This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

RIS-Aided Interference Cancellation for Joint Device-to-Device and Cellular Communications

Ly V. Nguyen and A. Lee Swindlehurst Email: [email protected], [email protected] This work was supported by the National Science Foundation under grants CNS-2107182 and ECCS-2030029. Center for Pervasive Communications and Computing, University of California, Irvine, CA, USA
Abstract

Joint device-to-device (D2D) and cellular communication is a promising technology for enhancing the spectral efficiency of future wireless networks. However, the interference management problem is challenging since the operating devices and the cellular users share the same spectrum. The emerging reconfigurable intelligent surfaces (RIS) technology is a potentially ideal solution for this interference problem since RISs can shape the wireless channel in desired ways. This paper considers an RIS-aided joint D2D and cellular communication system where the RIS is exploited to cancel interference to the D2D links and maximize the minimum signal-to-interference plus noise (SINR) of the device pairs and cellular users. First, we adopt a popular alternating optimization (AO) approach to solve the minimum SINR maximization problem. Then, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. We derive a representation for the RIS phase shift vector which cancels the interference to the D2D links. Based on this representation, the RIS phase shift optimization problem is transformed into an effective D2D channel optimization. We show that the AO approach can converge faster and can even give better performance when it is initialized by the proposed IC solution. We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the single receive device.

I Introduction

With the proliferation of mobile users and devices, joint device-to-device (D2D) and cellular communication has been envisioned as a promising technology for enhancing spectral efficiency in future wireless networks [1]. In this technology, devices and cellular users operate on the same spectrum, and therefore significantly improve the network spectral efficiency. However, the interference management problem is very challenging due to spectrum sharing between the operating devices and cellular users [2, 3, 4]. Fortunately, the D2D interference problem can be effectively addressed by reconfigurable intelligent surfaces (RISs)–a recent innovative technology capable of shaping the wireless channel in desired ways [5, 6]. For example, the works in [7, 8, 9] show that an RIS can be used to effectively null out or mitigate interference in D2D systems. While the work in [7] considers a conventional passive RIS structure which can only change the phase of the incoming signal, the authors in [8, 9] show that a hybrid RIS structure with the capability of simultaneously changing the phase and amplitude of the incoming signal can provide better interference cancellation performance. However, these prior works all consider systems with only D2D links, i.e., there were no active co-channel cellular users present.

RIS-assisted joint D2D and cellular communication has been studied in several recent papers. For example, the works in [10] and [11] perform analyses for RIS-assisted D2D communications under Rician and Nakagami-mm fading channels, respectively. The study in [10] investigates the effective capacity and performs mode selection to determine whether the D2D communication is established through an RIS or a base station (BS). The authors of [11] derived closed-form expressions for the outage probability of the D2D links and the resulting diversity order. Unlike [10, 11] which perform system analysis, some other recent papers focus on system design and optimization [12, 13, 14, 15, 16, 17]. In particular, the sum-rate maximization problem was considered in [12, 13, 14, 15] and deep reinforcement learning was used in [12, 14]. However, the works in [12, 14] assume that the BS is equipped with only one antenna and only one D2D pair is allowed to share the spectrum with a single cellular user. Multiple D2D pairs sharing the same spectrum with a cellular user were considered in [13, 15], but it was still assumed that the BS has only one antenna. The sum-rate maximization problem for systems with a multi-antenna BS was studied in [16, 17], but again they assume only one D2D pair sharing the spectrum with one cellular user.

Unlike the aforementioned works which consider the sum-rate maximization problem with relaxed system assumptions, we study a different problem that takes into account the fairness by maximizing the minimum signal-to-interference-plus-noise ratio (SINR) over the cellular users and devices. We also consider a more challenging RIS-assisted joint D2D and cellular communication system where multiple cellular users share the same spectrum with multiple D2D pairs and the BS is also equipped with multiple antennas. The contributions of our paper is summarized as follows:

  • First, we adopt a popular alternating optimization (AO) approach and the semi-definite relaxation (SDR) technique to optimize the combining matrix at the BS and the RIS phase shift vector that maximize the minimum SINR over the cellular users and devices.

  • Next, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. More specifically, we first derive a representation for the RIS phase shift vector that cancels the interference to the D2D links. Based on this representation, we transform the RIS phase shift optimization problem into an effective D2D channel optimization problem. We show that the AO approach can converge faster and can even give better performance when it uses the proposed IC solution as its initial point.

  • We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the receive device. Finally, we numerically show the gains and benefits of the proposed approaches.

II System Model and Problem Formulation

TABLE I: Channel description and notation.
Channel Notation Size
RIS \to BS 𝐇𝚁𝙱\mathbf{H}^{\mathtt{RB}} M×NM\times N
CU \to RxD 𝐇𝚄𝙳\mathbf{H}^{\mathtt{UD}} L×KL\times K
TxD \to RxD 𝐇𝙳𝙳\mathbf{H}^{\mathtt{DD}} L×LL\times L
CU \to BS 𝐇𝚄𝙱=Δ[𝐡1𝚄𝙱,,𝐡K𝚄𝙱]\mathbf{H}^{\mathtt{UB}}\overset{\Delta}{=}[\mathbf{h}^{\mathtt{UB}}_{1},\ldots,\mathbf{h}^{\mathtt{UB}}_{K}] M×KM\times K
TxD \to BS 𝐇𝙳𝙱=Δ[𝐡1𝙳𝙱,,𝐡L𝙳𝙱]\mathbf{H}^{\mathtt{DB}}\overset{\Delta}{=}[\mathbf{h}^{\mathtt{DB}}_{1},\ldots,\mathbf{h}^{\mathtt{DB}}_{L}] M×LM\times L
RIS \to RxD 𝐇𝚁𝙳=Δ[𝐡1𝚁𝙳,,𝐡L𝚁𝙳]H\mathbf{H}^{\mathtt{RD}}\overset{\Delta}{=}[\mathbf{h}^{\mathtt{RD}}_{1},\ldots,\mathbf{h}^{\mathtt{RD}}_{L}]^{H} L×NL\times N
CU \to RIS 𝐇𝚄𝚁=Δ[𝐡1𝚄𝚁,,𝐡K𝚄𝚁]\mathbf{H}^{\mathtt{UR}}\overset{\Delta}{=}[\mathbf{h}^{\mathtt{UR}}_{1},\ldots,\mathbf{h}^{\mathtt{UR}}_{K}] N×KN\times K
TxD \to RIS 𝐇𝙳𝚁=Δ[𝐡1𝙳𝚁,,𝐡L𝙳𝚁]\mathbf{H}^{\mathtt{DR}}\overset{\Delta}{=}[\mathbf{h}^{\mathtt{DR}}_{1},\ldots,\mathbf{h}^{\mathtt{DR}}_{L}] N×LN\times L
cascaded TxD\toRxD (𝐠,𝙳𝙳)H=(𝐡𝚁𝙳)Hdiag(𝐡𝙳𝚁)(\mathbf{g}_{\ell,\ell^{\prime}}^{\mathtt{DD}})^{H}=(\mathbf{h}_{\ell}^{\mathtt{RD}})^{H}\operatorname{diag}{\left(\mathbf{h}_{\ell^{\prime}}^{\mathtt{DR}}\right)} 1×N1\times N
cascaded CU\toRxD (𝐠,k𝚄𝙳)H=(𝐡𝚁𝙳)Hdiag(𝐡k𝚄𝚁)(\mathbf{g}_{\ell,k}^{\mathtt{UD}})^{H}=(\mathbf{h}_{\ell}^{\mathtt{RD}})^{H}\operatorname{diag}{\left(\mathbf{h}_{k}^{\mathtt{UR}}\right)} 1×N1\times N
cascaded CU\toBS 𝐆k𝚄𝙱=𝐇𝚁𝙱diag(𝐡k𝚄𝚁)\mathbf{G}_{k}^{\mathtt{UB}}=\mathbf{H}^{\mathtt{RB}}\operatorname{diag}{\left(\mathbf{h}_{k}^{\mathtt{UR}}\right)} M×NM\times N
cascaded TxD\toBS 𝐆𝙳𝙱=𝐇𝚁𝙱diag(𝐡𝙳𝚁)\mathbf{G}_{\ell}^{\mathtt{DB}}=\mathbf{H}^{\mathtt{RB}}\operatorname{diag}{\left(\mathbf{h}_{\ell}^{\mathtt{DR}}\right)} M×NM\times N

II-A System Model

We consider an uplink RIS-assisted MIMO system where an MM-antenna base station serves KK users with the assistance of an NN-element RIS. There are also LL device pairs sharing the same spectrum with the cellular system. We assume that the users and devices are all equipped with a single antenna and the transmit power of user-kk and device-\ell are denoted as pk𝚄p^{\mathtt{U}}_{k} and p𝙳p^{\mathtt{D}}_{\ell}, respectively. Since the BS has multiple antennas serving multiple users, a combining matrix 𝐖=[𝐰1,,𝐰K]H\mathbf{W}=[\mathbf{w}_{1},\ldots,\mathbf{w}_{K}]^{H} is applied to the BS’s received signal to recover the cellular users’ data. Here, 𝐰k\mathbf{w}_{k} is the combiner for user-kk. The receive devices have only one antenna, so they directly detect data from their received signal. The RIS is defined by a vector ϕ=[ϕ1,,ϕN]T\boldsymbol{\phi}=[\phi_{1},\ldots,\phi_{N}]^{T} where |ϕi|1|\phi_{i}|\leq 1. Table I provides a description of all channels and their corresponding mathematical definition. In this paper, we assume perfect channel state estimation information (CSI) at the BS and the receive devices. However, we do not assume knowledge of the individual channels to and from the RIS but their cascaded versions, the estimation of which has been intensively studied in the RIS literature. The receive devices feedback their CSI to the BS for optimizing the combining matrix 𝐖\mathbf{W} and the RIS phase shift vector ϕ\boldsymbol{\phi}. It is also assumed that the noise at the BS and at the receive devices is distributed as 𝒞𝒩(𝟎M,σ𝙱2𝐈M)\mathcal{CN}(\mathbf{0}_{M},\sigma^{2}_{\mathtt{B}}\mathbf{I}_{M}) and 𝒞𝒩(0,σ𝙳2)\mathcal{CN}(0,\sigma^{2}_{\mathtt{D}}), respectively.

II-B Problem Formulation

The problem of interest is to maximize the minimum SINR:

maximize{ϕ,𝐰k}\displaystyle\operatorname*{maximize}_{\{\boldsymbol{\phi},\,\mathbf{w}_{k}\}} mink,{SINR𝙳,SINRk𝚄}\displaystyle\min_{k,\ell}\;\{\mathrm{SINR}_{\ell}^{\mathtt{D}},\,\mathrm{SINR}_{k}^{\mathtt{U}}\} (1)
subjectto\displaystyle\operatorname{subject\ to} |ϕi|1,i=1,,N.\displaystyle|\phi_{i}|\leq 1,\;\forall i=1,\ldots,N.

where SINR𝙳\mathrm{SINR}_{\ell}^{\mathtt{D}} and SINRk𝚄\mathrm{SINR}_{k}^{\mathtt{U}} are given in (2) and (3) and denote the SINR of the \ell-th device pair and the SINR of user-kk, respectively.

SINR𝙳=p𝙳|h,𝙳𝙳+(𝐠,𝙳𝙳)Hϕ|2p𝙳|h,𝙳𝙳+(𝐠,𝙳𝙳)Hϕ|2+k=1Kpk𝚄|h,k𝚄𝙳+(𝐠,k𝚄𝙳)Hϕ|2+σ𝙳2\mathrm{SINR}_{\ell}^{\mathtt{D}}=\frac{p_{\ell}^{\mathtt{D}}|h_{\ell,\ell}^{\mathtt{DD}}+(\mathbf{g}_{\ell,\ell}^{\mathtt{DD}})^{H}\boldsymbol{\phi}|^{2}}{\sum_{\ell^{\prime}\neq\ell}p_{\ell^{\prime}}^{\mathtt{D}}|h_{\ell,\ell^{\prime}}^{\mathtt{DD}}+(\mathbf{g}_{\ell,\ell^{\prime}}^{\mathtt{DD}})^{H}\boldsymbol{\phi}|^{2}+\sum_{k=1}^{K}p_{k}^{\mathtt{U}}|h_{\ell,k}^{\mathtt{UD}}+(\mathbf{g}_{\ell,k}^{\mathtt{UD}})^{H}\boldsymbol{\phi}|^{2}+\sigma^{2}_{\mathtt{D}}} (2)
SINRk𝚄=pk𝚄|𝐰kH(𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕ)|2kkpk𝚄|𝐰kH(𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕ)|2+=1Lp𝙳|𝐰kH(𝐡𝙳𝙱+𝐆𝙳𝙱ϕ)|2+𝐰k2σ𝙱2\displaystyle\mathrm{SINR}_{k}^{\mathtt{U}}=\frac{p_{k}^{\mathtt{U}}|\mathbf{w}_{k}^{H}(\mathbf{h}_{k}^{\mathtt{UB}}+\mathbf{G}_{k}^{\mathtt{UB}}\boldsymbol{\phi})|^{2}}{\sum_{k^{\prime}\neq k}p_{k^{\prime}}^{\mathtt{U}}|\mathbf{w}_{k}^{H}(\mathbf{h}_{k^{\prime}}^{\mathtt{UB}}+\mathbf{G}_{k^{\prime}}^{\mathtt{UB}}\boldsymbol{\phi})|^{2}+\sum_{\ell=1}^{L}p_{\ell}^{\mathtt{D}}|\mathbf{w}_{k}^{H}(\mathbf{h}_{\ell}^{\mathtt{DB}}+\mathbf{G}_{\ell}^{\mathtt{DB}}\boldsymbol{\phi})|^{2}+\|\mathbf{w}_{k}\|^{2}\sigma^{2}_{\mathtt{B}}} (3)

III Alternating Optimization Approach

This section develops an AO approach to solve the joint D2D and cellular communication problem in (1). Here, we alternately optimize the BS combiners {𝐰k}\{\mathbf{w}_{k}\} and the RIS phase shift ϕ\boldsymbol{\phi}.

III-A Optimizing {𝐰k}\{\mathbf{w}_{k}\} given ϕ\boldsymbol{\phi}

Let 𝐟k𝚄𝙱=Δ𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕ\mathbf{f}_{k}^{\mathtt{UB}}\overset{\Delta}{=}\mathbf{h}_{k}^{\mathtt{UB}}+\mathbf{G}_{k}^{\mathtt{UB}}\boldsymbol{\phi} and 𝐟𝙳𝙱=Δ𝐡𝙳𝙱+𝐆𝙳𝙱ϕ\mathbf{f}_{\ell}^{\mathtt{DB}}\overset{\Delta}{=}\mathbf{h}_{\ell}^{\mathtt{DB}}+\mathbf{G}_{\ell}^{\mathtt{DB}}\boldsymbol{\phi} define the effective channel from user-kk to the BS and from the transmit device-\ell to the BS, respectively. The optimal linear minimum mean squared error (LMMSE) combiner at the BS for user-kk is given as

𝐰k=(k=1Kpk𝚄𝐟k𝚄𝙱(𝐟k𝚄𝙱)H+=1Lp𝙳𝐟𝙳𝙱(𝐟𝙳𝙱)H+σ𝙱2𝐈M)1𝐟k𝚄𝙱.\mathbf{w}_{k}=\bigg{(}\sum_{k^{\prime}=1}^{K}p^{\mathtt{U}}_{k^{\prime}}\mathbf{f}_{k^{\prime}}^{\mathtt{UB}}(\mathbf{f}_{k^{\prime}}^{\mathtt{UB}})^{H}+\sum_{\ell=1}^{L}p^{\mathtt{D}}_{\ell}\mathbf{f}_{\ell}^{\mathtt{DB}}(\mathbf{f}_{\ell}^{\mathtt{DB}})^{H}+\sigma^{2}_{\mathtt{B}}\mathbf{I}_{M}\bigg{)}^{-1}\mathbf{f}^{\mathtt{UB}}_{k}.

III-B Optimizing ϕ\boldsymbol{\phi} given {𝐰k}\{\mathbf{w}_{k}\}

Let

(𝝍k,k𝚄𝙱)H=Δ𝐰kH𝐆k𝚄𝙱andαk,k𝚄𝙱=Δ𝐰kH𝐡k𝚄𝙱,(\boldsymbol{\psi}^{\mathtt{UB}}_{k,k^{\prime}})^{H}\overset{\Delta}{=}\mathbf{w}_{k}^{H}\mathbf{G}_{k^{\prime}}^{\mathtt{UB}}\;\;\text{and}\;\;\alpha^{\mathtt{UB}}_{k,k^{\prime}}\overset{\Delta}{=}\mathbf{w}_{k}^{H}\mathbf{h}_{k^{\prime}}^{\mathtt{UB}},

then we can express the term |𝐰kH(𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕ)|2|\mathbf{w}_{k}^{H}(\mathbf{h}_{k^{\prime}}^{\mathtt{UB}}+\mathbf{G}_{k^{\prime}}^{\mathtt{UB}}\boldsymbol{\phi})|^{2} in (3) as follows:

|𝐰kH(𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕ)|2=ϕ~H𝚿k,k𝚄𝙱ϕ~=tr(𝚽~𝚿k,k𝚄𝙱)\displaystyle|\mathbf{w}_{k}^{H}(\mathbf{h}_{k^{\prime}}^{\mathtt{UB}}+\mathbf{G}_{k^{\prime}}^{\mathtt{UB}}\boldsymbol{\phi})|^{2}=\boldsymbol{\tilde{\phi}}^{H}\boldsymbol{\Psi}^{\mathtt{UB}}_{k,k^{\prime}}\boldsymbol{\tilde{\phi}}=\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{UB}}_{k,k^{\prime}}) (4)

where ϕ~=[ϕT,1]T\boldsymbol{\tilde{\phi}}=[\boldsymbol{\phi}^{T},1]^{T}, 𝚽~=ϕ~ϕ~H\boldsymbol{\tilde{\Phi}}=\boldsymbol{\tilde{\phi}}\boldsymbol{\tilde{\phi}}^{H}, and

𝚿k,k𝚄𝙱=[[1.2]𝝍k,k𝚄𝙱(𝝍k,k𝚄𝙱)Hαk,k𝚄𝙱𝝍k,k𝚄𝙱(𝝍k,k𝚄𝙱)H(αk,k𝚄𝙱)|αk,k𝚄𝙱|2].\boldsymbol{\Psi}^{\mathtt{UB}}_{k,k^{\prime}}=\begin{bmatrix}[1.2]\boldsymbol{\psi}^{\mathtt{UB}}_{k,k^{\prime}}(\boldsymbol{\psi}^{\mathtt{UB}}_{k,k^{\prime}})^{H}&\alpha^{\mathtt{UB}}_{k,k^{\prime}}\boldsymbol{\psi}^{\mathtt{UB}}_{k,k^{\prime}}\\ (\boldsymbol{\psi}^{\mathtt{UB}}_{k,k^{\prime}})^{H}(\alpha^{\mathtt{UB}}_{k,k^{\prime}})^{*}&|\alpha^{\mathtt{UB}}_{k,k^{\prime}}|^{2}\end{bmatrix}.

Similarly, by defining

(𝝍k,𝙳𝙱)H=Δ𝐰kH𝐆𝙳𝙱andαk,𝙳𝙱=Δ𝐰kH𝐡𝙳𝙱,(\boldsymbol{\psi}^{\mathtt{DB}}_{k,\ell})^{H}\overset{\Delta}{=}\mathbf{w}_{k}^{H}\mathbf{G}_{\ell}^{\mathtt{DB}}\;\;\text{and}\;\;\alpha^{\mathtt{DB}}_{k,\ell}\overset{\Delta}{=}\mathbf{w}_{k}^{H}\mathbf{h}_{\ell}^{\mathtt{DB}},

we can write the term |𝐰kH(𝐡𝙳𝙱+𝐆𝙳𝙱ϕ)|2|\mathbf{w}_{k}^{H}(\mathbf{h}_{\ell}^{\mathtt{DB}}+\mathbf{G}_{\ell}^{\mathtt{DB}}\boldsymbol{\phi})|^{2} in (3) as

|𝐰kH(𝐡𝙳𝙱+𝐆𝙳𝙱ϕ)|2\displaystyle|\mathbf{w}_{k}^{H}(\mathbf{h}_{\ell}^{\mathtt{DB}}+\mathbf{G}_{\ell}^{\mathtt{DB}}\boldsymbol{\phi})|^{2} =ϕ~H𝚿k,𝙳𝙱ϕ~=tr(𝚽~𝚿k,𝙳𝙱)\displaystyle=\boldsymbol{\tilde{\phi}}^{H}\boldsymbol{\Psi}^{\mathtt{DB}}_{k,\ell}\boldsymbol{\tilde{\phi}}=\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{DB}}_{k,\ell}) (5)

where

𝚿k,𝙳𝙱=[[1.2]𝝍k,𝙳𝙱(𝝍k,𝙳𝙱)Hαk,𝙳𝙱𝝍k,𝙳𝙱(𝝍k,𝙳𝙱)H(αk,𝙳𝙱)|αk,𝙳𝙱|2].\boldsymbol{\Psi}^{\mathtt{DB}}_{k,\ell}=\begin{bmatrix}[1.2]\boldsymbol{\psi}^{\mathtt{DB}}_{k,\ell}(\boldsymbol{\psi}^{\mathtt{DB}}_{k,\ell})^{H}&\alpha^{\mathtt{DB}}_{k,\ell}\boldsymbol{\psi}^{\mathtt{DB}}_{k,\ell}\\ (\boldsymbol{\psi}^{\mathtt{DB}}_{k,\ell})^{H}(\alpha^{\mathtt{DB}}_{k,\ell})^{*}&|\alpha^{\mathtt{DB}}_{k,\ell}|^{2}\end{bmatrix}.

Using (4) and (5), the SINR of user-kk in (3) is written as

SINRk𝚄=pk𝚄tr(𝚽~𝚿k,k𝚄𝙱)kkpk𝚄tr(𝚽~𝚿k,k𝚄𝙱)+p𝙳tr(𝚽~𝚿k,𝙳𝙱)+ζk\mathrm{SINR}_{k}^{\mathtt{U}}=\frac{p_{k}^{\mathtt{U}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{UB}}_{k,k})}{\sum_{k^{\prime}\neq k}p_{k^{\prime}}^{\mathtt{U}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{UB}}_{k,k^{\prime}})+\sum_{\ell}p_{\ell}^{\mathtt{D}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{DB}}_{k,\ell})+\zeta_{k}} (6)

where ζk=𝐰k2σ𝙱2\zeta_{k}=\|\mathbf{w}_{k}\|^{2}\sigma^{2}_{\mathtt{B}}. We also have

SINR𝙳=p𝙳tr(𝚽~𝚿,𝙳𝙳)p𝙳tr(𝚽~𝚿,𝙳𝙳)+kpk𝚄tr(𝚽~𝚿,k𝚄𝙳)+σ𝙳2\mathrm{SINR}_{\ell}^{\mathtt{D}}=\frac{p_{\ell}^{\mathtt{D}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{DD}}_{\ell,\ell})}{\sum_{\ell^{\prime}\neq\ell}p_{\ell^{\prime}}^{\mathtt{D}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{DD}}_{\ell,\ell^{\prime}})+\sum_{k}p_{k}^{\mathtt{U}}\operatorname{tr}(\boldsymbol{\tilde{\Phi}}\boldsymbol{\Psi}^{\mathtt{UD}}_{\ell,k})+\sigma^{2}_{\mathtt{D}}} (7)

where

𝚿,𝙳𝙳\displaystyle\boldsymbol{\Psi}^{\mathtt{DD}}_{\ell,\ell^{\prime}} =[[1.2]𝐠,𝙳𝙳(𝐠,𝙳𝙳)Hh,𝙳𝙳𝐠,𝙳𝙳(𝐠,𝙳𝙳)H(h,𝙳𝙳)|h,𝙳𝙳|2],\displaystyle=\begin{bmatrix}[1.2]\mathbf{g}^{\mathtt{DD}}_{\ell,\ell^{\prime}}(\mathbf{g}^{\mathtt{DD}}_{\ell,\ell^{\prime}})^{H}&h^{\mathtt{DD}}_{\ell,\ell^{\prime}}\mathbf{g}^{\mathtt{DD}}_{\ell,\ell^{\prime}}\\ (\mathbf{g}^{\mathtt{DD}}_{\ell,\ell^{\prime}})^{H}(h^{\mathtt{DD}}_{\ell,\ell^{\prime}})^{*}&|h^{\mathtt{DD}}_{\ell,\ell^{\prime}}|^{2}\end{bmatrix},
𝚿,k𝚄𝙳\displaystyle\boldsymbol{\Psi}^{\mathtt{UD}}_{\ell,k} =[[1.2]𝐠,k𝚄𝙳(𝐠,k𝚄𝙳)Hh,k𝚄𝙳𝐠,k𝚄𝙳(𝐠,k𝚄𝙳)H(h,k𝚄𝙳)|h,k𝚄𝙳|2].\displaystyle=\begin{bmatrix}[1.2]\mathbf{g}^{\mathtt{UD}}_{\ell,k}(\mathbf{g}^{\mathtt{UD}}_{\ell,k})^{H}&h^{\mathtt{UD}}_{\ell,k}\mathbf{g}^{\mathtt{UD}}_{\ell,k}\\ (\mathbf{g}^{\mathtt{UD}}_{\ell,k})^{H}(h^{\mathtt{UD}}_{\ell,k})^{*}&|h^{\mathtt{UD}}_{\ell,k}|^{2}\end{bmatrix}.

Therefore, problem (1) can be written as

maximize{ξ,𝚽~𝟎}\displaystyle\operatorname*{maximize}_{\{\xi,\;\boldsymbol{\tilde{\Phi}}\succeq\mathbf{0}\}} ξ\displaystyle\xi (8)
subjectto\displaystyle\operatorname{subject\ to} (6)ξk\displaystyle\text{\eqref{eq:SINR_Uk}}\geq\xi\;\forall k
(7)ξ\displaystyle\text{\eqref{eq:SINR_Dl}}\geq\xi\;\forall\ell
|𝚽~i,i|1,i=1,,N\displaystyle|\boldsymbol{\tilde{\Phi}}_{i,i}|\leq 1,\;\forall i=1,\ldots,N
𝚽~N+1,N+1=1.\displaystyle\boldsymbol{\tilde{\Phi}}_{N+1,N+1}=1.

This is a fractional programming problem and thus can be solved by the Dinkelbach algorithm [18]. Given a solution 𝚽~^\boldsymbol{\hat{\tilde{\Phi}}} of (8), we need to convert 𝚽~^\boldsymbol{\hat{\tilde{\Phi}}} into a feasible solution ϕ^\boldsymbol{\hat{\phi}}, which can be done by the Gaussian randomization approach [19]. Specifically, we first generate a set of Gaussian random vectors as ϕ~i𝒞𝒩(𝟎,𝚽~^)\boldsymbol{{\tilde{\phi}}}_{i}\sim\mathcal{CN}(\mathbf{0},\boldsymbol{\hat{\tilde{\Phi}}}), i=1,,Ii=1,\ldots,I. Since the elements of ϕ~i\boldsymbol{{\tilde{\phi}}}_{i} may not satisfy the constraints |ϕ~i,n|1|\tilde{\phi}_{i,n}|\leq 1 for n=1,,Nn=1,\ldots,N and ϕ~i,N+1=1\tilde{\phi}_{i,N+1}=1, we need to first normalize ϕ~i\boldsymbol{{\tilde{\phi}}}_{i} to obtain ϕ¯i=ϕ~i/ϕ~i,N+1\boldsymbol{{\bar{\phi}}}_{i}=\boldsymbol{{\tilde{\phi}}}_{i}/\tilde{\phi}_{i,N+1}, then we can obtain a feasible candidate ϕ^i=[ϕ^i,1,,ϕ^i,N]T\boldsymbol{\hat{\phi}}_{i}=[\hat{\phi}_{i,1},\ldots,\hat{\phi}_{i,N}]^{T} where ϕ^i,n=ej(ϕ¯i,n)\hat{\phi}_{i,n}=e^{j\measuredangle(\bar{\phi}_{i,n})} if |ϕ¯i,n|>1|\bar{\phi}_{i,n}|>1, otherwise ϕ^i,n=ϕ~i,n\hat{\phi}_{i,n}=\tilde{\phi}_{i,n}. Finally, a solution ϕ^\boldsymbol{\hat{\phi}} of problem (8) can be obtained as

ϕ^=argmax{ϕ^1,,ϕ^I}min{SINR𝙳,SINRk𝚄}.\boldsymbol{\hat{\phi}}=\operatorname*{arg\;max}_{\{\boldsymbol{\hat{\phi}}_{1},\ldots,\boldsymbol{\hat{\phi}}_{I}\}}\;\;\min\,\{\mathrm{SINR}_{\ell}^{\mathtt{D}},\,\mathrm{SINR}_{k}^{\mathtt{U}}\}. (9)

IV Interference Cancellation Approach

The AO approach presented above is efficient but its computational complexity is high because the BS combiners and the RIS phase shift vector are alternately optimized. In addition, each AO iteration requires use of the Dinkelbach algorithm which is an iterative algorithm itself, and each of its iterations also requires the solution of an SDR optimization problem. Here, we propose an IC approach whose computational complexity is significantly lower than that of the AO algorithm since the proposed IC approach only needs to solve one SDR problem. Details of the proposed IC approach are presented as follows.

Let 𝐅𝙳𝙳L×L\mathbf{F}^{\mathtt{DD}}\in\mathbb{C}^{L\times L} be the effective channel from the transmit devices to the receive devices, and define

𝐟𝙳𝙳=vec((𝐅𝙳𝙳)T)\displaystyle\mathbf{f}^{\mathtt{DD}}=\operatorname{vec}{\left((\mathbf{F}^{\mathtt{DD}})^{T}\right)} =vec((𝐇𝙳𝙳)T)+[[0.8]𝐆1𝙳𝙳𝐆L𝙳𝙳]ϕ\displaystyle=\operatorname{vec}{\left((\mathbf{H}^{\mathtt{DD}})^{T}\right)}+\begin{bmatrix}[0.8]\mathbf{G}^{\mathtt{DD}}_{1}\\ \vdots\\ \mathbf{G}^{\mathtt{DD}}_{L}\end{bmatrix}\boldsymbol{\phi}
=𝐡𝙳𝙳+𝐆𝙳𝙳ϕ,\displaystyle=\mathbf{h}^{\mathtt{DD}}+\mathbf{G}^{\mathtt{DD}}\boldsymbol{\phi}, (10)

where 𝐆𝙳𝙳=[𝐠,1𝙳𝙳,,𝐠,L𝙳𝙳]H\mathbf{G}^{\mathtt{DD}}_{\ell}=[\mathbf{g}^{\mathtt{DD}}_{\ell,1},\ldots,\mathbf{g}^{\mathtt{DD}}_{\ell,L}]^{H}. We use a permutation matrix 𝐏\mathbf{P} to separate the vector 𝐟𝙳𝙳\mathbf{f}^{\mathtt{DD}} into two sub-vectors 𝐟sig𝙳𝙳\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}} and 𝐟itf𝙳𝙳\mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}} which contain the diagonal and off-diagonal elements of 𝐅𝙳𝙳\mathbf{F}^{\mathtt{DD}}, respectively. The diagonal elements of 𝐅𝙳𝙳\mathbf{F}^{\mathtt{DD}} represent the useful channels for the D2D pairs, while the off-diagonal elements represent the interference channels from other D2D pairs. Hence we use the subscripts ‘sig\mathrm{sig}’ and ‘itf\mathrm{itf}’ to indicate the D2D signal and interference, respectively. This means we can write

[[1.2]𝐟sig𝙳𝙳𝐟itf𝙳𝙳]=[[1.2]𝐡sig𝙳𝙳𝐡itf𝙳𝙳]+[[1.2]𝐆sig𝙳𝙳𝐆itf𝙳𝙳]ϕ\begin{bmatrix}[1.2]\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}=\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}+\begin{bmatrix}[1.2]\mathbf{G}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{G}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}\boldsymbol{\phi} (11)

where

[[1.2]𝐟sig𝙳𝙳𝐟itf𝙳𝙳]=𝐏𝐟𝙳𝙳,[[1.2]𝐡sig𝙳𝙳𝐡itf𝙳𝙳]=𝐏𝐡𝙳𝙳,[[1.2]𝐆sig𝙳𝙳𝐆itf𝙳𝙳]=𝐏𝐆𝙳𝙳.\begin{bmatrix}[1.2]\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}=\mathbf{P}\mathbf{f}^{\mathtt{DD}},\;\;\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}=\mathbf{P}\mathbf{h}^{\mathtt{DD}},\;\;\begin{bmatrix}[1.2]\mathbf{G}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{G}^{\mathtt{DD}}_{\mathrm{itf}}\end{bmatrix}=\mathbf{P}\mathbf{G}^{\mathtt{DD}}.

Similarly, let 𝐅𝚄𝙳L×K\mathbf{F}^{\mathtt{UD}}\in\mathbb{C}^{L\times K} be the effective channel from the cellular users to the receive devices, so we can also write

𝐟𝚄𝙳=vec((𝐅𝚄𝙳)T)\displaystyle\mathbf{f}^{\mathtt{UD}}=\operatorname{vec}{\left((\mathbf{F}^{\mathtt{UD}})^{T}\right)} =vec((𝐇𝚄𝙳)T)+[[0.8]𝐆1𝚄𝙳𝐆L𝚄𝙳]ϕ\displaystyle=\operatorname{vec}{\left((\mathbf{H}^{\mathtt{UD}})^{T}\right)}+\begin{bmatrix}[0.8]\mathbf{G}_{1}^{\mathtt{UD}}\\ \vdots\\ \mathbf{G}_{L}^{\mathtt{UD}}\end{bmatrix}\boldsymbol{\phi}
=𝐡𝚄𝙳+𝐆𝚄𝙳ϕ,\displaystyle=\mathbf{h}^{\mathtt{UD}}+\mathbf{G}^{\mathtt{UD}}\boldsymbol{\phi}, (12)

where 𝐆𝚄𝙳=[𝐠,1𝚄𝙳,,𝐠,K𝚄𝙳]H\mathbf{G}_{\ell}^{\mathtt{UD}}=[\mathbf{g}_{\ell,1}^{\mathtt{UD}},\ldots,\mathbf{g}_{\ell,K}^{\mathtt{UD}}]^{H}.

Combining (11) and (12), we have

[[1.2]𝐟sig𝙳𝙳𝐟itf𝙳𝙳𝐟𝚄𝙳]=[[1.2]𝐡sig𝙳𝙳𝐡itf𝙳𝙳𝐡𝚄𝙳]+[[1.2]𝐆sig𝙳𝙳𝐆itf𝙳𝙳𝐆𝚄𝙳]𝐀ϕ,\begin{bmatrix}[1.2]\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{f}^{\mathtt{UD}}\end{bmatrix}=\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{h}^{\mathtt{UD}}\end{bmatrix}+\underbrace{\begin{bmatrix}[1.2]\mathbf{G}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{G}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{G}^{\mathtt{UD}}\end{bmatrix}}_{\mathbf{A}}\boldsymbol{\phi}, (13)

where 𝐀L(K+L)×N\mathbf{A}\in\mathbb{C}^{L(K+L)\times N} is a matrix representing the RIS-aided channel. Assuming that NL(K+L)N\geq L(K+L), then using (13) we can write the phase shift vector ϕ\boldsymbol{\phi} in the following expression:

ϕ=𝐀H(𝐀𝐀H)1([[1.2]𝐟sig𝙳𝙳𝐟itf𝙳𝙳𝐟𝚄𝙳][[1.2]𝐡sig𝙳𝙳𝐡itf𝙳𝙳𝐡𝚄𝙳]).\boldsymbol{\phi}=\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1}\left(\begin{bmatrix}[1.2]\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{f}^{\mathtt{UD}}\end{bmatrix}-\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}\\ \mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{h}^{\mathtt{UD}}\end{bmatrix}\right). (14)

Let [𝐁,𝐂]=Δ𝐀H(𝐀𝐀H)1[\mathbf{B},\mathbf{C}]\overset{\Delta}{=}\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1} where 𝐁N×L\mathbf{B}\in\mathbb{C}^{N\times L} and 𝐂N×L(K+L)L\mathbf{C}\in\mathbb{C}^{N\times L(K+L)-L}, then decompose the right-hand side of (14) as follows:

ϕ\displaystyle\boldsymbol{\phi} =𝐁𝐟sig𝙳𝙳𝐁𝐡sig𝙳𝙳+𝐂([[1.2]𝐟itf𝙳𝙳𝐟𝚄𝙳][[1.2]𝐡itf𝙳𝙳𝐡𝚄𝙳]).\displaystyle=\mathbf{B}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}-\mathbf{B}\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{C}\left(\begin{bmatrix}[1.2]\mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{f}^{\mathtt{UD}}\end{bmatrix}-\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{h}^{\mathtt{UD}}\end{bmatrix}\right). (15)

The representation above shows a relationship between the RIS phase shift ϕ\boldsymbol{\phi} and the effective device-related channels including the useful D2D channels 𝐟sig𝙳𝙳\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}} and the other interference links 𝐟itf𝙳𝙳\mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}} and 𝐟𝚄𝙳\mathbf{f}^{\mathtt{UD}}. If we let 𝐟itf𝙳𝙳=𝟎\mathbf{f}^{\mathtt{DD}}_{\mathrm{itf}}=\mathbf{0} and 𝐟𝚄𝙳=𝟎\mathbf{f}^{\mathtt{UD}}=\mathbf{0}, the RIS solution (15) reduces to an IC ϕ\boldsymbol{\phi} solution expressed in terms of 𝐟sig𝙳𝙳\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}} as

ϕIC\displaystyle\boldsymbol{\phi}_{\mathrm{IC}} =𝐁𝐟sig𝙳𝙳𝐁𝐡sig𝙳𝙳𝐂[[1.2]𝐡itf𝙳𝙳𝐡𝚄𝙳]\displaystyle=\mathbf{B}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}-\mathbf{B}\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}-\mathbf{C}\begin{bmatrix}[1.2]\mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}}\\ \mathbf{h}^{\mathtt{UD}}\end{bmatrix}
=𝐁𝐟sig𝙳𝙳+𝐝\displaystyle=\mathbf{B}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{d} (16)

where 𝐝=𝐁𝐡sig𝙳𝙳𝐂[(𝐡itf𝙳𝙳)T,(𝐡𝚄𝙳)T]T\mathbf{d}=-\mathbf{B}\mathbf{h}^{\mathtt{DD}}_{\mathrm{sig}}-\mathbf{C}[(\mathbf{h}^{\mathtt{DD}}_{\mathrm{itf}})^{T},\,(\mathbf{h}^{\mathtt{UD}})^{T}]^{T}. This means that if we could design the RIS phase shifts with (16), the interference to the receive devices will be completely cancelled. In this case, the SINR at the receive device-\ell would simplify to SINR𝙳=p𝙳|fsig,𝙳𝙳|2/σ𝙳2\mathrm{SINR}_{\ell}^{\mathtt{D}}=p^{\mathtt{D}}_{\ell}|f_{\mathrm{sig},\ell}^{\mathtt{DD}}|^{2}/\sigma_{\mathtt{D}}^{2}.

With the ϕIC\boldsymbol{\phi}_{\mathrm{IC}} representation in (16), we can use the Cauchy–Schwarz inequality to find the following upper bound for the SINR of user-kk:

SINRk𝚄\displaystyle\mathrm{SINR}_{k}^{\mathtt{U}} pk𝚄𝐡k𝚄𝙱+𝐆k𝚄𝙱ϕIC2/σ𝙱2\displaystyle\leq p^{\mathtt{U}}_{k}\|\mathbf{h}^{\mathtt{UB}}_{k}+\mathbf{G}^{\mathtt{UB}}_{k}\boldsymbol{\phi}_{\mathrm{IC}}\|^{2}/\sigma_{\mathtt{B}}^{2} (17)
=pk𝚄𝐡k𝚄𝙱+𝐆k𝚄𝙱(𝐁𝐟sig𝙳𝙳+𝐝)2/σ𝙱2\displaystyle=p^{\mathtt{U}}_{k}\|\mathbf{h}^{\mathtt{UB}}_{k}+\mathbf{G}^{\mathtt{UB}}_{k}(\mathbf{B}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{d})\|^{2}/\sigma_{\mathtt{B}}^{2} (18)
=pk𝚄𝐙k𝐟sig𝙳𝙳+𝐪k2/σ𝙱2,\displaystyle=p^{\mathtt{U}}_{k}\|\mathbf{Z}_{k}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{q}_{k}\|^{2}/\sigma_{\mathtt{B}}^{2}, (19)

where 𝐙k=𝐆k𝚄𝙱𝐁\mathbf{Z}_{k}=\mathbf{G}^{\mathtt{UB}}_{k}\mathbf{B} and 𝐪k=𝐡k𝚄𝙱+𝐆k𝚄𝙱𝐝\mathbf{q}_{k}=\mathbf{h}^{\mathtt{UB}}_{k}+\mathbf{G}^{\mathtt{UB}}_{k}\mathbf{d}. Therefore, we propose the following IC-based optimization problem

maximize{ξ,𝐟sig𝙳𝙳}\displaystyle\operatorname*{maximize}_{\{\xi,\;\mathbf{f}_{\mathrm{sig}}^{\mathtt{DD}}\}} ξ\displaystyle\xi (20)
subjectto\displaystyle\operatorname{subject\ to} pk𝚄𝐙k𝐟sig𝙳𝙳+𝐪k2/σ𝙱2ξk\displaystyle p^{\mathtt{U}}_{k}\|\mathbf{Z}_{k}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{q}_{k}\|^{2}/\sigma_{\mathtt{B}}^{2}\geq\xi\;\forall k
p𝙳|fsig,𝙳𝙳|2/σ𝙳2ξ\displaystyle p^{\mathtt{D}}_{\ell}|f_{\mathrm{sig},\ell}^{\mathtt{DD}}|^{2}/\sigma_{\mathtt{D}}^{2}\geq\xi\;\forall\ell
|𝐛iH𝐟sig𝙳𝙳+di|21i=1,,N,\displaystyle|\mathbf{b}_{i}^{H}\mathbf{f}_{\mathrm{sig}}^{\mathtt{DD}}+d_{i}|^{2}\leq 1\;\forall i=1,\ldots,N,

where the constraint |𝐛iH𝐟sig𝙳𝙳+di|21|\mathbf{b}_{i}^{H}\mathbf{f}_{\mathrm{sig}}^{\mathtt{DD}}+d_{i}|^{2}\leq 1 is equivalent to the constraint |ϕi|21|\phi_{i}|^{2}\leq 1. Hence, we have transformed the RIS phase shift ϕ\boldsymbol{\phi} optimization problem into an effective D2D channel optimization (20) by exploiting the IC representation (16).

The problem in (20) can also be easily solved using SDR. Specifically, let

𝛀k=[[1.2]𝐙kH𝐙k𝐙kH𝐪k𝐪kH𝐙k𝐪k2]and𝚼i=[[1.2]𝐛i𝐛iH𝐛idi𝐛iHdi|di|2],\boldsymbol{\Omega}_{k}=\begin{bmatrix}[1.2]\mathbf{Z}_{k}^{H}\mathbf{Z}_{k}&\mathbf{Z}_{k}^{H}\mathbf{q}_{k}\\ \mathbf{q}_{k}^{H}\mathbf{Z}_{k}&\|\mathbf{q}_{k}\|^{2}\end{bmatrix}\;\text{and}\;\boldsymbol{\Upsilon}_{i}=\begin{bmatrix}[1.2]\mathbf{b}_{i}\mathbf{b}_{i}^{H}&\mathbf{b}_{i}d_{i}\\ \mathbf{b}_{i}^{H}d_{i}^{*}&|d_{i}|^{2}\end{bmatrix},

so that

𝐙k𝐟sig𝙳𝙳+𝐪k2=tr(𝐅~sig𝙳𝙳𝛀k)\displaystyle\|\mathbf{Z}_{k}\mathbf{f}^{\mathtt{DD}}_{\mathrm{sig}}+\mathbf{q}_{k}\|^{2}=\operatorname{tr}(\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}\boldsymbol{\Omega}_{k})
|𝐛iH𝐡sig𝙳𝙳+di|2=tr(𝐅~sig𝙳𝙳𝚼i),\displaystyle|\mathbf{b}_{i}^{H}\mathbf{h}_{\mathrm{sig}}^{\mathtt{DD}}+d_{i}|^{2}=\operatorname{tr}(\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}\boldsymbol{\Upsilon}_{i}),

where 𝐅~sig𝙳𝙳=𝐟~sig𝙳𝙳(𝐟~sig𝙳𝙳)T\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}=\mathbf{\tilde{f}}^{\mathtt{DD}}_{\mathrm{sig}}(\mathbf{\tilde{f}}^{\mathtt{DD}}_{\mathrm{sig}})^{T} with 𝐟~sig𝙳𝙳=[(𝐟sig𝙳𝙳)T,1]T\mathbf{\tilde{f}}^{\mathtt{DD}}_{\mathrm{sig}}=[(\mathbf{{f}}^{\mathtt{DD}}_{\mathrm{sig}})^{T},1]^{T}. Problem (20) can be now relaxed to a convex optimization problem:

maximize{ξ,𝐅sig𝙳𝙳𝟎}\displaystyle\operatorname*{maximize}_{\{\xi,\;\mathbf{F}_{\mathrm{sig}}^{\mathtt{DD}}\succeq\mathbf{0}\}} ξ\displaystyle\xi (21)
subjectto\displaystyle\operatorname{subject\ to} pk𝚄tr(𝐅~sig𝙳𝙳𝛀k)/σ𝙱2ξk\displaystyle p^{\mathtt{U}}_{k}\operatorname{tr}(\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}\boldsymbol{\Omega}_{k})/\sigma_{\mathtt{B}}^{2}\geq\xi\;\forall k
p𝙳{𝐅~sig,,𝙳𝙳}/σ𝙳2ξ\displaystyle p^{\mathtt{D}}_{\ell}\Re\{\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig},\ell,\ell}\}/\sigma_{\mathtt{D}}^{2}\geq\xi\;\forall\ell
tr(𝐅~sig𝙳𝙳𝚼i)1i=1,,N\displaystyle\operatorname{tr}(\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}\boldsymbol{\Upsilon}_{i})\leq 1\;\forall i=1,\ldots,N
𝐅~sig,L+1,L+1𝙳𝙳=1,\displaystyle\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig},L+1,L+1}=1,

which again can be solved using SDR. Finally, we need to recover an IC solution ϕ^IC\boldsymbol{\hat{\phi}}_{\mathrm{IC}} from 𝐅~sig𝙳𝙳\mathbf{\tilde{F}}^{\mathtt{DD}}_{\mathrm{sig}}, which can also be done using the Gaussian randomization method. Given a ϕ^IC\boldsymbol{\hat{\phi}}_{\mathrm{IC}}, the corresponding LMMSE combiner at the BS can be computed.

It can be seen that unlike the AO approach which needs to solve a series of SDR problems, the IC approach involves only one SDR optimization and therefore significantly reduces the computational complexity. We will show later that if the AO approach is initialized with ϕ^IC\boldsymbol{\hat{\phi}}_{\mathrm{IC}}, it converges more rapidly with better performance compared to using a random initialization.

Limited feedback for single D2D pair: To implement the IC method for the case of multiple device pairs, it is required that each receive device-\ell forwards its estimated CSI including two cascaded channel matrices 𝐆𝙳𝙳L×N\mathbf{G}_{\ell}^{\mathtt{DD}}\in\mathbb{C}^{L\times N}, 𝐆𝚄𝙳K×N\mathbf{G}_{\ell}^{\mathtt{UD}}\in\mathbb{C}^{K\times N} and two direct channel vectors 𝐇,:𝙳𝙳1×L\mathbf{H}^{\mathtt{DD}}_{\ell,:}\in\mathbb{C}^{1\times L}, 𝐇,:𝚄𝙳1×K\mathbf{H}^{\mathtt{UD}}_{\ell,:}\in\mathbb{C}^{1\times K} via a control link to the BS, which results in a total number of (L+K)(N+1)(L+K)(N+1) complex coefficients to be fed-back.

However, for the case of a single device pair, the representation in (14) can be obtained at the receive device as follows:

ϕ\displaystyle\boldsymbol{{\phi}} =𝐀H(𝐀𝐀H)1([[1.2]f𝙳𝙳𝐟𝚄𝙳][[1.2]h𝙳𝙳𝐡𝚄𝙳])\displaystyle=\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1}\left(\begin{bmatrix}[1.2]f^{\mathtt{DD}}\\ \mathbf{f}^{\mathtt{UD}}\end{bmatrix}-\begin{bmatrix}[1.2]h^{\mathtt{DD}}\\ \mathbf{h}^{\mathtt{UD}}\end{bmatrix}\right) (22)

where 𝐀=[(𝐠𝙳𝙳)T,𝐆𝚄𝙳]\mathbf{A}=[(\mathbf{g}^{\mathtt{DD}})^{T},\,\mathbf{G}^{\mathtt{UD}}] and we have dropped the device index \ell since there is only D2D pair here. By setting 𝐟𝚄𝙳=𝟎\mathbf{f}^{\mathtt{UD}}=\mathbf{0}, the ϕIC\boldsymbol{\phi}_{\mathrm{IC}} representation that cancels the interference at the device is

ϕIC\displaystyle\boldsymbol{{\phi}}_{\mathrm{IC}} =𝐛f𝙳𝙳+𝐝,\displaystyle=\mathbf{b}f^{\mathtt{DD}}+\mathbf{d}, (23)

where 𝐛\mathbf{b} is the first column of 𝐀H(𝐀𝐀H)1\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1} and 𝐝=𝐀H(𝐀𝐀H)1[h𝙳𝙳,(𝐡𝚄𝙳)T]T\mathbf{d}=-\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1}[h^{\mathtt{DD}},(\mathbf{h}^{\mathtt{UD}})^{T}]^{T}. This means the receive device can calculate the matrix 𝐀H(𝐀𝐀H)1\mathbf{A}^{H}(\mathbf{A}\mathbf{A}^{H})^{-1} using its local CSI, then obtain the two corresponding vectors 𝐛\mathbf{b} and 𝐝\mathbf{d}, which will be forwarded to the BS to solve the RIS phase shift optimization problem:

maximize{ξ,f𝙳𝙳}\displaystyle\operatorname*{maximize}_{\{\xi,\;{f}^{\mathtt{DD}}\}} ξ\displaystyle\xi (24)
subjectto\displaystyle\operatorname{subject\ to} pk𝚄𝐳kf𝙳𝙳+𝐪k2/σ𝙱2ξk\displaystyle p^{\mathtt{U}}_{k}\|\mathbf{z}_{k}{f}^{\mathtt{DD}}+\mathbf{q}_{k}\|^{2}/\sigma_{\mathtt{B}}^{2}\geq\xi\;\forall k
p𝙳|f𝙳𝙳|2/σ𝙳2ξ\displaystyle p^{\mathtt{D}}|f^{\mathtt{DD}}|^{2}/\sigma_{\mathtt{D}}^{2}\geq\xi
|bif𝙳𝙳+di|21i=1,,N.\displaystyle|b_{i}f^{\mathtt{DD}}+d_{i}|^{2}\leq 1\;\forall i=1,\ldots,N.

Thus, instead of forwarding the (K+1)(N+1)(K+1)(N+1) complex coefficients from 𝐠𝙳𝙳N×1\mathbf{g}^{\mathtt{DD}}\in\mathbb{C}^{N\times 1}, 𝐆𝚄𝙳K×N\mathbf{G}^{\mathtt{UD}}\in\mathbb{C}^{K\times N}, h𝙳𝙳h^{\mathtt{DD}}, and 𝐡𝚄𝙳K×1\mathbf{h}^{\mathtt{UD}}\in\mathbb{C}^{K\times 1}, the receive device finds 𝐛\mathbf{b} and 𝐝\mathbf{d} and forwards these two vectors to the BS. This only requires transmission of 2N2N complex coefficients, but still guarantees that the BS can solve the RIS phase shift optimization problem.

Refer to caption
(a) Minimum SINR performance
Refer to caption
(b) Computational complexity comparison
Figure 1: Performance and computational complexity comparison versus transmit power with N=64N=64 RIS elements.
Refer to caption
(a) Minimum SINR performance
Refer to caption
(b) Computational complexity comparison
Figure 2: Performance and computational complexity comparison versus number of RIS elements NN at 3030-dBm transmit power.

V Numerical Results

In this section, we present numerical results to show the superiority and benefits of the proposed IC and IC-AO approaches where IC-AO indicates the AO approach that uses the IC solution ϕ^IC\boldsymbol{\hat{\phi}}_{\mathrm{IC}} as an initialization. For the regular AO method, we use a random initial solution for ϕ\boldsymbol{\phi}. We consider K=2K=2 users, L=2L=2 device pairs, and M=8M=8 antennas at the BS. If not specifically stated, the number of RIS elements is set to 6464. We position the BS and the RIS at the locations (x,y)=(0,0)(x,y)=(0,0) and (x,y)=(100,30)(x,y)=(100,30), respectively. The cellular users and transmit devices are randomly located within a circular area whose center is (x,y)=(200,0)(x,y)=(200,0) with a radius of 2525 m, and we also locate the receive devices randomly also within a circular area centered at (x,y)=(50,0)(x,y)=(50,0) with the same radius. The transmit power of the cellular users and the transmit devices are set to be the same. The noise power is set to 169-169 dBm/Hz and a bandwidth of 11 MHz is assumed. The large-scale fading is modeled as β=β0(d/d0)η\beta=\beta_{0}(d/d_{0})^{-\eta}, where η\eta is the path loss exponent and dd is the distance. We set β0=30\beta_{0}=-30 dB as the path loss at the reference distance d0=1d_{0}=1m. The path loss exponent of the user-RIS, TxD-RIS, RIS-RxD, and RIS-BS channel links is set to 2.22.2. However, the path loss exponent of the user-BS and TxD-BS channels is set to 44 and the path loss exponent of the user-RxD and TxD-RxD channels are set to 55, to model their weak propagation.

In Fig. 1, we show a comparison of the minimum SINR performance and computational complexity as the transmit power changes. It can be seen from Fig. 1(a) that the AO and IC-AO approaches give the same minimum SINRs, which are about 2.52.5 to 33 dB higher than that of the IC approach. However, the computational complexity of the IC approach is much lower than that of AO and IC-AO since the IC approach requires only one iteration while AO and IC-AO require many more iterations as seen in Fig. 1(b). It is also observed that although the AO and IC-AO approaches give the same SINR performance, IC-AO has a lower computational complexity since it requires a smaller number of iterations.

Next, in Fig. 2, we also show a comparison for the minimum SINR performance and computational complexity but with a fixed transmit power of 3030 dBm and the number of RIS elements NN is varied. The minimum SINRs for AO and IC-AO are still about 33-dB higher than that of the IC approach. However, it is interesting that as the number of RIS elements NN increases, the IC-AO approach tends to perform better than AO even though IC-AO still requires a smaller number of iterations. This indicates that IC-AO not only converges faster than AO but also converges to better local solutions.

Finally, we show an SINR performance comparison between the AO and IC-AO approaches in Fig. 3 as the maximum number of iterations changes. It is clear that IC-AO converges much faster than AO and if we set a small maximum number of iterations, the performance of IC-AO will be significantly higher than that of AO. For example, if we set the maximum number of iterations to 55, the IC-AO approach has already nearly converged and its minimum SINRs are about 44-dB, 3.53.5-dB, and 33-dB higher than that of AO for N=80N=80, 6060, 4040, respectively.

Refer to caption
Figure 3: Minimum SINR performance versus maximum number of iterations.

VI Conclusion

This paper has considered a minimum SINR maximization problem in an RIS-aided joint D2D and cellular communication system where the RIS was exploited to simultaneously support the cellular users and the devices. We first presented an AO approach based on the SDR technique to solve the min-max SINR problem. We then derived a representation for the RIS phase shift vector that cancels the interference to the D2D links. Based on the IC representation, we proposed an IC algorithm whose complexity is much lower than that of the AO approach. We also showed that the IC solution can help the AO approach converge faster and achieve better performance. It was also pointed out that for the case of a single D2D pair, the proposed IC approach can be accomplished with limited feedback from the device.

References

  • [1] F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, “A survey of device-to-device communications: Research issues and challenges,” IEEE Commun. Surveys & Tutorials, vol. 20, no. 3, pp. 2133–2168, 2018.
  • [2] Y. Gu, Y. Zhang, M. Pan, and Z. Han, “Matching and cheating in device to device communications underlying cellular networks,” IEEE J. Select. Areas Commun., vol. 33, no. 10, pp. 2156–2166, 2015.
  • [3] J. Wang, Y. Huang, S. Jin, R. Schober, X. You, and C. Zhao, “Resource management for device-to-device communication: A physical layer security perspective,” IEEE J. Select. Areas Commun., vol. 36, no. 4, pp. 946–960, 2018.
  • [4] K. Yang, S. Martin, C. Xing, J. Wu, and R. Fan, “Energy-efficient power control for device-to-device communications,” IEEE J. Select. Areas Commun., vol. 34, no. 12, pp. 3208–3220, 2016.
  • [5] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Sept. 2019.
  • [6] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Select. Areas in Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  • [7] T. Jiang and W. Yu, “Interference nulling using reconfigurable intelligent surface,” IEEE J. Select. Areas Commun., vol. 40, no. 5, pp. 1392–1406, May 2022.
  • [8] F. Wang and A. L. Swindlehurst, “Hybrid RIS-assisted interference mitigation for spectrum sharing,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Rhodes Island, Greece, June 2023.
  • [9] ——, “Applications of absorptive reconfigurable intelligent surfaces in interference mitigation and physical layer security,” IEEE Trans. Wireless Commun. (Early Access), 2023.
  • [10] S. W. H. Shah, A. N. Mian, S. Mumtaz, A. Al-Dulaimi, C.-L. I, and J. Crowcroft, “Statistical QoS analysis of reconfigurable intelligent surface-assisted D2D communication,” IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7343–7358, July 2022.
  • [11] Y. Ni, Y. Liu, J. Wang, Q. Wang, H. Zhao, and H. Zhu, “Performance analysis for RIS-assisted D2D communication under Nakagami-mm fading,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5865–5879, June 2021.
  • [12] Z. Ji, Z. Qin, and C. G. Parini, “Reconfigurable intelligent surface aided cellular networks with device-to-device users,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1808–1819, Mar. 2022.
  • [13] F. Xu, Z. Ye, H. Cao, and Z. Hu, “Sum-rate optimization for IRS-aided D2D communication underlaying cellular networks,” IEEE Access, vol. 10, pp. 48 499–48 509, 2022.
  • [14] A. Sultana and X. Fernando, “Intelligent reflecting surface-aided device-to-device communication: A deep reinforcement learning approach,” Future Internet, vol. 14, no. 9, p. 256, 2022.
  • [15] Y. Chen, B. Ai, H. Zhang, Y. Niu, L. Song, Z. Han, and H. Vincent Poor, “Reconfigurable intelligent surface assisted device-to-device communications,” IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 2792–2804, 2021.
  • [16] Y. Cao, T. Lv, W. Ni, and Z. Lin, “Sum-rate maximization for multi-reconfigurable intelligent surface-assisted device-to-device communications,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7283–7296, Nov. 2021.
  • [17] G. Yang, Y. Liao, Y.-C. Liang, O. Tirkkonen, G. Wang, and X. Zhu, “Reconfigurable intelligent surface empowered device-to-device communication underlaying cellular networks,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7790–7805, Nov. 2021.
  • [18] F. Wang and H. Li, “Joint waveform and receiver design for co-channel hybrid active-passive sensing with timing uncertainty,” IEEE Trans. Signal Process., vol. 68, pp. 466–477, 2020.
  • [19] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.