎

References

  • [1] Alan Adolphson and Steven Sperber. Exponential sums and Newton polyhedra: Cohomology and estimates. Annals of Mathematics, 130(2):367–406, 1989.
  • [2] Bernard Dwork. On the zeta function of a hypersurface. Publications Mathématiques de l’IHÉS, 12:5–68, 1962.
  • [3] Anatoli G Kouchnirenko. Polyedres de Newton et nombres de Milnor. Inventiones mathematicae, 32(1):1–31, 1976.
  • [4] Philippe Robba. Index of pp-adic differential operators III. Application to twisted exponential sums. Astérisque, 119(120):191–266, 1984.
  • [5] Daqing Wan. An Introduction to the theory of Newton polygons for L-functions of exponential sums, to appear. Preprint available at http://www. math. uci. edu/dwan/Overview. html, 1999.