This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Riemann-Hilbert problem associated with the fourth-order dispersive nonlinear Schrödinger equation in optics and magnetic mechanics

Beibei Hu Ling Zhang Qinghong Li Ning Zhang School of Mathematics and Finance, Chuzhou University, Anhui, 239000, China Department of Basical Courses, Shandong University of Science and Technology, Taian 271019, China
Abstract

In this paper, we utilize Fokas method to investigate the initial-boundary value problems (IBVPs) of the fourth-order dispersive nonlinear Schrödinger (FODNLS) equation on the half-line, which can simulate the nonlinear transmission and interaction of ultrashort pulses in the high-speed optical fiber transmission system, and describe the nonlinear spin excitation phenomenon of one-dimensional Heisenberg ferromagnetic chain with eight poles and dipole interaction. By discussing the eigenfunctions of Lax pair of FODNLS equation and the analysis and symmetry of the scattering matrix, the IBVPs of FODNLS equation is expressed as a matrix Riemann-Hilbert (RH) problem form. Then one can get the potential function solution u(x,t)u(x,t) of the FODNLS equation by solving this matrix RH problem. In addition, we also obtained that some spectral functions admits a key global relationship.

keywords:
Riemann-Hilbert problem, fourth-order dispersive nonlinear Schrödinger equation, initial-boundary value problems, Fokas method.
 
AMS Subject Classification: 35G31, 35Q15, 35Q55, 37K15

1 Introduction

For a long time, finding a method to solve integrable equations has been a very important research topic in theory and application. The display of integrable equations with exact solutions and some special solutions can provide important guarantees for the analysis of its various properties. However, there is no unified method to solve all integrable equations. With the in-depth study of integrable systems by scholars, a series of methods to solve the classic integrable development equation have emerged. For example, inverse scattering method[1], Hirota method[2], Bäcklund transform[3], Darboux transform(DT)[4] and so on. Among them, the IST method is the main analytical method for the exact solution of nonlinear integrable systems. However, due to the IST method is suitable for the limitations of the initial value conditions at infinity, and it is almost only used to study the pure initial value problem of integrable equations, many real-world phenomena and some studies in the fluctuation process not only need to consider the initial value conditions, but the boundary value conditions also need to be considered. Naturally, people need to replace the initial value problems with the initial-boundary value problems(IBVPs) in the research process.

In 1997, Fokas proposed a unified transformation method from the initial value problem to the IBVPs based on the IST method idea, which is called the Fokas method. This method can be investigated IBVPs of partial differential equation[5], and in the past 22 years, IBVPs of some classical integrable equations to be discussed via the Fokas method. For example, the modified Korteweg-de Vries(MKdV) equation[6], the nonlinear Schrödinger(NLS) equation[7], the Kaup-Newell equation[8], the stationary axisymmetric Einstein equations[9], the Ablowitz-Ladik system[10], the Kundu-Eckhaus equation[11], the Hirota equation[12, 13]. In 2012, Lenells extended the Fokas method to the integrable equation with higher-order matrix spectrum, he proposed a more general unified transformation approach to solving IBVPs of integrable model[14] and using the unified transformation approach to analyzed IBVPs of Degasperis-Procesi equation[15]. After that, more and more individuals began to study the IBVPs of integrable model with higher-order matrix spectral[16, 17, 18, 19, 20, 21, 22, 23, 24]. The authors have also done a slice of works on the application of the Fokas method to an integrable equation with higher-order matrix Lax pairs[25, 26, 27].

In this paper, our work is related to the fourth-order dispersive nonlinear Schrödinger(FODNLS) equation[28, 29] expressed as:

iut+α1uxx+α2u|u|2+ε212(α3uxxxx+α4|u|2uxx+α5u2u¯xx+α6ux2u¯+α7u|ux|2+α8|u|4u)=0,\displaystyle iu_{t}+\alpha_{1}u_{xx}+\alpha_{2}u|u|^{2}+\frac{\varepsilon^{2}}{12}(\alpha_{3}u_{xxxx}+\alpha_{4}|u|^{2}u_{xx}+\alpha_{5}u^{2}\overline{u}_{xx}+\alpha_{6}u_{x}^{2}\overline{u}+\alpha_{7}u|u_{x}|^{2}+\alpha_{8}|u|^{4}u)=0, (1.1)

where uu represents the amplitude of the slowly varying envelope of the wave, xx and tt are the normalized space and time variables, ε2\varepsilon^{2} is a dimensionless small parameter representing the high-order linear and nonlinear strength, and αj(j=1,2,,8)\alpha_{j}(j=1,2,\ldots,8) is the real parameter. The Eq.(1.1) is mainly derived from fiber optics and magnetism. On the one hand, in optics, Eq.(1.1) can simulate the nonlinear propagation and interaction of ultrashort pulses in high-speed fiber-optic transmission systems[30]. On the other hand, in magnetic mechanics, Eq.(1.1) can be used to describe the nonlinear spin excitation of a one-dimensional Heisenberg ferromagnetic chain with octuple and dipole interactions[31]. In particular, when the parameter value is α1=α3=1,α2=α5=2,α4=8,α6=α8=6,α7=4\alpha_{1}=\alpha_{3}=1,\alpha_{2}=\alpha_{5}=2,\alpha_{4}=8,\alpha_{6}=\alpha_{8}=6,\alpha_{7}=4, and let γ=ε212\gamma=\frac{\varepsilon^{2}}{12} the Eq.(1.1) becomes to

iut+uxx+2u|u|2+γ(uxxxx+8|u|2uxx+2u2u¯xx+6ux2u¯+4u|ux|2+6|u|4u)=0,\displaystyle iu_{t}+u_{xx}+2u|u|^{2}+\gamma(u_{xxxx}+8|u|^{2}u_{xx}+2u^{2}\overline{u}_{xx}+6u_{x}^{2}\overline{u}+4u|u_{x}|^{2}+6|u|^{4}u)=0, (1.2)

which is an integrable model, and many properties have been widely studied, such as, the Lax pair, the infinite conservation laws[32], the breather solution, and the higher-order rogue wave solution based on the DT method[33, 34, 35], the multi-soliton solutions by using Riemann-Hilbert(RH) approach[36], the dark and bright solitary waves and rogue wave solution by using phase plane analysis method[37], the bilinear form and the N-soliton solution via the Hirota approach[38, 39]. However, as far as we know, the FODNLS (1.2) on the hale-line has not been studied, and in the following work, we utilize Fokas method to discuss the IBVPs of the FODNLS equation(1.2) on the half-line domain Ω={(x,t):0<z<,0<t<T}\Omega=\{(x,t):0<z<\infty,0<t<T\}.

The paper is organized as follows. In section 2, one can introducing eigenfunction to spectral analysis of the Lax pair. In section 3, a slice of key functions y(ζ),z(ζ),Y(ζ),Z(ζ)y(\zeta),z(\zeta),Y(\zeta),Z(\zeta) are further discussed. In section 4, an important theorem is proposed. And the last section is devoted to conclusions.

2 The spectral analysis

Base on Ablowitz-Kaup-Newell-Segur scheme, the Lax pair of Eq.(1.2) is expressed as[32, 33, 34, 35, 36]

Ψx=(iζΛ+P)Ψ,\displaystyle\Psi_{x}=(-i\zeta\Lambda+P)\Psi, (2.1a)
Ψt=[(8iγζ42iζ2)Λ8γζ3P4iγζ2A12ζA2+iA3]Ψ,\displaystyle\Psi_{t}=[(8i\gamma\zeta^{4}-2i\zeta^{2})\Lambda-8\gamma\zeta^{3}P-4i\gamma\zeta^{2}A_{1}-2\zeta A_{2}+iA_{3}]\Psi, (2.1b)

where ζ\zeta is a complex spectral parameter, Ψ=(Ψ1,Ψ2)T\Psi=(\Psi_{1},\Psi_{2})^{T} is the vector eigenfunction, the 2×22\times 2 matrices Λ=diag{1,1}\Lambda=diag\{1,-1\}, and P,A,BP,A,B and CC are defined by

P=(0uu¯0),A1=(|u|2uxu¯x|u|2),A2=(γ(uu¯xu¯ux)γuxx(2γ|u|2+1)uγu¯xx(2γ|u|2+1)u¯γ(uu¯xu¯ux)),A3=(γ(3|u|4|ux|2+u¯uxx+uu¯xx)+|u|2γuxxx+(6γ|u|2+1)uxγu¯xxx+(6γ|u|2+1)u¯xγ(3|u|4|ux|2+u¯uxx+uu¯xx)+|u|2).\displaystyle\begin{array}[]{l}P=\left(\begin{array}[]{cc}0&u\\ -\overline{u}&0\end{array}\right),A_{1}=\left(\begin{array}[]{cc}|u|^{2}&u_{x}\\ \overline{u}_{x}&-|u|^{2}\end{array}\right),A_{2}=\left(\begin{array}[]{cc}\gamma(u\overline{u}_{x}-\overline{u}u_{x})&-\gamma u_{xx}-(2\gamma|u|^{2}+1)u\\ -\gamma\overline{u}_{xx}-(2\gamma|u|^{2}+1)\overline{u}&-\gamma(u\overline{u}_{x}-\overline{u}u_{x})\end{array}\right),\\ A_{3}=\left(\begin{array}[]{cc}\gamma(3|u|^{4}-|u_{x}|^{2}+\overline{u}u_{xx}+u\overline{u}_{xx})+|u|^{2}&\gamma u_{xxx}+(6\gamma|u|^{2}+1)u_{x}\\ \gamma\overline{u}_{xxx}+(6\gamma|u|^{2}+1)\overline{u}_{x}&-\gamma(3|u|^{4}-|u_{x}|^{2}+\overline{u}u_{xx}+u\overline{u}_{xx})+|u|^{2}\end{array}\right).\end{array} (2.12)

2.1 The exact one-form

The Lax pair equations (2.1a)-(2.1b) are rewritten as follows

Ψx+iζΛΨ=P(x,t,ζ)Ψ,\displaystyle\Psi_{x}+i\zeta\Lambda\Psi=P(x,t,\zeta)\Psi, (2.13a)
Ψt(8iγζ42iζ2)ΛΨ=R(x,t,ζ)Ψ,\displaystyle\Psi_{t}-(8i\gamma\zeta^{4}-2i\zeta^{2})\Lambda\Psi=R(x,t,\zeta)\Psi, (2.13b)

where

R(x,t,ζ)=8γζ3P4iγζ2A12ζA2+iA3\displaystyle R(x,t,\zeta)=-8\gamma\zeta^{3}P-4i\gamma\zeta^{2}A_{1}-2\zeta A_{2}+iA_{3}
=8γζ3P+4iγζ2(P2+Px)Λ+2γζ(PPxPxPPxx+2P3)Λ2ζPΛ\displaystyle\quad=-8\gamma\zeta^{3}P+4i\gamma\zeta^{2}(P^{2}+P_{x})\Lambda+2\gamma\zeta(PP_{x}-P_{x}P-P_{xx}+2P^{3})\Lambda-2\zeta P\Lambda
+iγ(3P4+Px2PxxPPPxxPxxx+6P2PxPx)ΛiP2.\displaystyle\qquad+i\gamma(3P^{4}+P_{x}^{2}-P_{xx}P-PP_{xx}-P_{xxx}+6P^{2}P_{x}-P_{x})\Lambda-iP^{2}.

For the convenience of later calculation, we record θ=(8γζ42ζ2)\theta=(8\gamma\zeta^{4}-2\zeta^{2}) and introduce the following function transformation

Ψ(x,t,ζ)=G(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ,0<x<,0<t<T.\displaystyle\Psi(x,t,\zeta)=G(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\Lambda},0<x<\infty,0<t<T. (2.14)

Then, we get

Gx+iζ[Λ,G]=PG,\displaystyle G_{x}+i\zeta[\Lambda,G]=PG, (2.15a)
Gti(8γζ42ζ2)[Λ,G]=RG,\displaystyle G_{t}-i(8\gamma\zeta^{4}-2\zeta^{2})[\Lambda,G]=RG, (2.15b)

which can be expressed as the following full differential

d(ei[ζx(8γζ42ζ2)t]Λ^G(x,t,ζ))=F(x,t,ζ),\displaystyle d(e^{i[\zeta x-(8\gamma\zeta^{4}-2\zeta^{2})t]\hat{\Lambda}}G(x,t,\zeta))=F(x,t,\zeta), (2.16)

where exact one-form F(x,t,ζ)F(x,t,\zeta) is

F(x,t,ζ)=ei[ζx(8γζ42ζ2)t]Λ^(P(x,t,ζ)dx+R(x,t,ζ)dt)G(x,t,ζ),\displaystyle F(x,t,\zeta)=e^{i[\zeta x-(8\gamma\zeta^{4}-2\zeta^{2})t]\hat{\Lambda}}(P(x,t,\zeta)dx+R(x,t,\zeta)dt)G(x,t,\zeta), (2.17)

and Λ^\hat{\Lambda} represents a matrix operator acting on a second order matrix Λ\Lambda, i.e. Λ^P=[Λ,P]\hat{\Lambda}P=[\Lambda,P] and eΛ^P=eΛPeΛe^{\hat{\Lambda}}P=e^{\Lambda}Pe^{-\Lambda}.

2.2 The analytic and bounded eigenfunctions Gj(x,t,ζ)sG_{j}(x,t,\zeta)^{\prime}s

We assume that u(x,t)𝒮u(x,t)\in\mathcal{S} with (x,t)Ω={(x,t):0<z<,0<t<T}(x,t)\in\Omega=\{(x,t):0<z<\infty,0<t<T\}, and use the integral equation containing the exact one-form to define eigenfunctions {Gj(x,t,ζ)}13\{G_{j}(x,t,\zeta)\}_{1}^{3} of Eq.(2.15a)-(2.15b) as follows

Gj(x,t,ζ)=I+(xj,tj)(x,t)ei[(8γζ42ζ2)tζx]Λ^F(ξ,τ,ζ),\displaystyle G_{j}(x,t,\zeta)=\mathrm{I}+\int_{(x_{j},t_{j})}^{(x,t)}e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}F(\xi,\tau,\zeta), (2.18)

where the integration path is (xj,tj)(x,t)(x_{j},t_{j})\rightarrow(x,t) which is a directed smooth curve. It follows from the closed of the exact one-form that the integral of Eq.(1.2) is independent of the integration path. Therefore, one can choose three integral curve are all parallel to the axis shown in Figure 1.

Refer to caption
Figure 1: The smooth curve γ1,γ2,γ3\gamma_{1},\gamma_{2},\gamma_{3} in the (x,t)(x,t)-plan

We might as well take (x1,t1)=(0,0),(x2,t2)=(0,T)(x_{1},t_{1})=(0,0),(x_{2},t_{2})=(0,T), and (x3,t3)=(,t)(x_{3},t_{3})=(\infty,t), then we have

G1(x,t,ζ)=I+0xeiζ(xξ)Λ^(PG1)(ξ,t,ζ)𝑑ξ\displaystyle G_{1}(x,t,\zeta)=\mathrm{I}+\int_{0}^{x}e^{-i\zeta(x-\xi)\hat{\Lambda}}(PG_{1})(\xi,t,\zeta)d\xi
+eiζxΛ^0tei(8γζ42ζ2)(tτ)Λ^(R1G1)(0,τ,Λ)𝑑τ,\displaystyle\qquad\qquad\qquad+e^{-i\zeta x\hat{\Lambda}}\int_{0}^{t}e^{i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)\hat{\Lambda}}(R_{1}G_{1})(0,\tau,\Lambda)d\tau, (2.19a)
G2(x,t,ζ)=I+0xeiζ(xξ)Λ^(PG2)(ξ,t,ζ)𝑑ξ\displaystyle G_{2}(x,t,\zeta)=\mathrm{I}+\int_{0}^{x}e^{-i\zeta(x-\xi)\hat{\Lambda}}(PG_{2})(\xi,t,\zeta)d\xi
eiζxΛ^tTei(8γζ42ζ2)(tτ)Λ^(R1G2)(0,τ,Λ)𝑑τ,\displaystyle\qquad\qquad\qquad-e^{-i\zeta x\hat{\Lambda}}\int_{t}^{T}e^{i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)\hat{\Lambda}}(R_{1}G_{2})(0,\tau,\Lambda)d\tau, (2.19b)
G3(x,t,ζ)=Ixeiζ(xξ)Λ^(PG3)(ξ,t,ζ)𝑑ξ.\displaystyle G_{3}(x,t,\zeta)=\mathrm{I}-\int_{x}^{\infty}e^{-i\zeta(x-\xi)\hat{\Lambda}}(PG_{3})(\xi,t,\zeta)d\xi. (2.19c)

On the one hand, any point (x,t)(x,t) on the integral curve {γj}13\{\gamma_{j}\}_{1}^{3} satisfies the following inequalities

γ1:xξ0,tτ0,\displaystyle\gamma_{1}:x-\xi\geq 0,t-\tau\geq 0, (2.20a)
γ2:xξ0,tτ0,\displaystyle\gamma_{2}:x-\xi\geq 0,t-\tau\leq 0, (2.20b)
γ3:xξ0.\displaystyle\gamma_{3}:x-\xi\leq 0. (2.20c)

On the other hand, it follows from the Eq.(2.18) that the first column of Gj(x,t,ζ)G_{j}(x,t,\zeta) contains e2iζ(xξ)2i(8γζ42ζ2)(tτ)e^{2i\zeta(x-\xi)-2i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)}. Thus, for ζC\zeta\in\mathrm{C}, we can calculate the bounded analytic region of [Gj(x,t,ζ)]1[G_{j}(x,t,\zeta)]_{1}, that is ζ\zeta must satisfies

[G1]1(x,t,ζ):{Imζ0}{Im(8γζ42ζ2)0},\displaystyle{[G_{1}]}_{1}(x,t,\zeta):\{\mathrm{Im}\zeta\geq 0\}\cap\{\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\geq 0\}, (2.21a)
[G2]1(x,t,ζ):{Imζ0}{Im(8γζ42ζ2)0},\displaystyle{[G_{2}]}_{1}(x,t,\zeta):\{\mathrm{Im}\zeta\geq 0\}\cap\{\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\leq 0\}, (2.21b)
[G3]1(x,t,ζ):{Imζ0}.\displaystyle{[G_{3}]}_{1}(x,t,\zeta):\{\mathrm{Im}\zeta\leq 0\}. (2.21c)

Similarly, it follows from the Eq.(2.18) that the second column of Gj(x,t,ζ)G_{j}(x,t,\zeta) contains e2iζ(xξ)+2i(8γζ42ζ2)(tτ)e^{-2i\zeta(x-\xi)+2i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)}. Then, for ζC\zeta\in\mathrm{C}, we can also calculate the bounded analytic region of the eigenfunctions [Gj(x,t,ζ)]2[G_{j}(x,t,\zeta)]_{2}, that means ζ\zeta must satisfies

[G1]2(x,t,ζ):{Imζ0}{Im(8γζ42ζ2)0},\displaystyle{[G_{1}]}_{2}(x,t,\zeta):\{\mathrm{Im}\zeta\leq 0\}\cap\{\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\leq 0\}, (2.22a)
[G2]2(x,t,ζ):{Imζ0}{Im(8γζ42ζ2)0},\displaystyle{[G_{2}]}_{2}(x,t,\zeta):\{\mathrm{Im}\zeta\leq 0\}\cap\{\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\geq 0\}, (2.22b)
[G3]2(x,t,ζ):{Imζ0}.\displaystyle{[G_{3}]}_{2}(x,t,\zeta):\{\mathrm{Im}\zeta\geq 0\}. (2.22c)

where the [Gj]k(x,t,ζ)[G_{j}]_{k}(x,t,\zeta) denotes the kk-columns of Gj(x,t,ζ)G_{j}(x,t,\zeta). After calculation, we get the bounded analytic region of Gj(x,t,ζ)G_{j}(x,t,\zeta) as follows

G1(x,t,ζ)=([G1]1L1L3(x,t,ζ),[G1]2L6L8(x,t,ζ)),\displaystyle G_{1}(x,t,\zeta)=([G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta),[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)), (2.23a)
G2(x,t,ζ)=([G2]1L2L4(x,t,ζ),[G2]2L5L7(x,t,ζ)),\displaystyle G_{2}(x,t,\zeta)=([G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta),[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta)), (2.23b)
G3(x,t,ζ)=([G3]1L5L6L7L8(x,t,ζ),[G3]2L1L2L3L4(x,t,ζ)),\displaystyle G_{3}(x,t,\zeta)=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta)), (2.23c)

where GjLi(x,t,ζ)G_{j}^{L_{i}}(x,t,\zeta) represents the bounded analytic region of {Gj(x,t,ζ)}13\{G_{j}(x,t,\zeta)\}_{1}^{3} is ζLi,i=1,2,,8\zeta\in L_{i},i=1,2,\ldots,8, and Li,i=1,2,,8L_{i},i=1,2,\ldots,8 are shown in Figure 2.

Refer to caption
Figure 2: The areas Li,i=1,,8L_{i},i=1,\ldots,8 division on the complex ζ\zeta plane

To establish the RH problem of the FODNLS equation (1.2), we must also define two special functions ψ(ζ)\psi(\zeta) and ϕ(ζ)\phi(\zeta) with the eigenfunction {Gj(x,t,ζ)}13\{G_{j}(x,t,\zeta)\}_{1}^{3} as follows

G3(x,t,ζ)=G1(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ^ψ(ζ),\displaystyle G_{3}(x,t,\zeta)=G_{1}(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}\psi(\zeta), (2.24a)
G2(x,t,ζ)=G1(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ^ϕ(ζ).\displaystyle G_{2}(x,t,\zeta)=G_{1}(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}\phi(\zeta). (2.24b)

Set (x,t)=(0,0)(x,t)=(0,0) in Eq.(2.24a), and let (x,t)=(0,T)(x,t)=(0,T) in Eq.(2.24b), we obtain the following relationship

ψ(ζ)=G3(0,0,ζ),ϕ(ζ)=G2(0,0,ζ)=[ei(8γζ42ζ2)TΛ^G1(0,T,ζ)]1,\displaystyle\psi(\zeta)=G_{3}(0,0,\zeta),\,\,\phi(\zeta)=G_{2}(0,0,\zeta)=[e^{i(8\gamma\zeta^{4}-2\zeta^{2})T\hat{\Lambda}}G_{1}(0,T,\zeta)]^{-1}, (2.25)

then, we get

G3(x,t,ζ)=G1(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ^G3(0,0,ζ),\displaystyle G_{3}(x,t,\zeta)=G_{1}(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}G_{3}(0,0,\zeta), (2.26)

and

G2(x,t,ζ)=G1(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ^[ei(8γζ42ζ2)TΛ^G1(0,T,ζ)]1,\displaystyle G_{2}(x,t,\zeta)=G_{1}(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}[e^{-i(8\gamma\zeta^{4}-2\zeta^{2})T\hat{\Lambda}}G_{1}(0,T,\zeta)]^{-1}, (2.27)

it follows from the Eqs.(2.26)-(2.27) that

G2(x,t,ζ)=G3(x,t,ζ)ei[(8γζ42ζ2)tζx]Λ^(ψ(ζ))1ϕ(ζ).\displaystyle G_{2}(x,t,\zeta)=G_{3}(x,t,\zeta)e^{i[(8\gamma\zeta^{4}-2\zeta^{2})t-\zeta x]\hat{\Lambda}}(\psi(\zeta))^{-1}\phi(\zeta). (2.28)

Particularly, in the eigenfunction Gj(x,t,ζ),j=1,2G_{j}(x,t,\zeta),j=1,2, when x=0x=0, we have

G1(0,t,ζ)=([G1]1L1L3L5L7(0,t,ζ),[G1]2L2L4L6L8(0,t,ζ))\displaystyle G_{1}(0,t,\zeta)=([G_{1}]_{1}^{L_{1}\cup L_{3}\cup L_{5}\cup L_{7}}(0,t,\zeta),[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta))
=I+0tei(8γζ42ζ2)(tτ)Λ^(RG1)(0,τ,ζ)𝑑τ,\displaystyle\qquad\qquad\;=\mathrm{I}+\int_{0}^{t}e^{i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)\hat{\Lambda}}(RG_{1})(0,\tau,\zeta)d\tau, (2.29a)
G2(0,t,ζ)=([G2]1L2L4L6L8(0,t,ζ),[G2]2L1L3L5L7(0,t,ζ))\displaystyle G_{2}(0,t,\zeta)=([G_{2}]_{1}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta),[G_{2}]_{2}^{L_{1}\cup L_{3}\cup L_{5}\cup L_{7}}(0,t,\zeta))
=ItTei(8γζ42ζ2)(tτ)Λ^(RG2)(0,τ,ζ)𝑑τ,\displaystyle\qquad\qquad\;=\mathrm{I}-\int_{t}^{T}e^{i(8\gamma\zeta^{4}-2\zeta^{2})(t-\tau)\hat{\Lambda}}(RG_{2})(0,\tau,\zeta)d\tau, (2.29b)

and in the eigenfunction G1(x,t,ζ),G3(x,t,ζ)G_{1}(x,t,\zeta),G_{3}(x,t,\zeta), when t=0t=0, we have

G1(x,0;ζ)=([G1]1L1L2L3L4(x,0,ζ),[G1]2L5L6L7L8(x,0,ζ))\displaystyle G_{1}(x,0;\zeta)=([G_{1}]_{1}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta),[G_{1}]_{2}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,0,\zeta))
=I+0xeiζ(xξ)Λ^(PG1)(ξ,0,ζ)𝑑ξ,\displaystyle\qquad\qquad\;=\mathrm{I}+\int_{0}^{x}e^{-i\zeta(x-\xi)\hat{\Lambda}}(PG_{1})(\xi,0,\zeta)d\xi, (2.30a)
G3(x,0;ζ)=([G3]1L5L6L7L8(z,0,ζ),[G3]2L1L2L3L4(z,0,ζ))\displaystyle G_{3}(x,0;\zeta)=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(z,0,\zeta),[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(z,0,\zeta))
=Ixeiζ(xξ)Λ^(PG3)(ξ,0,ζ)𝑑ξ,\displaystyle\qquad\qquad\;=\mathrm{I}-\int_{x}^{\infty}e^{-i\zeta(x-\xi)\hat{\Lambda}}(PG_{3})(\xi,0,\zeta)d\xi, (2.30b)

Assuming that u0(x)=u(x,t=0)u_{0}(x)=u(x,t=0) is an initial data of the functions u(x,t)u(x,t), and v0(t)=u(x=0,t)v_{0}(t)=u(x=0,t), v1(t)=ux(x=0,t)v_{1}(t)=u_{x}(x=0,t), v2(t)=uxx(x=0,t)v_{2}(t)=u_{xx}(x=0,t), v3(t)=uxxx(x=0,t)v_{3}(t)=u_{xxx}(x=0,t) are boundary datas of the functions ux(x,t)u_{x}(x,t), uxx(x,t)u_{xx}(x,t), uxxx(x,t)u_{xxx}(x,t), at this time, the matrix P(x,0,ζ)P(x,0,\zeta) and R(0,t,ζ)R(0,t,\zeta) have the following matrix forms, respectively.

P(x,0,ζ)=(0u0u¯00),R(0,t,ζ)=(R11(0,t,ζ)R12(0,t,ζ)R21(0,t,ζ)R11(0,t,ζ)),\displaystyle P(x,0,\zeta)=\left(\begin{array}[]{cc}0&u_{0}\\ -\overline{u}_{0}&0\end{array}\right),\,\,R(0,t,\zeta)=\left(\begin{array}[]{cc}R_{11}(0,t,\zeta)&R_{12}(0,t,\zeta)\\ R_{21}(0,t,\zeta)&-R_{11}(0,t,\zeta)\end{array}\right), (2.35)

with

R11(0,t,ζ)=4iγζ2v022γζ(v0v¯1v1v¯0)+iγ(3|v0|4|v1|2+v0¯v2+v0v¯2)+i|v0|2\displaystyle R_{11}(0,t,\zeta)=-4i\gamma\zeta^{2}v^{2}_{0}-2\gamma\zeta(v_{0}\bar{v}_{1}-v_{1}\bar{v}_{0})+i\gamma(3|v_{0}|^{4}-|v_{1}|^{2}+\overline{v_{0}}v_{2}+v_{0}\overline{v}_{2})+i|v_{0}|^{2}
R12(0,t,ζ)=8γζ3v04iγζ2v1+2γζv2+2ζ(2γ|v0|2+1)v0+iγv3+i(6γ|v0|2+1)v1\displaystyle R_{12}(0,t,\zeta)=-8\gamma\zeta^{3}v_{0}-4i\gamma\zeta^{2}v_{1}+2\gamma\zeta v_{2}+2\zeta(2\gamma|v_{0}|^{2}+1)v_{0}+i\gamma v_{3}+i(6\gamma|v_{0}|^{2}+1)v_{1}
R21(0,t,ζ)=8γζ3v¯04iγζ2v¯1+2γζv¯2+2ζ(2γ|v0|2+1)v¯0+iγv¯3+i(6γ|v0|2+1)v¯1\displaystyle R_{21}(0,t,\zeta)=-8\gamma\zeta^{3}\bar{v}_{0}-4i\gamma\zeta^{2}\bar{v}_{1}+2\gamma\zeta\bar{v}_{2}+2\zeta(2\gamma|v_{0}|^{2}+1)\bar{v}_{0}+i\gamma\bar{v}_{3}+i(6\gamma|v_{0}|^{2}+1)\bar{v}_{1}

2.3 The other properties of the eigenfunctions

Proposition 2.1

The matrix-value functions Gj(x,t,ζ)=([Gj]1(x,t,ζ),[Gj]2(x,t,ζ))(j=1,2,3)G_{j}(x,t,\zeta)=([G_{j}]_{1}(x,t,\zeta),[G_{j}]_{2}(x,t,\zeta))(j=1,2,3) are given in Eq.(2.18) enjoy analytical properties are:

  • 1.

    detGj(x,t,ζ)=1\mathrm{det}G_{j}(x,t,\zeta)=1;

  • 2.

    The [G1]1(x,t,ζ)[G_{1}]_{1}(x,t,\zeta) is an analytic function for ζL1L3\zeta\in L_{1}\cup L_{3}, and the [G1]2(x,t,ζ)[G_{1}]_{2}(x,t,\zeta) is also an analytic function for ζL6L8\zeta\in L_{6}\cup L_{8};

  • 3.

    The [G2]1(x,t,ζ)[G_{2}]_{1}(x,t,\zeta) is an analytic function for ζL2L4\zeta\in L_{2}\cup L_{4}, and the [G2]2(x,t,ζ)[G_{2}]_{2}(x,t,\zeta) is also an analytic function for ζL5L7\zeta\in L_{5}\cup L_{7};

  • 4.

    The [G3]1(x,t,ζ)[G_{3}]_{1}(x,t,\zeta) is an analytic function for ζL5L6L7L8\zeta\in L_{5}\cup L_{6}\cup L_{7}\cup L_{8}, and the [G3]2(x,t,ζ)[G_{3}]_{2}(x,t,\zeta) is also an analytic function for ζL1L2L3L4\zeta\in L_{1}\cup L_{2}\cup L_{3}\cup L_{4};

  • 5.

    The [Gj]1(x,t,ζ)(1,0)T[G_{j}]_{1}(x,t,\zeta)\rightarrow(1,0)^{T} and [Gj]2(x,t,ζ)(0,1)T[G_{j}]_{2}(x,t,\zeta)\rightarrow(0,1)^{T}, as ζ\zeta\rightarrow\infty.

Proposition 2.2

Indeed, ψ(ζ),ϕ(ζ)\psi(\zeta),\phi(\zeta) are defined in Eqs.(2.24a)-(2.24b) or Eq.(2.25) is expressed as

ψ(ζ)=I0eiζξΛ^(PG3)(ξ,0,ζ)𝑑ξ,\displaystyle\psi(\zeta)=\mathrm{I}-\int_{0}^{\infty}e^{i\zeta\xi\hat{\Lambda}}(PG_{3})(\xi,0,\zeta)d\xi, (2.36a)
ϕ1(ζ)=I+0Tei(8γζ42ζ2)τΛ^(RG1)(0,τ,ζ)𝑑τ.\displaystyle\phi^{-1}(\zeta)=\mathrm{I}+\int_{0}^{T}e^{i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{1})(0,\tau,\zeta)d\tau. (2.36b)

It follows from the symmetry properties of P(x,t,ζ)P(x,t,\zeta) and R(x,t,ζ)R(x,t,\zeta) that

(Gj(x,t,ζ))11=(Gj(x,t,ζ¯))11¯,(Gj(x,t,ζ))21=(Gj(x,t,ζ¯))12¯,\displaystyle(G_{j}(x,t,\zeta))_{11}=\overline{(G_{j}(x,t,\overline{\zeta}))_{11}},\,\,(G_{j}(x,t,\zeta))_{21}=-\overline{(G_{j}(x,t,\overline{\zeta}))_{12}},

then

ψ11(ζ)=ψ11(ζ¯)¯,ψ21(ζ)=ψ12(ζ¯)¯,\psi_{11}(\zeta)=\overline{\psi_{11}(\overline{\zeta})},\,\,\psi_{21}(\zeta)=-\overline{\psi_{12}(\overline{\zeta})},
ϕ11(ζ)=ϕ11(ζ¯)¯,ϕ21(ζ)=ϕ12(ζ¯)¯,\phi_{11}(\zeta)=\overline{\phi_{11(\overline{\zeta})}},\,\,\phi_{21}(\zeta)=-\overline{\phi_{12}(\overline{\zeta})},

and assume that the ψ(ζ)\psi(\zeta) and ϕ(ζ)\phi(\zeta) admits the matrix form as follows

ψ(ζ)=(y(ζ¯)¯z(ζ)z(ζ¯)¯y(ζ)),ϕ(ζ)=(Y(ζ¯)¯Z(ζ)Z(ζ¯)¯Y(ζ)).\displaystyle\psi(\zeta)=\left(\begin{array}[]{cc}\overline{y(\bar{\zeta})}&z(\zeta)\\ -\overline{z(\bar{\zeta})}&y(\zeta)\end{array}\right),\phi(\zeta)=\left(\begin{array}[]{cc}\overline{Y(\bar{\zeta})}&Z(\zeta)\\ -\overline{Z(\bar{\zeta})}&Y(\zeta)\\ \end{array}\right). (2.41)

In terms of the Eq.(2.25) and Eqs.(2.36a)-(2.36b), we known that the following properties are ture,

  • 1.
    (z(ζ)y(ζ))=[G3]2L1L2L3L4(0,0,ζ)=((G3)12L1L2L3L4(0,0,ζ)(G3)22L1L2L3L4(0,0,ζ)),\left(\begin{array}[]{c}z(\zeta)\\ y(\zeta)\\ \end{array}\right)=[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0,0,\zeta)=\left(\begin{array}[]{c}(G_{3})_{12}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0,0,\zeta)\\ (G_{3})_{22}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0,0,\zeta)\\ \end{array}\right),

    where the vector function [G3]2L1L2L3L4(x,0,ζ)[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta) satisfy the ordinary differential equation as follows

    x[G3]2L1L2L3L4(x,0,ζ)+2iζ(1000)[G3]2L1L2L3L4(x,0,ζ)\displaystyle\partial_{x}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta)+2i\zeta\left(\begin{array}[]{cc}1&0\\ 0&0\end{array}\right)[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta) (2.44)
    =P(x,0,ζ)[G3]2L1L2L3L4(x,0,ζ), 0<x<,\displaystyle=P(x,0,\zeta)[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta),\,0<x<\infty, (2.45)

    where P(x,0,ζ)P(x,0,\zeta) is given in Eq(2.35) and

    limx[G3]2L1L2L3L4(x,0,ζ)=(0,1)T.\lim_{x\rightarrow\infty}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,0,\zeta)=(0,1)^{T}.
    (e2i(8γζ42ζ2)TZ(ζ)Y(ζ¯)¯)=[G1]2L2L4L6L8(0,T,ζ)=((G1)12L2L4L6L8(0,t,ζ)(G1)22L2L4L6L8(0,t,ζ)),\left(\begin{array}[]{c}-e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}Z(\zeta)\\ \overline{Y(\bar{\zeta})}\\ \end{array}\right)=[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,T,\zeta)=\left(\begin{array}[]{c}(G_{1})_{12}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta)\\ (G_{1})_{22}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta)\\ \end{array}\right),

    where the vector function [G1]2L2L4L6L8(0,t,ζ)[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta) satisfy the ordinary differential equation as follows

    t[G1]2L2L4L6L8(0,t,ζ)2i(8γζ42ζ2)(1000)[G1]2L2L4L6L8(0,t,ζ)\displaystyle\partial_{t}[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta)-2i(8\gamma\zeta^{4}-2\zeta^{2})\left(\begin{array}[]{cc}1&0\\ 0&0\end{array}\right)[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta) (2.48)
    =R(0,t,ζ)[G1]2L2L4L6L8(0,t,ζ), 0<t<T,\displaystyle=R(0,t,\zeta)[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,t,\zeta),\,0<t<T, (2.49)

    where R(0,t,ζ)R(0,t,\zeta) is given in Eq(2.35) and

    [G1]2L2L4L6L8(0,0,ζ)=(0,1)T.[G_{1}]_{2}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(0,0,\zeta)=(0,1)^{T}.
  • 2.
    y(ζ)=y(ζ),z(ζ)=z(ζ),y(-\zeta)=y(\zeta),\,\,z(-\zeta)=-z(\zeta),
    Y(ζ)=Y(ζ),Z(ζ)=Z(ζ).Y(-\zeta)=Y(\zeta),\,\,Z(-\zeta)=-Z(\zeta).
  • 3.
    ForζR,detψ(ζ)=|y(ζ)|2+|z(ζ)|2=1.For\,\,\zeta\in\mathrm{R},\,\,\mathrm{det}\psi(\zeta)=|y(\zeta)|^{2}+|z(\zeta)|^{2}=1.
    ForζC,detϕ(ζ)=Y(ζ)Y(ζ¯)¯+Z(ζ)Z(ζ¯)¯=1,(ζΓm,ifT=).For\,\,\zeta\in\mathrm{C},\,\,\mathrm{det}\phi(\zeta)=Y(\zeta)\overline{Y(\bar{\zeta})}+Z(\zeta)\overline{Z(\bar{\zeta})}=1,\,\,(\zeta\in\Gamma_{m},\,if\,T=\infty).

    where curve Γm,m=1,2,3,4\Gamma_{m},\,m=1,2,3,4 are given in Eq.(2.58).

  • 4.
    y(ζ)=1+O(1ζ),z(ζ)=O(1ζ),asζ,y(\zeta)=1+O(\frac{1}{\zeta}),\,\,z(\zeta)=O(\frac{1}{\zeta}),as\,\zeta\rightarrow\infty,
    Y(ζ)=1+O(1ζ)+O(e2i(8γζ42ζ2)Tζ),Z(ζ)=O(1ζ)+O(e2i(8γζ42ζ2)Tζ),asζ.Y(\zeta)=1+O(\frac{1}{\zeta})+O(\frac{e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}}{\zeta}),\,\,Z(\zeta)=O(\frac{1}{\zeta})+O(\frac{e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}}{\zeta}),as\,\zeta\rightarrow\infty.

2.4 The basic Riemann-Hilbert problem

In order to facilitate calculation and formula representation, we introduce the symbolic assumptions as follows

ω(x,t,ζ)=ζx(8γζ42ζ2)t,\displaystyle\omega(x,t,\zeta)=\zeta x-(8\gamma\zeta^{4}-2\zeta^{2})t, (2.50a)
ρ(ζ)=y(ζ)Y(ζ¯)¯+z(ζ)Z(ζ¯)¯,\displaystyle\rho(\zeta)=y(\zeta)\overline{Y(\bar{\zeta})}+z(\zeta)\overline{Z(\bar{\zeta})}, (2.50b)
κ(ζ)=y(ζ¯)¯Z(ζ¯)¯z(ζ¯)¯Y(ζ¯)¯,\displaystyle\kappa(\zeta)=\overline{y(\bar{\zeta})}\overline{Z(\bar{\zeta})}-\overline{z(\bar{\zeta})}\overline{Y(\bar{\zeta})}, (2.50c)
δ(ζ)=z(ζ)y(ζ¯)¯,Δ(ζ)=Z(ζ¯)¯y(ζ)ρ(ζ),\displaystyle\delta(\zeta)=\frac{z(\zeta)}{\overline{y(\bar{\zeta})}},\Delta(\zeta)=-\frac{\overline{Z(\bar{\zeta})}}{y(\zeta)\rho(\zeta)}, (2.50d)

then, we have

Z(ζ¯)¯=y(ζ)κ(ζ)+z(ζ¯)¯ρ(ζ),\displaystyle\overline{Z(\bar{\zeta})}=y(\zeta)\kappa(\zeta)+\overline{z(\bar{\zeta})}\rho(\zeta),
ρ(ζ)ρ(ζ¯)¯κ(ζ)κ(ζ¯)¯=1,\displaystyle\rho(\zeta)\overline{\rho(\bar{\zeta})}-\kappa(\zeta)\overline{\kappa(\bar{\zeta})}=1,
ρ(ζ)=1+O(1ζ),κ(ζ)=O(1ζ)asζ,\displaystyle\rho(\zeta)=1+O(\frac{1}{\zeta}),\kappa(\zeta)=O(\frac{1}{\zeta})\,\,as\,\,\zeta\rightarrow\infty,
ρ(ζ)=ρ(ζ),κ(ζ)=κ(ζ),\displaystyle\rho(-\zeta)=\rho(\zeta),\kappa(-\zeta)=-\kappa(\zeta),

and the matrix function D(x,t,ζ)D(x,t,\zeta) is defined by

D+(x,t,ζ)=([G1]1L1L3(x,t,ζ)y(ζ),[G3]2L1L2L3L4(x,t,ζ)),ζL1L3,\displaystyle D_{+}(x,t,\zeta)=(\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta)),\zeta\in L_{1}\cup L_{3}, (2.51a)
D(x,t,ζ)=([G2]1L2L4(x,t,ζ)ρ(ζ),[G3]2L1L2L3L4(x,t,ζ)),ζL2L4,\displaystyle D_{-}(x,t,\zeta)=(\frac{[G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta)}{\rho(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta)),\zeta\in L_{2}\cup L_{4}, (2.51b)
D+(x,t,ζ)=([G3]1L5L6L7L8(x,t,ζ),[G2]2L5L7(x,t,ζ)ρ(ζ¯)¯),ζL5L7,\displaystyle D_{+}(x,t,\zeta)=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta)}{\overline{\rho(\bar{\zeta})}}),\zeta\in L_{5}\cup L_{7}, (2.51c)
D(x,t,ζ)=([G3]1L5L6L7L8(x,t,ζ),[G1]2L6L8(x,t,ζ)y(ζ¯)¯),ζL6L8.\displaystyle D_{-}(x,t,\zeta)=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)}{\overline{y(\bar{\zeta})}}),\zeta\in L_{6}\cup L_{8}. (2.51d)

Obviously, the above definitions indicates that

detD(x,t,ζ)=1,D(x,t,ζ)I,asζ.\mathrm{det}D(x,t,\zeta)=1,\,\,D(x,t,\zeta)\rightarrow\mathrm{I},as\,\,\zeta\rightarrow\infty. (2.52)
Theorem 2.3

Let that the matrix function D(x,t,ζ)D(x,t,\zeta) is defined by Eqs.(2.51a)-(2.51d) and the potential function u(z,t)𝒮u(z,t)\in\mathcal{S}, then, the matrix function D(x,t,ζ)D(x,t,\zeta) admits the jump relation on the curve Γm,m=1,,4\Gamma_{m},m=1,\ldots,4 as follows

D+(x,t,ζ)=D(x,t,ζ)Q(x,t,ζ),ζΓm,m=1,,4,\displaystyle D_{+}(x,t,\zeta)=D_{-}(x,t,\zeta)Q(x,t,\zeta),\zeta\in\Gamma_{m},m=1,\ldots,4, (2.53)

where

Q(x,t,ζ)={Q1(x,t,ζ),ζΓ1{L¯1L¯3}{L¯2L¯4}Q2(x,t,ζ)=Q3Q41Q1,ζΓ2{L¯2L¯4}{L¯5L¯7}Q3(x,t,ζ),ζΓ3{L¯5L¯7}{L¯6L¯8}Q4(x,t,ζ),ζΓ4{L¯6L¯8}{L¯1L¯3}\displaystyle Q(x,t,\zeta)=\left\{\begin{array}[]{l}Q_{1}(x,t,\zeta),\qquad\qquad\qquad\zeta\in\Gamma_{1}\doteq\{\bar{L}_{1}\cup\bar{L}_{3}\}\cap\{\bar{L}_{2}\cup\bar{L}_{4}\}\\ Q_{2}(x,t,\zeta)=Q_{3}Q_{4}^{-1}Q_{1},\quad\zeta\in\Gamma_{2}\doteq\{\bar{L}_{2}\cup\bar{L}_{4}\}\cap\{\bar{L}_{5}\cup\bar{L}_{7}\}\\ Q_{3}(x,t,\zeta),\qquad\qquad\qquad\zeta\in\Gamma_{3}\doteq\{\bar{L}_{5}\cup\bar{L}_{7}\}\cap\{\bar{L}_{6}\cup\bar{L}_{8}\}\\ Q_{4}(x,t,\zeta),\qquad\qquad\qquad\zeta\in\Gamma_{4}\doteq\{\bar{L}_{6}\cup\bar{L}_{8}\}\cap\{\bar{L}_{1}\cup\bar{L}_{3}\}\end{array}\right. (2.58)

and

Q1(x,t,ζ)=(10Δ(ζ)e2iω(ζ)1),Q2(x,t,ζ)=(1(δ(ζ)+Δ(ζ¯)¯)(Δ(ζ)+δ(ζ¯)¯)(δ(ζ)+Δ(ζ¯)¯)e2iω(ζ)(Δ(ζ)+δ(ζ¯)¯)e2iω(ζ)1),Q3(x,t,ζ)=(1Δ(ζ¯)¯e2iω(ζ)01),Q4(x,t,ζ)=(1δ(ζ)e2iω(ζ)δ(ζ¯)¯e2iω(ζ)1+|δ(ζ)|2).\displaystyle\begin{array}[]{l}Q_{1}(x,t,\zeta)=\left(\begin{array}[]{cc}1&0\\ \Delta(\zeta)e^{2i\omega(\zeta)}&1\end{array}\right),\\ Q_{2}(x,t,\zeta)=\left(\begin{array}[]{cc}1-(\delta(\zeta)+\overline{\Delta(\bar{\zeta})})(\Delta(\zeta)+\overline{\delta(\bar{\zeta})})&(\delta(\zeta)+\overline{\Delta(\bar{\zeta})})e^{-2i\omega(\zeta)}\\ (\Delta(\zeta)+\overline{\delta(\bar{\zeta})})e^{2i\omega(\zeta)}&1\end{array}\right),\\ Q_{3}(x,t,\zeta)=\left(\begin{array}[]{cc}1&\overline{\Delta(\bar{\zeta})}e^{-2i\omega(\zeta)}\\ 0&1\end{array}\right),\\ Q_{4}(x,t,\zeta)=\left(\begin{array}[]{cc}1&-\delta(\zeta)e^{-2i\omega(\zeta)}\\ -\overline{\delta(\bar{\zeta})}e^{2i\omega(\zeta)}&1+|\delta(\zeta)|^{2}\end{array}\right).\end{array} (2.71)

Proof In terms of the Eqs.(2.24a)-(2.24b) and Eq.(2.41), we have

y(ζ¯)¯[G1]1L1L3(x,t,ζ)z(ζ¯)¯e2iω(ζ)[G1]2L6L8(x,t,ζ)=[G3]1L5L6L7L8(x,t,ζ),\displaystyle\overline{y(\bar{\zeta})}[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)-\overline{z(\bar{\zeta})}e^{2i\omega(\zeta)}[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)=[G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta), (2.72a)
z(ζ)e2iω(ζ)[G1]1L1L3(x,t,ζ)+y(ζ)[G1]2L6L8(x,t,ζ)=[G3]2L1L2L3L4(x,t,ζ),\displaystyle z(\zeta)e^{-2i\omega(\zeta)}[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)+y(\zeta)[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)=[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta), (2.72b)

and

Y(ζ¯)¯[G1]1L1L3(x,t,ζ)Z(ζ¯)¯e2iω(ζ)[G1]2L6L8(x,t,ζ)=[G2]1L2L4(x,t,ζ),\displaystyle\overline{Y(\bar{\zeta})}[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)-\overline{Z(\bar{\zeta})}e^{2i\omega(\zeta)}[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)=[G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta), (2.73a)
Z(ζ)e2iω(ζ)[G1]1L1L3(x,t,ζ)+Y(ζ)[G1]2L6L8(x,t,ζ)=[G2]2L5L7(x,t,ζ),\displaystyle Z(\zeta)e^{-2i\omega(\zeta)}[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)+Y(\zeta)[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)=[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta), (2.73b)

according to the Eqs.(2.72a)-(2.73b) and Eqs.(2.50a)-(2.50d) yields

ρ(ζ)[G3]1L5L6L7L8(x,t,ζ)κ(ζ)e2iω(ζ)[G3]2L1L2L3L4(x,t,ζ)=[G2]1L2L4(x,t,ζ),\displaystyle\rho(\zeta)[G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta)-\kappa(\zeta)e^{2i\omega(\zeta)}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta)=[G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta), (2.74a)
κ(ζ¯)¯e2iω(ζ)[G3]1L5L6L7L8(x,t,ζ)+ρ(ζ¯)¯[G3]2L1L2L3L4(x,t,ζ)=[G2]2L5L7(x,t,ζ).\displaystyle\overline{\kappa(\bar{\zeta})}e^{-2i\omega(\zeta)}[G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta)+\overline{\rho(\bar{\zeta})}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta)=[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta). (2.74b)

By the Eqs.(2.51a)-(2.51d) and Eq.(2.53), one have

([G1]1L1L3(x,t,ζ)y(ζ),[G3]2L1L2L3L4(x,t,ζ))=([G2]1L2L4(x,t,ζ)ρ(ζ),[G3]2L1L2L3L4(x,t,ζ))Q1(x,t,ζ),\displaystyle(\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta))=(\frac{[G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta)}{\rho(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta))Q_{1}(x,t,\zeta), (2.75a)
([G3]1L5L6L7L8(x,t,ζ),[G2]2L5L7(x,t,ζ)ρ(ζ¯)¯)=([G2]1L2L4(x,t,ζ)ρ(ζ),[G3]2L1L2L3L4(x,t,ζ))Q2(x,t,ζ),\displaystyle([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta)}{\overline{\rho(\bar{\zeta})}})=(\frac{[G_{2}]_{1}^{L_{2}\cup L_{4}}(x,t,\zeta)}{\rho(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta))Q_{2}(x,t,\zeta), (2.75b)
([G3]1L5L6L7L8(x,t,ζ),[G2]2L5L7(x,t,ζ)ρ(ζ¯)¯)=([G3]1L5L6L7L8(x,t,ζ),[G1]2L6L8(x,t,ζ)y(ζ¯)¯)Q3(x,t,ζ),\displaystyle([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{2}]_{2}^{L_{5}\cup L_{7}}(x,t,\zeta)}{\overline{\rho(\bar{\zeta})}})=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)}{\overline{y(\bar{\zeta})}})Q_{3}(x,t,\zeta), (2.75c)
([G1]1L1L3(x,t,ζ)y(ζ),[G3]2L1L2L3L4(x,t,ζ))=([G3]1L5L6L7L8(x,t,ζ),[G1]2L6L8(x,t,ζ)y(ζ¯)¯)Q4(x,t,ζ).\displaystyle(\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\zeta))=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,t,\zeta),\frac{[G_{1}]_{2}^{L_{6}\cup L_{8}}(x,t,\zeta)}{\overline{y(\bar{\zeta})}})Q_{4}(x,t,\zeta). (2.75d)

Therefore, we can derive from the Eqs.(2.75a)-(2.75d) that the jump matrices {Qi(x,t,ζ)}14\{Q_{i}(x,t,\zeta)\}_{1}^{4} meets the Eq.(2.58).

Assumption 2.4

Assuming that the zeros of ρ(ζ)\rho(\zeta) and y(ζ)y(\zeta) enjoy the assumptions as follows

  • 1.

    The spectral function y(ζ)y(\zeta) enjoy 2n2n simple zeros {ςj}j=12n\{\varsigma_{j}\}_{j=1}^{2n}, 2n=2n1+2n22n=2n_{1}+2n_{2}, if {ςj}12n1L1L3\{\varsigma_{j}\}_{1}^{2n_{1}}\in L_{1}\cup L_{3}, then {ς¯j}12n2L8L6\{\bar{\varsigma}_{j}\}_{1}^{2n_{2}}\in L_{8}\cup L_{6}.

  • 2.

    The spectral function ρ(ζ)\rho(\zeta) enjoy 2N2N simple zeros {ηj}j=12N\{\eta_{j}\}_{j=1}^{2N}, 2N=2N1+2N22N=2N_{1}+2N_{2}, if {ηj}12N1L5L7\{\eta_{j}\}_{1}^{2N_{1}}\in L_{5}\cup L_{7}, then {η¯j}12N2L4L2\{\bar{\eta}_{j}\}_{1}^{2N_{2}}\in L_{4}\cup L_{2}.

  • 3.

    The spectral function y(ζ)y(\zeta) and the spectral function ρ(ζ)\rho(\zeta) do not enjoy the same simple zeros.

Proposition 2.5

The matrix function D(x,t,ζ)D(x,t,\zeta) is defined by Eqs.(2.51a)-(2.51d) meets the following residue conditions:

Res{[D(x,t,ζ)]1,ςj}=1z(ςj)y˙(ςj)e2iω(ςj)[D(x,t,ςj)]2,j=1,,2n1.\displaystyle\mathrm{Res}\{[D(x,t,\zeta)]_{1},\varsigma_{j}\}=\frac{1}{z(\varsigma_{j})\dot{y}(\varsigma_{j})}e^{2i\omega(\varsigma_{j})}[D(x,t,\varsigma_{j})]_{2},j=1,\cdots,2n_{1}. (2.76a)
Res{[D(x,t,ζ)]2,ς¯j}=1z(ςj)¯y˙(ςj)¯e2iω(ςj¯)[D(x,t,ς¯j)]1,j=1,,2n2.\displaystyle\mathrm{Res}\{[D(x,t,\zeta)]_{2},\bar{\varsigma}_{j}\}=-\frac{1}{\overline{z(\varsigma_{j})}\overline{\dot{y}(\varsigma_{j})}}e^{-2i\omega(\bar{\varsigma_{j}})}[D(x,t,\bar{\varsigma}_{j})]_{1},j=1,\cdots,2n_{2}. (2.76b)
Res{[D(x,t,ζ)]1,ηj}=Z(η¯j)¯y(ηj)ρ˙(ηj)e2iω(ηj)[D(x,t,ηj)]1,j=1,,2N1.\displaystyle\mathrm{Res}\{[D(x,t,\zeta)]_{1},\eta_{j}\}=-\frac{\overline{Z(\bar{\eta}_{j})}}{y(\eta_{j})\dot{\rho}(\eta_{j})}e^{2i\omega(\eta_{j})}[D(x,t,\eta_{j})]_{1},j=1,\cdots,2N_{1}. (2.76c)
Res{[D(x,t,ζ)]2,η¯j}=Z(η¯j)y(ηj)¯ρ˙(ηj)¯e2iω(η¯j)[D(x,t,ηj¯)]2,j=1,,2N2.\displaystyle\mathrm{Res}\{[D(x,t,\zeta)]_{2},\ \bar{\eta}_{j}\}=\frac{Z(\bar{\eta}_{j})}{\overline{y(\eta_{j})}\overline{\dot{\rho}(\eta_{j})}}e^{-2i\omega(\bar{\eta}_{j})}[D(x,t,\bar{\eta_{j}})]_{2},j=1,\cdots,2N_{2}. (2.76d)

where ρ˙(ζ)=dρdζ\dot{\rho}(\zeta)=\frac{d\rho}{d\zeta}.

Proof We only manifest that the residue relationship Eq.(2.76a) as follows:

Due to D(x,t,ζ)=([G1]1L1L3y(ζ),[G3]2L1L2L3L4)D(x,t,\zeta)=(\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}}{y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}), which is means that the zeros {ςj}12n1\{\varsigma_{j}\}_{1}^{2n_{1}} of y(ζ)y(\zeta) are the poles of [G1]1L1L3y(ζ)\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}}{y(\zeta)}. Then, we have

Res{G1L1L3(x,t,ζ)y(ζ),ςj}=limζςj(ζςj)[G1]1L1L3(x,t,ζ)y(ζ)=[G1]1L1L3(x,t,ςj)y˙(ςj).\mathrm{Res}\{\frac{G_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)},\varsigma_{j}\}=\lim_{\zeta\rightarrow\varsigma_{j}}(\zeta-\varsigma_{j})\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)}=\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\varsigma_{j})}{\dot{y}(\varsigma_{j})}. (2.77)

Taking ζ=ςj\zeta=\varsigma_{j} into the second equation of Eqs.(2.74a)-(2.74b) yields

[G1]1L1L3(x,t,ςj)=1y(ςj)e2iω(εj)[G3]2L1L2L3L4(x,t,ςj).[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\varsigma_{j})=\frac{1}{y(\varsigma_{j})}e^{2i\omega(\varepsilon_{j})}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\varsigma_{j}). (2.78)

According to the Eq.(2.77) and Eq.(2.78), we get

Res{[G1]1L1L3(x,t,ζ)y(ζ),ςj}=1z(ςj)y˙(ςj)e2iω(ςj)[G3]2L1L2L3L4(x,t,ςj).\mathrm{Res}\{\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}}(x,t,\zeta)}{y(\zeta)},\varsigma_{j}\}=\frac{1}{z(\varsigma_{j})\dot{y}(\varsigma_{j})}e^{2i\omega(\varsigma_{j})}[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,t,\varsigma_{j}). (2.79)

Therefore, the Eq.(2.79) can lead to the Eq.(2.76a), and the remaining three residue relationships Eqs.(2.76b)-(2.76d) can be similarly proved.

2.5 The global relation

In this subsection, we give the spectral functions are not independent but meet a nice global relation. In fact, at the boundary of the region (ξ,τ):0<ξ<,0<τ<t{(\xi,\tau):0<\xi<\infty,0<\tau<t}, the integral of the one-form F(x,t,ζ)F(x,t,\zeta) is given by the Eq.(2.17) is vanished. If we assume G(x,t,ζ)=G3(x,t,ζ)G(x,t,\zeta)=G_{3}(x,t,\zeta) in the one-form F(x,t,ζ)F(x,t,\zeta) is given by the Eq.(2.17), one can get

0eiζξΛ^(PG3)(ξ,0,ζ)𝑑ξ+0tei(8γζ42ζ2)τΛ^(RG3)(0,τ,ζ)𝑑τ+ei(8γζ42ζ2)tΛ^×0eiζξΛ^(PG3)(ξ,t,ζ)𝑑ξ\displaystyle\int_{\infty}^{0}e^{i\zeta\xi\hat{\Lambda}}(PG_{3})(\xi,0,\zeta)d\xi+\int_{0}^{t}e^{-i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{3})(0,\tau,\zeta)d\tau+e^{-i(8\gamma\zeta^{4}-2\zeta^{2})t\hat{\Lambda}}\times\int_{0}^{\infty}e^{i\zeta\xi\hat{\Lambda}}(PG_{3})(\xi,t,\zeta)d\xi
=limxeiζxΛ^0tei(8γζ42ζ2)τΛ^(RG3)(x,τ,ζ)𝑑τ.\displaystyle=\lim_{x\rightarrow\infty}e^{i\zeta x\hat{\Lambda}}\int_{0}^{t}e^{-i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{3})(x,\tau,\zeta)d\tau. (2.80)

On the one hand, according to the definition of ψ(ζ)\psi(\zeta) in Eq.(2.25) and together with the Eq.(2.30b), we known that the first term of the Eq.(2.80) is

ψ(ζ)I.\psi(\zeta)-I.

Let x=0x=0 in the Eq.(2.26) to get

G3(0,τ,ζ)=G1(0,τ,ζ)ei(8γζ42ζ2)τΛ^ψ(ζ),\displaystyle G_{3}(0,\tau,\zeta)=G_{1}(0,\tau,\zeta)e^{i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}\psi(\zeta), (2.81)

therefore

ei(8γζ42ζ2)τΛ^(RG3)(0,τ,ζ)=[ei(8γζ42ζ2)τΛ^(RG1)(0,τ,ζ)]ψ(ζ).\displaystyle e^{-i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{3})(0,\tau,\zeta)=[e^{-i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{1})(0,\tau,\zeta)]\psi(\zeta). (2.82)

On the other hand, the Eq.(2.82) and Eq.(2.29a) means that the second term of the Eq.(2.80) is

0tei(8γζ42ζ2)τΛ^(RG3)(0,τ,ζ)𝑑τ=[ei(8γζ42ζ2)tΛ^RG1(0,t,ζ)I]ψ(ζ).\displaystyle\int_{0}^{t}e^{-i(8\gamma\zeta^{4}-2\zeta^{2})\tau\hat{\Lambda}}(RG_{3})(0,\tau,\zeta)d\tau=[e^{-i(8\gamma\zeta^{4}-2\zeta^{2})t\hat{\Lambda}}RG_{1}(0,t,\zeta)-I]\psi(\zeta).

For xx\rightarrow\infty, setting u(x,t)𝒮u(x,t)\in\mathcal{S}, then, the Eq.(2.80) is equivalent to

ϕ1(t,ζ)ψ(ζ)+ei(8γζ42ζ2)tΛ^×0eiζξΛ^(PG3)(ξ,t,ζ)𝑑ξ=I,\displaystyle\phi^{-1}(t,\zeta)\psi(\zeta)+e^{-i(8\gamma\zeta^{4}-2\zeta^{2})t\hat{\Lambda}}\times\int_{0}^{\infty}e^{i\zeta\xi\hat{\Lambda}}(PG_{3})(\xi,t,\zeta)d\xi=I, (2.83)

where the first column of the Eq.(2.83) is valid for ζL5L6L7L8\zeta\in L_{5}\cup L_{6}\cup L_{7}\cup L_{8} and the second column of the Eq.(2.83) is valid for ζL1L2L3L4\zeta\in L_{1}\cup L_{2}\cup L_{3}\cup L_{4}, and ϕ(t,ζ)\phi(t,\zeta) is given by

ϕ1(t,ζ)=ei(8γζ42ζ2)tΛ^G1(0,t,ζ),\displaystyle\phi^{-1}(t,\zeta)=e^{-i(8\gamma\zeta^{4}-2\zeta^{2})t\hat{\Lambda}}G_{1}(0,t,\zeta),

Owing to ϕ(ζ)=ϕ(T,ζ)\phi(\zeta)=\phi(T,\zeta) and letting t=Tt=T, then, the Eq.(2.83) is equivalent to

ϕ1(ζ)ψ(ζ)+ei(8γζ42ζ2)TΛ^×0eiζξΛ^(PG3)(ξ,T,ζ)𝑑ξ=I.\displaystyle\phi^{-1}(\zeta)\psi(\zeta)+e^{-i(8\gamma\zeta^{4}-2\zeta^{2})T\hat{\Lambda}}\times\int_{0}^{\infty}e^{i\zeta\xi\hat{\Lambda}}(PG_{3})(\xi,T,\zeta)d\xi=I. (2.84)

Hence, the (12)th-component of the Eq.(2.84) equals

y(ζ)Z(ζ)Y(ζ)z(ζ)=e2i(8γζ42ζ2)TE(ζ),\displaystyle y(\zeta)Z(\zeta)-Y(\zeta)z(\zeta)=e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}E(\zeta), (2.85)

where E(ζ)E(\zeta) expressed as

E(ζ)=0eiζξ(PG3)12(ξ,T,ζ)𝑑ξ,\displaystyle E(\zeta)=\int_{0}^{\infty}e^{i\zeta\xi}(PG_{3})_{12}(\xi,T,\zeta)d\xi, (2.86)

which is the so-called global relation.

3 The spectral functions

Definition 3.6

(Related to y(ζ)y(\zeta), z(ζ)z(\zeta)) Let u0(x)=u(x,0)𝒮u_{0}(x)=u(x,0)\in\mathcal{S}, the map

H1:{u0(x)}{y(ζ),z(ζ)},\mathrm{H_{1}}:\{u_{0}(x)\}\rightarrow\{y(\zeta),z(\zeta)\},

is defined by

(z(ζ)y(ζ))=[G3]2L1L2L3L4(0;ζ)=((G3)12L1L2L3L4(0;ζ)(G3)22L1L2L3L4(0;ζ)),Imζ0,\left(\begin{array}[]{c}z(\zeta)\\ y(\zeta)\end{array}\right)=[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0;\zeta)=\left(\begin{array}[]{c}(G_{3})_{12}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0;\zeta)\\ (G_{3})_{22}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(0;\zeta)\end{array}\right),\mathrm{Im}\zeta\geq 0,

where G3(x,ζ)G_{3}(x,\zeta) with P(x,ζ)P(x,\zeta) are given by Eq.(2.30b) and Eq.(2.35), respectively.

Proposition 3.7

The y(ζ)y(\zeta) and z(ζ)z(\zeta) satisfies the properties as follows

(i)

For Imζ<0\mathrm{Im}\zeta<0, y(ζ)y(\zeta) and z(ζ)z(\zeta) are analytic functions,

(ii)

y(ζ)=1+O(1ζ),z(ζ)=O(1ζ),y(\zeta)=1+O(\frac{1}{\zeta}),z(\zeta)=O(\frac{1}{\zeta}), as ζ\zeta\rightarrow\infty,

(iii)

For ζR,detψ(ζ)=|y(ζ)|2+|z(ζ)|2=1\zeta\in\mathrm{R},\,\,\mathrm{det}\psi(\zeta)=|y(\zeta)|^{2}+|z(\zeta)|^{2}=1,

(iv)

S1=H11:{y(ζ),z(ζ)}{u0(x)}\mathrm{S_{1}}=\mathrm{H_{1}}^{-1}:\{y(\zeta),z(\zeta)\}\rightarrow\{u_{0}(x)\}, it’s defined as follows

u0(x)=2ilimζ(ζD(x)(x,ζ))12,u_{0}(x)=2i\lim_{\zeta\rightarrow\infty}(\zeta D^{(x)}(x,\zeta))_{12},

where D(x)(x,ζ)D^{(x)}(x,\zeta) meet the following RH problem.

Remark 3.8

Assume that

D+(x)(x,ζ)=([G1]1L1L2L3L4(x,ζ)y(ζ),[G3]2L1L2L3L4(x,ζ)),Imζ0,\displaystyle D_{+}^{(x)}(x,\zeta)=(\frac{[G_{1}]_{1}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,\zeta)}{y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{2}\cup L_{3}\cup L_{4}}(x,\zeta)),\,\mathrm{Im}\zeta\geq 0, (3.1a)
D(x)(x,ζ)=([G3]1L5L6L7L8(x,ζ),[G1]2L5L6L7L8(x,ζ)y(ζ¯)¯),Imζ0,\displaystyle D_{-}^{(x)}(x,\zeta)=([G_{3}]_{1}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,\zeta),\frac{[G_{1}]_{2}^{L_{5}\cup L_{6}\cup L_{7}\cup L_{8}}(x,\zeta)}{\overline{y(\bar{\zeta})}}),\,\mathrm{Im}\zeta\leq 0, (3.1b)

hence, D(x)(x,ζ)D^{(x)}(x,\zeta) admits the RH problem as:

  • 1.

    D(x)(x,ζ)={D+(x)(x,ζ),ζL1L2L3L4D(x)(x,ζ),ζL5L6L7L8D^{(x)}(x,\zeta)=\left\{\begin{array}[]{l}D_{+}^{(x)}(x,\zeta),\zeta\in L_{1}\cup L_{2}\cup L_{3}\cup L_{4}\\ D_{-}^{(x)}(x,\zeta),\zeta\in L_{5}\cup L_{6}\cup L_{7}\cup L_{8}\end{array}\right. is a slice analytic function.

  • 2.

    D+(x)(x,ζ)=D(x)(x,ζ)(Q(x)(x,ζ))1D_{+}^{(x)}(x,\zeta)=D_{-}^{(x)}(x,\zeta)(Q^{(x)}(x,\zeta))^{-1}, ζR\zeta\in\mathrm{R}, and

    Q(x)(x,ζ)=(1y(ζ)y(ζ¯)¯z(ζ)y(ζ¯)¯e2iζxz(ζ¯)¯y(ζ)e2iζx1).\displaystyle Q^{(x)}(x,\zeta)=\left(\begin{array}[]{cc}\frac{1}{y(\zeta)\overline{y(\bar{\zeta})}}&\frac{z(\zeta)}{\overline{y(\bar{\zeta})}}e^{-2i\zeta x}\\ -\frac{\overline{z(\bar{\zeta})}}{y(\zeta)}e^{2i\zeta x}&1\end{array}\right). (3.4)
  • 3.

    D(x)(x,ζ)I,ζ.D^{(x)}(x,\zeta)\rightarrow\mathrm{I},\zeta\rightarrow\infty.

  • 4.

    y(ζ)y(\zeta) possess 2n2n simple zeros {ςj}12n\{\varsigma_{j}\}_{1}^{2n}, 2n=2n1+2n22n=2n_{1}+2n_{2}, let us pretend that {ςj}12n1\{\varsigma_{j}\}_{1}^{2n_{1}} be part of L1L2L3L4L_{1}\cup L_{2}\cup L_{3}\cup L_{4}, then, {ς¯j}12n2\{\bar{\varsigma}_{j}\}_{1}^{2n_{2}} be part of L5L6L7L8L_{5}\cup L_{6}\cup L_{7}\cup L_{8}.

  • 5.

    [D+(x)]1(x,ζ)[D_{+}^{(x)}]_{1}(x,\zeta) enjoy simple poles for ζ={ςj}12n1\zeta=\{\varsigma_{j}\}_{1}^{2n_{1}} and the [D(x)]1(x,ζ)[D_{-}^{(x)}]_{1}(x,\zeta) enjoy simple poles for ζ={ς¯j}12n2\zeta=\{\bar{\varsigma}_{j}\}_{1}^{2n_{2}}. In this case, the residue relations define by

    Res{[D(x)(x;ζ)]1,ςj}=e2iςjxz(ςj)y˙(ςj)[D(x)(x;ςj)]2,\displaystyle\mathrm{Res}\{[D^{(x)}(x;\zeta)]_{1},\varsigma_{j}\}=\frac{e^{2i\varsigma_{j}x}}{z(\varsigma_{j})\dot{y}(\varsigma_{j})}[D^{(x)}(x;\varsigma_{j})]_{2}, (3.5a)
    Res{[D(x)(x;Λ)]2,ς¯j}=e2iς¯jxz(ςj)¯y˙(ςj)¯[D(y)(x;ς¯j)]1.\displaystyle\mathrm{Res}\{[D^{(x)}(x;\Lambda)]_{2},\bar{\varsigma}_{j}\}=\frac{e^{-2i\bar{\varsigma}_{j}x}}{\overline{z(\varsigma_{j})}\overline{\dot{y}(\varsigma_{j})}}[D^{(y)}(x;\bar{\varsigma}_{j})]_{1}. (3.5b)
Definition 3.9

(Related to Y(ζ)Y(\zeta), Z(ζ)Z(\zeta)). Set v0(t)v_{0}(t), v1(t),v2(t),v3(t)𝒮v_{1}(t),v_{2}(t),v_{3}(t)\in\mathcal{S}, the map

H2:{v0(t),v1(t),v2(t),v3(t)}{Y(ζ),Z(ζ)},\mathrm{H_{2}}:\{v_{0}(t),v_{1}(t),v_{2}(t),v_{3}(t)\}\rightarrow\{Y(\zeta),Z(\zeta)\},

is defined by

(Y(ζ)Z(ζ))=[G2]2L2L4L6L8(t,ζ)=((G2)12L2L4L6L8(t,ζ)(G2)22L2L4L6L8(t,ζ)),\left(\begin{array}[]{c}Y(\zeta)\\ Z(\zeta)\end{array}\right)={[G_{2}]_{2}}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(t,\zeta)=\left(\begin{array}[]{c}(G_{2})_{12}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(t,\zeta)\\ (G_{2})_{22}^{L_{2}\cup L_{4}\cup L_{6}\cup L_{8}}(t,\zeta)\end{array}\right),

where G2(t,ζ)G_{2}(t,\zeta) with R(t,ζ)R(t,\zeta) are given by Eq.(2.29b) and Eq.(2.35), respectively.

Proposition 3.10

The Y(ζ)Y(\zeta) and Z(ζ)Z(\zeta) satisfies the properties as follows

(i)

For Im(8γζ42ζ2)0\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\leq 0, Y(ζ),Z(ζ)Y(\zeta),Z(\zeta) are analytic functions,

(ii)

Y(ζ)=1+O(1ζ)+O(e2i(8γζ42ζ2)Tζ),Z(ζ)=O(1ζ)+O(e2i(8γζ42ζ2)Tζ),Y(\zeta)=1+O(\frac{1}{\zeta})+O(\frac{e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}}{\zeta}),Z(\zeta)=O(\frac{1}{\zeta})+O(\frac{e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})T}}{\zeta}), as ζ\zeta\rightarrow\infty,

(iii)

For ζC,detϕ(ζ)=Y(ζ)Y(ζ¯)¯+Z(ζ)Z(ζ¯)¯=1,((8γζ42ζ2)R,ifT=)\zeta\in\mathrm{C},\,\,\mathrm{det}\phi(\zeta)=Y(\zeta)\overline{Y(\bar{\zeta})}+Z(\zeta)\overline{Z(\bar{\zeta})}=1,\,\,((8\gamma\zeta^{4}-2\zeta^{2})\in\mathrm{R},\,if\,T=\infty),

(iv)

S2=H21:{Y(ζ),Z(ζ)}{v0(t),v1(t),v2(t),v3(t)}\mathrm{S_{2}}=\mathrm{H_{2}}^{-1}:\{Y(\zeta),Z(\zeta)\}\rightarrow\{v_{0}(t),v_{1}(t),v_{2}(t),v_{3}(t)\}, is defined by

v0(t)=2i(D(1)(t))12=2ilimζ(ζD(t)(t,ζ))12,\displaystyle v_{0}(t)=2i(D^{(1)}(t))_{12}=2i\lim_{\zeta\rightarrow\infty}(\zeta D^{(t)}(t,\zeta))_{12}, (3.6a)
v1(t)=4(D(2)(t))12+2iv0(t)(D(1)(t))12=limζ[4(ζ2D(t)(t,ζ))12+2iv0(t)(ζD(t)(t,ζ))22],\displaystyle v_{1}(t)=4(D^{(2)}(t))_{12}+2iv_{0}(t)(D^{(1)}(t))_{12}=\lim_{\zeta\rightarrow\infty}[4(\zeta^{2}D^{(t)}(t,\zeta))_{12}+2iv_{0}(t)(\zeta D^{(t)}(t,\zeta))_{22}], (3.6b)
γv2(t)=8iγ(D(3)(t))12+4γv0(t)(D(2)(t))22+2iγ(v02(t)(D(1)(t))12+v1(t)(D(1)(t))22)\displaystyle\gamma v_{2}(t)=-8i\gamma(D^{(3)}(t))_{12}+4\gamma v_{0}(t)(D^{(2)}(t))_{22}+2i\gamma(v_{0}^{2}(t)(D^{(1)}(t))_{12}+v_{1}(t)(D^{(1)}(t))_{22})
+2i(D(1)(t))12(2γv02(t)+1)v0(t)\displaystyle\qquad\quad+2i(D^{(1)}(t))_{12}-(2\gamma v_{0}^{2}(t)+1)v_{0}(t)
=limζ[8iγ(ζ3D(t)(t,ζ))12+4γv0(t)(ζ2D(t)(t,ζ))22+2iγ(v02(t)(ζD(t)(t,ζ))12+v1(t)(ζD(t)(t,ζ))22)\displaystyle\qquad=\lim_{\zeta\rightarrow\infty}[-8i\gamma(\zeta^{3}D^{(t)}(t,\zeta))_{12}+4\gamma v_{0}(t)(\zeta^{2}D^{(t)}(t,\zeta))_{22}+2i\gamma(v_{0}^{2}(t)(\zeta D^{(t)}(t,\zeta))_{12}+v_{1}(t)(\zeta D^{(t)}(t,\zeta))_{22})
+2i(ζD(t)(t,ζ))12(2γv02(t)+1)v0(t)],\displaystyle\qquad\quad+2i(\zeta D^{(t)}(t,\zeta))_{12}-(2\gamma v_{0}^{2}(t)+1)v_{0}(t)], (3.6c)
γv3(t)=16γ(D(4)(t))12+4(D(2)(t))128iγv0(t)(D(3)(t))22+4γ(v02(t)(D(2)(t))12+v1(t)(D(2)(t))22)\displaystyle\gamma v_{3}(t)=-16\gamma(D^{(4)}(t))_{12}+4(D^{(2)}(t))_{12}-8i\gamma v_{0}(t)(D^{(3)}(t))_{22}+4\gamma(v_{0}^{2}(t)(D^{(2)}(t))_{12}+v_{1}(t)(D^{(2)}(t))_{22})
+i(6γv02(t)+1)v1(t)2i[γ(v0(t)v1¯(t)v0¯(t)v1(t))(D(1)(t))12(γv2(t)+(2γv02(t)+1)v0(t))(D(1)(t))22]\displaystyle\qquad\quad+i(6\gamma v_{0}^{2}(t)+1)v_{1}(t)-2i[\gamma(v_{0}(t)\bar{v_{1}}(t)-\bar{v_{0}}(t)v_{1}(t))(D^{(1)}(t))_{12}-(\gamma v_{2}(t)+(2\gamma v_{0}^{2}(t)+1)v_{0}(t))(D^{(1)}(t))_{22}]
=limζ{16γ(ζ4D(t)(t,ζ))12+4(ζ2D(t)(t,ζ))128iγv0(t)(ζ3D(t)(t,ζ))22\displaystyle\qquad=\lim_{\zeta\rightarrow\infty}\{-16\gamma(\zeta^{4}D^{(t)}(t,\zeta))_{12}+4(\zeta^{2}D^{(t)}(t,\zeta))_{12}-8i\gamma v_{0}(t)(\zeta^{3}D^{(t)}(t,\zeta))_{22}
+4γ(v02(t)(ζ2D(t)(t,ζ)12+v1(t)(ζ2D(t)(t,ζ))22)+i(6γv02(t)+1)v1(t)\displaystyle\qquad\quad+4\gamma(v_{0}^{2}(t)(\zeta^{2}D^{(t)}(t,\zeta)_{12}+v_{1}(t)(\zeta^{2}D^{(t)}(t,\zeta))_{22})+i(6\gamma v_{0}^{2}(t)+1)v_{1}(t)
2i[γ(v0(t)v1¯(t)v0¯(t)v1(t))(ζD(t)(t,ζ))12(γv2(t)+(2γv02(t)+1)v0(t))(ζD(t)(t,ζ))22]},\displaystyle\qquad\quad-2i[\gamma(v_{0}(t)\bar{v_{1}}(t)-\bar{v_{0}}(t)v_{1}(t))(\zeta D^{(t)}(t,\zeta))_{12}-(\gamma v_{2}(t)+(2\gamma v_{0}^{2}(t)+1)v_{0}(t))(\zeta D^{(t)}(t,\zeta))_{22}]\}, (3.6d)

where D(1)(t),D(2)(t),D(3)(t),D(4)(t)D^{(1)}(t),D^{(2)}(t),D^{(3)}(t),D^{(4)}(t) meets the following asymptotic expansion

D(t)(t,ζ)=I+D(1)(t,ζ)ζ+D(2)(t,ζ)ζ2+D(3)(t,ζ)ζ3+D(4)(t,ζ)ζ4+O(1ζ5),asζ,D^{(t)}(t,\zeta)=\mathrm{I}+\frac{D^{(1)}(t,\zeta)}{\zeta}+\frac{D^{(2)}(t,\zeta)}{\zeta^{2}}+\frac{D^{(3)}(t,\zeta)}{\zeta^{3}}+\frac{D^{(4)}(t,\zeta)}{\zeta^{4}}+O(\frac{1}{\zeta^{5}}),\,as\,\zeta\rightarrow\infty,

where D(t)(t,ζ)D^{(t)}(t,\zeta) meet the following RH problem:

Remark 3.11

Assume that

D+(t)(t,ζ)=([G1]1L1L3L5L7(t,ζ)Y(ζ),[G3]2L1L3(t,ζ)),Im(8γζ42ζ2)0,\displaystyle D_{+}^{(t)}(t,\zeta)=(\frac{[G_{1}]_{1}^{L_{1}\cup L_{3}\cup L_{5}\cup L_{7}}(t,\zeta)}{Y(\zeta)},[G_{3}]_{2}^{L_{1}\cup L_{3}}(t,\zeta)),\,\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\geq 0, (3.7a)
D(t)(t,ζ)=([G3]1L2L4(t,ζ),[G1]2L2L4(t,ζ)Y(ζ¯)¯),Im(8γζ42ζ2)0,\displaystyle D_{-}^{(t)}(t,\zeta)=([G_{3}]_{1}^{L_{2}\cup L_{4}}(t,\zeta),\frac{[G_{1}]_{2}^{L_{2}\cup L_{4}}(t,\zeta)}{\overline{Y(\bar{\zeta})}}),\,\mathrm{Im}(8\gamma\zeta^{4}-2\zeta^{2})\leq 0, (3.7b)

hence, D(t)(t,ζ)D^{(t)}(t,\zeta) admits the RH problem as follows.

  • 1.

    D(t)(t,ζ)={D+(t)(t,ζ),ζL1L4L5L8D(t)(t,ζ),ζL2L3L6L7D^{(t)}(t,\zeta)=\left\{\begin{array}[]{ll}D_{+}^{(t)}(t,\zeta),&\zeta\in L_{1}\cup L_{4}\cup L_{5}\cup L_{8}\\ D_{-}^{(t)}(t,\zeta),&\zeta\in L_{2}\cup L_{3}\cup L_{6}\cup L_{7}\end{array}\right. is a sectionally analytic function.

  • 2.

    D+(t)(t,ζ)=D(t)(t,ζ)Q(t)(t,ζ)D_{+}^{(t)}(t,\zeta)=D_{-}^{(t)}(t,\zeta)Q^{(t)}(t,\zeta), ζΓn,n=1,2,3,4\zeta\in\Gamma_{n},\,n=1,2,3,4, and

    Q(t)(t,ζ)=(1Z(ζ)Y(ζ¯)¯e2i(8γζ42ζ2)tZ(ζ¯)¯Y(ζ)e2i(8γζ42ζ2)t1Y(ζ)Y(ζ¯)¯).\displaystyle Q^{(t)}(t,\zeta)=\left(\begin{array}[]{cc}1&-\frac{Z(\zeta)}{\overline{Y(\bar{\zeta})}}e^{2i(8\gamma\zeta^{4}-2\zeta^{2})t}\\ -\frac{\overline{Z(\bar{\zeta})}}{Y(\zeta)}e^{-2i(8\gamma\zeta^{4}-2\zeta^{2})t}&\frac{1}{Y(\zeta)\overline{Y(\bar{\zeta})}}\end{array}\right). (3.10)
  • 3.

    D(t)(t,ζ)I,ζ.D^{(t)}(t,\zeta)\rightarrow\mathrm{I},\zeta\rightarrow\infty.

  • 4.

    Y(ζ)Y(\zeta) posses 2k2k simple zeros {νj}12k\{\nu_{j}\}_{1}^{2k}, 2k=2k1+2k22k=2k_{1}+2k_{2}, let us pretend that {νj}12k1\{\nu_{j}\}_{1}^{2k_{1}} be part of L1L3L_{1}\cup L_{3}, then, {ν¯j}12k2\{\bar{\nu}_{j}\}_{1}^{2k_{2}} be part of L2L4L_{2}\cup L_{4}.

  • 5.

    [D+(t)]1(t,ζ)[D_{+}^{(t)}]_{1}(t,\zeta) enjoy simple poles for ζ={νj}12k1\zeta=\{\nu_{j}\}_{1}^{2k_{1}} and the [D(t)]2(t,Λ)[D_{-}^{(t)}]_{2}(t,\Lambda) enjoy simple poles for ζ={ν¯j}12k2\zeta=\{\bar{\nu}_{j}\}_{1}^{2k_{2}}. In this case, the residue relations define by

    Res{[D(t)(t,ζ)]1,νj}=e2(8γνj42νj2)tZ(νj)Y˙(νj)[D(t)(t,νj)]2,\displaystyle\mathrm{Res}\{[D^{(t)}(t,\zeta)]_{1},\nu_{j}\}=\frac{e^{-2(8\gamma\nu_{j}^{4}-2\nu_{j}^{2})t}}{Z(\nu_{j})\dot{Y}(\nu_{j})}[D^{(t)}(t,\nu_{j})]_{2}, (3.11a)
    Res{[D(t)(t,ζ)]2,ν¯j}=e2(8γν¯j42ν¯j2)tZ(ν¯j)¯Y˙(νj)¯[D(t)(t,νj)]1.\displaystyle\mathrm{Res}\{[D^{(t)}(t,\zeta)]_{2},\bar{\nu}_{j}\}=\frac{e^{2(8\gamma\bar{\nu}_{j}^{4}-2\bar{\nu}_{j}^{2})t}}{\overline{Z(\bar{\nu}_{j})}\overline{\dot{Y}(\nu_{j})}}[D^{(t)}(t,\nu_{j})]_{1}. (3.11b)

4 The Riemann-Hilbert problem

In this part, we give two important results in theorem form.

Theorem 4.12

Set u0(x)𝒮(R+)u_{0}(x)\in\mathcal{S}(\mathrm{R^{+}}), and ψ(ζ),ϕ(ζ)\psi(\zeta),\phi(\zeta) is defined in terms of y(ζ)y(\zeta), z(ζ)z(\zeta), Y(ζ),Z(ζ)Y(\zeta),Z(\zeta) are showed in Eq.(2.41), respectively. And the y(ζ)y(\zeta), z(ζ)z(\zeta), Y(ζ),Z(ζ)Y(\zeta),Z(\zeta) are denotes by functions u0(z)u_{0}(z), vj(t),j=0,,3v_{j}(t),j=0,\ldots,3 are showed in Definition 3.1 and Definition 3.4. Assume that the function y(ζ)y(\zeta) possess the possible simple zeros are {ςj}j=12n\{\varsigma_{j}\}_{j=1}^{2n}, and the function ρ(ζ)\rho(\zeta) possess the possible simple zeros are {ηj}j=12N\{\eta_{j}\}_{j=1}^{2N}. Therefore, the solution of the FODNLS equation (1.2) is

u(x,t)=2ilimζ(ζD(x,t,ζ))12,\displaystyle u(x,t)=2i\lim_{\zeta\rightarrow\infty}(\zeta D(x,t,\zeta))_{12}, (4.1)

where D(x,t,ζ)D(x,t,\zeta) is the solution of the RH problems as follows:

  • 1.

    D(x,t,ζ)D(x,t,\zeta) is a piecewise analytic function for ζC\Γm(m=1,,4)\zeta\in C\backslash\Gamma_{m}\,(m=1,\ldots,4).

  • 2.

    D(x,t,ζ)D(x,t,\zeta) jump appears on the curves Γm,\Gamma_{m}, which meets the jump conditions as

    D+(x,t,ζ)=D(x,t,ζ)Q(x,t,ζ),ζΓm,m=1,,4D_{+}(x,t,\zeta)=D_{-}(x,t,\zeta)Q(x,t,\zeta),\,\zeta\in\Gamma_{m},m=1,\ldots,4 (4.2)
  • 3.

    D(x,t,ζ)=I+O(1ζ),ζD(x,t,\zeta)=\mathrm{I}+O(\frac{1}{\zeta}),\,\zeta\rightarrow\infty.

  • 4.

    D(x,t,ζ)D(x,t,\zeta) possess residue relationship are showed in Proposition 2.5.

Thus, the matrix function D(x,t,ζ)D(x,t,\zeta) exists and is unique. Furthermore

u(x,0)=u0(x),u(0,t)=v0(t),ux(0,t)=v1(t),uxx(0,t)=v2(t),uxxx(0,t)=v3(t).u(x,0)=u_{0}(x),\,\,u(0,t)=v_{0}(t),\,\,u_{x}(0,t)=v_{1}(t),\,\,u_{xx}(0,t)=v_{2}(t),\,\,u_{xxx}(0,t)=v_{3}(t).

Proof. In fact, the manifest of this RH problem by following[7].

Theorem 4.13

(The vanishing theorem) If the matrix function D(x,t,ζ)0(ζ),D(x,t,\zeta)\rightarrow 0\,\,(\zeta\rightarrow\infty), then, the RH problem in Theorem 4.1 possess only the zero solution.

Proof. Indeed, the derivation of this vanishing theorem is given in[7].

Remark 4.14

So far, we have obtained the RH problem of Eq.(1.2) on the half-line, when γ=0\gamma=0, that is the IBVPs of the standard NLS equation case[7]. Different from the standard NLS equation, where the bounded analytical region and the jump curve of the FODNLS equation (1.2) are different. which the jump curve contains not only the coordinate axis, but also the hyperbola on the xx-axis, and the analytical region is not symmetrical.

5 Conclusions

In this paper, we utilize Fokas method to investigate integrable FODNLS equation(1.2), which can simulate the nonlinear transmission and interaction of ultrashort pulses in the high-speed optical fiber transmission system, and describe the nonlinear spin excitation phenomenon of one-dimensional Heisenberg ferromagnetic chain with eight poles and dipole interaction. Introduce a slice of important functions to spectral analysis of the Lax pair, established the basic RH problem, and the global relationship between spectral functions is also given. Furthermore, we can analyze the integrable FODNLS equation(1.2) on a finite interval, and also discuss the asymptotic behavior for the solution of the integrable FODNLS equation(1.2). These two questions will be studied in our future investigation.

Acknowledgements

This work has been partially supported by the NSFC (Nos. 11601055, 11805114 and 11975145), the NSF of Anhui Province (No.1408085QA06), the University Excellent Talent Fund of Anhui Province (No. gxyq2019096), the Natural Science Research Projects in Colleges and Universities of Anhui Province (No. KJ2019A0637).

References

References

  • [1] C. S. Gardner, J. M. Green, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967) 1095-1097.
  • [2] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) 1192-1194.
  • [3] H. D. Wahlquist, F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31 (1973) 1386-1390.
  • [4] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991.
  • [5] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. A 453 (1997) 1411-1443.
  • [6] A. S. Fokas, Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys. 230 (2002) 1-39.
  • [7] A. S. Fokas, A. R. Its, L. Y. Sung, The nonlinear Schrödinger equation on the half-line, Nonlinearity 18 (2005) 1771-1822.
  • [8] J. Lenells, The derivative nonlinear Schrödinger equation on the half-line, Phys. D 237 (2008) 3008-3019.
  • [9] J. Lenells, Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole, Comm. Math. Phys. 304 (2011) 585-635.
  • [10] B. Q. Xia, A. S. Fokas, Initial-boundary value problems associated with the Ablowitz-Ladik system, Phys. D 364 (2018) 27-61.
  • [11] B. B. Hu, T. C. Xia, A Riemann-Hilbert approach to the initial-boundary value problem for Kundu-Eckhaus equation on the half line, Complex Var. Elliptic, 64 (2019) 2019-2039.
  • [12] S. Y. Chen, Z. Y. Yan, The Hirota equation: Darboux transform of the Riemann-Hilbert problem and higher-order rogue waves, Appl. Math. Lett. 95 (2019) 65-71.
  • [13] L. Huang, The Initial-Boundary-Value Problems for the Hirota Equation on the Half-Line, Chin. Ann. Math. Ser. B 41 (2020) 117-132.
  • [14] J. Lenells, Initial-boundary value problems for integrable evolution equations with 3×33\times 3 Lax pairs, Phys. D 241 (2012) 857-875.
  • [15] J. Lenells, The Degasperis-Procesi equation on the half-line, Nonlinear Anal. 76 (2013) 122-139.
  • [16] A. Boutet de Monvel, D. Shepelsky, A Riemann-Hilbert approach for the Degasperis-Procesi equation, Nonlinearity 26 (2013) 2081-2107.
  • [17] J. Xu, E. G. Fan, The unified method for the Sasa-Satsuma equation on the half-line, Proc. R. Soc. A, Math. Phys. Eng. Sci. 469 (2013) 1-25.
  • [18] J. Xu, E. G. Fan, The three wave equation on the half-line, Phys. Lett. A 378 (2014) 26-33.
  • [19] X. G. Geng, H. Liu, J. Y. Zhu. Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line, Stud. Appl. Math. 135 (2015) 310-346.
  • [20] H. Liu, X. G. Geng, Initial-boundary problems for the vector modified Korteweg-deVries equation via Fokas unified transform method, J. Math. Anal. Appl. 440 (2016) 578-596.
  • [21] S. F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equations 262 (2017) 506-558.
  • [22] Z.Y. Yan, An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4×44\times 4 Lax pair on the half-line, CHAOS 27 (2017) 053117.
  • [23] Z. Y. Yan, Initial-boundary value problem for an integrable spin-1 Gross-Pitaevskii system with a 4×44\times 4 Lax pair on a finite interval, J. Math. Phys. 60 (2019) 1-70.
  • [24] Q. Z. Zhu, E. G. Fan, J. Xu, Initial-Boundary Value Problem for Two-Component Gerdjikov-Ivanov Equation with 3×33\times 3 Lax Pair on Half-Line, Commun. Theor. Phys. 68 (2017) 425-438.
  • [25] B. B. Hu, T. C. Xia, N. Zhang, The unified transform method to initial-boundary value problem of the coupled cubic-quintic nonlinear Schrödinger system, Complex Anal. Oper. Th. 13 (2019) 1143-1159.
  • [26] B. B. Hu, T. C. Xia, A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line. Math. Method. Appl. Sci. 41(2018) 5112-5123.
  • [27] B. B. Hu, T. C. Xia, N. Zhang, J. B. Wang, Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line. Int. J. Nonlin. Sci. Num. 19 (2018) 83-92.
  • [28] K. Porsezian, M. Daniel, M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys. 33 (1992) 1807-1816.
  • [29] A. Choudhuri, K. Porsezian, Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: A model for sub-10-fs-pulse propagation, Phys. Rev. A 88 (2013) 033808.
  • [30] F. Azzouzi, H. Triki, K. Mezghiche, A. E. Akrmi, Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation, Chaos, Solitons Fractals 39 (2009) 1304-1307.
  • [31] M. Daniel, M. M. Latha, A generalized Davydov soliton model for energy transfer in alpha helical proteins, Phys. A 298 (2001) 351-370.
  • [32] H. Q. Zhang, B. Tian, X. H. Meng, X. Lü, W. J. Liu, Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation, Eur. Phys. J. B 72 (2009) 233-239.
  • [33] X. L. Wang, W. G. Zhang, B. G. Zhai, H. Q. Zhang, Rogue waves of the higher-order dispersive nonlinear Schrödinger equation, Commun. Theor. Phys. 58 (2012) 531-538.
  • [34] L. H. Wang, K. Porsezian, J. S. He, Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation, Phys. Rev. E 87 (2013) 053202.
  • [35] B. Yang, W. G. Zhang, H. Q. Zhang, S. B. Pei, Generalized Darboux transformation and rogue wave solutions for the higher-order dispersive nonlinear Schrödinger equation, Phys. Scr. 88 (2013) 065004.
  • [36] W. H. Liu, Y. Liu, Y. F. Zhang, D. D. Shi, Riemann-Hilbert approach for multi-soliton solutions of a fourth-order nonlinear Schrödinger equation, Modern Phys. Lett. B (2019) 1950416.
  • [37] M. Li, B. T. Wang, T. Xu, J. J. Shui, Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation, Acta Phys. Sin. 69 (2020) 010502.
  • [38] R. X. Liu, B. Tian, L. C. Liu, B. Qin, X. Lü, Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics, Phys. B 413 (2013) 120-125.
  • [39] R. X. Liu, B. Tian, Y. Jiang, P. Wang, Dark solitonic excitations and collisions from a fourth-order dispersive nonlinear Schrödinger model for the alpha helical protein, Commun. Nonlinear. Sci. Numer. Simulat. 19 (2014) 520-529.
  • [40] P. A. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, Ann. Math. 137 (1993) 295-368.