This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Revisiting the assignment of 13D11^{3}D_{1} meson nonet

Xue-Chao Feng1,Ke-Wei Wei2 and Jie Wu1 1College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, 450002 Zhengzhou, China 2School of Science,Henan University of Engineering, 451191 Zhengzhou, China
Abstract

Based on the mass relations from the Regge phenomenology, we revisit the mass spectrum of 13D11^{3}D_{1} meson nonet. The masses of kaon and ss¯s\bar{s} member of 13D11^{3}D_{1} (13D1(ss¯)1^{3}D_{1}(s\bar{s})) meson nonet are obtained and the results are compared with the values from different theoretical models. Moreover, the strong decay properties of the kaon and 13D1(ss¯)1^{3}D_{1}(s\bar{s}) are presented in the P03{}^{3}P_{0} model. On the basis of results, we suggest the assignment of 13D11^{3}D_{1} meson nonet need further tested in the new experiment in the future. Our results also provide mass constraints for the study of these states.

Regge phenomenology; meson-meson mixing.
pacs:
14.40-n, 12.40Nn, 13.20.Jf
preprint:

I Introduction

Quantum Chromodynamics (QCD) is widely accepted as a non-Abelian gauge field theory to describe strong interaction. QCD successfully explains many experimental data, in the high-energy region, the coupling constant is small, one can use perturbative method to handle the interaction. However, in the low energy region, the coupling constant is large and the perturbative method is not applicable. So far, no other analytical methods have been developed to solve this problem. In other words, the understanding of strong interaction is still incomplete. On the other hand, the properties of mesons are dominated by the non-perturbative effects of QCD, so mesons have become an ideal laboratory for the study of strong interactions in the strongly coupled non-perturbative regime Godfrey:1998pd ; Li:2004gu . The investigation of the meson spectrum is of great scientific significance for a better understanding of the non-perturbative effects of QCD.

In this work, we will focus on the assignment of 13D11^{3}D_{1} meson nonet. In the past few years, there have been a lot of analysis on the assignment of 13D11^{3}D_{1} meson nonet, but until now, there are still many confusing aspects about this problem Liang:2013jmx . In the recent edition of Particle Data Group, the 13D11^{3}D_{1} meson nonet assignments have been presented in the quark model ParticleDataGroup:2020ssz . Here we list the masses and decays of 13D11^{3}D_{1} meson nonet in Tab. I.

Table 1: Masses and decay widths of 13D11^{3}D_{1} meson nonet in PDG. The physical vector mesons is mixtures of 13D11^{3}D_{1} and 23S12^{3}S_{1}. This state has also been proposed as a tetraquark state. ϕ(???)\phi(???)^{\ast} denotes the ss¯s\bar{s} member of 13D11^{3}D_{1} meson nonet and has not been observed in experiment.
state Mass(MeV) Width(MeV)
ρ(𝟏𝟕𝟎𝟎)\mathbf{\rho(1700)} 1720±201720\pm 20 250±100250\pm 100
ω(𝟏𝟔𝟓𝟎)\mathbf{\omega(1650)} 1670±301670\pm 30 315±35315\pm 35
K(1680)K^{*}(1680)^{{\dagger}} 1718±181718\pm 18 322±110322\pm 110
ϕ(2170)\phi(2170)^{{\ddagger}} or ϕ(???)\phi(???)^{\ast} 2159±172159\pm 17 137±16137\pm 16

There is some controversy about K(1680)K^{*}(1680) as the kaon in the 13D11^{3}D_{1} meson nonet. To specify this question, we need to briefly review the kaon state K(1410)K^{*}(1410) in the 23S12^{3}S_{1} meson nonet. In PDG, the K(1410)K^{*}(1410) as candidate for 23S12^{3}S_{1} meson nonet, but there are still some problems about this assignment. On the one hand, the mass of K(1410)K^{*}(1410)(1414±15MeV1414\pm 15MeV) is smaller compared with other states ρ(1450)\rho(1450) and ω(1420)\omega(1420) of 23S12^{3}S_{1} meson nonet. In the past few years, people have analyzed the mass of K(1410)K^{*}(1410) with the different models, e.g. Godfrey-Isgur quark model (1580MeV\sim 1580MeV) Godfrey:1985xj , constituent quark model (1620MeV\sim 1620MeV) Vijande:2004he , semirelativistic potential model (1600MeV\sim 1600MeV) Brau:2002zpy and Regge trajectories (1608MeV\sim 1608MeV) Tornqvist:1990fv . The mass range does not support such assignment. On the other hand, the reported πK\pi K branching fraction deviate significantly from the theoretical prediction Barnes:2002mu . Burakovsky also indicated the mass of K(1410)K^{\ast}(1410) seems too light to be the 23S12^{3}S_{1} meson nonet Burakovsky:1997ch . In Ref. Tornqvist:1990fv , the existence of state K(1410)K^{\ast}(1410) is doubted by To¨rnquistT\ddot{o}rnquist. In our previous work Feng:2007zze , we also suggested that the assignment of K(1410)K^{\ast}(1410) should be tested in the future experiments. Many references above suggested that the assignment of state K(1410)K^{\ast}(1410) should be revisited in the future. The earlier edition of PDG recommended that the K(1410)K^{\ast}(1410) could be replaced by the K(1680)K^{\ast}(1680) as the 23S12^{3}S_{1} state ParticleDataGroup:2006fqo . If the replacement is testified reasonably in experiment, we would encounter another interesting puzzle, which state should be the candidate for kaon in the 13D11^{3}D_{1} meson nonet. The state K(1680)K^{\ast}(1680) with the mass 1717±27MeV1717\pm 27MeV and full width 322±110MeV322\pm 110MeV is observed in the πK\pi K, ρK\rho K and K(892)πK^{\ast}(892)\pi decay modes at present ParticleDataGroup:2020ssz . However, Barnes indicated this state should have large branch fraction in πK1(1273)\pi K_{1}(1273) decay mode in the P03{}^{3}P_{0} model Barnes:2002mu . Similarly, K(1680)K^{*}(1680) mass seems too light if we accept the ρ(1700)\rho(1700) and ω(1650)\omega(1650) as 13D11^{3}D_{1} nn¯n\bar{n} states. Moreover, the K(1410)K^{\ast}(1410) and K(1680)K^{\ast}(1680) could be mixtures of 23S12^{3}S_{1} and 13D11^{3}D_{1} states, this situation makes the problem more interesting Pang:2017dlw .

Apart from the kaon, the ss¯s\bar{s} member of 13D11^{3}D_{1} meson nonet is even more disturbing, with the ρ(1700)\rho(1700) and ω(1650)\omega(1650) as the well established 13D11^{3}D_{1} nn¯n\bar{n} states, the ss¯s\bar{s} member mass is investigated in different models, e.g. Godfrey-Isgur quark model Godfrey:1985xj , the flux-tube model Barnes:1995hc . Surprisingly, the ϕ(2170)\phi(2170) is assigned as the the ss¯s\bar{s} member of 13D11^{3}D_{1} meson nonet in PDG ParticleDataGroup:2020ssz . Because the mass of ϕ(2170)\phi(2170) deviates greatly from the conventional predictions, we have doubts about such assignment. It is also pointed out that ϕ(2170)\phi(2170) proposed as a tetraquark Agaev:2019coa . A more detailed discussion of this state can be found in Refs. Agaev:2019coa ; BESIII:2020gnc .

In this work, we will investigate the mass spectrum of 13D11^{3}D_{1} meson nonet in the framework of Regge phenomenology. In addition, the decays of 13D11^{3}D_{1} meson nonet are given. The article is organized as follows: In Sec. II, a brief review Regge phenomenology and the mass relations of 13D11^{3}D_{1} state are obtained. In Sec. III, decays of ϕ(???)\phi(???) are presented in the P03{}^{3}P_{0} model, and a summary is given in Sec. IV.

II Regge phenomenology and mass relations

Regge theory originated from the analysis of scattering amplitudes in complex angular momentum space in 1959 Regge:1959mz , and it is applied to the study of high energy particles physics. Regge theory involves almost all aspects of strong interactions, including hadron spectrum, the forces of particles, and the high energy behavior of scattering amplitudes Collins:1971ff ; Chen:2016spr ; Guo:2008he ; Anisovich:2000kxa ; Masjuan:2012gc ; Pang:2019ovr ; Chen:2018nnr ; Chen:2021kfw ; Chen:2022flh ; Li:2007px .In Regge theory, the pole of split wave amplitude in the plane of the complex angular momentum is called Regge pole, and the curve depended by it moving in the plane when energy changes is called Regge trajectory. The plots of Regge trajectories of hadrons in the (J,M2)(J,M^{2}) plane are usually called Chew-Frautschi plots (where JJ and MM are respectively the total spins and the masses of the hadrons). In the past two decades, the quasilinear Regge trajectory was used for studying hadron spectra and result in reasonable description for the hadron spectroscopy Li:2004gu ; Guo:2008he ; Anisovich:2000kxa ; Li:2007px .

In the present work, we investigate the 13D11^{3}D_{1} meson nonet in the framework of quasilinear Regge trajectories. The quasi-linear Regge trajectory for a meson state is usually parameterized as Li:2004gu ; Guo:2008he ; Li:2007px

J=αnn¯(N2S+1LJ)(0)+αnn¯(N2S+1LJ)Mnn¯(N2S+1LJ)2J=\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{n\bar{n}({N^{2S+1}L_{J}})}M^{2}_{n\bar{n}({N^{2S+1}L_{J}})} (1)
J=αns¯(N2S+1LJ)(0)+αns¯(N2S+1LJ)Mns¯(N2S+1LJ)2J=\alpha_{n\bar{s}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{n\bar{s}({N^{2S+1}L_{J}})}M^{2}_{n\bar{s}({N^{2S+1}L_{J}})} (2)
J=αss¯(N2S+1LJ)(0)+αss¯(N2S+1LJ)Mss¯(N2S+1LJ)2J=\alpha_{s\bar{s}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{s\bar{s}({N^{2S+1}L_{J}})}M^{2}_{s\bar{s}({N^{2S+1}L_{J}})} (3)
J=αcc¯(N2S+1LJ)(0)+αcc¯(N2S+1LJ)Mcc¯(N2S+1LJ)2J=\alpha_{c\bar{c}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{c\bar{c}({N^{2S+1}L_{J}})}M^{2}_{c\bar{c}({N^{2S+1}L_{J}})} (4)
J=αcs¯(N2S+1LJ)(0)+αcs¯(N2S+1LJ)Mcs¯(N2S+1LJ)2J=\alpha_{c\bar{s}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{c\bar{s}({N^{2S+1}L_{J}})}M^{2}_{c\bar{s}({N^{2S+1}L_{J}})} (5)
J=αcn¯(N2S+1LJ)(0)+αcn¯(N2S+1LJ)Mcn¯(N2S+1LJ)2J=\alpha_{c\bar{n}({N^{2S+1}L_{J}})}(0)+\alpha^{\prime}_{c\bar{n}({N^{2S+1}L_{J}})}M^{2}_{c\bar{n}({N^{2S+1}L_{J}})} (6)

where nn (n=un=u or dd quark), ss and cc refer to the quark constituents, JJ and MM are the spin and mass of the meson state, respectively. NN is the radial quantum number, LL is orbital angular momentum. The α\alpha^{\prime} and α\alpha are the slope and intercept of the Regge trajectory. For a given meson state, the intercept and slope can be expressed by the following relations.

αnn¯(N2S+1LJ)(0)+αss¯(N2S+1LJ)(0)=2αns¯(N2S+1LJ)(0)\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0)+\alpha_{s\bar{s}({N^{2S+1}L_{J}})}(0)=2\alpha_{n\bar{s}({N^{2S+1}L_{J}})}(0) (7)
αcc¯(N2S+1LJ)(0)+αnn¯(N2S+1LJ)(0)=2αcn¯(N2S+1LJ)(0)\alpha_{c\bar{c}({N^{2S+1}L_{J}})}(0)+\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0)=2\alpha_{c\bar{n}({N^{2S+1}L_{J}})}(0) (8)
αcc¯(N2S+1LJ)(0)+αss¯(N2S+1LJ)(0)=2αcs¯(N2S+1LJ)(0)\alpha_{c\bar{c}({N^{2S+1}L_{J}})}(0)+\alpha_{s\bar{s}({N^{2S+1}L_{J}})}(0)=2\alpha_{c\bar{s}({N^{2S+1}L_{J}})}(0) (9)
1αnn¯(N2S+1LJ)+1αss¯(N2S+1LJ)=2αns¯(N2S+1LJ)\frac{1}{\alpha^{\prime}_{n\bar{n}({N^{2S+1}L_{J}})}}+\frac{1}{\alpha^{\prime}_{s\bar{s}({N^{2S+1}L_{J}})}}=\frac{2}{\alpha^{\prime}_{n\bar{s}({N^{2S+1}L_{J}})}} (10)
1αcc¯(N2S+1LJ)+1αnn¯(N2S+1LJ)=2αcn¯(N2S+1LJ)\frac{1}{\alpha^{\prime}_{c\bar{c}({N^{2S+1}L_{J}})}}+\frac{1}{\alpha^{\prime}_{n\bar{n}({N^{2S+1}L_{J}})}}=\frac{2}{\alpha^{\prime}_{c\bar{n}({N^{2S+1}L_{J}})}} (11)
1αcc¯(N2S+1LJ)+1αss¯(N2S+1LJ)=2αcs¯(N2S+1LJ)\frac{1}{\alpha^{\prime}_{c\bar{c}({N^{2S+1}L_{J}})}}+\frac{1}{\alpha^{\prime}_{s\bar{s}({N^{2S+1}L_{J}})}}=\frac{2}{\alpha^{\prime}_{c\bar{s}({N^{2S+1}L_{J}})}} (12)

The intercept correlations (7), (8) and (9) were derived from in the dual-resonance model Berezinsky:1969erk , and are satisfied in two-dimensional QCD Brower:1977as , the dual-analytic model Kobylinsky:1978db , and the quark bremsstrahlung model Dixit:1979mz . The slope relations (10), (11) and (12) are obtained in the framework of topological expansion and the qq¯q\bar{q}-string picture of hadrons Kaidalov:1980bq .

Combining the relations (1)-(6) and (7)-(9) , one obtains

Mnn¯(N2S+1LJ)2αnn¯(N2S+1LJ)+Mss¯(N2S+1LJ)2αss¯(N2S+1LJ)=2Mns¯(N2S+1LJ)2αns¯(N2S+1LJ)M^{2}_{n\bar{n}({N^{2S+1}L_{J}})}\alpha^{\prime}_{n\bar{n}({N^{2S+1}L_{J}})}+M^{2}_{s\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{s\bar{s}({N^{2S+1}L_{J}})}=2M^{2}_{n\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{n\bar{s}({N^{2S+1}L_{J}})} (13)
Mnn¯(N2S+1LJ)2αnn¯(N2S+1LJ)+Mcc¯(N2S+1LJ)2αcc¯(N2S+1LJ)=2Mcn¯(N2S+1LJ)2αcn¯(N2S+1LJ)M^{2}_{n\bar{n}({N^{2S+1}L_{J}})}\alpha^{\prime}_{n\bar{n}({N^{2S+1}L_{J}})}+M^{2}_{c\bar{c}({N^{2S+1}L_{J}})}\alpha^{\prime}_{c\bar{c}({N^{2S+1}L_{J}})}=2M^{2}_{c\bar{n}({N^{2S+1}L_{J}})}\alpha^{\prime}_{c\bar{n}({N^{2S+1}L_{J}})} (14)
Mss¯(N2S+1LJ)2αss¯(N2S+1LJ)+Mcc¯(N2S+1LJ)2αcc¯(N2S+1LJ)=2Mcs¯(N2S+1LJ)2αcs¯(N2S+1LJ)M^{2}_{s\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{s\bar{s}({N^{2S+1}L_{J}})}+M^{2}_{c\bar{c}({N^{2S+1}L_{J}})}\alpha^{\prime}_{c\bar{c}({N^{2S+1}L_{J}})}=2M^{2}_{c\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{c\bar{s}({N^{2S+1}L_{J}})} (15)

Apply the relations (13), (14) and (15) to the 13S11^{3}S_{1}, 13P21^{3}P_{2} and 13D11^{3}D_{1} meson state, the following relations are obtained by eliminating the slopes. Our analysis is based on these assumptions that the slopes of parity partners trajectories coincide and the slopes of ground and radial excited states are the same, which is widely used in Refs. Anisovich:2000kxa ; Li:2007px ; Anisovich:2001ig ; Anisovich:2002us , that is to say, αnn¯(N3S1)=αnn¯(N3P2)=αnn¯(N3D1)\alpha^{\prime}_{n\bar{n}({N^{3}S_{1}})}=\alpha^{\prime}_{n\bar{n}({N^{3}P_{2}})}=\alpha^{\prime}_{n\bar{n}({N^{3}D_{1}})}, αns¯(N3S1)=αns¯(N3P2)=αns¯(N3D1)\alpha^{\prime}_{n\bar{s}({N^{3}S_{1}})}=\alpha^{\prime}_{n\bar{s}({N^{3}P_{2}})}=\alpha^{\prime}_{n\bar{s}({N^{3}D_{1}})}, αss¯(N3S1)=αss¯(N3P2)=αss¯(N3D1)\alpha^{\prime}_{s\bar{s}({N^{3}S_{1}})}=\alpha^{\prime}_{s\bar{s}({N^{3}P_{2}})}=\alpha^{\prime}_{s\bar{s}({N^{3}D_{1}})}, αcc¯(N3S1)=αcc¯(N3P2)\alpha^{\prime}_{c\bar{c}({N^{3}S_{1}})}=\alpha^{\prime}_{c\bar{c}({N^{3}P_{2}})}, αcn¯(N3S1)=αcn¯(N3P2)\alpha^{\prime}_{c\bar{n}({N^{3}S_{1}})}=\alpha^{\prime}_{c\bar{n}({N^{3}P_{2}})}, αcs¯(N3S1)=αcs¯(N3P2)\alpha^{\prime}_{c\bar{s}({N^{3}S_{1}})}=\alpha^{\prime}_{c\bar{s}({N^{3}P_{2}})}.

4Mns¯(13S1)2Mnn¯(13P2)24Mnn¯(13S1)2Mns¯(13P2)2Mnn¯(13S1)2Mss¯(13P2)2Mss¯(13S1)2Mnn¯(13P2)2=Mns¯(13S1)2(Mnn¯(13P2)2Mss¯(13P2)2)Mns¯(13P2)2(Mnn¯(13S1)2Mss¯(13S1)2)Mns¯(13S1)2Mss¯(13P2)2Mss¯(13S1)2Mns¯(13P2)2\frac{4M^{2}_{n\bar{s}({1^{3}S_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}-4M^{2}_{n\bar{n}({1^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}}{M^{2}_{n\bar{n}({1^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}}=\frac{M^{2}_{n\bar{s}({1^{3}S_{1}})}(M^{2}_{n\bar{n}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}P_{2}})})-M^{2}_{n\bar{s}({1^{3}P_{2}})}(M^{2}_{n\bar{n}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})})}{M^{2}_{n\bar{s}({1^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}} (16)
4Mcs¯(13S1)2Mcn¯(13P2)24Mcn¯(13S1)2Mcs¯(13P2)2Mcc¯(13S1)2Mss¯(13P2)2Mss¯(13S1)2Mcc¯(13P2)2=Mcs¯(13S1)2(Mcn¯(13P2)2Mss¯(13P2)2)Mcs¯(13P2)2(Mcn¯(13S1)2Mss¯(13S1)2)Mcs¯(13S1)2Mss¯(13P2)2Mss¯(13S1)2Mcs¯(13P2)2\frac{4M^{2}_{c\bar{s}({1^{3}S_{1}})}M^{2}_{c\bar{n}({1^{3}P_{2}})}-4M^{2}_{c\bar{n}({1^{3}S_{1}})}M^{2}_{c\bar{s}({1^{3}P_{2}})}}{M^{2}_{c\bar{c}({1^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})}M^{2}_{c\bar{c}({1^{3}P_{2}})}}=\frac{M^{2}_{c\bar{s}({1^{3}S_{1}})}(M^{2}_{c\bar{n}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}P_{2}})})-M^{2}_{c\bar{s}({1^{3}P_{2}})}(M^{2}_{c\bar{n}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})})}{M^{2}_{c\bar{s}({1^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})}M^{2}_{c\bar{s}({1^{3}P_{2}})}} (17)
4Mns¯(13D1)2Mnn¯(13P2)24Mnn¯(13D1)2Mns¯(13P2)2Mnn¯(13D1)2Mss¯(13P2)2Mss¯(13D1)2Mnn¯(13P2)2=Mns¯(13D1)2(Mnn¯(13P2)2Mss¯(13P2)2)Mns¯(13P2)2(Mnn¯(13D1)2Mss¯(13D1)2)Mns¯(13D1)2Mss¯(13P2)2Mss¯(13D1)2Mns¯(13P2)2\frac{4M^{2}_{n\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}-4M^{2}_{n\bar{n}({1^{3}D_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}}{M^{2}_{n\bar{n}({1^{3}D_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}}=\frac{M^{2}_{n\bar{s}({1^{3}D_{1}})}(M^{2}_{n\bar{n}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}P_{2}})})-M^{2}_{n\bar{s}({1^{3}P_{2}})}(M^{2}_{n\bar{n}({1^{3}D_{1}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})})}{M^{2}_{n\bar{s}({1^{3}D_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}} (18)
4Mns¯(13D1)2Mnn¯(13S1)24Mnn¯(13D1)2Mns¯(13S1)2Mnn¯(13D1)2Mss¯(13S1)2Mss¯(13D1)2Mnn¯(13S1)2=Mns¯(13D1)2(Mnn¯(13S1)2Mss¯(13S1)2)Mns¯(13S1)2(Mnn¯(13D1)2Mss¯(13D1)2)Mns¯(13D1)2Mss¯(13S1)2Mss¯(13D1)2Mns¯(13S1)2\frac{4M^{2}_{n\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{n}({1^{3}S_{1}})}-4M^{2}_{n\bar{n}({1^{3}D_{1}})}M^{2}_{n\bar{s}({1^{3}S_{1}})}}{M^{2}_{n\bar{n}({1^{3}D_{1}})}M^{2}_{s\bar{s}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{n}({1^{3}S_{1}})}}=\frac{M^{2}_{n\bar{s}({1^{3}D_{1}})}(M^{2}_{n\bar{n}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})})-M^{2}_{n\bar{s}({1^{3}S_{1}})}(M^{2}_{n\bar{n}({1^{3}D_{1}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})})}{M^{2}_{n\bar{s}({1^{3}D_{1}})}M^{2}_{s\bar{s}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}D_{1}})}M^{2}_{n\bar{s}({1^{3}S_{1}})}} (19)
4Mns¯(23s1)2Mnn¯(13P2)24Mnn¯(23S1)2Mns¯(13P2)2Mnn¯(23S1)2Mss¯(13P2)2Mss¯(23S1)2Mnn¯(13P2)2=Mns¯(23S1)2(Mnn¯(13P2)2Mss¯(13P2)2)Mns¯(13P2)2(Mnn¯(23S1)2Mss¯(23S1)2)Mns¯(23S1)2Mss¯(13P2)2Mss¯(23S1)2Mns¯(13P2)2\frac{4M^{2}_{n\bar{s}({2^{3}s_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}-4M^{2}_{n\bar{n}({2^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}}{M^{2}_{n\bar{n}({2^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})}M^{2}_{n\bar{n}({1^{3}P_{2}})}}=\frac{M^{2}_{n\bar{s}({2^{3}S_{1}})}(M^{2}_{n\bar{n}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({1^{3}P_{2}})})-M^{2}_{n\bar{s}({1^{3}P_{2}})}(M^{2}_{n\bar{n}({2^{3}S_{1}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})})}{M^{2}_{n\bar{s}({2^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}P_{2}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}P_{2}})}} (20)
4Mns¯(23s1)2Mnn¯(13S1)24Mnn¯(23S1)2Mns¯(13S1)2Mnn¯(23S1)2Mss¯(13S1)2Mss¯(23S1)2Mnn¯(13S1)2=Mns¯(23S1)2(Mnn¯(13S1)2Mss¯(13S1)2)Mns¯(13S1)2(Mnn¯(23S1)2Mss¯(23S1)2)Mns¯(23S1)2Mss¯(13S1)2Mss¯(23S1)2Mns¯(13S1)2\frac{4M^{2}_{n\bar{s}({2^{3}s_{1}})}M^{2}_{n\bar{n}({1^{3}S_{1}})}-4M^{2}_{n\bar{n}({2^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}S_{1}})}}{M^{2}_{n\bar{n}({2^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})}M^{2}_{n\bar{n}({1^{3}S_{1}})}}=\frac{M^{2}_{n\bar{s}({2^{3}S_{1}})}(M^{2}_{n\bar{n}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({1^{3}S_{1}})})-M^{2}_{n\bar{s}({1^{3}S_{1}})}(M^{2}_{n\bar{n}({2^{3}S_{1}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})})}{M^{2}_{n\bar{s}({2^{3}S_{1}})}M^{2}_{s\bar{s}({1^{3}S_{1}})}-M^{2}_{s\bar{s}({2^{3}S_{1}})}M^{2}_{n\bar{s}({1^{3}S_{1}})}} (21)

In the PDG, the 13S11^{3}S_{1} meson multiplet ρ(770)\rho(770), K(892)K^{*}(892), J/ψ(1S)J/\psi(1S), DD^{*} and Ds±D_{s}^{*\pm}, 13P21^{3}P_{2} meson multiplet a2(1320)a_{2}(1320), K2(1430)K_{2}^{*}(1430), χc2(1P)\chi_{c2}(1P), D2(2420)D_{2}^{*}(2420) and 13D11^{3}D_{1} meson state ρ(1700)\rho(1700) are well established. Inserting the masses of these states to the relations (16)-(21), we obtain the following meson masses Mns¯(13D1)=1835.1±6.3MeVM_{n\bar{s}({1^{3}D_{1}})}=1835.1\pm 6.3MeV, Mss¯(13D1)=1944.1±6.6MeVM_{s\bar{s}({1^{3}D_{1}})}=1944.1\pm 6.6MeV, Mns¯(23S1)=1562.9±9.1MeVM_{n\bar{s}({2^{3}S_{1}})}=1562.9\pm 9.1MeV, Mss¯(23S1)=1655.9±9.7MeVM_{s\bar{s}({2^{3}S_{1}})}=1655.9\pm 9.7MeV.

Next, we discuss the masses of radial excited state of 13D11^{3}D_{1} meson nonet. In the present work, considering the fact that the ground and the radial excitations have the same slopes, we can have the following relations from (1)-(3).

Mnn¯(N2S+1LJ)2αnn¯Mnn¯(N2S+1LJ)2αnn¯=αnn¯(N2S+1LJ)(0)αnn¯(N2S+1LJ)(0)M^{2}_{n\bar{n}({N^{2S+1}L_{J}})}\alpha^{\prime}_{n\bar{n}}-M^{2}_{n\bar{n}({N^{\prime 2S+1}L_{J}})}\alpha^{\prime}_{n\bar{n}}=\alpha_{n\bar{n}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0) (22)
Mss¯(N2S+1LJ)2αss¯Mss¯(N2S+1LJ)2αss¯=αss¯(N2S+1LJ)(0)αss¯(N2S+1LJ)(0)M^{2}_{s\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{s\bar{s}}-M^{2}_{s\bar{s}({N^{\prime 2S+1}L_{J}})}\alpha^{\prime}_{s\bar{s}}=\alpha_{s\bar{s}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{s\bar{s}({N^{2S+1}L_{J}})}(0) (23)
Mns¯(N2S+1LJ)2αns¯Mns¯(N2S+1LJ)2αns¯=αns¯(N2S+1LJ)(0)αns¯(N2S+1LJ)(0)M^{2}_{n\bar{s}({N^{2S+1}L_{J}})}\alpha^{\prime}_{n\bar{s}}-M^{2}_{n\bar{s}({N^{\prime 2S+1}L_{J}})}\alpha^{\prime}_{n\bar{s}}=\alpha_{n\bar{s}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{n\bar{s}({N^{2S+1}L_{J}})}(0) (24)

NN and NN^{\prime} are the radial quantum numbers, N=1N^{\prime}=1 is ground state. Based on the assumption that the dispersion of αqq¯N(0)αqq¯1(0)\alpha_{q\bar{q^{\prime}}N}(0)-\alpha_{q\bar{q^{\prime}}1}(0) is flavor independent, the expression αnn¯(N2S+1LJ)(0)αnn¯(N2S+1LJ)(0)\alpha_{n\bar{n}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0) can be simplified to NNN^{\prime}-N, which is used in Refs. Anisovich:2000kxa ; Anisovich:2002us ; Anisovich:2003tm . However, by introducing the latest existing experimental data, one can find this assumption will lead to large deviation. After a comprehensive phenomenological analysis of some well-established mesons, Filipponi et al. pointed out that the values of αnn¯(N2S+1LJ)(0)αnn¯(N2S+1LJ)(0)\alpha_{n\bar{n}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{n\bar{n}({N^{2S+1}L_{J}})}(0), αss¯(N2S+1LJ)(0)αss¯(N2S+1LJ)(0)\alpha_{s\bar{s}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{s\bar{s}({N^{2S+1}L_{J}})}(0) and αns¯(N2S+1LJ)(0)αns¯(N2S+1LJ)(0)\alpha_{n\bar{s}({N^{\prime 2S+1}L_{J}})}(0)-\alpha_{n\bar{s}({N^{2S+1}L_{J}})}(0) depend on the constituent quark masses through the combination mi+mjm_{i}+m_{j} (mim_{i} and mjm_{j} are the constituent masses of quark and antiquark) in Refs. Filipponi:1997hb ; Filipponi:1997vf . In this work, we introduce parameters fij¯(mi+mj)f_{i\overline{j}}(m_{i}+m_{j}) into relations (22)-(24) and result in the following relations (25)-(27)Li:2007px ; Liu:2010zzd .

Mnn¯(N2S+1LJ)2Mnn¯(N2S+1LJ)2=(NN)αnn¯(1+fnn¯(mn+mn))M^{2}_{n\bar{n}({N^{2S+1}L_{J}})}-M^{2}_{n\bar{n}({N^{\prime 2S+1}L_{J}})}=\frac{(N-N^{\prime})}{\alpha^{\prime}_{n\bar{n}}}(1+f_{n\bar{n}}(m_{n}+m_{n})) (25)
Mss¯(N2S+1LJ)2Mss¯(N2S+1LJ)2=(NN)αss¯(1+fss¯(ms+ms))M^{2}_{s\bar{s}({N^{2S+1}L_{J}})}-M^{2}_{s\bar{s}({N^{\prime 2S+1}L_{J}})}=\frac{(N-N^{\prime})}{\alpha^{\prime}_{s\bar{s}}}(1+f_{s\bar{s}}(m_{s}+m_{s})) (26)
Mns¯(N2S+1LJ)2Mns¯(N2S+1LJ)2=(NN)αns¯(1+fns¯(mn+ms))M^{2}_{n\bar{s}({N^{2S+1}L_{J}})}-M^{2}_{n\bar{s}({N^{\prime 2S+1}L_{J}})}=\frac{(N-N^{\prime})}{\alpha^{\prime}_{n\bar{s}}}(1+f_{n\bar{s}}(m_{n}+m_{s})) (27)

In relations (25)-(27), we take mn=0.29GeVm_{n}=0.29GeV, ms=0.45GeVm_{s}=0.45GeV, αnn¯=0.8830GeV2\alpha^{\prime}_{n\bar{n}}=0.8830GeV^{-2}, αns¯=0.8493GeV2\alpha^{\prime}_{n\bar{s}}=0.8493GeV^{-2}, αss¯=0.8181GeV2\alpha^{\prime}_{s\bar{s}}=0.8181GeV^{-2} as input Li:2007px ; Liu:2010zzd . With the aid of the masses ρ(770)\rho(770), ρ(1450)\rho(1450), Mns¯(13S1)M_{n\bar{s}}(1^{3}S_{1}), Mns¯(23S1)M_{n\bar{s}}(2^{3}S_{1}), Mss¯(23S1)M_{s\bar{s}}(2^{3}S_{1}), the parameters fnn¯f_{n\bar{n}}, fnn¯f_{n\bar{n}}, fnn¯f_{n\bar{n}} are determined to be

fnn¯=0.63±0.12GeV1,fns¯=0.54±0.04GeV1,fss¯=0.46±0.03GeV1f_{n\bar{n}}=0.63\pm 0.12GeV^{-1},f_{n\bar{s}}=0.54\pm 0.04GeV^{-1},f_{s\bar{s}}=0.46\pm 0.03GeV^{-1} (28)

Based on the relations (25)-(27), the radial excitation masses of the N3D1N^{3}D_{1} multiplet can be estimated. Our predictions and those given by other references are listed in Tab. II and Fig. 1.

Table 2: The radial excitation masses of the N3D1N^{3}D_{1} multiplet. (in units of MeV) The masses used as input for our calculation are shown in boldface.
state Mnn¯M_{n\bar{n}} Mns¯M_{n\bar{s}} Mss¯M_{s\bar{s}}
ReferenceReference N=1N=1 N=2N=2 N=3N=3 N=1N=1 N=2N=2 N=3N=3 N=1N=1 N=2N=2 N=3N=3
PresentworkPresentwork 𝟏𝟕𝟐𝟎±𝟐𝟎\mathbf{{1720}\pm 20} 2112.2±23.72112.2\pm 23.7 2459.4±32.32459.4\pm 32.3 1823.6±6.21823.6\pm 6.2 2239.4±8.22239.4\pm 8.2 2581.3±11.92581.3\pm 11.9 1944.1±6.61944.1\pm 6.6 2346.4±8.82346.4\pm 8.8 2689.2±12.92689.2\pm 12.9
Ref. Godfrey:1985xj 1660 2150 1780 2250 1880
Ref. Xiao:2019qhl 18831883 23422342 27322732
Ref. Li:2020xzs 18091809 22722272 26812681
Ref. Pang:2019ttv 18691869 22762276 25932593
Ref. Ebert:2009ub 1557 1895 2168 18451845 22582258 26072607
Ref. Pang:2018gcn 1646 2048 2364 1765 18451845 22582258 26072607
Refer to caption
Refer to caption
Refer to caption
Figure 1: The radial excitation of N3D1N^{3}D_{1} meson nonet.

III Decays of 13D11^{3}D_{1} meson nonet

In addition to the analysis of mass spectrum, the decays of 13D11^{3}D_{1} meson nonet are investigated in the P03{}^{3}P_{0} model. The P03{}^{3}P_{0} model was first proposed by Micu Micu:1968mk , and was applied to OZI-allowed strong decays of mesons. In the 1970s, Le Yaouanc et al. further developed the P03{}^{3}P_{0} model LeYaouanc:1972vsx ; LeYaouanc:1973ldf . In this model, the decay process ABCA\rightarrow BC occurs when the quark-antiquark pair produces a state suitable for quark rearrangement from the vacuum. To this day, the model is widely used to calculate the decay amplitude and decay branch ratios of hadrons and achieved very good results Gui:2018rvv ; Li:2021qgz ; Hao:2019fjg ; Pan:2016bac ; Li:2008mza ; Li:2009rka ; Lu:2014zua .

In Refs. Ackleh:1996yt ; Barnes:1996ff , strong decay amplitudes and partial widths are provided in detail. For the process ABCA\rightarrow BC, the partial width is expressed as

ΓABC=2πPEBECMALS(MLS)2\Gamma_{A\rightarrow BC}=2\pi\frac{PE_{B}E_{C}}{M_{A}}\sum_{LS}\left(M_{LS}\right)^{2} (29)

with

MLS=γπ1/4β1/2ξLS(Pβ)eP2/12β2M_{LS}=\frac{\gamma}{\pi^{1/4}\beta^{1/2}}\xi_{LS}(\frac{P}{\beta})e^{-P^{2}/12\beta^{2}}
P=[(MA2(MB+MC)2)(MA2(MBMC)2)]1/22MAP=\frac{\left[\left(M_{A}^{2}-\left(M_{B}+M_{C}\right)^{2}\right)\left(M_{A}^{2}-\left(M_{B}-M_{C}\right)^{2}\right)\right]^{1/2}}{2M_{A}}
EB=MA2MC2+MB22MAE_{B}=\frac{M_{A}^{2}-M_{C}^{2}+M_{B}^{2}}{2M_{A}}
EB=MA2+MC2MB22MAE_{B}=\frac{M_{A}^{2}+M_{C}^{2}-M_{B}^{2}}{2M_{A}}

where PP is the decay momentum, EBE_{B} and ECE_{C} are the energies of meson BB and CC, MAM_{A}, MBM_{B} are the masses meson AA and BB. The decay amplitudeMLSM_{LS} is proportional to polynomial ξLS(Pβ)\xi_{LS}(\frac{P}{\beta}), which is related to decay channels and can be obtained in Refs. Ackleh:1996yt ; Barnes:1996ff . In this work, we take β=0.4GeV\beta=0.4GeV and γ=0.4\gamma=0.4 as input, which is used in Refs.Ackleh:1996yt ; Barnes:1996ff . From the relation (29), the decays of ω(1650)\omega(1650), ρ(1700)\rho(1700) and ϕ(???)\phi(???) are provided in Tab. III, the decays of ω(1650)\omega(1650), ρ(1700)\rho(1700), ϕ(???)\phi(???) and 13D1(ns¯)1^{3}D_{1}(n\bar{s}) states are provided in Tab. III and Tab. IV. In Tab. III, the partial width of the KK1(1270)KK_{1}(1270) depends on the mixing of K1AK_{1A} and K1BK_{1B} states, K1(1270)=K1(11P1)cosθK+K1(13P1)sinθKK_{1}(1270)=K_{1}\left({1}^{1}P_{1}\right)\cos\theta_{K}+K_{1}\left({1}^{3}P_{1}\right)\sin\theta_{K}, the θK\theta_{K} denotes the mixing angle. The mixing angle is investigated in the Refs.Divotgey:2013jba ; Blundell:1995au ; Pang:2017dlw . In the present work, we take θK=45o\theta_{K}=45^{o} as input parameters Blundell:1995au ; Pang:2017dlw . Moreover, the decay amplitudeMLSM_{LS} and polynomial ξLS(Pβ)\xi_{LS}(\frac{P}{\beta}) are listed in the Appendix A.

Table 3: Strong decay properties for the ω(1650)\omega(1650), ρ(1700)\rho(1700) and 13D1(ss¯)1^{3}D_{1}(s\bar{s}) (ϕ(???)\phi(???)) states. (in units of MeV)
Decay mode Present work Ref. Barnes:2002mu Ref. Li:2020xzs Ref. Pang:2019ttv Ref. Piotrowska:2017rgt
ρ(1700)ππ\rho(1700)\rightarrow\pi\pi 45.6 48
ρ(1700)ωπ\rho(1700)\rightarrow\omega\pi 35.1 35
ρ(1700)ρη\rho(1700)\rightarrow\rho\eta 31.9 16
ρ(1700)h1(1170)π\rho(1700)\rightarrow h_{1}(1170)\pi 121.1 124
ω(1650)ρπ\omega(1650)\rightarrow\rho\pi 86.1 101
ω(1650)ωη\omega(1650)\rightarrow\omega\eta 28.7 13
ω(1650)b1(1235)π\omega(1650)\rightarrow b_{1}(1235)\pi 123.8 371
ϕ(???)KK\phi(???)\rightarrow KK 55.3 65 30.5 40.8 104±28104\pm 28
ϕ(???)K(892)K(892)\phi(???)\rightarrow K^{*}(892)K^{*}(892) 91.1 5 1.02 11.5
ϕ(???)KK(892)\phi(???)\rightarrow KK^{*}(892) 81.2 75 42.0 57.8 260±109260\pm 109
ϕ(???)KK1(1270)\phi(???)\rightarrow KK_{1}(1270) 375.6 478 620 423
ϕ(???)ηϕ\phi(???)\rightarrow\eta\phi 37.2 29 13.2 13.6 67±2867\pm 28
Table 4: Strong decay properties for the 13D1(ns¯)1^{3}D_{1}(n\bar{s}) state. (in units of MeV)
Decay mode Present work Decay mode Present work Decay mode Present work
13D1(ns¯)ωK1^{3}D_{1}(n\bar{s})\rightarrow\omega K 9.7 13D1(ns¯)πK1^{3}D_{1}(n\bar{s})\rightarrow\pi K 38.2 13D1(ns¯)ϕK1^{3}D_{1}(n\bar{s})\rightarrow\phi K 14.3
13D1(ns¯)ωK1^{3}D_{1}(n\bar{s})\rightarrow\omega K^{*} 46.2 13D1(ns¯)ηK1^{3}D_{1}(n\bar{s})\rightarrow\eta K 1.6 13D1(ns¯)πK1^{3}D_{1}(n\bar{s})\rightarrow\pi K^{*} 27.3
13D1(ns¯)h1K1^{3}D_{1}(n\bar{s})\rightarrow h_{1}K 4.3 13D1(ns¯)ηK1^{3}D_{1}(n\bar{s})\rightarrow\eta^{\prime}K 48.1 13D1(ns¯)ηK1^{3}D_{1}(n\bar{s})\rightarrow\eta K^{*} 129.5
13D1(ns¯)πK1(1270)1^{3}D_{1}(n\bar{s})\rightarrow\pi K_{1}(1270) 100.0 13D1(ns¯)ρK1^{3}D_{1}(n\bar{s})\rightarrow\rho K 29.0 13D1(ns¯)ηK1^{3}D_{1}(n\bar{s})\rightarrow\eta K^{*} 57.3

IV Summary

On the basis of the introduction in Sec. I, the assignment of the 13D11^{3}D_{1} meson nonet is not clear. In this paper, we established new mass relations which related the masses of meson multiplet in the framework of Regge phenomenology. Inserting the corresponding meson masses, we investigate the mass spectrum of the 13D11^{3}D_{1} meson nonet. In our work, the mass of 13D1(ss¯)1^{3}D_{1}(s\bar{s}) is determined to be 1944.1MeV1944.1MeV, which is consistent with the prediction from Ref. Piotrowska:2017rgt . Apart from mass range, the strong decay properties of the 13D1(ss¯)1^{3}D_{1}(s\bar{s}) are presented. There are various indications that further researches on the 13D1(ss¯)1^{3}D_{1}(s\bar{s}) is necessary in the future. Our results may provide useful mass range for the phenomenological study.

Appendix A the decay amplitude MLSM_{LS} and polynomial ξLS(Pβ)\xi_{LS}(\frac{P}{\beta}) for the 13D11^{3}D_{1} meson nonet decay in P03{}^{3}P_{0} model.

ξLS(3D11S0+1S0)=512213/234x(1215x2)1P1\xi_{{LS}{(^{3}D_{1}\rightarrow^{1}S_{0}+^{1}S_{0})}}=-\sqrt{\frac{5}{12}}\frac{2^{13/2}}{3^{4}}x\left(1-\frac{2}{15}x^{2}\right)\qquad^{1}\mathrm{P}_{1}
ξLS(3D13S1+1S0)=524213/234x(1215x2)3P1\xi_{{LS}{(^{3}D_{1}\rightarrow^{3}S_{1}+^{1}S_{0})}}=-\sqrt{\frac{5}{24}}\frac{2^{13/2}}{3^{4}}x\left(1-\frac{2}{15}x^{2}\right)\qquad^{3}\mathrm{P}_{1}
ξLS(3D13S1+3S1)={56213/234x(1215x2)P110P1316213/234x(1215x2)P152852639/251/271/2x3F15\xi_{{LS}{(^{3}D_{1}\rightarrow^{3}S_{1}+^{3}S_{1})}}=\left\{\begin{array}[]{cc}-\frac{\sqrt{5}}{6}\frac{2^{13/2}}{3^{4}}x\left(1-\frac{2}{15}x^{2}\right)&\qquad{}^{1}\mathrm{P}_{1}\\ 0&\qquad{}^{3}\mathrm{P}_{1}\\ \frac{1}{6}\frac{2^{13/2}}{3^{4}}x\left(1-\frac{2}{15}x^{2}\right)&\qquad{}^{5}\mathrm{P}_{1}\\ \sqrt{\frac{28}{5}}\frac{2^{6}}{3^{9/2}5^{1/2}7^{1/2}}x^{3}&\qquad{}^{5}\mathrm{~{}F}_{1}\end{array}\right.
ξLS(3D11P1+1S0)={2651/234(1518x2+1135x4)S13215/23651/2x2(116x2)D13\xi_{{LS}{(^{3}D_{1}\rightarrow^{1}P_{1}+^{1}S_{0})}}=\left\{\begin{array}[]{cc}\frac{2^{6}5^{1/2}}{3^{4}}\left(1-\frac{5}{18}x^{2}+\frac{1}{135}x^{4}\right)&\qquad{}^{3}\mathrm{~{}S}_{1}\\ \frac{2^{15/2}}{3^{6}5^{1/2}}x^{2}\left(1-\frac{1}{6}x^{2}\right)&\qquad{}^{3}\mathrm{D}_{1}\end{array}\right.
MLS(3D11S0+1S0)2=γπβ521139(Pβ2P315β3)2eP2/6β2M^{2}_{{LS}{(^{3}D_{1}\rightarrow^{1}S_{0}+^{1}S_{0})}}=\frac{\gamma}{\sqrt{\pi}\beta}\frac{5*2^{11}}{3^{9}}\left(\frac{P}{\beta}-\frac{2P^{3}}{15\beta^{3}}\right)^{2}e^{-P^{2}/6\beta^{2}}
MLS(3D13S1+1S0)2=γπβ521039(Pβ2P315β3)2eP2/6β2M^{2}_{{LS}{(^{3}D_{1}\rightarrow^{3}S_{1}+^{1}S_{0})}}=\frac{\gamma}{\sqrt{\pi}\beta}\frac{5*2^{10}}{3^{9}}\left(\frac{P}{\beta}-\frac{2P^{3}}{15\beta^{3}}\right)^{2}e^{-P^{2}/6\beta^{2}}
MLS(3D13S1+3S1)2=γπβ5211310(Pβ2P315β3)2eP2/6β2M^{2}_{{LS}{(^{3}D_{1}\rightarrow^{3}S_{1}+^{3}S_{1})}}=\frac{\gamma}{\sqrt{\pi}\beta}\frac{5*2^{11}}{3^{10}}\left(\frac{P}{\beta}-\frac{2P^{3}}{15\beta^{3}}\right)^{2}e^{-P^{2}/6\beta^{2}}
+γπβ211310(Pβ2P315β3)2eP2/6β2+γπβ2142539(P6β6)eP2/6β2+\frac{\gamma}{\sqrt{\pi}\beta}\frac{2^{11}}{3^{10}}\left(\frac{P}{\beta}-\frac{2P^{3}}{15\beta^{3}}\right)^{2}e^{-P^{2}/6\beta^{2}}+\frac{\gamma}{\sqrt{\pi}\beta}\frac{2^{14}}{25*3^{9}}\left(\frac{P^{6}}{\beta^{6}}\right)e^{-P^{2}/6\beta^{2}}
MLS(3D11P1+1S0)2=γπβ211538(P2β2P421β4)2eP2/6β2M^{2}_{{LS}{(^{3}D_{1}\rightarrow^{1}P_{1}+^{1}S_{0})}}=\frac{\gamma}{\sqrt{\pi}\beta}\frac{2^{11}}{5*3^{8}}\left(\frac{P^{2}}{\beta^{2}}-\frac{P^{4}}{21\beta^{4}}\right)^{2}e^{-P^{2}/6\beta^{2}}
+γπβ213245311(P8β8)eP2/6β2+\frac{\gamma}{\sqrt{\pi}\beta}\frac{2^{13}}{245*3^{11}}\left(\frac{P^{8}}{\beta^{8}}\right)e^{-P^{2}/6\beta^{2}}

References

  • (1) S. Godfrey and J. Napolitano, Rev. Mod. Phys. 71, 1411-1462 (1999) doi:10.1103/RevModPhys.71.1411 [arXiv:hep-ph/9811410 [hep-ph]].
  • (2) D. M. Li, B. Ma, Y. X. Li, Q. K. Yao and H. Yu, Eur. Phys. J. C 37, 323-333 (2004) doi:10.1140/epjc/s2004-02002-5 [arXiv:hep-ph/0408214 [hep-ph]].
  • (3) W. Y. Liang, X. J. Peng and X. C. Feng, Indian J. Phys. 88, 317-321 (2014) doi:10.1007/s12648-013-0412-3
  • (4) P. A. Zyla et al. [Particle Data Group], PTEP 2020, no.8, 083C01 (2020) doi:10.1093/ptep/ptaa104
  • (5) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189-231 (1985) doi:10.1103/PhysRevD.32.189
  • (6) J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31, 481 (2005) doi:10.1088/0954-3899/31/5/017 [arXiv:hep-ph/0411299 [hep-ph]].
  • (7) F. Brau, C. Semay and B. Silvestre-Brac, Phys. Rev. C 66, 055202 (2002) doi:10.1103/PhysRevC.66.055202 [arXiv:hep-ph/0412176 [hep-ph]].
  • (8) N. A. Tornqvist, Nucl. Phys. B Proc. Suppl. 21, 196-206 (1991) doi:10.1016/0920-5632(91)90258-G
  • (9) T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003) doi:10.1103/PhysRevD.68.054014 [arXiv:nucl-th/0208072 [nucl-th]].
  • (10) L. Burakovsky and J. T. Goldman, Nucl. Phys. A 625, 220-230 (1997) doi:10.1016/S0375-9474(97)81461-3 [arXiv:hep-ph/9703272 [hep-ph]].
  • (11) X. C. Feng and F. C. Jiang, Chin. Phys. Lett. 24, 3100-3102 (2007) doi:10.1088/0256-307X/24/11/023
  • (12) W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1-1232 (2006)
  • (13) C. Q. Pang, J. Z. Wang, X. Liu and T. Matsuki, Eur. Phys. J. C 77, no.12, 861 (2017) doi:10.1140/epjc/s10052-017-5434-0 [arXiv:1705.03144 [hep-ph]].
  • (14) T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52, 5242-5256 (1995) doi:10.1103/PhysRevD.52.5242 [arXiv:hep-ph/9501405 [hep-ph]].
  • (15) S. S. Agaev, K. Azizi and H. Sundu, Phys. Rev. D 101, no.7, 074012 (2020) doi:10.1103/PhysRevD.101.074012 [arXiv:1911.09743 [hep-ph]].
  • (16) M. Ablikim et al. [BESIII], Phys. Rev. D 102, no.1, 012008 (2020) doi:10.1103/PhysRevD.102.012008 [arXiv:2003.13064 [hep-ex]].
  • (17) T. Regge, Nuovo Cim. 14, 951 (1959) doi:10.1007/BF02728177
  • (18) P. D. B. Collins, Phys. Rept. 1, 103-234 (1971) doi:10.1016/0370-1573(71)90007-X
  • (19) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Rept. Prog. Phys. 80, no.7, 076201 (2017) doi:10.1088/1361-6633/aa6420 [arXiv:1609.08928 [hep-ph]].
  • (20) X. H. Guo, K. W. Wei and X. H. Wu, Phys. Rev. D 78, 056005 (2008) doi:10.1103/PhysRevD.78.056005 [arXiv:0809.1702 [hep-ph]].
  • (21) A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, Phys. Rev. D 62, 051502 (2000) doi:10.1103/PhysRevD.62.051502 [arXiv:hep-ph/0003113 [hep-ph]].
  • (22) P. Masjuan, E. Ruiz Arriola and W. Broniowski, Phys. Rev. D 85, 094006 (2012) doi:10.1103/PhysRevD.85.094006 [arXiv:1203.4782 [hep-ph]].
  • (23) C. Q. Pang, Y. R. Wang, J. F. Hu, T. J. Zhang and X. Liu, Phys. Rev. D 101, no.7, 074022 (2020) doi:10.1103/PhysRevD.101.074022 [arXiv:1910.12408 [hep-ph]].
  • (24) J. K. Chen, Eur. Phys. J. C 78, no.8, 648 (2018) doi:10.1140/epjc/s10052-018-6134-0
  • (25) J. K. Chen, Eur. Phys. J. A 57, no.7, 238 (2021) doi:10.1140/epja/s10050-021-00502-y [arXiv:2102.07993 [hep-ph]].
  • (26) J. K. Chen, [arXiv:2203.02981 [hep-ph]].
  • (27) D. M. Li, B. Ma and Y. H. Liu, Eur. Phys. J. C 51, 359-365 (2007) doi:10.1140/epjc/s10052-007-0286-7 [arXiv:hep-ph/0703278 [hep-ph]].
  • (28) V. S. Berezinsky and G. T. Zatsepin, Phys. Lett. B 28, 423-424 (1969) doi:10.1016/0370-2693(69)90341-4
  • (29) R. C. Brower, J. R. Ellis, M. G. Schmidt and J. H. Weis, Nucl. Phys. B 128, 175-203 (1977) doi:10.1016/0550-3213(77)90304-2
  • (30) N. A. Kobylinsky, E. S. Martynov and A. B. Prognimak, Ukr. Fiz. Zh. (Russ. Ed. ) 24, 969-974 (1979) ITF-78-93E.
  • (31) V. V. Dixit and L. A. P. Balazs, Phys. Rev. D 20, 816 (1979) doi:10.1103/PhysRevD.20.816
  • (32) A. B. Kaidalov, Z. Phys. C 12, 63 (1982) doi:10.1007/BF01475732
  • (33) V. V. Anisovich, AIP Conf. Proc. 619, no.1, 197-208 (2002) doi:10.1063/1.1482449 [arXiv:hep-ph/0110326 [hep-ph]].
  • (34) V. V. Anisovich, Phys. Usp. 47, 45-67 (2004) doi:10.1070/PU2004v047n01ABEH001333 [arXiv:hep-ph/0208123 [hep-ph]].
  • (35) V. V. Anisovich, AIP Conf. Proc. 717, no.1, 441-450 (2004) doi:10.1063/1.1799747 [arXiv:hep-ph/0310165 [hep-ph]].
  • (36) S. Filipponi, G. Pancheri and Y. Srivastava, Phys. Rev. Lett. 80, 1838-1840 (1998)
  • (37) S. Filipponi and Y. Srivastava, Phys. Rev. D 58, 016003 (1998)
  • (38) Y. H. Liu, X. C. Feng and J. J. Zhang, Eur. Phys. J. A 43, 379-388 (2010) doi:10.1140/epja/i2010-10922-2
  • (39) L. Y. Xiao, X. Z. Weng, X. H. Zhong and S. L. Zhu, Chin. Phys. C 43, no.11, 113105 (2019) doi:10.1088/1674-1137/43/11/113105 [arXiv:1904.06616 [hep-ph]].
  • (40) Q. Li, L. C. Gui, M. S. Liu, Q. F. Lü and X. H. Zhong, Chin. Phys. C 45, no.2, 023116 (2021) doi:10.1088/1674-1137/abcf22 [arXiv:2004.05786 [hep-ph]].
  • (41) C. Q. Pang, Phys. Rev. D 99, no.7, 074015 (2019) doi:10.1103/PhysRevD.99.074015 [arXiv:1902.02206 [hep-ph]].
  • (42) D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 79, 114029 (2009) doi:10.1103/PhysRevD.79.114029 [arXiv:0903.5183 [hep-ph]].
  • (43) C. Q. Pang, Y. R. Wang and C. H. Wang, Phys. Rev. D 99, no.1, 014022 (2019)
  • (44) L. Micu, Nucl. Phys. B 10, 521-526 (1969) doi:10.1016/0550-3213(69)90039-X
  • (45) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 8, 2223-2234 (1973) doi:10.1103/PhysRevD.8.2223
  • (46) A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 9, 1415-1419 (1974) doi:10.1103/PhysRevD.9.1415
  • (47) L. C. Gui, L. S. Lu, Q. F. Lü, X. H. Zhong and Q. Zhao, Phys. Rev. D 98, no.1, 016010 (2018) doi:10.1103/PhysRevD.98.016010 [arXiv:1801.08791 [hep-ph]].
  • (48) Z. Y. Li, D. M. Li, E. Wang, W. C. Yan and Q. T. Song, Phys. Rev. D 104, no.3, 034013 (2021) doi:10.1103/PhysRevD.104.034013 [arXiv:2102.05356 [hep-ph]].
  • (49) W. Hao, G. Y. Wang, E. Wang, G. N. Li and D. M. Li, Eur. Phys. J. C 80, no.7, 626 (2020) doi:10.1140/epjc/s10052-020-8187-0 [arXiv:1909.13099 [hep-ph]].
  • (50) T. T. Pan, Q. F. Lü, E. Wang and D. M. Li, Phys. Rev. D 94, no.5, 054030 (2016) doi:10.1103/PhysRevD.94.054030 [arXiv:1606.08635 [hep-ph]].
  • (51) D. M. Li and B. Ma, Phys. Rev. D 77, 074004 (2008) doi:10.1103/PhysRevD.77.074004 [arXiv:0801.4821 [hep-ph]].
  • (52) D. M. Li and E. Wang, Eur. Phys. J. C 63, 297-304 (2009) doi:10.1140/epjc/s10052-009-1106-z [arXiv:0904.1252 [hep-ph]].
  • (53) Q. F. Lü and D. M. Li, Phys. Rev. D 90, no.5, 054024 (2014) doi:10.1103/PhysRevD.90.054024 [arXiv:1407.3092 [hep-ph]].
  • (54) E. S. Ackleh, T. Barnes and E. S. Swanson, Phys. Rev. D 54, 6811-6829 (1996) doi:10.1103/PhysRevD.54.6811 [arXiv:hep-ph/9604355 [hep-ph]].
  • (55) T. Barnes, F. E. Close, P. R. Page and E. S. Swanson, Phys. Rev. D 55, 4157-4188 (1997) doi:10.1103/PhysRevD.55.4157 [arXiv:hep-ph/9609339 [hep-ph]].
  • (56) F. Divotgey, L. Olbrich and F. Giacosa, Eur. Phys. J. A 49, 135 (2013) doi:10.1140/epja/i2013-13135-3 [arXiv:1306.1193 [hep-ph]].
  • (57) H. G. Blundell, S. Godfrey and B. Phelps, Phys. Rev. D 53, 3712-3722 (1996) doi:10.1103/PhysRevD.53.3712 [arXiv:hep-ph/9510245 [hep-ph]].
  • (58) M. Piotrowska, C. Reisinger and F. Giacosa, Phys. Rev. D 96, no.5, 054033 (2017) doi:10.1103/PhysRevD.96.054033 [arXiv:1708.02593 [hep-ph]].