This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Rigidity of small Delaunay triangulations of the hyperbolic plane

Yanwen Luo Department of Mathematics, Rutgers University, Piscataway, NJ, 08854 [email protected]
Abstract.

We show that a small and regular triangulation of the hyperbolic plane is rigid under the discrete conformal change, extending previous rigidity results on the Euclidean plane. Our result is a discrete analogue of the conformal rigidity of the hyperbolic plane.

1. Introduction

It is well-known that a conformal diffeomorphism between two hyperbolic planes must be an isometry. In this paper we discretize the hyperbolic plane by small geodesic triangulations and prove an analogous discrete rigidity result.

In this paper we use the Poincaré disk model to represent the hyperbolic plane 2\mathbb{H}^{2}, and assume 2=(D,g)\mathbb{H}^{2}=(D,g) where D={z:|z|<1}D=\{z\in\mathbb{C}:|z|<1\} is the unit open disk in the complex plane and

g(z)=4|dz|2(1|z|2)2.g(z)=\frac{4|dz|^{2}}{(1-|z|^{2})^{2}}.

Given two points z1,z2z_{1},z_{2} in DD, d(z1,z2)d(z_{1},z_{2}) denotes the hyperbolic distance between z1,z2z_{1},z_{2}. Assume T=(V,E,F)T=(V,E,F) is an (infinite) simplicial topological triangulation of the hyperbolic plane 2\mathbb{H}^{2}, where VV is the set of vertices, EE is the set of edges and FF is the set of faces. Given a subcomplex T0=(V0,E0,F0)T_{0}=(V_{0},E_{0},F_{0}) of TT, denote |T0||T_{0}| as the underlying space of T0T_{0}. A mapping ϕ:|T0|2\phi:|T_{0}|\rightarrow\mathbb{H}^{2} is called hyperbolic geodesic if

(a) ϕ\phi maps each edge of T0T_{0} to a hyperbolic geodesic arc in 2\mathbb{H}^{2}, and

(b) ϕ\phi maps each triangle of T0T_{0} to a hyperbolic geodesic triangle in 2\mathbb{H}^{2}.
A hyperbolic geodesic mapping ϕ\phi of T0T_{0} naturally induces an edge length l=l(ϕ)E0l=l(\phi)\in\mathbb{R}^{E_{0}} on T0T_{0} by letting lij=d(ϕ(i),ϕ(j))l_{ij}=d(\phi(i),\phi(j)).

Bobenko-Pinkall-Springborn [BPS15] introduced the following notion of hyperbolic discrete conformality, extending Luo’s notion of Euclidean discrete conformality in [Luo04].

Definition 1.1 (Bobenko-Pinkall-Springborn [BPS15]).

Given l,lE0l,l^{\prime}\in\mathbb{R}^{E_{0}}, they are (hyperbolic) discretely conformal if there exists some uV0u\in\mathbb{R}^{V_{0}} such that for any edge ijE0ij\in E_{0}

sinhlij2=e12(ui+uj)sinhlij2.\sinh\frac{l^{\prime}_{ij}}{2}=e^{\frac{1}{2}(u_{i}+u_{j})}\sinh\frac{l_{ij}}{2}.

In this case, uu is a called a discrete conformal factor, and we denote l=uhll^{\prime}=u*_{h}l.

A hyperbolic geodesic mapping ϕ\phi is called Delaunay if ϕ(k)\phi(k^{\prime}) is not in the open circumdisk of ϕ(ijk)\phi(\triangle ijk) for any pair of adjacent triangles ijk\triangle ijk and ijk\triangle ijk^{\prime} in T0T_{0}. The main result of the paper is the following.

Theorem 1.2.

Suppose ϵ>0\epsilon>0 and ϕ,ψ\phi,\psi are Delaunay hyperbolic geodesic mappings of TT, such that

(a) ϕ,ψ\phi,\psi are homeomorphisms from |T||T| to 2\mathbb{H}^{2}, and

(b) l(ϕ),l(ψ)l(\phi),l(\psi) are discretely conformal, and

(c) all the inner angles in ϕ(ijk),ψ(ijk)\phi(\triangle ijk),\psi(\triangle ijk) are at least ϵ\epsilon for all ijkF\triangle ijk\in F, and

(d) |l(ϕ)||l(\phi)|_{\infty} and |l(ψ)||l(\psi)|_{\infty} are both less than ϵ3/8192\epsilon^{3}/8192.
Then l(ϕ)=l(ψ)l(\phi)=l(\psi).

The rigidity of triangulations of the Euclidean plane under Luo’s notion of discrete conformality was studied in [WGS15][DGM18][LSW20][Wu22]. In particular, [Wu22] relates the Euclidean discrete conformality with the hyperbolic conformality. We will use the tools developed in [Wu22] to prove our hyperbolic rigidity results.

1.1. Other Related Works

Such notion of discrete conformality, proposed by Luo [Luo04] for the Euclidean case and then by Bobenko-Pinkall-Springborn [BPS15] for the hyperbolic case, proved to have rich math theory and useful applications. Researchers have been studied various problems such as rigidity, convergence and discrete geometric flows. One may refer to [WGS15][GLW19][WZ20][LSW20][LWZ21a] [DGM22][GLSW18][GGL+18][SWGL15][Spr19][LW19][Wu14]. Other works on deformations of triangle meshes could be found in [LWZ21b][LWZ21c][LWZ22].

1.2. Organization of the Paper

In Section 2 we introduce necessary properties and tools for the proof of the main theorem. The proof of Theorem 1.2 is given in Section 3.

2. Preparations for the Proof

It is elementary to verify that for all x[0,1]x\in[0,1],

x2sinxxsinhxex12x.\frac{x}{2}\leq\sin x\leq x\leq\sinh x\leq e^{x}-1\leq 2x.
Lemma 2.1.

Suppose z1,z2Dz_{1},z_{2}\in D.

(a) If d(z1,z2)1d(z_{1},z_{2})\leq 1 then

|z2z1|1|z2|2d(z1,z2).\frac{|z_{2}-z_{1}|}{1-|z_{2}|}\leq 2d(z_{1},z_{2}).

(b) If |z1||z2||z_{1}|\leq|z_{2}| then

12d(z1,z2)|z2z1|1|z2|.\frac{1}{2}d(z_{1},z_{2})\leq\frac{|z_{2}-z_{1}|}{1-|z_{2}|}.
Proof.

(a) Suppose Γ2\Gamma\subseteq\mathbb{H}^{2} is the hyperbolic circle containing z1,z2z_{1},z_{2} such that d(z1,z2)d(z_{1},z_{2}) is the hyperbolic diameter of Γ\Gamma. By a rotation we may assume that [a,b](1,1)[a,b]\subseteq\mathbb{(}-1,1) is a diameter of Γ\Gamma and b|a|b\geq|a|. Then

1+2d(z1,z2)ed(z1,z2)=ed(a,b)=(1a)(1+b)(1b)(1+a)1a1b=1+ba1b1+|z2z1|1|z2|.1+2d(z_{1},z_{2})\geq e^{d(z_{1},z_{2})}=e^{d(a,b)}=\frac{(1-a)(1+b)}{(1-b)(1+a)}\geq\frac{1-a}{1-b}=1+\frac{b-a}{1-b}\geq 1+\frac{|z_{2}-z_{1}|}{1-|z_{2}|}.

(b) Assume γ(t)=tz2+(1t)z1\gamma(t)=tz_{2}+(1-t)z_{1}. Then

|γ(t)|t|z2|+(1t)|z1||z2||\gamma(t)|\leq t|z_{2}|+(1-t)|z_{1}|\leq|z_{2}|

for all t[0,1]t\in[0,1] and d(z1,z2)d(z_{1},z_{2}) is at most equal to the hyperbolic length of γ([0,1])\gamma([0,1]), which is equal to

012|γ(t)|1|γ(t)|2𝑑t2|z2z1|1|z2|22|z2z1|1|z2|.\int_{0}^{1}\frac{2|\gamma^{\prime}(t)|}{1-|\gamma(t)|^{2}}dt\leq\frac{2|z_{2}-z_{1}|}{1-|z_{2}|^{2}}\leq\frac{2|z_{2}-z_{1}|}{1-|z_{2}|}.

Lemma 2.2.

Suppose z1,z2z_{1},z_{2} are two distinct points in DD with d(z1,z2)1d(z_{1},z_{2})\leq 1. Let γ\gamma and γ\gamma^{\prime} be the hyperbolic and Euclidean geodesic arcs between z1,z2z_{1},z_{2} respectively. Then the intersecting angle between γ,γ\gamma,\gamma^{\prime} is less than 2d(z1,z2).2d(z_{1},z_{2}).

Proof.

If γ\gamma is straight in the Euclidean background geometry, then the intersecting angle is just 0. So we may assume γ\gamma is a Euclidean circular arc orthogonal to {|z|=1}\{|z|=1\}. Denote zz_{*} as the center of the circle containing γ\gamma. Then the intersecting angle of γ,γ\gamma,\gamma^{\prime} is equal to

12z1zz2=sin1|z2z1|2|zz1||z2z1||zz1|<|z2z1|1|z1|2d(z1,z2).\frac{1}{2}\angle z_{1}z_{*}z_{2}=\sin^{-1}\frac{|z_{2}-z_{1}|}{2|z_{*}-z_{1}|}\leq\frac{|z_{2}-z_{1}|}{|z_{*}-z_{1}|}<\frac{|z_{2}-z_{1}|}{1-|z_{1}|}\leq 2d(z_{1},z_{2}).

Here we used the fact that sin1(x)2x\sin^{-1}(x)\leq 2x for all x[0,1]x\in[0,1]. ∎

The following local maximum principle is indeed implied in [Wu22].

Lemma 2.3.

Let iVi\in V and T0=(V0,E0,F0)T_{0}=(V_{0},E_{0},F_{0}) be the 1-ring neighborhood of ii. Suppose ϕ,ψ\phi,\psi are Delaunay hyperbolic geodesic embeddings of T0T_{0}. Assume l(ψ)=uhl(ϕ)l(\psi)=u*_{h}l(\phi), then uih<0u_{i}^{h}<0 implies that

ui>minj:ijEuj.u_{i}>\min_{j:ij\in E}u_{j}.

The hyperbolic discrete conformal change is related with the Euclidean discrete conformal change as follows.

Lemma 2.4 ([Wu22]).

Suppose z1,z2,z1,z2Dz_{1},z_{2},z_{1}^{\prime},z_{2}^{\prime}\in D and u1,u2,u1h,u2hu_{1},u_{2},u_{1}^{h},u_{2}^{h}\in\mathbb{R} are such that

uih=ui+log1|zi|21|zi|2u_{i}^{h}=u_{i}+\log\frac{1-|z_{i}|^{2}}{1-|z_{i}^{\prime}|^{2}}

for i=1,2i=1,2. Then

|z1z2|=e12(u1+u2)|z1z2||z_{1}^{\prime}-z_{2}^{\prime}|=e^{\frac{1}{2}(u_{1}+u_{2})}|z_{1}-z_{2}|

if and only if

(2.1) sinhd(zi,zj)2=e12(uih+ujh)sinhd(zi,zj)2.\sinh\frac{d(z_{i}^{\prime},z_{j}^{\prime})}{2}=e^{\frac{1}{2}(u_{i}^{h}+u_{j}^{h})}\sinh\frac{d(z_{i},z_{j})}{2}.
Corollary 2.5.

Suppose bb\in\mathbb{R} and T0=(V0,E0,F0)T_{0}=(V_{0},E_{0},F_{0}) is a subcomplex of TT. If ψ,ψ~\psi,\tilde{\psi} are both hyperbolic geodesic maps of T0T_{0} such that ψ~(i)=ebψ(i)\tilde{\psi}(i)=e^{b}\psi(i) for all iV0i\in V_{0}, then

l(ψ~)=uhl(ψ)l(\tilde{\psi})=u*_{h}l(\psi)

where

ui=b+log1|ψ(i)|21|ψ~(i)|2.u_{i}=b+\log\frac{1-|\psi(i)|^{2}}{1-|\tilde{\psi}(i)|^{2}}.

3. Proof of Theorem 1.2

Assume l(ψ)=uhl(ϕ)l(\psi)=u*_{h}l(\phi). We will prove ui0u_{i}\geq 0 for all iVi\in V, and then by symmetry ui0u_{i}\leq 0 for all iVi\in V and we are done. Let us prove by contradiction. Suppose aVa\in V and ua<0u_{a}<0. Denote zi=ϕ(i)z_{i}=\phi(i) and zi=ψ(i)z_{i}^{\prime}=\psi(i) for all iVi\in V. Without loss of generality, we may assume za=za=0z_{a}=z_{a}^{\prime}=0.

Notice that 2d(zi,zj)=lij(ψ)ϵ/42d(z_{i}^{\prime},z_{j}^{\prime})=l_{ij}(\psi)\leq\epsilon/4 for all ijEij\in E. By Lemma 2.2, there exists a map ψE:|T|D\psi_{E}:|T|\rightarrow D such that

(a) ψE(i)=zi\psi_{E}(i)=z_{i}^{\prime} for all iVi\in V, and

(b) ψE(ijk)\psi_{E}(\triangle ijk) is a Euclidean triangle in DD for all ijkF\triangle ijk\in F, and

(c) ψE\psi_{E} is an embedding restricted on the 1-ring neighborhood of jj for any jVj\in V, and

(d) all the inner angles in ψE(ijk)\psi_{E}(\triangle ijk) are at least ϵ/2\epsilon/2 for all ijkF\triangle ijk\in F, and

(e) ψEψ1\psi_{E}\circ\psi^{-1} is topologically positively oriented on ψ(ijk)\psi(\triangle ijk) for all ijkF\triangle ijk\in F.

Pick b(0,ua)(0,1/10000)b\in(0,-u_{a})\cap(0,1/10000) and denote ψ~E=ebψE\tilde{\psi}_{E}=e^{b}\psi_{E}. Denote zi′′=ψ~E(i)=ebziz_{i}^{\prime\prime}=\tilde{\psi}_{E}(i)=e^{b}z_{i}^{\prime} for all iVi\in V. Given z1,z2z_{1},z_{2}\in\mathbb{C}, denote d(z1,z2)=d(z_{1},z_{2})=\infty if z1Dz_{1}\notin D or z2Dz_{2}\notin D. Let

E0={ijE:d(zi′′,zj′′)ϵ16}E_{0}=\{ij\in E:d(z_{i}^{\prime\prime},z_{j}^{\prime\prime})\leq\frac{\epsilon}{16}\}

and

V0={iV:ie for some eE0}V_{0}=\{i\in V:i\in e\text{ for some }e\in E_{0}\}

and

F0={ijkF:ij,jk,ikE0}.F_{0}=\{\triangle ijk\in F:ij,jk,ik\in E_{0}\}.

Then T0=(V0,E0,F0)T_{0}=(V_{0},E_{0},F_{0}) is a finite subcomplex of TT, and it is elementary to verify that aV0a\in V_{0}. By Lemma 2.2, there exists a hyperbolic Delaunay geodesic map ψ~\tilde{\psi} from T0T_{0} to DD such that

(a) ψ~(i)=zi′′\tilde{\psi}(i)=z_{i}^{\prime\prime}, and

(b) ψ~\tilde{\psi} is an embedding restricted on the 1-ring neighborhood of ii if ijE0ij\in E_{0} for all neighbors jj of ii.

Denote l=l(ϕ)l=l(\phi) and l=l(ψ~)l^{\prime}=l(\tilde{\psi}) and by Corollary 2.5 we have

l=u~hll^{\prime}=\tilde{u}*_{h}l

on T0T_{0} where

u~i=ui+b+log1|zi|21|zi′′|2.\tilde{u}_{i}=u_{i}+b+\log\frac{1-|z_{i}^{\prime}|^{2}}{1-|z_{i}^{\prime\prime}|^{2}}.

Then u~a=ua+b<0\tilde{u}_{a}=u_{a}+b<0. Let iV0i\in V_{0} be such that

ui=minjV0uj<0.u_{i}=\min_{j\in V_{0}}u_{j}<0.

Then by Lemma 2.3, there exists an edge ikEik\in E not in E0E_{0}. Furthermore, there exists a triangle ijk\triangle ijk such that ijE0ij\in E_{0} and ikE0ik\notin E_{0}.

Then

lijϵ16,l^{\prime}_{ij}\leq\frac{\epsilon}{16},

and by Lemma 2.1

|zj′′zi′′|1|zj′′|ϵ8,\frac{|z_{j}^{\prime\prime}-z_{i}^{\prime\prime}|}{1-|z_{j}^{\prime\prime}|}\leq\frac{\epsilon}{8},

and by the Euclidean sine law

|zk′′zj′′|1|zj′′|ϵ8sin(ϵ/2)ϵ8(ϵ/2)/2=12,\frac{|z_{k}^{\prime\prime}-z_{j}^{\prime\prime}|}{1-|z_{j}^{\prime\prime}|}\leq\frac{\epsilon}{8\sin(\epsilon/2)}\leq\frac{\epsilon}{8(\epsilon/2)/2}=\frac{1}{2},

and

1|zk′′|1|zj′′||zk′′zj′′|1|zj′′|12(1|zj′′|)=12(1|zj′′|),1-|z_{k}^{\prime\prime}|\geq 1-|z_{j}^{\prime\prime}|-|z_{k}^{\prime\prime}-z_{j}^{\prime\prime}|\geq 1-|z_{j}^{\prime\prime}|-\frac{1}{2}(1-|z_{j}^{\prime\prime}|)=\frac{1}{2}(1-|z_{j}^{\prime\prime}|),

and by Lemma 2.1 and the Euclidean sine law

ljk2|zk′′zj′′|12(1|zj′′|)4|zj′′zi′′|(1|zj′′|)sin(ϵ/2)16ϵ|zj′′zi′′|1|zj′′|32ϵlij2.l^{\prime}_{jk}\leq\frac{2|z_{k}^{\prime\prime}-z_{j}^{\prime\prime}|}{\frac{1}{2}(1-|z_{j}^{\prime\prime}|)}\leq\frac{4|z_{j}^{\prime\prime}-z_{i}^{\prime\prime}|}{(1-|z_{j}^{\prime\prime}|)\sin(\epsilon/2)}\leq\frac{16}{\epsilon}\cdot\frac{|z_{j}^{\prime\prime}-z_{i}^{\prime\prime}|}{1-|z_{j}^{\prime\prime}|}\leq\frac{32}{\epsilon}l^{\prime}_{ij}\leq 2.

For the same reason lik2l^{\prime}_{ik}\leq 2. On the other hand likϵ/16l^{\prime}_{ik}\geq\epsilon/16 since ikE0ik\notin E_{0}. Then we can derive a contracdiction using the hyperbolic sine law as the following.

1>eu~i=(sinhlij2/sinhlij2)(sinhlik2/sinhlik2)sinhljk2/sinhljk2=sinhlik2sinhlij2sinhlij2sinhljk2sinhljk2sinhlik21>e^{\tilde{u}_{i}}=\frac{(\sinh\frac{l_{ij}^{\prime}}{2}/\sinh\frac{l_{ij}}{2})\cdot(\sinh\frac{l_{ik}^{\prime}}{2}/\sinh\frac{l_{ik}}{2})}{\sinh\frac{l_{jk}^{\prime}}{2}/\sinh\frac{l_{jk}}{2}}=\frac{\sinh\frac{l_{ik}^{\prime}}{2}}{\sinh\frac{l_{ij}}{2}}\cdot\frac{\sinh\frac{l_{ij}^{\prime}}{2}}{\sinh\frac{l_{jk}^{\prime}}{2}}\cdot\frac{\sinh\frac{l_{jk}}{2}}{\sinh\frac{l_{ik}}{2}}
18liklijlijljksinhljksinhlik18ϵ/16lijϵ32sinϵϵ38192lij1.\geq\frac{1}{8}\cdot\frac{l_{ik}^{\prime}}{l_{ij}}\cdot\frac{l_{ij}^{\prime}}{l^{\prime}_{jk}}\cdot\frac{\sinh l_{jk}}{\sinh{l_{ik}}}\geq\frac{1}{8}\cdot\frac{\epsilon/16}{l_{ij}}\cdot\frac{\epsilon}{32}\cdot\sin\epsilon\geq\frac{\epsilon^{3}}{8192l_{ij}}\geq 1.

References

  • [BPS15] Alexander I Bobenko, Ulrich Pinkall, and Boris A Springborn. Discrete conformal maps and ideal hyperbolic polyhedra. Geometry & Topology, 19(4):2155–2215, 2015.
  • [DGM18] Song Dai, Huabin Ge, and Shiguang Ma. Rigidity of the hexagonal delaunay triangulated plane. arXiv preprint arXiv:1809.05882, 2018.
  • [DGM22] Song Dai, Huabin Ge, and Shiguang Ma. Rigidity of the hexagonal delaunay triangulated plane. Peking Mathematical Journal, 5(1):1–20, 2022.
  • [GGL+18] Xianfeng Gu, Ren Guo, Feng Luo, Jian Sun, Tianqi Wu, et al. A discrete uniformization theorem for polyhedral surfaces ii. Journal of differential geometry, 109(3):431–466, 2018.
  • [GLSW18] Xianfeng David Gu, Feng Luo, Jian Sun, and Tianqi Wu. A discrete uniformization theorem for polyhedral surfaces. Journal of differential geometry, 109(2):223–256, 2018.
  • [GLW19] David Gu, Feng Luo, and Tianqi Wu. Convergence of discrete conformal geometry and computation of uniformization maps. Asian Journal of Mathematics, 23(1):21–34, 2019.
  • [LSW20] Feng Luo, Jian Sun, and Tianqi Wu. Discrete conformal geometry of polyhedral surfaces and its convergence. arXiv preprint arXiv:2009.12706, 2020.
  • [Luo04] Feng Luo. Combinatorial yamabe flow on surfaces. Communications in Contemporary Mathematics, 6(05):765–780, 2004.
  • [LW19] Feng Luo and Tianqi Wu. Koebe conjecture and the weyl problem for convex surfaces in hyperbolic 3-space. arXiv preprint arXiv:1910.08001, 2019.
  • [LWZ21a] Yanwen Luo, Tianqi Wu, and Xiaoping Zhu. The convergence of discrete uniformizations for genus zero surfaces. arXiv preprint arXiv:2110.08208, 2021.
  • [LWZ21b] Yanwen Luo, Tianqi Wu, and Xiaoping Zhu. The deformation space of geodesic triangulations and generalized tutte’s embedding theorem. arXiv preprint arXiv:2105.00612, 2021.
  • [LWZ21c] Yanwen Luo, Tianqi Wu, and Xiaoping Zhu. The deformation spaces of geodesic triangulations of flat tori. arXiv preprint arXiv:2107.05159, 2021.
  • [LWZ22] Yanwen Luo, Tianqi Wu, and Xiaoping Zhu. The deformation space of delaunay triangulations of the sphere. arXiv preprint arXiv:2202.06402, 2022.
  • [Spr19] Boris Springborn. Ideal hyperbolic polyhedra and discrete uniformization. Discrete & Computational Geometry, pages 1–46, 2019.
  • [SWGL15] Jian Sun, Tianqi Wu, Xianfeng Gu, and Feng Luo. Discrete conformal deformation: algorithm and experiments. SIAM Journal on Imaging Sciences, 8(3):1421–1456, 2015.
  • [WGS15] Tianqi Wu, Xianfeng Gu, and Jian Sun. Rigidity of infinite hexagonal triangulation of the plane. Transactions of the American Mathematical Society, 367(9):6539–6555, 2015.
  • [Wu14] Tianqi Wu. Finiteness of switches in discrete Yamabe flow. PhD thesis, Master Thesis, Tsinghua University, Beijing, 2014.
  • [Wu22] Tianqi Wu. Rigidity of acute triangulations of the plane. arXiv preprint arXiv:2208.00580, 2022.
  • [WZ20] Tianqi Wu and Xiaoping Zhu. The convergence of discrete uniformizations for closed surfaces, 2020.