This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Revisiting DD-meson twist-2, 3 distribution amplitudes

Tao Zhong111Corresponding author [email protected] Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China    Dong Huang Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China    Hai-Bing Fu [email protected] Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China Department of Physics, Chongqing University, Chongqing 401331, P.R. China
Abstract

Due to the significant difference between the experimental measurements and the theoretical predictions of standard model (SM) for the value of (D)\mathcal{R}(D) of the semileptonic decay BDν¯B\to D\ell\bar{\nu}_{\ell}, people speculate that it may be the evidence of new physics beyond the SM. Usually, the DD-meson twist-2, 3 distribution amplitudes (DAs) ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) are the main error sources when using perturbative QCD factorization and light-cone QCD sum rules to study BDν¯B\to D\ell\bar{\nu}_{\ell}. Therefore, it is important to get more reasonable and accurate behaviors for those DAs. Motivated by our previous work [Phys. Rev. D 104, no.1, 016021 (2021)] on pionic leading-twist DA, we revisit DD-meson twist-2, 3 DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu). New sum rules formulae for the ξ\xi-moments of these three DAs are suggested to obtain more accurate values. The light-cone harmonic oscillator models for those DAs are improved, and whose model parameters are determined by fitting the values of ξ\xi-moments with the least squares method.

pacs:
12.38.-t, 12.38.Bx, 14.40.Aq

I introduction

Since 2012, semileptonic decay BDν¯B\to D\ell\bar{\nu}_{\ell} has been considered as one of the processes most likely to prove the existence of new physics beyond the standard model (SM). The reason is well known, that is, the significant difference between the experimental measurements of the ratio (D)\mathcal{R}(D) and its theoretical predictions of SM. The latest statistics given by Heavy Flavor Average Group website HFLAV:2019otj shows that the experimental average value of (D)\mathcal{R}(D) is exp.(D)=0.339±0.026±0.014\mathcal{R}^{\rm exp.}(D)=0.339\pm 0.026\pm 0.014, while its average value of SM predictions is the.(D)=0.300±0.008\mathcal{R}^{\rm the.}(D)=0.300\pm 0.008 FlavourLatticeAveragingGroup:2019iem . The former comes from the experimental measurements for semileptonic decay BDν¯B\to D\ell\bar{\nu}_{\ell} by BaBar Collaboration in 2012 BaBar:2012obs and 2013 BaBar:2013mob , by Belle Collaboration in 2015 Belle:2015qfa and 2019 Belle:2019rba . The later is obtained by combining two lattice calculations by MILC Collaboration MILC:2015uhg and HPQCD Collaboration Na:2015kha . The authors of Ref. Bigi:2016mdz fit experimental and lattice results for BDν¯B\to D\ell\bar{\nu}_{\ell} to give (D)=0.299±0.003\mathcal{R}(D)=0.299\pm 0.003. Within the framework of the Heavy-Quark Expansion, Ref. Bordone:2019vic gives (D)=0.297±0.003\mathcal{R}(D)=0.297\pm 0.003. By fitting the experimental data, lattice QCD and QCD sum rules (SRs) results for B¯Dν¯\bar{B}\to D\ell\bar{\nu}_{\ell}, Ref. Bernlochner:2017jka predicts (D)=0.299±0.003\mathcal{R}(D)=0.299\pm 0.003. Along with the experimental data, Ref. Jaiswal:2017rve use the lattice predictions MILC:2015uhg ; Na:2015kha for the form factors of BDν¯B\to D\ell\bar{\nu}_{\ell} as inputs, the prediction for (D)\mathcal{R}(D) with the Caprini-Lellouch-Neubert parameterization Caprini:1997mu of the form factors is given by (D)=0.302±0.003\mathcal{R}(D)=0.302\pm 0.003, while using Boyd-Grinstein-Lebed parameterization Boyd:1997kz , the authors obtain (D)=0.299±0.004\mathcal{R}(D)=0.299\pm 0.004. Earlier, based on the heavy quark effective theory (HQET), Refs. Tanaka:2010se ; Fajfer:2012vx predict (D)=0.302±0.015\mathcal{R}(D)=0.302\pm 0.015. By using light-cone sum rules (LCSRs) approach with BB-meson distribution amplitudes (DAs) in HQET, Ref. Wang:2017jow gives (D)=0.3050.025+0.022\mathcal{R}(D)=0.305^{+0.022}_{-0.025} in 2017. Based on the DD-meson DAs Zhang:2017rwz ; Zhong:2018exo obtained by QCD SRs in the framework of background field theory (BFT) Huang:1989gv ; Zhong:2014jla , our previous work gets (D)=0.3200.021+0.018\mathcal{R}(D)=0.320^{+0.018}_{-0.021} Zhong:2018exo with LCSRs.

In BDB\to D semileptonic decay and other DD-meson related processes, DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu), twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) are usually the key input parameters and the main error sources. Among them, there are relatively more studies on leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu), such as, earlier, the Kurimoto-Li-Sanda (KLS) model Kurimoto:2002sb based on the expansion of the Gegenbauer polynomials, the Li-Lü-Zou (LLZ) model Li:2008ts by considering a sample harmonic-like kk_{\perp}-dependence on the basis of KLS model, the Gaussian-type Li-Melic (LM) model Li:1999kna by employing the solution of a relativistic scalar harmonic oscillator potential for the orbital part of the wavefunction (WF), the light-cone harmonic oscillator (LCHO) model Guo:1991eb ; Zuo:2006re based on the Brodsky-Huang-Lepage (BHL) prescription BHL , etc. Recently, in 2019, Ref. Dhiman:2019ddr studied DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) with the light-front quark model (LFQM) by adopting the Coulomb plus exponential-type confining potential, and given the values of whose first six ξ\xi-moments. Our research on DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) is in 2018 Zhang:2017rwz . We studied ϕ2;D(x,μ)\phi_{2;D}(x,\mu) by combining phenomenological LCHO model and non-perturbative QCD SRs approach. By introducing longitudinal WF φ2;D(x)\varphi_{2;D}(x), we improved the LCHO model of ϕ2;D(x,μ)\phi_{2;D}(x,\mu) proposed in Refs. Guo:1991eb ; Zuo:2006re . The behavior of our DA is determined by the first four Gegenbauer moments. Those Gegenbauer moments were calculated with QCD SRs in the framework of BFT. Subsequently, in the same year, we used the same method to study DD-meson twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) and further studied BDB\to D transition form factors (TFFs) with LCSRs and calculated (D)\mathcal{R}(D) Zhong:2018exo .

Last year we proposed a new scheme to study pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) in Ref. Zhong:2021epq . Firstly, we suggested a new sum rule formula for ξ\xi-moment of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) based on the fact that the sum rule of zeroth moment can not be normalized in entire Borel parameter region. Secondly, we adopted the least squares method to fit the values of the first ten ξ\xi-moments to determine the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). In fact, there are several other approaches, such as traditional QCD sum rules Ball:2003sc , Dyson-Schwinger equation Chang:2013pq , lattice calculation RQCD:2019osh ; LatticeParton:2022zqc , etc., to be adopted in the study of the DAs of mesons especially light mesons. By comparison, the scheme suggested in Ref. Zhong:2021epq has its own unique advantages. In which, the new sum rule formula of ξ\xi-moment can reduce the system uncertainties caused222The numerical results in Ref. Zhong:2021epq show that this improves the accuracy of ξ\xi-moments by at least 10%10\%. by the truncation of the high-dimensional condensates as well as the simple parametrization of quark-hadron daulity for continuum states, and this improves the prediction accuracy of QCD SRs and its prediction ability for higher moments; The least squares method is used to fit the ξ\xi-moments to determine DA, which avoids the extremely unreliable high-order Gegenbauer moments, and can absorb as much information of DA carried by high-order ξ\xi-moments as possible to give more accurate behavior of DA Zhong:2022lmn . Very recently, this scheme has been used to study the kaon leading-twist DA ϕ2;K(x,μ)\phi_{2;K}(x,\mu) by considering the SUf(3)SU_{f}(3) symmetry breaking effect Zhong:2022ecl , the axial-vector a1(1260)a_{1}(1260)-meson longitudinal twist-2 DA Hu:2021lkl , the scaler K0(1430)K_{0}^{\ast}(1430) and a0(980)a_{0}(980)-meson leading-twist DAs Huang:2022xny ; Wu:2022qqx . Inspired by these works in Refs. Zhong:2021epq ; Zhong:2022ecl , we will restudy DD-meson twist-2, 3 DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) in this work.

The rest of the paper are organized as follows. In Sec. II, we will present new sum rule formulae for the ξ\xi-moments of ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu), and briefly describe and improve the LCHO models of those DAs. In Sec. III, we will analyze the behavior of those DAs based on the new values of ξ\xi-moments in detail. Section IV is reserved for a summery.

II Theoretical framework

II.1 New sum rule formulae for the ξ\xi-moments of DD-meson twist-2,3 DAs

As discussion in Ref. Zhong:2021epq , the new sum rule formula for the ξ\xi-moments is based on that the sum rule of zeroth moment can not be normalized in entire Borel parameter region. Therefore, the discussion of this paper begins with the sum rule formulae for the ξ\xi-moments of DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) obtained in Ref. Zhang:2017rwz and twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu), ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) obtained in Ref. Zhong:2018exo .

By giving up the priori setting for zeroth ξ\xi-moment normalization, Eq. (28) in Ref. Zhang:2017rwz should be modified as

ξn2;Dξ02;D\displaystyle\left<\xi^{n}\right>_{2;D}\left<\xi^{0}\right>_{2;D}
=M2emD2/M2fD2{1π1M2mc2sDdses/M2ImIpert(s)\displaystyle=\frac{M^{2}e^{m_{D}^{2}/M^{2}}}{f_{D}^{2}}\left\{\frac{1}{\pi}\frac{1}{M^{2}}\int^{s_{D}}_{m_{c}^{2}}dse^{-s/M^{2}}{\rm Im}I_{\rm pert}(s)\right.
+L^MIq¯q(q2)+L^MIG2(q2)+L^MIq¯Gq(q2)\displaystyle+\hat{L}_{M}I_{\left<\bar{q}q\right>}(-q^{2})+\hat{L}_{M}I_{\left<G^{2}\right>}(-q^{2})+\hat{L}_{M}I_{\left<\bar{q}Gq\right>}(-q^{2})
+L^MIq¯q2(q2)+L^MIG3(q2)},\displaystyle+\left.\hat{L}_{M}I_{\left<\bar{q}q\right>^{2}}(-q^{2})+\hat{L}_{M}I_{\left<G^{3}\right>}(-q^{2})\right\}, (1)

for the nnth ξ\xi-moment ξn2;D\left<\xi^{n}\right>_{2;D} of ϕ2;D(x,μ)\phi_{2;D}(x,\mu). Eq. (27) in Ref. Zhong:2018exo should be modified as

ξpn3;Dξp03;D\displaystyle\left<\xi^{n}_{p}\right>_{3;D}\left<\xi^{0}_{p}\right>_{3;D}
=M2emD2/M2(μDp)2fD2{1π1M2mc2sDdses/M2ImIpertp(s)\displaystyle=\frac{M^{2}e^{m_{D}^{2}/M^{2}}}{(\mu_{D}^{p})^{2}f_{D}^{2}}\left\{\frac{1}{\pi}\frac{1}{M^{2}}\int^{s_{D}}_{m_{c}^{2}}dse^{-s/M^{2}}{\rm Im}I^{p}_{\rm pert}(s)\right.
+L^MIq¯qp(q2)+L^MIG2p(q2)+L^MIq¯Gqp(q2)\displaystyle+\hat{L}_{M}I^{p}_{\left<\bar{q}q\right>}(-q^{2})+\hat{L}_{M}I^{p}_{\left<G^{2}\right>}(-q^{2})+\hat{L}_{M}I^{p}_{\left<\bar{q}Gq\right>}(-q^{2})
+L^MIq¯q2p(q2)+L^MIG3p(q2)},\displaystyle+\left.\hat{L}_{M}I^{p}_{\left<\bar{q}q\right>^{2}}(-q^{2})+\hat{L}_{M}I^{p}_{\left<G^{3}\right>}(-q^{2})\right\}, (2)

for the nnth ξ\xi-moment ξpn3;D\left<\xi^{n}_{p}\right>_{3;D} of ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu). Eq. (28) in Ref. Zhong:2018exo should be modified as

ξσn3;Dξp03;D\displaystyle\left<\xi^{n}_{\sigma}\right>_{3;D}\left<\xi^{0}_{p}\right>_{3;D}
=3M2emD2/M2(n+1)μDpμDσfD2mD2mD2mc2\displaystyle=\frac{3M^{2}e^{m_{D}^{2}/M^{2}}}{(n+1)\mu_{D}^{p}\mu_{D}^{\sigma}f_{D}^{2}}\frac{m_{D}^{2}}{m_{D}^{2}-m_{c}^{2}}
×{1π1M2mc2sDdses/M2ImIpertσ(s)+L^MIq¯qσ(q2)\displaystyle\times\left\{\frac{1}{\pi}\frac{1}{M^{2}}\int^{s_{D}}_{m_{c}^{2}}dse^{-s/M^{2}}{\rm Im}I^{\sigma}_{\rm pert}(s)+\hat{L}_{M}I^{\sigma}_{\left<\bar{q}q\right>}(-q^{2})\right.
+L^MIG2σ(q2)+L^MIq¯Gqσ(q2)+L^MIq¯q2σ(q2)\displaystyle+\hat{L}_{M}I^{\sigma}_{\left<G^{2}\right>}(-q^{2})+\hat{L}_{M}I^{\sigma}_{\left<\bar{q}Gq\right>}(-q^{2})+\hat{L}_{M}I^{\sigma}_{\left<\bar{q}q\right>^{2}}(-q^{2})
+L^MIG3σ(q2)},\displaystyle+\left.\hat{L}_{M}I^{\sigma}_{\left<G^{3}\right>}(-q^{2})\right\}, (3)

for the nnth ξ\xi-moment ξσn3;D\left<\xi^{n}_{\sigma}\right>_{3;D} of ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu). In Eqs. (1), (2) and (3), mDm_{D} is the DD-meson mass, mcm_{c} is the current charm-quark mass, fDf_{D} is the decay constant of DD-meson, sDs_{D} is the continuum threshold, L^M\hat{L}_{M} indicates Borel transformation operator with the Borel parameter MM. μDp\mu_{D}^{p} and μDσ\mu_{D}^{\sigma} are the normalization constants of DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) respectively. Usually, μDp=μDσ=μD=mD2/mc\mu_{D}^{p}=\mu_{D}^{\sigma}=\mu_{D}=m_{D}^{2}/m_{c} in literature by employing the equations of motion of on-shell quarks in the meson. However, as discussed in Refs. Huang:2004tp ; Huang:2005av , the quarks inside the bound state are not exactly on-shell. Then μDp\mu_{D}^{p} and μDσ\mu_{D}^{\sigma} are taken as undetermined parameters in this paper and will be determined via the sum rules of zeroth ξ\xi-moments of DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) following the idea of Refs. Zhong:2018exo ; Huang:2004tp ; Huang:2005av . In addition, in sum rules (1), (2) and (3), the subscript “pert” stands for the terms coming from the contribution of perturbative part in operator product expansion, subscripts q¯q\left<\bar{q}q\right>, G2\left<G^{2}\right>, q¯Gq\left<\bar{q}Gq\right>, q¯q2\left<\bar{q}q\right>^{2} and G3\left<G^{3}\right> stand for the terms proportional to double-quark condensate, double-gluon condensate, quark-gluon mixing condensate, four-quark condensate and triple-gluon condensate, respectively. For the expressions of those terms in Eqs. (1), (2) and (3), one can refer to the appendixes in Refs. Zhang:2017rwz ; Zhong:2018exo . By taking n=0n=0 in Eq. (1) and (2), one can obtain the sum rules for the zeroth ξ\xi-moments ξ02;D\left<\xi^{0}\right>_{2;D} and ξp03;D\left<\xi^{0}_{p}\right>_{3;D}. As the functions of the Borel parameter, the zeroth ξ\xi-moments ξ02;D\left<\xi^{0}\right>_{2;D} in Eq. (1) and ξp03;D\left<\xi^{0}_{p}\right>_{3;D} in Eqs. (2) and (3) obviously can not be normalized in entire M2M^{2} region. Therefore, more reasonable and accurate sum rules should be

ξn2;D\displaystyle\left<\xi^{n}\right>_{2;D} =\displaystyle= ξn2;Dξ02;D|FromEq.(1)ξ02;D2|Bytakingn=0inEq.(1),\displaystyle\frac{\left<\xi^{n}\right>_{2;D}\left<\xi^{0}\right>_{2;D}|_{\rm From\ Eq.~{}\eqref{xinxi0}}}{\sqrt{\left<\xi^{0}\right>^{2}_{2;D}}|_{\rm By\ taking\ n=0\ in\ Eq.~{}\eqref{xinxi0}}}, (4)
ξpn3;D\displaystyle\left<\xi^{n}_{p}\right>_{3;D} =\displaystyle= ξpn3;Dξp03;D|FromEq.(2)ξp03;D2|Bytakingn=0inEq.(2),\displaystyle\frac{\left<\xi^{n}_{p}\right>_{3;D}\left<\xi^{0}_{p}\right>_{3;D}|_{\rm From\ Eq.~{}\eqref{xinxi0p}}}{\sqrt{\left<\xi^{0}_{p}\right>^{2}_{3;D}}|_{\rm By\ taking\ n=0\ in\ Eq.~{}\eqref{xinxi0p}}}, (5)

and

ξσn3;D=ξσn3;Dξp03;D|FromEq.(3)ξp03;D2|Bytakingn=0inEq.(2),\displaystyle\left<\xi^{n}_{\sigma}\right>_{3;D}=\frac{\left<\xi^{n}_{\sigma}\right>_{3;D}\left<\xi^{0}_{p}\right>_{3;D}|_{\rm From\ Eq.~{}\eqref{xinxi0s}}}{\sqrt{\left<\xi^{0}_{p}\right>^{2}_{3;D}}|_{\rm By\ taking\ n=0\ in\ Eq.~{}\eqref{xinxi0p}}}, (6)

for ξn2;D\left<\xi^{n}\right>_{2;D}, ξpn3;D\left<\xi^{n}_{p}\right>_{3;D} and ξσn3;D\left<\xi^{n}_{\sigma}\right>_{3;D}, respectively.

II.2 LCHO models for DD-meson twist-2, 3 DAs

In Refs. Zhang:2017rwz ; Zhong:2018exo , we have suggested LCHO models for DD-meson twist-2, 3 DAs. In this subsection, we first propose a brief review for those models, then we will improve them by reconstructing whose longitudinal distribution functions.

The DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) can be obtained by integrating out the transverse momentum k\textbf{k}_{\perp} component in its WF Ψ2;D(x,k)\Psi_{2;D}(x,\textbf{k}_{\perp}), i.e.,

ϕ2;D(x,μ0)=26fD|k|2μ02d2k16π3Ψ2;D(x,k).\displaystyle\phi_{2;D}(x,\mu_{0})=\frac{2\sqrt{6}}{f_{D}}\int_{\left|\textbf{k}_{\perp}\right|^{2}\leq\mu_{0}^{2}}\frac{d^{2}\textbf{k}_{\perp}}{16\pi^{3}}\Psi_{2;D}(x,\textbf{k}_{\perp}). (7)

Based on the BHL description BHL , the LCHO model for the DD-meson leading-twist WF consists of the spin-space WF χ2;D(x,k)\chi_{2;D}(x,\textbf{k}_{\perp}) and spatial WF ψ2;DR(x,k)\psi_{2;D}^{R}(x,\textbf{k}_{\perp}), i.e., Ψ2;D(x,k)=χ2;D(x,k)ψ2;DR(x,k)\Psi_{2;D}(x,\textbf{k}_{\perp})=\chi_{2;D}(x,\textbf{k}_{\perp})\psi_{2;D}^{R}(x,\textbf{k}_{\perp}). The spin-space WF χ2;D(x,k)=m~/k2+m~\chi_{2;D}(x,\textbf{k}_{\perp})=\widetilde{m}/\sqrt{\textbf{k}_{\perp}^{2}+\widetilde{m}}. In which, m~=m^cx+m^qx¯\widetilde{m}=\hat{m}_{c}x+\hat{m}_{q}\bar{x} with the constituent charm-quark mass m^c\hat{m}_{c} and light-quark mass m^q\hat{m}_{q}. In this paper, we take m^c=1.5GeV\hat{m}_{c}=1.5{\rm GeV} and m^q=0.25GeV\hat{m}_{q}=0.25{\rm GeV} Zhong:2022ecl . As discussed in Ref. Zhang:2017rwz , we take χ2;D1\chi_{2;D}\to 1 approximately due to that m^cΛQCD\hat{m}_{c}\gg\Lambda_{\rm QCD}. Then, the DD-meson leading-twist WF reads

Ψ2;D(x,k)\displaystyle\Psi_{2;D}(x,\textbf{k}_{\perp}) =\displaystyle= A2;Dφ2;D(x)\displaystyle A_{2;D}\varphi_{2;D}(x)
×\displaystyle\times exp[1β2;D2(k2+m^c2x¯+k2+m^q2x)],\displaystyle\exp\left[-\frac{1}{\beta_{2;D}^{2}}\left(\frac{\textbf{k}_{\perp}^{2}+\hat{m}_{c}^{2}}{\bar{x}}+\frac{\textbf{k}_{\perp}^{2}+\hat{m}_{q}^{2}}{x}\right)\right],

where x¯=1x\bar{x}=1-x, A2;DA_{2;D} is the normalization constant, β2;D\beta_{2;D} is a harmonious parameter that dominates the WF’s transverse distribution, φ2;D(x,μ)\varphi_{2;D}(x,\mu) dominates the WF’s longitudinal distribution.

Substituting Eq. (LABEL:psiR2D) into (7), the expression of DD-meson leading-twist DA ϕ2;D(x,μ0)\phi_{2;D}(x,\mu_{0}) can be obtained, i.e.,

ϕ2;D(x,μ)\displaystyle\phi_{2;D}(x,\mu) =\displaystyle= 6A2;Dβ2;D2π2fDxx¯φ2;D(x)\displaystyle\frac{\sqrt{6}A_{2;D}\beta_{2;D}^{2}}{\pi^{2}f_{D}}x\bar{x}\varphi_{2;D}(x) (9)
×\displaystyle\times exp[m^c2x+m^q2x¯8β2;D2xx¯]\displaystyle\exp\left[-\frac{\hat{m}_{c}^{2}x+\hat{m}_{q}^{2}\bar{x}}{8\beta_{2;D}^{2}x\bar{x}}\right]
×\displaystyle\times {1exp[μ28β2;D2xx¯]}.\displaystyle\left\{1-\exp\left[-\frac{\mu^{2}}{8\beta_{2;D}^{2}x\bar{x}}\right]\right\}.

Following the way for constructing the DD-meson leading-twist DA, the LCHO models for DD-meson twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) read,

ϕ3;Dp(x,μ)\displaystyle\phi_{3;D}^{p}(x,\mu) =\displaystyle= 6A3;Dp(β3;Dp)2π2fDxx¯φ3;Dp(x)\displaystyle\frac{\sqrt{6}A_{3;D}^{p}(\beta_{3;D}^{p})^{2}}{\pi^{2}f_{D}}x\bar{x}\varphi_{3;D}^{p}(x) (10)
×\displaystyle\times exp[m^c2x+m^q2x¯8(β3;Dp)2xx¯]\displaystyle\exp\left[-\frac{\hat{m}_{c}^{2}x+\hat{m}_{q}^{2}\bar{x}}{8(\beta_{3;D}^{p})^{2}x\bar{x}}\right]
×\displaystyle\times {1exp[μ28(β3;Dp)2xx¯]},\displaystyle\left\{1-\exp\left[-\frac{\mu^{2}}{8(\beta_{3;D}^{p})^{2}x\bar{x}}\right]\right\},

and

ϕ3;Dσ(x,μ)\displaystyle\phi_{3;D}^{\sigma}(x,\mu) =\displaystyle= 6A3;Dσ(β3;Dσ)2π2fDxx¯φ3;Dσ(x)\displaystyle\frac{\sqrt{6}A_{3;D}^{\sigma}(\beta_{3;D}^{\sigma})^{2}}{\pi^{2}f_{D}}x\bar{x}\varphi_{3;D}^{\sigma}(x) (11)
×\displaystyle\times exp[m^c2x+m^q2x¯8(β3;Dσ)2xx¯]\displaystyle\exp\left[-\frac{\hat{m}_{c}^{2}x+\hat{m}_{q}^{2}\bar{x}}{8(\beta_{3;D}^{\sigma})^{2}x\bar{x}}\right]
×\displaystyle\times {1exp[μ28(β3;Dσ)2xx¯]},\displaystyle\left\{1-\exp\left[-\frac{\mu^{2}}{8(\beta_{3;D}^{\sigma})^{2}x\bar{x}}\right]\right\},

respectively.

For the longitudinal distribution functions φ2;D(x)\varphi_{2;D}(x), φ3;Dp(x)\varphi_{3;D}^{p}(x) and φ3;Dσ(x)\varphi_{3;D}^{\sigma}(x), we used to take the first five terms of Gegenbauer expansions for the corresponding DAs in Refs. Zhang:2017rwz ; Zhong:2018exo . As discussed in Ref. Zhong:2021epq ; Zhong:2022ecl , higher order Gegenbauer polynomials will introduce spurious oscillations Chang:2013pq , while those corresponding coefficients obtained by directly solving the constraints of Gegenbauer moments or ξ\xi-moments are not reliable. Then we improve these three longitudinal distribution functions as following,

φ2;D(x)\displaystyle\varphi_{2;D}(x) =\displaystyle= [x(1x)]α2;D[1+B^12;DC13/2(2x1)],\displaystyle\left[x(1-x)\right]^{\alpha_{2;D}}\left[1+\hat{B}_{1}^{2;D}C_{1}^{3/2}(2x-1)\right],
φ3;Dp(x)\displaystyle\varphi_{3;D}^{p}(x) =\displaystyle= [x(1x)]α3;Dp[1+B^1,p3;DC11/2(2x1)],\displaystyle\left[x(1-x)\right]^{\alpha_{3;D}^{p}}\left[1+\hat{B}_{1,p}^{3;D}C_{1}^{1/2}(2x-1)\right],
φ3;Dσ(x)\displaystyle\varphi_{3;D}^{\sigma}(x) =\displaystyle= [x(1x)]α3;Dσ[1+B^1,σ3;DC13/2(2x1)].\displaystyle\left[x(1-x)\right]^{\alpha_{3;D}^{\sigma}}\left[1+\hat{B}_{1,\sigma}^{3;D}C_{1}^{3/2}(2x-1)\right].

By considering the normalization conditions for DD-meson twist-2, 3 DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu), that is,

01𝑑xϕ2;D(x,μ)\displaystyle\int^{1}_{0}dx\phi_{2;D}(x,\mu) =\displaystyle= 01𝑑xϕ3;Dp(x,μ)\displaystyle\int^{1}_{0}dx\phi_{3;D}^{p}(x,\mu) (15)
=\displaystyle= 01𝑑xϕ3;Dσ(x,μ)=1,\displaystyle\int^{1}_{0}dx\phi_{3;D}^{\sigma}(x,\mu)=1,

there are three undetermined parameters in the LCHO models for DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) respectively, and which will be taken as the fitting parameters to fit the first ten ξ\xi-moments333In our previous work Zhong:2022lmn , based on the pionic leading-twist DA, we analyzed in detail the influence of different number of ξ\xi-moments included in the fitting, and found that when the order of ξ\xi-moments is not more than ten, the change of the number of ξ\xi-moments has an obvious impact on the fitting results. When the order of ξ\xi-moments is more than ten, the change of the number of ξ\xi-moments has a very small impact on the fitting results. Therefore, we only use the first ten ξ\xi-moments of DD-meson DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) for fitting in this work. of corresponding DAs by adopting the least squares method in next section.

It should be noted that, DD-meson twist-2, 3 DAs are the universal non-perturbative parameters in essence, and non-perturbative QCD should be used to study them in principle. However, due to the difficulty of non-perturbative QCD, those DAs are studied in this paper by combining the phenomenological model, that is, the LCHO model, and the non-perturbative QCD SRs in the framework of BFT. Otherwise, the improvement of the LCHO model of DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu), that is, to reconstruct their longitudinal distribution functions, is only based on mathematical considerations. The rationality of this improvement can be judged by the goodness of fit.

Table 1: Criteria for determining the Borel windows of the first ten ξ\xi-moments of DD-meson twist-2, 3 DAs.
       Continue        Dimension-six        Continue        Dimension-six
 Contribution (%\%)  Contribution (%\%)  Contribution (%\%)  Contribution (%\%)
 ξ12;D\left<\xi^{1}\right>_{2;D}  <15<15  <10<10  ξ22;D\left<\xi^{2}\right>_{2;D}  <20<20  <10<10
 ξ32;D\left<\xi^{3}\right>_{2;D}  -  <15<15  ξ42;D\left<\xi^{4}\right>_{2;D}  <20<20  <15<15
 ξ52;D\left<\xi^{5}\right>_{2;D}  -  <20<20  ξ62;D\left<\xi^{6}\right>_{2;D}  <20<20  <20<20
 ξ72;D\left<\xi^{7}\right>_{2;D}  -  <25<25  ξ82;D\left<\xi^{8}\right>_{2;D}  <20<20  <20<20
 ξ92;D\left<\xi^{9}\right>_{2;D}  -  <25<25  ξ102;D\left<\xi^{10}\right>_{2;D}  <20<20  <20<20
 ξp13;D\left<\xi^{1}_{p}\right>_{3;D}  -  <5<5  ξp23;D\left<\xi^{2}_{p}\right>_{3;D}  <15<15  <10<10
 ξp33;D\left<\xi^{3}_{p}\right>_{3;D}  -  <10<10  ξp43;D\left<\xi^{4}_{p}\right>_{3;D}  <15<15  <10<10
 ξp53;D\left<\xi^{5}_{p}\right>_{3;D}  -  <15<15  ξp63;D\left<\xi^{6}_{p}\right>_{3;D}  <15<15  <10<10
 ξp73;D\left<\xi^{7}_{p}\right>_{3;D}  -  <15<15  ξp83;D\left<\xi^{8}_{p}\right>_{3;D}  <15<15  <10<10
 ξp93;D\left<\xi^{9}_{p}\right>_{3;D}  -  <15<15  ξp103;D\left<\xi^{10}_{p}\right>_{3;D}  <15<15  <10<10
 ξσ13;D\left<\xi^{1}_{\sigma}\right>_{3;D}  <20<20  -  ξσ23;D\left<\xi^{2}_{\sigma}\right>_{3;D}  <45<45  -
 ξσ33;D\left<\xi^{3}_{\sigma}\right>_{3;D}  <20<20  <5<5  ξσ43;D\left<\xi^{4}_{\sigma}\right>_{3;D}  <45<45  -
 ξσ53;D\left<\xi^{5}_{\sigma}\right>_{3;D}  <25<25  <5<5  ξσ63;D\left<\xi^{6}_{\sigma}\right>_{3;D}  <45<45  -
 ξσ73;D\left<\xi^{7}_{\sigma}\right>_{3;D}  <25<25  <5<5  ξσ83;D\left<\xi^{8}_{\sigma}\right>_{3;D}  <45<45  -
 ξσ93;D\left<\xi^{9}_{\sigma}\right>_{3;D}  <25<25  <5<5  ξσ103;D\left<\xi^{10}_{\sigma}\right>_{3;D}  <45<45  -
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: The DD-meson twist-2, 3 DA ξ\xi-moments ξn2;D\langle\xi^{n}\rangle_{2;D}, ξpn3;D\langle\xi^{n}_{p}\rangle_{3;D} and ξσn3;D\langle\xi^{n}_{\sigma}\rangle_{3;D} with (n=1,,10)(n=1,\cdots,10) versus the Borel parameter M2M^{2}. In order to clearly show the curves of different ξ\xi-moments, only the central values of ξ\xi-moments are given, which is obtained by taking the central values of each input parameters shown in Eqs. (16) and (17).
Table 2: The first ten ξ\xi-moments of the DD-meson twist-2, 3 DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) at scale μ=2GeV\mu=2~{}{\rm GeV}, respectively.
ξ12;D\left<\xi^{1}\right>_{2;D} 0.3490.037+0.037-0.349^{+0.037}_{-0.037} ξ22;D\left<\xi^{2}\right>_{2;D} 0.2510.014+0.0140.251^{+0.014}_{-0.014}
ξ32;D\left<\xi^{3}\right>_{2;D} 0.1520.012+0.012-0.152^{+0.012}_{-0.012} ξ42;D\left<\xi^{4}\right>_{2;D} 0.1170.010+0.0100.117^{+0.010}_{-0.010}
ξ52;D\left<\xi^{5}\right>_{2;D} 0.08830.0072+0.0072-0.0883^{+0.0072}_{-0.0072} ξ62;D\left<\xi^{6}\right>_{2;D} 0.07150.0084+0.00840.0715^{+0.0084}_{-0.0084}
ξ72;D\left<\xi^{7}\right>_{2;D} 0.06060.0054+0.0054-0.0606^{+0.0054}_{-0.0054} ξ82;D\left<\xi^{8}\right>_{2;D} 0.04790.0052+0.00520.0479^{+0.0052}_{-0.0052}
ξ92;D\left<\xi^{9}\right>_{2;D} 0.04290.0034+0.0034-0.0429^{+0.0034}_{-0.0034} ξ102;D\left<\xi^{10}\right>_{2;D} 0.03480.0035+0.00350.0348^{+0.0035}_{-0.0035}
ξp13;D\left<\xi^{1}_{p}\right>_{3;D} 0.5550.061+0.063-0.555^{+0.063}_{-0.061} ξp23;D\left<\xi^{2}_{p}\right>_{3;D} 0.4300.036+0.0340.430^{+0.034}_{-0.036}
ξp33;D\left<\xi^{3}_{p}\right>_{3;D} 0.3250.023+0.026-0.325^{+0.026}_{-0.023} ξp43;D\left<\xi^{4}_{p}\right>_{3;D} 0.2720.020+0.0170.272^{+0.017}_{-0.020}
ξp53;D\left<\xi^{5}_{p}\right>_{3;D} 0.2320.017+0.019-0.232^{+0.019}_{-0.017} ξp63;D\left<\xi^{6}_{p}\right>_{3;D} 0.2090.017+0.0140.209^{+0.014}_{-0.017}
ξp73;D\left<\xi^{7}_{p}\right>_{3;D} 0.1850.017+0.019-0.185^{+0.019}_{-0.017} ξp83;D\left<\xi^{8}_{p}\right>_{3;D} 0.1750.017+0.0160.175^{+0.016}_{-0.017}
ξp93;D\left<\xi^{9}_{p}\right>_{3;D} 0.1630.016+0.017-0.163^{+0.017}_{-0.016} ξp103;D\left<\xi^{10}_{p}\right>_{3;D} 0.1570.016+0.0150.157^{+0.015}_{-0.016}
ξσ13;D\left<\xi^{1}_{\sigma}\right>_{3;D} 0.3760.021+0.021-0.376^{+0.021}_{-0.021} ξσ23;D\left<\xi^{2}_{\sigma}\right>_{3;D} 0.2800.023+0.0230.280^{+0.023}_{-0.023}
ξσ33;D\left<\xi^{3}_{\sigma}\right>_{3;D} 0.1880.019+0.020-0.188^{+0.020}_{-0.019} ξσ43;D\left<\xi^{4}_{\sigma}\right>_{3;D} 0.1410.013+0.0120.141^{+0.012}_{-0.013}
ξσ53;D\left<\xi^{5}_{\sigma}\right>_{3;D} 0.10780.0103+0.0104-0.1078^{+0.0104}_{-0.0103} ξσ63;D\left<\xi^{6}_{\sigma}\right>_{3;D} 0.08900.0079+0.00770.0890^{+0.0077}_{-0.0079}
ξσ73;D\left<\xi^{7}_{\sigma}\right>_{3;D} 0.07350.0054+0.0055-0.0735^{+0.0055}_{-0.0054} ξσ83;D\left<\xi^{8}_{\sigma}\right>_{3;D} 0.06350.0055+0.00540.0635^{+0.0054}_{-0.0055}
ξσ93;D\left<\xi^{9}_{\sigma}\right>_{3;D} 0.05500.0036+0.0037-0.0550^{+0.0037}_{-0.0036} ξσ103;D\left<\xi^{10}_{\sigma}\right>_{3;D} 0.04890.0042+0.00410.0489^{+0.0041}_{-0.0042}

III numerical analysis

III.1 Inputs

To do the numerical calculation for the ξ\xi-moments of DD-meson twist-2, 3 DAs, we take the scale μ=M\mu=M as usual, and take ΛQCD(nf)324,286,207MeV\Lambda_{\rm QCD}^{(n_{f})}\simeq 324,286,207~{}{\rm MeV} for the number of quark flavors nf=3,4,5n_{f}=3,4,5, respectively Zhong:2021epq ; Zhong:2022ecl . For other inputs, we take Workman:2022ynf

mD\displaystyle m_{D^{-}} =\displaystyle= 1869.66±0.05MeV,\displaystyle 1869.66\pm 0.05{\rm MeV},
fD\displaystyle f_{D} =\displaystyle= 203.7±4.7±0.6MeV,\displaystyle 203.7\pm 4.7\pm 0.6{\rm MeV},
m¯c(m¯c)\displaystyle\bar{m}_{c}(\bar{m}_{c}) =\displaystyle= 1.27±0.02GeV,\displaystyle 1.27\pm 0.02{\rm GeV},
md(2GeV)\displaystyle m_{d}(2{\rm GeV}) =\displaystyle= 4.670.17+0.48MeV,\displaystyle 4.67^{+0.48}_{-0.17}{\rm MeV}, (16)

and Zhong:2021epq ; Zhong:2014jla ; Colangelo:2000dp

q¯q(2GeV)\displaystyle\left<\bar{q}q\right>(2{\rm GeV}) =\displaystyle= (2.4170.114+0.227)×102GeV3,\displaystyle\left(-2.417^{+0.227}_{-0.114}\right)\times 10^{-2}{\rm GeV}^{3},
gsq¯σTGq(2GeV)\displaystyle\left<g_{s}\bar{q}\sigma TGq\right>(2{\rm GeV}) =\displaystyle= (1.9340.103+0.188)×102GeV5,\displaystyle\left(-1.934^{+0.188}_{-0.103}\right)\times 10^{-2}{\rm GeV}^{5},
gsq¯q2(2GeV)\displaystyle\left<g_{s}\bar{q}q\right>^{2}(2{\rm GeV}) =\displaystyle= (2.0820.697+0.734)×103GeV6,\displaystyle\left(2.082^{+0.734}_{-0.697}\right)\times 10^{-3}{\rm GeV}^{6},
αsG2\displaystyle\left<\alpha_{s}G^{2}\right> =\displaystyle= 0.038±0.011GeV4,\displaystyle 0.038\pm 0.011{\rm GeV}^{4},
gs3fG3\displaystyle\left<g_{s}^{3}fG^{3}\right> =\displaystyle= 0.045GeV6.\displaystyle 0.045{\rm GeV}^{6}. (17)

The renormalization group equations of those inputs are Zhong:2021epq

md(μ)\displaystyle m_{d}(\mu) =\displaystyle= md(μ0)[αs(μ0)αs(μ)]4/β0,\displaystyle m_{d}(\mu_{0})\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{-4/\beta_{0}},
m¯c(μ)\displaystyle\bar{m}_{c}(\mu) =\displaystyle= m¯c(m¯c)[αs(m¯c)αs(μ)]4/β0,\displaystyle\bar{m}_{c}(\bar{m}_{c})\left[\frac{\alpha_{s}(\bar{m}_{c})}{\alpha_{s}(\mu)}\right]^{-4/\beta_{0}},
q¯q(μ)\displaystyle\langle\bar{q}q\rangle(\mu) =\displaystyle= q¯q(μ0)[αs(μ0)αs(μ)]4/β0,\displaystyle\langle\bar{q}q\rangle(\mu_{0})\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{4/\beta_{0}},
gsq¯σTGq(μ)\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle(\mu) =\displaystyle= gsq¯σTGq(μ0)[αs(μ0)αs(μ)]2/(3β0),\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle(\mu_{0})\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{-2/(3\beta_{0})},
gsq¯q2(μ)\displaystyle\langle g_{s}\bar{q}q\rangle^{2}(\mu) =\displaystyle= gsq¯q2(μ0)[αs(μ0)αs(μ)]4/β0,\displaystyle\langle g_{s}\bar{q}q\rangle^{2}(\mu_{0})\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{4/\beta_{0}},
αsG2(μ)\displaystyle\langle\alpha_{s}G^{2}\rangle(\mu) =\displaystyle= αsG2(μ0),\displaystyle\langle\alpha_{s}G^{2}\rangle(\mu_{0}),
gs3fG3(μ)\displaystyle\langle g_{s}^{3}fG^{3}\rangle(\mu) =\displaystyle= gs3fG3(μ0),\displaystyle\langle g_{s}^{3}fG^{3}\rangle(\mu_{0}), (18)

with β0=(332nf)/3\beta_{0}=(33-2n_{f})/3. For the continuum threshold, we used to take sD6.5GeV2s_{D}\simeq 6.5{\rm GeV}^{2} in Ref. Zhang:2017rwz ; Zhong:2018exo . This value comes from the square of the mass of DD-meson’s first exciting state, i.e., D0(2550)D^{0}(2550), as suggested by Refs. BaBar:2010zpy ; Li:2012gr . In Refs. Zhong:2021epq ; Zhong:2022ecl , we take the continuum threshold parameters sπs_{\pi} and sKs_{K} by requiring that there are reasonable Borel windows to normalize the zeroth ξ\xi-moments of the pion and kaon leading-twist DAs. In this paper, we follow the suggestion in Refs. Zhong:2021epq ; Zhong:2022ecl , and get sD6.0GeV2s_{D}\simeq 6.0{\rm GeV}^{2}.

III.2 ξ\xi-moments and behaviors of DD-meson twist-2, 3 DAs

Then we can calculate the values of the ξ\xi-moments of DD-meson twist-2, 3 DAs with the sum rules (4), (5) and (6). First, one need to determine the appropriate Borel windows for those ξ\xi-moments by following usual criteria, such as the contributions of continuum state and dimension-six condensate are as small as possible, and the values of those ξ\xi-moments are stable in corresponding Borel windows. Table 1 exhibits the limits to the continuum state’s contributions and the dimension-six condensate’s contributions for the first ten ξ\xi-moments of DD-meson twist-2, 3 DAs. In which, the symbol “-” indicates that corresponding continuum state’s contribution is smaller than 10%10\% or dimension-six condensate’s contribution is much smaller than 5%5\% in a wide Borel parameter region. This is reasonable because both continuum state’s contribution and dimension-six condensate’s contribution are depressed by the sum rules of zeroth ξ\xi-moments in the denominator of the new sum rule formulae (4), (5) and (6). By comparing with the criteria listed in Table 1 and Table 4 in Ref. Zhong:2018exo , the criteria listed in Table 1 are much stricter, which reflects one of the advantages of the new sum rule formulae (4), (5) and (6), that is, they reduce the system uncertainty of the sum rule itself. Then, for those ξ\xi-moments, only the upper or lower limits of the corresponding Borel windows is clearly determined. In order to get complete Borel windows, we directly take their lengths as 1GeV21~{}{\rm GeV}^{2}. Figure 1 shows the DD-meson twist-2, 3 DA ξ\xi-moments ξn2;D\langle\xi^{n}\rangle_{2;D}, ξpn3;D\langle\xi^{n}_{p}\rangle_{3;D} and ξσn3;D\langle\xi^{n}_{\sigma}\rangle_{3;D} with (n=1,,10)(n=1,\cdots,10) versus the Borel parameter M2M^{2}. In this figure, the uncertainties caused by the errors of input parameters is not drawn to clearly show the curves of different ξ\xi-moments. Meanwhile, the Borel windows are also shown with the shaded bands. By taking all error sources, such as DD-meson mass and decay constant, uu- and cc-quark masses, as well as vacuum condensates, etc., shown in Eqs. (16) and (17), into consideration, and adding the uncertainties in quadrature, the values of the first ten ξ\xi-moments of DD-meson twist-2, 3 DAs are shown in Table 2. Here, we give the first two Gegenbauer moments of DD-meson twist-2, 3 DAs for reference, that is,

a12;D\displaystyle a_{1}^{2;D} =\displaystyle= 0.5820.062+0.062,a22;D=0.1480.042+0.042,\displaystyle-0.582^{+0.062}_{-0.062},\quad\quad a_{2}^{2;D}=0.148^{+0.042}_{-0.042},
a1,p3;D\displaystyle a_{1,p}^{3;D} =\displaystyle= 1.6650.182+0.188,a2,p3;D=0.7260.273+0.252,\displaystyle-1.665^{+0.188}_{-0.182},\quad\quad a_{2,p}^{3;D}=0.726^{+0.252}_{-0.273},
a1,σ3;D\displaystyle a_{1,\sigma}^{3;D} =\displaystyle= 0.6260.035+0.036,a2,σ3;D=0.2320.068+0.067,\displaystyle-0.626^{+0.036}_{-0.035},\quad\quad a_{2,\sigma}^{3;D}=0.232^{+0.067}_{-0.068}, (19)

at scale μ=2GeV\mu=2{\rm GeV}.

In the above work, in order to calculate the ξ\xi-moments of DD-meson twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu), one should calculate the normalization constants μDp\mu_{D}^{p} and μDσ\mu_{D}^{\sigma} first. Under the assumption that the sum rules of zeroth ξ\xi-moments ξp03;D\left<\xi^{0}_{p}\right>_{3;D} and ξσ03;D\left<\xi^{0}_{\sigma}\right>_{3;D} can be normalized in appropriate Borel windows, the sum rules of μDp\mu_{D}^{p} and μDσ\mu_{D}^{\sigma} can be obtained by taking n=0n=0 in Eqs. (5) and (6) and substituting ξp03;D=ξσ03;D=1\left<\xi^{0}_{p}\right>_{3;D}=\left<\xi^{0}_{\sigma}\right>_{3;D}=1 into these two sum rules. We require the continuum state’s contributions are less than 30%30\% and dimension-six condensate’s contributions are not more than 5%5\% and 0.5%0.5\% to determine the Borel windows for μDp\mu_{D}^{p} and μDσ\mu_{D}^{\sigma}, respectively. By adding the uncertainties derived from all error sources in quadrature, we have,

μDp=2.7170.087+0.087,μDσ=2.2310.068+0.073,\displaystyle\mu_{D}^{p}=2.717^{+0.087}_{-0.087},\quad\quad\mu_{D}^{\sigma}=2.231^{+0.073}_{-0.068}, (20)

at scale μ=2GeV\mu=2{\rm GeV}. Compared with the values in Ref. Zhong:2018exo , μDp\mu_{D}^{p} in (20) increases by about 7.2%7.2\%, and μDσ\mu_{D}^{\sigma} decreases by about 12.0%12.0\%. The former is caused by the update of input parameters, while the latter is also caused by the new sum rule formula, i.e., Eq. (6), in addition to the update of input parameters.

Table 3: Goodness of fit and the Values of the LCHO model parameters for DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) and twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) at scale μ=2GeV\mu=2~{}{\rm GeV}.
A2;D(GeV1)A_{2;D}~{}({\rm GeV}^{-1}) α2;D\alpha_{2;D} B12;DB_{1}^{2;D} β2;D(GeV)\beta_{2;D}~{}({\rm GeV}) χmin2\chi^{2}_{\rm min} Pχmin2P_{\chi^{2}_{\rm min}}
34.471234.4712 0.861-0.861 0.1070.107 0.5350.535 0.8732190.873219 0.9966230.996623
A3;Dp(GeV1)A_{3;D}^{p}~{}({\rm GeV}^{-1}) α3;Dp\alpha_{3;D}^{p} B1,p3;DB_{1,p}^{3;D} β3;Dp(GeV)\beta_{3;D}^{p}~{}({\rm GeV}) χmin2\chi^{2}_{\rm min} Pχmin2P_{\chi^{2}_{\rm min}}
0.5367640.536764 1.360-1.360 0.922-0.922 1.1351.135 2.398922.39892 0.9345140.934514
A3;Dσ(GeV1)A_{3;D}^{\sigma}~{}({\rm GeV}^{-1}) α3;Dσ\alpha_{3;D}^{\sigma} B1,σ3;DB_{1,\sigma}^{3;D} β3;Dσ(GeV)\beta_{3;D}^{\sigma}~{}({\rm GeV}) χmin2\chi^{2}_{\rm min} Pχmin2P_{\chi^{2}_{\rm min}}
28.998628.9986 1.403-1.403 0.2280.228 0.4840.484 0.5946280.594628 0.9990210.999021
Refer to caption
Refer to caption
Refer to caption
Figure 2: Curves of the DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) and twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) at scale μ=2GeV\mu=2~{}{\rm GeV}. The models in literature such as KLS model Kurimoto:2002sb , LLZ model Li:2008ts , LM model Li:1999kna , the form with LFQM Dhiman:2019ddr , and our previous research results Zhang:2017rwz ; Zhong:2018exo based on the LCHO model are also shown for comparison.

Then we can determine the model parameters of our LCHO models for DD-meson twist-2 DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) and twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) by using the ξ\xi-moments exhibited in Table 2 with the least squares method following the way suggested in Refs. Zhong:2021epq ; Zhong:2022ecl . Take the DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) as an example, we first take the fitting parameters θ\theta as the undetermined LCHO model parameters α2;D\alpha_{2;D}, B12;DB_{1}^{2;D} and β2;D\beta_{2;D}, i.e., θ=(α2;D,B12;D,β2;D)\theta=(\alpha_{2;D},B_{1}^{2;D},\beta_{2;D}), as discussed in Sec. II.2. By minimizing the likelihood function

χ2(θ)=i=110(yiμ(i,θ))2σi2,\displaystyle\chi^{2}(\theta)=\sum^{10}_{i=1}\frac{(y_{i}-\mu(i,\theta))^{2}}{\sigma_{i}^{2}}, (21)

the optimal values of the fitting parameters θ\theta we are looking for can be obtained. In Eq. (21), ii is taken to be the order of the ξ\xi-moments of ϕ2;D(x,μ)\phi_{2;D}(x,\mu); the central values of ξ\xi-moments ξn2;D(n=1,,10)\langle\xi^{n}\rangle_{2;D}(n=1,\cdots,10) with their errors exhibited in Table 2 are regarded as the independent measurements yiy_{i} and the corresponding variance σi\sigma_{i}. One can intuitively judge the goodness of fit through the magnitude of probability Pχmin2=χmin2f(y;nd)𝑑yP_{\chi^{2}_{\rm min}}=\int^{\infty}_{\chi^{2}_{\rm min}}f(y;n_{d})dy with the probability density function of χ2(θ)\chi^{2}(\theta), i.e., f(y;nd)=1Γ(nd/2)2nd/2ynd/21ey/2f(y;n_{d})=\frac{1}{\Gamma(n_{d}/2)2^{n_{d}/2}}y^{n_{d}/2-1}e^{-y/2}, where ndn_{d} indicates the number of degrees of freedom. The obtained optimal values of the model parameters α2;D\alpha_{2;D}, B12;DB_{1}^{2;D} and β2;D\beta_{2;D} at scale μ=2GeV\mu=2~{}{\rm GeV} and the corresponding goodness of fit are shown in Table 3. Following the same procedure, the LCHO model parameters for DD-meson twist-3 DAs ϕ3;Dp(x,μ)\phi^{p}_{3;D}(x,\mu) and ϕ3;Dσ(x,μ)\phi^{\sigma}_{3;D}(x,\mu) at scale μ=2GeV\mu=2~{}{\rm GeV} and the corresponding goodness of fits can be obtained and are shown in Table 3 too. Then the corresponding behaviors of DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi^{p}_{3;D}(x,\mu) and ϕ3;Dσ(x,μ)\phi^{\sigma}_{3;D}(x,\mu) are determined. In order to intuitively show the behaviors of these three DAs, we plot and exhibit their curves in Fig. 2. As a comparison, the models in literature for DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu) such as KLS model Kurimoto:2002sb , LLZ model Li:2008ts , LM model Li:1999kna , the form with LFQM Dhiman:2019ddr , and our previous research results Zhang:2017rwz ; Zhong:2018exo for ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi^{p}_{3;D}(x,\mu) and ϕ3;Dσ(x,μ)\phi^{\sigma}_{3;D}(x,\mu) based on the LCHO model are also shown in Fig. 2. From Fig. 2, one can find that our present prediction for ϕ2;D(x,μ)\phi_{2;D}(x,\mu) is closes to LM model. Compared with the KLS model and LLZ model, our ϕ2;D(x,μ)\phi_{2;D}(x,\mu) is narrower, and supports a large momentum distribution of valence quark in x[0.05,0.5]x\sim[0.05,0.5]. Compared with our previous work in Refs. Zhang:2017rwz ; Zhong:2018exo , our new predictions for ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi^{p}_{3;D}(x,\mu) and ϕ3;Dσ(x,μ)\phi^{\sigma}_{3;D}(x,\mu) in this paper is smoother, and effectively eliminating the spurious oscillations introduced by the high-order Gegenbauer moments in old LCHO model.

IV summary

In this paper, we restudied the DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu), twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) with QCD SRs in the framework of BFT by adopting a new scheme suggested in our previous work Zhong:2021epq . The new sum rule formula for the ξ\xi-moments ξn2;D\langle\xi^{n}\rangle_{2;D}, ξpn3;D\langle\xi^{n}_{p}\rangle_{3;D} and ξσn3;D\langle\xi^{n}_{\sigma}\rangle_{3;D}, i.e., Eqs. (4), (5) and (6), were proposed and used to calculate whose values. Those values have been exhibited in Table 2. The LCHO models for DAs ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) were improved. By fitting the values of ξ\xi-moments ξn2;D\langle\xi^{n}\rangle_{2;D}, ξpn3;D\langle\xi^{n}_{p}\rangle_{3;D} and ξσn3;D\langle\xi^{n}_{\sigma}\rangle_{3;D} shown in Table 2 with the least squares method, the model parameters were determined and shown in Table 3. Then the predicted curves for DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu), twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) are shown in Fig. 2.

The criteria adopted to determine the Borel windows for ξ\xi-moments of DD-meson leading-twist DA ϕ2;D(x,μ)\phi_{2;D}(x,\mu), twist-3 DAs ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) exhibited in Table 1 imply that the new sum rule formula (4), (5) and (6) can reduce the system uncertainties and propose more accurate predictions for ξ\xi-moments ξn2;D\langle\xi^{n}\rangle_{2;D}, ξpn3;D\langle\xi^{n}_{p}\rangle_{3;D} and ξσn3;D\langle\xi^{n}_{\sigma}\rangle_{3;D}, respectively. The goodness of fits for ϕ2;D(x,μ)\phi_{2;D}(x,\mu), ϕ3;Dp(x,μ)\phi_{3;D}^{p}(x,\mu) and ϕ3;Dσ(x,μ)\phi_{3;D}^{\sigma}(x,\mu) are Pχmin2=0.996623P_{\chi^{2}_{\rm min}}=0.996623, 0.9345140.934514 and 0.9990210.999021, respectively, which indicate our improved LCHO models shown in Sec. II.2 with the model parameters in Table 3 can well prescribe the behaviors of those three DAs. The predicted DAs’ curves shown in Fig. 2 indicate the improved LCHO models in this work can eliminate the spurious oscillations introduced by the high-order Gegenbauer moments in old LCHO models obtained in Refs. Zhang:2017rwz ; Zhong:2018exo . Otherwise, in order to simply investigate the influence of the new DD meson twist-2, 3 DAs in this work on the relevant physical quantities, the TFFs f+,0BD(q2)f_{+,0}^{B\to D}(q^{2}) and (D)\mathcal{R}(D) are calculated. For the relevant formulae, one can refer to Ref. Zhong:2018exo . We find that the new DAs can bring about 10%10\% and 6%6\% changes to f+,0BD(0)f_{+,0}^{B\to D}(0) and (D)\mathcal{R}(D) respectively. In order to obtain a more accurate TFFs and (D)\mathcal{R}(D), it is necessary to consider the next-to-leading order corrections for the contributions of DD meson twist-3 DAs, which will be our next step.

V Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant No.12265009 and No.12265010, the Project of Guizhou Provincial Department of Science and Technology under Grant No.ZK[2021]024 and No.ZK[2023]142, the Project of Guizhou Provincial Department of Education under Grant No.KY[2021]030, and by the Chongqing Graduate Research and Innovation Foundation under Grant No. ydstd1912.

References