This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Revisiting the magnetic responses of bilayer graphene from the perspective of the quantum distance

Chang-geun Oh [email protected] Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan    Jun-Won Rhim Department of Physics, Ajou University, Suwon 16499, Republic of Korea Research Center for Novel Epitaxial Quantum Architectures, Department of Physics, Seoul National University, Seoul 08826, Republic of Korea    Bohm-Jung Yang [email protected] Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea Center for Theoretical Physics (CTP), Seoul National University, Seoul 08826, Republic of Korea Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
Abstract

We study the influence of the quantum geometry on the magnetic responses of quadratic band crossing semimetals. More explicitly, we examine the Landau levels, quantum Hall effect, and magnetic susceptibility of a general two-band Hamiltonian that has fixed isotropic quadratic band dispersion but with tunable quantum geometry, in which the interband coupling is fully characterized by the maximum quantum distance dmaxd_{\mathrm{max}}. By continuously tuning dmaxd_{\mathrm{max}} in the range of 0dmax10\leq d_{\mathrm{max}}\leq 1, we investigate how the magnetic properties of the free electron model with dmax=0d_{\mathrm{max}}=0 evolve into those of the bilayer graphene with dmax=1d_{\mathrm{max}}=1. We demonstrate that despite sharing the same energy dispersion ϵ(𝒑)=±p22m\epsilon(\bm{p})=\pm\frac{p^{2}}{2m}, the charge carriers in the free electron model and bilayer graphene exhibit entirely distinct Landau levels and quantum Hall responses due to the nontrivial quantum geometry of the wave functions.

I Introduction

Graphene and its multilayer structures have garnered significant attention in various research fields, partly because of their unique carrier dynamics, sensitively dependent on the layer numbers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] . One notable example is the distinct quantum Hall effect (QHE) in monolayer and bilayer graphenes [13, 14, 15]. In monolayer graphene with linear band touching points, the carriers with pseudo-relativistic dispersion result in the half-integral quantum Hall plateaus characterized by the unique Landau Level spectrum with the energy ϵNsingle=±vF2eB|N|\epsilon^{\mathrm{single}}_{N}=\pm v_{F}\sqrt{2e\hbar B|N|}, where vFv_{F} is the Fermi velocity [13, 14, 15], NN is an integer, BB is a magnetic field, and ee, mm are the electron’s charge and mass, respectively. This unique behavior arises from the π\pi Berry’s phase of the Dirac points.

On the other hand, in Bernal stacked bilayer graphene, simply bilayer graphene hereafter, the charge carriers exhibit a parabolic dispersion ϵ(p)=±p22m\epsilon(p)=\pm\frac{p^{2}}{2m} with the effective mass mm, hosting the Landau levels ϵNbilayer=±ωN(N1)\epsilon^{\mathrm{bilayer}}_{N}=\pm\hbar\omega\sqrt{N(N-1)}. In bilayer graphene, the zero energy Hall plateau is absent, which is attributed to the 2π2\pi Berry phase around the quadratic band crossing point [15, 16]. It is noteworthy that although the parabolic band dispersion of the bilayer graphene is identical to that of the free electron gas, these two systems display entirely different Landau levels and QHEs. This indicates the importance of considering not only the band dispersion but also the geometry of wave functions to correctly describe the magnetic responses. The distinct Landau levels and QHEs of monolayer and bilayer graphenes are compared in Figure 1, in which we also plot the free electron gas Landau levels ϵNconv=±ω(N+12)\epsilon^{\mathrm{conv}}_{N}=\pm\hbar\omega(N+\frac{1}{2}) with the cyclotron frequency ω=eB/m\omega=eB/m [17, 18].

Refer to caption
Figure 1: Schematics of the representative integer quantum Hall effect (left) and the corresponding Landau level spectrum (right) for (a) free electron model, characterized by geometric triviality (dmax=0d_{\mathrm{max}}=0), (b) bilayer graphene, featuring nontrivial geometry with dmax=1d_{\mathrm{max}}=1, and (c) monolayer graphene, also exhibiting geometric nontriviality with dmax=1d_{\mathrm{max}}=1. The red horizontal lines in (a) represent the Landau levels of a quadratic band crossing in Eq. (3) featuring nontrivial quantum geometry with dmax=0.5d_{\mathrm{max}}=0.5.

Recent studies have shown that the quantum distance is a central quantity characterizing the geometric properties of two-dimensional quadratic band touching systems, leading to intriguing phenomena such as anomalous Landau level spreading [19, 20] and the emergence of boundary modes in flat band systems [21, 22]. More explicitly, the Hilbert-Schmidt quantum distance, or simply quantum distance, in momentum space is defined as

dHS,n2(𝒌,𝒌)=1|ψn,𝒌|ψn,𝒌|2,\displaystyle d_{\mathrm{HS},n}^{2}(\bm{k,k^{\prime}})=1-|\braket{\psi_{n,\bm{k}}}{\psi_{n,\bm{k^{\prime}}}}|^{2}, (1)

where nn is a band index and ψn,𝒌\psi_{n,\bm{k}} is the Bloch eigenstate of the nn-th band with crystal momentum 𝒌\bm{k}. In particular, it was shown that the maximum quantum distance, denoted as dmaxd_{\mathrm{max}}, determines various geometric properties of the quadratic band crossing semimetals, including the Berry’s phase [23, 24]. In terms of dmaxd_{\mathrm{max}}, the geometry of bilayer graphene is characterized by dmax=1d_{\mathrm{max}}=1, while the free electron with a quadratic band crossing is described by dmax=0d_{\mathrm{max}}=0, indicating geometric triviality. Although these two systems have two distinct dmaxd_{\mathrm{max}} values, to properly understand the role of the interband coupling in their distinct magnetic responses, one can design a model Hamiltonian that has fixed isotropic quadratic band dispersion ϵ(p)=±p22m\epsilon(p)=\pm\frac{p^{2}}{2m} but with tunable quantum geometry.

In this paper, we examine the Landau levels, QHE, and magnetic response functions of the geometrically generalized model. By thoroughly examining them, we illustrate the nontrivial role of the interband coupling measured by dmaxd_{\mathrm{max}} in magnetic responses of quadratic band crossing semimetals.

The rest of the paper is organized as follows. In Sec. II, we construct a model Hamiltonian for isotropic quadratic band touching semimetals, where the band dispersion remains ±p2/(2m)\pm p^{2}/(2m) while the geometry of wave functions is tunable. In Sec. III, we analyze the Landau levels of the model and examines the role of wave function geometry. In Sec. IV, we investigate the evolution of QHE between free electron gas and bilayer graphene. In Sec. V, we further explore the influence of wave function geometry on magnetic response functions using the Roth-Gaou-Niu relation [25, 26, 27]. Our concluding remarks can be found in Sec. VI. Appendixes contains the detailed calculations of Landau levels and a lattice model analysis.

II Model

Let us construct a general Hamiltonian whose energy eigenvalues are given by

ϵ±(𝒌)=±12(kx2+ky2).\displaystyle\epsilon_{\pm}(\bm{k})=\pm\frac{1}{2}(k_{x}^{2}+k_{y}^{2}). (2)

Explicitly, we consider the Hamiltonian

0(𝒌)=αhα(𝒌)σα,\displaystyle\mathcal{H}_{0}({\bm{k}})=\sum_{\alpha}h_{\alpha}({\bm{k}})\sigma_{\alpha}, (3)

where σα\sigma_{\alpha} represents an identity (α=0\alpha=0) and Pauli matrices (α=x,y,z\alpha=x,y,z), respectively. hx,y,z(𝒌)h_{x,y,z}({\bm{k}}) are real quadratic functions given by hz(𝒌)=d1d2ky2,hy(𝒌)=dkxky,hx(𝒌)=kx2/2+(12d2)ky2/2h_{z}({\bm{k}})={-d\sqrt{1-d^{2}}}k_{y}^{2},~{}h_{y}({\bm{k}})=dk_{x}k_{y},~{}h_{x}({\bm{k}})=k_{x}^{2}/2+(1-2d^{2})k_{y}^{2}/2, and h0(𝒌)=0h_{0}({\bm{k}})=0. Here, the parameter dd is defined as d=ξdmaxd=\xi d_{\mathrm{max}} in which ξ=±1\xi=\pm 1, and dmaxd_{\mathrm{max}} is the maximum value of the quantum distance dHS,n(𝒌,𝒌)d_{\mathrm{HS},n}(\bm{k,k^{\prime}}) between all the possible pairs of wave functions at 𝐤\mathbf{k} and 𝐤\mathbf{k}^{\prime} with the given band index n=1,2n=1,~{}2. The energy eigenvalues of 0(𝒌)\mathcal{H}_{0}({\bm{k}}) remain unchanged from Eq. (2) regardless of the value of dd within the range 1d1-1\leq d\leq 1. When dmax=1d_{\mathrm{max}}=1, the Hamiltonian in Eq. (3) corresponds to the low energy Hamiltonian of the Bernal stacked bilayer graphene [28, 29], and ξ=±1\xi=\pm 1 is related to the valley index. The parameters dmaxd_{\mathrm{max}} and ξ\xi determine the Berry phase ΦB\Phi_{B} [23] and quantum geometric tensor gijng_{ij}^{n} given by gijn=2kiun(𝒌)|kjun(𝒌)2kiun(𝒌)|un(𝒌)un(𝒌)|kjun(𝒌)g_{ij}^{n}=2\braket{\partial_{k_{i}}u_{n}(\bm{k})}{\partial_{k_{j}}u_{n}(\bm{k})}-2\braket{\partial_{k_{i}}u_{n}(\bm{k})}{u_{n}(\bm{k})}\braket{u_{n}(\bm{k})}{\partial_{k_{j}}u_{n}(\bm{k})}, where un(𝒌)u_{n}(\bm{k}) is the nn-th Bloch wave function [30]. Explicitly, for 0(𝒌)\mathcal{H}_{0}({\bm{k}}), the Berry phase and components of the quantum geometric tensor are given by

ΦB=2πξ1dmax2(mod2π),\displaystyle\Phi_{B}=-2\pi\xi\sqrt{1-d_{\mathrm{max}}^{2}}~{}~{}~{}~{}~{}(\mathrm{mod}2\pi), (4)
gxxn(𝒌)=2dmax2ky2k4,gyyn(𝒌)=2dmax2kx2k4,\displaystyle g^{n}_{xx}(\bm{k})=2d_{\mathrm{max}}^{2}\frac{k_{y}^{2}}{k^{4}},~{}~{}g^{n}_{yy}(\bm{k})=2d_{\mathrm{max}}^{2}\frac{k_{x}^{2}}{k^{4}},
gxyn(𝒌)=gyxn(𝒌)=2dmax2kxkyk4.\displaystyle g^{n}_{xy}(\bm{k})=g^{n}_{yx}(\bm{k})=-2d_{\mathrm{max}}^{2}\frac{k_{x}k_{y}}{k^{4}}. (5)

We note that more general quadratic band touching Hamiltonians, which exhibit anisotropic energy dispersions, require other geometric quantities to describe all possible interband coupling terms [24]. However, when the system has rotational symmetry, a single geometric parameter dmaxd_{\mathrm{max}} suffices to fully characterize the quantum geometry [23, 24].

Refer to caption
Figure 2: The evolution of the Landau levels ENLLE_{N}^{LL} as a function of the maximum quantum distance dmaxd_{\mathrm{max}} for (a) ξ=+1\xi=+1 and (b) ξ=1\xi=-1, respectively, with =ω=1\hbar=\omega=1.

III Landau levels

To understand the evolution of the Landau levels between ϵNconv\epsilon_{N}^{conv} [Fig. 1(a)] and ϵNbilayer\epsilon_{N}^{bilayer} [Fig. 1(b)], we introduce a perpendicular magnetic field BB to the Hamiltonian in Eq. (3). We consider the Landau gauge 𝑨=(0,Bx)\bm{A}=(0,Bx), which preserves translational invariance in the yy-direction, and replace the momentum by ladder operators as kx(a+a)/(2lB)k_{x}\to(a+a^{\dagger})/(\sqrt{2}l_{B}) and kyi(aa)/(2lB)k_{y}\to i(a-a^{\dagger})/(\sqrt{2}l_{B}), where lB=/eBl_{B}=\sqrt{\hbar/eB} is the magnetic length, and aa(aa^{\dagger}) is the annihilation (creation) operator. To ensure the Hamiltonian’s hermiticity, we perform symmetrization: kxky=(kxky+kykx)/2=i(a2(a)2)/(2lB2)k_{x}k_{y}=(k_{x}k_{y}+k_{y}k_{x})/2=i(a^{2}-(a^{\dagger})^{2})/(2l_{B}^{2}). Then, the Hamiltonian reads

HLL=12lB2(g11g12g21g22),\displaystyle H_{LL}=\frac{1}{2l_{B}^{2}}\begin{pmatrix}g_{11}&g_{12}\\ g_{21}&g_{22}\end{pmatrix}, (6)

where g11=g22=d1d2(2aa+1a2a2)g_{11}=-g_{22}=d\sqrt{1-d^{2}}(2a^{\dagger}a+1-a^{\dagger 2}-a^{2}) and g12=g21=(2aa+1)+(a2a2)d+(2aa+1a2a2)d2g_{12}=g_{21}^{\dagger}=-(2a^{\dagger}a+1)+(a^{2}-a^{\dagger 2})d+(2a^{\dagger}a+1-a^{2}-a^{\dagger 2})d^{2}. It can be verified that when dmax=1d_{\mathrm{max}}=1, this Hamiltonian corresponds to the low-energy effective Hamiltonian of bilayer graphene [29, 31]. In contrast, when dmax=0d_{\mathrm{max}}=0, it corresponds to the conventional Hamiltonian, where electrons follow cyclotron orbits with the conventional Landau levels ϵNconv=±ω(N+12)\epsilon^{\mathrm{conv}}_{N}=\pm\hbar\omega(N+\frac{1}{2}) [32]. The case where dmaxd_{\mathrm{max}} is not an integer has not yet been explored. By investigating the regime 0<dmax<10<d_{\mathrm{max}}<1, one can study how the magnetic properties of the conventional model gradually evolve into those of bilayer graphene.

Solving the transformed Hamiltonian yields the Landau levels (see Appendix for details):

E0LL(dmax,ξ)=ξ2ω1dmax2,\displaystyle E^{LL}_{0}(d_{\mathrm{max}},\xi)=\frac{\xi}{2}\hbar\omega\sqrt{1-d_{\mathrm{max}}^{2}},
E1LL(dmax,ξ)=3ξ2ω1dmax2,\displaystyle E^{LL}_{1}(d_{\mathrm{max}},\xi)=\frac{3\xi}{2}\hbar\omega\sqrt{1-d_{\mathrm{max}}^{2}},
ENLL(dmax,ξ)=ξω(1dmax2\displaystyle E^{LL}_{N}(d_{\mathrm{max}},\xi)=\xi\hbar\omega\bigg{(}\sqrt{1-d_{\mathrm{max}}^{2}}
+sgn(N)2(2|N|1)2dmax2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\frac{\mathrm{sgn}(N)}{2}\sqrt{(2|N|-1)^{2}-d_{\mathrm{max}}^{2}}\bigg{)}, (7)

where N=±2,±3,N=\pm 2,\pm 3,... and sgn(N)\mathrm{sgn}(N) represents the sign of NN.

In Figure 2, the dmaxd_{\mathrm{max}}-dependence of Landau levels is depicted. When dmax=0d_{\mathrm{max}}=0, the Landau levels ENLLE^{LL}_{N} are equivalent to ϵNconv\epsilon_{N}^{conv} but start to deviate from ϵNconv\epsilon_{N}^{conv} as dmaxd_{\mathrm{max}} increases. When dmaxd_{\mathrm{max}} reaches one, they become ϵNbilayer\epsilon_{N}^{bilayer}. The degeneracy of Landau levels between E0LL(dmax=1)E^{LL}_{0}(d_{\mathrm{max}}=1) and E1LL(dmax=1)E^{LL}_{1}(d_{\mathrm{max}}=1) leads to the absence of a zero energy plateau in QHE as described in Section IV. Since such degeneracy of Landau levels occurs only when dmax=1d_{\mathrm{max}}=1, the absence of the zero energy plateau cannot be observed if dmax1d_{\mathrm{max}}\neq 1.

One can verify that the degeneracy at dmax=1d_{\mathrm{max}}=1 exists for both ξ=±1\xi=\pm 1. However, depending on ξ\xi, the origin of zero Landau levels is different. For ξ=+1\xi=+1, the two zero energy levels come from the upper band, while for ξ=1\xi=-1, the two zero energy levels come from the lower band. In a previous work [33], this ξ\xi-dependence of zero energy Landau levels was demonstrated by creating a gap between two bands in bilayer graphene. Here, on the other hand, we verify that the ξ\xi-dependence of zero energy Landau levels by continuously varying the quantum distance.

Furthermore, when dmax=1d_{\mathrm{max}}=1 or dmax=0d_{\mathrm{max}}=0, the Landau levels are symmetric with respect to E=0E=0, as shown in Figs. 2(a) and (b). This result arises from chiral symmetry, represented by the operator σz\sigma_{z}, which satisfies σzH0(𝒌)σz=H0(𝒌)\sigma_{z}H_{0}(\bm{k})\sigma_{z}=-H_{0}(\bm{k}), exclusively when dmax=1d_{\mathrm{max}}=1 or dmax=0d_{\mathrm{max}}=0. This symmetry holds even in the presence of a magnetic field (See Appendix). In fact, the chiral symmetry is crucial for the degeneracy observed at dmax=1d_{\mathrm{max}}=1. To confirm this idea, we introduce a perturbation Hpert=δk2σ0H_{\text{pert}}=\delta k^{2}\sigma_{0} that breaks the chiral symmetry, and subsequently calculate the resulting Landau levels. With this perturbation, the zeroth and first Landau levels for dmax=1d_{\mathrm{max}}=1 shift to E0LL=ξ2ωδE^{LL}_{0}=\frac{\xi}{2}\hbar\omega\delta and E1LL=3ξ2ωδE^{LL}_{1}=\frac{3\xi}{2}\hbar\omega\delta, respectively, thereby lifting the degeneracy. This demonstrates that the presence of the zero energy plateau necessitates chiral symmetry as well as dmax=1d_{\mathrm{max}}=1.

In addition, when the Hamiltonian possessses chiral symmetry, one can define a winding number (WW):

WCd𝒌2π[hx|𝒉|(hy|𝒉|)hy|𝒉|(hx|𝒉|)].\displaystyle W\equiv\int_{C}\frac{d\bm{k}}{2\pi}\left[\frac{h_{x}}{|\bm{h}|}\nabla\left(\frac{h_{y}}{|\bm{h}|}\right)-\frac{h_{y}}{|\bm{h}|}\nabla\left(\frac{h_{x}}{|\bm{h}|}\right)\right]. (8)

Explicitly, for dmax=0d_{\mathrm{max}}=0 and dmax=1d_{\mathrm{max}}=1, we obtain

W=0fordmax=0andξ=±1,\displaystyle W=0~{}~{}~{}~{}~{}\text{for}~{}~{}d_{\mathrm{max}}=0~{}~{}\text{and}~{}~{}\xi=\pm 1,
W=+2fordmax=1andξ=+1,\displaystyle W=+2~{}~{}\text{for}~{}~{}d_{\mathrm{max}}=1~{}~{}\text{and}~{}~{}\xi=+1,
W=2fordmax=1andξ=1.\displaystyle W=-2~{}~{}\text{for}~{}~{}d_{\mathrm{max}}=1~{}~{}\text{and}~{}~{}\xi=-1. (9)

This indicates that the presence of the zero energy plateau is contingent upon chiral symmetry with a winding number of two.

For 0<dmax<10<d_{\mathrm{max}}<1, the chiral symmetry is broken because the Hamiltonian in Eq. (3) has nonzero hxh_{x}, hyh_{y} and hzh_{z}, simultaneously. Consequently, the Landau levels are no longer symmetric with respect to E=0E=0. However, one can still find the symmetry between ξ=+1\xi=+1 and ξ=1\xi=-1 cases in which the Landau levels have the opposite signs, as shown in Eq. (7), Figs. 2(a) and (b). For |N|1|N|\gg 1, this can be understood using the semiclassical results given by [26]

EN=ω(N+12ΦB2π),\displaystyle E_{N}=\hbar\omega(N+\frac{1}{2}-\frac{\Phi_{B}}{2\pi}), (10)

where ΦB\Phi_{B} is Berry phase. For both ξ=±1\xi=\pm 1 cases with |N|1|N|\gg 1, the Landau levels in Eq. (7) are identical to those in Eq. (10). Depending on ξ\xi, the sign of ΦB\Phi_{B} changes oppositely, as shown in Eq. (33), explaining the symmetric structure of the Landau levels between ξ=+1\xi=+1 and ξ=1\xi=-1 cases. Interestingly, this symmetric structure persists even for low NN as explicitly shown in Eq. (7).

IV Quantum Hall effect

The dependence of the Landau levels on dmaxd_{\mathrm{max}} significantly influences the QHE. Here, we focus on the case ξ=+1\xi=+1; the results for ξ=1\xi=-1 can be obtained by reversing the sign of the energies for ξ=1\xi=1 as shown in Fig. 2. To understand the influence of dmaxd_{\mathrm{max}} on QHE, it is more insightful to examine the magnetic field dependence of Hall conductivity or Hall resistivity rather than the filling factor dependence of Hall conductivity. This is because the continuous variation from dmax=0d_{\mathrm{max}}=0 to dmax=1d_{\mathrm{max}}=1 is not apparent in the latter case; instead, a sudden change is observed at dmax=1d_{\mathrm{max}}=1 due to the zero energy degeneracy. Therefore, we analyze the magnetic field dependence of QHE by varying dmaxd_{\mathrm{max}} when the electron density is fixed.

Refer to caption
Figure 3: (a) The magnetic field BB dependence of Landau levels ENLLE_{N}^{LL} for dmax=0,0.5d_{\mathrm{max}}=0,0.5 and 11 with =e=1\hbar=e=1 and ξ=+1\xi=+1. (b) BB dependence of the Fermi level EFE_{F} for dmax=0,0.5,0.8d_{\mathrm{max}}=0,0.5,0.8 and 1. (c) BB dependence of the Hall resistivity ρxy\rho_{xy} for dmax=0,0.5,0.8d_{\mathrm{max}}=0,0.5,0.8 and 1. The black, blue, green and red lines in (a-c) represent dmax=0,0.5,0.8d_{\mathrm{max}}=0,0.5,0.8 and 1, respectively. (d) The maximum quantum distance dmaxd_{\mathrm{max}} dependence of the magnetic field BB^{*}, where the jump from n=1n=1 to n=0n=0 in ρxy\rho_{xy} occurs. Here, we set the Fermi energy at zero magnetic field as EF(0)=1E_{F}^{(0)}=1. (e) Schematics of Landau levels in disordered system for dmax=0.8d_{\mathrm{max}}=0.8 and 1. The grey and black areas represent localized and delocalized states, respectively. n:ii+1(i=0,1)n:i\to i+1(i=0,1) next to delocalized states indicate the corresponding jump in ρxy\rho_{xy}. Here, we consider the situation where Hall resistivity is on the n=2n=2 (n=1n=1) plateau for dmax=0.8d_{\mathrm{max}}=0.8 (dmax=1d_{\mathrm{max}}=1).

Figure 3(a) shows the magnetic field dependence of the Landau levels in Eq. (7). As the magnetic field increases, the topmost occupied level changes when the filling factor ν\nu reaches integer values. At theses points, EFE_{F} transitions from EνLLE^{LL}_{\nu} to Eν1LLE^{LL}_{\nu-1}. Figure 3(b) shows the magnetic field dependence of the Fermi energy EF(B)E_{F}(B), referred to as Shubnikov-de Hass oscillation, for various values of dmax=0,0.5,0.8d_{\mathrm{max}}=0,0.5,0.8 and 1. Increasing dmaxd_{\mathrm{max}} shifts the magnetic field Bν=iB_{\nu=i} where the transition occurs with an integer ii. Furthermore, the slope of the Fermi energy at Bν=iB_{\nu=i}, defined as

milimδ0+EF(Bν=i+2δ)EF(Bν=i+δ)}δ,\displaystyle m_{i}\coloneqq\lim_{\delta\to 0^{+}}\frac{E_{F}(B_{\nu=i}+2\delta)-E_{F}(B_{\nu=i}+\delta)\}}{\delta}, (11)

decreases with higher values of dmaxd_{\mathrm{max}}. Specifically,

m1=e2m1dmax2,\displaystyle m_{1}=\frac{\hbar e}{2m}\sqrt{1-d_{\mathrm{max}}^{2}}, (12)
m2=3e2m1dmax2.\displaystyle m_{2}=\frac{3\hbar e}{2m}\sqrt{1-d_{\mathrm{max}}^{2}}. (13)

More generally, mi=Ei1LL/Bm_{i}=E_{i-1}^{LL}/B. The decrease in the slopes m1m_{1} and m2m_{2} with increasing dmaxd_{\mathrm{max}} causes B1B_{1}, where the EFE_{F} transitions from E1LLE^{LL}_{1} to E0LLE^{LL}_{0}, to increase. When dmaxd_{\mathrm{max}} reaches one, these slopes approach zero, making B1B_{1} infinite. This implies that the first Landau level E1LLE^{LL}_{1} is always occupied when EF(0)>0E_{F}^{(0)}>0 where EF(0)E_{F}^{(0)} is the Fermi level at zero magnetic field.

To consider Hall plateaus, we assume the disorder induced Landau level broadening as schematically illustrated in Figure 3(e) where delocalized electrons exist in the middle of each level while the rest of the states are localized. The Hall resistivity ρxy\rho_{xy} is quantized as ρxy=h/(ne2)\rho_{xy}=-h/(ne^{2}) with a natural number nn. More explicitly, nn is determined by n=N+1δdmax,1n=N+1-\delta_{d_{\mathrm{max}},1}, where NN is the largest integer that satisfies E(0)>ENLLE^{(0)}>E^{LL}_{N}. Figure 3(c) shows the magnetic field dependence of Hall resistivity for dmax=0,0.5,0.8d_{\mathrm{max}}=0,0.5,0.8 and 1. Similar to the oscillating EFE_{F}, the magnetic field at which ρxy\rho_{xy} jumps strongly depends on dmaxd_{\mathrm{max}}. Increasing dmaxd_{\mathrm{max}} extends the length of n=1n=1 plateau and shifts the magnetic field BB^{*} where the transition from n=1n=1 plateau to n=0n=0 plateau occurs. Figure 3(d) shows the dmaxd_{\mathrm{max}} dependence of BB^{*}. When dmax=1d_{\mathrm{max}}=1, BB^{*} becomes infinity, indicating that the n=0n=0 plateau does not exist.

Furthermore, as shown in the dashed vertical lines in Fig. 3(c), one can observe that the jump between n=1n=1 and n=2n=2 plateaus occurs at higher magnetic fields as dmaxd_{\mathrm{max}} increases when 0dmax<10\leq d_{\mathrm{max}}<1. However, when dmax=1d_{\mathrm{max}}=1, this jump suddenly occurs at a relatively lower magnetic field. This phenomenon originates from the chiral symmetry and the degeneracy between the zeroth and first Landau levels in Eq. (7).

More explicitly, the Hall resistivity changes when the Fermi energy passes the delocalized state, as shown in Fig. 3(e). For dmax<1d_{\mathrm{max}}<1, the transition between the n=1n=1 and n=2n=2 plateaus occurs when EF(0)=E1LLE_{F}^{(0)}=E_{1}^{LL}. Since E1LL(dmax)=3e2mB1dmax2E_{1}^{LL}(d_{\mathrm{max}})=\frac{3\hbar e}{2m}B\sqrt{1-d_{\mathrm{max}}^{2}}, the jump requires a higher BB as dmaxd_{\mathrm{max}} increases. On the other hand, at dmax=1d_{\mathrm{max}}=1, the transition between the n=1n=1 and n=2n=2 plateaus happens when EF(0)=E2LL=em2BE_{F}^{(0)}=E_{2}^{LL}=\frac{\hbar e}{m}\sqrt{2}B. This is because filling E0LLE_{0}^{LL} and E1LLE_{1}^{LL} corresponds to the jump between n=1n=-1 and n=+1n=+1 plateaus due to chiral symmetry. Note that the system is electrically neutral when both E0LLE^{LL}_{0} and E1LLE^{LL}_{1} are half-filled. Therefore, the transition between n=1n=1 and n=2n=2 plateaus occurs when EF(0)=E2LL(dmax=1)E_{F}^{(0)}=E_{2}^{LL}(d_{\mathrm{max}}=1), while for dmax<1d_{\mathrm{max}}<1 it occurs when EF(0)=E1LLE_{F}^{(0)}=E_{1}^{LL} [Fig. 3(e)]. Consequently, the jump between n=1n=1 and n=2n=2 plateaus for dmax=1d_{\mathrm{max}}=1 does not follow the trend observed when dmax<1d_{\mathrm{max}}<1.

V Magnetic response functions

Magnetic response functions also exhibit strong dependence on dmaxd_{\mathrm{max}}. We explore how dmaxd_{\mathrm{max}} influences magnetic response functions by utilizing the Roth-Gaou-Niu relation [25, 26, 27] given by

(N12)eBh=N0(ϵF)+BM0(ϵF)+B22χ0(ϵF)+O(B3),\displaystyle(N-\frac{1}{2})\frac{eB}{h}=N_{0}(\epsilon_{F})+BM^{\prime}_{0}(\epsilon_{F})+\frac{B^{2}}{2}\chi^{\prime}_{0}(\epsilon_{F})+O(B^{3}),
(14)

where N0(ϵF)N_{0}(\epsilon_{F}) is the zero-field integrated density of states at the Fermi energy ϵF\epsilon_{F} (i.e., N0=ϵN0N^{\prime}_{0}=\partial_{\epsilon}N_{0} is the density of states), M0(ϵF)M_{0}(\epsilon_{F}) is the spontaneous magnetization, and χ0(ϵF)\chi_{0}(\epsilon_{F}) is the magnetic susceptibility. Here, the prime denotes the derivative with respect to the energy: M0=ϵM0M^{\prime}_{0}=\partial_{\epsilon}M_{0}, χ0=ϵχ0(ϵ)\chi^{\prime}_{0}=\partial_{\epsilon}\chi_{0}(\epsilon). These quantities, which depend on the Fermi energy ϵF\epsilon_{F}, are evaluated at zero temperature and in the limit of zero magnetic field. Below, we adopt units where =1\hbar=1 and the flux quantum ϕ0=h/e=1\phi_{0}=h/e=1.

By applying the results in Eq. (7) to Eq. (14), we obtain the following expressions 111Solve ENLL=ϵFE_{N}^{LL}=\epsilon_{F} for N, then we get the results.

N0(ϵF)=ϵF2π,\displaystyle N_{0}(\epsilon_{F})=\frac{\epsilon_{F}}{2\pi}, (15)
M0(ϵF)=ΦB(dmax)2π,\displaystyle M’_{0}(\epsilon_{F})=\frac{\Phi_{B}(d_{\mathrm{max}})}{2\pi}, (16)
χ0(ϵF)=dmax2π2ϵF.\displaystyle\chi’_{0}(\epsilon_{F})=d_{\mathrm{max}}^{2}\frac{\pi}{2\epsilon_{F}}. (17)

We note that the integrated density of states N0(ϵF)N_{0}(\epsilon_{F}) solely depends on ϵF\epsilon_{F} independent of dmaxd_{\mathrm{max}} because dmaxd_{\mathrm{max}} does not contribute to the energy dispersion.

The fact that the derivative of M0M_{0} is proportional to the Berry phase indicates that the average of the orbital magnetic moment over the Fermi surface vanishes, i.e., ϵF=0\braket{\mathcal{M}}_{\epsilon_{F}}=0. This is because, according to the modern theory of magnetization [35, 27, 36], differentiating the magnetization with respect to the chemical potential gives

M0(ϵF)=ϵFN0(ϵF)+ΦB(dmax)2π,\displaystyle M’_{0}(\epsilon_{F})=\braket{\mathcal{M}}_{\epsilon_{F}}N^{\prime}_{0}(\epsilon_{F})+\frac{\Phi_{B}(d_{\mathrm{max}})}{2\pi}, (18)

where ϵF\braket{\mathcal{M}}_{\epsilon_{F}} represents the average of the orbital magnetic moment over the Fermi surface. Indeed, for a two-band model with electron-hole symmetry, the orbital magnetic moment is directly related to the Berry curvature: (𝒌)=eϵ+(𝒌)Ω(𝒌)\mathcal{M}(\bm{k})=\frac{e}{\hbar}\epsilon_{+}(\bm{k})\Omega(\bm{k}), where Ω\Omega is the Berry curvature [37, 38]. In a quadratic band touching semimetal, the Berry curvature at finite 𝒌\bm{k} is always zero while the Berry phase ΦB(dmax)\Phi_{B}(d_{\mathrm{max}}) can be finite [23]. Therefore, the average of the orbital magnetic moment over the Fermi surface vanishes, and M0(ϵF)=ΦB(dmax)2πM^{\prime}_{0}(\epsilon_{F})=\frac{\Phi_{B}(d_{\mathrm{max}})}{2\pi}.

The result for the derivative of the susceptibility agrees with the known results for free electron model and bilayer graphene when dmax=0d_{\mathrm{max}}=0 and dmax=1d_{\mathrm{max}}=1, respectively [27, 39, 28]. Considering the form of the susceptibility in the free electron model and bilayer graphene as well as Eq. (17) 222The susceptibility is given χ0(ϵF)=π6\chi_{0}(\epsilon_{F})=\frac{\pi}{6} for free electrons and χ0(ϵF)=π2(13+ln|ϵF|t)\chi_{0}(\epsilon_{F})=\frac{\pi}{2}(\frac{1}{3}+\ln{\frac{|\epsilon_{F}|}{t}}) for bilayer graphene[27, 39, 28]. The derivative of the susceptibility is χ0(ϵF)=dmax2π2ϵF\chi’_{0}(\epsilon_{F})=d_{\mathrm{max}}^{2}\frac{\pi}{2\epsilon_{F}} from Eq. (17)., we propose the following expression for the susceptibility:

χ0(ϵF)=π2(13+dmax2ln|ϵF|t),\displaystyle\chi_{0}(\epsilon_{F})=\frac{\pi}{2}(\frac{1}{3}+d_{\mathrm{max}}^{2}\ln{\frac{|\epsilon_{F}|}{t}}), (19)

where tt is a constant. For bilayer graphene, the constant tt is related to interlayer hopping [28, 39]. One can verify that the derivative of the above equation gives Eq. (17).

Furthermore, it can be observed that the sign of χ\chi changes when |ϵF|<t|\epsilon_{F}|<t, as shown in Fig. 4, at the critical value

dmax,c2=13ln(|ϵF|/t).\displaystyle d_{\mathrm{max,c}}^{2}=-\frac{1}{3\ln(|\epsilon_{F}|/t)}. (20)

When dmax>dmax,cd_{\mathrm{max}}>d_{\mathrm{max,c}}, the system exhibits paramagnetism, i.e., χ0>0\chi_{0}>0. On the other hand, when 0<dmax<dmax,c0<d_{\mathrm{max}}<d_{\mathrm{max,c}}, the system exhibits diamagnetism, i.e., χ0<0\chi_{0}<0. The sign change in χ0\chi_{0} as dmaxd_{\mathrm{max}} varies indicates that a change in geometry alone, without altering the band structure or Fermi level, can induce a magnetic phase transition.

Refer to caption
Figure 4: (a) |ϵF|/t|\epsilon_{F}|/t-dependence of the susceptibility χ0\chi_{0} for dmax=0,0.5d_{\mathrm{max}}=0,0.5 and 1. (b) dmaxd_{\mathrm{max}}-dependence of the susceptibility for ϵF/t=0.5\epsilon_{F}/t=0.5.

VI Conclusion

To summarize, we have studied the influence of dmaxd_{\mathrm{max}} on Landau levels, the QHE, and magnetic response functions of isotropic quadratic band-touching systems. Despite sharing the same energy dispersion, distinct wave function geometry, characterized by different dmaxd_{\mathrm{max}}, gives rise to markedly different Landau levels, QHE, and magnetic response functions. To experimentally observe how these physical properties evolve with changes in dmaxd_{\mathrm{max}}, it is crucial to identify systems where tuning dmaxd_{\mathrm{max}} is feasible. Achieving a non-integer dmaxd_{\mathrm{max}} in momentum space requires hx(𝒌),hy(𝒌),hz(𝒌)0h_{x}(\bm{k}),h_{y}(\bm{k}),h_{z}(\bm{k})\neq 0 in the Hamiltonian in the Eq. (3) simultaneously. This indicates imaginary and long-range (at least the next nearest neighboring ones) hoppings are necessary in real space, suggesting that materials with strong spin-orbit coupling could be potential candidates for 0<dmax<10<d_{\mathrm{max}}<1. Our finding underscores the significance of quantum geometry of wavefunctions on the magnetic properties of electronic systems. Considering the growing interest in the physical responses induced by the quantum geometry, revealing the relation between physical responses and geometry in more general multi-band semimetal systems is an important direction for future study.

Acknowledgements.
We thank H. Watanabe, M. Koshino, T. Soejima, and J. Jung for the useful discussions. C-g.O. was supported by Q-STEP, WINGS Program, the University of Tokyo. J.W.R. was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (Grant no. 2021R1A2C1010572 and 2021R1A5A1032996 and 2022M3H3A106307411) and the Ministry of Education(Grant no. RS-2023-00285390). B.-J.Y. was supported by Samsung Science and Technology Foundation under Project No. SSTF-BA2002-06, National Research Foundation of Korea (NRF) grants funded by the government of Korea (MSIT) (Grants No. NRF-2021R1A5A1032996, and GRDC(Global Research Development Center) Cooperative Hub Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT(MSIT) (RS-2023-00258359)”).

References

  • Ando and Nakanishi [1998] T. Ando and T. Nakanishi, Impurity scattering in carbon nanotubes–absence of back scattering–, Journal of the Physical Society of Japan 67, 1704 (1998).
  • Ando [2005] T. Ando, Theory of electronic states and transport in carbon nanotubes, Journal of the Physical Society of Japan 74, 777 (2005).
  • Katsnelson et al. [2006] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the klein paradox in graphene, Nature physics 2, 620 (2006).
  • Young and Kim [2009] A. F. Young and P. Kim, Quantum interference and klein tunnelling in graphene heterojunctions, Nature Physics 5, 222 (2009).
  • McCann et al. [2006] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Physical review letters 97, 146805 (2006).
  • Tikhonenko et al. [2009] F. Tikhonenko, A. Kozikov, A. Savchenko, and R. Gorbachev, Transition between electron localization and antilocalization in graphene, Physical Review Letters 103, 226801 (2009).
  • Lu et al. [2019] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, et al., Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574, 653 (2019).
  • Liu et al. [2021] S. Liu, E. Khalaf, J. Y. Lee, and A. Vishwanath, Nematic topological semimetal and insulator in magic-angle bilayer graphene at charge neutrality, Physical Review Research 3, 013033 (2021).
  • Cao et al. [2018a] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43 (2018a).
  • Cao et al. [2018b] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556, 80 (2018b).
  • Choi et al. [2021] Y. Choi, H. Kim, Y. Peng, A. Thomson, C. Lewandowski, R. Polski, Y. Zhang, H. S. Arora, K. Watanabe, T. Taniguchi, et al., Correlation-driven topological phases in magic-angle twisted bilayer graphene, Nature 589, 536 (2021).
  • Guerci et al. [2021] D. Guerci, P. Simon, and C. Mora, Moiré lattice effects on the orbital magnetic response of twisted bilayer graphene and condon instability, Physical Review B 103, 224436 (2021).
  • Novoselov et al. [2005] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. Dubonos, Firsov, and AA, Two-dimensional gas of massless dirac fermions in graphene, nature 438, 197 (2005).
  • Zhang et al. [2005] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene, nature 438, 201 (2005).
  • Novoselov et al. [2006] K. S. Novoselov, E. McCann, S. Morozov, V. I. Fal’ko, M. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. Geim, Unconventional quantum hall effect and berry’s phase of 2π\pi in bilayer graphene, Nature physics 2, 177 (2006).
  • Fal’Ko [2008] V. I. Fal’Ko, Electronic properties and the quantum hall effect in bilayer graphene, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, 205 (2008).
  • Girvin and Prange [1987] S. Girvin and R. Prange, The quantum hall effect,   (1987).
  • MacDonald and MacDonald [1989] A. H. MacDonald and A. H. MacDonald, Quantum Hall effect: a perspective (Springer, 1989).
  • Rhim et al. [2020] J.-W. Rhim, K. Kim, and B.-J. Yang, Quantum distance and anomalous landau levels of flat bands, Nature 584, 59 (2020).
  • Rhim and Yang [2021] J.-W. Rhim and B.-J. Yang, Singular flat bands, Advances in Physics: X 6, 1901606 (2021).
  • Oh et al. [2022] C.-g. Oh, D. Cho, S. Y. Park, and J.-W. Rhim, Bulk-interface correspondence from quantum distance in flat band systems, Communications Physics 5, 320 (2022).
  • Kim et al. [2023] H. Kim, C.-g. Oh, and J.-W. Rhim, General construction scheme for geometrically nontrivial flat band models, arXiv preprint arXiv:2305.00448  (2023).
  • Hwang et al. [2021] Y. Hwang, J. Jung, J.-W. Rhim, and B.-J. Yang, Wave-function geometry of band crossing points in two dimensions, Physical Review B 103, L241102 (2021).
  • Jung et al. [2024] J. Jung, H. Lim, and B.-J. Yang, Quantum geometry and landau levels of quadratic band crossings, Physical Review B 109, 035134 (2024).
  • Gao and Niu [2017] Y. Gao and Q. Niu, Zero-field magnetic response functions in landau levels, Proceedings of the National Academy of Sciences 114, 7295 (2017).
  • Roth [1966] L. M. Roth, Semiclassical theory of magnetic energy levels and magnetic susceptibility of bloch electrons, Physical Review 145, 434 (1966).
  • Fuchs et al. [2018] J.-N. Fuchs, F. Piéchon, and G. Montambaux, Landau levels, response functions and magnetic oscillations from a generalized onsager relation, SciPost Physics 4, 024 (2018).
  • Koshino and Ando [2007] M. Koshino and T. Ando, Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation, Physical Review B 76, 085425 (2007).
  • McCann and Koshino [2013] E. McCann and M. Koshino, The electronic properties of bilayer graphene, Reports on Progress in physics 76, 056503 (2013).
  • Provost and Vallee [1980] J. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Communications in Mathematical Physics 76, 289 (1980).
  • McCann and Fal’ko [2006] E. McCann and V. I. Fal’ko, Landau-level degeneracy and quantum hall effect in a graphite bilayer, Physical review letters 96, 086805 (2006).
  • Landau [1930] L. Landau, Diamagnetismus der metalle, Zeitschrift für Physik 64, 629 (1930).
  • Koshino and Ando [2010] M. Koshino and T. Ando, Anomalous orbital magnetism in dirac-electron systems: role of pseudospin paramagnetism, Physical Review B 81, 195431 (2010).
  • Note [1] Solve ENLL=ϵFE_{N}^{LL}=\epsilon_{F} for N, then we get the results.
  • Xiao et al. [2010] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Reviews of modern physics 82, 1959 (2010).
  • Thonhauser [2011] T. Thonhauser, Theory of orbital magnetization in solids, International Journal of Modern Physics B 25, 1429 (2011).
  • Xiao et al. [2007] D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: magnetic moment and topological transport, Physical review letters 99, 236809 (2007).
  • Fuchs et al. [2010] J. Fuchs, F. Piéchon, M. Goerbig, and G. Montambaux, Topological berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, The European Physical Journal B 77, 351 (2010).
  • Safran [1984] S. Safran, Stage dependence of magnetic susceptibility of intercalated graphite, Physical Review B 30, 421 (1984).
  • Note [2] The susceptibility is given χ0(ϵF)=π6\chi_{0}(\epsilon_{F})=\frac{\pi}{6} for free electrons and χ0(ϵF)=π2(13+ln|ϵF|t)\chi_{0}(\epsilon_{F})=\frac{\pi}{2}(\frac{1}{3}+\mathop{ln}\nolimits{\frac{|\epsilon_{F}|}{t}}) for bilayer graphene[27, 39, 28]. The derivative of the susceptibility is χ0(ϵF)=dmax2π2ϵF\chi’_{0}(\epsilon_{F})=d_{\mathrm{max}}^{2}\frac{\pi}{2\epsilon_{F}} from Eq. (17).
  • Piéchon et al. [2016] F. Piéchon, A. Raoux, J.-N. Fuchs, and G. Montambaux, Geometric orbital susceptibility: Quantum metric without berry curvature, Physical Review B 94, 134423 (2016).
  • Ozawa and Mera [2021] T. Ozawa and B. Mera, Relations between topology and the quantum metric for chern insulators, Physical Review B 104, 045103 (2021).

Appendix A Landau levels of the continuum model

The continuum Hamiltonian is given by

0(𝒌)=αhα(𝒌)σα,\displaystyle\mathcal{H}_{0}({\bm{k}})=\sum_{\alpha}h_{\alpha}({\bm{k}})\sigma_{\alpha}, (21)

where σα\sigma_{\alpha} represents an identity (α=0\alpha=0) and Pauli matrices (α=x,y,z\alpha=x,y,z). Here, hα(𝒌)h_{\alpha}({\bm{k}}) is a real quadratic function: hx(𝒌)=d1d2ky2,hy(𝒌)=dkxky,hz(𝒌)=kx2/2+(12d2)ky2/2h_{x}({\bm{k}})={d\sqrt{1-d^{2}}}k_{y}^{2},~{}h_{y}({\bm{k}})=dk_{x}k_{y},~{}h_{z}({\bm{k}})=k_{x}^{2}/2+(1-2d^{2})k_{y}^{2}/2, and h0(𝒌)=0h_{0}({\bm{k}})=0. This Hamiltonian is obtained from the continuum Hamiltonian in Eq. (3) by a unitary transformation with U=1iσy1U=\frac{1-i\sigma_{y}}{\sqrt{1}}.

We analyze the Landau levels of the continuum Hamiltonian with ξ=1\xi=1 after the replacement kx(a+a)/(2lB)k_{x}\to(a+a^{\dagger})/(\sqrt{2}l_{B}) and kyi(aa)/(2lB)k_{y}\to i(a-a^{\dagger})/(\sqrt{2}l_{B}), where lB=/eBl_{B}=\sqrt{\hbar/eB} is a magnetic length, and aa, aa^{\dagger} are the annihilation and creation operators, respectively. To ensure the Hamiltonian’s hermiticity, a symmetrization is performed: kxky=(kxky+kykx)/2=i(a2(a)2)/(2lB2)k_{x}k_{y}=(k_{x}k_{y}+k_{y}k_{x})/2=i(a^{2}-(a^{\dagger})^{2})/(2l_{B}^{2}). Then, the continuum Hamiltonian in Eq. (21) is transformed to

HLL=12lB2(h11h12h21h22),\displaystyle H_{LL}=\frac{1}{2l_{B}^{2}}\begin{pmatrix}h_{11}&h_{12}\\ h_{21}&h_{22}\end{pmatrix}, (22)

where

h11=dmax2(a2+a2)+(1dmax2)(2aa+1),\displaystyle h_{11}=d_{\mathrm{max}}^{2}(a^{2}+a^{\dagger 2})+(1-d_{\mathrm{max}}^{2})(2a^{\dagger}a+1), (23)
h12=dmax(11dmax2)a2dmax(1+1dmax2)a2+dmax1dmax2(2aa+1)=h21,\displaystyle h_{12}=d_{\mathrm{max}}(1-\sqrt{1-d_{\mathrm{max}}^{2}})a^{2}-d_{\mathrm{max}}(1+\sqrt{1-d_{\mathrm{max}}^{2}})a^{\dagger 2}+d_{\mathrm{max}}\sqrt{1-d_{\mathrm{max}}^{2}}(2a^{\dagger}a+1)=h_{21}^{\dagger}, (24)
h22=dmax2(a2+a2)(1dmax2)(2aa+1).\displaystyle h_{22}=-d_{\mathrm{max}}^{2}(a^{2}+a^{\dagger 2})-(1-d_{\mathrm{max}}^{2})(2a^{\dagger}a+1). (25)

Note that this Hamiltonian has a chiral symmetry {σx,HLL}=HLL\{-\sigma_{x},H_{LL}\}=-H_{LL}, where σx=U1σzU-\sigma_{x}=U^{-1}\sigma_{z}U, when dmax=0d_{\mathrm{max}}=0 or dmax=1d_{\mathrm{max}}=1.

One can solve this problem using the following wavefunction:

|ψ=n=0vn|un=n=0(CnDn)|un,\displaystyle\ket{\psi}=\sum_{n=0}^{\infty}v_{n}\ket{u_{n}}=\sum_{n=0}^{\infty}\begin{pmatrix}C_{n}\\ D_{n}\end{pmatrix}\ket{u_{n}}, (26)

where |un\ket{u_{n}} is a normalized state satisfying a|un=n|un1a\ket{u_{n}}=\sqrt{n}\ket{u_{n-1}} and a|un=n+1|un+1a^{\dagger}\ket{u_{n}}=\sqrt{n+1}\ket{u_{n+1}}, and CnC_{n} and DnD_{n} are complex coefficients. Using this wavefunction, the Hamiltonian in Eq. (22) can be described as

HLL=12lB2=(h00g000h10g1g00h200g10h3:::::),\displaystyle H_{LL}=\frac{1}{2l_{B}^{2}}=\begin{pmatrix}h_{0}&0&g_{0}&0&...\\ 0&h_{1}&0&g_{1}&...\\ g_{0}^{\dagger}&0&h_{2}&0&...\\ 0&g_{1}^{\dagger}&0&h_{3}&...\\ :&:&:&:&:\end{pmatrix}, (27)

where

hn=(2n+1)(1dmax2dmax1dmax2dmax1dmax2(1dmax2)),\displaystyle h_{n}=(2n+1)\begin{pmatrix}1-d_{\mathrm{max}}^{2}&d_{\mathrm{max}}\sqrt{1-d_{\mathrm{max}}^{2}}\\ d_{\mathrm{max}}\sqrt{1-d_{\mathrm{max}}^{2}}&-(1-d_{\mathrm{max}}^{2})\end{pmatrix}, (28)

and

gn=(n+1)(n+2)(dmax2dmax(11dmax2)dmax(1+1dmax2)dmax2).\displaystyle g_{n}=\sqrt{(n+1)(n+2)}\begin{pmatrix}d_{\mathrm{max}}^{2}&d_{\mathrm{max}}(1-\sqrt{1-d_{\mathrm{max}}^{2}})\\ -d_{\mathrm{max}}(1+\sqrt{1-d_{\mathrm{max}}^{2}})&-d_{\mathrm{max}}^{2}\end{pmatrix}. (29)

From this Hamiltonian, one can get

12lB2(hngngnhn+2)(vnvn+2)=E(vnvn+2).\displaystyle\frac{1}{2l_{B}^{2}}\begin{pmatrix}h_{n}&g_{n}\\ g_{n}^{\dagger}&h_{n+2}\end{pmatrix}\begin{pmatrix}v_{n}\\ v_{n+2}\end{pmatrix}=E\begin{pmatrix}v_{n}\\ v_{n+2}\end{pmatrix}. (30)

By using vn+2=[E~hn+2]1gnvnv_{n+2}=[\tilde{E}-h_{n+2}]^{-1}g^{\dagger}_{n}v_{n}, where E~=2lB2E\tilde{E}=2l_{B}^{2}E, one can obtain the following equation:

12lB2[hn+gn(E~hn+2)1gn]vn=Evn.\displaystyle\frac{1}{2l_{B}^{2}}[h_{n}+g_{n}(\tilde{E}-h_{n+2})^{-1}g^{\dagger}_{n}]v_{n}=Ev_{n}. (31)

Since n1n\leq 1 this equation does not hold because nn-th Landau level only comes from the n+2n+2-th Landau levels and not from the n2n-2-th Landau levels. Thus, we consider the zero-th and first order energies seperately. Calculating these, one can get the Landau levels in Eq (6) in the main text.

Appendix B Landau levels of a square lattice

To confirm our prediction based on a continuum model, we consider a lattice model on the square lattice whose effective Hamiltonian at the Γ\Gamma point is given as Eq. (3) in the main text with ξ=+1\xi=+1. We consider various long-range hopping processes as illustrated in Fig. 5(a). The hopping parameters are given by tred=t~red=1/8t_{\mathrm{red}}=-\tilde{t}_{\mathrm{red}}=-1/8, tblue=t~blue=1/8+dmaxt_{\mathrm{blue}}=-\tilde{t}_{\mathrm{blue}}=-1/8+d_{\mathrm{max}}, torange=t~orange=idmax/4t_{\mathrm{orange}}=-\tilde{t}_{\mathrm{orange}}=id_{\mathrm{max}}/4, tpurple=dmax1dmax2/4t_{\mathrm{purple}}=-d_{\mathrm{max}}\sqrt{1-d_{\mathrm{max}}^{2}}/4, and tgreen=dmax1dmax2/2t_{\mathrm{green}}=d_{\mathrm{max}}\sqrt{1-d_{\mathrm{max}}^{2}}/2. The explicit form of the tight-binding Hamiltonian for this model is

HLattice\displaystyle H_{\text{Lattice}} =\displaystyle= m,n1dmax22(Am,nAm,nBm,nBm,n)+[tgreenAm,nBm,n+tred(Am+2,nAm,nBm+2,nBm,n)\displaystyle\sum_{m,n}\frac{1-d_{\mathrm{max}}^{2}}{2}(A^{\dagger}_{m,n}A_{m,n}-B^{\dagger}_{m,n}B_{m,n})+\Bigg{[}t_{\mathrm{green}}A^{\dagger}_{m,n}B_{m,n}+t_{\mathrm{red}}(A^{\dagger}_{m+2,n}A_{m,n}-B^{\dagger}_{m+2,n}B_{m,n}) (32)
+tblue(Am,n+2Am,nBm,n+2Bm,n)+tpurple(Am,n+2Bm,n+Am,n2Bm,n)\displaystyle+t_{\mathrm{blue}}(A^{\dagger}_{m,n+2}A_{m,n}-B^{\dagger}_{m,n+2}B_{m,n})+t_{\mathrm{purple}}(A^{\dagger}_{m,n+2}B_{m,n}+A^{\dagger}_{m,n-2}B_{m,n})
+torange(Am+1,n+1Bm,n+Am1,n1Bm,nAm1,n+1Bm,nAm+1,n1Bm,n)+h.c.].\displaystyle+t_{\mathrm{orange}}(A^{\dagger}_{m+1,n+1}B_{m,n}+A^{\dagger}_{m-1,n-1}B_{m,n}-A^{\dagger}_{m-1,n+1}B_{m,n}-A^{\dagger}_{m+1,n-1}B_{m,n})+h.c.\Bigg{]}.

The lattice Hamiltonian has the energy eigenvalues E=±(2cos2kxcos2ky)/4E=\pm(2-\cos{2k_{x}}-\cos{2k_{y}})/4, shown in Fig. 5(b), which remain invariant under changes in dmaxd_{\mathrm{max}}(0dmax10\leq d_{\mathrm{max}}\leq 1).

Our predictions of Landau levels in Eq. (6) in the main text are confirmed by this lattice model. We consider commensurate magnetic fluxes ϕ\phi satisfying ϕ/ϕ0=1/q\phi/\phi_{0}=1/q, where qq is a natural number and ϕ0\phi_{0} is the flux quantum. Figure 5(c) depicts the dmaxd_{\mathrm{max}}-dependence of the zero-th, first, and second Landau levels. One can verify that our analytic results match well with the results of the lattice model.

Refer to caption
Figure 5: (a) Lattice and hopping structure of the square lattice model. Here, tt’s and t~\tilde{t}’s are the hopping parameters. In this model, dmaxd_{\mathrm{max}} can be varied from 0 to 1 while maintaining the band structure by changing the hopping parameters. (b) Band structure of the lattice model. (c) Zero-th, first and second Landau levels of the lattice model and the continuum model in Eq (6) in the main text. The circles correspond to the lattice model, and the solid lines are from the continuum model.

Appendix C Landau levels under semiclassical approximation

Physical observables related to Landau levels are closely linked to the geometry of eigenstates and can therefore be directly computed from the wavefunctions. For example, the derivative of the magnetization in Eq. (16) of the main text is described by the Berry phase, a property of the Bloch wavefunction in the absence of a magnetic field. Similarly, Hall conductivity can be obtained from wavefunctions in the presence of a magnetic field. In this section, we show that the physical observables derived from the Landau levels using the Roth-Gaou-Niu relation [25, 26, 27]—such as Hall conductivity σxy\sigma_{xy}, the derivative of magnetization M0(ϵF)M^{\prime}_{0}(\epsilon_{F}), and the derivative of susceptibility χ0(ϵF)\chi^{\prime}_{0}(\epsilon_{F})—can be derived from the geometric properties of the wavefunction.

The Berry phase, the quantum geometric tensor and the Berry curvature for the model in Eq. (3) in the main text are given by

ΦB=2πξ1dmax2(mod2π),\displaystyle\Phi_{B}=-2\pi\xi\sqrt{1-d_{\mathrm{max}}^{2}}~{}~{}~{}~{}~{}(\mathrm{mod}2\pi), (33)
gxxn(𝒌)=2dmax2ky2k4,gyyn(𝒌)=2dmax2kx2k4,\displaystyle g^{n}_{xx}(\bm{k})=2d_{\mathrm{max}}^{2}\frac{k_{y}^{2}}{k^{4}},~{}~{}g^{n}_{yy}(\bm{k})=2d_{\mathrm{max}}^{2}\frac{k_{x}^{2}}{k^{4}},
gxyn(𝒌)=gyxn(𝒌)=2dmax2kxkyk4,\displaystyle g^{n}_{xy}(\bm{k})=g^{n}_{yx}(\bm{k})=-2d_{\mathrm{max}}^{2}\frac{k_{x}k_{y}}{k^{4}},
Ωxyn(𝒌)=0,\displaystyle\Omega^{n}_{xy}(\bm{k})=0, (34)

where n=±n=\pm is band index. Here, we focus on the case of ξ=+1\xi=+1.

First, let us consider the derivative of magnetization. According to the modern theory of magnetization [35, 27, 36], differentiating the magnetization with respect to the chemical potential gives

M0(ϵF)=ϵFN0(ϵF)+ΦB(dmax)2π,\displaystyle M’_{0}(\epsilon_{F})=\braket{\mathcal{M}}_{\epsilon_{F}}N^{\prime}_{0}(\epsilon_{F})+\frac{\Phi_{B}(d_{\mathrm{max}})}{2\pi}, (35)

where ϵF\braket{\mathcal{M}}_{\epsilon_{F}} represents the average of the orbital magnetic moment over the Fermi surface. Indeed, for a two-band model with electron-hole symmetry, (𝒌)=eϵ+(𝒌)Ω(𝒌)\mathcal{M}(\bm{k})=\frac{e}{\hbar}\epsilon_{+}(\bm{k})\Omega(\bm{k}) [37, 38]. Therefore, the average of the orbital magnetic moment over the Fermi surface vanishes, and M0(ϵF)=ΦB(dmax)/(2π)M^{\prime}_{0}(\epsilon_{F})={\Phi_{B}(d_{\mathrm{max}})}/({2\pi}).

Next, let us focus on the derivative of the susceptibility. The interband contribution of the susceptibility can be decomposed into three terms [41]:

χinter=χΩ+χg+χ~g.\displaystyle\chi_{\mathrm{inter}}=\chi_{\Omega}+\chi_{g}+\tilde{\chi}_{g}. (36)

The first term χΩ\chi_{\Omega} is related to the Berry curvature. Since the Berry curvature of the model is zero, this term is negligable. The third term χ~g\tilde{\chi}_{g} only appears in the absence of electron-hole symmetry, and is also negligible in our system. The fundamental contribution comes from χg\chi_{g}, which is related to the quantum metric. The explicit form is given by

χg(ϵF)=i,j=x,yn=±𝒌nΘ(ϵFϵn(𝒌))2ϵ+(𝒌)j(ϵ+(𝒌)2igij(𝒌)).\displaystyle\chi_{g}(\epsilon_{F})=-\sum_{i,j=x,y}\sum_{n=\pm}\sum_{\bm{k}}n\frac{\Theta(\epsilon_{F}-\epsilon_{n}(\bm{k}))}{2\epsilon_{+}(\bm{k})}\partial_{j}\left(\epsilon_{+}(\bm{k})^{2}\partial_{i}g_{ij}(\bm{k})\right). (37)

Differnetiating this gives:

χg(ϵF)=i,j=x,yn=±𝒌nδ(ϵFϵn(𝒌))2ϵ+(𝒌)j(ϵ+(𝒌)2igij(𝒌)).\displaystyle\chi^{\prime}_{g}(\epsilon_{F})=-\sum_{i,j=x,y}\sum_{n=\pm}\sum_{\bm{k}}n\frac{\delta(\epsilon_{F}-\epsilon_{n}(\bm{k}))}{2\epsilon_{+}(\bm{k})}\partial_{j}\left(\epsilon_{+}(\bm{k})^{2}\partial_{i}g_{ij}(\bm{k})\right). (38)

After straightforward calculation, we find χg=dmax2π2ϵF\chi^{\prime}_{g}=d_{\mathrm{max}}^{2}\frac{\pi}{2\epsilon_{F}}.

Finally, we calculate the Hall conductivity. To do this, we need the geometric quantitiy of the wavefunction under a magnetic field. For a given mm-th Landau level, the wavefunction in Eq. (26) is written as

|ψm=N(m)(vm|um+vm+2|um+2),\displaystyle\ket{\psi_{m}}=N(m)\left(v_{m}\ket{u_{m}}+v_{m+2}\ket{u_{m+2}}\right), (39)

where N(m)N(m) represents normalization factor. If we take a unitary transformation, this can be written as

|ψm=11+f(m)2((01)|um+(f(m)0)|um+2),\displaystyle\ket{\psi_{m}}=\frac{1}{\sqrt{1+f(m)^{2}}}\left(\begin{pmatrix}0\\ 1\end{pmatrix}\ket{u_{m}}+\begin{pmatrix}f(m)\\ 0\end{pmatrix}\ket{u_{m+2}}\right), (40)

where f(m)=(31dmax2+21dmax2+(2n+3)2dmax2)/(2dmax(n+1)(n+2))f(m)=-(3\sqrt{1-d_{\mathrm{max}}^{2}}+2\sqrt{1-d_{\mathrm{max}}^{2}}+\sqrt{(2n+3)^{2}-d_{\mathrm{max}}^{2}})/(2d_{\mathrm{max}}\sqrt{(n+1)(n+2)}). To calculate the geometric properties of wavefunctions under a magnetic field, we consider magnetic translation symmtery, and the periodic part of the eigenfunction |ψm\ket{\psi_{m}}, with a momentum 𝒌\bm{k}, which we denote as |ψ¯m,𝒌\ket{\bar{\psi}_{m,\bm{k}}}. We follow Ref. [42], and calculate the followings:

ψ¯m,k|xψ¯n,k=i(lB2δm+1,n+kylB2δm,n+mlBδm1,n),\displaystyle\langle\bar{\psi}_{m,k}|\partial_{x}\bar{\psi}_{n,k}\rangle=-i\left(\frac{l_{B}}{2}\delta_{m+1,n}+k_{y}l_{B}^{2}\delta_{m,n}+ml_{B}\delta_{m-1,n}\right), (41)
ψ¯m,k|yψ¯n,k=lB(nδm1,n+(1/2)δm+1,n),\displaystyle\langle\bar{\psi}_{m,k}|\partial_{y}\bar{\psi}_{n,k}\rangle=l_{B}\left(n\delta_{m-1,n}+(1/2)\delta_{m+1,n}\right), (42)
xψ¯m,k|xψ¯m,k=(m+1/2)lB2+lB4ky2,\displaystyle\langle\partial_{x}\bar{\psi}_{m,k}|\partial_{x}\bar{\psi}_{m,k}\rangle=(m+1/2)l_{B}^{2}+l_{B}^{4}k_{y}^{2}, (43)
xψ¯m,k|yψ¯m,k=ilB2/2,\displaystyle\langle\partial_{x}\bar{\psi}_{m,k}|\partial_{y}\bar{\psi}_{m,k}\rangle=il_{B}^{2}/2, (44)
yψ¯m,k|yψ¯m,k=lB2(m+1/2).\displaystyle\langle\partial_{y}\bar{\psi}_{m,k}|\partial_{y}\bar{\psi}_{m,k}\rangle=l_{B}^{2}(m+1/2). (45)

The Hall conductivity is given as

σxy\displaystyle\sigma_{xy} =mπ/axπ/ax𝑑kxπ/ayπ/ay𝑑kyf(EmLL)Re[xψ¯m,k|yψ¯m,kyψ¯m,k|xψ¯m,k]\displaystyle=\sum_{m}\int^{\pi/a_{x}}_{-\pi/a_{x}}dk_{x}\int^{\pi/a_{y}}_{-\pi/a_{y}}dk_{y}f(E^{LL}_{m})\mathrm{Re}\left[\langle\partial_{x}\bar{\psi}_{m,k}|\partial_{y}\bar{\psi}_{m,k}\rangle-\langle\partial_{y}\bar{\psi}_{m,k}|\partial_{x}\bar{\psi}_{m,k}\rangle\right] (46)
=mf(EmLL),\displaystyle=\sum_{m}f(E^{LL}_{m}), (47)

where axa_{x} and aya_{y} represent the length of magnetic unit cell along xx direction and yy direction, respectively, which satisfy

Baxay=2π.\displaystyle Ba_{x}a_{y}=2\pi. (48)

This gives the same result in the main text. Note that for dmax=1d_{\mathrm{max}}=1, we need to consider the degeneracy.

When we consider rr bands are occupied, the quantum geometric tensor takes the following form [42]:

χij(𝒌)=m=0r1iψ¯m,k|1P(𝒌)|jψ¯m,k,\displaystyle\chi_{ij}(\bm{k})=\sum^{r-1}_{m=0}\braket{\partial_{i}\bar{\psi}_{m,k}}{1-P(\bm{k})}{\partial_{j}\bar{\psi}_{m,k}}, (49)

where

P(𝒌)=m=0r1|ψ¯m,kψ¯m,k|.\displaystyle P(\bm{k})=\sum^{r-1}_{m=0}\ket{\bar{\psi}_{m,k}}\bra{\bar{\psi}_{m,k}}. (50)

From a straightforward calculation, the Chern number, quantum metric, and Berry curvature for Landau levels are given by

𝒞=r,gxx=gyy=r2lB2,gxy=0,Ωxy=rlB2.\displaystyle\mathcal{C}=-r,~{}~{}g_{xx}=g_{yy}=\frac{r}{2}l_{B}^{2},~{}~{}g_{xy}=0,~{}~{}\Omega_{xy}=-rl_{B}^{2}. (51)

These are the same results from Ref. [42].

From this Chern number, the Hall conductivity is given by

σxy=C,\displaystyle\sigma_{xy}=-C, (52)

which is the same result above. Note that for the case with dmax=1d_{\mathrm{max}}=1, rr in Eqs. (51) and (52) has to be replaced with r1r-1 due to the degeneracy at zero-energy.

As we see above, the geometry of the wavefunction is strongly related to M0,χ0M^{\prime}_{0},\chi^{\prime}_{0} and σxy\sigma_{xy}, and they can be calculate from the wavefunctions. The same results with those obtained from Landau levels in the main text show that two approaches yield identical outcomes.