This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ricci limit flows and weak solutions

Beomjun Choi and Robert Haslhofer
Abstract.

In this paper we reconcile several different approaches to Ricci flow through singularities that have been proposed over the last few years by Kleiner-Lott, Haslhofer-Naber and Bamler. Specifically, we prove that every noncollapsed limit of Ricci flows, as provided by Bamler’s precompactness theorem, as well as every singular Ricci flow from Kleiner-Lott, is a weak solution in the sense of Haslhofer-Naber. We also generalize all path-space estimates from Haslhofer-Naber to the setting of noncollapsed Ricci limit flows.
The key step to establish these results is a new hitting estimate for Brownian motion. A fundamental difficulty, in stark contrast to all prior hitting estimates in the literature, is the lack of lower heat kernel bounds under Ricci flow. To overcome this, we introduce a novel approach to hitting estimates that compensates for the lack of lower heat kernel bounds by making use of the heat kernel geometry of space-time.

1. Introduction

A family of Riemannian metrics (gt)tI(g_{t})_{t\in I}, say on a closed nn-dimensional manifold MM, evolves by Ricci flow if

(1.1) tgt=2Rc(gt).\partial_{t}g_{t}=-2\mathrm{Rc}(g_{t}).

In a recent breakthrough [Bam20a, Bam20b, Bam20c], Bamler established a precompactness and partial regularity theory. The limits provided by his precompactness theorem are so-called metric flows. A metric flow

(1.2) 𝒳=(𝒳,𝔱,(dt)tI,(νx;s)x𝒳,sI,s𝔱(x)),\mathcal{X}=\left(\mathcal{X},\mathfrak{t},(d_{t})_{t\in I},(\nu_{x;s})_{x\in\mathcal{X},s\in I,s\leq\mathfrak{t}(x)}\right),

is given by a set 𝒳\mathcal{X}, a time-function 𝔱:𝒳\mathfrak{t}:\mathcal{X}\to\mathbb{R}, complete separable metrics dtd_{t} on the time-slices 𝒳t=𝔱1(t)\mathcal{X}_{t}=\mathfrak{t}^{-1}(t), and probability measures νx;s𝒫(𝒳s)\nu_{x;s}\in\mathcal{P}(\mathcal{X}_{s}) such that the Kolmogorov consistency condition and a certain sharp gradient estimate for the heat flow hold (see Section 3.1 for details). In particular, any smooth Ricci flow can of course be viewed as metric flow by choosing 𝒳=M×I\mathcal{X}=M\times I, defining 𝔱\mathfrak{t} as the projection on II, letting dtd_{t} be the induced metrics on time slices, and setting νx;s\nu_{x;s} to be the conjugate heat kernel measure based at x=(p,t)x=(p,t), i.e.

(1.3) dν(p,t);s(q)=K(p,t;q,s)dVolgs(q),d\nu_{(p,t);s}(q)=K(p,t;q,s)\,d\mathrm{Vol}_{g_{s}}(q),

where K(p,t;q,s)K(p,t;q,s) is the heat kernel of the Ricci flow (specifically, KK solves the forwards heat equation as a function of (p,t)(p,t) and the conjugate heat equation as a function of (q,s)(q,s)).
Under the noncollapsing assumption that the Nash entropy is bounded below, which is of course perfectly natural in light of Perelman’s monotonicity formula [Per02], Bamler proved that the singular set 𝒮𝒳\mathcal{S}\subset\mathcal{X} of the limit flow has parabolic \ast-Minkowski dimension at most n2n-2.


In a different direction, a notion of weak solutions for the Ricci flow has been proposed a few years earlier by Naber and the second author. Specifically, it has been shown in [HN18] that a smooth family of Riemannian metrics (gt)tI(g_{t})_{t\in I} evolves by Ricci flow if and only if the sharp infinite dimensional gradient estimate

(1.4) |p𝔼(p,t)[F]|𝔼(p,t)[|F|]|\nabla_{p}\mathbb{E}_{(p,t)}[F]|\leq\mathbb{E}_{(p,t)}[|\nabla^{\parallel}F|]

holds for all cylinder functions FF on the path space of its space-time. Here, 𝔼(p,t)\mathbb{E}_{(p,t)} denotes the expectation with respect to the Wiener measure of Brownian motion starting at (p,t)(p,t), and \nabla^{\parallel} denotes the parallel gradient, which is defined via a suitable stochastic parallel transport. Based on this characterization it has been proposed that a possibly singular space equipped with a time-function and a linear heat flow should be called a weak solution of the Ricci flow if and only if the sharp infinite dimensional gradient estimate on path space holds for almost every point (p,t)(p,t).

The goal of the present paper is to reconcile these two approaches. As we will explain in detail in Section 3.2, any noncollapsed Ricci limit flow 𝒳\mathcal{X} can be canonically equipped with a notion of Brownian motion and stochastic parallel transport. For now, let us just mention that Brownian motion XτX_{\tau} starting at x𝒳x\in\mathcal{X} is simply characterized by the formula

(1.5) x[Xτ1B1,,XτkBk]=B1××Bk𝑑νx;𝔱(x)τ1(x1)𝑑νxk1;𝔱(x)τk(xk).\mathbb{P}_{x}[X_{\tau_{1}}\in B_{1},\ldots,X_{\tau_{k}}\in B_{k}]=\int_{B_{1}\times\ldots\times B_{k}}d\nu_{x;\mathfrak{t}(x)-\tau_{1}}(x_{1})\ldots d\nu_{x_{k-1};\mathfrak{t}(x)-\tau_{k}}(x_{k}).

Using these notions, we can now state our main theorem:

Theorem 1.1 (Ricci limit flows and weak solutions).

Given any noncollapsed Ricci limit flow 𝒳\mathcal{X}, for any regular point x=(p,t)x=(p,t) we have the infinite dimensional gradient estimate

(1.6) |p𝔼(p,t)[F]|𝔼(p,t)[|F|]|\nabla_{p}\mathbb{E}_{(p,t)}[F]|\leq\mathbb{E}_{(p,t)}[|\nabla^{\parallel}F|]

for all cylinder functions FF. In particular, any noncollapsed limit of Ricci flows, as provided by Bamler’s precompactness theorem, is a weak solution of the Ricci flow in the sense of Haslhofer-Naber.

In fact, our argument applies to any noncollapsed metric flow that satisfies the partial regularity properties from [Bam20c] and solves the Ricci flow equation on its regular part. In particular, viewing any singular Ricci flow from Kleiner-Lott [KL17] as a metric flow as in [Bam20b, Section 3.7], we can confirm a prediction from [HN18]:

Corollary 1.2 (singular Ricci flows and weak solutions).

Every singular Ricci flow in the sense of Kleiner-Lott is a weak solution of the Ricci flow in the sense of Haslhofer-Naber.

As another important consequence of Theorem 1.1 (Ricci limit flows and weak solutions) all other path-space estimates for smooth flows from [HN18] generalize to the path-space of noncollapsed Ricci limit flows as well:

Corollary 1.3 (estimates on path-space of Ricci limit flows).

The following estimates hold on path-space of any noncollapsed Ricci limit flow 𝒳\mathcal{X}:

  • For every cylinder function FF the induced martingale FτF_{\tau} for almost every (p,t)𝒳(p,t)\in\mathcal{X} satisfies the quadratic variation estimate

    (1.7) 𝔼(p,t)[d[F]τdτ]2𝔼(p,t)[|τF|2].\mathbb{E}_{(p,t)}\left[\frac{d[F_{\bullet}]_{\tau}}{d\tau}\right]\leq 2\mathbb{E}_{(p,t)}\left[\lvert\nabla^{\parallel}_{\tau}F\rvert^{2}\right].
  • For almost every (p,t)𝒳(p,t)\in\mathcal{X} the Ornstein-Uhlenbeck operator on path-space, τ1,τ2=τ1τ2ττdτ\mathcal{L}_{\tau_{1},\tau_{2}}=\int_{\tau_{1}}^{\tau_{2}}\nabla^{\parallel\ast}_{\tau}\,\nabla^{\parallel}_{\tau}d\tau, satisfies the log-Sobolev inequality

    (1.8) 𝔼(p,t)[((F2)τ2log(F2)τ2(F2)τ1log(F2)τ1)]4𝔼(p,t)[F,τ1,τ2F].\mathbb{E}_{(p,t)}\left[\left((F^{2})_{\tau_{2}}\log\,(F^{2})_{\tau_{2}}-(F^{2})_{\tau_{1}}\log\,(F^{2})_{\tau_{1}}\right)\right]\\ \leq 4\mathbb{E}_{(p,t)}\left[\langle F,\mathcal{L}_{\tau_{1},\tau_{2}}F\rangle\right].
  • For almost every (p,t)𝒳(p,t)\in\mathcal{X} the Ornstein-Uhlenbeck operator on path-space satisfies the spectral gap estimate

    (1.9) 𝔼(p,t)[(Fτ2Fτ1)2]2𝔼(p,t)[F,τ1,τ2F].\mathbb{E}_{(p,t)}\left[(F_{\tau_{2}}-F_{\tau_{1}})^{2}\right]\leq 2\mathbb{E}_{(p,t)}\left[\langle F,\mathcal{L}_{\tau_{1},\tau_{2}}F\rangle\right].

Indeed, once the gradient estimate (1.6) is established, all other path-space estimates follow arguing similarly as in [HN18, Section 4].

The key for proving Theorem 1.1 (Ricci limit flows and weak solutions) is a new hitting estimate for the Ricci flow. For exposition sake, let us first discuss this estimate in the context of smooth Ricci flows. To this end, let (gt)t(t02r2,t0](g_{t})_{t\in(t_{0}-2r^{2},t_{0}]} be a Ricci flow on a closed nn-dimensional manifold MM, and recall that the Nash entropy based at (p0,t0)(p_{0},t_{0}) is defined by

(1.10) 𝒩(p0,t0)(τ):=MlogK(p0,t0;,t0τ)𝑑ν(p0,t0);t0τn2(1+log(4πτ)).\mathcal{N}_{(p_{0},t_{0})}(\tau):=-\int_{M}\log K(p_{0},t_{0};\cdot,t_{0}-\tau)\,d\nu_{(p_{0},t_{0});t_{0}-\tau}-\frac{n}{2}(1+\log(4\pi\tau)).

Recall also that, given any ε>0\varepsilon>0, the quantitative singular set is defined by

(1.11) 𝒮ε={(p,t):rRm(p,t)ε},\mathcal{S}_{\varepsilon}=\{(p,t)\,:\,r_{\mathrm{Rm}}(p,t)\leq\varepsilon\},

where rRm(p,t)r_{\textrm{Rm}}(p,t) is the largest rr such that |Rm|r2|\mathrm{Rm}|\leq r^{-2} on the backwards parabolic ball P(p,t;r)P_{-}(p,t;r).

Theorem 1.4 (hitting estimate for the Ricci flow).

For all Y<Y<\infty, δ>0\delta>0, and r0(0,r/2)r_{0}\in(0,r/2), there exists a constant C=C(n,Y,δ,r0,r)<C=C(n,Y,\delta,r_{0},r)<\infty, such that if (gt)t(t02r2,t0](g_{t})_{t\in(t_{0}-2r^{2},t_{0}]} is a Ricci flow with 𝒩(p0,t0)(r02)Y\mathcal{N}_{(p_{0},t_{0})}(r_{0}^{2})\geq-Y and rRm(p0,t0)r0r_{\mathrm{Rm}}(p_{0},t_{0})\geq r_{0}, then Brownian motion XτX_{\tau} starting at (p0,t0)(p_{0},t_{0}) satisfies

(1.12) (p0,t0)[Xτ hits 𝒮εP(p0,t0;r) for some τ[0,r2]]Cε2δ\mathbb{P}_{(p_{0},t_{0})}\big{[}\textrm{$X_{\tau}$ hits $\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},t_{0};r)$ for some $\tau\in[0,r^{2}]$}\big{]}\leq C\varepsilon^{2-\delta}

for all ε>0\varepsilon>0.

Heuristically, one can of course easily guess the (almost) quadratic dependence on ε\varepsilon in light of Bamler’s codimension-4 partial regularity result and the intuition that the image of Brownian curves is 2-dimensional. Indeed, hitting estimates in related easier situations go back all the way to the classical work of Kakutani [Kak44]. A sharp hitting estimate for Brownian motion in Euclidean space has been obtained by Benjamini-Pemantle-Peres [BPP95]. Recently, in [CH20] we generalized the Benjamini-Pemantle-Peres estimate to the setting of spaces with Ricci curvature bounded below.

A fundamental new difficulty in the context of Ricci flow, in stark contrast to all prior hitting estimates in the literature, is that the heat kernel only has upper bounds, but no lower bounds. To overcome this, we introduce a novel approach to hitting estimates. Roughly speaking, we compensate for the lack of lower heat kernel bounds by making use of the heat kernel geometry as introduced in [Bam20a], including in particular the properties of HnH_{n}-centers and PP^{\ast} parabolic balls (see Section 2.1 for a discussion of these notions).

Our proof of the hitting estimate also carries through in the more general setting of noncollapsed Ricci limit flows. In particular, we obtain:

Corollary 1.5 (Brownian motion on Ricci limit flows).

If 𝒳\mathcal{X} is a noncollapsed Ricci limit flow, and x𝒳x\in\mathcal{R}\subset\mathcal{X} is a regular point, then the Wiener measure x\mathbb{P}_{x} of Brownian motion starting at xx concentrates on the space of continuous space-time curves that stay entirely in the regular part \mathcal{R}.

Using these results, we can then establish the infinite dimensional gradient estimate on path space by adapting the argument from [HN18] to our setting. Specifically, we first consider the On\mathrm{O}_{n}-frame bundle π:\pi:\mathcal{F}\to\mathcal{R} over the regular part. Recalling that this bundle comes with a distribution of horizontal (n+1)(n+1)-planes induced by Hamilton’s space-time connection, we can then construct a process UτU_{\tau}\in\mathcal{F} as unique horizontal lift of the Brownian motion XτX_{\tau}\in\mathcal{R}. Thanks to Corollary 1.5 (Brownian motion on Ricci limit flows) the process UτU_{\tau} does not explode. This enables us to define the stochastic parallel transport map

(1.13) Pτ:=U0Uτ1:TXτ𝔱(x)τTx𝔱(x),P_{\tau}:=U_{0}U_{\tau}^{-1}:T_{X_{\tau}}\mathcal{R}_{\mathfrak{t}(x)-\tau}\to T_{x}\mathcal{R}_{\mathfrak{t}(x)},

which in turn allows us to define the parallel gradient of any cylinder function F(X)=f(Xτ1,,Xτk)F(X)=f(X_{\tau_{1}},\ldots,X_{\tau_{k}}) by

(1.14) F(X)=i=1kPτigradg𝔱(x)τi(i)f(Xτ1,,Xτk).\nabla^{\parallel}F(X)=\sum_{i=1}^{k}P_{\tau_{i}}\mathrm{grad}^{(i)}_{g_{\mathfrak{t}(x)-\tau_{i}}}f(X_{\tau_{1}},\ldots,X_{\tau_{k}}).

Another key step is to show that if vv is a heat flow, then its gradient at any regular point xx\in\mathcal{R} is given by the Feynman-Kac type representation formula

(1.15) gradgtv(x)=𝔼x[Ptsgradgtsv|s],\mathrm{grad}_{g_{t}}v(x)=\mathbb{E}_{x}\left[P_{t-s}\mathrm{grad}_{g_{t-s}}v|_{\mathcal{R}_{s}}\right],

where t=𝔱(x)t=\mathfrak{t}(x). To show this, we localize on 𝒳𝒮ε\mathcal{X}\setminus\mathcal{S}_{\varepsilon} via a suitable cutoff function, and then take the limit ε0\varepsilon\to 0 using Theorem 1.4 (hitting estimate for the Ricci flow). Finally, after this is established, we check that the rest of the argument from [HN18] goes through with minor adaptions.

This article is organized as follows. In Section 2, we prove Theorem 1.4 (hitting estimate for the Ricci flow). In Section 3, we prove Theorem 1.1 (Ricci limit flows and weak solutions).


Acknowledgements. The second author has been supported by an NSERC Discovery Grant and a Sloan Research Fellowship.


2. Hitting estimate for Ricci flow

2.1. Notation and preliminaries

Let (gt)tI(g_{t})_{t\in I} be a Ricci flow on a closed nn-dimensional manifold MM. The heat kernel K(p,t;q,s)K(p,t;q,s), where p,qMp,q\in M and s<ts<t in II, is defined by

(2.1) (tΔgt)K(,;q,s)=0,limtsK(,t;q,s)=δq.(\partial_{t}-\Delta_{g_{t}})K(\cdot,\cdot;q,s)=0,\qquad\lim_{t\searrow s}K(\cdot,t;q,s)=\delta_{q}.

By duality, as a function of the last two variables this solves the conjugate problem

(2.2) (sΔgs+Rgs)K(p,t;,)=0,limstK(p,t;,s)=δp.\displaystyle(-\partial_{s}-\Delta_{g_{s}}+R_{g_{s}})K(p,t;\cdot,\cdot)=0,\qquad\lim_{s\nearrow t}K(p,t;\cdot,s)=\delta_{p}.

The conjugate heat kernel measure is defined by

(2.3) dν(p,t);s(q)=K(p,t;q,s)dVolgs(q),dν(p,t);t=δp.\displaystyle d\nu_{(p,t);s}(q)=K(p,t;q,s)d\mathrm{Vol}_{g_{s}}(q),\qquad d\nu_{(p,t);t}=\delta_{p}.

Note that this is a probability measure. We often write

(2.4) dν(p,t);s(q)=(4πτ)n/2ef(p,t)(q,s)dVolgs(q),\displaystyle d\nu_{(p,t);s}(q)=(4\pi\tau)^{-n/2}e^{-f_{(p,t)}(q,s)}d\mathrm{Vol}_{g_{s}}(q),

where τ=ts\tau=t-s. In terms of the potential f(p,t)f_{(p,t)} the pointed Nash entropy is given by

(2.5) 𝒩(p,t)(τ)=f(p,t)(,tτ)𝑑ν(p,t);tτn2.\displaystyle\mathcal{N}_{(p,t)}(\tau)=\int f_{(p,t)}(\cdot,t-\tau)d\nu_{(p,t);t-\tau}-\frac{n}{2}.

By Perelman’s monotonicity formula [Per02], the function ττ𝒩(p,t)(τ)\tau\mapsto\tau\mathcal{N}_{(p,t)}(\tau) is concave. We also recall from [Bam20a, Proposition 5.2] that τ𝒩(p,t)(τ)\tau\mapsto\mathcal{N}_{(p,t)}(\tau) is nonincreasing, and hence 𝒩(p,t)0\mathcal{N}_{(p,t)}\leq 0, and

(2.6) ddτ𝒩(p,t)(τ)minqMR(q,t0τ)n2τ.\displaystyle\frac{d}{d\tau}\mathcal{N}_{(p,t)}(\tau)\geq\min_{q\in M}R(q,t_{0}-\tau)-\frac{n}{2\tau}.

Next, we recall the well known fact (see e.g. [Bam20a, Lemma 2.7]) that under Ricci flow the 1-Wasserstein distance between conjugate heat kernel measures is monotone, namely

(2.7) sdW1(gs)(ν(p1,t1);s,ν(p2,t2);s) is nondecreasing.\displaystyle s\mapsto d_{W_{1}(g_{s})}(\nu_{(p_{1},t_{1});s},\nu_{(p_{2},t_{2});s})\quad\textrm{ is nondecreasing}.

Here, by Kantorovich duality, the 1-Wasserstein distance between probability measures is given by

(2.8) dW1(g)(μ1,μ2)=supMf𝑑μ1Mf𝑑μ2,\displaystyle d_{W_{1}(g)}(\mu_{1},\mu_{2})=\sup\int_{M}fd\mu_{1}-\int_{M}fd\mu_{2},

where the supremum is taken over all bounded 11-Lipschitz functions f:(M,g)f:(M,g)\rightarrow\mathbb{R}. Motivated by this, Bamler pointed out that instead of considering conventional parabolic balls

(2.9) P(p0,t0;r):=Bgt0(p0;r)×[t0r2,t0+r2],\displaystyle P(p_{0},t_{0};r):=B_{g_{t_{0}}}(p_{0};r)\times[t_{0}-r^{2},t_{0}+r^{2}],

it is often more useful to consider so-called PP^{*} parabolic balls defined by

(2.10) P(p0,t0;r):={(p,t)M×[t0r2,t0+r2]:dW1(gt0r2)(ν(p0,t0);t0r2,ν(p,t);t0r2)<r}.\displaystyle P^{*}(p_{0},t_{0};r):=\big{\{}(p,t)\in M\times[t_{0}-r^{2},t_{0}+r^{2}]\,:\,d_{W_{1}({g_{t_{0}-r^{2}}})}(\nu_{(p_{0},t_{0});t_{0}-r^{2}},\nu_{(p,t);t_{0}-r^{2}})<r\big{\}}.

By [Bam20a, Proposition 9.4], PP^{*} parabolic balls satisfy similar containment principles as conventional parabolic balls, in particular:

(p1,t1)P(p2,t2;r)\displaystyle(p_{1},t_{1})\in P^{*}(p_{2},t_{2};r) P(p2,t2;r)P(p1,t1;2r),\displaystyle\quad\Rightarrow\quad P^{*}(p_{2},t_{2};r)\subseteq P^{*}(p_{1},t_{1};2r),
(2.11) (p1,t1)P(p2,t2;r)\displaystyle(p_{1},t_{1})\in P^{*}(p_{2},t_{2};r) P(p1,t1,r)P(p2,t2;r+r).\displaystyle\quad\Rightarrow\quad P^{*}(p_{1},t_{1},r^{\prime})\subseteq P^{*}(p_{2},t_{2};r+r^{\prime}).

Moreover, by [Bam20a, Theorem 9.8], there is some universal C<C<\infty, such that if [t02r2,t0]I[t_{0}-2r^{2},t_{0}]\subseteq I, then for all t[t0r2,t0+r2]t^{\prime}\in[t_{0}-r^{2},t_{0}+r^{2}] the volume of the time tt^{\prime}-slices is bounded by

(2.12) Volgt(P(p0,t0;r){t=t})Ce𝒩(p0,t0)(r2)rn.\displaystyle\mathrm{Vol}_{g_{t^{\prime}}}(P^{*}(p_{0},t_{0};r)\cap\{t=t^{\prime}\})\leq Ce^{\mathcal{N}_{(p_{0},t_{0})}(r^{2})}r^{n}.

We will also need the covering result from [Bam20a, Theorem 9.11], which says that there is some universal constant C<C<\infty with the following significance: If [t02r2,t0]I[t_{0}-2r^{2},t_{0}]\subseteq I, then for any XP(p0,t0;r)X\subseteq P^{*}(p_{0},t_{0};r) and any λ(0,1)\lambda\in(0,1), we can find points (q1,s1)(q_{1},s_{1}), \dots, (qN,sN)(q_{N},s_{N}) in XX such that

(2.13) Xi=1NP(qi,si;λr) and NCλ(n+2).\displaystyle X\subseteq\bigcup_{i=1}^{N}P^{*}(q_{i},s_{i};\lambda r)\quad\text{ and }\quad N\leq C\lambda^{-(n+2)}.

Now, assuming [t02r2,t0]I[t_{0}-2r^{2},t_{0}]\subseteq I and 𝒩(p0,t0)(r2)Y\mathcal{N}_{(p_{0},t_{0})}(r^{2})\geq-Y, if we consider the quantitative singular set

(2.14) 𝒮ε={(p,t):rRm(p,t)ε},\mathcal{S}_{\varepsilon}=\{(p,t)\,:\,r_{\mathrm{Rm}}(p,t)\leq\varepsilon\},

where rRm(p,t)r_{\textrm{Rm}}(p,t) is the largest rr such that |Rm|r2|\mathrm{Rm}|\leq r^{-2} on P(p,t;r)=Bgt(p;r)×[t0r2,t0]P_{-}(p,t;r)=B_{g_{t}}(p;r)\times[t_{0}-r^{2},t_{0}], then by Bamler’s quantitative parabolic \ast-Minkowski codimension-4 bound [Bam20c, Theorem 1.26] we can find points (q1,s1)(q_{1},s_{1}), \ldots, (qN,sN)(q_{N},s_{N})\in𝒮εP(p0,t0;r)\mathcal{S}_{\varepsilon}\cap P^{\ast}_{-}(p_{0},t_{0};r) such that

(2.15) 𝒮εP(p0,t0;r)i=1NP(qi,si;ε) and NCε(n2)δ,\displaystyle\mathcal{S}_{\varepsilon}\cap P^{\ast}_{-}(p_{0},t_{0};r)\subseteq\bigcup_{i=1}^{N}P^{*}(q_{i},s_{i};\varepsilon)\quad\text{ and }\quad N\leq C\varepsilon^{-(n-2)-\delta},

where C<C<\infty is a constant that only depends on n,Y,rn,Y,r and δ\delta. Note that for smooth flows we could equally well work with two-sided parabolic balls, but for the generalization to noncollapsed limit flows it is better to use backwards parabolic balls P(p0,t0;r)=P(p0,t0;r){tt0}P^{*}_{-}(p_{0},t_{0};r)=P^{*}(p_{0},t_{0};r)\cap\{t\leq t_{0}\}.
Finally, in general there is no containment between PP and PP^{\ast} parabolic balls. However, if we assume rRm(p,t)rr_{\mathrm{Rm}}(p,t)\geq r then by [Bam20a, Corollary 9.6] we have

(2.16) P(p0,t0;ηr)P(p0,t0;r)andP(p0,t0;ηr)P(p0,t0;r),P_{-}(p_{0},t_{0};\eta r)\subseteq P^{\ast}_{-}(p_{0},t_{0};r)\qquad\textrm{and}\qquad P^{\ast}_{-}(p_{0},t_{0};\eta r)\subseteq P_{-}(p_{0},t_{0};r),

where η>0\eta>0 is a universal constant.


Next, by an important discovery of Bamler [Bam20a, Corollary 3.7], under Ricci flow

(2.17) sVargs(ν(p1,t1);s,ν(p2,t2);s)+Hns is nondecreasing.s\mapsto\mathrm{Var}_{g_{s}}(\nu_{(p_{1},t_{1});s},\nu_{(p_{2},t_{2});s})+H_{n}s\quad\textrm{ is nondecreasing}.

Here, Hn=π2(n1)/2+4H_{n}=\pi^{2}(n-1)/2+4, and the variance between two probability measure on (M,g)(M,g) is defined as

(2.18) Varg(μ1,μ2)=M×Mdg2(x1,x2)𝑑μ1(x1)𝑑μ2(x2).\displaystyle\mathrm{Var}_{g}(\mu_{1},\mu_{2})=\iint_{M\times M}d_{g}^{2}(x_{1},x_{2})d\mu_{1}(x_{1})d\mu_{2}(x_{2}).

Motivated by this, as in [Bam20a, Definition 3.10] a point (q,s)(q,s) is called an HnH_{n}-center of (p,t)(p,t) if sts\leq t and

(2.19) Vargs(δq,ν(p,t);s)Hn(ts).\displaystyle\mathrm{Var}_{g_{s}}(\delta_{q},\nu_{(p,t);s})\leq H_{n}(t-s).

As a direct consequence of (2.17), given any (p,t)(p,t) and sts\leq t, there always exists at least one HnH_{n}-center (q,s)(q,s) of (p,t)(p,t) and the distance between any two such HnH_{n}-centers is bounded by

(2.20) dgs(q,q)2Hn(ts).\displaystyle d_{g_{s}}(q,q^{\prime})\leq 2\sqrt{H_{n}(t-s)}.

Moreover, as a direct consequence of the definitions for any A<A<\infty one has

(2.21) ν(p,t);s(Bgs(q,AHn(ts))1A1.\displaystyle\nu_{(p,t);s}(B_{g_{s}}(q,\sqrt{AH_{n}(t-s}))\geq 1-A^{-1}.

Finally, in general there is no universal bound on the distance from HnH_{n}-centers to the base point pp. However, if we assume for instance rRm(p,t)rr_{\mathrm{Rm}}(p,t)\geq r, then by [Bam20a, Proof of Proposition 9.5] there is universal C<C<\infty, such that for all HnH_{n}-centers (q,s)(q,s) with s[tC1r2,t)s\in[t-C^{-1}r^{2},t) there holds

(2.22) ds(q,p)Cts.\displaystyle d_{s}(q,p)\leq C\sqrt{t-s}.

To conclude this subsection, let us discuss heat kernel bounds. By [Bam20a, Theorem 7.2], if RRminR\geq R_{\textrm{min}} and [tτ,t]I[t-\tau,t]\subseteq I, then for some C=C(τRmin)<C=C(\tau\cdot R_{\textrm{min}})<\infty we have the upper bound

(2.23) K(p,t;q,tτ)Cτn/2e𝒩(p,t)(τ)edtτ(ptτ,q)210τ,\displaystyle K(p,t;q,t-\tau)\leq\frac{C}{\tau^{n/2}}e^{-\mathcal{N}_{(p,t)}(\tau)}e^{-\frac{d_{t-\tau}(p_{t-\tau},q)^{2}}{10\tau}},

where (ptτ,tτ)(p_{t-\tau},t-\tau) is any HnH_{n}-center of (p,t)(p,t). In general, there are no corresponding lower bounds.


2.2. Proof of the hitting estimate

In this subsection, we prove Theorem 1.4 (hitting estimate for the Ricci flow). By time translation and parabolic rescaling we may assume that t0=0t_{0}=0 and r=1r=1, i.e. it suffices to prove:

Theorem 2.1 (hitting estimate for the Ricci flow; restated).

For all Y<Y<\infty, δ>0\delta>0, and r0(0,1/2)r_{0}\in(0,1/2), there exists a constant C=C(n,Y,δ,r0)<C=C(n,Y,\delta,r_{0})<\infty, such that if (gt)t(2,0](g_{t})_{t\in(-2,0]} is a Ricci flow with 𝒩(p0,0)(r02)Y\mathcal{N}_{(p_{0},0)}(r_{0}^{2})\geq-Y and rRm(p0,0)r0r_{\mathrm{Rm}}(p_{0},0)\geq r_{0}, then Brownian motion XτX_{\tau} starting at (p0,0)(p_{0},0) satisfies

(2.24) (p0,0)[Xτ hits 𝒮εP(p0,0;1) for some τ[0,1]]Cε2δ\mathbb{P}_{(p_{0},0)}\big{[}\textrm{$X_{\tau}$ hits $\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},0;1)$ for some $\tau\in[0,1]$}\big{]}\leq C\varepsilon^{2-\delta}

for all ε>0\varepsilon>0.

Proof.

To begin with, let us observe that since the flow is defined on the interval (2,0](-2,0], the maximum principle for the evolution of scalar curvature under Ricci flow implies

(2.25) Rn/2fort[1,0].R\geq-n/2\qquad\textrm{for}\qquad t\in[-1,0].

Together with (2.6) and the assumption 𝒩(p0,0)(r02)Y\mathcal{N}_{(p_{0},0)}(r_{0}^{2})\geq-Y this yields

(2.26) 𝒩(p0,0)(1)C(r0,Y).\mathcal{N}_{(p_{0},0)}(1)\geq-C(r_{0},Y).

Hence, we have all the estimates from the previous subsection, which depend on a lower scalar bound and/or a lower entropy bound, at our disposal. In the following, we will simply write CC for constants that only depend on n,Y,δn,Y,\delta and r0r_{0}, and are allowed to change from line to line. Also, we can assume throughout that εr0/10\varepsilon\leq r_{0}/10, since otherwise there is nothing to prove.

As above, denote by XτX_{\tau} Brownian motion on our Ricci flow starting at (p0,0)(p_{0},0). Given any closed subset 𝒜M×[1,0]\mathcal{A}\subseteq M\times[-1,0], we consider the hitting time

(2.27) τ𝒜:=inf{τ>0:Xτ𝒜}[0,].\tau_{\mathcal{A}}:=\inf\{\tau>0\,:\,X_{\tau}\in\mathcal{A}\}\in[0,\infty].

Note that τ𝒜1\tau_{\mathcal{A}}\wedge 1 is a stopping time. Let μ\mu be the distribution of Xτ𝒜1X_{\tau_{\mathcal{A}}\wedge 1}, i.e. set

(2.28) μ(𝒜):=(p0,0)[Xτ𝒜1𝒜]\mu(\mathcal{A}^{\prime}):=\mathbb{P}_{(p_{0},0)}[X_{\tau_{\mathcal{A}}\wedge 1}\in\mathcal{A}^{\prime}]

for any Borel set 𝒜𝒜{\mathcal{A}}^{\prime}\subseteq{\mathcal{A}}. Observe that

(2.29) (p0,0)[Xτ𝒜 for some 0τ1]=μ(𝒜).\mathbb{P}_{(p_{0},0)}[X_{\tau}\in\mathcal{A}\textrm{ for some }{0\leq\tau\leq 1}]=\mu(\mathcal{A}).

In the following, we write 𝒜s:=𝒜{t=s}\mathcal{A}^{\prime}_{s}:=\mathcal{A}^{\prime}\cap\{t=s\} for the time-slices. Our first goal is to show:

Claim 2.1 (hitting distribution).

The hitting distribution measure μ\mu satisfies

(2.30) 10𝒜s𝒜{ts}K(p,t;q,s)𝑑μ(p,t)𝑑Volgs(q)𝑑s10𝒜sC(s)n/2eds(ps,q)210(s)𝑑Volgs(q)𝑑s,\int_{-1}^{0}\int_{\mathcal{A}^{\prime}_{s}}\int_{\mathcal{A}\cap\{t\geq s\}}\ K(p,t;q,s)\,d\mu(p,t)\,d\mathrm{Vol}_{g_{s}}(q)\,ds\\ \leq\int_{-1}^{0}\int_{\mathcal{A}^{\prime}_{s}}\frac{C}{(-s)^{n/2}}e^{-\frac{d_{s}(p_{s},q)^{2}}{10(-s)}}\,d\mathrm{Vol}_{g_{s}}(q)\,ds,

where (ps,s)(p_{s},s) is any HnH_{n}-center of (p0,0)(p_{0},0).

Proof of Claim 2.1.

Consider the expected occupancy time

(2.31) 𝔼(p0,0)[011{Xτ𝒜}𝑑τ]=10𝒜sK(p0,0;q,s)𝑑Volgs(q)𝑑s.\displaystyle\mathbb{E}_{(p_{0},0)}\left[\int_{0}^{1}1_{\{X_{\tau}\in\mathcal{A}^{\prime}\}}d\tau\right]=\int_{-1}^{0}\int_{\mathcal{A}^{\prime}_{s}}K(p_{0},0;q,s)\,d\mathrm{Vol}_{g_{s}}(q)\,ds.

By the upper heat kernel bound (2.23), remembering also (2.25) and (2.26), we can estimate

(2.32) 𝔼(p0,0)[011{Xτ𝒜}𝑑τ]\displaystyle\mathbb{E}_{(p_{0},0)}\left[\int_{0}^{1}1_{\{X_{\tau}\in\mathcal{A}^{\prime}\}}d\tau\right] 10𝒜sC(s)n/2eds(ps,q)210(s)𝑑Volgs(q)𝑑s\displaystyle\leq\int_{-1}^{0}\int_{\mathcal{A}^{\prime}_{s}}\frac{C}{(-s)^{n/2}}e^{-\frac{-d_{s}(p_{s},q)^{2}}{10(-s)}}\,d\mathrm{Vol}_{g_{s}}(q)\,ds\,

where (ps,s)(p_{s},s) is any HnH_{n}-center of (p0,0)(p_{0},0). On the other hand, we can also compute the expected occupancy time of 𝒜\mathcal{A}^{\prime} by conditioning on Xτ𝒜1X_{\tau_{\mathcal{A}}\wedge 1}. Specifically, observing that X(τ𝒜1)+τX_{(\tau_{\mathcal{A}}\wedge 1)+\tau} is a Brownian motion with initial distribution μ\mu, and using the strong Markov property, we infer that

(2.33) 𝔼(p0,0)[011{Xτ𝒜}𝑑τ]𝒜1t𝒜sK(p,t;q,s)𝑑Volgs(q)𝑑s𝑑μ(p,t).\displaystyle\mathbb{E}_{(p_{0},0)}\left[\int_{0}^{1}1_{\{X_{\tau}\in\mathcal{A}^{\prime}\}}d\tau\right]\geq\int_{\mathcal{A}}\int_{-1}^{t}\int_{\mathcal{A}^{\prime}_{s}}K(p,t;q,s)\,d\mathrm{Vol}_{g_{s}}(q)\,ds\,d\mu(p,t).

Changing the order of integration, and combining the above inequalities, the claim follows. ∎


We now fix

(2.34) 𝒜:={xP(p0,0;1):ε/2rRm(x)ε}.\displaystyle\mathcal{A}:=\{x\in P^{*}_{-}(p_{0},0;1):\varepsilon/2\leq r_{\mathrm{Rm}}(x)\leq\varepsilon\}.

Since rRm(p0,0)10εr_{\mathrm{Rm}}(p_{0},0)\geq 10\varepsilon at the initial point, and rRm=εr_{\mathrm{Rm}}=\varepsilon on the support of μ\mu, we see that

(2.35) μ(𝒜)=(p0,0)[Xτ hits 𝒮εP(p0,0;1) for some τ[0,1]].\displaystyle\mu(\mathcal{A})=\mathbb{P}_{(p_{0},0)}\big{[}\text{$X_{\tau}$ hits $\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},0;1)$ for some $\tau\in[0,1]$}\big{]}.

In the standard proof in the elliptic setting, see e.g. our prior paper [CH20], the next step would be to estimate the capacity-type integral A×AK𝑑μ𝑑μ\iint_{A\times A}Kd\mu d\mu, which however only works if AA is a subset of a fixed space. In our current space-time setting, we consider instead the averaged quantity

(2.36) :=𝒜P(q,s;4ηε)𝒜{ts}K(p,t;q,s)𝑑μ(p,t)𝑑Volgs(q)𝑑s𝑑μ(q,s),\displaystyle\mathcal{I}:=\int_{\mathcal{A}}\int_{P^{*}_{-}(q,s;4\eta\varepsilon)}\int_{\mathcal{A}\cap\{t\geq s^{\prime}\}}\ K(p,t;q^{\prime},s^{\prime})\,d\mu(p,t)\,d\mathrm{Vol}_{g_{s^{\prime}}}(q^{\prime})ds^{\prime}\,d\mu(q,s),

where η>0\eta>0 is a small constant to be chosen below. Using Claim 2.1 (hitting distribution) we can estimate

(2.37) 𝒜P(q,s;4ηε)C(s)n/2eds(ps,q)210(s)𝑑Volgs(q)𝑑s𝑑μ(q,s),\displaystyle\mathcal{I}\leq\int_{\mathcal{A}}\int_{P^{*}_{-}(q,s;4\eta\varepsilon)}\frac{C}{(-s^{\prime})^{n/2}}e^{-\frac{d_{s^{\prime}}(p_{s^{\prime}},q^{\prime})^{2}}{10(-s^{\prime})}}d\mathrm{Vol}_{g_{s^{\prime}}}(q^{\prime})ds^{\prime}\,d\mu(q,s),

where (ps,s)(p_{s^{\prime}},s^{\prime}) is any HnH_{n}-center of (p0,0)(p_{0},0) as above. To proceed, we observe that if (q,s)spt(μ)(q,s)\in\textrm{spt}(\mu) and (q,s)P(q,s;4ηε)(q^{\prime},s^{\prime})\in P^{*}_{-}(q,s;4\eta\varepsilon), then fixing η=η(n)\eta=\eta(n) small enough we have the bound

(2.38) 1(s)n/2eds(ps,q)210(s)C.\displaystyle\frac{1}{(-s^{\prime})^{n/2}}e^{-\frac{d_{s^{\prime}}(p_{s^{\prime}},q^{\prime})^{2}}{10(-s^{\prime})}}\leq C.

Indeed, for sufficiently small η\eta, if sηr02-s^{\prime}\leq\eta r_{0}^{2} then using in particular (2.16) and (2.22) we see that ds(ps,q)ηr0d_{s^{\prime}}(p_{s^{\prime}},q^{\prime})\geq\eta r_{0}, and consequently the left hand side of (2.38) is bounded by some C=C(r0)<C=C(r_{0})<\infty. On the other hand, if sηr02-s^{\prime}\geq\eta r_{0}^{2} then the left hand side is clearly bounded by (ηr0)n/2(\eta r_{0})^{-n/2}. Together with the bound (2.12) for the volume of PP^{\ast} parabolic balls, this yields

(2.39) Cεn+2μ(𝒜).\displaystyle\mathcal{I}\leq C\varepsilon^{n+2}\mu(\mathcal{A}).

Next, we would like to bound our quantity \mathcal{I} from below, by estimating the contribution close to the diagonal. Specifically, let us consider Pi=P(pi,ti;ηε)P^{*}_{i}=P^{*}(p_{i},t_{i};\eta\varepsilon) for some (pi,ti)𝒜(p_{i},t_{i})\in\mathcal{A}. Recall that if (p,t)spt(μ)(p,t)\in\mathrm{spt}(\mu), then rRm(p,t)=εr_{\mathrm{Rm}}(p,t)=\varepsilon. Together with (2.22), we thus infer that there is some universal A(1,)A\in(1,\infty) with the following significance: If (p,t),(q,s)Pispt(μ)(p,t),(q,s)\in P^{*}_{i}\cap\mathrm{spt}(\mu) satisfy tst\leq s, then for each s[tA1(ηε)2,t]s^{\prime}\in[{t}-A^{-1}(\eta\varepsilon)^{2},t] there is an HnH_{n}-center (ps,s)(p_{s^{\prime}},s^{\prime}) of (p,t)(p,t) such that

(2.40) Bgs(ps,2Hn(ts))P(q,s;4ηε).\displaystyle B_{g_{s^{\prime}}}(p_{s^{\prime}},\sqrt{{2}H_{n}(t-s^{\prime})})\subseteq P^{*}_{-}(q,s;4\eta\varepsilon).

Combined with (2.21) this implies

(2.41) P(q,s;4ηε)K(p,t;q,s)𝑑Volgs(q)𝑑s12tA1(ηε)2t𝑑sC1ε2.\displaystyle\int_{P^{*}_{-}(q,s;4\eta\varepsilon)}\ K(p,t;q^{\prime},s^{\prime})\,d\mathrm{Vol}_{g_{s^{\prime}}}(q^{\prime})\,ds^{\prime}\geq\frac{1}{2}\int^{t}_{t-A^{-1}(\eta\varepsilon)^{2}}ds^{\prime}\geq C^{-1}\varepsilon^{2}.

This yields

(2.42) PiP(q,s;4ηε)Pi{ts}K(p,t;q,s)𝑑μ(p,t)𝑑Volgs(q)𝑑s𝑑μ(q,s)C1ε2PiPi1{ts}𝑑μ(p,t)𝑑μ(q,s)C1ε22μ(Pi)2.\int_{P^{*}_{i}}\int_{P^{*}_{-}(q,s;4\eta\varepsilon)}\int_{P^{*}_{i}\cap\{t\geq s^{\prime}\}}\ K(p,t;q^{\prime},s^{\prime})\,d\mu(p,t)\,d\mathrm{Vol}_{g_{s^{\prime}}}(q^{\prime})ds^{\prime}\,d\mu(q,s)\\ \geq C^{-1}\varepsilon^{2}\int_{P^{*}_{i}}\int_{P^{*}_{i}}1_{\{t\leq s\}}d\mu(p,t)d\mu(q,s)\geq C^{-1}\frac{\varepsilon^{2}}{2}\mu(P_{i}^{*})^{2}.

Now, let Pi=P(pi,ti;ηε)P^{*}_{i}=P^{*}(p_{i},t_{i};\eta\varepsilon), where (pi,ti)𝒜(p_{i},t_{i})\in\mathcal{A} for i=1,,Ni=1,\ldots,N, be a covering of 𝒜\mathcal{A} with minimal covering number N=N(𝒜,ηε)N=N(\mathcal{A},\eta\varepsilon), i.e.

(2.43) N=min{n: there are (p1,t1),,(pn,tn)𝒜 s.t. 𝒜iP(pi,ti;ηε)}.\displaystyle N=\min\left\{\,n\,:\,\text{ there are }(p_{1},t_{1}),\ldots,(p_{n},t_{n})\ \in\mathcal{A}\text{ s.t. }\mathcal{A}\subseteq\bigcup_{i}P^{*}(p_{i},t_{i};\eta\varepsilon)\right\}.

Observe that, thanks to minimality, the covering multiplicity is uniformly bounded. Indeed, if P(pi1,ti1;ηε)P^{*}(p_{i_{1}},t_{i_{1}};\eta\varepsilon), \dots, P(pim,tim;ηε)P^{*}(p_{i_{m}},t_{i_{m}};\eta\varepsilon) from a minimal covering intersect at some point (p,t)(p,t), then by the containment relations (2.1), these PP^{\ast} parabolic balls are contained in P(p,t;2ηε)P^{*}(p,t;2\eta\varepsilon), and together with the covering result from (2.13) this implies that mm is bounded by some universal constant. Together with (2.42) we thus infer that

(2.44) C1ε2i=1Nμ(Pi)2.\displaystyle\mathcal{I}\geq C^{-1}\varepsilon^{2}\sum_{i=1}^{N}\mu(P_{i}^{\ast})^{2}.

Combined with the elementary inequality

(2.45) μ(𝒜)2(i=1Nμ(Pi))2Ni=1Nμ(Pi)2,\displaystyle\mu(\mathcal{A})^{2}\leq\left(\sum_{i=1}^{N}\mu(P^{*}_{i})\right)^{2}\leq N\sum_{i=1}^{N}\mu(P^{*}_{i})^{2},

and the upper bound from (2.39), this yields

(2.46) μ(𝒜)CNεn.\displaystyle\mu(\mathcal{A})\leq CN\varepsilon^{n}.

Finally, by Bamler’s quantitative parabolic \ast-Minkowski codimension-4 bound from (2.15) we have

(2.47) NCε(n2)δ,\displaystyle N\leq C\varepsilon^{-(n-2)-\delta},

and remembering (2.35) we thus conclude that

(2.48) (p0,0)[Xτ hits 𝒮εP(p0,0;1) for some τ[0,1]]Cε2δ.\displaystyle\mathbb{P}_{(p_{0},0)}\big{[}\text{$X_{\tau}$ hits $\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},0;1)$ for some $\tau\in[0,1]$}\big{]}\leq C\varepsilon^{2-\delta}.

This finishes the proof of the theorem. ∎


Corollary 2.2 (occupancy time).

Under the same assumption as in Theorem 2.1, we have

(2.49) 𝔼(p0,0)[011{Xτ𝒮εP(p0,0;1)}𝑑τ]C(n,Y,δ,r0)ε4δ.\displaystyle\mathbb{E}_{(p_{0},0)}\left[\int_{0}^{1}1_{\{X_{\tau}\in\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},0;1)\}}d\tau\right]\leq C(n,Y,\delta,r_{0})\varepsilon^{4-\delta}.
Proof.

By definition of Brownian motion it holds that

(2.50) 𝔼(p0,0)[011{Xτ𝒮εP(p0,0;1)}𝑑τ]=𝒮εP(p0,0;1)K(p0,0;q,s)𝑑Volgs(q)𝑑s.\displaystyle\mathbb{E}_{(p_{0},0)}\left[\int_{0}^{1}1_{\{X_{\tau}\in\mathcal{S}_{\varepsilon}\cap P^{*}(p_{0},0;1)\}}d\tau\right]=\int_{\mathcal{S}_{\varepsilon}\cap P^{*}_{-}(p_{0},0;1)}K(p_{0},0;q,s)\,d\mathrm{Vol}_{g_{s}}(q)\,ds.

Similarly as in (2.38) we have the estimate

(2.51) sup(q,s)𝒮εP(p0,0;1)K(p0,0;q,s)C.\displaystyle\sup_{(q,s)\in\mathcal{S}_{\varepsilon}\cap P^{*}_{-}(p_{0},0;1)}K(p_{0},0;q,s)\leq C.

Now, by Bamler’s quantitative parabolic \ast-Minkowski codimension-4 bound from (2.15) the set 𝒮εP(p0,t0;1)\mathcal{S}_{\varepsilon}\cap P^{*}_{-}(p_{0},t_{0};1) can be covered by Cεn+2δC\varepsilon^{-n+2-\delta} number of PP^{*}-parabolic balls of radius ε\varepsilon centered at (qi,si)𝒮εP(p0,0;1)(q_{i},s_{i})\in\mathcal{S}_{\varepsilon}\cap P^{*}_{-}(p_{0},0;1). Moreover, by (2.12) the space-time volume of each PP^{\ast} parabolic ball in the covering is bounded by Cεn+2C\varepsilon^{n+2}. Combining the above facts yields the assertion. ∎


3. Ricci limit flows and weak solutions

3.1. Preliminaries on Ricci limit flows

As in [Bam20b, Definition 3.2] a metric flow over II\subseteq\mathbb{R},

(3.1) 𝒳=(𝒳,𝔱,(dt)tI,(νx;s)x𝒳,sI,s𝔱(x)),\mathcal{X}=\left(\mathcal{X},\mathfrak{t},(d_{t})_{t\in I},(\nu_{x;s})_{x\in\mathcal{X},s\in I,s\leq\mathfrak{t}(x)}\right),

consists of a set 𝒳\mathcal{X}, a time-function 𝔱:𝒳\mathfrak{t}:\mathcal{X}\to\mathbb{R}, complete separable metrics dtd_{t} on the time-slices 𝒳t=𝔱1(t)\mathcal{X}_{t}=\mathfrak{t}^{-1}(t), and probability measures νx;s𝒫(𝒳s)\nu_{x;s}\in\mathcal{P}(\mathcal{X}_{s}), such that:

  • νx;𝔱(x)=δx\nu_{x;\mathfrak{t}(x)}=\delta_{x} for all x𝒳x\in\mathcal{X}, and for all t1t2t3t_{1}\leq t_{2}\leq t_{3} in II and all x𝒳t3x\in\mathcal{X}_{t_{3}} we have the Kolmogorov consistency condition

    (3.2) νx;t1=𝒳t2ν;t1𝑑νx;t2.\nu_{x;t_{1}}=\int_{\mathcal{X}_{t_{2}}}\nu_{\cdot;t_{1}}\,d\nu_{x;t_{2}}.
  • For all s<ts<t in II, any T>0T>0, and any T1/2T^{-1/2}-Lipschitz function fs:𝒳sf_{s}:\mathcal{X}_{s}\to\mathbb{R}, setting vs=Φfsv_{s}=\Phi\circ f_{s}, where Φ:(0,1)\Phi:\mathbb{R}\to(0,1) denotes the antiderivative of (4π)1ex2/4(4\pi)^{-1}e^{-x^{2}/4}, the function

    (3.3) vt:𝒳t,x𝒳svs𝑑νx;sv_{t}:\mathcal{X}_{t}\to\mathbb{R},\qquad x\mapsto\int_{\mathcal{X}_{s}}v_{s}\,d\nu_{x;s}

    is of the form vt=Φftv_{t}=\Phi\circ f_{t} for some (ts+T)1/2(t-s+T)^{-1/2}-Lipschitz function ft:𝒳tf_{t}:\mathcal{X}_{t}\to\mathbb{R}.

In particular, on any metric flow we always have a heat flow of integrable functions and a conjugate heat flow of probability measures, which are defined for s𝔱(x)s\leq\mathfrak{t}(x) via the formulas

(3.4) v𝔱(x)(x):=𝒳svs𝑑νx;s,μs:=𝒳tνx;s𝑑μ𝔱(x)(x).v_{\mathfrak{t}(x)}(x):=\int_{\mathcal{X}_{s}}v_{s}\,d\nu_{x;s},\qquad\mu_{s}:=\int_{\mathcal{X}_{t}}\nu_{x;s}\,d\mu_{\mathfrak{t}(x)}(x)\,.

We recall from [Bam20b, Definition 3.30 and Definition 4.25] that a metric flow 𝒳\mathcal{X} is called HH-concentrated if for all sts\leq t in II and all x1,x2𝒳tx_{1},x_{2}\in\mathcal{X}_{t} it holds that

(3.5) Var(νx1;s,νx2;s)dt2(x1,x2)+H(ts),\textrm{Var}(\nu_{x_{1};s},\nu_{x_{2};s})\leq d_{t}^{2}(x_{1},x_{2})+H(t-s),

and is called future continuous at t0It_{0}\in I if for all conjugate heat flows (μt)tI(\mu_{t})_{t\in I^{\prime}} with finite variance and t0It_{0}\in I^{\prime}, the function t𝒳t𝒳tdt𝑑μt𝑑μtt\mapsto\int_{\mathcal{X}_{t}}\int_{\mathcal{X}_{t}}d_{t}\,d\mu_{t}\,d\mu_{t} is right continuous at t0t_{0}.

As in [Bam20b, Definition 5.1] a metric flow pair over an interval II, consists of a metric flow 𝒳\mathcal{X} over III^{\prime}\subseteq I with |II|=0|I\setminus I^{\prime}|=0, and a conjugate heat flow (μt)tI(\mu_{t})_{t\in I^{\prime}} on 𝒳\mathcal{X} with spt(μt)=𝒳t\textrm{spt}(\mu_{t})=\mathcal{X}_{t} for all tIt\in I^{\prime}.

Now, any sequence (Mi,(gti)tIi,pi)(M^{i},(g^{i}_{t})_{t\in I^{i}},p^{i}) of pointed Ricci flows on closed nn-dimensional manifolds, where Ii=(Ti,0]I^{i}=(-T^{i},0] for ease of notation, can be viewed as sequence of metric flow pairs by considering the associated metric flows 𝒳i=Mi×Ii\mathcal{X}^{i}=M^{i}\times I^{i} and the conjugate heat flows (μti)=(ν(pi,0);t)tIi(\mu_{t}^{i})=(\nu_{(p^{i},0);t})_{t\in I^{i}}. By Bamler’s compactness theory [Bam20b] after passing to a subsequence we have 𝔽\mathbb{F}-convergence on compact time intervals to a metric flow pair (𝒳,(νx;t)t(T,0])(\mathcal{X},(\nu_{x_{\infty};t})_{t\in(-T_{\infty},0]}), where 𝒳\mathcal{X} is a future continuous, HnH_{n}-concentrated metric flow of full support over (T,0](-T_{\infty},0], and T=limiTi(0,]T_{\infty}=\lim_{i\to\infty}T^{i}\in(0,\infty].

We will assume throughout that the sequence of Ricci flows is noncollapsed, namely that there are constants τ0>0\tau_{0}>0 and Y0<Y_{0}<\infty such that

(3.6) 𝒩(pi,0)(τ0)Y0.\mathcal{N}_{(p_{i},0)}(\tau_{0})\geq-Y_{0}.

Then, by Bamler’s partial regularity theory [Bam20c] we have the decomposition

(3.7) 𝒳{x}=𝒮\mathcal{X}\setminus\{x_{\infty}\}=\mathcal{R}\cup\mathcal{S}

into regular and singular part, where the singular part 𝒮\mathcal{S} has parabolic \ast-Minkowski dimension at most n2n-2. Furthermore, the 𝔽\mathbb{F}-convergence is smooth on the regular part \mathcal{R}, and the regular part can be equipped with a unique structure of a Ricci flow space-time,

(3.8) =(,𝔱,𝔱,g),\mathcal{R}=(\mathcal{R},\mathfrak{t},\partial_{\mathfrak{t}},g),

as introduced by Kleiner-Lott [KL17]. Hence, \mathcal{R} is a smooth (n+1)(n+1)-manifold, the time-function 𝔱:(T,0)\mathfrak{t}:\mathcal{R}\to(-T_{\infty},0) is smooth without critical points, 𝔱\partial_{\mathfrak{t}} is a vector field on \mathcal{R} satisfying 𝔱𝔱=1\partial_{\mathfrak{t}}{\mathfrak{t}}=1, and g=(gt)t(T,0)g=(g_{t})_{t\in(-T_{\infty},0)} is a smooth inner product on ker(d𝔱)T\textrm{ker}(d\mathfrak{t})\subset T\mathcal{R} satisfying the Ricci flow equation

(3.9) 𝔱g=2Ric(g).\mathcal{L}_{\partial_{\mathfrak{t}}}g=-2\textrm{Ric}(g).

3.2. Brownian motion and stochastic parallel transport

In this subsection, we explain that every noncollapsed Ricci limit flow can be canonically equipped with a notion of Brownian motion and stochastic parallel transport. In the following 𝒳\mathcal{X} denotes any noncollapsed Ricci limit flow, as in the previous subsection. Recall in particular that its regular part 𝒳\mathcal{R}\subset\mathcal{X} has the structure of a Ricci flow space-time.

Definition 3.1 (Brownian motion).

Brownian motion {Xτ}τ[0,T|𝔱(x)|)\{X_{\tau}\}_{\tau\in[0,T_{\infty}-|\mathfrak{t}(x)|)} starting at x𝒳x\in\mathcal{X} is defined by

(3.10) x[Xτ1B1,,XτkBk]=B1××Bk𝑑νx;𝔱(x)τ1(x1)𝑑νxk1;𝔱(x)τk(xk),\mathbb{P}_{x}[X_{\tau_{1}}\in B_{1},\ldots,X_{\tau_{k}}\in B_{k}]=\int_{B_{1}\times\ldots\times B_{k}}d\nu_{x;\mathfrak{t}(x)-\tau_{1}}(x_{1})\ldots d\nu_{x_{k-1};\mathfrak{t}(x)-\tau_{k}}(x_{k}),

for any Borel sets Bi𝒳𝔱(x)τiB_{i}\subseteq\mathcal{X}_{\mathfrak{t}(x)-\tau_{i}} and any times 0τ1<<τk<T|𝔱(x)|0\leq\tau_{1}<\ldots<\tau_{k}<T_{\infty}-|\mathfrak{t}(x)|.

Thanks to the Kolmogorov consistency condition (3.2), there indeed exists a unique such probability measure by the Kolmogorov extension theorem. A priori the probability measure is defined on the infinite product space τ[0,T|𝔱(x)|)𝒳𝔱(x)τ\prod_{\tau\in[0,T_{\infty}-|\mathfrak{t}(x)|)}\mathcal{X}_{\mathfrak{t}(x)-\tau}, but we will see momentarily that for xx\in\mathcal{R} it actually concentrates on the space of continuous space-time curves that stay entirely in the regular part.
Note that in the proof of Theorem 1.1 (hitting estimate for the Ricci flow) we only used the relation between the Wiener measure and the heat kernel, which now holds true by Definition 3.1 (Brownian motion), and Bamler’s estimates that we recalled in Section 3.1, which as explained in [Bam20b, Bam20c] hold for limit flows as well. Let us elaborate on a few technical points: The lower scalar bound (2.25) was only used to derive the Nash entropy bound (2.26) and to get a uniform constant in the heat kernel upper bound (2.23). In the setting of this subsection, one has instead a lower scalar bound along the sequence of smooth flows, and can then pass the Nash entropy bound and the heat kernel upper bound to the limit flow using the definition of 𝔽\mathbb{F}-convergence and [Bam20c, Theorem 1.11]. Furthermore, recall that we defined rRmr_{\mathrm{Rm}} by taking the supremum over backwards parabolic balls P(p,t;r)P_{-}(p,t;r), which is slightly more restrictive than the definition of rRmr_{\mathrm{Rm}}^{\prime} used in [Bam20c, Theorem 1.31]. Hence, (2.15) indeed holds for noncollapsed limit flows.
In particular, for any xx\in\mathcal{R} we obtain

(3.11) x[Xτ hits 𝒮 for some τ[0,T|𝔱(x)|)]=0.\mathbb{P}_{x}\big{[}\textrm{$X_{\tau}$ hits $\mathcal{S}$ for some $\tau\in[0,T_{\infty}-|\mathfrak{t}(x)|)$}\big{]}=0.

Hence, the process stays entirely in \mathcal{R} and can be described in terms of the smooth geometry of \mathcal{R}. In particular, almost surely XτX_{\tau} is a continuous space-time curve satisfying 𝔱(Xτ)=𝔱(x)τ\mathfrak{t}(X_{\tau})=\mathfrak{t}(x)-\tau.

Our next goal is to construct stochastic parallel transport, by adapting the construction from [HN18] to the setting of Ricci flow space-times. Let YY be a spatial vector field over \mathcal{R}, and let xx\in\mathcal{R}. The covariant spatial derivative in direction XTx𝔱(x)X\in T_{x}\mathcal{R}_{\mathfrak{t}(x)} is defined as

(3.12) XY=Xg𝔱(x)Y,\nabla_{X}Y=\nabla_{X}^{g_{\mathfrak{t}(x)}}Y,

using the Levi-Civita connection of the metric g𝔱(x)g_{\mathfrak{t}(x)}. Define the covariant time derivative by

(3.13) 𝔱Y=𝔱Y+12𝔱g(Y,)g,\nabla_{\mathfrak{t}}Y=\partial_{\mathfrak{t}}Y+\tfrac{1}{2}\mathcal{L}_{\partial_{\mathfrak{t}}}g(Y,\cdot)^{\sharp_{g}},

and observe that with this definition the connection is metric, namely ddt|Y|g2=2Y,𝔱Y\tfrac{d}{dt}|Y|^{2}_{g}=2\langle Y,\nabla_{\mathfrak{t}}Y\rangle. Next, consider the On\mathrm{O}_{n}-bundle π:\pi:\mathcal{F}\to\mathcal{R} whose fibres x\mathcal{F}_{x} are given by the orthogonal maps u:n(Tx𝔱(x),g𝔱(x))u:\mathbb{R}^{n}\to(T_{x}\mathcal{R}_{\mathfrak{t}(x)},g_{\mathfrak{t}(x)}), and where On\mathrm{O}_{n} acts from the right via composition. For any spatial vector XTx𝔱(x)X\in T_{x}\mathcal{R}_{\mathfrak{t}(x)} its horizontal lift XX^{\ast} is simply given as horizontal lift with respect to Levi-Civita connection of the metric g𝔱(x)g_{\mathfrak{t}(x)}. In particular, we have nn canonical horizontal vector fields

(3.14) Hi(u)=(uei),H_{i}(u)=(ue_{i})^{\ast},

where uu\in\mathcal{F}, and e1,,ene_{1},\ldots,e_{n} denotes the standard basis in n\mathbb{R}^{n}. Furthermore, denote by D𝔱D_{\mathfrak{t}} the horizontal lift of the time vector field 𝔱\partial_{\mathfrak{t}}. Similarly as in [HN18, Lemma 3.1 and 3.3] covariant derivatives of spatial tensor fields on \mathcal{R} can be expressed in terms of horizontal derivatives of the associated equivariant functions on the frame bundle. For example, identifying spatial vector fields YY on \mathcal{R} with equivariant functions Y~:n\tilde{Y}:\mathcal{F}\to\mathbb{R}^{n} via Y~(u)=u1Y(πu)\tilde{Y}(u)=u^{-1}Y({\pi u}), we have

(3.15) 𝔱Y~=D𝔱Y~.\widetilde{\nabla_{\mathfrak{t}}Y}=D_{\mathfrak{t}}\tilde{Y}.

Now, given any initial frame uxu\in\mathcal{F}_{x}, there exists a unique horizontal lift UτU_{\tau} of XτX_{\tau}, i.e. a horizontal process UτU_{\tau} starting at U0=uU_{0}=u such that π(Uτ)=Xτ\pi(U_{\tau})=X_{\tau}. Concretely, using the Eells-Elworthy-Malliavin formalism, similarly as in [HN18, Section 3.2], this process is given as the solution of the stochastic differential equation

(3.16) dUτ=D𝔱(Uτ)dτ+i=1nHi(Uτ)dWτi,U0=u,dU_{\tau}=-D_{\mathfrak{t}}(U_{\tau})d\tau+\sum_{i=1}^{n}H_{i}(U_{\tau})\circ dW^{i}_{\tau},\qquad U_{0}=u,

where d\circ d denotes the Stratonovich differential, and we use the normalization

(3.17) dWτidWτj=2δijdτ.dW^{i}_{\tau}dW^{j}_{\tau}=2\delta_{ij}d\tau.

Since we have seen above that XτX_{\tau} stays entirely in the regular part =π()\mathcal{R}=\pi(\mathcal{F}), the solution of (3.16) does not explode, i.e. we have UτU_{\tau}\in\mathcal{F} for all τ[0,T|𝔱(x)|)\tau\in[0,T_{\infty}-|\mathfrak{t}(x)|).

Definition 3.2 (stochastic parallel transport).

The family of isometries

(3.18) Pτ:=U0Uτ1:TXτ𝔱(x)τTx𝔱(x),P_{\tau}:=U_{0}U_{\tau}^{-1}:T_{X_{\tau}}\mathcal{R}_{\mathfrak{t}(x)-\tau}\to T_{x}\mathcal{R}_{\mathfrak{t}(x)},

where UτU_{\tau} is the horizontal lift of XτX_{\tau}, is called stochastic parallel transport.

Note that, by equivariance under the On\mathrm{O}_{n}-action, PτP_{\tau} does not depend on the choice of uxu\in\mathcal{F}_{x}.


3.3. Gradient estimate on path space

In this final subsection, we prove that every noncollapsed Ricci limit flow 𝒳\mathcal{X} is a weak solution in the sense of Haslhofer-Naber. Recall that a cylinder function is a function of the form

(3.19) F(X)=f(Xτ1,,Xτk),F(X)=f(X_{\tau_{1}},\ldots,X_{\tau_{k}}),

where f:𝒳𝔱(x)τ1××𝒳𝔱(x)τkf:\mathcal{X}_{\mathfrak{t}(x)-\tau_{1}}\times\ldots\times\mathcal{X}_{\mathfrak{t}(x)-\tau_{k}} is a Lipschitz function with compact support, for some given times 0τ1<<τk<T|𝔱(x)|0\leq\tau_{1}<\ldots<\tau_{k}<T_{\infty}-|\mathfrak{t}(x)|. The parallel gradient F(X)Tx𝔱(x)\nabla^{\parallel}F(X)\in T_{x}\mathcal{R}_{\mathfrak{t}(x)} is defined by

(3.20) F(X)=i=1kPτigradg𝔱(x)τi(i)f(Xτ1,,Xτk),\nabla^{\parallel}F(X)=\sum_{i=1}^{k}P_{\tau_{i}}\mathrm{grad}^{(i)}_{g_{\mathfrak{t}(x)-\tau_{i}}}f(X_{\tau_{1}},\ldots,X_{\tau_{k}}),

where grad(i)\mathrm{grad}^{(i)} denotes the gradient with respect to the ii-th entry, and Pτi:TXτi𝔱(x)τiTx𝔱(x)P_{\tau_{i}}:T_{X_{\tau_{i}}}\mathcal{R}_{\mathfrak{t}(x)-\tau_{i}}\to T_{x}\mathcal{R}_{\mathfrak{t}(x)} denotes stochastic parallel transport (see Definition 3.2). The goal of this subsection is to prove:

Theorem 3.3 (gradient estimate).

For any xx\in\mathcal{R} we have the gradient estimate

(3.21) |gradg𝔱(x)𝔼x[F]|𝔼x[|F|],\left|\mathrm{grad}_{g_{\mathfrak{t}(x)}}\mathbb{E}_{x}[F]\right|\leq\mathbb{E}_{x}\left[|\nabla^{\parallel}F|\right],

for all cylinder functions FF. In particular, 𝒳\mathcal{X} is a weak solution of the Ricci flow in the sense of Haslhofer-Naber.

Proof.

Suppose first k=1k=1. Then, by the definition of Brownian motion from (3.10) the expectation on the left hand side is given by the heat flow, namely

(3.22) 𝔼x[F]=v(x),\mathbb{E}_{x}[F]=v(x),

where vv is the heat flow from (3.4) with initial condition ff at time 𝔱(x)τ1\mathfrak{t}(x)-\tau_{1}. Observe that the gradient of vv satisfies

(3.23) 𝔱gradgv=Δggradgv\nabla_{\mathfrak{t}}\textrm{grad}_{g}v=\Delta_{g}\textrm{grad}_{g}v

on 𝔱1((𝔱(x)τ1,𝔱(x)])\mathcal{R}\cap\mathfrak{t}^{-1}((\mathfrak{t}(x)-\tau_{1},\mathfrak{t}(x)]), by virtue of the Ricci flow equation (3.9). The key to proceed is the following claim:

Claim 3.1 (Feynman-Kac type representation formula).

For any xx\in\mathcal{R} we have

(3.24) gradg𝔱(x)v(x)=𝔼x[Pτ1gradg𝔱(x)τ1f].\mathrm{grad}_{g_{\mathfrak{t}(x)}}v(x)=\mathbb{E}_{x}\left[P_{\tau_{1}}\mathrm{grad}_{g_{\mathfrak{t}(x)-\tau_{1}}}f\right].
Proof of the claim.

Set Y=gradgvY=\textrm{grad}_{g}v, and consider the associated equivariant function Y~(u)=u1Y(πu)\tilde{Y}(u)=u^{-1}Y({\pi u}). Using (3.15) we see that the lift of the evolution equation (3.23) is given by

(3.25) D𝔱Y~=ΔHY~,D_{\mathfrak{t}}\tilde{Y}=\Delta_{H}\tilde{Y},

where ΔH=i=1nHiHi\Delta_{H}=\sum_{i=1}^{n}H_{i}H_{i} denotes the horizontal Laplacian.
Now, for any ε>0\varepsilon>0, as before denote by 𝒮ε𝒳\mathcal{S}_{\varepsilon}\subseteq\mathcal{X} the space-time points with curvature scale less than ε\varepsilon. Let ηε:𝒳[0,1]\eta_{\varepsilon}:\mathcal{X}\to[0,1] be a cutoff function with ηε=1\eta_{\varepsilon}=1 on 𝒳𝒮ε\mathcal{X}\setminus\mathcal{S}_{\varepsilon} and ηε=0\eta_{\varepsilon}=0 on 𝒮ε/2\mathcal{S}_{\varepsilon/2}, and such that

(3.26) ε|ηε|+ε2|2ηε|+ε2|𝔱ηε|C.\varepsilon|\nabla\eta_{\varepsilon}|+\varepsilon^{2}|\nabla^{2}\eta_{\varepsilon}|+\varepsilon^{2}|\partial_{\mathfrak{t}}\eta_{\varepsilon}|\leq C.

Set η~ε:=ηεπ\tilde{\eta}_{\varepsilon}:=\eta_{\varepsilon}\circ\pi, and consider the truncated function

(3.27) Y~ε:=η~εY~.\tilde{Y}^{\varepsilon}:=\tilde{\eta}_{\varepsilon}\tilde{Y}.

Similarly as in [HN18, Proof of Proposition 3.7] the Ito formula on the frame bundle takes the form

(3.28) dφ(Uτ)=i=1nHiφ(Uτ)dWτiD𝔱φ(Uτ)dτ+ΔHφ(Uτ)dτ.d\varphi(U_{\tau})=\sum_{i=1}^{n}H_{i}\varphi(U_{\tau})dW_{\tau}^{i}-D_{\mathfrak{t}}\varphi(U_{\tau})d\tau+\Delta_{H}\varphi(U_{\tau})d\tau.

Moreover, by the Lipschitz estimate from (3.3) and standard interior estimates we have

(3.29) |Y|+ε|Y|C.\displaystyle|Y|+\varepsilon|\nabla Y|\leq C.

Hence, using the equations (3.25) and (3.26) from above, we infer that

(3.30) dY~ε(Uτ)=martingale+Eεdτ,d\tilde{Y}^{\varepsilon}(U_{\tau})=\mathrm{martingale}+E_{\varepsilon}\,d\tau,

where the error term satisfies

(3.31) |Eε|Cε2 1{Xτ𝒮ε𝒮ε/2}.|E_{\varepsilon}|\leq\frac{C}{\varepsilon^{2}}\,1_{\{X_{\tau}\in\mathcal{S}_{\varepsilon}\setminus\mathcal{S}_{\varepsilon/2}\}}.

This implies

(3.32) |Y~ε(u)𝔼u[Y~ε(Uτ1)]|Cε2𝔼x[0τ11{Xτ𝒮ε𝒮ε/2}𝑑τ].\left|\tilde{Y}^{\varepsilon}(u)-\mathbb{E}_{u}\big{[}\tilde{Y}^{\varepsilon}(U_{\tau_{1}})\big{]}\right|\leq\frac{C}{\varepsilon^{2}}\mathbb{E}_{x}\left[\int_{0}^{\tau_{1}}1_{\{X_{\tau}\in\mathcal{S}_{\varepsilon}\setminus\mathcal{S}_{\varepsilon/2}\}}d\tau\right].

By Corollary 2.2 (occupancy time) we have

(3.33) 𝔼x[0τ11{Xτ𝒮ε𝒮ε/2}𝑑τ]Cε4δ.\mathbb{E}_{x}\left[\int_{0}^{\tau_{1}}1_{\{X_{\tau}\in\mathcal{S}_{\varepsilon}\setminus\mathcal{S}_{\varepsilon/2}\}}d\tau\right]\leq C\varepsilon^{4-\delta}.

Moreover, using again Theorem 1.4 (hitting estimate for the Ricci flow), and remembering also the Lipschitz estimate from (3.3), we see that

(3.34) limε0𝔼u[Y~ε(Uτ1)]=𝔼u[Y~(Uτ1)].\lim_{\varepsilon\to 0}\mathbb{E}_{u}\big{[}\tilde{Y}^{\varepsilon}(U_{\tau_{1}})\big{]}=\mathbb{E}_{u}\big{[}\tilde{Y}(U_{\tau_{1}})\big{]}.

Also, since uxu\in\mathcal{F}_{x}, where xx\in\mathcal{R}, we have

(3.35) limε0Y~ε(u)=Y~(u).\lim_{\varepsilon\to 0}\tilde{Y}^{\varepsilon}(u)=\tilde{Y}(u).

Combining the above fact, we conclude that

(3.36) Y~(u)=𝔼u[Y~(Uτ1)].\tilde{Y}(u)=\mathbb{E}_{u}\big{[}\tilde{Y}(U_{\tau_{1}})\big{]}.

Pushing down via π\pi, this establishes the claim. ∎

Continuing the proof of the theorem, by Claim 3.1 (Feynman-Kac type representation formula) and the definition of the parallel gradient from (3.20) we thus have

(3.37) gradg𝔱(x)𝔼x[F]=𝔼x[F],\mathrm{grad}_{g_{\mathfrak{t}(x)}}\mathbb{E}_{x}[F]=\mathbb{E}_{x}\left[\nabla^{\parallel}F\right],

provided FF is a 11-point cylinder function. Arguing by by induction on kk, similarly as in [HN18, Proof of Theorem 4.2], where we now use Claim 3.1 (Feynman-Kac type representation formula) instead of [HN18, Proposition 3.36], we see that the gradient formula (3.37) holds for kk-point cylinder functions as well. This implies the assertion of the theorem. ∎

References

  • [Bam20a] R. Bamler. Entropy and heat kernel bounds on a Ricci flow background. arXiv:2008.07093, 2020.
  • [Bam20b] R. Bamler. Compactness theory of the space of super Ricci flows. arXiv:2008.09298, 2020.
  • [Bam20c] R. Bamler. Structure theory of non-collapsed limits of Ricci flows. arXiv:2009.03243, 2020.
  • [BPP95] I. Benjamini, R. Pemantle, and Y. Peres. Martin capacity for Markov chains. Ann. Probab., 23(3):1332–1346, 1995.
  • [CH20] B. Choi and R. Haslhofer. Hitting estimates on Einstein manifolds and applications. arXiv:2010.15860, 2020.
  • [HN18] R. Haslhofer and A. Naber. Characterizations of the Ricci flow. J. Eur. Math. Soc. (JEMS), 20(5):1269–1302, 2018.
  • [Kak44] S. Kakutani. Two-dimensional Brownian motion and harmonic functions. Proc. Imp. Acad. Tokyo, 20:706–714, 1944.
  • [KL17] B. Kleiner and J. Lott. Singular Ricci flows I. Acta Math., 219(1):65–134, 2017.
  • [Per02] G. Perelman. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159, 2002.

Beomjun Choi, Department of Mathematics, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, Korea 37673

Robert Haslhofer, Department of Mathematics, University of Toronto, 40 St George Street, Toronto, ON M5S 2E4, Canada