This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Revisiting ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing in QCD sum rules

Xiao-Yu Sun1, Fu-Wei Zhang1, Yu-Ji Shi2 111Email:[email protected], Zhen-Xing Zhao1 222Email:[email protected] 1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China,
2 School of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract

In this work, we perform a QCD sum rules analysis on the ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing. Contributions from up to dimension-6 four-quark operators are considered. However, it turns out that, only dimension-4 and dimension-5 operators contribute, which reveals the non-perturbative nature of mixing. Especially we notice that only the diagrams with the two light quarks participating in gluon exchange contribute to the mixing. Our results indicate that the mixing angle θc=(1.22.8)\theta_{c}=(1.2\sim 2.8)^{\circ} for the Q=cQ=c case and θb=(0.280.34)\theta_{b}=(0.28\sim 0.34)^{\circ} for the Q=bQ=b case. Our prediction of θc\theta_{c} is consistent with the most recent Lattice QCD result within error. Such a small mixing angle seems unlikely to resolve the tension between the recent experimental measurement from Belle and Lattice QCD calculation for the semileptonic decay Ξc0Ξe+νe\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}.

I Introduction

The semileptonic decays of hadrons are of great significance for extracting CKM matrix elements and testing the standard model. Recently, the semileptonic decay Ξc0Ξe+νe\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e} is measured by the Belle collaboration Belle:2021crz

(Ξc0Ξe+νe)=(1.31±0.39)%,{\cal B}(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e})=(1.31\pm 0.39)\%, (1)

while the Lattice QCD prediction in Ref. Zhang:2021oja is

(Ξc0Ξe+νe)=(2.38±0.44)%.{\cal B}(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e})=(2.38\pm 0.44)\%. (2)

Our preliminary calculation based on QCD sum rules in Ref. Zhao:2021sje even gives a larger result

(Ξc0Ξe+νe)=(3.4±0.7)%.{\cal B}(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e})=(3.4\pm 0.7)\%. (3)

It can be seen that there exist one tension between experimental data and theoretical predictions.

In Refs. He:2021qnc ; Geng:2022xfz ; Geng:2022yxb ; Ke:2022gxm , the authors suggested that this puzzle can be resolved by considering ΞcΞc\Xi_{c}-\Xi_{c}^{\prime} mixing on theoretical side. If so, one would expect that there exists a sizable ΞcΞc\Xi_{c}-\Xi_{c}^{\prime} mixing angle. Some efforts have been made in this direction. Early in 2010, a QCD sum rules analysis was performed, and the authors arrived at θc=5.5°±1.8°\theta_{c}=5.5\degree\pm 1.8\degree Aliev:2010ra . In Ref. Matsui:2020wcc , this mixing angle is obtained as |θc|=8.12°±0.80°|\theta_{c}|=8.12\degree\pm 0.80\degree in heavy quark effective theory. In Ref. Liu:2023feb , the result of Lattice QCD shows that this mixing angle is equal to 1.2°±0.1°1.2\degree\pm 0.1\degree. More theoretical predictions can be found in Table 2.

One can see that, large differences exist among different theoretical predictions. In this work, we intend to perform a new QCD sum rules analysis. First of all, it is necessary to figure out the concepts of flavor eigenstates and mass eigenstates. The flavor eigenstates are defined as follows

ΞQ3¯\displaystyle\Xi_{Q}^{\bar{3}} =12(qssq)Q,\displaystyle=\frac{1}{\sqrt{2}}(qs-sq)Q,
ΞQ6\displaystyle\Xi_{Q}^{6} =12(qs+sq)Q\displaystyle=\frac{1}{\sqrt{2}}(qs+sq)Q (4)

with Q=c,bQ=c,b and q=u,dq=u,d. Eqs. (4) are of course the classification of quark model, where ΞQ3¯\Xi_{Q}^{\bar{3}} belongs to the SU(3) flavor antitriplet, and ΞQ6\Xi_{Q}^{6} belongs to the sextet, as indicated by their notations. The two light quarks are usually considered to form a scalar diquark and an axial-vector diquark in ΞQ3¯\Xi_{Q}^{\bar{3}} and ΞQ6\Xi_{Q}^{6}, respectively. In reality, the physical mass eigenstates ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime} are the mixing of flavor eigenstates

(|ΞQ|ΞQ)=(cosθsinθsinθcosθ)(|ΞQ3¯|ΞQ6).\left(\begin{array}[]{c}|\Xi_{Q}\rangle\\ |\Xi_{Q}^{\prime}\rangle\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{c}|\Xi_{Q}^{\bar{3}}\rangle\\ |\Xi_{Q}^{6}\rangle\end{array}\right). (5)

Although there already exists a QCD sum rules analysis in Ref. Aliev:2010ra , while in this work, we will highlight the following points:

  • New definitions (see Eq. (9)) of interpolating currents are adopted. These definitions have been proved in a quark model Zhao:2023yuk , and are considered to be possibly better definitions of interpolating currents for baryons.

  • We attempt to reveal the nature of mixing. Through detailed calculation, one can clearly see that the gluon exchange involving the two light quarks plays a crucial role in flavor mixing. It is gluon exchange that can change the spin of the system of two light quarks.

  • In the heavy quark limit, the spin of the system of two light quarks is a good quantum number, therefore, the mixing angle between ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime} should be zero. Our calculation results show such a trend.

The rest of this article is arranged as follows. In Sec. II, QCD sum rules analysis is performed, contributions from up to dimension-6 four-quark operators are considered. In Sec. III, numerical results are shown and are compared with other predictions in the literature. We conclude this article in the lat section.

II QCD sum rules analysis

The mass sum rule for ΞQ()\Xi_{Q}^{(\prime)} can be obtained by considering the following two-point correlation function

Π()(p)=id4xeipx0|T{J()(x)J¯()(0)}|0,\Pi^{(\prime)}(p)=i\int d^{4}xe^{ip\cdot x}\langle 0|T\{J^{(\prime)}(x)\bar{J}^{(\prime)}(0)\}|0\rangle, (6)

where J()J^{(\prime)} stands for the interpolating current of the mass eigenstate ΞQ()\Xi_{Q}^{(\prime)}. It is natural to expect that J¯()\bar{J}^{(\prime)} creates only ΞQ()\Xi_{Q}^{(\prime)} and not the other one, and in this sense, the following two correlation functions should be zero

id4xeipx0|T{J(x)J¯(0)}|0\displaystyle i\int d^{4}xe^{ip\cdot x}\langle 0|T\{J(x)\bar{J}^{\prime}(0)\}|0\rangle =0,\displaystyle=0,
id4xeipx0|T{J(x)J¯(0)}|0\displaystyle i\int d^{4}xe^{ip\cdot x}\langle 0|T\{J^{\prime}(x)\bar{J}(0)\}|0\rangle =0.\displaystyle=0. (7)

JJ and JJ^{\prime} are linear combinations of J0J_{0} and J1J_{1} – the interpolating currents of flavor eigenstates ΞQ3¯\Xi_{Q}^{\bar{3}} and ΞQ6\Xi_{Q}^{6}:

(JJ)=(cosθsinθsinθcosθ)(J0J1),\left(\begin{array}[]{c}J\\ J^{\prime}\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{c}J_{0}\\ J_{1}\end{array}\right), (8)

which is a counterpart of Eq. (5). However, it should be noted that since there is no exact one-to-one correspondence between the interpolating current and the hadron state, the quark-hadron duality ansatz is actually implicit in Eq. (8). In this work, J0,1J_{0,1} are given by

J0\displaystyle J_{0} =ϵabc[qaTCγ5(1+)sb]Qc,\displaystyle=\epsilon_{abc}[q_{a}^{T}C\gamma_{5}(1+\not{v})s_{b}]Q_{c},
J1\displaystyle J_{1} =ϵabc[qaTC(γμvμ)(1+)sb]13γμγ5Qc,\displaystyle=\epsilon_{abc}[q_{a}^{T}C(\gamma^{\mu}-v^{\mu})(1+\not{v})s_{b}]\frac{1}{\sqrt{3}}\gamma_{\mu}\gamma_{5}Q_{c}, (9)

where a,b,ca,b,c are color indices, and vμpμ/p2v^{\mu}\equiv p^{\mu}/\sqrt{p^{2}} is the 4-velocity of baryon. As mentioned in the Introduction, these new definitions have been proved in a quark model, and are possibly better definitions of interpolating currents for baryons.

It can be seen from Eqs. (6) and (7) that, we need to calculate the following 4 correlation functions

Πij(p)=id4xeipx0|T{Ji(x)J¯j(0)}|0\Pi_{ij}(p)=i\int d^{4}xe^{ip\cdot x}\langle 0|T\{J_{i}(x)\bar{J}_{j}(0)\}|0\rangle (10)

with i,j=0,1i,j=0,1.

From Eq. (6), one can obtain the mass sum rules for ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime}

Π=Π00cos2θ+Π11sin2θ+Π01sin2θ\displaystyle\Pi=\Pi_{00}\cos^{2}\theta+\Pi_{11}\sin^{2}\theta+\Pi_{01}\sin 2\theta , (11)
Π=Π11cos2θ+Π00sin2θΠ01sin2θ\displaystyle\Pi^{\prime}=\Pi_{11}\cos^{2}\theta+\Pi_{00}\sin^{2}\theta-\Pi_{01}\sin 2\theta . (12)

As explicit calculation has shown, Π01=Π10\Pi_{01}=\Pi_{10}, then from Eq. (7), one can arrive at

Π01cos2θ+(Π11Π00)12sin2θ=0,\Pi_{01}\cos 2\theta+(\Pi_{11}-\Pi_{00})\frac{1}{2}\sin 2\theta=0, (13)

or

tan2θ=2Π01Π00Π11.\tan 2\theta=\frac{2\ \Pi_{01}}{\Pi_{00}-\Pi_{11}}. (14)

One can easily check that the above description is equivalent to the following matrix diagonalization formula

OΠO1=ΠdiagO\Pi O^{-1}=\Pi_{{\rm diag}} (15)

with

Π=(Π00Π01Π01Π11),O=(cosθsinθsinθcosθ),Πdiag=(Π00Π).\Pi=\left(\begin{array}[]{cc}\Pi_{00}&\Pi_{01}\\ \Pi_{01}&\Pi_{11}\end{array}\right),\quad O=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\\ -\sin\theta&\cos\theta\end{array}\right),\quad\Pi_{{\rm diag}}=\left(\begin{array}[]{cc}\Pi&0\\ 0&\Pi^{\prime}\end{array}\right). (16)

One important note. From Eq. (14), one can see that, we had better normalize the two interpolating currents in Eq. (9) to a same factor, and we have indeed done that. Therefore, in this work, Π00\Pi_{00}, Π11\Pi_{11}, and Π01\Pi_{01} are on an equal footing, and we can explicitly compare their respective contributions from the same dimensions at the QCD level, see below.

In this work, we calculate the 4 correlation functions in Eq. (10), considering the contributions from perturbative term (dim-0), quark condensate (dim-3), gluon condensate (dim-4), quark-gluon condensate (dim-5), and four-quark condensate (dim-6), as can be seen in Fig. 1. The analytical results are listed in Appendix A. Through detailed calculation, one can clearly see that:

  • For Π01\Pi_{01}, it turns out that, only 4 diagrams are nonzero–they are dim-4(a,b) and dim-5(a,c). The physical meaning of Π01\Pi_{01} is: it provides the absolute possibility for the diquark to transition from 0+0^{+} to 1+1^{+}, or vice versa. As far as we are concerned, the mixing between ΞQ3¯\Xi_{Q}^{\bar{3}} and ΞQ6\Xi_{Q}^{6} originates from that the two light quarks exchange gluons with the background fields in vacuum, and with the heavy quark QQ.

  • For Π00\Pi_{00} and Π11\Pi_{11}, dim-0,3,6, and dim-4(d,e,f) are respectively equal to each other, so they do not contribute to the denominator Π00Π11\Pi_{00}-\Pi_{11} in Eq. (14). Only dim-4(a,b,c) and dim-5(a,b,c,d) contribute to Π00Π11\Pi_{00}-\Pi_{11}. The physical meaning of Π00Π11\Pi_{00}-\Pi_{11} is: it measures the difference, or the “gap” between ΞQ3¯\Xi_{Q}^{\bar{3}} and ΞQ6\Xi_{Q}^{6}; The larger the difference, the less likely the two flavor eigenstates are to mix.

Refer to caption
Figure 1: All the diagrams considered in this work. We calculate all these diagrams for the 4 correlation functions Πij\Pi_{ij} with i,j=0,1i,j=0,1.

The mixing angle formula in Eq. (14) is of course our main research object. However, the corresponding QCD sum rules are very different from the traditional ones: it does not have the hadron-level representation. For this point, try to consider the hadron-level representation of Π01\Pi_{01}. That is, Eq. (14) has only a representation at the QCD level. The continuum threshold parameter s0\sqrt{s_{0}} and Borel parameters T2T^{2} cannot determined by the methods commonly used in the literature. However, note that a reasonable threshold parameter for Eq. (14) should lie between those of ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime}. Naturally, in the following, we present the mass sum rule of ΞQ()\Xi_{Q}^{(\prime)}.

II.1 The mass sum rule

Since our preliminary results indicate that θc\theta_{c} and θb\theta_{b} are very small, Eqs. (11) and (12) are reduced into

Π=Π00\displaystyle\Pi=\Pi_{00} , (17)
Π=Π11\displaystyle\Pi^{\prime}=\Pi_{11} . (18)

Following the same steps in Refs. Zhao:2020mod ; Zhao:2021sje , one can perform QCD sum rules analysis on the correlation functions Π00,11\Pi_{00,11} as follows.

At the hadron level, after inserting the complete set of hadronic states, one can obtain

Πhad(p)=λ+2+M+M+2p2+λ2MM2p2+,\Pi^{{\rm had}}(p)=\lambda_{+}^{2}\frac{\not{p}+M_{+}}{M_{+}^{2}-p^{2}}+\lambda_{-}^{2}\frac{\not{p}-M_{-}}{M_{-}^{2}-p^{2}}+\cdots, (19)

where λ+()\lambda_{+(-)} and M+()M_{+(-)} are respectively the pole residue and mass of the positive-parity (negative-parity) baryon. The pole residues of positive-parity and negative-parity baryons are respectively defined by

0|J+|+(p,s)\displaystyle\langle 0|J_{+}|{\cal B}_{+}(p,s)\rangle =λ+u(p,s),\displaystyle=\lambda_{+}u(p,s),
0|J+|(p,s)\displaystyle\langle 0|J_{+}|{\cal B}_{-}(p,s)\rangle =λ(iγ5)u(p,s).\displaystyle=\lambda_{-}(i\gamma_{5})u(p,s). (20)

At the QCD level, the correlation function is also calculated. In this work, contributions from up to dimension-6 four quark operators are considered, as can be seen in Fig. 1. The corresponding results can be formally rewritten as

ΠQCD(p)=A(p2)+B(p2).\Pi^{{\rm QCD}}(p)=A(p^{2})\not{p}+B(p^{2}). (21)

The coefficient functions A(p2)A(p^{2}) and B(p2)B(p^{2}) are further written into dispersion relations

A(p2)=𝑑sρA(s)sp2,B(p2)=𝑑sρB(s)sp2.A(p^{2})=\int ds\frac{\rho^{A}(s)}{s-p^{2}},\quad B(p^{2})=\int ds\frac{\rho^{B}(s)}{s-p^{2}}. (22)

Using the quark-hadron duality assumption, and after performing the Borel transformation, one can arrive at the following sum rule for the positive-parity baryon

(M++M)λ+2eM+2/T+2=s+𝑑s(MρA(s)+ρB(s))es/T+2,(M_{+}+M_{-})\lambda_{+}^{2}e^{-M_{+}^{2}/T_{+}^{2}}=\int^{s_{+}}ds(M_{-}\rho^{A}(s)+\rho^{B}(s))e^{-s/T_{+}^{2}}, (23)

where s+s_{+} and T+2T_{+}^{2} are respectively the continuum threshold parameter and Borel parameter. From Eq. (23), one can obtain the mass of the 1/2+1/2^{+} baryon

M+2=s+𝑑s(MρA+ρB)ses/T+2s+𝑑s(MρA+ρB)es/T+2.M_{+}^{2}=\frac{\int^{s_{+}}ds(M_{-}\rho^{A}+\rho^{B})\ s\ e^{-s/T_{+}^{2}}}{\int^{s_{+}}ds(M_{-}\rho^{A}+\rho^{B})\ e^{-s/T_{+}^{2}}}. (24)

In practice, Eq. (24) can be viewed as a constraint of Eq. (23), in which M+M_{+} is required to be equal to the experimental value of the positive-parity baryon. In this way, the threshold parameter can be determined.

III Numerical results

The following parameters are adopted ParticleDataGroup:2022pth :

mc(mc)=1.27±0.02GeV,ms(2GeV)=0.093±0.009GeV,\displaystyle m_{c}(m_{c})=1.27\pm 0.02\ {\rm GeV},\quad m_{s}(2\ {\rm GeV})=0.093\pm 0.009\ {\rm GeV},
mb(mb)=4.18±0.03GeV.\displaystyle m_{b}(m_{b})=4.18\pm 0.03\ {\rm GeV}. (25)

The condensate parameters are taken as Colangelo:2000dp : q¯q(1GeV)=(0.24±0.01GeV)3\langle\bar{q}q\rangle(1\ {\rm GeV})=-(0.24\pm 0.01\ {\rm GeV})^{3}, s¯s=(0.8±0.2)q¯q\langle\bar{s}s\rangle=(0.8\pm 0.2)\langle\bar{q}q\rangle, and gs2G2=(0.47±0.14)GeV4\langle g_{s}^{2}G^{2}\rangle=(0.47\pm 0.14)\ {\rm GeV}^{4}, and q¯gsσGq=m02q¯q\langle\bar{q}g_{s}\sigma Gq\rangle=m_{0}^{2}\langle\bar{q}q\rangle and s¯gsσGs=m02s¯s\langle\bar{s}g_{s}\sigma Gs\rangle=m_{0}^{2}\langle\bar{s}s\rangle with m02=(0.8±0.2)GeV2m_{0}^{2}=(0.8\pm 0.2)\ {\rm GeV}^{2}. The renormalization scale is taken as μc=13GeV\mu_{c}=1\sim 3\ {\rm{\rm GeV}}, and μb=36GeV\mu_{b}=3\sim 6\ {\rm{\rm GeV}}, from which, one can estimate the dependence of calculation results on the energy scale.

Following similar steps in Refs. Zhao:2020mod ; Zhao:2021sje , one can arrive at the optimal parameter selections for continuum thresholds s0\sqrt{s_{0}} and Borel parameters T2T^{2} for ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime}. The corresponding results can be found in Fig. 2 and Table 1. Some comments are given in order.

  • As expected in Ref. Zhao:2023yuk , the pole residues of ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime} are almost equal when the interpolating currents in Eq. (9) are used.

  • The continuum threshold and Borel parameter at the minimum point in Fig. 2 are selected as the optimal parameters, as can be seen in Table 1. These optimal parameters correspond to the experimental value of the baryon mass.

  • As can be seen in Table 1, the optimal parameter selection satisfies: s0\sqrt{s_{0}} is about 0.5 GeV higher than the corresponding baryon mass, and T2𝒪(mH2)T^{2}\sim{\cal O}(m_{H}^{2}) with mHm_{H} the baryon mass.

  • As can be seen in Fig. 2, the dependence of pole residues on the Borel parameters is weak, while they are sensitive to changes in energy scales. The latter leads to the main source of error.

Refer to caption
Figure 2: Pole residues of ΞQ()\Xi_{Q}^{(\prime)} with Q=c,bQ=c,b. The blue lines correspond to the energy scale μ=mQ\mu=m_{Q}, while the red lines correspond to the energy scale μ=3GeV\mu=3\ {\rm GeV} for Ξc()\Xi_{c}^{(\prime)} and μ=6GeV\mu=6\ {\rm GeV} for Ξb()\Xi_{b}^{(\prime)}. The selections of s0\sqrt{s_{0}} can be found in Table 1.
Table 1: Optimal parameter selections for the continuum thresholds s0\sqrt{s_{0}} and Borel parameters T2T^{2} for ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime}, with Q=c,bQ=c,b. The central values are obtained at μ=mc\mu=m_{c} for Ξc()\Xi_{c}^{(\prime)} and μ=mb\mu=m_{b} for Ξb()\Xi_{b}^{(\prime)}. The masses of Ξc()0(csd)\Xi_{c}^{(\prime)0}(csd) and Ξb()(bsd)\Xi_{b}^{(\prime)-}(bsd) are also listed as references ParticleDataGroup:2022pth .
s0/GeV\sqrt{s_{0}}/{\rm GeV} T2/GeV2T^{2}/{\rm GeV}^{2} Mass/GeV
Ξc\Xi_{c} for μ=mc\mu=m_{c}, 2.952.95; for μ=3GeV\mu=3\ {\rm GeV}, 3.003.00 8\approx 8 2.4702.470
Ξc\Xi_{c}^{\prime} for μ=mc\mu=m_{c}, 3.023.02; for μ=3GeV\mu=3\ {\rm GeV}, 3.103.10 10±210\pm 2 2.5792.579
Ξb\Xi_{b} for μ=mb\mu=m_{b}, 6.276.27; for μ=6GeV\mu=6\ {\rm GeV}, 6.306.30 40\approx 40 5.7975.797
Ξb\Xi_{b}^{\prime} for μ=mb\mu=m_{b}, 6.406.40; for μ=6GeV\mu=6\ {\rm GeV}, 6.456.45 50±1050\pm 10 5.9355.935

For the sum rule in Eq. (14), considering the continuum threshold should lie between those of ΞQ\Xi_{Q} and ΞQ\Xi_{Q}^{\prime}, and assuming T2𝒪(mH2)T^{2}\sim{\cal O}(m_{H}^{2}), we choose the following parameters:

  • For θc\theta_{c}, when μ=mc\mu=m_{c}, s0=2.98GeV\sqrt{s_{0}}=2.98\ {\rm GeV}, and when μ=3GeV\mu=3\ {\rm GeV}, s0=3.05GeV\sqrt{s_{0}}=3.05\ {\rm GeV}; the Borel parameters T2[6,14]GeV2T^{2}\in[6,14]\ {\rm GeV}^{2}.

  • For θb\theta_{b}, when μ=mb\mu=m_{b}, s0=6.33GeV\sqrt{s_{0}}=6.33\ {\rm GeV}, and when μ=6GeV\mu=6\ {\rm GeV}, s0=6.38GeV\sqrt{s_{0}}=6.38\ {\rm GeV}; the Borel parameters T2[30,70]GeV2T^{2}\in[30,70]\ {\rm GeV}^{2}.

Our main results are shown in Fig. 3, and the corresponding central values and error estimates are:

  • θc=(1.3±0.1)°\theta_{c}=(1.3\pm 0.1)\degree from the first sum rule, and θc=(2.0±0.8)°\theta_{c}=(2.0\pm 0.8)\degree from the second sum rule;

  • θb=(0.31±0.03)°\theta_{b}=(0.31\pm 0.03)\degree from the first sum rule, and θb=(0.32±0.02)°\theta_{b}=(0.32\pm 0.02)\degree from the second sum rule.

Here the first and second sum rules respectively refer to those from the coefficients of \not{p} and constant terms, since all the Πij\Pi_{ij}, at the QCD level, can be computed like

ΠQCD(p)=A(p2)+B(p2).\Pi^{{\rm QCD}}(p)=A(p^{2})\not{p}+B(p^{2}). (26)
Refer to caption
Figure 3: Our predictions for θc\theta_{c} and θb\theta_{b}. For the left figure, the solid blue and solid red lines respectively represent the curves of θc\theta_{c} obtained from the first and second sum rules, where μ=mc\mu=m_{c}, s0=2.98GeV\sqrt{s_{0}}=2.98\ {\rm GeV}; The blue dashed and red dashed lines respectively represent the curves of θc\theta_{c} obtained from the first and second sum rules, where μ=3GeV\mu=3\ {\rm GeV}, s0=3.05GeV\sqrt{s_{0}}=3.05\ {\rm GeV}. For the right figure, the solid blue and solid red lines respectively represent the curves of θb\theta_{b} obtained from the first and second sum rules, where μ=mb\mu=m_{b}, s0=6.33GeV\sqrt{s_{0}}=6.33\ {\rm GeV}; The blue dashed and red dashed lines respectively represent the curves of θb\theta_{b} obtained from the first and second sum rules, where μ=6GeV\mu=6\ {\rm GeV}, s0=6.38GeV\sqrt{s_{0}}=6.38\ {\rm GeV}.

In Table 2, we compare our results with others in the literature. It can be seen that, our result for θc\theta_{c} is consistent with that of Lattice QCD in Ref. Liu:2023feb if the uncertainty is taken into account.

Table 2: Comparison with other results in the literature (in units of degree). These theoretical predictions respectively come from QCD sum rules (QCDSR), heavy quark effective theory (HQET), Lattice QCD (LQCD), and quark model (QM).
θQ\theta_{Q} This work QCDSR Aliev:2010ra HQET Matsui:2020wcc LQCD Liu:2023feb QM Franklin:1996ve QM Franklin:1981rc HQET Ito:1996mr
θc\theta_{c} 1.22.81.2\sim 2.8 5.5±1.85.5\pm 1.8 ±8.12±0.80\pm 8.12\pm 0.80 1.2±0.11.2\pm 0.1 3.83.8 3.83.8 14±1414\pm 14
θb\theta_{b} 0.280.340.28\sim 0.34 6.4±1.86.4\pm 1.8 ±4.51±0.79\pm 4.51\pm 0.79 1.01.0

IV Conclusions and discussions

There is a tension between the recent Belle’s measurement and Lattice QCD calculation for the branching ratio of semileptonic decay (Ξc0Ξe+νe){\cal B}(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}). Some people proposed that it is possible to resolve this puzzle by considering the ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing. Following this suggestion, we investigate the ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing using QCD sum rules in this work. Contributions from up to dimension-6 four-quark operators are considered. However, it turns out that only dimension-4 and dimension-5 operators contribute, which reveals the non-perturbative nature of mixing. Especially we notice that only the diagrams with the two light quarks participating in gluon exchange contribute to the mixing. Contributions from three-gluon condensate, and radiative corrections in Fig. 4 may be sizable and deserve further investigation. We leave these more detailed consideration for future works.

Refer to caption
Figure 4: These radiative corrections may play an important rule in ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing.

Our results show that the mixing angle θc\theta_{c} is very small, and is consistent with the most recent Lattice QCD calculation result within error. Such a small mixing angle seems unlikely to resolve the tension between experimental measurement and Lattice QCD calculation for the semileptonic decay Ξc0Ξe+νe\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}. We have to draw the conclusion that the tension is still there.

Finally, it is worth pointing out that Ref. Xing:2022phq recently proposed a method for measuring the mixing angle in experiment, which is helpful to further clarify the issue of the ΞQΞQ\Xi_{Q}-\Xi_{Q}^{\prime} mixing.

Acknowledgements

The authors are grateful to Profs. Yue-Long Shen, Wei Wang, Zhi-Gang Wang, and Drs. Hang Liu, Zhi-Peng Xing for valuable discussions. This work is supported in part by National Natural Science Foundation of China under Grant No. 12065020.

Appendix A Analytical Results

In this appendix, we present the calculation results of the correlation functions Π00,11,01\Pi_{00,11,01} at the QCD level. Some notes are given below.

  • All non-zero results in Fig. 1 are shown in this appendix. The spectral densities ρA\rho^{A} and ρB\rho^{B} are shown together.

  • m1=mQm_{1}=m_{Q} , m2=mqm_{2}=m_{q}, and m3=msm_{3}=m_{s}, and m2m_{2} has been taken to be zero. Because we have defined m232k232(k2+k3)2m_{23}^{2}\equiv k_{23}^{2}\equiv(k_{2}+k_{3})^{2} with k2,3k_{2,3} respectively the momenta of the light quark qq and the strange quark, numeric subscripts are preferable.

  • The m232m_{23}^{2} appearing in the spectral densities of perturbative diagrams (dimension-0) and gluon condensate diagrams (dimension-4) should be integrated out.

  • m1s is the m12m_{1}^{2} that appears on the denominator of the propagator of quark 1. Similar for m2s and m3s.

A.1 Results of ρ00\rho_{00}

ρ00dim0=332π6{\displaystyle\rho_{00}^{{\rm dim-0}}=\frac{3}{32\pi^{6}}\Bigg{\{} m12m232+s6m234s2[2(m232m32)m2322s\displaystyle\frac{m_{1}^{2}-m_{23}^{2}+s}{6m_{23}^{4}s^{2}}\Big{[}2\left(m_{23}^{2}-m_{3}^{2}\right){}^{2}m_{23}^{2}s
+6m3(m232m32)m232s(m12+m232+s)\displaystyle+6m_{3}\left(m_{23}^{2}-m_{3}^{2}\right)m_{23}^{2}\sqrt{s}\left(-m_{1}^{2}+m_{23}^{2}+s\right)
+(2m34+m232m32+m234)(m12+m232+s)]2,\displaystyle+\left(-2m_{3}^{4}+m_{23}^{2}m_{3}^{2}+m_{23}^{4}\right)\left(-m_{1}^{2}+m_{23}^{2}+s\right){}^{2}\Big{]},
m13m234s[2(m232m32)m2322s\displaystyle\frac{m_{1}}{3m_{23}^{4}s}\Big{[}2\left(m_{23}^{2}-m_{3}^{2}\right){}^{2}m_{23}^{2}s
+6m3(m232m32)m232s(m12+m232+s)\displaystyle+6m_{3}\left(m_{23}^{2}-m_{3}^{2}\right)m_{23}^{2}\sqrt{s}\left(-m_{1}^{2}+m_{23}^{2}+s\right)
+(2m34+m232m32+m234)(m12+m232+s)]2}\displaystyle+\left(-2m_{3}^{4}+m_{23}^{2}m_{3}^{2}+m_{23}^{4}\right)\left(-m_{1}^{2}+m_{23}^{2}+s\right){}^{2}\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,0,m32)2m232πλ(s,m12,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},0,m_{3}^{2})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,m_{1}^{2},m_{23}^{2})}}{2s}, (27)
ρ00dim3(a)=q¯q16π3{\displaystyle\rho_{00}^{{\rm dim-3(a)}}=-\frac{\langle\bar{q}q\rangle}{16\pi^{3}}\Bigg{\{} 2(m12m32+s)((m3+s)2m12)s3/2,\displaystyle\frac{2\left(m_{1}^{2}-m_{3}^{2}+s\right)\left(\left(m_{3}+\sqrt{s}\right){}^{2}-m_{1}^{2}\right)}{s^{3/2}},
4m1((m3+s)2m12)s}×πλ(s,m12,m32)2s,\displaystyle\frac{4m_{1}\left(\left(m_{3}+\sqrt{s}\right){}^{2}-m_{1}^{2}\right)}{\sqrt{s}}\Bigg{\}}\times\frac{\pi\sqrt{\lambda(s,m_{1}^{2},m_{3}^{2})}}{2s}, (28)
ρ00dim3(b)=s¯s16π3{2(s2m14)s3/2,4m1(sm12)s}×πλ(s,m12,0)2s,\rho_{00}^{{\rm dim-3(b)}}=-\frac{\langle\bar{s}s\rangle}{16\pi^{3}}\left\{\frac{2\left(s^{2}-m_{1}^{4}\right)}{s^{3/2}},\frac{4m_{1}\left(s-m_{1}^{2}\right)}{\sqrt{s}}\right\}\times\frac{\pi\sqrt{\lambda(s,m_{1}^{2},0)}}{2s}, (29)
ρ00dim4(c)=\displaystyle\rho_{00}^{{\rm dim-4(c)}}= (gs2G224576π6)m2sm3s{16(m12m232+s)s2[16m234\displaystyle\left(-\frac{\text{$\langle g_{s}^{2}G^{2}\rangle$}}{24576\pi^{6}}\right)\frac{\partial}{\partial\text{m2s}}\frac{\partial}{\partial\text{m3s}}\Bigg{\{}\frac{16\left(m_{1}^{2}-m_{23}^{2}+s\right)}{s^{2}}\Big{[}-\frac{1}{6m_{23}^{4}}
×((m12+m232+s)(m234+m232(m2s+m3s)2(m2sm3s)2)2\displaystyle\times\Big{(}\left(-m_{1}^{2}+m_{23}^{2}+s\right){}^{2}\left(m_{23}^{4}+m_{23}^{2}(\text{m2s}+\text{m3s})-2(\text{m2s}-\text{m3s})^{2}\right)
+2m232s(m2342m232(m2s+m3s)+(m2sm3s)2))\displaystyle\quad+2m_{23}^{2}s\left(m_{23}^{4}-2m_{23}^{2}(\text{m2s}+\text{m3s})+(\text{m2s}-\text{m3s})^{2}\right)\Big{)}
3m3s(m12+m232+s)(m232+m2sm3s)m232\displaystyle-\frac{3m_{3}\sqrt{s}\left(-m_{1}^{2}+m_{23}^{2}+s\right)(m_{23}^{2}+\text{m2s}-\text{m3s})}{m_{23}^{2}}
4s(m232m2sm3s)],\displaystyle-4s(m_{23}^{2}-\text{m2s}-\text{m3s})\Big{]},
32m1[16m234s\displaystyle 32m_{1}\Big{[}-\frac{1}{6m_{23}^{4}s}
×((m12+m232+s)(m232(m2s+m3s)+m2342(m2sm3s)2)2\displaystyle\times\Big{(}\left(-m_{1}^{2}+m_{23}^{2}+s\right){}^{2}\left(m_{23}^{2}(\text{m2s}+\text{m3s})+m_{23}^{4}-2(\text{m2s}-\text{m3s})^{2}\right)
+2m232s(m2342m232(m2s+m3s)+(m2sm3s)2))\displaystyle\quad+2m_{23}^{2}s\left(m_{23}^{4}-2m_{23}^{2}(\text{m2s}+\text{m3s})+(\text{m2s}-\text{m3s})^{2}\right)\Big{)}
3m3(m12+m232+s)(m232+m2sm3s)m232s\displaystyle-\frac{3m_{3}\left(-m_{1}^{2}+m_{23}^{2}+s\right)\left(m_{23}^{2}+\text{m2s}-\text{m3s}\right)}{m_{23}^{2}\sqrt{s}}
4(m232m2sm3s)]}\displaystyle-4\left(m_{23}^{2}-\text{m2s}-\text{m3s}\right)\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,m2s,m3s)2m232πλ(s,m12,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},\text{m2s},\text{m3s})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,m_{1}^{2},m_{23}^{2})}}{2s}, (30)
ρ00dim4(d)=\displaystyle\rho_{00}^{{\rm dim-4(d)}}= gs2G2128π6163m1s3{m12(m232+m1s+s)6m234s2\displaystyle\frac{\langle g_{s}^{2}G^{2}\rangle}{128\pi^{6}}\frac{1}{6}\frac{\partial^{3}}{\partial\text{m1s}^{3}}\Bigg{\{}\frac{m_{1}^{2}\left(-m_{23}^{2}+\text{m1s}+s\right)}{6m_{23}^{4}s^{2}}
×[6m3(m232m32)m232s(m232m1s+s)\displaystyle\times\Big{[}6m_{3}\left(m_{23}^{2}-m_{3}^{2}\right)m_{23}^{2}\sqrt{s}\left(m_{23}^{2}-\text{m1s}+s\right)
+(2m34+m232m32+m234)(m232m1s+s)2\displaystyle\quad+\left(-2m_{3}^{4}+m_{23}^{2}m_{3}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2(m232m32)m2322s],\displaystyle\quad+2\left(m_{23}^{2}-m_{3}^{2}\right){}^{2}m_{23}^{2}s\Big{]},
m1m1s3m234s\displaystyle\frac{m_{1}\text{m1s}}{3m_{23}^{4}s}
×[6m3(m232m32)m232s(m232m1s+s)\displaystyle\times\Big{[}6m_{3}\left(m_{23}^{2}-m_{3}^{2}\right)m_{23}^{2}\sqrt{s}\left(m_{23}^{2}-\text{m1s}+s\right)
+(2m34+m232m32+m234)(m232m1s+s)2\displaystyle\quad+\left(-2m_{3}^{4}+m_{23}^{2}m_{3}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2(m232m32)m2322s]}\displaystyle\quad+2\left(m_{23}^{2}-m_{3}^{2}\right){}^{2}m_{23}^{2}s\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,0,m32)2m232πλ(s,m1s,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},0,m_{3}^{2})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{23}^{2})}}{2s}, (31)
ρ00dim5(b)=\displaystyle\rho_{00}^{{\rm dim-5(b)}}= (q¯gsσGq1536π3)m3s{24(m12m3s+s)(2m3sm12+m3s+s)s3/2,\displaystyle\left(-\frac{\langle\bar{q}g_{s}\sigma Gq\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m3s}}\Bigg{\{}-\frac{24\left(m_{1}^{2}-\text{m3s}+s\right)\left(2m_{3}\sqrt{s}-m_{1}^{2}+\text{m3s}+s\right)}{s^{3/2}},
4m1(12(m12+m3s+s)s+24m3)}πλ(s,m12,m3s)2s,\displaystyle-4m_{1}\left(\frac{12\left(-m_{1}^{2}+\text{m3s}+s\right)}{\sqrt{s}}+24m_{3}\right)\Bigg{\}}\frac{\pi\sqrt{\lambda(s,m_{1}^{2},\text{m3s})}}{2s}, (32)
ρ00dim5(d)=(s¯gsσGs1536π3)m2s{\displaystyle\rho_{00}^{{\rm dim-5(d)}}=\left(-\frac{\langle\bar{s}g_{s}\sigma Gs\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m2s}}\Bigg{\{} 24(m12+m2s+s)(m12m2s+s)s3/2,\displaystyle-\frac{24\left(-m_{1}^{2}+\text{m2s}+s\right)\left(m_{1}^{2}-\text{m2s}+s\right)}{s^{3/2}},
48m1(m12+m2s+s)s}πλ(s,m12,m2s)2s,\displaystyle-\frac{48m_{1}\left(-m_{1}^{2}+\text{m2s}+s\right)}{\sqrt{s}}\Bigg{\}}\frac{\pi\sqrt{\lambda(s,m_{1}^{2},\text{m2s})}}{2s}, (33)
ρ00dim6=(q¯qs¯s24){8,8m1}δ(sm12).\rho_{00}^{{\rm dim-6}}=\left(\frac{\langle\bar{q}q\rangle\langle\bar{s}s\rangle}{24}\right)\{8,8m_{1}\}\delta(s-m_{1}^{2}). (34)

A.2 Results of ρ11\rho_{11}

ρ11dim0\displaystyle\rho_{11}^{{\rm dim-0}} =ρ00dim0,\displaystyle=\rho_{00}^{{\rm dim-0}}, (35)
ρ11dim3(a)\displaystyle\rho_{11}^{{\rm dim-3(a)}} =ρ00dim3(a),\displaystyle=\rho_{00}^{{\rm dim-3(a)}}, (36)
ρ11dim3(b)\displaystyle\rho_{11}^{{\rm dim-3(b)}} =ρ00dim3(b),\displaystyle=\rho_{00}^{{\rm dim-3(b)}}, (37)
ρ11dim4(a)=\displaystyle\rho_{11}^{{\rm dim-4}(a)}= (gs2G224576π6)m1sm2s{169m234s\displaystyle\left(-\frac{\langle g_{s}^{2}G^{2}\rangle}{24576\pi^{6}}\right)\frac{\partial}{\partial\text{m1s}}\frac{\partial}{\partial\text{m2s}}\Bigg{\{}-\frac{16}{9m_{23}^{4}s}
×[24m3m232s(m32+m232+m2s)(m232+m1ss)\displaystyle\times\Big{[}-24m_{3}m_{23}^{2}\sqrt{s}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}+\text{m1s}-s\right)
+6m3m232(m32+m232+m2s)(m232m1s+s)(m232+m1s+s)s\displaystyle+\frac{6m_{3}m_{23}^{2}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}-\text{m1s}+s\right)\left(-m_{23}^{2}+\text{m1s}+s\right)}{\sqrt{s}}
+4(m232(2m32(m232+m2s)+(m232m2s)+2m34)(m232+m1s+s)\displaystyle+4\Big{(}m_{23}^{2}\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s}\right){}^{2}+m_{3}^{4}\right)\left(-m_{23}^{2}+\text{m1s}+s\right)
+(m232(m32+m2s)2(m2sm32)+2m234)\displaystyle\quad+\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)
×(m232m1s+s)(m232m1s+s))\displaystyle\qquad\times\left(-m_{23}^{2}-\text{m1s}+s\right)\left(m_{23}^{2}-\text{m1s}+s\right)\Big{)}
+(m232+m1s+s)s\displaystyle+\frac{\left(-m_{23}^{2}+\text{m1s}+s\right)}{s}
×((m232(m32+m2s)2(m2sm32)+2m234)(m232m1s+s)2\displaystyle\times\Big{(}\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2m232s(2m32(m232+m2s)+(m232m2s)+2m34))],\displaystyle\quad+2m_{23}^{2}s\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s}\right){}^{2}+m_{3}^{4}\right)\Big{)}\Big{]},
32m13m234s\displaystyle-\frac{32m_{1}}{3m_{23}^{4}s}
×[(m232(m32+m2s)2(m2sm32)+2m234)(m232m1s+s)2\displaystyle\times\Big{[}\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+6m3m232s(m32+m232+m2s)(m232m1s+s)\displaystyle\quad+6m_{3}m_{23}^{2}\sqrt{s}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}-\text{m1s}+s\right)
+2m232s(2m32(m232+m2s)+(m232m2s)+2m34)]}\displaystyle\quad+2m_{23}^{2}s\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s}\right){}^{2}+m_{3}^{4}\right)\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,m2s,m32)2m232πλ(s,m1s,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},\text{m2s},m_{3}^{2})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{23}^{2})}}{2s}, (38)
ρ11dim4(b)=\displaystyle\rho_{11}^{{\rm dim-4(b)}}= (gs2G224576π6)m1sm3s{169m234s\displaystyle\left(-\frac{\langle g_{s}^{2}G^{2}\rangle}{24576\pi^{6}}\right)\frac{\partial}{\partial\text{m1s}}\frac{\partial}{\partial\text{m3s}}\Bigg{\{}\frac{16}{9m_{23}^{4}s}
×[2(m232m3s+m2342m3s2)(m232+m1s+s)(m232m1s+s)2s\displaystyle\times\Big{[}\frac{2\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(-m_{23}^{2}+\text{m1s}+s\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}}{s}
+4(m232m3s+m2342m3s2)(m232+m1ss)(m232m1s+s)\displaystyle\quad+4\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(m_{23}^{2}+\text{m1s}-s\right)\left(m_{23}^{2}-\text{m1s}+s\right)
3(m232+m1s+s)s((m232m3s+m2342m3s2)(m232m1s+s)2\displaystyle\quad-\frac{3\left(-m_{23}^{2}+\text{m1s}+s\right)}{s}\Big{(}\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2m232s(m232m3s))2\displaystyle\qquad+2m_{23}^{2}s\left(m_{23}^{2}-\text{m3s}\right){}^{2}\Big{)}
18m3m232(m232m3s)(m232+m1s+s)(m232m1s+s)s],\displaystyle\quad-\frac{18m_{3}m_{23}^{2}\left(m_{23}^{2}-\text{m3s}\right)\left(-m_{23}^{2}+\text{m1s}+s\right)\left(m_{23}^{2}-\text{m1s}+s\right)}{\sqrt{s}}\Big{]},
32m1(m232m3s)3m234s\displaystyle-\frac{32m_{1}\left(m_{23}^{2}-\text{m3s}\right)}{3m_{23}^{4}s}
×[m1s2(m232+2m3s)2m1s(m232+2m3s)(m232+s)\displaystyle\times\Big{[}\text{m1s}^{2}\left(m_{23}^{2}+2\text{m3s}\right)-2\text{m1s}\left(m_{23}^{2}+2\text{m3s}\right)\left(m_{23}^{2}+s\right)
+6m3m232s(m232m1s+s)+2m232m3ss+2m234m3s\displaystyle\quad+6m_{3}m_{23}^{2}\sqrt{s}\left(m_{23}^{2}-\text{m1s}+s\right)+2m_{23}^{2}\text{m3s}s+2m_{23}^{4}\text{m3s}
+m232s2+4m234s+m236+2m3ss2]}\displaystyle\quad+m_{23}^{2}s^{2}+4m_{23}^{4}s+m_{23}^{6}+2\text{m3s}s^{2}\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,0,m3s)2m232πλ(s,m1s,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},0,\text{m3s})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{23}^{2})}}{2s}, (39)
ρ11dim4(c)\displaystyle\rho_{11}^{{\rm dim-4(c)}} =13ρ00dim4(c),\displaystyle=-\frac{1}{3}\rho_{00}^{{\rm dim-4(c)}}, (40)
ρ11dim4(d)\displaystyle\rho_{11}^{{\rm dim-4(d)}} =ρ00dim4(d),\displaystyle=\rho_{00}^{{\rm dim-4(d)}}, (41)
ρ11dim5(a)=\displaystyle\rho_{11}^{{\rm dim-5(a)}}= (q¯gsσGq1536π3)m1s{16(m32+m1s+s)(2m3s+m32m1s+s)s3/2,\displaystyle\left(-\frac{\langle\bar{q}g_{s}\sigma Gq\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m1s}}\Bigg{\{}-\frac{16\left(-m_{3}^{2}+\text{m1s}+s\right)\left(2m_{3}\sqrt{s}+m_{3}^{2}-\text{m1s}+s\right)}{s^{3/2}},
32m1(2m3s+m32m1s+s)s}πλ(s,m1s,m32)2s,\displaystyle-\frac{32m_{1}\left(2m_{3}\sqrt{s}+m_{3}^{2}-\text{m1s}+s\right)}{\sqrt{s}}\Bigg{\}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{3}^{2})}}{2s}, (42)
ρ11dim5(b)=13ρ00dim5(b),\rho_{11}^{{\rm dim-5(b)}}=-\frac{1}{3}\rho_{00}^{{\rm dim-5(b)}}, (43)
ρ11dim5(c)=(s¯gsσGs1536π3)m1s\displaystyle\rho_{11}^{{\rm dim-5(c)}}=\left(-\frac{\langle\bar{s}g_{s}\sigma Gs\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m1s}} {16(m1ss)(m1s+s)s3/2,32m1(m1ss)s}\displaystyle\Bigg{\{}\frac{16(\text{m1s}-s)(\text{m1s}+s)}{s^{3/2}},\frac{32m_{1}(\text{m1s}-s)}{\sqrt{s}}\Bigg{\}}
×πλ(s,m1s,0)2s,\displaystyle\times\frac{\pi\sqrt{\lambda(s,\text{m1s},0)}}{2s}, (44)
ρ11dim5(d)=13ρ00dim5(d),\rho_{11}^{{\rm dim-5(d)}}=-\frac{1}{3}\rho_{00}^{{\rm dim-5(d)}}, (45)
ρ11dim6=ρ00dim6.\rho_{11}^{{\rm dim-6}}=\rho_{00}^{{\rm dim-6}}. (46)

A.3 Results of ρ01\rho_{01}

ρ01dim5(a)=\displaystyle\rho_{01}^{{\rm dim-5(a)}}= (q¯gsσGq1536π3)m1s{163m1(2m3s+m32m1s+s)s,\displaystyle\left(-\frac{\langle\bar{q}g_{s}\sigma Gq\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m1s}}\Bigg{\{}-\frac{16\sqrt{3}m_{1}\left(2m_{3}\sqrt{s}+m_{3}^{2}-\text{m1s}+s\right)}{s},
83(m32+m1s+s)(2m3s+m32m1s+s)s}πλ(s,m1s,m32)2s,\displaystyle-\frac{8\sqrt{3}\left(-m_{3}^{2}+\text{m1s}+s\right)\left(2m_{3}\sqrt{s}+m_{3}^{2}-\text{m1s}+s\right)}{s}\Bigg{\}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{3}^{2})}}{2s}, (47)
ρ01dim5(c)=(s¯gsσGs1536π3)m1s\displaystyle\rho_{01}^{{\rm dim-5(c)}}=\left(-\frac{\langle\bar{s}g_{s}\sigma Gs\rangle}{1536\pi^{3}}\right)\frac{\partial}{\partial\text{m1s}} {163m1(sm1s)s,83(sm1s)(m1s+s)s}\displaystyle\Bigg{\{}\frac{16\sqrt{3}m_{1}(s-\text{m1s})}{s},\frac{8\sqrt{3}(s-\text{m1s})(\text{m1s}+s)}{s}\Bigg{\}}
×πλ(s,m1s,0)2s,\displaystyle\times\frac{\pi\sqrt{\lambda(s,\text{m1s},0)}}{2s}, (48)
ρ01dim4(a)=\displaystyle\rho_{01}^{{\rm dim-4(a)}}= (gs2G224576π6)m1sm2s{16m13m234s\displaystyle\left(-\frac{\text{$\langle g_{s}^{2}G^{2}\rangle$}}{24576\pi^{6}}\right)\frac{\partial}{\partial\text{m1s}}\frac{\partial}{\partial\text{m2s}}\Bigg{\{}-\frac{16m_{1}}{\sqrt{3}m_{23}^{4}s}
×[6m3m232(m32+m232+m2s)(m232m1s+s)\displaystyle\times\Big{[}6m_{3}m_{23}^{2}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}-\text{m1s}+s\right)
+1s((m232(m32+m2s)2(m2sm32)+2m234)(m232m1s+s)2\displaystyle\quad+\frac{1}{\sqrt{s}}\Big{(}\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2m232s(2m32(m232+m2s)+(m232m2s )+2m34))],\displaystyle\qquad+2m_{23}^{2}s\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s }\right){}^{2}+m_{3}^{4}\right)\Big{)}\Big{]},
833m234[(m232+m1s+s)s3/2\displaystyle-\frac{8}{3\sqrt{3}m_{23}^{4}}\Big{[}\frac{\left(-m_{23}^{2}+\text{m1s}+s\right)}{s^{3/2}}
×((m232(m32+m2s)2(m2sm32)+2m234)(m232m1s+s)2\displaystyle\quad\times\Big{(}\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2m232s(2m32(m232+m2s)+(m232m2s)+2m34))\displaystyle\qquad+2m_{23}^{2}s\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s}\right){}^{2}+m_{3}^{4}\right)\Big{)}
24m3m232(m32+m232+m2s)(m232+m1ss)\displaystyle\quad-24m_{3}m_{23}^{2}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}+\text{m1s}-s\right)
+6m3m232(m32+m232+m2s)(m232m1s+s)(m232+m1s+s)s\displaystyle\quad+\frac{6m_{3}m_{23}^{2}\left(-m_{3}^{2}+m_{23}^{2}+\text{m2s}\right)\left(m_{23}^{2}-\text{m1s}+s\right)\left(-m_{23}^{2}+\text{m1s}+s\right)}{s}
+4s(m232(2m32(m232+m2s)+(m232m2s)+2m34)(m232+m1s+s)\displaystyle\quad+\frac{4}{\sqrt{s}}\Big{(}m_{23}^{2}\left(-2m_{3}^{2}\left(m_{23}^{2}+\text{m2s}\right)+\left(m_{23}^{2}-\text{m2s}\right){}^{2}+m_{3}^{4}\right)\left(-m_{23}^{2}+\text{m1s}+s\right)
+(m232(m32+m2s)2(m2sm32)+2m234)\displaystyle\qquad+\left(m_{23}^{2}\left(m_{3}^{2}+\text{m2s}\right)-2\left(\text{m2s}-m_{3}^{2}\right){}^{2}+m_{23}^{4}\right)
×(m232m1s+s)(m232m1s+s))]}\displaystyle\qquad\quad\times\left(-m_{23}^{2}-\text{m1s}+s\right)\left(m_{23}^{2}-\text{m1s}+s\right)\Big{)}\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,m2s,m32)2m232πλ(s,m1s,m232)2s,\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},\text{m2s},m_{3}^{2})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{23}^{2})}}{2s}, (49)
ρ01dim4(b)=\displaystyle\rho_{01}^{{\rm dim-4(b)}}= (gs2G224576π6)m1sm3s{16m13m234s\displaystyle\left(-\frac{\langle g_{s}^{2}G^{2}\rangle}{24576\pi^{6}}\right)\frac{\partial}{\partial\text{m1s}}\frac{\partial}{\partial\text{m3s}}\Bigg{\{}\frac{16m_{1}}{\sqrt{3}m_{23}^{4}s}
×[(m232m3s+m2342m3s2)(m232m1s+s)+22m232s(m232m3s)2s\displaystyle\times\Big{[}\frac{\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}+2m_{23}^{2}s\left(m_{23}^{2}-\text{m3s}\right){}^{2}}{\sqrt{s}}
+6m3m232(m232m3s)(m232m1s+s)],\displaystyle\quad+6m_{3}m_{23}^{2}\left(m_{23}^{2}-\text{m3s}\right)\left(m_{23}^{2}-\text{m1s}+s\right)\Big{]},
833m234s3/2\displaystyle\frac{8}{3\sqrt{3}m_{23}^{4}s^{3/2}}
×[4s(m232(m232m3s)(m232+m1s+s)2\displaystyle\times\Big{[}4s\Big{(}m_{23}^{2}\left(m_{23}^{2}-\text{m3s}\right){}^{2}\left(-m_{23}^{2}+\text{m1s}+s\right)
(m232m3s+m2342m3s2)(m232+m1ss)(m232m1s+s))\displaystyle\qquad-\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(m_{23}^{2}+\text{m1s}-s\right)\left(m_{23}^{2}-\text{m1s}+s\right)\Big{)}
+(m232+m1s+s)((m232m3s+m2342m3s2)(m232m1s+s)2\displaystyle\quad+\left(-m_{23}^{2}+\text{m1s}+s\right)\Big{(}\left(m_{23}^{2}\text{m3s}+m_{23}^{4}-2\text{m3s}^{2}\right)\left(m_{23}^{2}-\text{m1s}+s\right){}^{2}
+2m232s(m232m3s))2\displaystyle\qquad+2m_{23}^{2}s\left(m_{23}^{2}-\text{m3s}\right){}^{2}\Big{)}
+18m3m232s(m232m3s)(m232+m1s+s)(m232m1s+s)]}\displaystyle\quad+18m_{3}m_{23}^{2}\sqrt{s}\left(m_{23}^{2}-\text{m3s}\right)\left(-m_{23}^{2}+\text{m1s}+s\right)\left(m_{23}^{2}-\text{m1s}+s\right)\Big{]}\Bigg{\}}
×\displaystyle\times πλ(m232,0,m3s)2m232πλ(s,m1s,m232)2s.\displaystyle\frac{\pi\sqrt{\lambda(m_{23}^{2},0,\text{m3s})}}{2m_{23}^{2}}\frac{\pi\sqrt{\lambda(s,\text{m1s},m_{23}^{2})}}{2s}. (50)

References

  • (1) Y. B. Li et al. [Belle], Phys. Rev. Lett. 127, no.12, 121803 (2021) doi:10.1103/PhysRevLett.127.121803 [arXiv:2103.06496 [hep-ex]].
  • (2) Q. A. Zhang, J. Hua, F. Huang, R. Li, Y. Li, C. Lü, C. D. Lu, P. Sun, W. Sun and W. Wang, et al. Chin. Phys. C 46, no.1, 011002 (2022) doi:10.1088/1674-1137/ac2b12 [arXiv:2103.07064 [hep-lat]].
  • (3) Z. X. Zhao, [arXiv:2103.09436 [hep-ph]].
  • (4) X. G. He, F. Huang, W. Wang and Z. P. Xing, Phys. Lett. B 823, 136765 (2021) doi:10.1016/j.physletb.2021.136765 [arXiv:2110.04179 [hep-ph]].
  • (5) C. Q. Geng, X. N. Jin, C. W. Liu, X. Yu and A. W. Zhou, Phys. Lett. B 839, 137831 (2023) doi:10.1016/j.physletb.2023.137831 [arXiv:2212.02971 [hep-ph]].
  • (6) C. Q. Geng, X. N. Jin and C. W. Liu, Phys. Lett. B 838, 137736 (2023) doi:10.1016/j.physletb.2023.137736 [arXiv:2210.07211 [hep-ph]].
  • (7) H. W. Ke and X. Q. Li, Phys. Rev. D 105, no.9, 9 (2022) doi:10.1103/PhysRevD.105.096011 [arXiv:2203.10352 [hep-ph]].
  • (8) T. M. Aliev, A. Ozpineci and V. Zamiralov, Phys. Rev. D 83, 016008 (2011) doi:10.1103/PhysRevD.83.016008 [arXiv:1007.0814 [hep-ph]].
  • (9) Y. Matsui, Nucl. Phys. A 1008, 122139 (2021) doi:10.1016/j.nuclphysa.2021.122139 [arXiv:2011.09653 [hep-ph]].
  • (10) H. Liu, L. Liu, P. Sun, W. Sun, J. X. Tan, W. Wang, Y. B. Yang and Q. A. Zhang, [arXiv:2303.17865 [hep-lat]].
  • (11) Z. X. Zhao, F. W. Zhang, X. H. Hu and Y. J. Shi, Phys. Rev. D 107, no.11, 116025 (2023) doi:10.1103/PhysRevD.107.116025 [arXiv:2304.07698 [hep-ph]].
  • (12) R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022) doi:10.1093/ptep/ptac097
  • (13) P. Colangelo and A. Khodjamirian, doi:10.1142/9789812810458_0033 [arXiv:hep-ph/0010175 [hep-ph]].
  • (14) Z. X. Zhao, R. H. Li, Y. L. Shen, Y. J. Shi and Y. S. Yang, Eur. Phys. J. C 80, no.12, 1181 (2020) doi:10.1140/epjc/s10052-020-08767-1 [arXiv:2010.07150 [hep-ph]].
  • (15) J. Franklin, Phys. Rev. D 55, 425-426 (1997) doi:10.1103/PhysRevD.55.425 [arXiv:hep-ph/9606326 [hep-ph]].
  • (16) J. Franklin, D. B. Lichtenberg, W. Namgung and D. Carydas, Phys. Rev. D 24, 2910 (1981) doi:10.1103/PhysRevD.24.2910
  • (17) T. Ito and Y. Matsui, Prog. Theor. Phys. 96, 659-664 (1996) doi:10.1143/PTP.96.659 [arXiv:hep-ph/9605289 [hep-ph]].
  • (18) Z. P. Xing and Y. j. Shi, Phys. Rev. D 107, no.7, 074024 (2023) doi:10.1103/PhysRevD.107.074024 [arXiv:2212.09003 [hep-ph]].