This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Revisit to solutions for Adler-Bobenko-Suris lattice equations and lattice Boussinesq-type equations

Ke Yan1, Ying-ying Sun2, Song-lin Zhao1∗

1 department of applied mathematics, zhejiang university of technology, hangzhou 310023, p.r. china
2 department of mathematics, university of shanghai for science and technology, shanghai, 200093, p.r. china
*Corresponding Author: [email protected]
Abstract.

Solutions for all Adler-Bobenko-Suris equations excluding Q4\mathrm{Q4} and several lattice Boussinesq-type equations are reconsidered by employing the Cauchy matrix approach. Through introducing a “fake” nonautonomous plane wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions, for the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on 2\mathbb{Z}^{2}, which demonstrate periodic structure.

Key words and phrases:
Cauchy matrix approach, Adler-Bobenko-Suris lattice equations, lattice Boussinesq-type equations, soliton solutions, (semi-)oscillatory solutions

1. Introduction

The concept of multi-dimensional consistency, which was introduced by Nijhoff et al. [28] and consolidated by the work of many others [7, 3, 8, 4, 41] in the early 2000’s, is widely regarded as a significant breakthrough in the field of discrete integrable systems. Among the integrable two-dimensional difference equations, a particularly noteworthy subset is comprised of equations defined on the vertices of 2\mathbb{Z}^{2} lattices that are multi-dimensional consistent. The multi-dimensional consistency property for this type of quadrilateral equation

Q(u,u~,u^,u~^;p,q)=0,\displaystyle Q(u,\widetilde{u},\widehat{u},\widehat{\widetilde{u}};p,q)=0, (1.1)

with a dependent variable denoted by u:=u(n,m)u:=u(n,m) and continuous lattice parameters pp and qq, can be interpreted geometrically as a consistency around the cube (CAC). This property allows for an extension from a quadrilateral to a cube by adding a third dimension, such that the maps are consistent on the cube (see Figure 1). Shorthand notations u~:=u(n+1,m),u^:=u(n,m+1),u~^:=u(n+1,m+1)\widetilde{u}:=u(n+1,m),~{}\widehat{u}:=u(n,m+1),~{}\widehat{\widetilde{u}}:=u(n+1,m+1) are employed in the equation (1.1). Furthermore, when a lattice equation is CAC, the equation itself, its Bäcklund transformation and its Lax pair are directly and explicitly related [5, 23, 9].

(a)(a)u^\widehat{u}u~^\widehat{\widetilde{u}}uuu~\widetilde{u}\drawline(275,2708)(4075,2708) \drawline(3075,3633)(3075,0) \drawline(275,908)(4075,908) \drawline(1275,3633)(1275,0)
(b)(b)u~¯\overline{\widetilde{u}}u¯\overline{u}u^¯\overline{\widehat{u}}u~^\widehat{\widetilde{u}}uuu~^¯\overline{\widehat{\widetilde{u}}}u~\widetilde{u}u^\widehat{u}\drawline(1275,2708)(3075,2708) \drawline(1275,2708)(450,1883) \drawline(450,1883)(450,83) \drawline(3075,2708)(2250,1883) \drawline(450,1883)(2250,1883) \drawline(3075,2633)(3075,908) \dashline60.000(1275,908)(450,83) \dashline60.000(1275,908)(3075,908) \drawline(2250,1883)(2250,83) \drawline(450,83)(2250,83) \drawline(3075,908)(2250,83) \dashline60.000(1275,2633)(1275,908)
Figure 1. (a): The points on which the map is defined, and (b): the consistency cube.

Based on the property of CAC and three additional requirements on lattice equations: affine linear, D4D_{4} symmetry and the so-called ‘tetrahedron property’, a classification of nonlinear integrable discrete equations was performed on the vertices of elementary quadrangle of the 2\mathbb{Z}^{2} lattice [2]. The resulting classification, known as the Adler-Bobenko-Suris (ABS) lattice list, consists of nine lattice equations: H1\mathrm{H1}, H2\mathrm{H2}, H3δ\mathrm{H3}_{\delta}, A1δ\mathrm{A1}_{\delta}, A2\mathrm{A2}, Q1δ\mathrm{Q1}_{\delta}, Q2\mathrm{Q2}, Q3δ\mathrm{Q3}_{\delta}, Q4\mathrm{Q4}. It should be noted that if Q4\mathrm{Q4}, also known as Adler’s equation [1], is excluded from the list, Q3δ can act as a top equation in the ABS list. This implies that other “lower” equations can be obtained from the degenerations of Q3δ\mathrm{Q3}_{\delta} [15] (see Figure 2 in Subsection 2.3). A list of equations is compiled in Appendix A. Among these equations (A.1), some are categorized as lattice Korteweg-de Vries (KdV) type equations. For instance, H1, the “lowest” member in the list, is nothing but the well-known lattice potential Korteweg-de Vries (lpKdV) equation, which firstly appeared as a nonlinear superposition of Bäcklund transformations of the potential KdV equation [37]. In addition, H3δ=0\mathrm{H3}_{\delta=0} corresponds to the lattice potential modified KdV (lpmKdV) equation and Q1δ=0\mathrm{Q1}_{\delta=0} is the lattice Schwarzian KdV (lSKdV) equation, i.e., the cross-ratio equation (see the review paper [25]). It is worth noting that all these three equations can be derived from the Nijhoff-Quispel-Capel (NQC) equation through distinct parameter choices [27].

In addition to the lattice maps with a single component for each lattice site, there exist three-dimensional consistent three-component maps related to the Boussinesq (BSQ) equation (see [38]). The lattice potential BSQ (lpBSQ) equation [36], a member of lattice BSQ-type equations, introduced as the first higher-rank case of the lattice Gel’fand-Dikii hierarchy [26]. The bottom member of this hierarchy is the H1 equation. Similar to the lpKdV equation, the lpBSQ equation can be obtained as nonlinear superposition formulas of the Bäcklund transformations for the potential BSQ equation [33]. Together with the lpBSQ equation, two Miura-related three-component lattice equations, the lattice potential modified BSQ (lpmBSQ) [26] and the lattice Schwarzian BSQ (lSBSQ) equations [22] have been also proposed. It has been found that all these three-component lattice BSQ-type equations possess the CAC property. In [16], a search for integrable lattice multi-component BSQ-type equations was conducted by Hietarinta, resulting in a remarkable classification of integrable BSQ-type equations. It was subsequently proven that all of Hietarinta’s lattice BSQ-type equations arise from the so-called extended lattice BSQ systems [45]. In [20], Hietarinta and Zhang presented a comprehensive review of the lattice BSQ-type equations, which includs continuum limits, Lax representation, Hirota bilinear forms, and soliton solutions in terms of Casoratians, based on the three-component forms on an elementary quadrilateral.

So far many classical methods have been applied to solve the ABS lattice list and lattice BSQ-type equations, such as, the inverse scattering transform [11, 10], the Darboux transform [29, 30, 32], the Hirota’s bilinear method [17, 43, 18, 19], and the Cauchy matrix approach [24, 44, 14]. By virtue of the bilinear method, the fixed point idea was used to construct seed solutions for the nonlinear lattice equations. For the H1\mathrm{H1} equation (A.1f), there are four types of seed solutions, which are

pnqm+μ0,\displaystyle-pn-qm+\mu_{0}, (1.2a)
(1)np/2qm+μ0,\displaystyle(-1)^{n}p/2-qm+\mu_{0}, (1.2b)
pn+(1)mq/2+μ0,\displaystyle-pn+(-1)^{m}q/2+\mu_{0}, (1.2c)
(1)np/2+(1)mq/2+μ0,\displaystyle(-1)^{n}p/2+(-1)^{m}q/2+\mu_{0}, (1.2d)

with constant μ0\mu_{0}\in\mathbb{C}. The first one in (1.2) can be regarded as a linear background solution for H1\mathrm{H1} equation associated with its soliton solutions [17] and the remaining solutions can be employed in the construction of (semi-)oscillatory solutions [40]. We have shown that the lpKdV, lpmKdV and lSKdV equations possess (semi-)oscillatory solutions in [13]. The distinguishing feature among soliton solution, semi-oscillatory solution and oscillatory solution is primarily centered around the main ingradient emerging from the respective solutions, i.e., the following discrete plane wave factor:

linearsolution:pnqm+μ0pn+(1)m2q+μ0(1)n2p+(1)m2q+μ0,planewavefactor:(p+kpk)n(q+kqk)mρ0(p+kpk)nq(1)mkqkρ0p(1)nkpkq(1)mkqkρ0.\displaystyle\begin{array}[]{llclcl}\mathrm{linear~{}solution:}&-pn-qm+\mu_{0}&\to&-pn+\frac{(-1)^{m}}{2}q+\mu_{0}&\to&\frac{(-1)^{n}}{2}p+\frac{(-1)^{m}}{2}q+\mu_{0},\\ \mathrm{plane~{}wave~{}factor:}&\left(\frac{p+k}{p-k}\right)^{n}\left(\frac{q+k}{q-k}\right)^{m}\rho^{0}&\to&\left(\frac{p+k}{p-k}\right)^{n}\frac{q-(-1)^{m}k}{q-k}\rho^{0}&\to&\frac{p-(-1)^{n}k}{p-k}\frac{q-(-1)^{m}k}{q-k}\rho^{0}.\end{array}

In this paper, our aim is to take advantage of the Cauchy matrix approach developed in [24, 44, 14] to study the (semi-)oscillatory solutions of the ABS lattices (A.1) and some lattice BSQ-type equations. In order to derive the (semi-)oscillatory solutions of the ABS lattices, we extend the usual plane wave factor

θ(k)=(p+kpk)n(q+kqk)mρ0,ρ0=constant,\displaystyle\theta(k)=\bigg{(}\frac{p+k}{p-k}\bigg{)}^{n}\bigg{(}\frac{q+k}{q-k}\bigg{)}^{m}\rho^{0},\quad\rho^{0}=\text{constant}, (1.3)

to a “fake” nonautonomous plane wave factor***Here we call (1.4) a “fake” nonautonomous plane wave factor since it has a nonautonomous structure, while it provides the plane wave factor for the autonomous ABS lattices.

ρ(k)=i=0n1(fip+kfipk)j=0m1(gjq+kgjqk)ρ0,\displaystyle\rho(k)=\prod^{n-1}_{i=0}\bigg{(}\frac{f_{i}p+k}{f_{i}p-k}\bigg{)}\prod^{m-1}_{j=0}\bigg{(}\frac{g_{j}q+k}{g_{j}q-k}\bigg{)}\rho^{0}, (1.4)

where fi:=f(i)f_{i}:=f(i) and gj:=g(j)g_{j}:=g(j) are discrete functions satisfying the conditions fi2=gj2=1f_{i}^{2}=g_{j}^{2}=1. When fi=gj=1f_{i}=g_{j}=1, (1.4) reduces to (1.3) which can be used to generate soliton solutions of the ABS lattice equations in the framework of the Cauchy matrix method (cf. [24, 44]). We will show that the other choices, such as (fi,gj)=((1)i,(1)j)(f_{i},g_{j})=((-1)^{i},(-1)^{j}) or (1,(1)j)(1,(-1)^{j}), could lead to oscillatory solutions or semi-oscillatory solutions for the ABS lattice equations. Similarly, for constructing the (semi-)oscillatory solutions to the lattice BSQ-type equations, we will resort to the discrete functions l:=(l)\mathcal{F}_{l}:=\mathcal{F}(l) and 𝒢h:=𝒢(h)\mathcal{G}_{h}:=\mathcal{G}(h) satisfying the conditions l3=𝒢h3=1\mathcal{F}_{l}^{3}=\mathcal{G}_{h}^{3}=1 and the “fake” nonautonomous plane wave factors

ϱ(k)=l=0n1(lp+klp+ωk)h=0m1(𝒢hq+k𝒢hq+ωk)ϱ0,\displaystyle\varrho(k)=\prod^{n-1}_{l=0}\bigg{(}\frac{\mathcal{F}_{l}p+k}{\mathcal{F}_{l}p+\omega k}\bigg{)}\prod^{m-1}_{h=0}\bigg{(}\frac{\mathcal{G}_{h}q+k}{\mathcal{G}_{h}q+\omega k}\bigg{)}\varrho^{0}, (1.5a)
σ(k)=l=0n1(lp+klp+ω2k)h=0m1(𝒢hq+k𝒢hq+ω2k)σ0,\displaystyle\sigma(k)=\prod^{n-1}_{l=0}\bigg{(}\frac{\mathcal{F}_{l}p+k}{\mathcal{F}_{l}p+\omega^{2}k}\bigg{)}\prod^{m-1}_{h=0}\bigg{(}\frac{\mathcal{G}_{h}q+k}{\mathcal{G}_{h}q+\omega^{2}k}\bigg{)}\sigma^{0}, (1.5b)

where parameter ω1\omega\neq 1 is a cubic root of unity and ϱ0,σ0\varrho^{0},~{}\sigma^{0} are constants.

This paper is organized as follows. In Section 2, we begin by considering a determining equation set (DES), which is associated with the “fake” nonautonomous plane wave factor (1.4). From this, we introduce several master functions S(i,j),S(a,b)S^{(i,j)},~{}S(a,b) and V(a)V(a) and use them to derive closed-form lattice KdV-type equations. We also present soliton and (semi-)oscillatory solutions to Q3δ\mathrm{Q3}_{\delta}, which can be degenerated to construct solutions for all the ”lower” equations in the ABS list. Section 3 focuses on soliton and (semi-)oscillatory solutions of the lattice BSQ-type equations. Section 4 provides conclusions and some remarks. Finally, three appendices are included to supplement this paper.

2. The ABS lattice equations and solutions

In this section, we perform the Cauchy matrix scheme to reconsider the solutions for the ABS lattices in (A.1). In contrast to the conventional Cauchy matrix approach (cf. [24, 44]), our methodology begins with an enhanced plane wave factor (1.4). This approach yields a minimum of three distinct solution types: solitons, oscillatory solutions and semi-oscillatory solutions for the ABS lattice equations (A.1).

2.1. The Sylvester equation and master functions

To proceed, we initially consider the following DES

𝑲𝑴+𝑴𝑲=𝒓t𝒄,\displaystyle\bm{K}\bm{M}+\bm{M}\bm{K}=\bm{r}\,\,^{t}\hskip-2.0pt{\bm{c}}, (2.1a)
(fnp𝑰𝑲)𝒓~=(fnp𝑰+𝑲)𝒓,\displaystyle(f_{n}p\bm{I}-\bm{K})\widetilde{\bm{r}}=(f_{n}p\bm{I}+\bm{K})\bm{r}, (2.1b)
(gmq𝑰𝑲)𝒓^=(gmq𝑰+𝑲)𝒓,\displaystyle(g_{m}q\bm{I}-\bm{K})\widehat{\bm{r}}=(g_{m}q\bm{I}+\bm{K})\bm{r}, (2.1c)

in which 𝑴N×N\bm{M}\in\mathbb{C}_{N\times N} and 𝒓N×1\bm{r}\in\mathbb{C}_{N\times 1} are undetermined matrices depending on independent variables nn and mm, 𝒄t1×N\,{}^{t}\hskip-2.0pt{\bm{c}}\in\mathbb{C}_{1\times N} and 𝑲N×N\bm{K}\in\mathbb{C}_{N\times N} are non-trivial constant matrices. In order to ensure that the Sylvester equation is solvable (2.1a), we make the assumption that (𝑲)(𝑲)=\mathcal{E}(\bm{K})\bigcap\mathcal{E}(-\bm{K})=\varnothing, where (𝑲)\mathcal{E}(\bm{K}) denotes eigenvalue sets of the matrix 𝑲\bm{K} (cf. [34, 6]). Note that throughout this paper, the unit matrix denoted by 𝑰\bm{I} will be utilized, with the index indicating its size being omitted.

Now we introduce some master functions

S(i,j)=t𝒄𝑲j(𝑰+𝑴)1𝑲i𝒓,i,j,\displaystyle S^{(i,j)}=\,^{t}\hskip-2.0pt{\bm{c}}\,\bm{K}^{j}(\bm{I}+\bm{M})^{-1}\bm{K}^{i}\bm{r},\quad i,j\in\mathbb{Z}, (2.2a)
S(a,b)=t𝒄(b𝑰+𝑲)1(𝑰+𝑴)1(a𝑰+𝑲)1𝒓,a,b,\displaystyle S(a,b)=\,^{t}\hskip-2.0pt{\bm{c}}(b\bm{I}+\bm{K})^{-1}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r},\quad a,b\in\mathbb{C}, (2.2b)
V(a)=1t𝒄(𝑰+𝑴)1(a𝑰+𝑲)1𝒓,\displaystyle V(a)=1-\,^{t}\hskip-2.0pt{\bm{c}}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r}, (2.2c)

which play a crucial role in the construction of closed-form lattice equations.

In terms of the Sylvester equation (2.1a), we have the following symmetric properties (see [44]), i.e.,

S(i,j)=S(j,i),S(a,b)=S(b,a),\displaystyle S^{(i,j)}=S^{(j,i)},\quad S(a,b)=S(b,a), (2.3a)
V(a)=1t𝒄(𝑰+𝑴)1(a𝑰+𝑲)1𝒓=1t𝒄(a𝑰+𝑲)1(𝑰+𝑴)1𝒓,\displaystyle V(a)=1-\,^{t}\hskip-2.0pt{\bm{c}}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r}=1-\,^{t}\hskip-2.0pt{\bm{c}}(a\bm{I}+\bm{K})^{-1}(\bm{I}+\bm{M})^{-1}\bm{r}, (2.3b)

which remain invariant under similarity transformations. Indeed, suppose that matrix 𝑲¯\bar{\bm{K}} is similar to 𝑲\bm{K} using a transformation matrix 𝑻\bm{T}, i.e.,

𝑲¯=𝑻𝑲𝑻1.\displaystyle\bar{\bm{K}}=\bm{T}\bm{K}\bm{T}^{-1}. (2.4a)
We denote
𝑴¯=𝑻𝑴𝑻1,𝒓¯=𝑻𝒓,𝒄t¯=t𝒄𝑻1.\displaystyle\bar{\bm{M}}=\bm{T}\bm{M}\bm{T}^{-1},~{}~{}\bar{\bm{r}}=\bm{T}\bm{r},~{}~{}\bar{\,{}^{t}\hskip-2.0pt{\bm{c}}}=\,^{t}\hskip-2.0pt{\bm{c}}\bm{T}^{-1}. (2.4b)

and then we easily get

S(i,j)=t𝒄𝑲j(𝑰+𝑴)1𝑲i𝒓=𝒄t¯𝑲¯j(𝑰+𝑴¯)1𝑲¯i𝒓¯,\displaystyle S^{(i,j)}=\,^{t}\hskip-2.0pt{\bm{c}}\bm{K}^{j}(\bm{I}+\bm{M})^{-1}\bm{K}^{i}\bm{r}=\bar{\,{}^{t}\hskip-2.0pt{\bm{c}}}\bar{\bm{K}}^{j}(\bm{I}+\bar{\bm{M}})^{-1}\bar{\bm{K}}^{i}\bar{\bm{r}}, (2.5a)
S(a,b)=t𝒄(b𝑰+𝑲)1(𝑰+𝑴)1(a𝑰+𝑲)1𝒓\displaystyle S(a,b)=\,^{t}\hskip-2.0pt{\bm{c}}(b\bm{I}+\bm{K})^{-1}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r}
=𝒄t¯(b𝑰+𝑲¯)1(𝑰+𝑴¯)1(a𝑰+𝑲¯)1𝒓¯,\displaystyle\qquad\quad=\bar{\,{}^{t}\hskip-2.0pt{\bm{c}}}(b\bm{I}+\bar{\bm{K}})^{-1}(\bm{I}+\bar{\bm{M}})^{-1}(a\bm{I}+\bar{\bm{K}})^{-1}\bar{\bm{r}}, (2.5b)
V(a)=1t𝒄(𝑰+𝑴)1(a𝑰+𝑲)1𝒓=1𝒄t¯(𝑰+𝑴¯)1(a𝑰+𝑲¯)1𝒓¯,\displaystyle V(a)=1-\,^{t}\hskip-2.0pt{\bm{c}}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r}=1-\bar{\,{}^{t}\hskip-2.0pt{\bm{c}}}(\bm{I}+\bar{\bm{M}})^{-1}(a\bm{I}+\bar{\bm{K}})^{-1}\bar{\bm{r}}, (2.5c)

thus establishing the similarity invariance of these master functions.

By the DES (2.1) we can derive shift relations for the fundamental functions (2.2). As for the shift relations associated with the master function S(i,j)S^{(i,j)}, the results are presented in the following proposition.

Proposition 1.

For the master function S(i,j)S^{(i,j)} defined by (2.2a), provided that the matrices 𝐌,𝐊\bm{M},\bm{K} and vectors 𝐫,t𝐜\bm{r},\,^{t}\hskip-2.0pt{\bm{c}} satisfy the DES (2.1), the following relations

fnpS~(i,j)S~(i,j+1)=fnpS(i,j)+S(i+1,j)S(0,j)S~(i,0),\displaystyle f_{n}p\widetilde{S}^{(i,j)}-\widetilde{S}^{(i,j+1)}=f_{n}pS^{(i,j)}+S^{(i+1,j)}-S^{(0,j)}\widetilde{S}^{(i,0)}, (2.6a)
gmqS^(i,j)S^(i,j+1)=gmqS(i,j)+S(i+1,j)S(0,j)S^(i,0),\displaystyle g_{m}q\widehat{S}^{(i,j)}-\widehat{S}^{(i,j+1)}=g_{m}qS^{(i,j)}+S^{(i+1,j)}-S^{(0,j)}\widehat{S}^{(i,0)}, (2.6b)

pertaining the shift operators ~\widetilde{\phantom{a}} and ^\widehat{\phantom{a}} are valid.

Proof.

Here we just demonstrate the first shift relation, since the second one is a similar relation with the replacements of pp by qq, ~\widetilde{\phantom{a}} by ^\widehat{\phantom{a}}, and fnf_{n} by gmg_{m}.

To begin, we consider the shift relation of 𝑴\bm{M}. Subtracting (2.1a) from (2.1a)~\widetilde{\phantom{a}}, and using (2.1a) and (2.1b), we have

(fnp𝑰𝑲)𝑴~=(fnp𝑰+𝑲)𝑴.\displaystyle(f_{n}p\bm{I}-\bm{K})\widetilde{\bm{M}}=(f_{n}p\bm{I}+\bm{K})\bm{M}. (2.7)

Substituting the Sylvester equation (2.1a) into (2.7) to replace 𝑲𝑴\bm{K}\bm{M}, we arrive at

(fnp𝑰𝑲)𝑴~𝑴(fnp𝑰𝑲)=𝒓t𝒄.\displaystyle(f_{n}p\bm{I}-\bm{K})\widetilde{\bm{M}}-\bm{M}(f_{n}p\bm{I}-\bm{K})=\bm{r}\,^{t}\hskip-2.0pt{\bm{c}}. (2.8)

To construct the shift relation (2.6a), we introduce an auxiliary vector function

𝒖(i)=(𝑰+𝑴)1𝑲i𝒓,i,\displaystyle\bm{u}^{(i)}=(\bm{I}+\bm{M})^{-1}\bm{K}^{i}\bm{r},\quad i\in\mathbb{Z}, (2.9)

which relates to S(i,j)S^{(i,j)} by

S(i,j)=t𝒄𝑲j𝒖(i).\displaystyle S^{(i,j)}=\,^{t}\hskip-2.0pt{\bm{c}}\,\bm{K}^{j}\bm{u}^{(i)}. (2.10)

Multiplying both sides of (2.9) from the left by the matrix (𝑰+𝑴)(\bm{I}+\bm{M}) and taking ~\widetilde{\phantom{a}}-shift, then the utilization of (2.8) leads to

(fnp𝑰𝑲)𝒖~(i)=fnp𝒖(i)+𝒖(i+1)𝒖(0)S~(i,0),\displaystyle(f_{n}p\bm{I}-\bm{K})\widetilde{\bm{u}}^{(i)}=f_{n}p\bm{u}^{(i)}+\bm{u}^{(i+1)}-\bm{u}^{(0)}\widetilde{S}^{(i,0)}, (2.11)

which moreover yields (2.6a) by left multiplying 𝒄t𝑲j\,{}^{t}\hskip-2.0pt{\bm{c}}\bm{K}^{j} and using (2.10). ∎

Noting that the symmetric property (2.3a), one can easily deduce the other two shift relations

fnpS~(i,j)S~(i+1,j)=fnpS(i,j)+S(i,j+1)S(i,0)S~(0,j),\displaystyle f_{n}p\widetilde{S}^{(i,j)}-\widetilde{S}^{(i+1,j)}=f_{n}pS^{(i,j)}+S^{(i,j+1)}-S^{(i,0)}\widetilde{S}^{(0,j)}, (2.12a)
gmqS^(i,j)S^(i+1,j)=gmqS(i,j)+S(i,j+1)S(i,0)S^(0,j).\displaystyle g_{m}q\widehat{S}^{(i,j)}-\widehat{S}^{(i+1,j)}=g_{m}qS^{(i,j)}+S^{(i,j+1)}-S^{(i,0)}\widehat{S}^{(0,j)}. (2.12b)

The following proposition reveals the shift relations of the master functions S(a,b)S(a,b) and V(a)V(a).

Proposition 2.

For the master functions S(a,b)S(a,b) and V(a)V(a) defined by (2.2b) and (2.2c), provided that the matrices 𝐌,𝐊\bm{M},\bm{K} and vectors 𝐫,t𝐜\bm{r},\,^{t}\hskip-2.0pt{\bm{c}} satisfy the DES (2.1), the following relations

1(fnp+b)S~(a,b)+(fnpa)S(a,b)=V~(a)V(b),\displaystyle 1-(f_{n}p+b)\widetilde{S}(a,b)+(f_{n}p-a)S(a,b)=\widetilde{V}(a)V(b), (2.13a)
1(gmq+b)S^(a,b)+(gmqa)S(a,b)=V^(a)V(b).\displaystyle 1-(g_{m}q+b)\widehat{S}(a,b)+(g_{m}q-a)S(a,b)=\widehat{V}(a)V(b). (2.13b)

pertaining the shift operators ~\widetilde{\phantom{a}} and ^\widehat{\phantom{a}} are valid.

Proof.

We introduce an auxiliary vector function

𝒖(a)=(𝑰+𝑴)1(a𝑰+𝑲)1𝒓,\displaystyle\bm{u}(a)=(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{K})^{-1}\bm{r}, (2.14)

namely

(𝑰+𝑴)𝒖(a)=(a𝑰+𝑲)1𝒓.\displaystyle(\bm{I}+\bm{M})\bm{u}(a)=(a\bm{I}+\bm{K})^{-1}\bm{r}. (2.15)

Multiplying (2.15)~\widetilde{\phantom{a}} from the left by a factor fnp𝑰𝑲f_{n}p\bm{I}-\bm{K} and using (2.8), then we have

(fnp𝑰𝑲)𝒖~(a)=(fnpa)𝒖(a)+𝒖(0)V~(a),\displaystyle(f_{n}p\bm{I}-\bm{K})\widetilde{\bm{u}}(a)=(f_{n}p-a)\bm{u}(a)+\bm{u}^{(0)}\widetilde{V}(a), (2.16)

which yields (2.13a) after left-multiplying (2.16) by 𝒄t(b𝑰+𝑲)1\,{}^{t}\hskip-2.0pt{\bm{c}}(b\bm{I}+\bm{K})^{-1} and using formulas S(a,b)=t𝒄(b𝑰+𝑲)1𝒖(a)S(a,b)=\,^{t}\hskip-2.0pt{\bm{c}}(b\bm{I}+\bm{K})^{-1}\bm{u}(a) and V(b)=1t𝒄(b𝑰+𝑲)1𝒖(0)V(b)=1-\,^{t}\hskip-2.0pt{\bm{c}}(b\bm{I}+\bm{K})^{-1}\bm{u}^{(0)}. The relation (2.13b) can be derived from (2.13a) by replacing (p,~,fn)(p,\widetilde{\phantom{a}},f_{n}) by (q,^,gm)(q,\widehat{\phantom{a}},g_{m}). Thus we finish the verification. ∎

In a similar manner, noticing the symmetric property (2.3), we also have

1(fnp+a)S~(a,b)+(fnpb)S(a,b)=V(a)V~(b),\displaystyle 1-(f_{n}p+a)\widetilde{S}(a,b)+(f_{n}p-b)S(a,b)=V(a)\widetilde{V}(b), (2.17a)
1(gmq+a)S^(a,b)+(gmqb)S(a,b)=V(a)V^(b).\displaystyle 1-(g_{m}q+a)\widehat{S}(a,b)+(g_{m}q-b)S(a,b)=V(a)\widehat{V}(b). (2.17b)

2.2. The lattice KdV-type equations and NQC equation

We now introduce some variables

w=S(0,0),v=S(1,0)1,z=S(1,1)i=0n1(fip)1j=0m1(gjq)1+z0,\displaystyle w=S^{(0,0)},\quad v=S^{(-1,0)}-1,\quad z=S^{(-1,-1)}-\sum_{i=0}^{n-1}(f_{i}p)^{-1}-\sum_{j=0}^{m-1}(g_{j}q)^{-1}+z_{0}, (2.18)

where z0z_{0}\in\mathbb{C}. By a similar discussion as that in [24], some lattice KdV-type equations can be obtained from shift relations (2.6), (2.12), (2.13) and (2.17), expressed in a closed-form and presented below.

1. lpKdV equation:

(fnpgmq+w^w~)(fnp+gmq+ww~^)=p2q2,\displaystyle(f_{n}p-g_{m}q+\widehat{w}-\widetilde{w})(f_{n}p+g_{m}q+w-\widehat{\widetilde{w}})=p^{2}-q^{2}, (2.19a)
which is rewritten as
(μ^μ~)(μμ~^)=p2q2,\displaystyle(\widehat{\mu}-\widetilde{\mu})(\mu-\widehat{\widetilde{\mu}})=p^{2}-q^{2}, (2.19b)

under the point transformation

μ=wi=0n1fipj=0m1gjq+μ0,μ0.\displaystyle\mu=w-\sum_{i=0}^{n-1}f_{i}p-\sum_{j=0}^{m-1}g_{j}q+\mu_{0},\quad\mu_{0}\in\mathbb{C}. (2.20)

2. lpmKdV equation:

v~^(fnpv~gmqv^)=v(fnpv^gmqv~),\displaystyle\widehat{\widetilde{v}}(f_{n}p\widetilde{v}-g_{m}q\widehat{v})=v(f_{n}p\widehat{v}-g_{m}q\widetilde{v}), (2.21a)
which is rewritten as
ν(pν^qν~)=ν~^(pν~qν^),\displaystyle\nu(p\widehat{\nu}-q\widetilde{\nu})=\widehat{\widetilde{\nu}}(p\widetilde{\nu}-q\widehat{\nu}), (2.21b)

under the point transformation

ν=i=0n1fij=0m1gj1v.\displaystyle\nu=\prod^{n-1}_{i=0}f_{i}\prod^{m-1}_{j=0}g^{-1}_{j}v. (2.22)

3. lSKdV equation:

p2(zz~)(z^z~^)=q2(zz^)(z~z~^).\displaystyle p^{2}(z-\widetilde{z})(\widehat{z}-\widehat{\widetilde{z}})=q^{2}(z-\widehat{z})(\widetilde{z}-\widehat{\widetilde{z}}). (2.23)

4. “nonautonomous” NQC equation:

1(fnp+b)S~^(a,b)+(fnpa)S^(a,b)1(gmq+b)S~^(a,b)+(gmqa)S~(a,b)=1(gmq+a)S^(a,b)+(gmqb)S(a,b)1(fnp+a)S~(a,b)+(fnpb)S(a,b).\displaystyle\frac{1-(f_{n}p+b)\widehat{\widetilde{S}}(a,b)+(f_{n}p-a)\widehat{S}(a,b)}{1-(g_{m}q+b)\widehat{\widetilde{S}}(a,b)+(g_{m}q-a)\widetilde{S}(a,b)}=\frac{1-(g_{m}q+a)\widehat{S}(a,b)+(g_{m}q-b)S(a,b)}{1-(f_{n}p+a)\widetilde{S}(a,b)+(f_{n}p-b)S(a,b)}. (2.24)

Remark 1. In the above lattice KdV-type equations, equations (2.19a) and (2.21a) are autonomous, since they can be transformed into equations (2.19b) and (2.21b) through transformations (2.20) and (2.22), respectively. The lSKdV equation (2.23) itself is autonomous. However, for the NQC equation (2.24), it is autonomous when fn=gm=1f_{n}=g_{m}=1, while it is nonautonomous when fn=(1)nf_{n}=(-1)^{n} or gm=(1)mg_{m}=(-1)^{m} since it can not be transformed to the autonomous version.

Remark 2. According to different values of fif_{i} and gjg_{j}, the term i=0n1fipj=0m1gjq+μ0-\sum\limits_{i=0}^{n-1}f_{i}p-\sum\limits_{j=0}^{m-1}g_{j}q+\mu_{0} in (2.20) becomes diverse seed solutions (1.2) for the equation (2.19b), i.e.,

μ={linear seed solution:npmq+μ0,iffi=gj=1,oscillatory seed solution:(1)np/2+(1)mq/2+μ0,iffi=(1)i,gj=(1)j,semi-oscillatory seed solution:np+(1)mq/2+μ0,iffi=1,gj=(1)j,semi-oscillatory seed solution:(1)np/2mq+μ0,iffi=(1)i,gj=1.\displaystyle\mu=\begin{cases}\text{linear seed solution}:-np-mq+\mu_{0},~{}&\text{if}\quad f_{i}=g_{j}=1,\\ \text{oscillatory seed solution}:(-1)^{n}p/2+(-1)^{m}q/2+\mu_{0},~{}&\text{if}\quad f_{i}=(-1)^{i},~{}g_{j}=(-1)^{j},\\ \text{semi-oscillatory seed solution}:-np+(-1)^{m}q/2+\mu_{0},~{}&\text{if}\quad f_{i}=1,~{}g_{j}=(-1)^{j},\\ \text{semi-oscillatory seed solution}:(-1)^{n}p/2-mq+\mu_{0},~{}&\text{if}\quad f_{i}=(-1)^{i},~{}g_{j}=1.\end{cases}

2.3. Q3δ\mathrm{Q3}_{\delta} and degeneration

It is well-established that the autonomous NQC equation yields a 4-to-1 relationship solution for both Q3δ=0\mathrm{Q3}_{\delta=0} and Q3δ\mathrm{Q3}_{\delta} depending on the sign choices of two additional parameters, aa and bb [24]. Despite the NQC equation (2.24) is nonautonomous when fn=(1)nf_{n}=(-1)^{n} or gm=(1)mg_{m}=(-1)^{m}, we present evidence that this equation still provides a four-term solution to Q3δ\mathrm{Q3}_{\delta}.

Theorem 1.

The function

u=Aϝ(a,b)[1(a+b)S(a,b)]+Bϝ(a,b)[1(ab)S(a,b)]+Cϝ(a,b)[1+(ab)S(a,b)]+Dϝ(a,b)[1+(a+b)S(a,b)]\displaystyle\begin{split}u=&A\digamma(a,b)\left[1-(a+b)S(a,b)\right]+B\digamma(a,-b)\left[1-(a-b)S(a,-b)\right]\\ &+C\digamma(-a,b)\left[1+(a-b)S(-a,b)\right]+D\digamma(-a,-b)\left[1+(a+b)S(-a,-b)\right]\end{split} (2.25)

solves Q3δ\mathrm{Q3}_{\delta} (A.1a), where S(±a,±b)S(\pm a,\pm b) are the solutions of the NQC equation (2.24) with parameters ±a\pm a, ±b\pm b. The function ϝ(a,b)\digamma(a,b) is defined by

ϝ(a,b)=i=0n1(P(fipa)(fipb))j=0m1(Q(gjqa)(gjqb)),\displaystyle\digamma(a,b)=\prod^{n-1}_{i=0}\bigg{(}\frac{P}{(f_{i}p-a)(f_{i}p-b)}\bigg{)}\prod^{m-1}_{j=0}\bigg{(}\frac{Q}{(g_{j}q-a)(g_{j}q-b)}\bigg{)}, (2.26)

and P,QP,Q are given by (A.2); and AA, BB, CC and DD are constants subject to a single constraint:

AD(a+b)2BC(ab)2=δ2/(16ab).\displaystyle AD(a+b)^{2}-BC(a-b)^{2}=-\delta^{2}/(16ab). (2.27)

The proof of Theorem 1 can be demonstrated in a manner analogous to that presented in [24]. Consequently, the proof is omitted herein.

Similarly to the rational soliton case described in [24], it is possible to derive solutions for the “lower” lattice equations Q2\mathrm{Q2}, Q1δ\mathrm{Q1}_{\delta}, H3δ\mathrm{H3}_{\delta}, H2\mathrm{H2} and H1\mathrm{H1} equations from the solution for Q3δ\mathrm{Q3}_{\delta} by adjusting the parameters aa and bb and appropriately modifying the coefficients AA, BB, CC, and DD. This process follows the scheme depicted in Figure 2.

Q3δ\textstyle{\boxed{\mathrm{Q3_{\delta}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q2\textstyle{\boxed{\mathrm{Q2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q1δ\textstyle{\boxed{\mathrm{Q1_{\delta}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H3δ\textstyle{\boxed{\mathrm{H3_{\delta}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2\textstyle{\boxed{\mathrm{H2}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1\textstyle{\boxed{\mathrm{H1}}}

FIGURE. 2 Degeneration relations

The upper horizontal sequence in this scheme, involving the degenerations of the Q\mathrm{Q} equations, is obtained from performing careful limits of the type bab\rightarrow a, while the vertical limit from Q\mathrm{Q} to H\mathrm{H} equations is obtained from the limits aa or b0b\rightarrow 0.

Q3δQ2\mathrm{Q3}_{\delta}\rightarrow\mathrm{Q2}: Inserting the degeneration

b=a(12ϵ),uδ(1/ϵ+1+(1+2u)ϵ)/(4a2)\displaystyle b=a(1-2\epsilon),\quad u\rightarrow\delta\left(1/\epsilon+1+(1+2u)\epsilon\right)/(4a^{2}) (2.28)

into Q3δ\mathrm{Q3}_{\delta} leads to the Q2\mathrm{Q2}. Meanwhile, the four constants A,B,CA,B,C and DD, constrained by (2.27) are replaced by three new constants AA, DD and ξ0\xi_{0} as

AδAϵ/(4a2),Bδ(1/ϵ+1ξ0+((3+ξ02)/2+2AD)ϵ)/(8a2),\displaystyle A\rightarrow\delta A\epsilon/(4a^{2}),\quad B\rightarrow\delta\left(1/\epsilon+1-\xi_{0}+((3+\xi_{0}^{2})/2+2AD)\epsilon\right)/(8a^{2}), (2.29)
Cδ(1/ϵ+1+ξ0+((3+ξ02)/2+2AD)ϵ)/(8a2),DδDϵ/(4a2).\displaystyle C\rightarrow\delta\left(1/\epsilon+1+\xi_{0}+((3+\xi_{0}^{2})/2+2AD)\epsilon\right)/(8a^{2}),\quad D\rightarrow\delta D\epsilon/(4a^{2}). (2.30)

Then the solution to Q2\mathrm{Q2} reads

u=\displaystyle u= ((ξ+ξ0)2+1)/4+a(ξ+ξ0)S(a,a)+a2(Z(a,a)+Z(a,a))+AD\displaystyle((\xi+\xi_{0})^{2}+1)/4+a(\xi+\xi_{0})S(-a,a)+a^{2}\left(Z(a,-a)+Z(-a,a)\right)+AD (2.31)
+(Aρ(a)(12aS(a,a))+Dρ(a)(1+2aS(a,a)))/2,\displaystyle+\big{(}A\rho(a)(1-2aS(a,a))+D\rho(-a)(1+2aS(-a,-a))\big{)}/2, (2.32)

where

ξ=ξn,m=2a(i=0n1(fip)/(a2p2)+j=0m1(gjq)/(a2q2)),\displaystyle\xi=\xi_{n,m}=2a\left(\sum^{n-1}_{i=0}(f_{i}p)/(a^{2}-p^{2})+\sum^{m-1}_{j=0}(g_{j}q)/(a^{2}-q^{2})\right), (2.33a)
Z(a,a)=bS(a,b)|b=a,Z(a,a)=Z(a,a)|aa,\displaystyle Z(a,-a)=-\partial_{b}S(a,b)|_{b=-a},\quad Z(-a,a)=Z(a,-a)|_{a\rightarrow-a}, (2.33b)
ρ(a)=i=0n1(fip+afipa)j=0m1(gjq+agjqa).\displaystyle\rho(a)=\prod^{n-1}_{i=0}\bigg{(}\frac{f_{i}p+a}{f_{i}p-a}\bigg{)}\prod^{m-1}_{j=0}\bigg{(}\frac{g_{j}q+a}{g_{j}q-a}\bigg{)}. (2.33c)

Q2Q1δ\mathrm{Q2}\rightarrow\mathrm{Q1}_{\delta}: By taking the degeneration

uδ2/(4ϵ2)+u/ϵ,\displaystyle u\rightarrow\delta^{2}/(4\epsilon^{2})+u/\epsilon, (2.34)

one can deduce the Q1δ\mathrm{Q1}_{\delta} from Q2\mathrm{Q2}. Replacing constants AA, DD and ξ0\xi_{0} by

A2A/ϵ,D2D/ϵ,ξ0ξ0+2B/ϵ,\displaystyle A\rightarrow 2A/\epsilon,\quad D\rightarrow 2D/\epsilon,\quad\xi_{0}\rightarrow\xi_{0}+2B/\epsilon, (2.35)

then we find the solutions for Q1δ\mathrm{Q1}_{\delta}

u=Aρ(a)(12aS(a,a))+B(ξ+ξ0+2aS(a,a))+Dρ(a)(1+2aS(a,a)),\displaystyle u=A\rho(a)(1-2aS(a,a))+B(\xi+\xi_{0}+2aS(-a,a))+D\rho(-a)(1+2aS(-a,-a)), (2.36)

where the constants A,B,DA,B,D and ξ0\xi_{0} satisfy the constraint

AD+B2/4=δ2/16.\displaystyle AD+B^{2}/4=\delta^{2}/16. (2.37)

Q3δH3δ\mathrm{Q3}_{\delta}\rightarrow\mathrm{H3}_{\delta}: Implementing

b=1/ϵ2,uδϵ3u/2\displaystyle b=1/\epsilon^{2},\quad u\rightarrow\sqrt{\delta}\epsilon^{3}u/2 (2.38)

and

Aϵ3δA/2,Bϵ3δB/2,Cϵ3δC/2,Dϵ3δD/2,\displaystyle A\rightarrow\epsilon^{3}\sqrt{\delta}A/2,\quad B\rightarrow\epsilon^{3}\sqrt{\delta}B/2,\quad C\rightarrow\epsilon^{3}\sqrt{\delta}C/2,\quad D\rightarrow\epsilon^{3}\sqrt{\delta}D/2, (2.39)

the solution to H3δ\mathrm{H3}_{\delta} is formulated as

u=(A+(1)n+mB)ϑV(a)+((1)n+mC+D)ϑ1V(a),\displaystyle u=(A+(-1)^{n+m}B)\vartheta V(a)+((-1)^{n+m}C+D)\vartheta^{-1}V(-a), (2.40)

in which function ϑ\vartheta is

ϑ=i=0n1(Pafip)j=0m1(Qagjq),\displaystyle\vartheta=\prod^{n-1}_{i=0}\left(\frac{P}{a-f_{i}p}\right)\prod^{m-1}_{j=0}\left(\frac{Q}{a-g_{j}q}\right), (2.41)

where P,QP,Q are defined by (A.3) and the constants AA, BB, CC and DD are subject to a single constraint

ADBC=δ/(4a).\displaystyle AD-BC=-\delta/(4a). (2.42)

Q2H2\mathrm{Q2}\rightarrow\mathrm{H2}: To derive the solution proposed by H2\mathrm{H2} from that formulated by Q2\mathrm{Q2}, we consider

a=1/ϵ,u1/4+ϵ2u.\displaystyle a=1/\epsilon,\quad u\rightarrow 1/4+\epsilon^{2}u. (2.43)

The degenerations of the constants A,DA,D and ξ0\xi_{0} are

AA(ϵ+ζ1ϵ2/2),DA(ϵ+ζ1ϵ2/2),ξ0ϵζ0,\displaystyle A\rightarrow A(\epsilon+\zeta_{1}\epsilon^{2}/2),\quad D\rightarrow A(-\epsilon+\zeta_{1}\epsilon^{2}/2),\quad\xi_{0}\rightarrow\epsilon\zeta_{0}, (2.44)

where AA, ζ0\zeta_{0} and ζ1\zeta_{1} are unconstraint constants. The H2 solution is described as

u=(ζ+ζ0)2/4(ζ+ζ0)S(0,0)+2S(0,1)A2+(1)n+mA(ζ+ζ12S(0,0)),\displaystyle u=(\zeta+\zeta_{0})^{2}/4-(\zeta+\zeta_{0})S^{(0,0)}+2S^{(0,1)}-A^{2}+(-1)^{n+m}A(\zeta+\zeta_{1}-2S^{(0,0)}), (2.45)

where ζ=2(i=0n1fip+j=0m1gjq)\zeta=2\big{(}\sum\limits^{n-1}_{i=0}f_{i}p+\sum\limits^{m-1}_{j=0}g_{j}q\big{)}.

Q1δH1\mathrm{Q1}_{\delta}\rightarrow\mathrm{H1}: The degeneration from Q1δ\mathrm{Q1}_{\delta} solution to H1\mathrm{H1} solution can be obtained by setting

a=1/ϵ,uϵδu,\displaystyle a=1/\epsilon,\quad u\rightarrow\epsilon\delta u, (2.46)

as well as

AδA(1+ζ1ϵ)/2,DδA(1+ζ1ϵ)/2,BδB,ξ0ϵζ0.\displaystyle A\rightarrow\delta A(1+\zeta_{1}\epsilon)/2,\quad D\rightarrow\delta A(-1+\zeta_{1}\epsilon)/2,\quad B\rightarrow\delta B,\quad\xi_{0}\rightarrow\epsilon\zeta_{0}. (2.47)

The resulting solution of H1\mathrm{H1} is of the form

u=B(ζ+ζ02S(0,0))+(1)n+mA(ζ+ζ12S(0,0)),\displaystyle u=B(\zeta+\zeta_{0}-2S^{(0,0)})+(-1)^{n+m}A(\zeta+\zeta_{1}-2S^{(0,0)}), (2.48)

where ζ0\zeta_{0}, ζ1\zeta_{1}, AA and BB subject to a single constraint

A2B2=1/4.\displaystyle A^{2}-B^{2}=-1/4. (2.49)

2.4. Exact solutions

According to the analysis of the above subsections, we recognize that solutions to the ABS list (A.1) are given by the master functions S(i,j),S(a,b)S^{(i,j)},S(a,b) and V(a)V(a), where 𝒄t,𝒓,𝑴\,{}^{t}\hskip-2.0pt{\bm{c}},\bm{r},\bm{M} and 𝑲\bm{K} are defined by the DES (2.1). Therefore, to derive exact solutions for these equations, we just need to solve the DES (2.1). Because of the similarity invariance of these master functions and the covariance of the DES (2.1) under transformations (2.4), here we turn to solve (2.1) with 𝑲\bm{K} being its Jordan canonical form, i.e.

𝚪𝑴+𝑴𝚪=𝒓t𝒄,\displaystyle\bm{\Gamma}\bm{M}+\bm{M}\bm{\Gamma}=\bm{r}\,\,^{t}\hskip-2.0pt{\bm{c}}, (2.50a)
(fnp𝑰𝚪)𝒓~=(fnp𝑰+𝚪)𝒓,\displaystyle(f_{n}p\bm{I}-\bm{\Gamma})\widetilde{\bm{r}}=(f_{n}p\bm{I}+\bm{\Gamma})\bm{r}, (2.50b)
(gmq𝑰𝚪)𝒓^=(gmq𝑰+𝚪)𝒓,\displaystyle(g_{m}q\bm{I}-\bm{\Gamma})\widehat{\bm{r}}=(g_{m}q\bm{I}+\bm{\Gamma})\bm{r}, (2.50c)

where 𝚪\bm{\Gamma} is the Jordan canonical form of the matrix 𝑲\bm{K}, satisfying (𝚪)(𝚪)=\mathcal{E}(\bm{\Gamma})\bigcap\mathcal{E}(-\bm{\Gamma})=\varnothing.

Equations (2.50b) and (2.50c) are linear and imply

𝒓=(fnp𝑰+𝚪)(fnp𝑰𝚪)1(gmq𝑰+𝚪)(gmq𝑰𝚪)1𝒓0,\displaystyle\bm{r}=(f_{n}p\bm{I}+\bm{\Gamma})(f_{n}p\bm{I}-\bm{\Gamma})^{-1}(g_{m}q\bm{I}+\bm{\Gamma})(g_{m}q\bm{I}-\bm{\Gamma})^{-1}\bm{r}^{0}, (2.51)

where 𝒓0\bm{r}^{0} is a NN-th constant column vector. Since the Sylvester equation (2.50a) was solved by factorizing 𝑴\bm{M} into triplet 𝑭𝑮𝑯\bm{F}\bm{G}\bm{H} in [44], here we just list the most general mixed solutions for 𝒓\bm{r} and 𝑴\bm{M} (A set of notations is given in the Appendix B).

Theorem 2.

For the equation set (2.50) with generic

𝚪=Diag(𝚪D[N1]({kj}1N1),𝚪J[N2](kN1+1),𝚪J[N3](kN1+2),,𝚪J[Ns](kN1+(s1)))\displaystyle\bm{\Gamma}=\mathrm{Diag}\bigl{(}\bm{\Gamma}^{\hbox{\tiny{[{\it{N${}_{1}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{j}\}^{N_{1}}_{1}),\bm{\Gamma}^{\hbox{\tiny{[{\it{N${}_{2}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+1}),\bm{\Gamma}^{\hbox{\tiny{[{\it{N${}_{3}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+2}),\cdots,\bm{\Gamma}^{\hbox{\tiny{[{\it{N${}_{s}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+(s-1)})\bigr{)} (2.52)

and

t𝒄=(c1,c2,,cN1,cN1+1,,cN1+N2++Ns),\displaystyle\,^{t}\hskip-2.0pt{\bm{c}}=(c_{1},c_{2},\cdots,c_{N_{1}},c_{N_{1}+1},\cdots,c_{N_{1}+N_{2}+\cdots+N_{s}}), (2.53)

we have solutions

𝒓=(𝒓D[N1]({kj}1N1)𝒓J[N2](kN1+1)𝒓J[N3](kN1+2)𝒓J[Ns](kN1+(s1))),𝑴=𝑭𝑮𝑯,\displaystyle\bm{r}=\left(\begin{array}[]{c}\bm{r}_{\hbox{\tiny{{\it{D}}}}}^{\hbox{\tiny{[{\it{N${}_{1}$}}]}}}(\{k_{j}\}_{1}^{N_{1}})\\ \bm{r}_{\hbox{\tiny{{\it{J}}}}}^{\hbox{\tiny{[{\it{N${}_{2}$}}]}}}(k_{N_{1}+1})\\ \bm{r}_{\hbox{\tiny{{\it{J}}}}}^{\hbox{\tiny{[{\it{N${}_{3}$}}]}}}(k_{N_{1}+2})\\ \vdots\\ \bm{r}_{\hbox{\tiny{{\it{J}}}}}^{\hbox{\tiny{[{\it{N${}_{s}$}}]}}}(k_{N_{1}+(s-1)})\end{array}\right),~{}~{}~{}\bm{M}=\bm{F}\bm{G}\bm{H}, (2.54f)
where
𝑭=Diag(𝑭D[N1]({kj}1N1),𝑭J[N2](kN1+1),𝑭J[N3](kN1+2),,𝑭J[Ns](kN1+(s1))),\displaystyle\bm{F}=\mathrm{Diag}\bigl{(}\bm{F}^{\hbox{\tiny{[{\it{N${}_{1}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{j}\}^{N_{1}}_{1}),\bm{F}^{\hbox{\tiny{[{\it{N${}_{2}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+1}),\bm{F}^{\hbox{\tiny{[{\it{N${}_{3}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+2}),\cdots,\bm{F}^{\hbox{\tiny{[{\it{N${}_{s}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{N_{1}+(s-1)})\bigr{)}, (2.54g)
𝑯=Diag(𝑯D[N1]({cj}1N1),𝑯J[N2]({cj}N1+1N1+N2),,𝑯J[Ns]({cj}N1+N2++Ns1+1N1+N2++Ns)),\displaystyle\bm{H}=\mathrm{Diag}\bigl{(}\bm{H}^{\hbox{\tiny{[{\it{N${}_{1}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{c_{j}\}^{N_{1}}_{1}),\bm{H}^{\hbox{\tiny{[{\it{N${}_{2}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(\{c_{j}\}^{N_{1}+N_{2}}_{N_{1}+1}),\cdots,\bm{H}^{\hbox{\tiny{[{\it{N${}_{s}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(\{c_{j}\}^{N_{1}+N_{2}+\cdots+N_{s}}_{N_{1}+N_{2}+\cdots+N_{s-1}+1})\bigr{)}, (2.54h)
and 𝑮\bm{G} is a symmetric matrix with block structure
𝑮=𝑮T=(𝑮i,j)s×s\displaystyle\bm{G}=\bm{G}^{T}=(\bm{G}_{i,j})_{s\times s} (2.54i)
with
𝑮1,1=𝑮D[N1]({kj}1N1),𝑮1,j=𝑮j,1T=𝑮DJ[N1,Nj]({kj}1N1;kNj1+1),(1<js),𝑮i,j=𝑮j,iT=𝑮JJ[Ni,Nj](kNi1+1,kNj1+1),(1<ijs).\displaystyle\begin{array}[]{ll}\bm{G}_{1,1}=\bm{G}^{\hbox{\tiny{[{\it{N${}_{1}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{j}\}^{N_{1}}_{1}),&{}\\ \bm{G}_{1,j}=\bm{G}_{j,1}^{T}=\bm{G}^{\hbox{\tiny{[{\it{N${}_{1}$,N${}_{j}$}}]}}}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{j}\}^{N_{1}}_{1};k_{N_{j-1}+1}),&~{}~{}(1<j\leq s),\\ \bm{G}_{i,j}=\bm{G}_{j,i}^{T}=\bm{G}^{\hbox{\tiny{[{\it{N${}_{i}$,N${}_{j}$}}]}}}_{\hbox{\tiny{{\it{JJ}}}}}(k_{N_{i-1}+1},k_{N_{j-1}+1}),&~{}~{}(1<i\leq j\leq s).\end{array} (2.54m)

Besides, in addition to 𝚪\bm{\Gamma}, 𝐜t\,{}^{t}\hskip-2.0pt{\bm{c}}, 𝐫\bm{r} and 𝐌\bm{M} mentioned above, the pair

{𝒜𝒓,𝒜𝑴}\displaystyle\{\mathcal{A}\bm{r},\,\mathcal{A}\bm{M}\} (2.55)

with the same 𝚪\bm{\Gamma} and 𝐜t\,{}^{t}\hskip-2.0pt{\bm{c}} is also a solution to the equation set (2.50). 𝒜\mathcal{A} in (2.55) is of the form

𝒜=Diag(𝑰,𝒜2,𝒜3,,𝒜s),\mathcal{A}=\mathrm{Diag}(\bm{I},\mathcal{A}_{2},\mathcal{A}_{3},\cdots,\mathcal{A}_{s}),

in which 𝒜j\mathcal{A}_{j} is a NjN_{j}-th order constant lower triangular Toeplitz matrix (cf. [42, 46]).

Remark 3. When fn=gm=1f_{n}=g_{m}=1, we obtain the usual soliton-Jordan mixed solutions, which have been reported in [44]. While when fn=(1)nf_{n}=(-1)^{n} or gm=(1)mg_{m}=(-1)^{m}, then we can get the (semi-)oscillatory solutions for the ABS lattice list (A.1).

Next several examples of solutions for the lpKdV (or H1\mathrm{H1}) equation (2.19b) are listed, with the notation

ρij=ρicj,eA12=(k1k2k1+k2)2,η1=i=0n12fipp2k12+j=0m12gjqq2k12.\displaystyle\rho_{ij}=\rho_{i}c_{j},\quad e^{A_{12}}=\bigg{(}\frac{k_{1}-k_{2}}{k_{1}+k_{2}}\bigg{)}^{2},\quad\eta_{1}=\sum^{n-1}_{i=0}\frac{2f_{i}p}{p^{2}-k_{1}^{2}}+\sum^{m-1}_{j=0}\frac{2g_{j}q}{q^{2}-k_{1}^{2}}. (2.56)

In the case of 𝚪=k1\bm{\Gamma}=k_{1}, we have

μ=2k1ρ112k1+ρ11i=0n1fipj=0m1gjq+μ0.\displaystyle\mu=\frac{2k_{1}\rho_{11}}{2k_{1}+\rho_{11}}-\sum_{i=0}^{n-1}f_{i}p-\sum_{j=0}^{m-1}g_{j}q+\mu_{0}. (2.57)

In the case of 𝚪=Diag(k1,k2)\bm{\Gamma}=\mathrm{Diag}(k_{1},k_{2}), the corresponding solution reads

μ=4k1k2(ρ11+ρ22)+2(k1+k2)eA12ρ11ρ224k1k2+2k2ρ11+2k1ρ22+eA12ρ11ρ22i=0n1fipj=0m1gjq+μ0.\displaystyle\mu=\frac{4k_{1}k_{2}(\rho_{11}+\rho_{22})+2(k_{1}+k_{2})e^{A_{12}}\rho_{11}\rho_{22}}{4k_{1}k_{2}+2k_{2}\rho_{11}+2k_{1}\rho_{22}+e^{A_{12}}\rho_{11}\rho_{22}}-\sum_{i=0}^{n-1}f_{i}p-\sum_{j=0}^{m-1}g_{j}q+\mu_{0}. (2.58)

In the case of 𝚪=(k101k1)\bm{\Gamma}=\left(\begin{array}[]{cc}k_{1}&0\\ 1&k_{1}\end{array}\right), we get the simplest Jordan-block solution

μ=16(ρ11+k14η1ρ12)4k1ρ12216k14+8k13(ρ11+η1ρ12)8k12ρ12ρ122i=0n1fipj=0m1gjq+μ0.\displaystyle\mu=\frac{16(\rho_{11}+k_{1}^{4}\eta_{1}\rho_{12})-4k_{1}\rho_{12}^{2}}{16k_{1}^{4}+8k_{1}^{3}(\rho_{11}+\eta_{1}\rho_{12})-8k_{1}^{2}\rho_{12}-\rho_{12}^{2}}-\sum_{i=0}^{n-1}f_{i}p-\sum_{j=0}^{m-1}g_{j}q+\mu_{0}. (2.59)

The solutions (2.57)-(2.59) have a linear or (semi-)oscillatory background part i=0n1fipj=0m1gjq+μ0-\sum\limits_{i=0}^{n-1}f_{i}p-\sum\limits_{j=0}^{m-1}g_{j}q+\mu_{0}. In order to show the figures of these solutions we ignore this part and only illustrate the first part ww. Figure 3 exhibits the solution ww with a linear seed solution pnqm+μ0-pn-qm+\mu_{0}, where we have taken fi=gj=1f_{i}=g_{j}=1 in the background part.


[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)                (b)                 (c)
FIGURE 3. Shape and motion of solutions ww given by (2.57)-(2.59) with p=0.1,q=0.2p=0.1,q=0.2 and ρi0cj=1\rho_{i}^{0}c_{j}=1: (a) One-soliton solution (2.57) with k1=0.7k_{1}=0.7; (b) Two-soliton solution (2.58) with k1=0.7k_{1}=0.7 and k2=0.6k_{2}=0.6; (c) Jordan-block solution (2.59) with k1=0.7k_{1}=0.7.

For (fi,gj)=((1)i,(1)j)(f_{i},g_{j})=((-1)^{i},(-1)^{j}), ww (also μ\mu) takes four constant values on all elementary quadrilaterals on 2\mathbb{Z}^{2} in terms of the parity of nn and mm. For instance, ww given by (2.57) can be expressed in Table 1.

(n,m)(n,m) Solution ww
(even,even) w=2k1ρ10c12k1+ρ10c1w=\frac{2k_{1}\rho^{0}_{1}c_{1}}{2k_{1}+\rho^{0}_{1}c_{1}}
(odd,even) w=2k1(p+k1)ρ10c12k1(pk1)+(p+k1)ρ10c1w=\frac{2k_{1}(p+k_{1})\rho^{0}_{1}c_{1}}{2k_{1}(p-k_{1})+(p+k_{1})\rho^{0}_{1}c_{1}}
(even,odd) w=2k1(q+k1)ρ10c12k1(qk1)+(q+k1)ρ10c1w=\frac{2k_{1}(q+k_{1})\rho^{0}_{1}c_{1}}{2k_{1}(q-k_{1})+(q+k_{1})\rho^{0}_{1}c_{1}}
(odd,odd) w=2k1(p+k1)(q+k1)ρ10c12k1(pk1)(qk1)+(p+k1)(q+k1)ρ10c1w=\frac{2k_{1}(p+k_{1})(q+k_{1})\rho^{0}_{1}c_{1}}{2k_{1}(p-k_{1})(q-k_{1})+(p+k_{1})(q+k_{1})\rho^{0}_{1}c_{1}}

TABLE 1. ww given by (2.57) as (fi,gj)=((1)i,(1)j)(f_{i},g_{j})=((-1)^{i},(-1)^{j}).

It is worth to mention that for a given variable ww, the other three values in Table 1 are appropriately associated with w~\widetilde{w}, w^\widehat{w} and w~^\widehat{\widetilde{w}}. In addition, ww possesses periodic property for the discrete independent variable nn or mm with minimal positive period 22. Solution for H1 in this case is sketched in Figure 4. These properties also hold for the solutions to lpmKdV (2.21), lSKdV (2.23), nonautonomous NQC (2.24) and other equations in the ABS list (A.1). Figure 5 depicts the behavior of semi-oscillatory solution given by (2.57) with (fi,gj)=(1,(1)j)(f_{i},g_{j})=(1,(-1)^{j}).


[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)                 (b)                 (c)
FIGURE 4. Oscillatory solution ww given by (2.57) with p=0.1,q=0.2,k1=0.5p=0.1,q=0.2,k_{1}=0.5 and ρ10c1=1\rho_{1}^{0}c_{1}=1: (a) Shape and motion; (b) Oscillatory solution at m=2m=2; (c) Oscillatory solution at n=2n=2.


[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)                 (b)                 (c)
FIGURE 5. Semi-oscillatory solution ww given by (2.57) with p=0.1,q=0.2,k1=0.15p=0.1,q=0.2,k_{1}=0.15 and ρ10c1=1\rho_{1}^{0}c_{1}=1: (a) Shape and motion; (b) Semi-oscillatory solution at m=2m=2; (c) Semi-oscillatory solution at n=2n=-2.

3. Lattice BSQ-type equations and solutions

In this section, we deal with the Cauchy matrix approach for solving the lattice equations of the BSQ-type. Analogous to the ABS case, here we start from the “fake” nonautonomous plane wave factors (1.5). When n=𝒢m=1\mathcal{F}_{n}=\mathcal{G}_{m}=1, the plane wave factors (1.5) become

ϱn,m=(p+kp+ωk)n(q+kq+ωk)mϱ0,σn,m=(p+kp+ω2k)n(q+kq+ω2k)mσ0,\displaystyle\varrho_{n,m}=\bigg{(}\frac{p+k}{p+\omega k}\bigg{)}^{n}\bigg{(}\frac{q+k}{q+\omega k}\bigg{)}^{m}\varrho^{0},\quad\sigma_{n,m}=\bigg{(}\frac{p+k}{p+\omega^{2}k}\bigg{)}^{n}\bigg{(}\frac{q+k}{q+\omega^{2}k}\bigg{)}^{m}\sigma^{0}, (3.1)

firstly proposed in the direct linearizing transform for the lattice Gel’fand-Dikii hierarchy [26]. When n=ωn\mathcal{F}_{n}=\omega^{n} or 𝒢m=ωm\mathcal{G}_{m}=\omega^{m}, since ω3=1\omega^{3}=1, they are

ϱn,m=p+ω1nkp+ωk(q+kq+ωk)mϱ0,σn,m=p+kp+ωnk(q+kq+ω2k)mσ0,ifn=ωn,𝒢m=1,\displaystyle\varrho_{n,m}=\frac{p+\omega^{1-n}k}{p+\omega k}\bigg{(}\frac{q+k}{q+\omega k}\bigg{)}^{m}\varrho^{0},\quad\sigma_{n,m}=\frac{p+k}{p+\omega^{-n}k}\bigg{(}\frac{q+k}{q+\omega^{2}k}\bigg{)}^{m}\sigma^{0},\quad\text{if}~{}\mathcal{F}_{n}=\omega^{n},~{}\mathcal{G}_{m}=1, (3.2a)
ϱn,m=(p+kp+ωk)nq+ω1mkq+ωkϱ0,σn,m=(p+kp+ω2k)nq+kq+ωmkσ0,ifn=1,𝒢m=ωm,\displaystyle\varrho_{n,m}=\bigg{(}\frac{p+k}{p+\omega k}\bigg{)}^{n}\frac{q+\omega^{1-m}k}{q+\omega k}\varrho^{0},\quad\sigma_{n,m}=\bigg{(}\frac{p+k}{p+\omega^{2}k}\bigg{)}^{n}\frac{q+k}{q+\omega^{-m}k}\sigma^{0},\quad\text{if}~{}\mathcal{F}_{n}=1,~{}\mathcal{G}_{m}=\omega^{m},\ (3.2b)
ϱn,m=p+ω1nkp+ωkq+ω1mkq+ωkϱ0,σn,m=p+kp+ωnkq+kq+ωmkσ0,ifn=ωn,𝒢m=ωm.\displaystyle\varrho_{n,m}=\frac{p+\omega^{1-n}k}{p+\omega k}\frac{q+\omega^{1-m}k}{q+\omega k}\varrho^{0},\quad\sigma_{n,m}=\frac{p+k}{p+\omega^{-n}k}\frac{q+k}{q+\omega^{-m}k}\sigma^{0},\quad\text{if}~{}\mathcal{F}_{n}=\omega^{n},~{}\mathcal{G}_{m}=\omega^{m}. (3.2c)

Results collected in this section are based on Ref. [14].

3.1. DES and master functions

Let us consider the following DES

𝑳𝑴+𝑴𝑳=𝒓t𝒔,\displaystyle\bm{L}\bm{M}+\bm{M}\bm{L}^{\prime}=\bm{r}\,^{t}\hskip-2.0pt{\bm{s}}, (3.3a)
𝒓~=(np𝑰+𝑳)𝒓,𝒓^=(𝒢mq𝑰+𝑳)𝒓,\displaystyle\widetilde{\bm{r}}=(\mathcal{F}_{n}p\bm{I}+\bm{L})\bm{r},\quad\widehat{\bm{r}}=(\mathcal{G}_{m}q\bm{I}+\bm{L})\bm{r}, (3.3b)
𝒔t~=t𝒔(np𝑰𝑳)1,𝒔t^=t𝒔(𝒢mq𝑰𝑳)1,\displaystyle\widetilde{\,{}^{t}\hskip-2.0pt{\bm{s}}}=\,^{t}\hskip-2.0pt{\bm{s}}(\mathcal{F}_{n}p\bm{I}-\bm{L}^{\prime})^{-1},\quad\widehat{\,{}^{t}\hskip-2.0pt{\bm{s}}}=\,^{t}\hskip-2.0pt{\bm{s}}(\mathcal{G}_{m}q\bm{I}-\bm{L}^{\prime})^{-1}, (3.3c)

where functions n,𝒢m\mathcal{F}_{n},~{}\mathcal{G}_{m} satisfy n3=𝒢m3=1\mathcal{F}_{n}^{3}=\mathcal{G}_{m}^{3}=1; p,qp,~{}q\in\mathbb{C} are lattice parameters; 𝑳=Diag(𝑳1,𝑳2)\bm{L}=\text{Diag}(\bm{L}_{1},\ \bm{L}_{2}), 𝑳=Diag(ω𝑳1,ω2𝑳2)\bm{L}^{\prime}=\text{Diag}(-\omega\bm{L}_{1},\ -\omega^{2}\bm{L}_{2}) are known constant matrices with ω2+ω+1=0\omega^{2}+\omega+1=0 while 𝑴,𝒓\bm{M},\ \bm{r} and 𝒔t\,{}^{t}\hskip-2.0pt{\bm{s}} depend on (n,m)(n,m). We suppose that 𝑳iNi×Ni,(i=1,2)\bm{L}_{i}\in\mathbb{C}_{N_{i}\times N_{i}},~{}(i=1,2) satisfy (𝑳1)(ω𝑳1)=\mathcal{E}(\bm{L}_{1})\bigcap\mathcal{E}(\omega\bm{L}_{1})=\varnothing, (𝑳2)(ω2𝑳2)=\mathcal{E}(\bm{L}_{2})\bigcap\mathcal{E}(\omega^{2}\bm{L}_{2})=\varnothing and (𝑳1)(ω2𝑳2)=\mathcal{E}(\bm{L}_{1})\bigcap\mathcal{E}(\omega^{2}\bm{L}_{2})=\varnothing, where N1+N2=NN_{1}+N_{2}=N.

To proceed, we introduce the following similarity invariant quantities involving the matrix 𝑴\bm{M}:

W(i,j)(a,b)=t𝒔(b𝑰+𝑳)j(𝑰+𝑴)1(a𝑰+𝑳)i𝒓,\displaystyle W^{(i,j)}(a,b)=\,^{t}\hskip-2.0pt{\bm{s}}(b\bm{I}+\bm{L}^{\prime})^{j}(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{L})^{i}\bm{r}, (3.4)

for i,ji,~{}j\in\mathbb{Z} and a,ba,~{}b\in\mathbb{C}. For the shift relations of the master function W(i,j)(a,b)W^{(i,j)}(a,b), we have the following result.

Proposition 3.

For the master function W(i,j)(a,b)W^{(i,j)}(a,b) defined by (3.4) with 𝐌,𝐋,𝐋,𝐫,t𝐬\bm{M},\bm{L},\bm{L}^{\prime},\bm{r},\,^{t}\hskip-2.0pt{\bm{s}} satisfying DES (3.3), the following relations

(np+b)W~(i,j)(a,b)W~(i,j+1)(a,b)=(npa)W(i,j)(a,b)+W(i+1,j)(a,b)\displaystyle(\mathcal{F}_{n}p+b)\widetilde{W}^{(i,j)}(a,b)-\widetilde{W}^{(i,j+1)}(a,b)=(\mathcal{F}_{n}p-a)W^{(i,j)}(a,b)+W^{(i+1,j)}(a,b)
W~(i,0)(a,b)W(0,j)(a,b),\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad-\widetilde{W}^{(i,0)}(a,b)W^{(0,j)}(a,b), (3.5a)
[h=12(np+ωh(bE1))W(i,j)(a,b)]=[h=12(np+ωh(E2a))W~(i,j)(a,b)]\displaystyle\bigg{[}\prod_{h=1}^{2}\left(\mathcal{F}_{n}p+\omega^{h}(b-E_{1})\right)W^{(i,j)}(a,b)\bigg{]}=\bigg{[}\prod_{h=1}^{2}\left(\mathcal{F}_{n}p+\omega^{h}(E_{2}-a)\right)\widetilde{W}^{(i,j)}(a,b)\bigg{]}
l=12ωl[h=2l(np+ωh1(bE1))W(i,0)(a,b)][h=l+12(np+ωh(E2a))W~(0,j)(a,b)],\displaystyle~{}-\sum_{l=1}^{2}\omega^{l}\bigg{[}\prod_{h=2}^{l}\left(\mathcal{F}_{n}p+\omega^{h-1}(b-E_{1})\right)W^{(i,0)}(a,b)\bigg{]}\cdot\bigg{[}\prod_{h=l+1}^{2}\left(\mathcal{F}_{n}p+\omega^{h}(E_{2}-a)\right)\widetilde{W}^{(0,j)}(a,b)\bigg{]}, (3.5b)

involving the shift ~\widetilde{\phantom{a}} hold. Operators E1,E2E_{1},~{}E_{2} in (3.5) are defined by their actions on the indices ii and jj: E1W(i,j)(a,b)=W(i,j+1)(a,b)E_{1}W^{(i,j)}(a,b)=W^{(i,j+1)}(a,b) and E2W(i,j)(a,b)=W(i+1,j)(a,b)E_{2}W^{(i,j)}(a,b)=W^{(i+1,j)}(a,b). These equations also hold when (p,~,n)(p,\widetilde{\phantom{a}},\mathcal{F}_{n}) is replaced by (q,^,𝒢m)(q,\widehat{\phantom{a}},\mathcal{G}_{m}).

Proof.

Let us first pay attention to the Sylvester equation (3.3a), i.e.,

𝑳𝑴+𝑴𝑳=𝒓t𝒔.\displaystyle\bm{L}\bm{M}+\bm{M}\bm{L}^{\prime}=\bm{r}\,^{t}\hskip-2.0pt{\bm{s}}. (3.6)

Subtracting (np𝑰+𝑳)1(\mathcal{F}_{n}p\bm{I}+\bm{L})^{-1}*(3.6) from (3.6)~(np𝑰𝑳)1\widetilde{\eqref{BSQ-SE-1}}*(\mathcal{F}_{n}p\bm{I}-\bm{L}^{\prime})^{-1}, then we have

𝑴~(np𝑰𝑳)=(np𝑰+𝑳)𝑴,\displaystyle\widetilde{\bm{M}}(\mathcal{F}_{n}p\bm{I}-\bm{L}^{\prime})=(\mathcal{F}_{n}p\bm{I}+\bm{L})\bm{M}, (3.7)

which gives rise to

𝑴~𝑴=𝒓𝒔t~,\displaystyle\widetilde{\bm{M}}-\bm{M}=\bm{r}\widetilde{\,{}^{t}\hskip-2.0pt{\bm{s}}}, (3.8)

in the light of the ~\widetilde{\phantom{a}}-shift of the Sylvester equation (3.3a). We now introduce an auxiliary vector function

𝒗(i)(a)=(𝑰+𝑴)1(a𝑰+𝑳)i𝒓.\displaystyle\bm{v}^{(i)}(a)=(\bm{I}+\bm{M})^{-1}(a\bm{I}+\bm{L})^{i}\bm{r}. (3.9)

Applying (3.8) on the vector function 𝒗(i)(a)\bm{v}^{(i)}(a) and through direct calculation, we find

𝒗~(i)(a)=(npa)𝒗(i)(a)+𝒗(i+1)(a)W~(i,0)(a,b)𝒗(0)(a),\displaystyle\widetilde{\bm{v}}^{(i)}(a)=(\mathcal{F}_{n}p-a)\bm{v}^{(i)}(a)+\bm{v}^{(i+1)}(a)-\widetilde{W}^{(i,0)}(a,b)\bm{v}^{(0)}(a), (3.10a)
[h=13(ωhnp𝑰𝑳)𝒗(i)(a)]=[h=12(np+ωh(E3a))𝒗~(i)(a)]\displaystyle\bigg{[}\prod_{h=1}^{3}(\omega^{h}\mathcal{F}_{n}p\bm{I}-\bm{L}^{\prime})\bm{v}^{(i)}(a)\bigg{]}=\bigg{[}\prod_{h=1}^{2}(\mathcal{F}_{n}p+\omega^{h}(E_{3}-a))\widetilde{\bm{v}}^{(i)}(a)\bigg{]}
l=12ωl[h=2l(np+ωh1(bE1))W(i,0)(a,b)][h=l+12(np+ωh(E3a))𝒗~(0)(a)],\displaystyle-\sum_{l=1}^{2}\omega^{l}\bigg{[}\prod_{h=2}^{l}(\mathcal{F}_{n}p+\omega^{h-1}(b-E_{1}))W^{(i,0)}(a,b)\bigg{]}\cdot\bigg{[}\prod_{h=l+1}^{2}(\mathcal{F}_{n}p+\omega^{h}(E_{3}-a))\widetilde{\bm{v}}^{(0)}(a)\bigg{]}, (3.10b)

where operator E3E_{3} is defined by E3𝒗(i)(a)=𝒗(i+1)(a)E_{3}\bm{v}^{(i)}(a)=\bm{v}^{(i+1)}(a). Furthermore, multiplying (3.10) from the left by the row vector 𝒔t(b𝑰+𝑳)j\,{}^{t}\hskip-2.0pt{\bm{s}}(b\bm{I}+\bm{L}^{\prime})^{j}, we arrive at the shift relations for master functions W(i,j)(a,b)W^{(i,j)}(a,b). ∎

3.2. Lattice BSQ-type equations

With the ~\widetilde{\phantom{a}}-shift relations (3.10) as well as their ^\widehat{\phantom{a}}-qq counterparts in hand, we can construct several lattice BSQ-type equations. To do this, we introduce the objects:

va:=W(1,0)(a,0)1,wb:=W(0,1)(0,b)1,\displaystyle v_{a}:=W^{(-1,0)}(a,0)-1,\quad w_{b}:=W^{(0,-1)}(0,b)-1, (3.11a)
sa:=W(1,1)(a,0)a,tb:=W(1,1)(0,b)b,\displaystyle s_{a}:=W^{(-1,1)}(a,0)-a,\quad t_{b}:=W^{(1,-1)}(0,b)-b, (3.11b)
ra:=W(1,2)(a,0)a2,zb:=W(2,1)(0,b)b2,\displaystyle r_{a}:=W^{(-1,2)}(a,0)-a^{2},\quad z_{b}:=W^{(2,-1)}(0,b)-b^{2}, (3.11c)
and
W(i,j)=W(i,j)(0,0),η=W(0,0),sa,b=W(1,1)(a,b)(a+b)1,\displaystyle W^{(i,j)}=W^{(i,j)}(0,0),\quad\eta=W^{(0,0)},\quad s_{a,b}=W^{(-1,-1)}(a,b)-(a+b)^{-1}, (3.11d)

with bab\neq-a. For the sake of describing the lattice equations, we denote G(a,b)=a3+b3G(a,b)=a^{3}+b^{3}. The equations are presented in the following manner. (For the detailed calculation, one can refer to [14].)

1. lattice equations with η,va\eta,~{}v_{a} and sas_{a}:

s~a=(np+η)v~a(npa)va,s^a=(𝒢mq+η)v^a(𝒢mqa)va,\displaystyle\widetilde{s}_{a}=(\mathcal{F}_{n}p+\eta)\widetilde{v}_{a}-(\mathcal{F}_{n}p-a)v_{a},\quad\widehat{s}_{a}=(\mathcal{G}_{m}q+\eta)\widehat{v}_{a}-(\mathcal{G}_{m}q-a)v_{a}, (3.12a)
(np+𝒢mqη~^+sa/va)(np𝒢mq+η^η~)=(pa(1)v~aqa(1)v^a)/va,\displaystyle(\mathcal{F}_{n}p+\mathcal{G}_{m}q-\widehat{\widetilde{\eta}}+s_{a}/v_{a})(\mathcal{F}_{n}p-\mathcal{G}_{m}q+\widehat{\eta}-\widetilde{\eta})=(p^{(1)}_{a}\widetilde{v}_{a}-q^{(1)}_{a}\widehat{v}_{a})/v_{a}, (3.12b)

where pa(1)=G(p,a)/(npa)p^{(1)}_{a}=G(p,-a)/(\mathcal{F}_{n}p-a) and qa(1)=G(q,a)/(𝒢mqa)q^{(1)}_{a}=G(q,-a)/(\mathcal{G}_{m}q-a). Under the point transformation

va=x/xa,sa=(yvaya)/xa,η=zz0,\displaystyle v_{a}=x/x_{a},\quad s_{a}=(y-v_{a}y_{a})/x_{a},\quad\eta=z-z_{0}, (3.13)

with

xa=l=0n1(lpa)1h=0m1(𝒢hqa)1c1,\displaystyle x_{a}=\prod^{n-1}_{l=0}(\mathcal{F}_{l}p-a)^{-1}\prod^{m-1}_{h=0}(\mathcal{G}_{h}q-a)^{-1}c_{1}, (3.14a)
ya=xa(z0c2),\displaystyle y_{a}=x_{a}(z_{0}-c_{2}), (3.14b)
z0=c2(n+m)l=0n1lph=0m1𝒢hq+c3,\displaystyle z_{0}=c_{2}(n+m)-\sum^{n-1}_{l=0}\mathcal{F}_{l}p-\sum^{m-1}_{h=0}\mathcal{G}_{h}q+c_{3}, (3.14c)

we obtain a closed-form lattice equation

y~=x~zx,y^=x^zx,\displaystyle\widetilde{y}=\widetilde{x}z-x,\quad\widehat{y}=\widehat{x}z-x, (3.15a)
y=x(z~^3c2)+(G(p,a)x~G(q,a)x^)/(z^z~),\displaystyle y=x(\widehat{\widetilde{z}}-3c_{2})+(G(p,-a)\widetilde{x}-G(q,-a)\widehat{x})/(\widehat{z}-\widetilde{z}), (3.15b)

where and whereafter {ci}\{c_{i}\} are constants. Equation (3.15) is the (A-2) equation formulated in [16].

2. lattice equations with η,wb\eta,~{}w_{b} and tbt_{b}:

tb=(np+b)w~b(npη~)wb,tb=(𝒢mq+b)w^b(𝒢mqη^)wb,\displaystyle t_{b}=(\mathcal{F}_{n}p+b)\widetilde{w}_{b}-(\mathcal{F}_{n}p-\widetilde{\eta})w_{b},\quad t_{b}=(\mathcal{G}_{m}q+b)\widehat{w}_{b}-(\mathcal{G}_{m}q-\widehat{\eta})w_{b}, (3.16a)
(np+𝒢mq+ηt~^b/w~^b)(np𝒢mq+η^η~)=(pb(2)w^bqb(2)w~b)/w~^b,\displaystyle(\mathcal{F}_{n}p+\mathcal{G}_{m}q+\eta-\widehat{\widetilde{t}}_{b}/\widehat{\widetilde{w}}_{b})(\mathcal{F}_{n}p-\mathcal{G}_{m}q+\widehat{\eta}-\widetilde{\eta})=(p^{(2)}_{b}\widehat{w}_{b}-q^{(2)}_{b}\widetilde{w}_{b})/\widehat{\widetilde{w}}_{b}, (3.16b)

where pb(2)=pa(1)|abp^{(2)}_{b}=p^{(1)}_{a}|_{a\rightarrow-b} and qb(2)=qa(1)|abq^{(2)}_{b}=q^{(1)}_{a}|_{a\rightarrow-b}. Under the point transformation

wb=x/xb,tb=(ywbyb)/xb,η=zz0,\displaystyle w_{b}=x/x_{b},\quad t_{b}=(y-w_{b}y_{b})/x_{b},\quad\eta=z-z_{0}, (3.17)

with

xb=l=0n1(lpb)h=0m1(𝒢hqb)c1,\displaystyle x_{b}=\prod^{n-1}_{l=0}(-\mathcal{F}_{l}p-b)\prod^{m-1}_{h=0}(-\mathcal{G}_{h}q-b)c_{1}, (3.18a)
yb=xb(z0c2),\displaystyle y_{b}=x_{b}(z_{0}-c_{2}), (3.18b)
z0=c2(n+m)l=0n1lph=0m1𝒢hq+c3,\displaystyle z_{0}=-c_{2}(n+m)-\sum^{n-1}_{l=0}\mathcal{F}_{l}p-\sum^{m-1}_{h=0}\mathcal{G}_{h}q+c_{3}, (3.18c)

we obtain another closed-form lattice equation

y=xz~x~,y=xz^x^,\displaystyle y=x\widetilde{z}-\widetilde{x},\quad y=x\widehat{z}-\widehat{x}, (3.19a)
y~^=x~^(z3c2)+(G(p,b)x^G(q,b)x~)/(z^z~),\displaystyle\widehat{\widetilde{y}}=\widehat{\widetilde{x}}(z-3c_{2})+(G(p,b)\widehat{x}-G(q,b)\widetilde{x})/(\widehat{z}-\widetilde{z}), (3.19b)

which is the antisymmetric version of (3.15) with

pp,qq,nn,mm,ab.\displaystyle p\rightarrow-p,\quad q\rightarrow-q,\quad n\rightarrow-n,\quad m\rightarrow-m,\quad a\rightarrow b. (3.20)

3. lattice equations with η,W(1,0)\eta,~{}W^{(1,0)} and W(0,1)W^{(0,1)}:

npη~W~(0,1)=npη+W(1,0)ηη~,𝒢mqη^W^(0,1)=𝒢mqη+W(1,0)ηη^,\displaystyle\mathcal{F}_{n}p\widetilde{\eta}-\widetilde{W}^{(0,1)}=\mathcal{F}_{n}p\eta+W^{(1,0)}-\eta\widetilde{\eta},\quad\mathcal{G}_{m}q\widehat{\eta}-\widehat{W}^{(0,1)}=\mathcal{G}_{m}q\eta+W^{(1,0)}-\eta\widehat{\eta}, (3.21a)
W~^(1,0)+W(0,1)=n𝒢mpq(np+𝒢mqη~^)(np+𝒢mq+η)\displaystyle\widehat{\widetilde{W}}^{(1,0)}+W^{(0,1)}=\mathcal{F}_{n}\mathcal{G}_{m}pq-(\mathcal{F}_{n}p+\mathcal{G}_{m}q-\widehat{\widetilde{\eta}})(\mathcal{F}_{n}p+\mathcal{G}_{m}q+\eta)
+G(p,q)/(np𝒢mq+η^η~).\displaystyle\qquad\qquad\qquad\qquad+G(p,-q)/(\mathcal{F}_{n}p-\mathcal{G}_{m}q+\widehat{\eta}-\widetilde{\eta}). (3.21b)

This equation can be rewritten as the standard lpBSQ equation

z~=xx~y,z^=xx^y,\displaystyle\widetilde{z}=x\widetilde{x}-y,\quad\widehat{z}=x\widehat{x}-y, (3.22a)
z=xx~^y~^+G(p,q)/(x^x~),\displaystyle z=x\widehat{\widetilde{x}}-\widehat{\widetilde{y}}+G(p,-q)/(\widehat{x}-\widetilde{x}), (3.22b)

under the point transformations

η=x+x0,W(1,0)=y+x0ηy0,W(0,1)=z+x0ηz0,\displaystyle\eta=x+x_{0},\quad W^{(1,0)}=y+x_{0}\eta-y_{0},\quad W^{(0,1)}=z+x_{0}\eta-z_{0}, (3.23)

with

x0=l=0n1lp+h=0m1𝒢hq+c1,\displaystyle x_{0}=\sum^{n-1}_{l=0}\mathcal{F}_{l}p+\sum^{m-1}_{h=0}\mathcal{G}_{h}q+c_{1}, (3.24a)
y0=x02/2+(l=0n1l2p2+h=0m1𝒢h2q2+c2)/2+c3,\displaystyle y_{0}=x_{0}^{2}/2+\big{(}\sum^{n-1}_{l=0}\mathcal{F}_{l}^{2}p^{2}+\sum^{m-1}_{h=0}\mathcal{G}_{h}^{2}q^{2}+c_{2}\big{)}/2+c_{3}, (3.24b)
z0=x02/2(l=0n1l2p2+h=0m1𝒢h2q2+c2)/2c3.\displaystyle z_{0}=x_{0}^{2}/2-\big{(}\sum^{n-1}_{l=0}\mathcal{F}_{l}^{2}p^{2}+\sum^{m-1}_{h=0}\mathcal{G}_{h}^{2}q^{2}+c_{2}\big{)}/2-c_{3}. (3.24c)

Remark 4. In terms of the choices of l\mathcal{F}_{l} and 𝒢h\mathcal{G}_{h}, one gets various seed solutions for the lpBSQ equation (3.22). We list these solutions as follows.
When l=𝒢h=1\mathcal{F}_{l}=\mathcal{G}_{h}=1, the seed solution is

x0=np+mq+c1,\displaystyle x_{0}=np+mq+c_{1}, (3.25a)
y0=x02/2+(np2+mq2+c2)/2+c3,\displaystyle y_{0}=x_{0}^{2}/2+(np^{2}+mq^{2}+c_{2})/2+c_{3}, (3.25b)
z0=x02/2(np2+mq2+c2)/2c3.\displaystyle z_{0}=x_{0}^{2}/2-(np^{2}+mq^{2}+c_{2})/2-c_{3}. (3.25c)

When l=1\mathcal{F}_{l}=1 and 𝒢h=ωh\mathcal{G}_{h}=\omega^{h}, the seed solution reads

x0=npωmq/(1ω)+c1,\displaystyle x_{0}=np-\omega^{m}q/(1-\omega)+c_{1}, (3.26a)
y0=x02/2+(np2ω2mq2/(1ω2)+c2)/2+c3,\displaystyle y_{0}=x_{0}^{2}/2+\big{(}np^{2}-\omega^{2m}q^{2}/(1-\omega^{2})+c_{2}\big{)}/2+c_{3}, (3.26b)
z0=x02/2(np2ω2mq2/(1ω2)+c2)/2c3.\displaystyle z_{0}=x_{0}^{2}/2-\big{(}np^{2}-\omega^{2m}q^{2}/(1-\omega^{2})+c_{2}\big{)}/2-c_{3}. (3.26c)

Similarly, we can have seed solutions as l=ωl\mathcal{F}_{l}=\omega^{l} and 𝒢h=1\mathcal{G}_{h}=1. When l=ωl\mathcal{F}_{l}=\omega^{l} and 𝒢h=ωh\mathcal{G}_{h}=\omega^{h}, we get

x0=ωnp/(1ω)ωmq/(1ω)+c1,\displaystyle x_{0}=-\omega^{n}p/(1-\omega)-\omega^{m}q/(1-\omega)+c_{1}, (3.27a)
y0=x02/2+(ω2np2/(1ω2)ω2mq2/(1ω2)+c2)/2+c3,\displaystyle y_{0}=x_{0}^{2}/2+\big{(}-\omega^{2n}p^{2}/(1-\omega^{2})-\omega^{2m}q^{2}/(1-\omega^{2})+c_{2}\big{)}/2+c_{3}, (3.27b)
z0=x02/2(ω2np2/(1ω2)ω2mq2/(1ω2)+c2)/2c3.\displaystyle z_{0}=x_{0}^{2}/2-\big{(}-\omega^{2n}p^{2}/(1-\omega^{2})-\omega^{2m}q^{2}/(1-\omega^{2})+c_{2}\big{)}/2-c_{3}. (3.27c)

Solution (3.25) has been reported in [18], while (3.26) and (3.27) are new, which can be understood as semi-oscillatory and oscillatory seed solutions for the lpBSQ equation (3.22), respectively.

4. lattice equations with va,wbv_{a},~{}w_{b} and sa,bs_{a,b}: The first system reads

(npa)sa,b(np+b)s~a,b=v~awb,(𝒢mqa)sa,b(𝒢mq+b)s^a,b=v^awb,\displaystyle(\mathcal{F}_{n}p-a)s_{a,b}-(\mathcal{F}_{n}p+b)\widetilde{s}_{a,b}=\widetilde{v}_{a}w_{b},\quad(\mathcal{G}_{m}q-a)s_{a,b}-(\mathcal{G}_{m}q+b)\widehat{s}_{a,b}=\widehat{v}_{a}w_{b}, (3.28a)
vaw~^b=wbpa(1)np+bv~aw^bqa(1)𝒢mq+bv^aw~b(np+b)w~b(𝒢mq+b)w^bG(a,b)(np+b)(𝒢mq+b)sa,b,\displaystyle v_{a}\widehat{\widetilde{w}}_{b}=w_{b}\frac{\frac{p^{(1)}_{a}}{\mathcal{F}_{n}p+b}\widetilde{v}_{a}\widehat{w}_{b}-\frac{q^{(1)}_{a}}{\mathcal{G}_{m}q+b}\widehat{v}_{a}\widetilde{w}_{b}}{(\mathcal{F}_{n}p+b)\widetilde{w}_{b}-(\mathcal{G}_{m}q+b)\widehat{w}_{b}}-\frac{G(a,b)}{(\mathcal{F}_{n}p+b)(\mathcal{G}_{m}q+b)}s_{a,b}, (3.28b)

and the second one is

(npa)sa,b(np+b)s~a,b=v~awb,(𝒢mqa)sa,b(𝒢mq+b)s^a,b=v^awb,\displaystyle(\mathcal{F}_{n}p-a)s_{a,b}-(\mathcal{F}_{n}p+b)\widetilde{s}_{a,b}=\widetilde{v}_{a}w_{b},\quad(\mathcal{G}_{m}q-a)s_{a,b}-(\mathcal{G}_{m}q+b)\widehat{s}_{a,b}=\widehat{v}_{a}w_{b}, (3.29a)
vaw~^b=wbpb(2)npav~aw^bqb(2)𝒢mqav^aw~b(np+b)w~b(𝒢mq+b)w^bG(a,b)(npa)(𝒢mqa)s~^a,b.\displaystyle v_{a}\widehat{\widetilde{w}}_{b}=w_{b}\frac{\frac{p^{(2)}_{b}}{\mathcal{F}_{n}p-a}\widetilde{v}_{a}\widehat{w}_{b}-\frac{q^{(2)}_{b}}{\mathcal{G}_{m}q-a}\widehat{v}_{a}\widetilde{w}_{b}}{(\mathcal{F}_{n}p+b)\widetilde{w}_{b}-(\mathcal{G}_{m}q+b)\widehat{w}_{b}}-\frac{G(a,b)}{(\mathcal{F}_{n}p-a)(\mathcal{G}_{m}q-a)}\widehat{\widetilde{s}}_{a,b}. (3.29b)

Starting from equation (3.28) or (3.29), by the same point transformation

sa,b=l=0n1(lpalp+b)h=0m1(𝒢hqa𝒢hq+b)x,\displaystyle s_{a,b}=\prod^{n-1}_{l=0}\left(\frac{\mathcal{F}_{l}p-a}{\mathcal{F}_{l}p+b}\right)\prod^{m-1}_{h=0}\left(\frac{\mathcal{G}_{h}q-a}{\mathcal{G}_{h}q+b}\right)x, (3.30a)
va=l=0n1(lpa)h=0m1(𝒢hqa)y,\displaystyle v_{a}=\prod^{n-1}_{l=0}(\mathcal{F}_{l}p-a)\prod^{m-1}_{h=0}(\mathcal{G}_{h}q-a)y, (3.30b)
wb=l=0n1(lp+b)1h=0m1(𝒢hq+b)1z,\displaystyle w_{b}=\prod^{n-1}_{l=0}(\mathcal{F}_{l}p+b)^{-1}\prod^{m-1}_{h=0}(\mathcal{G}_{h}q+b)^{-1}z, (3.30c)

we arrive at

y~z=xx~,y^z=xx^,\displaystyle\widetilde{y}z=x-\widetilde{x},\quad\widehat{y}z=x-\widehat{x}, (3.31a)
yz~^=z(G(p,a)y~z^G(q,a)y^z~)/(z~z^)G(a,b)x,\displaystyle y\widehat{\widetilde{z}}=z(G(p,-a)\widetilde{y}\widehat{z}-G(q,-a)\widehat{y}\widetilde{z})/(\widetilde{z}-\widehat{z})-G(a,b)x, (3.31b)

and

y~z=xx~,y^z=xx^,\displaystyle\widetilde{y}z=x-\widetilde{x},\quad\widehat{y}z=x-\widehat{x}, (3.32a)
yz~^=z(G(p,b)y~z^G(q,b)y^z~)/(z~z^)G(a,b)x~^,\displaystyle y\widehat{\widetilde{z}}=z(G(p,b)\widetilde{y}\widehat{z}-G(q,b)\widehat{y}\widetilde{z})/(\widetilde{z}-\widehat{z})-G(a,b)\widehat{\widetilde{x}}, (3.32b)

respectively. Equation (3.31) is the (C-3) equation given in [18] and (3.32) is the the reversal symmetry version of (3.31) with

nn,mm,yz,zy,ab.\displaystyle n\rightarrow-n,\quad m\rightarrow-m,\quad y\rightarrow z,\quad z\rightarrow-y,\quad a\rightarrow-b. (3.33)

The observation of (3.31) and (3.32) sharing the same solution (3.30) gives rise to

y~z=xx~,y^z=xx^,\displaystyle\widetilde{y}z=x-\widetilde{x},\quad\widehat{y}z=x-\widehat{x}, (3.34a)
yz~^=z(Pa,by~z^Qa,by^z~)/(z~z^)Ga,b(x+x~^),\displaystyle y\widehat{\widetilde{z}}=z(P_{a,b}\widetilde{y}\widehat{z}-Q_{a,b}\widehat{y}\widetilde{z})/(\widetilde{z}-\widehat{z})-G_{a,b}(x+\widehat{\widetilde{x}}), (3.34b)

where

Pa,b=(G(p,a)+G(p,b))/2,Qa,b=(G(q,a)+G(q,b))/2,Ωa,b=G(a,b)/2.\displaystyle P_{a,b}=(G(p,-a)+G(p,b))/2,\quad Q_{a,b}=(G(q,-a)+G(q,b))/2,\quad\Omega_{a,b}=G(a,b)/2. (3.35)

By the transformation

x=(x1Ωa,b)/(2Ωa,b(x1+Ωa,b)),y=y1/(x1+Ωa,b),z=z1/(x1+Ωa,b),\displaystyle x=(x_{1}-\Omega_{a,b})/(2\Omega_{a,b}(x_{1}+\Omega_{a,b})),\quad y=y_{1}/(x_{1}+\Omega_{a,b}),\quad z=z_{1}/(x_{1}+\Omega_{a,b}), (3.36)

from (3.34) we arrive at the (C-4) equation

y~1z1=x1x~1,y^1z1=x1x^1,\displaystyle\widetilde{y}_{1}z_{1}=x_{1}-\widetilde{x}_{1},\quad\widehat{y}_{1}z_{1}=x_{1}-\widehat{x}_{1}, (3.37a)
y1z~^1=z1(Pa,bz^1y~1Qa,bz~1y^1)/(z~1z^1)x1x~^1+Ωa,b2.\displaystyle y_{1}\widehat{\widetilde{z}}_{1}=z_{1}(P_{a,b}\widehat{z}_{1}\widetilde{y}_{1}-Q_{a,b}\widetilde{z}_{1}\widehat{y}_{1})/(\widetilde{z}_{1}-\widehat{z}_{1})-x_{1}\widehat{\widetilde{x}}_{1}+\Omega_{a,b}^{2}. (3.37b)

3.3. Exact solutions

Analogous to the ABS case, since master function W(i,j)(a,b)W^{(i,j)}(a,b) is similarity invariant, the construction of solutions for the lattice BSQ-type equation can be achieved by solving the canonical DES

𝚲𝑴+𝑴𝚲=𝒓t𝒔,\displaystyle\bm{\Lambda}\bm{M}+\bm{M}\bm{\Lambda}^{\prime}=\bm{r}\,^{t}\hskip-2.0pt{\bm{s}}, (3.38a)
𝒓~=(np𝑰+𝚲)𝒓,𝒓^=(𝒢mq𝑰+𝚲)𝒓,\displaystyle\widetilde{\bm{r}}=(\mathcal{F}_{n}p\bm{I}+\bm{\Lambda})\bm{r},\quad\widehat{\bm{r}}=(\mathcal{G}_{m}q\bm{I}+\bm{\Lambda})\bm{r}, (3.38b)
𝒔t~=t𝒔(np𝑰𝚲)1,𝒔t^=t𝒔(𝒢mq𝑰𝚲)1,\displaystyle\widetilde{\,{}^{t}\hskip-2.0pt{\bm{s}}}=\,^{t}\hskip-2.0pt{\bm{s}}(\mathcal{F}_{n}p\bm{I}-\bm{\Lambda}^{\prime})^{-1},\quad\widehat{\,{}^{t}\hskip-2.0pt{\bm{s}}}=\,^{t}\hskip-2.0pt{\bm{s}}(\mathcal{G}_{m}q\bm{I}-\bm{\Lambda}^{\prime})^{-1}, (3.38c)

where 𝚲=Diag(𝚲1,𝚲2)\bm{\Lambda}=\text{Diag}(\bm{\Lambda}_{1},\bm{\Lambda}_{2}) and 𝚲=Diag(ω𝚲1,ω2𝚲2)\bm{\Lambda}^{\prime}=\text{Diag}(-\omega\bm{\Lambda}_{1},-\omega^{2}\bm{\Lambda}_{2}) are Jordan canonical forms of the matrices 𝑳\bm{L} and 𝑳\bm{L}^{\prime}. To guarantee the solvability of (3.38a), we suppose (𝚲1)(ω𝚲1)=\mathcal{E}(\bm{\Lambda}_{1})\bigcap\mathcal{E}(\omega\bm{\Lambda}_{1})=\varnothing, (𝚲2)(ω2𝚲2)=\mathcal{E}(\bm{\Lambda}_{2})\bigcap\mathcal{E}(\omega^{2}\bm{\Lambda}_{2})=\varnothing and (𝚲1)(ω2𝚲2)=\mathcal{E}(\bm{\Lambda}_{1})\bigcap\mathcal{E}(\omega^{2}\bm{\Lambda}_{2})=\varnothing.

Let 𝚲γ\bm{\Lambda}_{\gamma} be a general block diagonal matrix

𝚲1=Diag(𝚲D[N11]({k1,ι}ι=1N11),𝚲J[N12](k1,N11+1),,𝚲J[N1s](k1,N11+(s1))),\displaystyle\bm{\Lambda}_{1}={\rm Diag}\big{(}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{11}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{1,\iota}\}_{\iota=1}^{N_{11}}),~{}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{12}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{1,N_{11}+1}),~{}\cdots,~{}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{1s}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{1,N_{11}+(s-1)})\big{)}, (3.39a)
𝚲2=Diag(𝚲D[N21]({k2,ι}ι=1N21),𝚲J[N22](k2,N21+1),,𝚲J[N2t](k2,N21+(t1))),\displaystyle\bm{\Lambda}_{2}={\rm Diag}\big{(}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{21}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{2,\iota}\}_{\iota=1}^{N_{21}}),~{}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{22}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{2,N_{21}+1}),~{}\cdots,~{}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{2t}$}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{2,N_{21}+(t-1)})\big{)}, (3.39b)

where γ=1sN1γ=N1\sum\limits_{\gamma=1}^{s}N_{1\gamma}=N_{1} and γ=1tN2γ=N2\sum\limits_{\gamma=1}^{t}N_{2\gamma}=N_{2}. We summarize the most general mixed solution as follows (A set of notations is given in the Appendix C).

Theorem 3.

For the DES (3.38) with generic

𝚲=Diag(𝚲1,𝚲2),𝚲=Diag(ω𝚲1,ω2𝚲2),\displaystyle\bm{\Lambda}=\mathrm{Diag}(\bm{\Lambda}_{1},~{}\bm{\Lambda}_{2}),\quad\bm{\Lambda}^{\prime}=\mathrm{Diag}(-\omega\bm{\Lambda}_{1},~{}-\omega^{2}\bm{\Lambda}_{2}), (3.40)

we have solutions

𝒓=(𝒓1(1),𝒓1(2),,𝒓1(s);𝒓2(1),𝒓2(2),,𝒓2(t))T,\displaystyle\bm{r}=(\bm{r}^{(1)}_{1},\bm{r}^{(2)}_{1},\cdots,\bm{r}^{(s)}_{1};\bm{r}^{(1)}_{2},\bm{r}^{(2)}_{2},\cdots,\bm{r}^{(t)}_{2})^{\hbox{\tiny\it{T}}}, (3.41a)
𝒔t=(t𝒔1(1),t𝒔1(2),,t𝒔1(s);t𝒔2(1),t𝒔2(2),,t𝒔2(t)),\,{}^{t}\hskip-2.0pt{\bm{s}}=(\,^{t}\hskip-2.0pt{\bm{s}}^{(1)}_{1},\,^{t}\hskip-2.0pt{\bm{s}}^{(2)}_{1},\cdots,\,^{t}\hskip-2.0pt{\bm{s}}^{(s)}_{1};\,^{t}\hskip-2.0pt{\bm{s}}^{(1)}_{2},\,^{t}\hskip-2.0pt{\bm{s}}^{(2)}_{2},\cdots,\,^{t}\hskip-2.0pt{\bm{s}}^{(t)}_{2}), (3.41b)

with

𝒓i(1)=(ri,1(1),ri,2(1),,ri,Ni1(1)),ri,ι(1)=τi,ι,i=1,2,ι=1,2,,Ni1,\displaystyle\bm{r}^{(1)}_{i}=(r^{(1)}_{i,1},r^{(1)}_{i,2},\cdots,r^{(1)}_{i,N_{i1}}),\quad r^{(1)}_{i,\iota}=\tau_{i,\iota},~{}i=1,2,~{}\iota=1,2,\ldots,N_{i1}, (3.42a)
𝒔j(1)t=(sj,1(1),sj,2(1),,sj,Nj1(1)),sj,κ(1)=ςj,κ,j=1,2,κ=1,2,,Ni1,\,{}^{t}\hskip-2.0pt{\bm{s}}^{(1)}_{j}=(s^{(1)}_{j,1},s^{(1)}_{j,2},\cdots,s^{(1)}_{j,N_{j1}}),~{}~{}s^{(1)}_{j,\kappa}=\varsigma_{j,\kappa},~{}~{}j=1,2,~{}\kappa=1,2,\ldots,N_{i1}, (3.42b)
𝒓1(l)=(r1,1(l),r1,2(l),,r1,N1l(l)),r1,ι(l)=1(ι1)!k1,N11+(l1)ι1τ1,N11+(l1),\displaystyle\bm{r}^{(l)}_{1}=(r^{(l)}_{1,1},r^{(l)}_{1,2},\cdots,r^{(l)}_{1,N_{1l}}),~{}~{}r^{(l)}_{1,\iota}=\frac{1}{(\iota-1)!}\partial^{\iota-1}_{k_{1,N_{11}+(l-1)}}\tau_{1,N_{11}+(l-1)},
l=2,3,,s,ι=1,2,,N1l,\displaystyle\qquad\qquad l=2,3,\ldots,s,~{}\iota=1,2,\ldots,N_{1l}, (3.42c)
𝒓2(l)=(r2,1(l),r2,2(l),,r2,N2l(l)),r2,ι(l)=1(ι1)!k2,N21+(l1)ι1τ2,N21+(l1),\displaystyle\bm{r}^{(l)}_{2}=(r^{(l)}_{2,1},r^{(l)}_{2,2},\cdots,r^{(l)}_{2,N_{2l}}),~{}~{}r^{(l)}_{2,\iota}=\frac{1}{(\iota-1)!}\partial^{\iota-1}_{k_{2,N_{21}+(l-1)}}\tau_{2,N_{21}+(l-1)},
l=2,3,,t,ι=1,2,,N2l,\displaystyle\qquad\qquad l=2,3,\ldots,t,~{}\iota=1,2,\ldots,N_{2l}, (3.42d)
𝒔1(l)t=(s1,1(l),s1,2(l),,s1,N1l(l)),s1,ι(l)=1(N1lκ)!k1,N11+(l1)N1lκς1,N11+(l1),\,{}^{t}\hskip-2.0pt{\bm{s}}^{(l)}_{1}=(s^{(l)}_{1,1},s^{(l)}_{1,2},\cdots,s^{(l)}_{1,N_{1l}}),~{}~{}s^{(l)}_{1,\iota}=\frac{1}{(N_{1l}-\kappa)!}\partial^{N_{1l}-\kappa}_{k_{1,N_{11}+(l-1)}}\varsigma_{1,N_{11}+(l-1)},
l=2,3,,s,κ=1,2,,N1l,\displaystyle\qquad\qquad l=2,3,\ldots,s,~{}\kappa=1,2,\ldots,N_{1l}, (3.42e)
𝒔2(l)t=(s2,1(l),s2,2(l),,s2,N2l(l)),s2,ι(l)=1(N2lκ)!k2,N21+(l1)N2lκς2,N21+(l1),\,{}^{t}\hskip-2.0pt{\bm{s}}^{(l)}_{2}=(s^{(l)}_{2,1},s^{(l)}_{2,2},\cdots,s^{(l)}_{2,N_{2l}}),~{}~{}s^{(l)}_{2,\iota}=\frac{1}{(N_{2l}-\kappa)!}\partial^{N_{2l}-\kappa}_{k_{2,N_{21}+(l-1)}}\varsigma_{2,N_{21}+(l-1)},
l=2,3,,t,κ=1,2,,N2l,\displaystyle\qquad\qquad l=2,3,\ldots,t,~{}\kappa=1,2,\ldots,N_{2l}, (3.42f)

and 𝐌=𝐅𝐆𝐇\bm{M}=\bm{F}\bm{G}\bm{H}, in which

𝑭=Diag(𝚲D[N11]({r1,ι(1)}ι=1N11),𝑻[N12]({r1,ι(2)}ι=1N12),,𝑻[N1s]({r1,ι(s)}ι=1N1s);\displaystyle\bm{F}=\mathrm{Diag}\bigl{(}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{11}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{r^{(1)}_{1,\iota}\}^{N_{11}}_{\iota=1}),\bm{T}^{\hbox{\tiny{[{\it{N${}_{12}$}}]}}}(\{r^{(2)}_{1,\iota}\}_{\iota=1}^{N_{12}}),\ldots,\bm{T}^{\hbox{\tiny{[{\it{N${}_{1s}$}}]}}}(\{r^{(s)}_{1,\iota}\}_{\iota=1}^{N_{1s}});
𝚲D[N21]({r2,ι(1)}ι=1N21),𝑻[N22]({r2,ι(2)}ι=1N22),,𝑻[N2t]({r2,ι(t)}ι=1N2t)),\displaystyle\qquad\qquad\quad\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{21}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{r^{(1)}_{2,\iota}\}^{N_{21}}_{\iota=1}),\bm{T}^{\hbox{\tiny{[{\it{N${}_{22}$}}]}}}(\{r^{(2)}_{2,\iota}\}_{\iota=1}^{N_{22}}),\ldots,\bm{T}^{\hbox{\tiny{[{\it{N${}_{2t}$}}]}}}(\{r^{(t)}_{2,\iota}\}_{\iota=1}^{N_{2t}})\bigr{)}, (3.43a)
𝑯=Diag(𝚲D[N11]({s1,κ(1)}κ=1N11),𝑯[N12]({s1,κ(2)}κ=1N12),,𝑯[N1s]({s1,κ(s)}κ=1N1s);\displaystyle\bm{H}=\mathrm{Diag}\bigl{(}\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{11}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{s^{(1)}_{1,\kappa}\}^{N_{11}}_{\kappa=1}),\bm{H}^{\hbox{\tiny{[{\it{N${}_{12}$}}]}}}(\{s^{(2)}_{1,\kappa}\}_{\kappa=1}^{N_{12}}),\ldots,\bm{H}^{\hbox{\tiny{[{\it{N${}_{1s}$}}]}}}(\{s^{(s)}_{1,\kappa}\}_{\kappa=1}^{N_{1s}});
𝚲D[N21]({s2,κ(1)}κ=1N21),𝑯[N22]({s2,κ(2)}κ=1N22),,𝑯[N2t]({s2,κ(t)}κ=1N2t)),\displaystyle\qquad\qquad\quad\bm{\Lambda}^{\hbox{\tiny{[{\it{N${}_{21}$}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{s^{(1)}_{2,\kappa}\}^{N_{21}}_{\kappa=1}),\bm{H}^{\hbox{\tiny{[{\it{N${}_{22}$}}]}}}(\{s^{(2)}_{2,\kappa}\}_{\kappa=1}^{N_{22}}),\ldots,\bm{H}^{\hbox{\tiny{[{\it{N${}_{2t}$}}]}}}(\{s^{(t)}_{2,\kappa}\}_{\kappa=1}^{N_{2t}})\bigr{)}, (3.43b)
𝑮=(𝑮(1)𝑮(2)𝑮(3)𝑮(4))N×N,\displaystyle\bm{G}=\left(\begin{array}[]{cc}\bm{G}^{(1)}&\bm{G}^{(2)}\\ \bm{G}^{(3)}&\bm{G}^{(4)}\\ \end{array}\right)_{N\times N}, (3.43e)
where
𝑮(1)=(𝑮i,j(1))s×s,𝑮(2)=(𝑮i,j(2))s×t,𝑮(3)=(𝑮i,j(3))t×s,𝑮(4)=(𝑮i,j(4))t×t,\displaystyle\begin{array}[]{ll}\bm{G}^{(1)}=(\bm{G}^{(1)}_{i,j})_{s\times s},~{}\bm{G}^{(2)}=(\bm{G}^{(2)}_{i,j})_{s\times t},~{}\bm{G}^{(3)}=(\bm{G}^{(3)}_{i,j})_{t\times s},~{}\bm{G}^{(4)}=(\bm{G}^{(4)}_{i,j})_{t\times t},\end{array} (3.43g)

with

𝑮1,1(1)=𝑮DD({k1,ι}ι=1N11;{ωk1,κ}κ=1N11),\displaystyle\bm{G}^{(1)}_{1,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DD}}}}}(\{k_{1,\iota}\}_{\iota=1}^{N_{11}};\{\omega k_{1,\kappa}\}_{\kappa=1}^{N_{11}}), (3.44a)
𝑮i,1(1)=𝑮JD(k1,N11+i1;{ωk1,κ}κ=1N11),2is1,\displaystyle\bm{G}^{(1)}_{i,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JD}}}}}(k_{1,N_{11}+i-1};\{\omega k_{1,\kappa}\}_{\kappa=1}^{N_{11}}),\quad 2\leq i\leq s-1, (3.44b)
𝑮1,j(1)=𝑮DJ({k1,ι}ι=1N11;ωk1,N11+j1),2js1,\displaystyle\bm{G}^{(1)}_{1,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{1,\iota}\}_{\iota=1}^{N_{11}};\omega k_{1,N_{11}+j-1}),\quad 2\leq j\leq s-1, (3.44c)
𝑮i,j(1)=𝑮JJ(k1,N11+i1;ωk1,N11+j1),2i,js1,\displaystyle\bm{G}^{(1)}_{i,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JJ}}}}}(k_{1,N_{11}+i-1};\omega k_{1,N_{11}+j-1}),\quad 2\leq i,j\leq s-1, (3.44d)

and

𝑮1,1(2)=𝑮DD({k1,ι}ι=1N11;{ω2k2,κ}κ=1N21),\displaystyle\bm{G}^{(2)}_{1,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DD}}}}}(\{k_{1,\iota}\}_{\iota=1}^{N_{11}};\{\omega^{2}k_{2,\kappa}\}_{\kappa=1}^{N_{21}}), (3.45a)
𝑮i,1(2)=𝑮JD(k1,N11+i1;{ω2k2,κ}κ=1N21),2is1,\displaystyle\bm{G}^{(2)}_{i,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JD}}}}}(k_{1,N_{11}+i-1};\{\omega^{2}k_{2,\kappa}\}_{\kappa=1}^{N_{21}}),\quad 2\leq i\leq s-1, (3.45b)
𝑮1,j(2)=𝑮DJ({k1,ι}ι=1N11;ω2k2,N21+j1),2jt1,\displaystyle\bm{G}^{(2)}_{1,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{1,\iota}\}_{\iota=1}^{N_{11}};\omega^{2}k_{2,N_{21}+j-1}),\quad 2\leq j\leq t-1, (3.45c)
𝑮i,j(2)=𝑮JJ(k1,N11+i1;ω2k2,N21+j1),2is1,2jt1,\displaystyle\bm{G}^{(2)}_{i,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JJ}}}}}(k_{1,N_{11}+i-1};\omega^{2}k_{2,N_{21}+j-1}),\quad 2\leq i\leq s-1,~{}2\leq j\leq t-1, (3.45d)

and

𝑮1,1(3)=𝑮DD({k2,ι}ι=1N21;{ωk1,κ}κ=1N11),\displaystyle\bm{G}^{(3)}_{1,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DD}}}}}(\{k_{2,\iota}\}_{\iota=1}^{N_{21}};\{\omega k_{1,\kappa}\}_{\kappa=1}^{N_{11}}), (3.46a)
𝑮i,1(3)=𝑮JD(k2,N21+i1;{ωk1,κ}κ=1N11),2it1,\displaystyle\bm{G}^{(3)}_{i,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JD}}}}}(k_{2,N_{21}+i-1};\{\omega k_{1,\kappa}\}_{\kappa=1}^{N_{11}}),\quad 2\leq i\leq t-1, (3.46b)
𝑮1,j(3)=𝑮DJ({k2,ι}ι=1N21;ωk1,N11+j1),2js1,\displaystyle\bm{G}^{(3)}_{1,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{2,\iota}\}_{\iota=1}^{N_{21}};\omega k_{1,N_{11}+j-1}),\quad 2\leq j\leq s-1, (3.46c)
𝑮i,j(3)=𝑮JJ(k2,N21+i1;ωk1,N11+j1),2it1,2js1,\displaystyle\bm{G}^{(3)}_{i,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JJ}}}}}(k_{2,N_{21}+i-1};\omega k_{1,N_{11}+j-1}),\quad 2\leq i\leq t-1,~{}2\leq j\leq s-1, (3.46d)

and

𝑮1,1(4)=𝑮DD({k2,ι}ι=1N21;{ω2k2,κ}κ=1N21),\displaystyle\bm{G}^{(4)}_{1,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DD}}}}}(\{k_{2,\iota}\}_{\iota=1}^{N_{21}};\{\omega^{2}k_{2,\kappa}\}_{\kappa=1}^{N_{21}}), (3.47a)
𝑮i,1(4)=𝑮JD(k2,N21+i1;{ω2k2,κ}κ=1N21),2it1,\displaystyle\bm{G}^{(4)}_{i,1}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JD}}}}}(k_{2,N_{21}+i-1};\{\omega^{2}k_{2,\kappa}\}_{\kappa=1}^{N_{21}}),\quad 2\leq i\leq t-1, (3.47b)
𝑮1,j(4)=𝑮DJ({k2,ι}ι=1N21;ω2k2,N21+j1),2jt1,\displaystyle\bm{G}^{(4)}_{1,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{2,\iota}\}_{\iota=1}^{N_{21}};\omega^{2}k_{2,N_{21}+j-1}),\quad 2\leq j\leq t-1, (3.47c)
𝑮i,j(4)=𝑮JJ(k2,N21+i1;ω2k2,N21+j1),2i,jt1.\displaystyle\bm{G}^{(4)}_{i,j}=\bm{G}^{\prime}_{\hbox{\tiny{{\it{JJ}}}}}(k_{2,N_{21}+i-1};\omega^{2}k_{2,N_{21}+j-1}),\quad 2\leq i,j\leq t-1. (3.47d)

In this instance, we would utilize the lpBSQ equation denoted by (3.22) as a case study to present the exact solutions explicitly. When N1=N2=1N_{1}=N_{2}=1 and k1,1=k1k_{1,1}=k_{1}, k2,1=k2k_{2,1}=k_{2}, we obtain a solution for the lpBSQ equation (3.22)

x=ηx0,y=W(1,0)x0η+y0,z=W(0,1)x0η+z0,\displaystyle x=\eta-x_{0},\quad y=W^{(1,0)}-x_{0}\eta+y_{0},\quad z=W^{(0,1)}-x_{0}\eta+z_{0}, (3.48)

with (3.24) and

η=H0(ϱ+σ)+A1ϱσH0+H1ϱ+H2σ+H3ϱσ,\displaystyle\eta=\frac{H_{0}(\varrho+\sigma)+A_{1}\varrho\sigma}{H_{0}+H_{1}\varrho+H_{2}\sigma+H_{3}\varrho\sigma}, (3.49a)
W(1,0)=H0(k1ϱ+k2σ)+A2ϱσH0+H1ϱ+H2σ+H3ϱσ,\displaystyle W^{(1,0)}=\frac{H_{0}(k_{1}\varrho+k_{2}\sigma)+A_{2}\varrho\sigma}{H_{0}+H_{1}\varrho+H_{2}\sigma+H_{3}\varrho\sigma}, (3.49b)
W(0,1)=ωH0(k1ϱ+ωk2σ)ωA3ϱσH0+H1ϱ+H2σ+H3ϱσ,\displaystyle W^{(0,1)}=\frac{-\omega H_{0}(k_{1}\varrho+\omega k_{2}\sigma)-\omega A_{3}\varrho\sigma}{H_{0}+H_{1}\varrho+H_{2}\sigma+H_{3}\varrho\sigma}, (3.49c)

where

A1=(2ω+1)(k13k23),A2=(k1+k2)A1,A3=(1ω2)(k13k23)(ω2k1+k2),\displaystyle A_{1}=-(2\omega+1)(k_{1}^{3}-k_{2}^{3}),\quad A_{2}=(k_{1}+k_{2})A_{1},\quad A_{3}=(1-\omega^{2})(k_{1}^{3}-k_{2}^{3})(\omega^{2}k_{1}+k_{2}), (3.50a)
H0=3k1k2(2k1k2ωk12ω2k22),H1=(ω21)k2(ωk122k1k2+ω2k22),\displaystyle H_{0}=3k_{1}k_{2}(2k_{1}k_{2}-\omega k_{1}^{2}-\omega^{2}k_{2}^{2}),\quad H_{1}=(\omega^{2}-1)k_{2}(\omega k_{1}^{2}-2k_{1}k_{2}+\omega^{2}k_{2}^{2}), (3.50b)
H2=(ω1)k1(ωk122k1k2+ω2k22),H3=(k1k2)(ω2k2ωk1),\displaystyle H_{2}=(\omega-1)k_{1}(\omega k_{1}^{2}-2k_{1}k_{2}+\omega^{2}k_{2}^{2}),\quad H_{3}=(k_{1}-k_{2})(\omega^{2}k_{2}-\omega k_{1}), (3.50c)
ϱ=l=0n1(lp+k1lp+ωk1)h=0m1(𝒢hq+k1𝒢hq+ωk1)ϱ0,σ=l=0n1(lp+k2lp+ω2k2)h=0m1(𝒢hq+k2𝒢hq+ω2k2)σ0.\displaystyle\varrho=\prod^{n-1}_{l=0}\bigg{(}\frac{\mathcal{F}_{l}p+k_{1}}{\mathcal{F}_{l}p+\omega k_{1}}\bigg{)}\prod^{m-1}_{h=0}\bigg{(}\frac{\mathcal{G}_{h}q+k_{1}}{\mathcal{G}_{h}q+\omega k_{1}}\bigg{)}\varrho^{0},\quad\sigma=\prod^{n-1}_{l=0}\bigg{(}\frac{\mathcal{F}_{l}p+k_{2}}{\mathcal{F}_{l}p+\omega^{2}k_{2}}\bigg{)}\prod^{m-1}_{h=0}\bigg{(}\frac{\mathcal{G}_{h}q+k_{2}}{\mathcal{G}_{h}q+\omega^{2}k_{2}}\bigg{)}\sigma^{0}. (3.50d)

If k1=k2k_{1}=k_{2}, then (3.49) is simplified to

η=H0(ϱ+σ1)H0+H1ϱ+H2σ1,W(1,0)=k1η,W(0,1)=ωH0k1(ϱ+ωσ1)H0+H1ϱ+H2σ1,\displaystyle\eta=\frac{H_{0}(\varrho+\sigma_{1})}{H_{0}+H_{1}\varrho+H_{2}\sigma_{1}},\quad W^{(1,0)}=k_{1}\eta,\quad W^{(0,1)}=\frac{-\omega H_{0}k_{1}(\varrho+\omega\sigma_{1})}{H_{0}+H_{1}\varrho+H_{2}\sigma_{1}}, (3.51a)
with
H0=3k1,H1=1ω2,H2=1ω,σ1=σ|k2k1.\displaystyle H_{0}=3k_{1},\quad H_{1}=1-\omega^{2},\quad H_{2}=1-\omega,\quad\sigma_{1}=\sigma|_{k_{2}\rightarrow k_{1}}. (3.51b)

When l=𝒢h=1\mathcal{F}_{l}=\mathcal{G}_{h}=1, solution (3.51a) is exactly the soliton solution (3.10) given in [14], which is real if we take σ0=ϱ0\sigma^{0}=\varrho^{0^{*}}. When l=ωl\mathcal{F}_{l}=\omega^{l} or 𝒢h=ωh\mathcal{G}_{h}=\omega^{h}, (3.51a) provides (semi-)oscillatory solution for the lpBSQ equation (3.22). Since σ\sigma in this case can not be viewed as complex conjugate of ϱ\varrho, (semi-)oscillatory solution (3.51a) is complex.

4. Conclusions

This paper presents a generalized Cauchy matrix scheme, based on the previous work in [24, 44, 14], which can be used to reconstruct solutions for all ABS equations (except for Q4\mathrm{Q4}) and some lattice BSQ-type equations. Starting from the DES (2.1) involving fnf_{n} and gmg_{m} where fn2=gm2=1f^{2}_{n}=g^{2}_{m}=1, we define master equations S(i,j),S(a,b),V(a)S^{(i,j)},~{}S(a,b),~{}V(a), which possess several properties, such as symmetric property, similarity invariance and shift relations. Benifiting from these shift relations, some lattice KdV-type equations were derived, including lpKdV (2.19a), lpmKdV (2.21a), lSKdV (2.23) and NQC (2.24) equations. Among these equations, the first three are autonomous since they can be transformed into autonomous equations through simple point transformations (see also [13]). Although the NQC equation (2.24) is nonautonomous as fn=(1)nf_{n}=(-1)^{n} or gm=(1)mg_{m}=(-1)^{m}, it can still be used to construct solutions for the Q3δ\mathrm{Q3}_{\delta} equation. Furthermore, solutions for other equations in the list (A.1) are derived by using the degeneration relation depicted in Figure 2. The most general mixed solutions to the Jordan canonical DES (2.50) are presented, based on which exact solutions to the lattice equations in the ABS list except for Q4\mathrm{Q4} are derived. In terms of

(fn,gm)=(1,1)or((1)n,(1)m)or(1,(1)m)or((1)n,1),\displaystyle(f_{n},g_{m})=(1,1)~{}\text{or}~{}((-1)^{n},(-1)^{m})~{}\text{or}~{}(1,(-1)^{m})~{}\text{or}~{}((-1)^{n},1),

we construct soliton, oscillatory and semi-oscillatory solutions, respectively. Different from soliton solution, the oscillatory solution has periodic property (see solutions (2.57)-(2.59)). To obtain the solutions of lattice BSQ-type equations, we adopt a similar strategy, in other words, we introduce two auxiliary functions n\mathcal{F}_{n} and 𝒢m\mathcal{G}_{m} with n3=𝒢m3=1\mathcal{F}^{3}_{n}=\mathcal{G}^{3}_{m}=1 in the DES (3.3). Then we derive some three-component lattice BSQ-type equations as a closed-form from the shift relations (3.5) as well as their hat-qq counterpart, which correspond to (A-2), (B-2), (C-3) and (C-4) equations firstly introduced in [16]. Soliton, oscillatory and semi-oscillatory solutions are presented by setting

(n,𝒢m)=(1,1),(ωn,ωm)and(1,ωm)or(ωn,1).\displaystyle(\mathcal{F}_{n},\mathcal{G}_{m})=(1,1),~{}(\omega^{n},\omega^{m})~{}\text{and}~{}(1,\omega^{m})~{}\text{or}~{}(\omega^{n},1).

When (n,𝒢m)=(ωn,ωm)(\mathcal{F}_{n},\mathcal{G}_{m})=(\omega^{n},\omega^{m}), the resulting solution still has periodic property (see (3.49)). With regard to the solution (3.51a), it appears real in the case of soliton and σ0=ϱ0\sigma^{0}=\varrho^{0^{*}}. While in the case of oscillatory or semi-oscillatory, this solution is complex regardless of whether σ0=ϱ0\sigma^{0}=\varrho^{0^{*}} or not.

In conclusion, we would like to highlight some important modifications made to the Cauchy matrix framework [44, 14]. First of all, constant lattice parameters pp and qq are replaced by 𝔽np\mathbb{F}_{n}p and 𝔾mq\mathbb{G}_{m}q, where in the lattice ABS case (𝔽n,𝔾m)=(fn,gm)(\mathbb{F}_{n},\mathbb{G}_{m})=(f_{n},g_{m}) and in the lattice BSQ case (𝔽n,𝔾m)=(n,𝒢m)(\mathbb{F}_{n},\mathbb{G}_{m})=(\mathcal{F}_{n},\mathcal{G}_{m}), respectively. Although these changes in principle enable the generation of nonautonomous lattice equations (cf. [39, 12]), we show that the constraints fn2=gm2=1f^{2}_{n}=g_{m}^{2}=1 and n3=𝒢m3=1\mathcal{F}^{3}_{n}=\mathcal{G}_{m}^{3}=1 enable one to derive the autonomous lattice ABS/BSQ equations. This modification leads to the emergence of (semi-)oscillatory solutions in the resulting lattice equations. As, in the continuous case, oscillatory factors ((1)n,(1)m)((-1)^{n},(-1)^{m}) or (ωn,ωm)(\omega^{n},\omega^{m}) break differentiability and do not appear in analytic solutions, there is no continuum limit for the oscillatory solutions. However, the semi-oscillatory plane wave factor allows for the straight continuum limit on the discrete exponential part. Thus, the semi-discrete KdV-type equations [21] and semi-discrete BSQ-type equations [20] are still capable of producing semi-oscillatory solutions. Furthermore, this scheme can be generalized to the entire lattice Gel’fand-Dikii hierarchy [26] (also see [35]) by initializing the DES (3.3) with 𝑳=Diag(ω𝑳1,ω2𝑳2,,ωN1𝑳N1)\bm{L}^{\prime}=\text{Diag}(-\omega\bm{L}_{1},\ -\omega^{2}\bm{L}_{2},\ \ldots,\ -\omega^{N-1}\bm{L}_{N-1}) and nN=𝒢mN=1\mathcal{F}^{N}_{n}=\mathcal{G}^{N}_{m}=1, where ωN=1\omega^{N}=1. However, it should be noted that this scheme cannot be applied to the extended lattice BSQ-type equations [45] since it is not possible to introduce independent variables nn or mm into the three solutions ω1(k),ω2(k)\omega_{1}(k),~{}\omega_{2}(k) and ω3(k)=k\omega_{3}(k)=k of the third order polynomial equation of symmetric form

G3(ω,k)=j=13αj(ωjkj)=0,α31,\displaystyle G_{3}(\omega,k)=\sum\limits_{j=1}^{3}\alpha_{j}(\omega^{j}-k^{j})=0,\quad\alpha_{3}\equiv 1,

with coefficients {αj}\{\alpha_{j}\} and parameter kk. Finally, we construct soliton solutions of the nonautonomous ABS lattice equations with the help of the bilinear method [31]. Thus we can set pn=fnpp_{n}=f_{n}p and qm=gmqq_{m}=g_{m}q, and regain the oscillatory solutions of H1\mathrm{H1}, H2\mathrm{H2}, H3δ\mathrm{H3}_{\delta} and Q1δ\mathrm{Q1}_{\delta} equations from the perspective of bilinear structure. This operation can be naturally generalized to the BSQ case [20], which will be done in the future.


Acknowledgments

This project is supported by the National Natural Science Foundation of China (Nos. 12071432, 12001369), the Natural Science Foundation of Zhejiang Province (No. LY17A010024) and Shanghai Sailing Program (No. 20YF1433000).


Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.


Conflict of interest

There are no conflicts of interest to declare.

References

  • [1] Adler, V.E.: Bäcklund transformation for the Krichever-Novikov equation. Int. Math. Res. Not. 1, 1–4 (1998)
  • [2] Adler, V.E., Bobenko, A.I., Suris, Y.B.: Classification of integrable equations on quad-graphs, the consistency approach. Commun. Math. Phys. 233, 513–543 (2003)
  • [3] Adler, V.E., Bobenko, A.I., Suris, Y.B.: Discrete nonlinear hyperbolic equations. Classification of integrable cases. Funct. Anal. Appl. 43, 3–21 (2009)
  • [4] Adler, V.E., Bobenko, A.I., Suris, Y.B.: Classification of integrable discrete equations of octahedron type. Int. Math. Res. Notices 2012(8), 1822–1889 (2012)
  • [5] Atkinson, J.: Bäcklund transformations for integrable lattice equations. J. Phys. A: Math. Theor. 41(8pp), 135202 (2008)
  • [6] Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AXXB=YAX-XB=Y. Bull. London Math. Soc. 29, 1–21 (1997)
  • [7] Bobenko, A.I., Suris, Y.B.: Integrable systems on quad-graphs. Int. Math. Res. Notices 11, 573–611 (2002)
  • [8] Boll, R.: Classification of 3D consistent quad-equations. J. Nonlinear Math. Phys. 18, 337–365 (2011)
  • [9] Bridgman, T., Hereman, W., Quispel, G.R.W., van der Kamp, P.H.: Symbolic computation of Lax pairs of partial difference equations using consistency around the cube. Found. Comput. Math. 13, 517–544 (2013)
  • [10] Butler, S.: Multidimensional inverse scattering of integrable lattice equations. Nonlinearity 25, 1613–1634 (2012)
  • [11] Butler, S., Joshi, N.: An inverse scattering transform for the lattice potential KdV equation. Inverse Prob. 26(28pp), 115012 (2010)
  • [12] Feng, W., Zhao, S.L.: Solutions and three-dimensional consistency for nonautonomous extended lattice Boussinesq-type equations. Rep. Math. Phys. 78(2), 219–243 (2016)
  • [13] Feng, W., Zhao, S.L.: Oscillatory solutions for lattice Korteweg-de Vries-type equations. Z. Naturforsch. A 73(2), 91–98 (2018)
  • [14] Feng, W., Zhao, S.L., Zhang, D.J.: Exact solutions to lattice Boussinesq-type equations. J. Nonlinear Math. Phys. 19(15pp), 1250031 (2012)
  • [15] Hietarinta, J.: Searching for CAC-maps. J. Nonlinear Math. Phys. 12, 223–230 (2005)
  • [16] Hietarinta, J.: Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J. Phys. A: Math. Theor. 44(22pp), 165204 (2011)
  • [17] Hietarinta, J., Zhang, D.J.: Soliton solutions for ABS lattice equations: II. Casoratians and bilinearization. J. Phys. A: Math. Theor. 42(30pp), 404006 (2009)
  • [18] Hietarinta, J., Zhang, D.J.: Multisoliton solutions to the lattice Boussinesq equation. J. Math. Phys. 51(12pp), 033505 (2010)
  • [19] Hietarinta, J., Zhang, D.J.: Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA 7(14pp), 061 (2011)
  • [20] Hietarinta, J., Zhang, D.J.: Discrete Boussinesq-type equations. in Nonlinear Systems and their Remarkable Mathematical Structures. Vol. 3, CRC Press, Boca Raton, FL, 54–101 (2022)
  • [21] Mesfun, M., Zhao, S.L.: Cauchy matrix scheme for semidiscrete lattice Korteweg-de Vries-type equations. Theor. Math. Phys. 211(1), 483–497 (2022)
  • [22] Nijhoff, F.W.: On some “Schwarzian equations” and their discrete analogues, Eds. A.S. Fokas and I.M. Gel’fand, in: Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Birkhäuser Verlag, 237–260 (1996)
  • [23] Nijhoff, F.W.: Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A. 297, 49–58 (2002)
  • [24] Nijhoff, F.W., Atkinson, J., Hietarinta, J.: Soliton solutions for ABS lattice equations: I. Cauchy matrix approach. J. Phys. A: Math. Theor. 42(34pp), 404005 (2009)
  • [25] Nijhoff, F.W., Capel, H.W.: The discrete Korteweg-de Vries equation. Acta Appl. Math. 39, 133–158 (1995)
  • [26] Nijhoff, F.W., Papageorgiou, V.G., Capel, H.W., Quispel, G.R.W.: The lattice Gel’fand-Dikii hierarchy. Inverse Probl. 8, 597–621 (1992)
  • [27] Nijhoff, F.W., Quispel, G.R.W., Capel, H.W.: Direct linearization of nonlinear difference-difference equations. Phys. Lett. A. 97, 125–128 (1983)
  • [28] Nijhoff, F.W., Walker, A.J.: The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasgow Math. J. 43A, 109–123 (2001)
  • [29] Shi, Y., Nimmo, J.J.C., Zhang, D.J.: Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation. J. Phys. A: Math. Theor. 47(11pp), 025205 (2014)
  • [30] Shi, Y., Nimmo, J.J.C., Zhao, J.X.: Darboux and binary Darboux transformations for discrete integrable systems. II. Discrete potential mKdV equation. SIGMA 13(18pp) 036 (2017)
  • [31] Shi, Y., Zhang, D.J., Zhao, S.L.: Solutions to the non-autonomous ABS lattice equations: Casoratians and bilinearization (in Chinese). Sci. Sin. Math. 44(1), 37–54 (2014), arXiv:1201.6478
  • [32] Shi, Y., Zhao, J.X.: Discrete modified Boussinesq equation and Darboux transformation. Appl. Math. Lett. 86 141–148 (2018)
  • [33] Sun, Y.Y., Sun, W.Y.: An update of a Bäcklund transformation and its applications to the Boussinesq system. Appl. Math. Comput. 421(14pp), 126964 (2022)
  • [34] Sylvester, J.: Sur l’equation en matrices px=xqpx=xq. C. R. Acad. Sci. Paris 99, 67–71, 115–116 (1884)
  • [35] Tela, G.Y., Zhao, S.L., Zhang, D.J.: On the fourth-order lattice Gel’fand-Dikii equations. SIGMA 19(30pp), 007 (2023)
  • [36] Tongas, A., Nijhoff, F.W.: The Boussinesq integrable system: Compatible lattice and continuum structures. Glasgow Math. J. 47(A), 205–219 (2005)
  • [37] Wahlquist, H.D., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973)
  • [38] Walker, A.J.: Similarity reductions and integrable lattice equations, PhD thesis, Leeds University (2001)
  • [39] Wang, X., Zhang, D.J., Zhao, S.L.: Solutions to the non-autonomous ABS lattice equations: generalized Cauchy matrix approach. Commun. Appl. Math. Comput. 32(1), 1–25 (2018)
  • [40] Wu, H., Zheng, H.C., Zhang, D.J.: Oscillatory solutions of lattice potential Korteweg-de Vries equation. Commun. Appl. Math. Comput. 30(4), 482–489 (2016)
  • [41] Zhang, D.D., van der Kamp, P.H., Zhang, D.J.: Multi-component extension of CAC systems. SIGMA 16(30pp), 060 (2020)
  • [42] Zhang, D.J.: Notes on solutions in Wronskian form to soliton equations: KdV-type. arXiv:nlin.SI/0603008, (2006).
  • [43] Zhang, D.J., Hietarinta, J.: Generalized solutions for the H1 model in ABS List of lattice equations, Nonl. Mod. Math. Phys: Proceedings of the First International Workshop, AIP Conference Proceedings, 1212, 154–161 (2010)
  • [44] Zhang, D.J., Zhao, S.L.: Solutions to ABS lattice equations via generalized Cauchy matrix approach. Stud. Appl. Math. 131, 72–103 (2013)
  • [45] Zhang, D.J., Zhao, S.L., Nijhoff, F.W.: Direct linearization of extended lattice BSQ systems. Stud. Appl. Math. 129, 220–248 (2012)
  • [46] Zhang, D.J., Zhao, S.L., Sun, Y.Y., Zhou, J.: Solutions to the modified Korteweg-de Vries equation (review). Rev. Math. Phys. 26(42pp), 14300064 (2014)

Appendix

Appendix A Some lattice equations in the ABS list

After reparameterizing the lattice parameters in the ABS list, some of the lattice equations can be described as

Q3δ:\displaystyle\mathrm{Q3}_{\delta}:~{}~{} P(uu^+u~u~^)Q(uu~+u^u~^)=(p2q2)(u~u^+uu~^+δ24PQ),\displaystyle P(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})-Q(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}})=(p^{2}-q^{2})\bigg{(}\widetilde{u}\widehat{u}+u\widehat{\widetilde{u}}+\frac{\delta^{2}}{4PQ}\bigg{)}, (A.1a)
Q2:\displaystyle\mathrm{Q2}:~{}~{} (q2a2)(uu^)(u~u~^)(p2a2)(uu~)(u^u~^)\displaystyle(q^{2}-a^{2})(u-\widehat{u})(\widetilde{u}-\widehat{\widetilde{u}})-(p^{2}-a^{2})(u-\widetilde{u})(\widehat{u}-\widehat{\widetilde{u}})
+(p2a2)(q2a2)(q2p2)(u+u~+u^+u~^)\displaystyle+(p^{2}-a^{2})(q^{2}-a^{2})(q^{2}-p^{2})(u+\widetilde{u}+\widehat{u}+\widehat{\widetilde{u}})
=(p2a2)(q2a2)(q2p2)((p2a2)2+(q2a2)2(p2a2)(q2a2)),\displaystyle=(p^{2}-a^{2})(q^{2}-a^{2})(q^{2}-p^{2})\big{(}(p^{2}-a^{2})^{2}+(q^{2}-a^{2})^{2}-(p^{2}-a^{2})(q^{2}-a^{2})\big{)}, (A.1b)
Q1δ:\displaystyle\mathrm{Q1}_{\delta}:~{}~{} (q2a2)(uu^)(u~u~^)(p2a2)(uu~)(u^u~^)=δ2a4(p2q2)(p2a2)(q2a2),\displaystyle(q^{2}-a^{2})(u-\widehat{u})(\widetilde{u}-\widehat{\widetilde{u}})-(p^{2}-a^{2})(u-\widetilde{u})(\widehat{u}-\widehat{\widetilde{u}})=\frac{\delta^{2}a^{4}(p^{2}-q^{2})}{(p^{2}-a^{2})(q^{2}-a^{2})}, (A.1c)
H3δ:\displaystyle\mathrm{H3}_{\delta}:~{}~{} P(a2q2)(uu~+u^u~^)Q(a2p2)(uu^+u~u~^)=δ(p2q2),\displaystyle P(a^{2}-q^{2})(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}})-Q(a^{2}-p^{2})(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})=\delta(p^{2}-q^{2}), (A.1d)
H2:\displaystyle\mathrm{H2}:~{}~{} (uu~^)(u~u^)+(p2q2)(u+u~+u^+u~^)=p4q4,\displaystyle(u-\widehat{\widetilde{u}})(\widetilde{u}-\widehat{u})+(p^{2}-q^{2})(u+\widetilde{u}+\widehat{u}+\widehat{\widetilde{u}})=p^{4}-q^{4}, (A.1e)
H1:\displaystyle\mathrm{H1}:~{}~{} (uu~^)(u^u~)=p2q2,\displaystyle(u-\widehat{\widetilde{u}})(\widehat{u}-\widetilde{u})=p^{2}-q^{2}, (A.1f)

where δ\delta is a constant and in (A.1a) (p,P)=𝔭(p,P)=\mathfrak{p} and (q,Q)=𝔮(q,Q)=\mathfrak{q} are the points on the elliptic curve

{(x,X)|X2=(x2a2)(x2b2)},\displaystyle\{(x,X)|X^{2}=(x^{2}-a^{2})(x^{2}-b^{2})\}, (A.2)

and in (A.1d)

P2=a2p2,Q2=a2q2.\displaystyle P^{2}=a^{2}-p^{2},\quad Q^{2}=a^{2}-q^{2}. (A.3)

The A1δ\mathrm{A1}_{\delta} and A2\mathrm{A2} equations are omitted here since A1δ\mathrm{A1}_{\delta} and Q1δ\mathrm{Q1}_{\delta} are equivalent under a point transformation, so do A2\mathrm{A2} and Q3δ=0\mathrm{Q3}_{\delta=0}.

Appendix B List of notations for solutions to ABS list

We introduce some notations where the subscripts D and J usually correspond to the cases of 𝚪\bm{\Gamma} being diagonal and being of Jordan-block, respectively.

plane wave factor:ρs=i=0n1(fip+ksfipks)j=0m1(gjq+ksgjqks)ρs0,\displaystyle\hbox{plane wave factor:}~{}~{}\rho_{s}=\prod^{n-1}_{i=0}\bigg{(}\frac{f_{i}p+k_{s}}{f_{i}p-k_{s}}\bigg{)}\prod^{m-1}_{j=0}\bigg{(}\frac{g_{j}q+k_{s}}{g_{j}q-k_{s}}\bigg{)}\rho_{s}^{0}, (B.1a)
N-thordervector:𝒓D[N]({ks}1N)=(ρ1,ρ2,,ρN)T,\displaystyle N\mathrm{\hbox{-}th~{}order~{}vector:}~{}~{}\bm{r}_{\hbox{\tiny{\it D}}}^{\hbox{\tiny{[{\it N}]}}}(\{k_{s}\}_{1}^{N})=(\rho_{1},\rho_{2},\cdots,\rho_{N})^{\hbox{\tiny\it{T}}}, (B.1b)
N-thordervector:𝒓J[N](k1)=(ρ1,k1ρ11!,,k1N1ρ1(N1)!)T,\displaystyle N\mathrm{\hbox{-}th~{}order~{}vector:}~{}~{}\bm{r}_{\hbox{\tiny{{\it{J}}}}}^{\hbox{\tiny{[{\it{N}}]}}}(k_{1})=\Bigl{(}\rho_{1},\frac{\partial_{k_{1}}\rho_{1}}{1!},\cdots,\frac{\partial^{N-1}_{k_{1}}\rho_{1}}{(N-1)!}\Bigr{)}^{\hbox{\tiny\it{T}}}, (B.1c)
N×Nmatrix:𝚪D[N]({ks}1N)=Diag(k1,k2,,kN),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{\Gamma}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{s}\}^{N}_{1})=\mathrm{Diag}(k_{1},k_{2},\cdots,k_{N}), (B.1d)
N×Nmatrix:𝚪J[N](a)=(a00001a00001a000001a),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{\Gamma}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{J}}}}}(a)=\left(\begin{array}[]{cccccc}a&0&0&\cdots&0&0\\ 1&a&0&\cdots&0&0\\ 0&1&a&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&1&a\end{array}\right), (B.1j)
N×Nmatrix:𝑭D[N]({ks}1N)=Diag(ρ1,ρ2,,ρN),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{F}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{s}\}^{N}_{1})=\mathrm{Diag}(\rho_{1},\rho_{2},\cdots,\rho_{N}), (B.1k)
N×Nmatrix:𝑯D[N]({cs}1N)=Diag(c1,c2,,cN),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{H}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{c_{s}\}^{N}_{1})=\mathrm{Diag}(c_{1},c_{2},\cdots,c_{N}), (B.1l)
N×Nmatrix:𝑭J[N](k1)=(ρ1000k1ρ11!ρ100k12ρ12!k1ρ11!ρ10k1N1ρ1(N1)!k1N2ρ1(N2)!k1N3ρ1(N3)!ρ1),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{F}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{J}}}}}(k_{1})=\left(\begin{array}[]{ccccc}\rho_{1}&0&0&\cdots&0\\ \frac{\partial_{k_{1}}\rho_{1}}{1!}&\rho_{1}&0&\cdots&0\\ \frac{\partial^{2}_{k_{1}}\rho_{1}}{2!}&\frac{\partial_{k_{1}}\rho_{1}}{1!}&\rho_{1}&\cdots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ \frac{\partial^{N-1}_{k_{1}}\rho_{1}}{(N-1)!}&\frac{\partial^{N-2}_{k_{1}}\rho_{1}}{(N-2)!}&\frac{\partial^{N-3}_{k_{1}}\rho_{1}}{(N-3)!}&\cdots&\rho_{1}\end{array}\right), (B.1r)
N×Nmatrix:𝑯J[N]({cs}1N)=(c1cN2cN1cNc2cN1cN0c3cN00cN000),\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{H}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{J}}}}}(\{c_{s}\}^{N}_{1})=\left(\begin{array}[]{ccccc}c_{1}&\cdots&c_{N-2}&c_{N-1}&c_{N}\\ c_{2}&\cdots&c_{N-1}&c_{N}&0\\ c_{3}&\cdots&c_{N}&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ c_{N}&\cdots&0&0&0\end{array}\right), (B.1x)
N×Nmatrix:𝑮D[N]({ks}1N)=(gi,j)N×N,gi,j=1ki+kj,\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{G}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{D}}}}}(\{k_{s}\}^{N}_{1})=(g_{i,j})_{N\times N},~{}~{}~{}g_{i,j}=\frac{1}{k_{i}+k_{j}}, (B.1y)
N1×N2matrix:𝑮DJ[N1,N2]({ks}1N1;a)=(gi,j)N1×N2,gi,j=(1ki+a)j,\displaystyle N_{1}\times N_{2}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\hbox{\tiny{[{\it{N${}_{1}$,N${}_{2}$}}]}}}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{s}\}^{N_{1}}_{1};a)=(g_{i,j})_{N_{1}\times N_{2}},~{}~{}~{}g_{i,j}=-\Bigl{(}\frac{-1}{k_{i}+a}\Bigr{)}^{j}, (B.1z)
N1×N2matrix:𝑮JJ[N1,N2](a;b)=(gi,j)N1×N2,gi,j=Ci+j2i1(1)i+j(a+b)i+j1,\displaystyle N_{1}\times N_{2}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\hbox{\tiny{[{\it{N${}_{1}$,N${}_{2}$}}]}}}_{\hbox{\tiny{{\it{JJ}}}}}(a;b)=(g_{i,j})_{N_{1}\times N_{2}},~{}~{}~{}g_{i,j}=\mathrm{C}^{i-1}_{i+j-2}\frac{(-1)^{i+j}}{(a+b)^{i+j-1}}, (B.1aa)
N×Nmatrix:𝑮J[N](a)=𝑮JJ[N,N](a;a)=(gi,j)N×N,gi,j=Ci+j2i1(1)i+j(2a)i+j1,\displaystyle N\times N~{}\mathrm{matrix:}~{}~{}\bm{G}^{\hbox{\tiny{[{\it{N}}]}}}_{\hbox{\tiny{{\it{J}}}}}(a)=\bm{G}^{\hbox{\tiny{[{\it{N,N}}]}}}_{\hbox{\tiny{{\it{JJ}}}}}(a;a)=(g_{i,j})_{N\times N},~{}~{}~{}g_{i,j}=\mathrm{C}^{i-1}_{i+j-2}\frac{(-1)^{i+j}}{(2a)^{i+j-1}}, (B.1ab)

where

Cji=j!i!(ji)!,(ji).\mathrm{C}^{i}_{j}=\frac{j!}{i!(j-i)!},~{}~{}(j\geq i).

The NN-th order matrix in the following form

=(a00000a1a0000a2a1a000aN1aN2aN3a1a0)N×N\displaystyle\mathcal{B}=\left(\begin{array}[]{cccccc}a_{0}&0&0&\cdots&0&0\\ a_{1}&a_{0}&0&\cdots&0&0\\ a_{2}&a_{1}&a_{0}&\cdots&0&0\\ \vdots&\vdots&\cdots&\vdots&\vdots&\vdots\\ a_{N-1}&a_{N-2}&a_{N-3}&\cdots&a_{1}&a_{0}\end{array}\right)_{N\times N} (B.7)

with scalar elements {aj}\{a_{j}\} is a NNth-order lower triangular Toeplitz matrix. All such matrices compose a commutative set G~[N]\widetilde{G}^{\hbox{\tiny{[{\it{N}}]}}} with respect to matrix multiplication and the subset

G[N]={|.G~[N],||0}G^{\hbox{\tiny{[{\it{N}}]}}}=\big{\{}\mathcal{B}\big{|}~{}\big{.}\mathcal{B}\in\widetilde{G}^{\hbox{\tiny{[{\it{N}}]}}},~{}|\mathcal{B}|\neq 0\big{\}}

is an Abelian group. Such kind of matrices play useful roles in the expression of exact solution for soliton equations [42, 46].

Appendix C List of notations for solutions to lattice BSQ-type equations

  • Ni1×Ni1N_{i1}\times N_{i1} diagonal matrix:

    𝚲D[Ni1]({ki,j}j=1Ni1)=Diag(ki,1,ki,2,,ki,Ni1),\displaystyle\bm{\Lambda}^{[N_{i1}]}_{\hbox{\tiny{{\it{D}}}}}(\{k_{i,j}\}_{j=1}^{N_{i1}})={\rm Diag}(k_{i,1},k_{i,2},\ldots,k_{i,N_{i1}}), (C.1)
  • Nij×NijN_{ij}\times N_{ij} Jordan-block matrix:

    𝚲J[Nij](a)=(a00001a00001a000001a)Nij×Nij,\displaystyle\bm{\Lambda}^{[N_{ij}]}_{\hbox{\tiny{{\it{J}}}}}(a)=\left(\begin{array}[]{cccccc}a&0&0&\cdots&0&0\\ 1&a&0&\cdots&0&0\\ 0&1&a&\cdots&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&0&\cdots&1&a\end{array}\right)_{N_{ij}\times N_{ij}}, (C.7)
  • Lower triangular Toeplitz matrices:

    𝑻[N]({ai}1N)=(a10000a2a1000a3a2a100aNaN1aN2a2a1)N×N,\displaystyle\bm{T}^{\hbox{\tiny{[{\it{N}}]}}}(\{a_{i}\}^{N}_{1})=\left(\begin{array}[]{cccccc}a_{1}&0&0&\cdots&0&0\\ a_{2}&a_{1}&0&\cdots&0&0\\ a_{3}&a_{2}&a_{1}&\cdots&0&0\\ \vdots&\vdots&\cdots&\vdots&\vdots&\vdots\\ a_{N}&a_{N-1}&a_{N-2}&\cdots&a_{2}&a_{1}\end{array}\right)_{N\times N}, (C.13)
  • Skew triangular Toeplitz matrix:

    𝑯[N]({bj}1N)=(b1bN2bN1bNb2bN1bN0b3bN00bN000)N×N.\displaystyle\bm{H}^{\hbox{\tiny{[{\it{N}}]}}}(\{b_{j}\}^{N}_{1})=\left(\begin{array}[]{ccccc}b_{1}&\cdots&b_{N-2}&b_{N-1}&b_{N}\\ b_{2}&\cdots&b_{N-1}&b_{N}&0\\ b_{3}&\cdots&b_{N}&0&0\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ b_{N}&\cdots&0&0&0\end{array}\right)_{N\times N}. (C.19)

Meanwhile, the following expressions need to be considered:

plane wave factor:τi,ι=l=0n1(lp+ki,ι)h=0m1(𝒢hq+ki,ι)τi,ι0,with constantsτi,ι0,\displaystyle\hbox{plane wave factor:}~{}~{}\tau_{i,\iota}=\prod_{l=0}^{n-1}(\mathcal{F}_{l}p+k_{i,\iota})\prod_{h=0}^{m-1}(\mathcal{G}_{h}q+k_{i,\iota})\tau_{i,\iota}^{0},\quad\text{with~{}constants}~{}\tau_{i,\iota}^{0}, (C.20a)
plane wave factor:ςj,κ=l=n0n1(lp+ωjkj,κ)1h=0m1(𝒢hq+ωjkj,κ)1ςj,κ0,\displaystyle\hbox{plane wave factor:}~{}~{}\varsigma_{j,\kappa}=\prod_{l=n_{0}}^{n-1}(\mathcal{F}_{l}p+\omega^{j}k_{j,\kappa})^{-1}\prod_{h=0}^{m-1}(\mathcal{G}_{h}q+\omega^{j}k_{j,\kappa})^{-1}\varsigma_{j,\kappa}^{0},
with constantsςj,κ0,\displaystyle\qquad\qquad\qquad\qquad\text{with~{}constants}~{}\varsigma_{j,\kappa}^{0}, (C.20b)
Ni×Njmatrix:𝑮DD({ki,ι}ι=1Ni1;{ωjkj,κ}κ=1Nj1)=(1ki,ιωjkj,κ)ι,κ,\displaystyle N_{i}\times N_{j}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\prime}_{\hbox{\tiny{{\it{DD}}}}}(\{k_{i,\iota}\}_{\iota=1}^{N_{i1}};\{\omega^{j}k_{j,\kappa}\}_{\kappa=1}^{N_{j1}})=\bigg{(}\frac{1}{k_{i,\iota}-\omega^{j}k_{j,\kappa}}\bigg{)}_{\iota,\kappa}, (C.20c)
Ni×Njmatrix:𝑮DJ({ki,ι}ι=1Ni;ωjb)=(1(κ1)!bκ11ki,ιωjb)ι,κ,\displaystyle N_{i}\times N_{j}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\prime}_{\hbox{\tiny{{\it{DJ}}}}}(\{k_{i,\iota}\}_{\iota=1}^{N_{i}};\omega^{j}b)=\bigg{(}\frac{1}{(\kappa-1)!}\partial^{\kappa-1}_{b}\frac{1}{k_{i,\iota}-\omega^{j}b}\bigg{)}_{\iota,\kappa}, (C.20d)
Ni×Njmatrix:𝑮JD(a;{ωjkj,κ}κ=1Nj)=(1(aωjkj,κ)ι)ι,κ,\displaystyle N_{i}\times N_{j}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\prime}_{\hbox{\tiny{{\it{JD}}}}}(a;\{\omega^{j}k_{j,\kappa}\}_{\kappa=1}^{N_{j}})=\bigg{(}\frac{1}{(a-\omega^{j}k_{j,\kappa})^{\iota}}\bigg{)}_{\iota,\kappa}, (C.20e)
Ni×Njmatrix:𝑮JJ(a;ωjb)=(1(κ1)!bκ11(aωjb)ι)ι,κ.\displaystyle N_{i}\times N_{j}~{}\mathrm{matrix:}~{}~{}\bm{G}^{\prime}_{\hbox{\tiny{{\it{JJ}}}}}(a;\omega^{j}b)=\Bigl{(}\frac{1}{(\kappa-1)!}\partial^{\kappa-1}_{b}\frac{1}{(a-\omega^{j}b)^{\iota}}\Bigl{)}_{\iota,\kappa}. (C.20f)