This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\thankstext

e1e-mail: [email protected] \thankstexte2e-mail: [email protected]

11institutetext: Department of Astronomy, Beijing Normal University, Beijing 100875, China 22institutetext: School of Physics and Optoelectronic, Yangtze University, Jingzhou 434023, China 33institutetext: School of Physics and Technology, Wuhan University, Wuhan 430072, China

Revisiting Chaplygin gas cosmologies with the recent observations of high-redshfit quasars

Jie Zheng\thanksrefaddr1    Shuo Cao\thanksrefe1,addr1    Yujie Lian\thanksrefaddr1    Tonghua Liu\thanksrefaddr2    Yuting Liu\thanksrefaddr1    Zong-Hong Zhu\thanksrefe2,addr1,addr3
(Received: date / Accepted: date)
Abstract

In this paper, we use the latest observations of quasars covering the redshift range of 0.04<z<5.10.04<z<5.1 to investigate a series of Chaplygin gas models as candidates for unified dark matter and dark energy. Based on different combinations of available standard candle and standard ruler data, we put constraints on the generalized Chaplygin gas (GCG), modified Chaplygin gas (MCG), new generalized Chaplygin gas (NGCG) and viscous generalized Chaplygin gas (VGCG) models. Moreover, we apply Jensen-Shannon divergence (JSD), statefinder diagnostics, and the deviance information criterion (DIC) to distinguish these CG models, based on the statistical results derived from Markov chain Monte Carlo method. The results show that (1) The standard ruler data could provide more stringent constraints on the cosmological parameters of different CG models considered in this analysis. Interestingly, the matter density parameter Ωm\Omega_{m} and Hubble constant H0H_{0} derived from the available data are well consistent with those from the Planck 2018 results; (2) Based on the statistical criteria JSD, our findings demonstrate the well consistency between Chaplygin gas and the concordance Λ\LambdaCDM model. However, in the framework of statefinder diagnostics, the GCG and NGCG models cannot be distinguished from Λ\LambdaCDM, while MCG and VGCG models show significant deviation from Λ\LambdaCDM in the present epoch; (3) According to the the statistical criteria DIC, we show that the MCG and VGCG models have substantial observational support from high-redshfit quasars, whereas the GCG and NGCG models miss out on the less observational support category but can not be ruled out.

journal: Eur. Phys. J. C

1 Introduction

The analysis of various observational data, including Type Ia supernovae (SNe Ia) SNe1 ; SNe2 , baryon acoustic oscillation (BAO) eisenstein20005 , and cosmic microwave background (CMB) CMB suggest that the present universe is undergoing an accelerated phase of expansion acc_universe . Different suggestions have been put forward to understand this phenomenon, with the inclusion of exotic dark energy (DE) with negative pressure on the right-hand side of the Einstein equation. The earliest and simplest model for DE is the cosmological standard Λ\LambdaCDM model, which is in good agreement with recent observations but embarrassed by the well known coincidence problem and the fine-tuning problem weinberg1 ; weinberg2 . Meanwhile, the existence of dark matter (DM), which constitutes the major component of the matter density in our Universe, is the other primary indicator for the limitation of our knowledge of physics laws Cao2021 ; 2022A&A…659L…5C . In recent times, scholars proposed that a fluid called Chaplygin gas could provide a possible solution to unify two uncharted territories, mimicing the effects of DM in the early times and DE in the late times kamenshchik2001 . Specially, the Chaplygin gas obeys the exotic equations of state:

p=Aρ,p=-\frac{A}{\rho}, (1)

where pp and ρ\rho denote the pressure and energy density, respectively. AA is a positive constant. Unlike quintessence, which describes the transition from the quasi-exponential expansion of the early universe to a power law expansion to explain the present acceleration of the universe but fails to avoid fine-tuning in explaining the cosmic coincidence problem, the Chaplygin gas (CG) model provided an alternative way to account for the accelerating universe by describing a transition from an epoch filled with dust-like matter to an accelerating universe. Additionally, they predicted that the cosmological constant was variable. In particular, the Chaplygin gas behaves as a pressureless fluid at higher redshifts and as a cosmological constant at lower redshifts, which tends to promote expansion. In addition, the equation of state of CG shows a well-defined connection with string and brane theories kamenshchik2001 ; Bento2003 . However, several fatal drawbacks appeared in CG models. There is unexpected blowup in the DM power spectrum AH32 ; AH33 in the framework of the CG model, and the CG model is in disagreement with the observations, such as Type Ia supernovae GCG_SNe1 ; GCG_SNe2 ; GCG_SNe3 , X-ray gas mass fraction of clusters zhu2004 , Hubble parameter-redshift dataGCG_hz and gamma-ray bursts GCG_Gamma . Therefore, generalized Chaplygin gas (GCG) model was proposed Amendola2003 ; Bento2003 , which is capable of explaining the background dynamics of the early and late universe and is in good agreement with recent observations. The effective equation of state of GCG, given by p=αρp=\alpha\rho, proves the evolution of a universe evolving from a phase dominated by non-relativistic matter to a phase dominated by a cosmological constant through an intermediate period. There are some undesirable features of the GCG power spectrum caused by adiabatic pressure perturbation, which is produced from a nonzero α\alpha Amendola2003 ; Thakur2019 . As a result, MCG2002 ; MCG2004 proposed the “modified” Chaplygin gas (MCG) model, which considered an interpolation between standard fluids at high energy densities and Chaplygin gas fluids at lower energy densities. Another generalization is dubbed new generalized Chaplygin gas model (NGCG), which was proposed by NGCG2006 . Since the equation of state of dark energy still cannot be determined exactly, they argued that the GCG model could be accommodated to any possible X-type dark energy with constant ω\omega, dual to an interacting XCDM parametrization scenario. In the framework of the NGCG model, it is not only described by Chaplygin gas fluid but also exhibits dust-like matter in the early universe and X-type dark energy in the late universe. Up to now, the nature of dark energy and dark matter is still unknown. It is reasonable to consider other forms of dark energy models or further generalize the GCG model. For instance, VGCG2006 considered a phenomenological model that consists of viscous effects and the features of GCG, dubbed viscous generalized Chaplygin gas (VGCG), which is able to eliminate the problems raised by only dissipative fluids and explain the dynamics of the universe.

With so many GG cosmologies proposed in the literature, it is rewarding to determine which model is strongly supported by the currently available astrophysical probes. There are two general types of distance indicators at present: standard candles (SNe Ia and quasars), which are related to the luminosity distance DL(z)D_{L}(z) and standard rulers (BAO and CMB) that usually provide information on the large scale of the Universe. In this work, we adopt two different catalogs of data, standard candles and standard rulers, to determine how different samples affect the estimation of cosmological parameters. Here, we turn to a new standard candle compilation of 1598 quasars from X-ray and UV flux measurements with a redshift range 0.036z5.10030.036\leq z\leq 5.1003 Risaliti2015 , which has become an effective probe to investigate different cosmological parameters UV5 ; Lian2021 ; xubing2021 ; khadka2021 especially the cosmic curvature Ωk\Omega_{k} UV2 ; UV3 , and the cosmic distance duality relation UV1 ; liutonghua2020 in the early universe (z5z\sim 5). Besides, the newest SNe Ia sample “ Pantheon” consists of 1048 points spanning a redshift range 0.01z2.30.01\leq z\leq 2.3 pantheon , is also adopted in our work as a standard candle. For standard rulers, the angular size from 120 compact radio quasars obtained by very-long baseline interferometry (VLBI) from caoshuo2017AA ; Cao20017qsoas ; AS3 is taken into consideration covering the redshift range 0.46z2.760.46\leq z\leq 2.76, which has also been widely used in many cosmological analyses, such as the observational constraints on the interaction between cosmic dark sectors lixiaolei ; AS8 ; AS5 , General Relatively and modified gravity theories Cao20017qsoas ; AS1 ; xutengpeng2018 ; AS6 , the Hubble constant and cosmic curvature AS2 ; qijingzhao2021 . Additionally, we also adopt 11 BAO data points from BOSS DR12 at zeff=0.38,0.51,0.61z_{\textrm{eff}}=0.38,0.51,0.61 Alam2017 , 6dFGs and SDSS MGS at zeff=0.122z_{\textrm{eff}}=0.122 carter2018 , DES Y1 results at zeff=0.81z_{\textrm{eff}}=0.81 DES2018 , eBOSS DR14 at zeff=1.52z_{\textrm{eff}}=1.52 ata2018 and zeff=2.34z_{\textrm{eff}}=2.34 dsa2019 . Specially, introducing quasar measurements to constrain cosmological parameters is beneficial for studying the evolution of cosmological models at higher redshifts Lian:2021tca ; AS7 ; liutonghua2021 .

In this paper, we focus on standard candles and rulers to constrain four Chaplygin gas cosmological models with the goal of investigating the difference between standard candles and standard rulers and distinguishing these Chaplygin gas models by statistical analysis. This paper is organized as follows. In Section 2, we briefly introduce the basic equations of cosmological models, including GCG, MCG, NGCG, and VGCG. In Section 3, we describe the observational data adopted in this work and perform a Markov chain Monte Carlo (MCMC) analysis using different data sets. The results from observational constraints and the corresponding analysis are displayed in Section 4, as well as some statistical techniques of model comparison presented in Section 5. Finally, our conclusions are summarized in Section 6.

2 Chaplygin gas cosmologies

In this section, we give a description of four types of Chaplygin gas models in a spatially flat universe, including GCG, MCG, NGCG, and VGCG models. Moreover, to obtain stringent constraints on key cosmological parameters, we use the prior on the baryon density parameter Ωb\Omega_{b} and radiation density parameter Ωr\Omega_{r} from planck2018result .

2.1 GCG model

The GCG model, which is extended from the CG model, has been generally studied to explain the accelerating universe Zhangjingfei32 ; Bento2003 ; zhu2004 ; Lixiaolei22 ; lixiaolei50 ; lixiaolei ; Lian2021 . In this model, the dark energy and dark matter could be unified with an exotic equation, which is introduced as

pgcg=Aρgcgα,p_{\mathrm{gcg}}=-\frac{A}{\rho_{\mathrm{gcg}}^{\alpha}}, (2)

where pgcgp_{gcg} and ρgcg=ρde+ρdm\rho_{\mathrm{gcg}}=\rho_{de}+\rho_{dm} present the pressure and density of Chaplygin gas, respectively. AA is a positive constant and 0α10\leq\alpha\leq 1. When α=1\alpha=1, the GCG model reduces to the CG model, and when α=0\alpha=0, the GCG model reduces to the Λ\LambdaCDM model. The energy density of the GCG model is expressed as

ρgcg(a)=ρgcg0(As+1Asa3(1+α))11+α,\rho_{\mathrm{gcg}}(a)=\rho_{\mathrm{gcg}0}\left(A_{\mathrm{s}}+\frac{1-A_{\mathrm{s}}}{a^{3(1+\alpha)}}\right)^{\frac{1}{1+\alpha}}, (3)

where aa is a scale factor, which is related to the observable redshift as a=11+za=\frac{1}{1+z}, AsA/ρgcg01+αA_{\mathrm{s}}\equiv A/\rho_{\mathrm{gcg}0}^{1+\alpha} is a dimensionless parameter, and ρgcg0\rho_{\mathrm{gcg}0} is the present energy value of the GCG density. AsA_{s} can be written by the effective total matter density Ωm\Omega_{m} and α\alpha as

As=1(ΩmΩb1Ωb)1+α.A_{s}=1-\left(\frac{\Omega_{m}-\Omega_{b}}{1-\Omega_{b}}\right)^{1+\alpha}. (4)

Therefore, we can derive the normalized Hubble parameter E(z)E(z) for this model as

E2(z)\displaystyle E^{2}(z) =\displaystyle= Ωb(1+z)3+Ωr(1+z)4+\displaystyle\Omega_{\mathrm{b}}(1+z)^{3}+\Omega_{\mathrm{r}}(1+z)^{4}+ (5)
(1ΩbΩr)(As+(1As)(1+z)3(1+β))11+β.\displaystyle\left(1-\Omega_{\mathrm{b}}-\Omega_{\mathrm{r}}\right)\left(A_{\mathrm{s}}+\left(1-A_{\mathrm{s}}\right)(1+z)^{3(1+\beta)}\right)^{\frac{1}{1+\beta}}.

where E(z)=H2(z)/H02E(z)=H^{2}(z)/H^{2}_{0} and the parameter set is 𝐩(Ωm,As,α,H0)\mathbf{p}\equiv\left(\Omega_{m},A_{\mathrm{s}},\alpha,H_{0}\right).

2.2 MCG model

The MCG model is also a unified dark matter and dark energy model, which is a modification of the GCG model. It has been widely discussed in many perspectives lixinxu16 ; lixinxu14 ; lixinxu15 ; xulixin2012modified ; li2019MCG ; debnath2021MCG . This class of equation of state is expressed as,

pmcg=BρmcgAρmcgα,p_{\mathrm{mcg}}=B\rho_{\mathrm{mcg}}-\frac{A}{\rho_{\mathrm{mcg}}^{\alpha}}, (6)

where ρgcg=ρDE+ρDM\rho_{\mathrm{gcg}}=\rho_{DE}+\rho_{DM}, AA is a positive constant, BB is a free parameter, and 0α10\leq\alpha\leq 1. When B=0B=0, this model corresponds to the GCG model, whereas when A=0A=0, it reduces to the standard equation of state of a perfect fluid. Especially, it turns to Λ\LambdaCDM model with B=0B=0 and α=0\alpha=0 and it reduces to CG model with B=0B=0 and α=1\alpha=1. Considering energy conservation, we can obtain the energy density as

ρmcg=ρmcg0[As+(1As)a3(1+B)(1+α)]11+α,\rho_{\mathrm{mcg}}=\rho_{\mathrm{mcg}0}\left[A_{s}+\left(1-A_{s}\right)a^{-3(1+B)(1+\alpha)}\right]^{\frac{1}{1+\alpha}}, (7)

where As=A/(1+B)ρmcg01+αA_{s}=A/(1+B)\rho_{\mathrm{mcg}0}^{1+\alpha}, B1B\neq-1 and ρmcg0\rho_{\mathrm{mcg}0} is the present energy value of the MCG density. Therefore, we can rewrite the normalized Hubble parameter E(z)=H(z)/H0E(z)=H(z)/H_{0} for the MCG model as

E2(z)\displaystyle E^{2}(z) =\displaystyle= Ωb(1+z)3+Ωr(1+z)4+(1ΩbΩr)×\displaystyle\Omega_{b}(1+z)^{3}+\Omega_{r}(1+z)^{4}+(1-\Omega_{b}-\Omega_{r})\times (8)
[As+(1As)(1+z)3(1+B)(1+α)]11+α.\displaystyle[A_{s}+(1-A_{s})(1+z)^{3(1+B)(1+\alpha)}]^{\frac{1}{1+\alpha}}.

For MCG, the parameter set is 𝐩(Ωm,As,B,α,H0)\mathbf{p}\equiv\left(\Omega_{m},A_{\mathrm{s}},B,\alpha,H_{0}\right).

2.3 NGCG model

The NGCG model has been studied in previous work, such as zhangjingfei34 ; liaokai2013 ; Zhangjingfei2019 ; salahedin2020NGCG ; Almamon2021 . In the NGCG model, it assumes that the exotic background fluid interpolates between a dust-dominated epoch ρa3\rho\sim a^{-3} and a cosmological constant-dominated epoch ρa3(1+ω)\rho\sim a^{-3\left(1+\omega\right)}, which is portrayed as a unification of X-type dark energy and dark matter. Specifically, when ω=1\omega=-1, the NGCG model reduces to the GCG model, while ω=1\omega=-1 and α=0\alpha=0, it reduces to the XCDM model. The equation of state of NGCG is given by,

pngcg=A~(a)ρngcgα,p_{\mathrm{ngcg}}=-\frac{\tilde{A}(a)}{\rho_{\mathrm{ngcg}}^{\alpha}}, (9)

where A~(a)=wAa3(1+w)(1+α)\tilde{A}(a)=-wAa^{-3(1+w)(1+\alpha)} is a function of the scale factor, and α\alpha is a free parameter spanning 0 to 1. The energy density of the NGCG fluid is

ρngcg=ρngcg0a3[1As+Asa3wde(1+α)]11+a,\rho_{\mathrm{ngcg}}=\rho_{\mathrm{ngcg}0}a^{-3}\left[1-A_{s}+A_{s}a^{-3w_{\mathrm{de}}(1+\alpha)}\right]^{\frac{1}{1+a}}, (10)

where As=1Ωm1ΩbA_{s}=\frac{1-\Omega_{m}}{1-\Omega_{\mathrm{b}}}. Finally, we can get the form of E(z)=H(z)/H0E(z)=H(z)/H_{0} of the NGCG model,

E2(z)\displaystyle E^{2}(z) =\displaystyle= Ωb(1+z)3+Ωr(1+z)4+(1ΩbΩr)(1+z)3\displaystyle\Omega_{\mathrm{b}}(1+z)^{3}+\Omega_{\mathrm{r}}(1+z)^{4}+(1-\Omega_{\mathrm{b}}-\Omega_{\mathrm{r}})(1+z)^{3} (11)
×[11Ωm1ΩbΩr(1(1+z)3w(1+α))]11+α.\displaystyle\times[1-\frac{1-\Omega_{m}}{1-\Omega_{\mathrm{b}}-\Omega_{\mathrm{r}}}(1-(1+z)^{3w(1+\alpha)})]^{\frac{1}{1+\alpha}}.

Hence, for the NGCG model, the parameter set that we adopt is 𝐩(Ωm,ω,α,H0)\mathbf{p}\equiv\left(\Omega_{m},\omega,\alpha,H_{0}\right).

2.4 VGCG model

To tackle the late accelerated expansion of the universe, a hybrid model that consists of a fusion of viscous effects and the features of Chaplygin gas, the VGCG model was studied in VGCG2006 ; LiweiVGCG ; liwei2015 ; almada2021VGCG . This model is able to avoid causality problems that arise when only dissipative fluid is considered and alleviate the blowup in the DM power spectrum for GCG models almada2021VGCG . The equation of state of the VGCG model is given by

pvgcg=A/ρvgcgα3ζρvgcg.p_{\mathrm{vgcg}}=-A/\rho_{\mathrm{vgcg}}^{\alpha}-\sqrt{3}\zeta\rho_{\mathrm{vgcg}}. (12)

One can obtain the standard Λ\LambdaCDM model when α=0\alpha=0 and ζ=0\zeta=0, and this model reduces to the GCG model with ζ=0\zeta=0. Then, we can deduce its energy density as,

ρvgcg\displaystyle\rho_{\mathrm{vgcg}} =\displaystyle= ρvgcg0[Bs13ζ+(1Bs13ζ)×\displaystyle\rho_{\mathrm{vgcg}0}[\frac{B_{s}}{1-\sqrt{3}\zeta}+(1-\frac{B_{s}}{1-\sqrt{3}\zeta})\times (13)
a3(1+α)(13ζ)]11+α,\displaystyle a^{-3(1+\alpha)(1-\sqrt{3}\zeta)}]^{\frac{1}{1+\alpha}},

where Bs=A/ρvgcg01+αB_{s}=A/\rho_{\mathrm{vgcg}0}^{1+\alpha}, 0Bs10\leq B_{s}\leq 1 and ζ<13\zeta<\frac{1}{\sqrt{3}}. The dimensionless Hubble parameter E(z)=H(z)/H0E(z)=H(z)/H_{0} is expressed as

E2(z)\displaystyle E^{2}(z) =\displaystyle= Ωb(1+z)3+Ωr(1+z)4+\displaystyle\Omega_{b}(1+z)^{3}+\Omega_{r}(1+z)^{4}+ (14)
(1ΩbΩr)×[Bs13ζ+\displaystyle(1-\Omega_{b}-\Omega_{r})\times[\frac{B_{s}}{1-\sqrt{3}\zeta}+
(1Bs13ζ)(1+z)3(1+α)(13ζ)]11+α.\displaystyle(1-\frac{B_{s}}{1-\sqrt{3}\zeta})(1+z)^{3(1+\alpha)(1-\sqrt{3}\zeta)}]^{\frac{1}{1+\alpha}}.

It is straightforward that the parameter set of the VGCG model is 𝐩(Ωm,Bs,α,ζ,H0)\mathbf{p}\equiv(\Omega_{m},B_{s},\alpha,\zeta,H_{0}).

3 Cosmological observations

z measurement value ref
0.38 DM(rs,fid/rs)D_{M}\left(r_{s,\mathrm{fid}}/r_{s}\right) 1512.39 Alam2017
0.38 H(z)(rs/rs,fid)H(z)(r_{s}/r_{s,fid}) 81.2087 Alam2017
0.51 DM(rs,fid/rs)D_{M}(r_{s,fid}/r_{s}) 1975.22 Alam2017
0.51 H(z)(rs/rs,fid)H(z)(r_{s}/r_{s,fid}) 90.9029 Alam2017
0.61 DM(rs,fid/rs)D_{M}(r_{s,fid}/r_{s}) 2306.08 Alam2017
0.61 H(z)(rs/rs,fid)H(z)(r_{s}/r_{s,fid}) 98.9647 Alam2017
0.122 DV(rs,fid/rs)D_{V}(r_{s,fid}/r_{s}) 539±17539\pm 17 carter2018
0.81 DA/rsD_{A}/r_{s} 10.75±0.4310.75\pm 0.43 DES2018
1.52 DV(rs,fid/rs)D_{V}(r_{s,fid}/r_{s}) 3843±1473843\pm 147 ata2018
2.34 DH/rsD_{H}/r_{s} 8.86 dsa2019
2.34 DM/rsD_{M}/r_{s} 37.41 dsa2019
Table 1: The newest observations of BAO used in this analysis.
Refer to caption
Figure 1: The redshift distribution of the SNe Ia, quasars, and BAO measurements.

In this section, we use three catalogs to constrain cosmological models: (1) a standard candle combination of quasars from X-ray and UV flux measurements and SNe Ia samples; (2) a standard ruler set of intermediate-luminosity radio quasars and BAO data listed in Table 1; and (3) a combination of standard candles and rulers. Additionally, in Fig. 1, we display the redshift distributions of standard candles and rulers.

3.1 QSO[X-ray and UV flux]

The latest compilation of quasar (QSO[XUV]) from X-ray and UV flux measurements is recognized via the X-ray luminosity and UV luminosity (LXLUVL_{X}-L_{UV}) relation 2019NatAs…3..272R and used to constrain cosmological model parameters Risaliti2015 ; Lian2021 . The LXLUVL_{X}-L_{UV} relation is given by,

log(LX)=γlog(LUV)+β,\log(L_{X})=\gamma\log(L_{UV})+\beta, (15)

where the slopes γ\gamma and β\beta are free parameters that can be measured from the dataset. When we express luminosities in terms of fluxes, F=L/4πDL(z)2F=L/4\pi D_{L}(z)^{2}, Eq. (15) becomes

log(FX)=γlog(FUV)+2(γ1)log(DL)+(γ1)log(4π)+β,\log\left(F_{X}\right)=\gamma\log\left(F_{UV}\right)+2(\gamma-1)\log\left(D_{L}\right)+(\gamma-1)\log(4\pi)+\beta, (16)

where FXF_{X} and FUVF_{UV} are the quasar X-ray and UV fluxes, respectively, and DLD_{L} is the luminosity distance, which is determined via

DL(z,p^)=c(1+z)H00zdzE(z),D_{L}(z,\hat{p})=\frac{c(1+z)}{H_{0}}\int_{0}^{z}\frac{dz^{\prime}}{E\left(z^{\prime}\right)}, (17)

where E(z)E(z) depends on different cosmological models.

To obtain the likelihood function, we use Eq. (16) and Eq. (17) in a specific model as

FX=12i=1N[[log(FX,iobs)log(FX,ith)]2si2+ln(2πsi2)],\mathcal{L}_{F_{X}}=-\frac{1}{2}\sum_{i=1}^{N}\left[\frac{\left[\log\left(F_{X,i}^{\mathrm{obs}}\right)-\log\left(F_{X,i}^{\mathrm{th}}\right)\right]^{2}}{s_{i}^{2}}+\ln\left(2\pi s_{i}^{2}\right)\right], (18)

where ln=loge\ln=\log_{e}, si2=σi2+δ2s_{i}^{2}=\sigma_{i}^{2}+\delta^{2}, and where σi\sigma_{i} and δ\delta are the data error on the observed flux and the global intrinsic dispersion, respectively. In addition, according to 2019NatAs…3..272R ; khadka2021 , we employ the QSO from X-ray and UV fluxes in the analysis with the chi-square statistic

χFx,min2=2ln(LF)mini=11598ln(2π(σi2+δbestfit2)).\chi_{F_{x},min}^{2}=-2\ln(LF)_{\min}-\sum_{i=1}^{1598}\ln\left(2\pi\left(\sigma_{i}^{2}+\delta_{best-fit}^{2}\right)\right). (19)

3.2 SNe Ia

To use the Pantheon sample, first, we should determine the corresponding observable value and its theoretical value. The observable value given in the Pantheon sample is a corrected magnitude; see Table A17 of pantheon for more details, expressed by

Yobs\displaystyle Y^{obs} =\displaystyle= mB+K\displaystyle m_{B}+K (20)
=\displaystyle= μ+M,\displaystyle\mu+M,

where μ\mu is the distance modulus, mBm_{B} is the apparent B-band magnitude, and MM is the absolute B-band magnitude of fiducial SNe Ia. There is a correction term K=αx1βc+ΔM+ΔBK=\alpha x_{1}-\beta c+\Delta_{M}+\Delta_{B} that includes the corrections related to four different sources (for more details, see pantheon ). The theoretical value is given by,

Yth\displaystyle Y^{th} =\displaystyle= 5log(DL)+25+M\displaystyle 5\log(D_{L})+25+M (21)
=\displaystyle= 5log[(1+z)D(z)]+Y0,\displaystyle 5\log[(1+z)D(z)]+Y_{0},

where the constant term Y0=M+5log(cH01Mpc)+25Y_{0}=M+5log(\frac{cH_{0}^{-1}}{Mpc})+25, which should be marginalized by the methodology presented in Giostri2019 . The chi-square for the Pantheon sample can be given by

χSNe2=ΔYTC1ΔY,\chi^{2}_{\textrm{SNe}}={\Delta\overrightarrow{Y}}^{T}\cdot\textbf{C}^{-1}\cdot{\Delta\overrightarrow{Y}}, (22)

where ΔYi=[YiobsYth(zi;Y0,p)]\Delta\overrightarrow{Y}_{i}=[Y^{obs}_{i}-Y^{th}(z_{i};Y_{0},\textbf{p})] and the covariance matrix C of the sample includes the contributions from both the statistical and systematic errors pantheon .

3.3 QSO[AS]

Cao20017qsoas extracted 120 compact radio quasars (QSO[AS]) based on a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultracompact radio sources, covering a redshift range from 0.46 to 2.76. The observable value angular sizes θobs(z)\theta_{obs}(z) is related to the intrinsic length m\ell_{m} and the angular diameter distance DA(z)D_{A}(z) Cao:2015APJ ; AS3 . The corresponding theoretical angular size is defined by

θth(z)=mDA(z),\theta_{th}(z)=\frac{\ell_{m}}{D_{A}(z)}, (23)

where m\ell_{m} is the intrinsic metric linear size, which is calibrated to 11.03±0.2511.03\pm 0.25 pc by an independent method introduced in caoshuo2017AA , and DA(z)D_{A}(z) is the angular diameter distance

DA(z)=DL(z)(1+z)2,D_{A}(z)=\frac{D_{L}(z)}{(1+z)^{2}}, (24)

where DL(z)D_{L}(z) is defined by Eq.(17). Therefore, we calculate the chi-square function by

χQSO2=i120(θ(zi;𝐩)θiobs)2σi2.\chi_{\textrm{QSO}}^{2}=\sum_{i}^{120}\frac{\left(\theta\left(z_{i};\mathbf{p}\right)-\theta_{i}^{obs}\right)^{2}}{\sigma_{i}^{2}}. (25)

where θ(zi;p^)\theta(z_{i};\hat{p}) is the theoretical value of the angular size and the total uncertainty can be expressed as σi2=σstat,i2+σsys,i2\sigma^{2}_{i}=\sigma^{2}_{stat,i}+\sigma^{2}_{sys,i}.

3.4 BAO

The BAO data is also a powerful cosmological probe eisenstein1998 ; eisenstein20005 , which is extracted from galaxy redshift surveys. Here, we use 11 BAO measurements summarized in Table 1. The observable quantities used in the measurements are expressed in terms of the transverse co-moving distance DM(z)D_{M}(z), the volume-average angular diameter distance DV(z)D_{V}(z), the Hubble rate H(z)H0E(z)H(z)\equiv H_{0}E(z), the Hubble distance DHc/H(z)D_{H}\equiv c/H(z), the sound horizon at the drag epoch rsr_{s}, and its fiducial value rs,fidr_{\rm{s,fid}}. In a flat universe, the transverse co-moving distance DM(z)D_{M}(z) equals the line-of-sight co-moving distance DC(z)D_{C}(z), which is expressed as

DC=cH00zdzE(z),D_{C}=\frac{c}{H_{0}}\int_{0}^{z}\frac{dz^{\prime}}{E\left(z^{\prime}\right)}, (26)

where cc is the velocity of light. The volume-average angular diameter distance is

DV(z)=[czH0DM2(z)E(z)]1/3.D_{V}(z)=\left[\frac{cz}{H_{0}}\frac{D_{M}^{2}(z)}{E(z)}\right]^{1/3}. (27)

Following ryan2019 , we use the fitting formula of eisenstein1998 to compute rsr_{s} and calculate rs,fidr_{s,fid} by using the fiducial cosmological model.

Most of data we used are correlated; however, those from carter2018 ; DES2018 ; ata2018 ) are uncorrelated. For the uncorrelated data points, the chi-square statistic is expressed as

χBAO2(p)=i=1N[Ath(p,zi)Aobs(zi)]2σi2,\chi_{\mathrm{BAO}}^{2}(p)=\sum_{i=1}^{N}\frac{\left[A_{\mathrm{th}}\left(p,z_{i}\right)-A_{\mathrm{obs}}\left(z_{i}\right)\right]^{2}}{\sigma_{i}^{2}}, (28)

where Ath(p,zi)A_{th}(p,z_{i}) denotes the model predictions at the effective redshift, Aobs(zi)A_{obs}(z_{i}) is the observational value and σi\sigma_{i} is the error bar of the measurements. For the correlated data points from Alam2017 ; dsa2019 , it requires

χBAO2(p)=[Ath(p)Aobs]TC1[Ath(p)Aobs],\chi_{\mathrm{BAO}}^{2}(p)=\left[\vec{A}_{\mathrm{th}}(p)-\vec{A}_{\mathrm{obs}}\right]^{T}C^{-1}\left[\vec{A}_{\mathrm{th}}(p)-\vec{A}_{\mathrm{obs}}\right], (29)

where C1C^{-1} is the inverse of the covariance matrix. The corresponding covariance matrix of Alam2017 is available from the SDSS website, and that of dsa2019 is presented in Caoshulei2020 .

In the cosmological analysis, the probability distributions of model parameters are obtained with an affine invariant Markov chain Monte Carlo (MCMC) ensemble sampler (emcee) emcee , where the statistic can be determined with

(p)=eχ(p)22,\mathcal{L}(p)=e^{-\frac{\chi(p)^{2}}{2}}, (30)

where pp is the set of model parameters from different cosmological models.

4 Results and discussion

Table 2: The best-fit values and 68% confidence limits for the CG cosmological parameters in each model (GCG, MCG, NGCG, and VGCG) and data set (QSO[XUV]+SNe Ia, QSO[AS]+BAO, and QSO[XUV]+SNe Ia+QSO[AS]+BAO).
Model Data Ωm\Omega_{m} AsA_{s} α\alpha H0H_{0} (km/s/Mpc)
GCG QSO[XUV]+SNe Ia 0.530.29+0.530.53^{+0.53}_{-0.29} 0.78±0.060.78\pm 0.06 0.460.42+0.570.46^{+0.57}_{-0.42} 68.274.76+6.9868.27^{+6.98}_{-4.76}
QSO[AS]+BAO 0.33±0.020.33\pm 0.02 0.60±0.100.60\pm 0.10 0.330.24+0.27-0.33^{+0.27}_{-0.24} 65.812.28+2.2665.81^{+2.26}_{-2.28}
Combination 0.31±0.010.31\pm 0.01 0.73±0.040.73\pm 0.04 0.030.14+0.170.03^{+0.17}_{-0.14} 68.261.08+1.1868.26^{+1.18}_{-1.08}
Model Data Ωm\Omega_{m} AsA_{s} BB α\alpha H0H_{0} (km/s/Mpc)
MCG QSO[XUV]+SNe Ia 0.470.27+0.360.47^{+0.36}_{-0.27} 0.810.09+0.060.81^{+0.06}_{-0.09} 0.120.21+0.260.12^{+0.26}_{-0.21} 0.200.39+0.580.20^{+0.58}_{-0.39} 68.283.48+7.2368.28^{+7.23}_{-3.48}
QSO[AS]+BAO 0.33±0.020.33\pm 0.02 0.610.14+0.100.61^{+0.10}_{-0.14} 0.120.09+0.18-0.12^{+0.18}_{-0.09} 0.050.52+0.870.05^{+0.87}_{-0.52} 66.272.30+2.0166.27^{+2.01}_{-2.30}
Combination 0.31±0.010.31\pm 0.01 0.730.06+0.040.73^{+0.04}_{-0.06} 0.140.06+0.13-0.14^{+0.13}_{-0.06} 0.710.71+0.780.71^{+0.78}_{-0.71} 68.091.06+1.1168.09^{+1.11}_{-1.06}
Model Data Ωm\Omega_{m} ω\omega α\alpha H0H_{0} (km/s/Mpc)
NGCG QSO[XUV]+SNe Ia 0.300.14+0.160.30^{+0.16}_{-0.14} 1.100.39+0.24-1.10^{+0.24}_{-0.39} 0.230.53+0.890.23^{+0.89}_{-0.53} 68.505.21+7.1968.50^{+7.19}_{-5.21}
QSO[AS]+BAO 0.34±0.020.34\pm 0.02 0.790.14+0.13-0.79^{+0.13}_{-0.14} 0.120.17+0.12-0.12^{+0.12}_{-0.17} 65.162.18+2.3865.16^{+2.38}_{-2.18}
Combination 0.31±0.010.31\pm 0.01 1.010.06+0.05-1.01^{+0.05}_{-0.06} 0.010.08+0.090.01^{+0.09}_{-0.08} 68.341.09+1.1968.34^{+1.19}_{-1.09}
Model Data Ωm\Omega_{m} BsB_{s} α\alpha ζ\zeta H0H_{0} (km/s/Mpc)
VGCG QSO[XUV]+SNe Ia 0.470.31+0.360.47^{+0.36}_{-0.31} 0.820.19+0.130.82^{+0.13}_{-0.19} 0.410.49+0.740.41^{+0.74}_{-0.49} 0.020.08+0.10-0.02^{+0.10}_{-0.08} 68.585.16+6.8268.58^{+6.82}_{-5.16}
QSO[AS]+BAO 0.33±0.020.33\pm 0.02 0.550.16+0.170.55^{+0.17}_{-0.16} 0.080.57+0.990.08^{+0.99}_{-0.57} 0.070.12+0.060.07^{+0.06}_{-0.12} 66.322.42+2.1666.32^{+2.16}_{-2.42}
Combination 0.31±0.010.31\pm 0.01 0.640.07+0.100.64^{+0.10}_{-0.07} 0.610.66+0.820.61^{+0.82}_{-0.66} 0.070.08+0.040.07^{+0.04}_{-0.08} 68.211.04+1.1968.21^{+1.19}_{-1.04}
Table 3: The values of DIC and their differences for CG and Λ\LambdaCDM cosmologies. The Jensen-Shannon divergence between Λ\LambdaCDM and other cosmological models is also calculated with respect to Ωm\Omega_{m} and H0H_{0}.
Data Model DIC Δ\DeltaDIC DJS(Ωm)D_{JS}(\Omega_{m}) DJS(H0)D_{JS}(H_{0})
QSO[XUV]+SNe Ia Λ\LambdaCDM 2632.34 0 0 0
GCG 2635.10 2.76 0.721 0.124
MCG 2625.76 -6.58 0.722 0.510
NGCG 2636.31 3.97 0.681 0.083
VGCG 2638.69 6.36 0.727 0.092
QSO[AS]+BAO Λ\LambdaCDM 616.42 0 0 0
GCG 618.29 1.87 0.296 0.710
MCG 608.04 -8.38 0.300 0.662
NGCG 617.97 1.55 0.468 0.927
VGCG 605.54 -10.88 0.319 0.655
Combination Λ\LambdaCDM 3245.86 0 0 0
GCG 3252.10 6.24 0.074 0.286
MCG 3246.42 0.56 0.132 0.275
NGCG 3251.15 5.29 0.077 0.288
VGCG 3239.22 -6.64 0.131 0.277
Refer to caption
Figure 2: The 1D and 2D probability distributions of model parameters in the GCG model, based on the QSO[XUV]+SNe Ia(green), QSO[AS]+BAO (blue), and a joint sample (red). The contours correspond to 68% and 95% confidence levels. The grey line indicates the values of the model parameters that can be recovered to the Λ\LambdaCDM scenario, with the fiducial value of Ωm=0.30\Omega_{m}=0.30, ω=1\omega=-1, α=0\alpha=0 and H0H_{0}=70 km/s/Mpc.
Refer to caption
Figure 3: The 1D and 2D probability distributions of model parameters in the MCG model.
Refer to caption
Figure 4: The 1D and 2D probability distributions of model parameters in the NGCG model.
Refer to caption
Figure 5: The 1D and 2D probability distributions of model parameters in the VGCG model.

In this section, we display and discuss the constraint results of the cosmological parameters by using the standard candles and rulers data. It shows that how the different types of observational data could inflect the constraints of cosmological parameter estimation.

4.1 GCG model

We present the 1D probability distributions and 2D contours with 1σ\sigma and 2σ\sigma confidence levels (CLs) for the GCG model in Fig. 2 and list the best-fit parameters at the 1σ\sigma confidence level in Table 2. The standard candle data gives Ωm=0.530.29+0.53\Omega_{m}=0.53^{+0.53}_{-0.29}, As=0.78±0.06A_{s}=0.78\pm 0.06,α=0.460.42+0.57\alpha=0.46^{+0.57}_{-0.42} and H0=68.274.76+6.98H_{0}=68.27^{+6.98}_{-4.76} km/s/Mpc, while the standard ruler data obtains Ωm=0.33±0.02\Omega_{m}=0.33\pm 0.02, As=0.60±0.10A_{s}=0.60\pm 0.10, α=0.330.24+0.27\alpha=-0.33^{+0.27}_{-0.24} and H0=65.812.28+2.26H_{0}=65.81^{+2.26}_{-2.28} km/s/Mpc. First, it is clear that the value of Ωm\Omega_{m} obtained from standard candles shows a deviation from the Planck collaboration (Ωm=0.3103±0.0057\Omega_{m}=0.3103\pm 0.0057) planck2018result . This is because a larger value of the matter density parameter is favored by the recent QSO[XUV] compilation in most cosmological models at higher redshifts (2.5<z<52.5<z<5), which has been discussed in previous work Risaliti2015 ; khadka2020_1 . In addition, α\alpha is an important parameter 0α10\leq\alpha\leq 1, where α=0\alpha=0 denotes the Λ\LambdaCDM model and α=1\alpha=1 denotes the CG model. Although previous studies showed that the CG model is ruled out by observations, we find that the CG model is accepted by QSO[XUV]+SNe Ia at a 68% CL. In addition, the standard ruler data favor the Λ\LambdaCDM model at a 95% CL, as well as the combination sample. For the Hubble constant, our constraint results are in good agreement with the Planck collaboration (H0=67.66±0.42H_{0}=67.66\pm 0.42 km/s/Mpc) planck2018result , although the values obtained from standard rulers are lower than that from other probes. In addition, the standard ruler data could bring down the error bars of Ωm\Omega_{m}, α\alpha and H0H_{0} compared with the standard candles. This indicates that QSO[AS]+BAO could give a more restrictive constraint on cosmological parameters. Moreover, it is necessary to refer to the previous results, such as As=0.700.17+0.16A_{s}=0.70^{+0.16}_{-0.17} and α=0.090.33+0.54\alpha=-0.09^{+0.54}_{-0.33} constrained from the X-ray gas mass fraction, Type Ia supernovae and Type IIb radio galaxies in zhu2004 and α=0.140.19+0.30\alpha=-0.14^{+0.30}_{-0.19} obtained by SNe Ia+H(z)+CMB in wupuxun2007 , which are consistent with our results from combination data and favor the standard Λ\LambdaCDM model. It is worth mentioning that Lian2021 gave Ωm=0.4160.068+0.088\Omega_{m}=0.416^{+0.088}_{-0.068}, α=2.3601.793+1.803\alpha=2.360^{+1.803}_{-1.793} and H0=69.2544.970+4.427H_{0}=69.254^{+4.427}_{-4.970} km/s/Mpc from the QSO[XUV]+QSO[AS], which is in good agreement with our results from QSO[XUV]+SNe Ia and includes the CG model at a 68% CL. This suggests that the latest QSO compilation from X-ray and UV flux measurements slightly favors the CG model and prefers a larger value of Ωm\Omega_{m}.

4.2 MCG model

In the case of the MCG model, the results are presented in Fig. 3 and Table 2. The standard candle data generates Ωm=0.470.27+0.36\Omega_{m}=0.47^{+0.36}_{-0.27}, As=0.810.09+0.06A_{s}=0.81^{+0.06}_{-0.09}, B=0.120.21+0.26B=0.12^{+0.26}_{-0.21}, α=0.200.39+0.58\alpha=0.20^{+0.58}_{-0.39} and H0=68.283.48+7.23H_{0}=68.28^{+7.23}_{-3.48} km/s/Mpc, while the standard ruler data provides Ωm=0.33±0.02\Omega_{m}=0.33\pm 0.02, As=0.610.14+0.10A_{s}=0.61^{+0.10}_{-0.14}, B=0.120.09+0.18B=-0.12^{+0.18}_{-0.09}, α=0.050.52+0.87\alpha=0.05^{+0.87}_{-0.52} and H0=66.272.30+2.01H_{0}=66.27^{+2.01}_{-2.30} km/s/Mpc. The value of Ωm\Omega_{m} obtained from QSO[XUV]+SNe Ia is still higher than that from other probes, which is the same as the case of the GCG model and still consistent with that from planck2018result at a 68.3% CL. In the framework of the MCG model, considering the fact that the parameter BB reflects the deviation from the GCG model (the MCG model reduces to the GCG model when B=0B=0), the GCG model is accepted by current observations at a 95% CL in all cases. However, the MCG model shows a tiny deviation from the GCG model by the combination sample at a 68% CL. For the key parameter α\alpha that quantifies the deviation from the CG model and Λ\LambdaCDM model, it is clear that the Λ\LambdaCDM model, B=0B=0 and α=0\alpha=0, is accepted by standard candles and standard rulers at 68% CLs, while the CG model, B=0B=0 and α=1\alpha=1, is favored by the combination sample at a 95% CL. However, in the case of the combination sample, both the Λ\LambdaCDM and CG models are favored within a 68% CL. In other words, this suggests that the Λ\LambdaCDM model is more favored by standard candles and standard rulers, respectively, but the CG model is slightly preferred by the combination. Focusing on the Hubble constant, the constraint results agree well with Planck collaboration planck2018result . Moreover, our results from combination samples are consistent with the results obtained from SNe Ia+BAO+CMB xulixin2012modified with α=0.0007270.00140+0.00142\alpha=0.000727^{+0.00142}_{-0.00140}, Bs=0.7820.0162+0.0163B_{s}=0.782^{+0.0163}_{-0.0162} and B=0.0007770.000302+0.000201B=0.000777^{+0.000201}_{-0.000302} and from H(z)+BAO+CMB+SNe Ia Thakur2019 with Ωm=0.2840.014+0.013\Omega_{m}=0.284^{+0.013}_{-0.014}, α=0.0460.102+0.107\alpha=0.046^{+0.107}_{-0.102} and B=0.0026±0.005B=0.0026\pm 0.005 at the 1σ\sigma confidence level. This proves that most cosmological probes favor the Λ\LambdaCDM model; however, the inclusion of the QSO sample from X-ray and UV flux measurements Risaliti2015 at higher redshifts changes to slightly favor the CG model.

4.3 NGCG model

In Fig. 4 and Table 2, we show the constraint results of the NGCG model. Compared with the standard candle dataset with Ωm=0.300.14+0.16\Omega_{m}=0.30^{+0.16}_{-0.14}, ω=1.100.39+0.24\omega=-1.10^{+0.24}_{-0.39}, α=0.230.53+0.89\alpha=0.23^{+0.89}_{-0.53} and H0=68.505.21+7.19H_{0}=68.50^{+7.19}_{-5.21} km/s/Mpc, the standard ruler data obtains Ωm=0.34±0.02\Omega_{m}=0.34\pm 0.02, ω=0.790.14+0.13\omega=-0.79^{+0.13}_{-0.14}, α=0.120.17+0.12\alpha=-0.12^{+0.12}_{-0.17} and H0=65.162.18+2.38H_{0}=65.16^{+2.38}_{-2.18} km/s/Mpc. The most notable thing is that Ωm=0.300.14+0.16\Omega_{m}=0.30^{+0.16}_{-0.14} from standard candles is consistent with Planck collaboration (Ω=0.3103±0.0057\Omega=0.3103\pm 0.0057) planck2018result , however this is contrary in the scenarios of the GCG, MCG and VGCG models. khadka2020_1 constrained Ωm0.3\Omega_{m}\sim 0.3 in the XCDM model from only compiled X-ray and UV flux measurements of 1598 quasars, while Ωm0.50.6\Omega_{m}\sim 0.5-0.6 in the Λ\LambdaCDM and ϕ\phiCDM models. There are similarities between the NGCG and XCDM models because the parameter ω\omega in the NGCG model is proposed by a similar idea to that in the XCDM model. Hence, we obtain a normal value of Ωm\Omega_{m} in the framework of NGCG, which indicates that X-ray and UV flux measurements of 1598 quasar compilations could help to determine the dark energy and dark matter. It should be noted that ω\omega is a free constant and NGCG2006 proposed the probability that dark energy behaves in a quintessence-like form with ω>1\omega>-1 and phantom-like form with ω<\omega< 1-1. The 1σ\sigma range ω(1.05,0.95)\omega\in(-1.05,-0.95) from the combination sample implies that there is an equal chance that dark energy behaves as a quintessence-like form or phantom-like form. In all cases, it suggests that the GCG model (i.e., ω=1\omega=-1) and XCDM model (i.e., ω=1\omega=-1 and α=0\alpha=0) are still supported by the observational data at a 95% CL. In addition, it is remarkable that the CG model, ω=1\omega=-1 and α=1\alpha=1, is accepted by the standard candle data at a 68% CL. The Hubble constant obtained in our analysis is more consistent with the results of planck2018result at a 68% CL. Furthermore, we make a comparison with the previous findings in the literature. For instance, liaokai2013 derived Ωde=0.72970.0276+0.0229\Omega_{de}=0.7297^{+0.0229}_{-0.0276}, ω=1.05100.1685+0.1563\omega=-1.0510^{+0.1563}_{-0.1685} and η=1+α=1.01170.0502+0.0469\eta=1+\alpha=1.0117^{+0.0469}_{-0.0502} with SNe Ia+BAO+WMAP+H(z) data; Zhangjingfei2019 obtained Ωde=0.6879±0.0078\Omega_{de}=0.6879\pm 0.0078, ω=1.02±0.045\omega=-1.02\pm 0.045, α=0.0029±0.0097\alpha=-0.0029\pm 0.0097 and H0=67.78±0.87H_{0}=67.78\pm 0.87 km/s/Mpc with a joint sample of SNe Ia+BAO+CMB; and salahedin2020NGCG stated Ωm=0.25080.0097+0.0081\Omega_{m}=0.2508^{+0.0081}_{-0.0097}, ω=1.041±0.045\omega=-1.041\pm 0.045, As=0.73710.0086+0.0097A_{s}=0.7371^{+0.0097}_{-0.0086}, η=1+α=0.9443±0.0097\eta=1+\alpha=0.9443\pm 0.0097 and H0=70.15±0.84H_{0}=70.15\pm 0.84 km/s/Mpc with SNe Ia+BAO+CMB+BBN+H(z) data. This indicates that the value of Ωm\Omega_{m} from current observations, i.e., SNe Ia, BAO, CMB and H(z), is generally smaller than Ωm=0.3103±0.057\Omega_{m}=0.3103\pm 0.057 from planck2018result ; however, the inclusion of QSO[XUV] and QSO[AS] changes the value of Ωm\Omega_{m} to 0.3-0.34 in our work. It indicates that the inclusion of quasar data could help us to study dark matter and dark energy.

4.4 VGCG model

The best-fit values for the VGCG model from different observations are shown in Fig. 5 and Table 2. The standard candle data obtains Ωm=0.470.31+0.36\Omega_{m}=0.47^{+0.36}_{-0.31}, Bs=0.820.19+0.13B_{s}=0.82^{+0.13}_{-0.19}, α=0.410.49+0.74\alpha=0.41^{+0.74}_{-0.49}, ζ=0.00170.08+0.10\zeta=-0.0017^{+0.10}_{-0.08} and H0=68.585.16+6.82H_{0}=68.58^{+6.82}_{-5.16} km/s/Mpc, while the standard ruler data shows Ωm=0.33±0.02\Omega_{m}=0.33\pm 0.02, Bs=0.550.16+0.17B_{s}=0.55^{+0.17}_{-0.16}, α=0.080.57+0.99\alpha=-0.08^{+0.99}_{-0.57}, ζ=0.070.12+0.06\zeta=0.07^{+0.06}_{-0.12} and H0=66.322.42+2.16H_{0}=66.32^{+2.16}_{-2.42} km/s/Mpc. It indicates that the value of Ωm\Omega_{m} is still larger than that of planck2018result , since the QSO[XUV] data favors higher Ωm\Omega_{m} in most dark energy models Risaliti2015 ; khadka2020_1 . ζ\zeta is the viscosity term that affects the CMB power spectrum about the matter density on the height of the acoustic peaks. From the results shown in Table 2, it implies that ζ\zeta is very small, which could alleviate the oscillations causing the blowup in the DM power spectrum in the GCG models. Moreover, the GCG model (i.e., ζ=0\zeta=0) is still favored by the available observations. On the other hand, α\alpha is an important parameter that reflects the deviation from the CG model and Λ\LambdaCDM model. In all cases, the CG model cannot be ruled out by current observations at a 68% CL, while Λ\LambdaCDM is still accepted by the observations at a 68% CL. In other words, it indicates that QSO[XUV], SNe Ia, QSO[AS] and BAO data could not give accurate constraints on α\alpha. In addition, our results on the Hubble constant approve the value of Planck collaboration (H0=67.66±0.42H_{0}=67.66\pm 0.42 km/s/Mpc) planck2018result at a 68% CL. It is reasonable to compare to previous studies, such as liwei2013VGCG declared ζ=0.0007080.00155+0.00151\zeta=0.000708^{+0.00151}_{-0.00155} from SNe Ia+BAO+WMAP and LiweiVGCG announced ζ=0.00001380.0000105+0.00000614\zeta=0.0000138^{+0.00000614}_{-0.0000105} from SNLS3 +BAO+HST. In a recent work, almada2021VGCG used a joint sample of SLS+SNe Ia +BAO+OHD+HIIG and obtained Bs=0.500.06+0.05B_{s}=0.50^{+0.05}_{-0.06}, α=0.990.58+0.61\alpha=0.99^{+0.61}_{-0.58}, ζ=0.130.03+0.02\zeta=0.13^{+0.02}_{-0.03} and h=0.69±0.01h=0.69\pm 0.01. They concluded that the GCG model, ζ=0\zeta=0, is disfavored by SLS+SNe Ia+BAO+OHD+HIIG at a 68% CL, which is different from our results with ζ=0.070.08+0.04\zeta=0.07^{+0.04}_{-0.08}. Moreover, we find that the inclusion of cosmic microwave background data could give a more precise constraint on ζ\zeta.

From our constraint results on the matter density parameter Ωm\Omega_{m} in different CG models, it is clear that the standard candle data combining QSO[XUV] with SNe Ia prefers larger values of Ωm\Omega_{m} ranging from 0.470.530.47-0.53 except the NGCG model. In khadka2020_1 , it states that the QSO[XUV] data at z25z\sim 2-5 prefers larger values of Ωm0.50.6\Omega_{m}\sim 0.5-0.6. Other studies have concentrated on exploring the tension between high redshift quasar measurements and other observations, such as BAO measurements in Risaliti2015 ; razaei2020 ; yangtao2020cosmography ; lixiaolei2021hubble . It implies that there is an unknown systematic error in the high redshift observations or a stimulus of the new physics and astronomy. Therefore, more accurate cosmological probes are required to solve the problem of the Ωm\Omega_{m} inconsistency from high and low redshift observations. On the other hand, it is also rewarding to comment on the possible alleviation of the H0H_{0} tension by the VGCG and MCG model. Based on our results presented in Table 2, the constraint on the Hubble constant lies in the range of H0=68.283.48+7.23H_{0}=68.28^{+7.23}_{-3.48} km/s/Mpc to H0=68.585.16+6.82H_{0}=68.58^{+6.82}_{-5.16} km/s/Mpc for the standard candles, as well as H0=68.091.06+1.11H_{0}=68.09^{+1.11}_{-1.06} km/s/Mpc to H0=68.211.04+1.19H_{0}=68.21^{+1.19}_{-1.04} km/s/Mpc for the combined sample. It is noteworthy that these two Chaplygin gas models suggest a central value of the Hubble constant between the Planck experiment planck2018result , H0=67.4±0.5H_{0}=67.4\pm 0.5 km/s/Mpc and the SH0ES experiment riessH0 , H0=74.03±1.42H_{0}=74.03\pm 1.42 km/s/Mpc.

5 Statistical analysis

The statistical analysis is essential to diagnose the different models. Hence, we apply the Jensen-Shannon Divergence, statefinder diagnostic and the deviance information criterion. In this section, we compare these models and discuss how strongly are they favored by the observational data sets.

5.1 Jensen-Shannon Divergence

Refer to caption
Refer to caption
Refer to caption
Figure 6: The posterior distributions of Ωm\Omega_{m} for the GCG, MCG, NGCG, VGCG and Λ\LambdaCDM models, with the standard candles, standard rulers and combination data from the top to the bottom. We adopt the posterior distributions of Ωm\Omega_{m} from Table 2.
Refer to caption
Refer to caption
Refer to caption
Figure 7: The posterior distributions of H0H_{0} for the GCG, MCG, NGCG, VGCG and Λ\LambdaCDM models, with the standard candles, standard rulers and combination data from the top to the bottom. We adopt the posterior distributions of H0H_{0} from Table 2.

This new class of information-theoretic divergence measures based on Jensen’s inequality and the Shannon entropy, called “Jensen-Shannon Divergence”, could assign the similarity between two probability distributions Lin1991JSD ; JSD2012 ; Lian2021 . It should be mentioned that JSD is used to assess two different cosmological models by the common parameters; here, we choose the matter density Ωm\Omega_{m} and the Hubble constant H0H_{0} to distinguish the four CG models as well as the Λ\LambdaCDM model. In general, the JSD is symmetric and ranges from 0 to 1, which can be written as

DJS(pq)=12[DKL(p(x)s)+DKL(q(x)s)],D_{JS}(p\mid q)=\frac{1}{2}\left[D_{KL}(p(x)\mid s)+D_{KL}(q(x)\mid s)\right], (31)

where s=1/2(p+q)s=1/2(p+q). p(x)p(x) and q(x)q(x) are two probability distributions of two different models and DKLD_{KL} denotes the Kulback-Leibler divergence (KLD), which can be expressed as

DKL(pq)=p(x)log2(p(x)q(x))𝑑x.D_{KL}(p\mid q)=\int p(x)\log_{2}\left(\frac{p(x)}{q(x)}\right)dx. (32)

It is clear that a smaller value of JSD indicates that the two models are similar. Fig. 6 and Fig. 7 display the posterior distributions of Ωm\Omega_{m} and H0H_{0}. Table 3 presents the JSD values between the Λ\LambdaCDM model and four nonstandard models by using different observations with respect to Ωm\Omega_{m} and H0H_{0}. For standard candle data, the posterior distributions of Ωm\Omega_{m} and H0H_{0} in the NGCG model agree more with the Λ\LambdaCDM model in terms of the JSD values, while the MCG model shows a larger distance from the Λ\LambdaCDM model. In the scenario of standard ruler data, the value of JSD concerning Ωm\Omega_{m} shows that the GCG model agrees more with the Λ\LambdaCDM model; however, concerning H0H_{0}, all four nonstandard models are distant from the Λ\LambdaCDM model, where the VGCG model is closest to the Λ\LambdaCDM model. In the case of the combination sample, for Ωm\Omega_{m}, the GCG model and NGCG model are more closer to the Λ\LambdaCDM model due to the smaller values of JSD, while for H0H_{0}, the MCG model and VGCG model are closest to the Λ\LambdaCDM model.

5.2 Statefinder Diagnostic

Refer to caption
Figure 8: The evolution of the statefinder pair (r,s)(r,s) for different cosmological models. The cyan diamond point at (r,s)=(1,0)(r,s)=(1,0) indicates the Λ\LambdaCDM model, and the other diamond point on each curve denotes the present value of the statefinder pair (r,s)(r,s) for the GCG, MCG, NGCG, and VGCG models. The model parameters adopted in statefinder diagnostic are from the combination of QSO[XUV], SNe Ia, QSO[AS] and BAO in Table 2.
Refer to caption
Figure 9: The same as Fig. 8, but for the evolution of the pair (r,q)(r,q).

In the framework of a specific cosmological model, the Hubble parameter H(z)H(z) and the deceleration parameter q(z)q(z) can be expressed,

H=a˙a,q=a¨aH2=aa¨a˙2,H=\frac{\dot{a}}{a},q=-\frac{\ddot{a}}{aH^{2}}=-\frac{a\ddot{a}}{\dot{a}^{2}}, (33)

where aa is the scale factor a=1/1+za=1/1+z. As H(z)H(z) and q(z)q(z) cannot effectively distinguish different cosmological models, it requires a higher order of time derivatives of aa. To investigate more dark energy models, except for the cosmological constant model, the author of statefinder focused on a new geometrical diagnostic pair (r,s)(r,s) constructed from the a(t)a(t) and its third time derivatives beyond, where r(z)r(z) is a natural next step beyond H(z)H(z) and q(z)q(z), and s(z)s(z) is a linear combination of r(z)r(z) and q(z)q(z). This approach has been widely adopted in comparing different cosmological models lixiaolei ; xutengpeng2018 ; dubey2021statefinder ; panyu2021statefinder .

The statefinder pair (r,s)(r,s) is also related to the equation of state of dark energy and its first time derivative, which can be expressed as

r=a˙aH3,s=r13(q1/2),r=\frac{\dot{a}}{aH^{3}},\quad s=\frac{r-1}{3(q-1/2)}, (34)

For a given model, the statefinder diagnostic can be obtained by

r(z)=12E(z)E(z)(1+z)+[E′′(z)E(z)+(E(z)E(z))2](1+z)2,r(z)=1-2\frac{E^{\prime}(z)}{E(z)}(1+z)+\left[\frac{E^{\prime\prime}(z)}{E(z)}+\left(\frac{E^{\prime}(z)}{E(z)}\right)^{2}\right](1+z)^{2}, (35)

and

s(z)=r(z)13(q(z)1/2),s(z)=\frac{r(z)-1}{3(q(z)-1/2)}, (36)

and

q(z)=E(z)E(z)(1+z)1.q(z)=\frac{E^{\prime}(z)}{E(z)}(1+z)-1. (37)

Based on the best-fit model parameters derived from the combined QSO[XUV]+SNe Ia+QSO[AS]+BAO data, we calculate the statefinder pairs (r,s)(r,s) for the Λ\LambdaCDM model and four CG models and present the results in Fig. 8. Specifically, the parameter rr is more effective in distinguishing different cosmological models. It is noteworthy that although the corresponding values for the MCG model and VGCG model significantly deviate from the Λ\LambdaCDM model at the present epoch, both of them eventually converge to the standard cosmological model. On the other hand, it is obvious that in the framework of the GCG model and NGCG model, the statefinder pairs (r,s)(r,s) exhibit similar behaviors at present and evolve along different trajectories; however, only the GCG model ultimately converges on the point of (r,s)=(1,0)(r,s)=(1,0).

The evolutionary trajectories in the rqr-q plane are displayed in Fig. 9. Although the curves of each cosmological model originate from different points, they finally converge to the same point (r,q)=(1,1)(r,q)=(1,-1) except for the NGCG model. We clearly see that the GCG and NGCG models evolve along similar trajectories with the Λ\LambdaCDM model. In addition, we find that the GCG model and NGCG model presume values in the range r>1r>1 and q>0q>0 at early times and therefore represent as Chaplygin gas-type dark energy models. Moreover, the MCG model and VGCG model start from the regions r<1r<1 and q>0q>0 belonging to Quintessence dark energy models, while the MCG model quickly reverts back into the Chaplygin gas-type dark energy model at later times. There are notable flips from positive to negative in the value of qq, which explains the recent phase transition of these models and proves the accelerating universe exactly.

5.3 Model selection statistic

From Sect. 5.1 and Sect. 5.2, we cannot clearly determine these four CG models with the Λ\LambdaCDM model. When comparing and distinguishing different competing models, certain information criteria, such as the Akaike information criterion AIC , the Bayes information criterion BIC , and the deviance information criterion DIC , would be crucial.

The AIC is based on information theory, the BIC is based on Bayesian inference, and the DIC combines heritage from both Bayesian methods and information theory DIC . Compared with DIC, the AIC and BIC are too simple to select which model performs better by only requiring the maximum likelihood and the number of parameters within a given model rather than the likelihood throughout the parameter space 2011PhRvD..84b3005C ; 2012ApJ…755…31C ; therefore, we apply DIC to model selection in this paper. Moreover, Δ\DeltaDIC is an important value which denotes the difference in values of DIC between cosmological models. In our analysis, we calculate the values of DIC and Δ\DeltaDIC with respect to four Chaplygin gas models and Λ\LambdaCDM model for same observations. In particular, negative values of Δ\DeltaDIC indicates that the model fits the observations better than Λ\LambdaCDM model.

The DIC was introduced by DIC and defined as

DICD(θ¯)+2pD,\mathrm{DIC}\equiv D(\bar{\theta})+2p_{D}, (38)

where D(θ)=2ln(θ)+CD(\theta)=-2\ln\mathcal{L}(\theta)+C, pD=D(θ)¯D(θ¯)p_{D}=\overline{D(\theta)}-D(\bar{\theta}), CC is a ‘standardizing’ constant depending only on the data that will vanish from any derived quantity and DD is the deviance of the likelihood. The definition of DIC (i.e., Eq. (38)) is motivated by the form of the AIC, replacing the maximum likelihood max\mathcal{L}_{max} with the mean parameter likelihood (θ¯)\mathcal{L}(\bar{\theta}) and replacing the number of parameters kk with the effective number of parameters pDp_{D}, which represents the number of parameters that can be usefully constrained by a particular dataset. By using the effective number of parameters, the DIC also overcomes the problem of the BIC that they do not discount parameters that are unconstrained by the data DIC . In the DIC analysis, the favorite model is the one with the minimum DIC value.

We introduce the DIC to evaluate which model is more consistent with the observational data. As for standard candle data, it suggests that the DIC criterion advocates on the MCG model. From standard rulers and the combination sample, the VGCG model seems to be preferred by the smallest values of DIC. In addition, the GCG and NGCG model are seriously punished by the DIC. In particular, we use the model selection DIC criterion to specify which model is preferred by the currently available observations, rather than selecting the single best-fit cosmological model. As shown in the recent observational constraints on f(T)f(T) gravity PhysRevD.100.083517 , the exponential f(T)f(T) model presents a small deviation from Λ\LambdaCDM paradigm, based on the SNe Ia Pantheon sample, Hubble constant measurements from cosmic chronometers, the CMB shift parameter and redshift space distortion measurements. Our findings demonstrate that the MCG model and VGCG model behave better than the concordance Λ\LambdaCDM model. We remark here that the Λ\LambdaCDM cosmological model, built on the assumptions of a cosmological constant and cold dark matter, shows a 4σ\sim 4\sigma tension with the high-redshift Hubble diagram of SNe Ia, QSO and gamma-ray bursts (GRB) 2019NatAs…3..272R . Such irreconcilable tension between high-redshift QSOs and flat Λ\LambdaCDM, which has been recently traced and extensively discussed 2020PhRvD.102l3532Y ; Lian2021 in the framework of log polynomial expansion and modified gravity theories, highlights the seriousness of the conflict with dark energy within the flat Λ\LambdaCDM model. However, it is still interesting to see if future high-redshift datasets show similar tension with flat Λ\LambdaCDM cosmology, given the limited sample size and current quality of the available observational data.

6 Conclusions

In this paper, we investigated the constraint ability of standard candles (QSO[XUV]+SNe Ia) and standard rulers (QSO[AS]+BAO) on a series of Chaplygin gas models, including the GCG model, MCG model, NGCG model and VGCG model. These Chaplygin gas models are considered as important candidate models that regard dark energy and dark matter as a unification. The first part is devoted to performing MCMC statistical analysis to confront the models with the most recent observations. The second part is dedicated to comparing the agreement between the Λ\LambdaCDM model and the other four models using JSD, exploring the evolution of cosmological and cosmographical parameters with the assistance of statefinder diagnostic analysis and examining the viability of four nonstandard models by information criteria such as DIC. Here, we summarize our main conclusions in more detail:

(i) It is intriguing that the value of Ωm\Omega_{m} is noticeably larger from the standard candle data than that from other measurements. Such discrepancy is caused by the QSO X-ray and UV flux data, which favors the higher Ωm0.50.6\Omega_{m}\sim 0.5-0.6 discussed in Risaliti2015 ; khadka2020_1 at high redshifts z25z\sim 2-5. Therefore, the quasar data at high redshifts can cast a new light on investigating the accelerating universe. Considering the Hubble constant, it is noteworthy that the constraint results from standard candles and the combination sample suggest central values on H0H_{0} between the value measured by the Planck CMB measurements and local H0H_{0} measurements, possibly alleviating the tension between these measurements. In addition, it is remarkable that although we are using data based on local measurements, such as SNe Ia, which favors the local value (SH0ES’s result), it does not play a role in constraining the Hubble constant caused by the marginalization of the constant term Y0Y_{0} we adopted. Hence, the QSO data from X-ray and UV flux measurement prefers the value of H0H_{0} from the Planck 2018 results.

(ii) Most CG models include the concordance Λ\LambdaCDM model as a special case corresponding to certain values of their parameters, such as the parameter α\alpha in the GCG model and the parameters BB and α\alpha in the MCG model. For standard ruler data, the GCG model and NGCG model are generally inconsistent with the cosmological constant case within a 68% CL, while the MCG model and NGCG model disagree with the Λ\LambdaCDM model by the combination sample at a 68% CL. In the previous studies, they concluded that the CG model is ruled out by recent observations. In our work, considering standard candle data, the CG model is accepted in all cases. The CG model is favored in the framework of the MCG and VGCG models from standard ruler data as well as combined sample. This is because that the inclusion of QSOs from X-ray and UV measurements and QSOs from VLBI could provide more information from the early universe. Hence, it is expected that these selected quasars could be considered additional probes in the future.

(iii) To evaluate the similarity between Λ\LambdaCDM and other CG models, we adopt the JSD in this paper. For standard candle data, the posterior distributions of Ωm\Omega_{m} from four nonstandard models are distant from the Λ\LambdaCDM model, while the NGCG model is in good agreement with the Λ\LambdaCDM model in terms of the JSD value of H0H_{0}. For standard ruler data, the NGCG model shows a larger distance from the Λ\LambdaCDM model according to the values of JSD from the posterior distribution of Ωm\Omega_{m} and H0H_{0}. The posterior distributions of Ωm\Omega_{m} and H0H_{0} from the MCG model and VGCG model are in good agreement with the Λ\LambdaCDM model from the combined standard candle and ruler data. Based on the best fits obtained with the combination sample, we apply the statefinder diagnostic to discriminate the dynamic behaviors of the four CG models. The GCG model and NGCG model evolve similarly to the Λ\LambdaCDM model, but the NGCG model could stray from the Λ\LambdaCDM model in the near future. Clearly, the MCG model and VGCG model exhibit significantly different evolutionary trajectories to the Λ\LambdaCDM model; however, they approach to Λ\LambdaCDM in the future. According to the DIC criterion, VGCG model is more favored by observations; on the other hand, the GCG and NGCG models are punished by all catalogs of data. In addition, the MCG model is slightly supported by standard candles data.

In conclusion, we find that the VGCG model and MCG model could be strong candidates for investigating the accelerating universe. Moreover, H0H_{0} tension will be alleviated with VGCG model and MCG model and these models can satisfy the combination of standard candle and standard ruler measurements with Δ\DeltaDIC=-6.64 and Δ\DeltaDIC=-0.56 compared with Λ\LambdaCDM model. In addition, it is distinctive that the CG model cannot be ruled out by high redshift observations, such as the compilation of 1598 QSO X-ray and UV measurements. Therefore, extending the cosmological analysis with high-redshift data should be critical in distinguishing between different CG models that are degenerate at low redshifts. As a result, it is promising that future precise high redshift data (i.e., gravitational wave data) will provide stronger evidence to judge whether dark energy and dark matter are unified and to understand the nature of the accelerating universe. There are several issues we do not consider in this paper and which remain to be addressed in the future analysis. One general concern is given by the fact that we have considered only the 0th order cosmology and Chaplygin gas models might have instabilities at the perturbation level. Some work has also studied the behavior of the particular case of generalized Chaplygin gas models in the matter power spectrum. As worked out in detail by PhysRevD.69.123524 , the oscillations or exponential blowup of power spectrum, which are inconsistent with the observations of the 2df galaxy redshift survey, contribute to the ruling out of GCG models in 1st order cosmology (the growth of linear perturbations). Now precision data of redshift-space distortions (RSD) growthdata11 ; Arman2018 ; 201109516 , the rms mass fluctuation σ8\sigma_{8}(z) inferred from galaxy and Ly-α\alpha surveys growthdata12 ; growthdata13 ; Cuceu2021 , weak lensing statistics growthdata14 , baryon acoustic oscillations growthdata15 ; growthdata15_2 , X-ray luminous galaxy clusters growthdata16 , and Integrated Sachs-Wolfe (ISW) effect growthdata17 are gradually allowing us to determine the linear growth function that are related to perturbations. In the future analysis we will take a further step in this direction, focusing on more stringent constraints on the perturbative behaviors of a series of Chaplygin gas models.

Acknowledgements

This work was supported by National Key R&D Program of China No. 2017YFA0402600; the National Natural Science Foundation of China under Grants Nos. 12021003, 11690023, and 11920101003; the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB23000000; and the Interdiscipline Research Funds of Beijing Normal University.

DATA AVAILABILITY STATEMENTS

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  • (1) A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Astron.J 116(3), 1009 (1998). DOI 10.1086/300499
  • (2) S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, T.S.C. Project, Astrophys. J. 517(2), 565 (1999). DOI 10.1086/307221
  • (3) D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, H.J. Seo, M. Tegmark, Z. Zheng, S.F. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F.J. Castander, A. Connolly, I. Csabai, M. Doi, M. Fukugita, J.A. Frieman, K. Glazebrook, J.E. Gunn, J.S. Hendry, G. Hennessy, Z. Ivezić, S. Kent, G.R. Knapp, H. Lin, Y.S. Loh, R.H. Lupton, B. Margon, T.A. McKay, A. Meiksin, J.A. Munn, A. Pope, M.W. Richmond, D. Schlegel, D.P. Schneider, K. Shimasaku, C. Stoughton, M.A. Strauss, M. SubbaRao, A.S. Szalay, I. Szapudi, D.L. Tucker, B. Yanny, D.G. York, Astrophys. J. 633(2), 560 (2005). DOI 10.1086/466512
  • (4) D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Astrophys. J. Suppl. Ser. 148(1), 175 (2003). DOI 10.1086/377226
  • (5) J.A. Frieman, M.S. Turner, D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008). DOI 10.1146/annurev.astro.46.060407.145243
  • (6) S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). DOI 10.1103/RevModPhys.61.1. URL https://link.aps.org/doi/10.1103/RevModPhys.61.1
  • (7) S. Weinberg, arXiv e-prints astro-ph/0005265 (2000)
  • (8) S. Cao, J. Qi, M. Biesiada, T. Liu, J. Li, Z.H. Zhu, Mon. Not. R. Astron. Soc. 502(1), L16 (2021). DOI 10.1093/mnrasl/slaa205
  • (9) S. Cao, J. Qi, Z. Cao, M. Biesiada, W. Cheng, Z.H. Zhu, Astron. Astrophys.659, L5 (2022). DOI 10.1051/0004-6361/202142694
  • (10) A. Kamenshchik, U. Moschella, V. Pasquier, Physics Letters B 511(2-4), 265 (2001). DOI 10.1016/S0370-2693(01)00571-8
  • (11) M.C. Bento, O. Bertolami, A.A. Sen, Physics Letters B 575(3-4), 172 (2003). DOI 10.1016/j.physletb.2003.08.017
  • (12) H.B. Sandvik, M. Tegmark, M. Zaldarriaga, I. Waga, Phys. Rev. D 69(12), 123524 (2004). DOI 10.1103/PhysRevD.69.123524
  • (13) F. Perrotta, S. Matarrese, M. Torki, Phys. Rev. D 70(12), 121304 (2004). DOI 10.1103/PhysRevD.70.121304
  • (14) N. Bilić, G.B. Tupper, R.D. Viollier, Physics Letters B 535(1-4), 17 (2002). DOI 10.1016/S0370-2693(02)01716-1
  • (15) M. Biesiada, W. Godłowski, M. Szydłowski, Astrophys. J. 622(1), 28 (2005). DOI 10.1086/427863
  • (16) J. Colistete, R., J.C. Fabris, Classical and Quantum Gravity 22(14), 2813 (2005). DOI 10.1088/0264-9381/22/14/001
  • (17) Z.H. Zhu, Astron. Astrophys.423, 421 (2004). DOI 10.1051/0004-6361:20040236
  • (18) P. Wu, H. Yu, Physics Letters B 644(1), 16 (2007). DOI 10.1016/j.physletb.2006.11.028
  • (19) O. Bertolami, in 36th COSPAR Scientific Assembly, vol. 36 (2006), vol. 36, p. 2969
  • (20) L. Amendola, F. Finelli, C. Burigana, D. Carturan, J. Cosmol. Astropart. Phys. 2003(7), 005 (2003). DOI 10.1088/1475-7516/2003/07/005
  • (21) P. Thakur, Indian J. Phys. 93(9), 1219 (2019). DOI 10.1007/s12648-019-01381-2
  • (22) H.B. Benaoum, arXiv e-prints hep-th/0205140 (2002)
  • (23) U. Debnath, A. Banerjee, S. Chakraborty, Classical and Quantum Gravity 21(23), 5609 (2004). DOI 10.1088/0264-9381/21/23/019
  • (24) X. Zhang, F.Q. Wu, J. Zhang, J. Cosmol. Astropart. Phys. 2006(1), 003 (2006). DOI 10.1088/1475-7516/2006/01/003
  • (25) X.H. Zhai, Y.D. Xu, X.Z. Li, International Journal of Modern Physics D 15(8), 1151 (2006). DOI 10.1142/S0218271806008784
  • (26) G. Risaliti, E. Lusso, Nature Astron. 3(3), 272 (2019). DOI 10.1038/s41550-018-0657-z
  • (27) X. Zheng, S. Cao, M. Biesiada, X. Li, T. Liu, Y. Liu, Sci. China Phys. Mech. Astron. 64(5), 259511 (2021). DOI 10.1007/s11433-020-1664-9
  • (28) Y. Lian, S. Cao, M. Biesiada, Y. Chen, Y. Zhang, W. Guo, Mon. Not. Roy. Astron. Soc. 505(2), 2111 (2021). DOI 10.1093/mnras/stab1373
  • (29) B. Xu, K. Zhang, Q. Huang, B. Chen, Y. Li, Physics of the Dark Universe 33, 100875 (2021). DOI 10.1016/j.dark.2021.100875
  • (30) N. Khadka, B. Ratra, arXiv e-prints arXiv:2107.07600 (2021)
  • (31) Y. Liu, S. Cao, T. Liu, X. Li, S. Geng, Y. Lian, W. Guo, Astrophys. J. 901(2), 129 (2020). DOI 10.3847/1538-4357/abb0e4
  • (32) T. Liu, S. Cao, J. Zhang, M. Biesiada, Y. Liu, Y. Lian, Mon. Not. R. Astron. Soc. 496(1), 708 (2020). DOI 10.1093/mnras/staa1539
  • (33) X. Zheng, K. Liao, M. Biesiada, S. Cao, T.H. Liu, Z.H. Zhu, Astrophys. J. 892(2), 103 (2020). DOI 10.3847/1538-4357/ab7995
  • (34) T. Liu, S. Cao, M. Biesiada, Y. Liu, S. Geng, Y. Lian, Astrophys. J. 899(1), 71 (2020). DOI 10.3847/1538-4357/aba0b6
  • (35) D.M. Scolnic, D.O. Jones, A. Rest, Y.C. Pan, R. Chornock, R.J. Foley, M.E. Huber, R. Kessler, G. Narayan, A.G. Riess, S. Rodney, E. Berger, D.J. Brout, P.J. Challis, M. Drout, D. Finkbeiner, R. Lunnan, R.P. Kirshner, N.E. Sanders, E. Schlafly, S. Smartt, C.W. Stubbs, J. Tonry, W.M. Wood-Vasey, M. Foley, J. Hand, E. Johnson, W.S. Burgett, K.C. Chambers, P.W. Draper, K.W. Hodapp, N. Kaiser, R.P. Kudritzki, E.A. Magnier, N. Metcalfe, F. Bresolin, E. Gall, R. Kotak, M. McCrum, K.W. Smith, Astrophys. J. 859(2), 101 (2018). DOI 10.3847/1538-4357/aab9bb
  • (36) S. Cao, X. Zheng, M. Biesiada, J. Qi, Y. Chen, Z.H. Zhu, Astron. Astrophys.606, A15 (2017). DOI 10.1051/0004-6361/201730551
  • (37) S. Cao, M. Biesiada, J. Jackson, X. Zheng, Y. Zhao, Z.H. Zhu, J. Cosmol. Astropart. Phys. 2017(2), 012 (2017). DOI 10.1088/1475-7516/2017/02/012
  • (38) S. Cao, M. Biesiada, J. Qi, Y. Pan, X. Zheng, T. Xu, X. Ji, Z.H. Zhu, Eur. Phys. J. C 78(9), 749 (2018). DOI 10.1140/epjc/s10052-018-6197-y
  • (39) X. Li, S. Cao, X. Zheng, J. Qi, M. Biesiada, Z.H. Zhu, arXiv e-prints arXiv:1708.08867 (2017)
  • (40) X. Zheng, M. Biesiada, S. Cao, J. Qi, Z.H. Zhu, JCAP 10, 030 (2017). DOI 10.1088/1475-7516/2017/10/030
  • (41) J.Z. Qi, S. Cao, S. Zhang, M. Biesiada, Y. Wu, Z.H. Zhu, Mon. Not. Roy. Astron. Soc. 483(1), 1104 (2019). DOI 10.1093/mnras/sty3175
  • (42) S. Cao, J. Qi, M. Biesiada, T. Liu, Z.H. Zhu, Astrophys. J. Lett. 888(2), L25 (2020). DOI 10.3847/2041-8213/ab63d6
  • (43) T. Xu, S. Cao, J. Qi, M. Biesiada, X. Zheng, Z.H. Zhu, J. Cosmol. Astropart. Phys. 2018(6), 042 (2018). DOI 10.1088/1475-7516/2018/06/042
  • (44) J.Z. Qi, S. Cao, M. Biesiada, X. Zheng, H. Zhu, Eur. Phys. J. C 77(8), 502 (2017). DOI 10.1140/epjc/s10052-017-5069-1
  • (45) S. Cao, J. Qi, M. Biesiada, X. Zheng, T. Xu, Y. Pan, Z.H. Zhu, Phys. Dark Univ. 24, 100274 (2019). DOI 10.1016/j.dark.2019.100274
  • (46) J.Z. Qi, J.W. Zhao, S. Cao, M. Biesiada, Y. Liu, Mon. Not. R. Astron. Soc. 503(2), 2179 (2021). DOI 10.1093/mnras/stab638
  • (47) S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J.A. Blazek, A.S. Bolton, J.R. Brownstein, A. Burden, C.H. Chuang, J. Comparat, A.J. Cuesta, K.S. Dawson, D.J. Eisenstein, S. Escoffier, H. Gil-Marín, J.N. Grieb, N. Hand, S. Ho, K. Kinemuchi, D. Kirkby, F. Kitaura, E. Malanushenko, V. Malanushenko, C. Maraston, C.K. McBride, R.C. Nichol, M.D. Olmstead, D. Oravetz, N. Padmanabhan, N. Palanque-Delabrouille, K. Pan, M. Pellejero-Ibanez, W.J. Percival, P. Petitjean, F. Prada, A.M. Price-Whelan, B.A. Reid, S.A. Rodríguez-Torres, N.A. Roe, A.J. Ross, N.P. Ross, G. Rossi, J.A. Rubiño-Martín, S. Saito, S. Salazar-Albornoz, L. Samushia, A.G. Sánchez, S. Satpathy, D.J. Schlegel, D.P. Schneider, C.G. Scóccola, H.J. Seo, E.S. Sheldon, A. Simmons, A. Slosar, M.A. Strauss, M.E.C. Swanson, D. Thomas, J.L. Tinker, R. Tojeiro, M.V. Magaña, J.A. Vazquez, L. Verde, D.A. Wake, Y. Wang, D.H. Weinberg, M. White, W.M. Wood-Vasey, C. Yèche, I. Zehavi, Z. Zhai, G.B. Zhao, Mon. Not. R. Astron. Soc. 470(3), 2617 (2017). DOI 10.1093/mnras/stx721
  • (48) P. Carter, F. Beutler, W.J. Percival, C. Blake, J. Koda, A.J. Ross, Mon. Not. R. Astron. Soc. 481(2), 2371 (2018). DOI 10.1093/mnras/sty2405
  • (49) T.M.C. Abbott, et al., Phys. Rev. D 99(12), 123505 (2019). DOI 10.1103/PhysRevD.99.123505
  • (50) M. Ata, F. Baumgarten, J. Bautista, F. Beutler, D. Bizyaev, M.R. Blanton, J.A. Blazek, A.S. Bolton, J. Brinkmann, J.R. Brownstein, E. Burtin, C.H. Chuang, J. Comparat, K.S. Dawson, A. de la Macorra, W. Du, H. du Mas des Bourboux, D.J. Eisenstein, H. Gil-Marín, K. Grabowski, J. Guy, N. Hand, S. Ho, T.A. Hutchinson, M.M. Ivanov, F.S. Kitaura, J.P. Kneib, P. Laurent, J.M. Le Goff, J.E. McEwen, E.M. Mueller, A.D. Myers, J.A. Newman, N. Palanque-Delabrouille, K. Pan, I. Pâris, M. Pellejero-Ibanez, W.J. Percival, P. Petitjean, F. Prada, A. Prakash, S.A. Rodríguez-Torres, A.J. Ross, G. Rossi, R. Ruggeri, A.G. Sánchez, S. Satpathy, D.J. Schlegel, D.P. Schneider, H.J. Seo, A. Slosar, A. Streblyanska, J.L. Tinker, R. Tojeiro, M. Vargas Magaña, M. Vivek, Y. Wang, C. Yèche, L. Yu, P. Zarrouk, C. Zhao, G.B. Zhao, F. Zhu, Mon. Not. R. Astron. Soc. 473(4), 4773 (2018). DOI 10.1093/mnras/stx2630
  • (51) V. de Sainte Agathe, et al., Astron. Astrophys. 629, A85 (2019). DOI 10.1051/0004-6361/201935638
  • (52) Y. Lian, S. Cao, M. Biesiada, Y. Chen, Y. Zhang, W. Guo, Mon. Not. Roy. Astron. Soc. 505(2), 2111 (2021). DOI 10.1093/mnras/stab1373
  • (53) J.Z. Qi, S. Cao, C. Zheng, Y. Pan, Z. Li, J. Li, T. Liu, Phys. Rev. D 99(6), 063507 (2019). DOI 10.1103/PhysRevD.99.063507
  • (54) T. Liu, S. Cao, S. Zhang, X. Gong, W. Guo, C. Zheng, European Physical Journal C 81(10), 903 (2021). DOI 10.1140/epjc/s10052-021-09713-5
  • (55) Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J.P. Bernard, M. Bersanelli, P. Bielewicz, J.J. Bock, J.R. Bond, J. Borrill, F.R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R.C. Butler, E. Calabrese, J.F. Cardoso, J. Carron, A. Challinor, H.C. Chiang, J. Chluba, L.P.L. Colombo, C. Combet, D. Contreras, B.P. Crill, F. Cuttaia, P. de Bernardis, G. de Zotti, J. Delabrouille, J.M. Delouis, E. Di Valentino, J.M. Diego, O. Doré, M. Douspis, A. Ducout, X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson, R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli, K. Ganga, R.T. Génova-Santos, M. Gerbino, T. Ghosh, J. González-Nuevo, K.M. Górski, S. Gratton, A. Gruppuso, J.E. Gudmundsson, J. Hamann, W. Handley, F.K. Hansen, D. Herranz, S.R. Hildebrandt, E. Hivon, Z. Huang, A.H. Jaffe, W.C. Jones, A. Karakci, E. Keihänen, R. Keskitalo, K. Kiiveri, J. Kim, T.S. Kisner, L. Knox, N. Krachmalnicoff, M. Kunz, H. Kurki-Suonio, G. Lagache, J.M. Lamarre, A. Lasenby, M. Lattanzi, C.R. Lawrence, M. Le Jeune, P. Lemos, J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P.B. Lilje, M. Lilley, V. Lindholm, M. López-Caniego, P.M. Lubin, Y.Z. Ma, J.F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P.G. Martin, M. Martinelli, E. Martínez-González, S. Matarrese, N. Mauri, J.D. McEwen, P.R. Meinhold, A. Melchiorri, A. Mennella, M. Migliaccio, M. Millea, S. Mitra, M.A. Miville-Deschênes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli, H.U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, H.V. Peiris, F. Perrotta, V. Pettorino, F. Piacentini, L. Polastri, G. Polenta, J.L. Puget, J.P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha, C. Rosset, G. Roudier, J.A. Rubiño-Martín, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E.P.S. Shellard, C. Sirignano, G. Sirri, L.D. Spencer, R. Sunyaev, A.S. Suur-Uski, J.A. Tauber, D. Tavagnacco, M. Tenti, L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio, B.D. Wandelt, I.K. Wehus, M. White, S.D.M. White, A. Zacchei, A. Zonca, Astron. Astrophys.641, A6 (2020). DOI 10.1051/0004-6361/201833910
  • (56) G. Dvali, M.S. Turner, arXiv e-prints astro-ph/0301510 (2003)
  • (57) T. Barreiro, O. Bertolami, P. Torres, Phys. Rev. D 78, 043530 (2008). DOI 10.1103/PhysRevD.78.043530
  • (58) J. Lu, Y. Gui, L.X. Xu, Eur. Phys. J. C 63, 349 (2009). DOI 10.1140/epjc/s10052-009-1118-8
  • (59) F.C. Santos, V. Soares, M.L. Bedran, Phys. Lett. B 646, 215 (2007). DOI 10.1016/j.physletb.2007.01.038
  • (60) S. Silva e Costa, M. Ujevic, A. Ferreira dos Santos, Gen. Rel. Grav. 40, 1683 (2008). DOI 10.1007/s10714-007-0569-1
  • (61) S. Li, Y. Ma, Y. Chen, Int. J. Mod. Phys. D 18, 1785 (2009). DOI 10.1142/S0218271809015321
  • (62) L. Xu, Y. Wang, H. Noh, European Physical Journal C 72, 1931 (2012). DOI 10.1140/epjc/s10052-012-1931-3
  • (63) H. Li, W. Yang, L. Gai, Astron. Astrophys.623, A28 (2019). DOI 10.1051/0004-6361/201833836
  • (64) U. Debnath, Physics of the Dark Universe 31, 100764 (2021). DOI 10.1016/j.dark.2020.100764
  • (65) X. Zhang, F.Q. Wu, J. Zhang, J. Cosmol. Astropart. Phys. 2006(1), 003 (2006). DOI 10.1088/1475-7516/2006/01/003
  • (66) K. Liao, Y. Pan, Z.H. Zhu, Research in Astronomy and Astrophysics 13(2), 159 (2013). DOI 10.1088/1674-4527/13/2/003
  • (67) J.F. Zhang, M. Zhang, S.J. Jin, J.Z. Qi, X. Zhang, JCAP 09, 068 (2019). DOI 10.1088/1475-7516/2019/09/068
  • (68) F. Salahedin, R. Pazhouhesh, M. Malekjani, European Physical Journal Plus 135(5), 429 (2020). DOI 10.1140/epjp/s13360-020-00429-1
  • (69) A. Al Mamon, V.C. Dubey, K. Bamba, Universe 7(10), 362 (2021). DOI 10.3390/universe7100362
  • (70) W. Li, L. Xu, European Physical Journal C 74, 2765 (2014). DOI 10.1140/epjc/s10052-014-2765-y
  • (71) W. Li, L. Xu, Soviet Journal of Experimental and Theoretical Physics 120(4), 613 (2015). DOI 10.1134/S1063776115020156
  • (72) A. Hernández-Almada, M.A. García-Aspeitia, M.A. Rodríguez-Meza, V. Motta, European Physical Journal C 81(4), 295 (2021). DOI 10.1140/epjc/s10052-021-09104-w
  • (73) G. Risaliti, E. Lusso, Nature Astronomy 3, 272 (2019). DOI 10.1038/s41550-018-0657-z
  • (74) R. Giostri, M. Vargas dos Santos, I. Waga, R.R.R. Reis, M.O. Calvão, B.L. Lago, J. Cosmol. Astropart. Phys. 2012(3), 027 (2012). DOI 10.1088/1475-7516/2012/03/027
  • (75) S. Cao, M. Biesiada, X. Zheng, Z.H. Zhu, Astrophys. J. 806(1), 66 (2015). DOI 10.1088/0004-637X/806/1/66
  • (76) D.J. Eisenstein, W. Hu, Astrophys. J. 496(2), 605 (1998). DOI 10.1086/305424
  • (77) J. Ryan, Y. Chen, B. Ratra, Mon. Not. R. Astron. Soc. 488(3), 3844 (2019). DOI 10.1093/mnras/stz1966
  • (78) S. Cao, J. Ryan, B. Ratra, Mon. Not. Roy. Astron. Soc. 497(3), 3191 (2020). DOI 10.1093/mnras/staa2190
  • (79) D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125(925), 306 (2013). DOI 10.1086/670067
  • (80) N. Khadka, B. Ratra, Mon. Not. R. Astron. Soc. 497(1), 263 (2020). DOI 10.1093/mnras/staa1855
  • (81) P. Wu, H. Yu, J. Cosmol. Astropart. Phys. 2007(3), 015 (2007). DOI 10.1088/1475-7516/2007/03/015
  • (82) W. Li, L. Xu, European Physical Journal C 73, 2471 (2013). DOI 10.1140/epjc/s10052-013-2471-1
  • (83) M. Rezaei, S. Pour-Ojaghi, M. Malekjani, Astrophys. J. 900(1), 70 (2020). DOI 10.3847/1538-4357/aba517
  • (84) T. Yang, A. Banerjee, E. Ó Colgáin, Phys. Rev. D 102(12), 123532 (2020). DOI 10.1103/PhysRevD.102.123532
  • (85) X. Li, R.E. Keeley, A. Shafieloo, X. Zheng, S. Cao, M. Biesiada, Z.H. Zhu, Mon. Not. R. Astron. Soc. 507(1), 919 (2021). DOI 10.1093/mnras/stab2154
  • (86) A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876(1), 85 (2019). DOI 10.3847/1538-4357/ab1422
  • (87) J. Lin, IEEE Transactions on Information Theory 37, 145 (1991)
  • (88) S. Molladavoudi, H. Zainuddin, K.T. Chan, Physics Letters A 376(26-27), 1955 (2012). DOI 10.1016/j.physleta.2012.05.007
  • (89) V. Sahni, T.D. Saini, A.A. Starobinsky, U. Alam, Soviet Journal of Experimental and Theoretical Physics Letters 77(5), 201 (2003). DOI 10.1134/1.1574831
  • (90) V.C. Dubey, U.K. Sharma, New Astronomy 86, 101586 (2021). DOI 10.1016/j.newast.2021.101586
  • (91) Y. Pan, Y. He, J.Z. Qi, J. Li, S. Cao, T. Liu, J. Wang, Astrophys. J. 911(2), 135 (2021). DOI 10.3847/1538-4357/abebe0
  • (92) H. Akaike, IEEE Trans Autom Contr 19, 716 (1974)
  • (93) G. Schwarz, The Annals of Statistics 6 (1978). DOI 10.1214/aos/1176344136
  • (94) A.R. Liddle, Mon. Not. R. Astron. Soc. 377(1), L74 (2007). DOI 10.1111/j.1745-3933.2007.00306.x
  • (95) S. Cao, Z.H. Zhu, R. Zhao, Phys. Rev. D 84(2), 023005 (2011). DOI 10.1103/PhysRevD.84.023005
  • (96) S. Cao, G. Covone, Z.H. Zhu, Astrophys. J. 755(1), 31 (2012). DOI 10.1088/0004-637X/755/1/31
  • (97) F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, Phys. Rev. D 100, 083517 (2019). DOI 10.1103/PhysRevD.100.083517. URL https://link.aps.org/doi/10.1103/PhysRevD.100.083517
  • (98) T. Yang, A. Banerjee, E. Ó Colgáin, Phys. Rev. D 102(12), 123532 (2020). DOI 10.1103/PhysRevD.102.123532
  • (99) H.B. Sandvik, M. Tegmark, M. Zaldarriaga, I. Waga, Phys. Rev. D 69, 123524 (2004). DOI 10.1103/PhysRevD.69.123524. URL https://link.aps.org/doi/10.1103/PhysRevD.69.123524
  • (100) E. Hawkins, S. Maddox, S. Cole, O. Lahav, D.S. Madgwick, P. Norberg, J.A. Peacock, I.K. Baldry, C.M. Baugh, J. Bland-Hawthorn, T. Bridges, R. Cannon, M. Colless, C. Collins, W. Couch, G. Dalton, R. De Propris, S.P. Driver, G. Efstathiou, R.S. Ellis, C.S. Frenk, K. Glazebrook, C. Jackson, B. Jones, I. Lewis, S. Lumsden, W. Percival, B.A. Peterson, W. Sutherland, K. Taylor, Mon. Not. R. Astron. Soc. 346(1), 78 (2003). DOI 10.1046/j.1365-2966.2003.07063.x
  • (101) A. Shafieloo, B. L’Huillier, A.A. Starobinsky, Phys. Rev. D 98(8), 083526 (2018). DOI 10.1103/PhysRevD.98.083526
  • (102) W.J.C. da Silva, R. Silva, Eur. Phys. J. C 81(5), 403 (2021). DOI 10.1140/epjc/s10052-021-09177-7
  • (103) M. Viel, M.G. Haehnelt, V. Springel, Mon. Not. R. Astron. Soc. 354(3), 684 (2004). DOI 10.1111/j.1365-2966.2004.08224.x
  • (104) M. Viel, M.G. Haehnelt, Mon. Not. Roy. Astron. Soc. 365, 231 (2006). DOI 10.1111/j.1365-2966.2005.09703.x
  • (105) A. Cuceu, A. Font-Ribera, B. Joachimi, S. Nadathur, Mon. Not. Roy. Astron. Soc. 506(4), 5439 (2021). DOI 10.1093/mnras/stab1999
  • (106) L. Amendola, M. Kunz, D. Sapone, JCAP 04, 013 (2008). DOI 10.1088/1475-7516/2008/04/013
  • (107) H.J. Seo, D.J. Eisenstein, Astrophys. J. 598, 720 (2003). DOI 10.1086/379122
  • (108) D. Sapone, L. Amendola, arXiv e-prints arXiv:0709.2792 (2007)
  • (109) A. Mantz, S.W. Allen, H. Ebeling, D. Rapetti, Mon. Not. Roy. Astron. Soc. 387, 1179 (2008). DOI 10.1111/j.1365-2966.2008.13311.x
  • (110) L. Pogosian, P.S. Corasaniti, C. Stephan-Otto, R. Crittenden, R. Nichol, Phys. Rev. D 72, 103519 (2005). DOI 10.1103/PhysRevD.72.103519