This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resonant contribution of the three-body decay process B¯sK+KP\bar{B}_{s}\rightarrow K^{+}K^{-}P in perturbation QCD

Gang Lü1111Email: [email protected], Chang Chang Zhang 1222Email: [email protected], Yan-Lin Zhao1333Email:[email protected], Li-Ying Zhang 1444Email:[email protected] 1College of Science, Henan University of Technology, Zhengzhou 450001, China
Abstract

We investigate the CP violation in the decay process B¯sϕ(ρ,ω)PK+KP\bar{B}_{s}\rightarrow\phi(\rho,\omega)P\rightarrow K^{+}K^{-}P by considering the interference effects of ϕK+K\phi\rightarrow K^{+}K^{-}, ρK+K\rho\rightarrow K^{+}K^{-} and ωK+K\omega\rightarrow K^{+}K^{-} within the framework of perturbative QCD method (P refers to π\pi, K, η\eta and η\eta^{\prime} pseudoscalar mesons, respectively). We analyse the mixings of ϕρ0\phi-\rho^{0}, ϕω\phi-\omega and ωρ0\omega-\rho^{0} and provide the amplitudes of the quasi-two-body decay processes. The CP violation for B¯sK+KP\bar{B}_{s}\rightarrow K^{+}K^{-}P decay process is obvious at the ranges of the three vector mesons interferences. Meanwhile, the localised CP violation can be found for comparing with the experiment results from three-body decay process at the LHC in the near future.

I Introduction

CP violation is a fascinating phenomenon in particle physics that has puzzled us for decades. The Standard Model (SM) of particle physics provides a framework for understanding CP violation, but there are still many unanswered questions Cabibbo:1963yz . One area of research focuses on the search for new sources of CP violation beyond the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This involves studying rare decays and interactions between particles to look for deviations from the predictions of the Standard Model. Another approach is to study CP violation in different types of particles, such as neutrinos or mesons. Despite these efforts, much remains unknown about CP violation.

As early as 2012, LHCb Collaboration confirmed the existence of CP violation in some three-body decay studies of B mesons and found that the local phase space of B¯±π+ππ±\bar{B}^{\pm}\rightarrow\pi^{+}\pi^{-}\pi^{\pm} decay channels had large direct CP violation, which was an interesting phenomenon at the time LHCb:2012kja ; LHCb:2012uja . This phenomenon was later found to be explained by intermediate state resonances between different isospin mesons. As the B¯±π+ππ±\bar{B}^{\pm}\rightarrow\pi^{+}\pi^{-}\pi^{\pm} decay process was studied using ρω\rho-\omega mixed resonance and found significant CP violation in the invariant mass m(π+π\pi^{+}\pi^{-})=0.77GeV, which coincides with the position and degree of local CP violation Wang:2015ula . There is no doubt that the three-body decay of heavy mesons is more complex than the two-body case, and one of the reasons is that they receive both resonant and non-resonant contributions during the decay process. The existing experimental results show that CP asymmetry in some local regions of phase space may be more obvious. Just like the LHCb observed large asymmetries in local regions in B±K±π+πB^{\pm}\rightarrow K^{\pm}\pi^{+}\pi^{-} and B±K±K+KB^{\pm}\rightarrow K^{\pm}K^{+}K^{-}. Their invariant mass spectra of B±K±π+πB^{\pm}\rightarrow K^{\pm}\pi^{+}\pi^{-} decays in the region 0.08<mπ+π2<0.66GeV2/c40.08<m_{\pi^{+}\pi^{-}}^{2}<0.66\mathrm{GeV}^{2}/c^{4} and mK±π2<15GeV2/c4m_{K^{\pm}\pi^{\mp}}^{2}<15\mathrm{GeV}^{2}/c^{4}, and B±K±K+KB^{\pm}\rightarrow K^{\pm}K^{+}K^{-} decays in the region 1.2<mK+Klow 2<2.0GeV2/c41.2<m_{K^{+}K^{-}\text{low }}^{2}<2.0\mathrm{GeV}^{2}/c^{4} and mK+Khigh 2<15GeV2/c4m_{K^{+}K^{-}\text{high }}^{2}<15\mathrm{GeV}^{2}/c^{4} LHCb:2013ptu . These local apparent CP asymmetries are interesting. Currently, the phenomenon of CP asymmetry in the three-body decay process of BsB_{s} mesons remains relatively unexplored, with limited research from both theoretical and experimental perspectives.

This paper aims to calculate the CP violation of B¯sK+KP\bar{B}_{s}\rightarrow K^{+}K^{-}P decay process under the perturbative QCD method (PQCD). The reason is that the Sudakov factor in PQCD effectively depresses the non-perturbative contribution and absorbs the non-perturbative part into the universal hadronic wave function Ali:2007ff . Besides, this method is self-consistent in the two-body non-leptonic decay process of B meson and has been proved to consisted with the large CP violation found in experiment xiao2007xc . Indeed, the corresponding two-body decay process of the B meson has been well-established and developed into various of three-body decay process which we can treat three-body decay process with the method of quasi-two body decay process Hua:2020usv ; Zou:2020fax . In recent years, an increasing number of analysis about precious measurements of the branching ratio and CP violation in the three-body decay process have been carried out by BaBar BaBar:2014zli , Belle II Bertacchi:2023jzv , CLEO CLEO:2007vpk , and LHCb Aaijprl2013 , which provides a great platform to test the standard Model (SM) and search the new physical signals. In this paper, we take the method of quasi-two-body decay process to calculate the CP violation of B¯sK+KP\bar{B}_{s}\rightarrow K^{+}K^{-}P process under the mixing mechanism of ϕK+K\phi\rightarrow K^{+}K^{-}, ρ0K+K\rho^{0}\rightarrow K^{+}K^{-} and ωK+K\omega\rightarrow K^{+}K^{-}. The reasons to explore the resonance effect among the three particles arises from the adjacent masses of ϕ(1020)\phi(1020), ω\omega(782) and ρ0\rho^{0}(770). By incorporating information on K+KK^{+}K^{-} production and taking into account the constraints imposed by isospin symmetry, quark model and OZI rule, it becomes feasible to disentangle amplitudes with isospin I=1I=1 and I=0I=0 components. The ϕ(1020)\phi(1020) and ω\omega(782) match the isospin I=0I=0 component. The I=1I=1 component derives from ρ0(770)\rho^{0}(770). The ideal field of intermediate states is transformed into a computable physical field through the application of a unitary matrix in this paper. Additionally, we investigate localized CP violation within the hybrid resonance range to facilitate meaningful future comparisons with experimental results.

We present our work in six distinct parts. The mechanism of three vector mesons mixing is introduced in section 2. In Section 3, we initially investigate CP violation arising from the involvement of the mixing mechanism in the decay process B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0,ω)(\rho^{0},\omega) PK+KPP\rightarrow K^{+}K^{-}P. Subsequently, we present a formalism for local CP violation. In Section 4, we introduce the amplitude formalism within the framework of perturbative QCD (PQCD) method, along with the fundamental functions and associated parameters. Additionally, we provide an evaluation of both the magnitude and integrated form of CP violation. The analysis of data results can be found in Section 5. Finally, we engage in a comprehensive discussion and provide a concise summary of our findings.

II The mechanism of three vector mesons mixing

The positive and negative electrons annihilate into photons and then they are polarized in a vacuum to form the mesons of ϕ(1020)\phi(1020), ρ0(770)\rho^{0}(770) and ω(782)\omega(782), which can also decay into K+KK^{+}K^{-} pair. Meanwhile, the momentum can also be passed through the VMD model PMplb1981 ; Achasov2016 . Since the intermediate state particle is an un-physical state, we need convert it into a physical field from an isospin field through the matrix R Lu:2022rdi . Then we can obtain the physical state of ϕ\phi, ρ0\rho^{0} and ω\omega. What deserved to mentioned is that there is no ϕρ0ω\phi-\rho^{0}-\omega mixing in the physical state and we neglect the contribution of the high-order term Lv2023epj . The physical states ϕρ0ω\phi-\rho^{0}-\omega can be expressed as linear combinations of the isospin states ϕIρI0ωI\phi_{I}-\rho^{0}_{I}-\omega_{I}. The relationship can be represented by the following matrix:

(ρ0ωϕ)=R(s)(ρI0ωIϕI)\left(\begin{array}[]{lllll}\rho^{0}\\[14.22636pt] \omega\\[14.22636pt] \phi\end{array}\right)=R(s)\left(\begin{array}[]{lll}\rho^{0}_{I}\\[14.22636pt] \omega_{I}\\[14.22636pt] \phi_{I}\end{array}\right) (1)

where

R=(<ρI|ρ><ωI|ρ><ϕI|ρ><ρI|ω><ωI|ω><ϕI|ω><ρI|ϕ><ωI|ϕ><ϕI|ϕ>).R=\left(\begin{array}[]{lll}<\rho_{I}|\rho>&\hskip 56.9055pt<\omega_{I}|\rho>&\hskip 56.9055pt<\phi_{I}|\rho>\\[14.22636pt] <\rho_{I}|\omega>&\hskip 56.9055pt<\omega_{I}|\omega>&\hskip 56.9055pt<\phi_{I}|\omega>\\[14.22636pt] <\rho_{I}|\phi>&\hskip 56.9055pt<\omega_{I}|\phi>&\hskip 56.9055pt<\phi_{I}|\phi>\end{array}\right).\\ (2)

The change between the physical field and the isospin field in the intermediate state of the decay process is related by the matrices R. The off-diagonal elements of R present the information of ϕρ0ω\phi-\rho^{0}-\omega mixing. Based on the isospin representation of ϕI\phi_{I}, ρI\rho_{I} and ωI\omega_{I}, the isospin vector |I,I3>|I,I_{3}> can be constructed, where I3I_{3} denotes the third component of isospin. The variables i and j are employed to denote the physical state of the particle and the isospin basis vector, respectively. According to the orthogonal normalization relationship, we can derive: j|j><j|=jI|jI><jI|=I,\sum_{j}|j><j|=\sum_{j_{I}}\left|j_{I}><j_{I}\right|=I, and <j|i>=<jI|iI>=δji<j\left|i>=<j_{I}\right|i_{I}>=\delta_{ji}. We use the notation FViVjF_{V_{i}V_{j}} to denote the mixing parameter, where ViV_{i} and VjV_{j} represent one of the three vector particles. Then, the transformation matrix R can be converted as follows:

R=(1Fρω(s)Fρϕ(s)Fρω(s)1Fωϕ(s)Fρϕ(s)Fωϕ(s)1).R=\left(\begin{array}[]{ccc}1&-F_{\rho\omega}(s)&-F_{\rho\phi}(s)\\ F_{\rho\omega}(s)&1&-F_{\omega\phi}(s)\\ F_{\rho\phi}(s)&F_{\omega\phi}(s)&1\end{array}\right). (3)

From the translation of the two representations, the physical states can be written as

ϕ=Fρϕ(s)ρI0+Fωϕ(s)ωI+ϕI,ω=Fρω(s)ρI0+ωIFωϕ(s)ϕI,ρ0=ρI0Fρω(s)ωIFρϕ(s)ϕI.\begin{split}\phi=F_{\rho\phi}(s)\rho_{I}^{0}+F_{\omega\phi}(s)\omega_{I}+\phi_{I},\\ \omega=F_{\rho\omega}(s)\rho_{I}^{0}+\omega_{I}-F_{\omega\phi}(s)\phi_{I},\\ \rho^{0}=\rho_{I}^{0}-F_{\rho\omega}(s)\omega_{I}-F_{\rho\phi}(s)\phi_{I}.\end{split} (4)

The relationship between the mixing parameters ΠViVj\Pi_{V_{i}V_{j}} and FViVjF_{V_{i}V_{j}} can be deduced from the subsequent equation:

Fρω=Πρωsρsω,Fρϕ=Πρϕsρsϕ,Fωϕ=Πωϕsωsϕ.\begin{split}F_{\rho\omega}=\frac{\Pi_{\rho\omega}}{s_{\rho}-s_{\omega}},\\ F_{\rho\phi}=\frac{\Pi_{\rho\phi}}{s_{\rho}-s_{\phi}},\\ F_{\omega\phi}=\frac{\Pi_{\omega\phi}}{s_{\omega}-s_{\phi}}.\end{split} (5)

The relationship of FViVjF_{V_{i}V_{j}}=FVjVVi-F_{V_{j}V_{V_{i}}} can be found. The inverse propagator of the vector meson, denoted as sVs_{V} (V=ϕ,ρV=\phi,\rho, or ω\omega), is defined such that sV=smV2+imVΓVs_{V}=s-m_{V}^{2}+\mathrm{i}m_{V}\Gamma_{V}. The variables mVm_{V} and ΓV\Gamma_{V} represent the mass and decay rate of the vector mesons, respectively. Meanwhile, s\sqrt{s} denotes the invariant mass of the K+KK^{+}K^{-} pairs.

In this paper, the momentum dependence of the mixing parameters ΠViVj\Pi_{V_{i}V_{j}} of ViVjV_{i}V_{j} mixing is introduced to obtain the obvious s dependence. The mixing parameter Πρω=4470±250±160i(5800±2000±1100)MeV2\Pi_{\rho\omega}=-4470\pm 250\pm 160-i(5800\pm 2000\pm 1100)\mathrm{MeV}^{2} is obtained near the ρ\rho meson is recently determined precisely by Wolfe and Maltnan CE2009 ; CE2011 ; Lu:2018fqe . The mixing parameter Πωϕ=19000+i(2500±300)MeV2\Pi_{\omega\phi}=19000+i(2500\pm 300)\mathrm{MeV}^{2} is obtained near the ϕ\phi muon. And the mixing parameter Πϕρ=720±180i(870±320)MeV2\Pi_{\phi\rho}=720\pm 180-i(870\pm 320)\mathrm{MeV}^{2} is obtained near the ϕ\phi meson MN2000 . Then we define

Π~ρω=sρΠρωsρsω,Π~ρϕ=sρΠρϕsρsϕ,Π~ϕω=sϕΠϕωsϕsω.\displaystyle\widetilde{\Pi}_{\rho\omega}=\frac{s_{\rho}\Pi_{\rho\omega}}{s_{\rho}-s_{\omega}},~{}~{}\widetilde{\Pi}_{\rho\phi}=\frac{s_{\rho}\Pi_{\rho\phi}}{s_{\rho}-s_{\phi}},~{}~{}\widetilde{\Pi}_{\phi\omega}=\frac{s_{\phi}\Pi_{\phi\omega}}{s_{\phi}-s_{\omega}}. (6)

III CP violation in B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0\rho^{0}, ω\omega) PK+KPP\rightarrow K^{+}K^{-}P decay process

III.1 The resonance effect from VK+KV\rightarrow K^{+}K^{-}

We present decay diagrams (a)-(i) of the B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0(\rho^{0}, ω)\omega) PK+KPP\rightarrow K^{+}K^{-}P process in Fig.1, aiming to provide a more comprehensive understanding of the mixing mechanism.

Refer to caption
Figure 1: The decay diagrams of B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0(\rho^{0}, ω)\omega) PK+KP\rightarrow K^{+}K^{-} PP process.

In the above decay diagrams, the decay processes depicted in (a), (d), and (g) represent direct decay modes, where K+KK^{+}K^{-} are produced through ϕ\phi, ρ0\rho^{0}, and ω\omega respectively. The quasi-two-body approach employed in this study is evident from the aforementioned diagrams. Compared to the direct decay processes depicted in diagrams (a), (d), and (g) of Fig.1, the K+KK^{+}K^{-} pair can also be generated through a distinct mixing mechanism. The black dots in the figure represent the resonance effect between these two mesons, denoted by the mixing parameter ΠViVj\Pi_{V_{i}V_{j}}. Although the contribution from this mixing mechanism is relatively small compared to other diagrams in Fig.1, it must be taken into consideration.

The amplitude of the B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0,ω\rho^{0},\omega) PK+KPP\rightarrow K^{+}K^{-}P decay channel can be characterized in the following manner:

A=K+KP|HT|B¯s+K+KP|HP|B¯s,A=\left\langle K^{+}K^{-}P\left|H^{T}\right|\bar{B}_{s}\right\rangle+\left\langle K^{+}K^{-}P\left|H^{P}\right|\bar{B}_{s}\right\rangle, (7)

The quantities K+KP|HP|B¯s\left\langle K^{+}K^{-}P\left|H^{P}\right|\bar{B}_{s}\right\rangle and K+KP|HT|B¯s\left\langle K^{+}K^{-}P\left|H^{T}\right|\bar{B}_{s}\right\rangle represent the amplitudes associated with penguin-level and tree-level contributions, respectively. The propagator of the intermediate vector meson can be transformed from the diagonal matrix to the physical state after applying the R matrix transformation. Neglecting higher order terms, the amplitudes can be as demonstrated below:

K+KP|HT|B¯s=gϕsϕtϕ+gρsρsϕΠ~ρϕtϕ+gωsωsϕΠ~ωϕtϕ+gρsρtρ+gϕsϕsρΠ~ϕρtρ+gωsωsρΠ~ωρtρ+gωsωtω+gϕsϕsωΠ~ϕωtω+gρsρsωΠ~ρωtω,\displaystyle\begin{split}\left\langle K^{+}K^{-}P\left|H^{T}\right|\bar{B}_{s}\right\rangle=&\frac{g_{\phi}}{s_{\phi}}t_{\phi}+\frac{g_{\rho}}{s_{\rho}s_{\phi}}\widetilde{\Pi}_{\rho\phi}t_{\phi}+\frac{g_{\omega}}{s_{\omega}s_{\phi}}\widetilde{\Pi}_{\omega\phi}t_{\phi}+\frac{g_{\rho}}{s_{\rho}}t_{\rho}+\frac{g_{\phi}}{s_{\phi}s_{\rho}}\widetilde{\Pi}_{\phi\rho}t_{\rho}\\ &+\frac{g_{\omega}}{s_{\omega}s_{\rho}}\widetilde{\Pi}_{\omega\rho}t_{\rho}+\frac{g_{\omega}}{s_{\omega}}t_{\omega}+\frac{g_{\phi}}{s_{\phi}s_{\omega}}\widetilde{\Pi}_{\phi\omega}t_{\omega}+\frac{g_{\rho}}{s_{\rho}s_{\omega}}\widetilde{\Pi}_{\rho\omega}t_{\omega},\end{split} (8)
K+KP|HP|B¯s=gϕsϕpϕ+gρsρsϕΠ~ρϕpϕ+gωsωsϕΠ~ωϕpϕ+gρsρpρ+gϕsϕsρΠ~ϕρpρ+gωsωsρΠ~ωρpρ+gωsωpω+gϕsϕsωΠ~ϕωpω+gρsρsωΠ~ρωpω,\displaystyle\begin{split}\left\langle K^{+}K^{-}P\left|H^{P}\right|\bar{B}_{s}\right\rangle=&\frac{g_{\phi}}{s_{\phi}}p_{\phi}+\frac{g_{\rho}}{s_{\rho}s_{\phi}}\widetilde{\Pi}_{\rho\phi}p_{\phi}+\frac{g_{\omega}}{s_{\omega}s_{\phi}}\widetilde{\Pi}_{\omega\phi}p_{\phi}+\frac{g_{\rho}}{s_{\rho}}p_{\rho}+\frac{g_{\phi}}{s_{\phi}s_{\rho}}\widetilde{\Pi}_{\phi\rho}p_{\rho}\\ &+\frac{g_{\omega}}{s_{\omega s_{\rho}}}\widetilde{\Pi}_{\omega\rho}p_{\rho}+\frac{g_{\omega}}{s_{\omega}}p_{\omega}+\frac{g_{\phi}}{s_{\phi}s_{\omega}}\widetilde{\Pi}_{\phi\omega}p_{\omega}+\frac{g_{\rho}}{s_{\rho}s_{\omega}}\widetilde{\Pi}_{\rho\omega}p_{\omega},\end{split} (9)

where the tree-level (penguin-level) amplitudes tρ(pρ)t_{\rho}\left(p_{\rho}\right), tω(pω)t_{\omega}\left(p_{\omega}\right), and tϕ(pϕ)t_{\phi}\left(p_{\phi}\right) correspond to the decay processes B¯sρ0P\bar{B}_{s}\rightarrow\rho^{0}P, B¯sωP\bar{B}_{s}\rightarrow\omega P and B¯sϕP\bar{B}_{s}\rightarrow\phi P, respectively. Here, sVs_{V} represents the inverse propagator of the vector meson V Chen:1999nxa ; Wolfe:2009ts ; Wolfe:2010gf . Moreover, gVg_{V} represents the coupling constant derived from the decay process of VK+KV\rightarrow K^{+}K^{-} and can be expressed as 2gρk+k=2gωk+k=gϕk+k=4.54\sqrt{2}g_{{\rho}k^{+}k^{-}}=\sqrt{2}g_{\omega k^{+}k^{-}}=-g_{\phi k^{+}k^{-}}=4.54 Bruch:2004py .

The differential parameter for CP asymmetry can be expressed as follows:

ACP=|A|2|A¯|2|A|2+|A¯|2.A_{CP}=\frac{\left|A\right|^{2}-\left|\overline{A}\right|^{2}}{\left|A\right|^{2}+\left|\overline{A}\right|^{2}}. (10)

III.2 The localised CP violation of ACPΩA^{\Omega}_{CP}

In this paper, we perform the integral calculation of ACP to facilitate future experimental comparisons. For the decay process B¯sϕP\bar{B}_{s}\rightarrow\phi P, the amplitude is given by MB¯sϕPλ=αpB¯ϵ(λ)M_{\bar{B}_{s}\rightarrow\phi P}^{\lambda}=\alpha p_{\bar{B}}\cdot\epsilon^{*}(\lambda), where pB¯sp_{\bar{B}_{s}} represents the momenta of the B¯s\bar{B}_{s} meson, ϵ\epsilon denotes the polarization vector of ϕ\phi and λ\lambda corresponds to its polarization. The parameter α\alpha remains independent of λ\lambda. Similarly, in the decay process ϕK+K\phi\rightarrow K^{+}K^{-}, we can express MϕKK+λ=gϕϵ(λ)(p1p2)M_{\phi\rightarrow K^{-}K^{+}}^{\lambda}=g_{\phi}\epsilon(\lambda)\left(p_{1}-p_{2}\right), where p1p_{1} and p2p_{2} denote the momenta of the produced K+K^{+} and KK^{-} particles from ϕ\phi, respectively. Here, the parameter gϕg_{\phi} represents an effective coupling constant for ϕK+K\phi\rightarrow K^{+}K^{-}. Regarding the dynamics of meson decay, it is observed that the polarization vector of a vector meson satisfies λ=0,±1ϵμλ(p)(ϵνλ(p))=(gμνpμpν/mV2)\sum_{\lambda=0,\pm 1}\epsilon^{\lambda}_{\mu}(p)(\epsilon^{\lambda}_{\nu}(p))^{*}=-(g_{\mu\nu}-p_{\mu}p_{\nu}/m_{V}^{2}). As a result, we obtain the total amplitude for the decay process B¯sϕPK+KP\bar{B}_{s}\rightarrow\phi P\rightarrow K^{+}K^{-}P Guo:2000uc ; Zhang:2013oqa ; Wang:2015ula :

A\displaystyle A =αpB¯sμλϵμ(λ)ϵν(λ)sϕgϕkk(p1p2)ν\displaystyle=\alpha p_{\bar{B}_{s}}^{\mu}\frac{\sum_{\lambda}\epsilon_{\mu}^{*}(\lambda)\epsilon_{\nu}(\lambda)}{s_{\phi}}g_{\phi kk}\left(p_{1}-p_{2}\right)^{\nu} (11)
=gϕkkαsϕpB¯sμ[gμν(p1+p2)μ(p1+p2)νs](p1p2)ν\displaystyle=\frac{g_{\phi kk}\alpha}{s_{\phi}}\cdot p_{\bar{B}_{s}}^{\mu}\left[g_{\mu\nu}-\frac{\left(p_{1}+p_{2}\right)_{\mu}\left(p_{1}+p_{2}\right)_{\nu}}{s}\right]\left(p_{1}-p_{2}\right)^{\nu}
=gϕkksϕMB¯sϕπ0λpB¯sϵ(Σs)\displaystyle=\frac{g_{\phi kk}}{s_{\phi}}\cdot\frac{M_{\bar{B}_{s}\rightarrow\phi\pi^{0}}^{\lambda}}{p_{\bar{B}_{s}}\cdot\epsilon^{*}}\cdot\left(\Sigma-s^{\prime}\right)
=(Σs)𝒜.\displaystyle=\left(\Sigma-s^{\prime}\right)\cdot\mathcal{A}.

The high (s\sqrt{s^{\prime}}) and low s\sqrt{s} ranges are defined for calculating the invariant mass of KK+K^{-}K^{+}. By setting a fixed value for ss, we can determine an appropriate value for ss^{\prime} that fulfills the equation Σ=12(smax+smin)\Sigma=\frac{1}{2}\left(s_{\max}^{\prime}+s_{\min}^{\prime}\right), where smax(smin){s}_{\max}^{\prime}({s}_{\min}^{\prime}) denotes respectively the maximum (minimum) value.

Utilizing the principles of three-body kinematics, we can deduce the local CP asymmetry for the decay B¯sK+KP\bar{B}_{s}\rightarrow K^{+}K^{-}P within a specific range of invariant mass:

ACPΩ=s1s2dss1s2ds(Σs)2(|𝒜|2|𝒜¯|2)s1s2dss1s2ds(Σs)2(|𝒜|2+|𝒜¯|2).A_{CP}^{\Omega}=\frac{\int_{s_{1}}^{s_{2}}\mathrm{~{}d}s\int_{s_{1}^{\prime}}^{s_{2}^{\prime}}\mathrm{d}s^{\prime}\left(\Sigma-s^{\prime}\right)^{2}\left(|\mathcal{A}|^{2}-|\overline{\mathcal{A}}|^{2}\right)}{\int_{s_{1}}^{s_{2}}\mathrm{~{}d}s\int_{s_{1}^{\prime}}^{s_{2}^{\prime}}\mathrm{d}s^{\prime}\left(\Sigma-s^{\prime}\right)^{2}\left(|\mathcal{A}|^{2}+|\overline{\mathcal{A}}|^{2}\right)}. (12)

Our calculation takes into account the dependence of Σ=12(smax+smin)\Sigma=\frac{1}{2}\left(s_{\max}^{\prime}+s_{\min}^{\prime}\right) on ss^{\prime}. Assuming that smax>s>smins_{\max}^{\prime}>s^{\prime}>s_{\min}^{\prime} represents an integral interval of high invariant mass for the KK+K^{-}K^{+} meson pair, and s1s2ds(Σs)2\int_{s_{1}^{\prime}}^{s_{2}^{\prime}}\mathrm{d}s^{\prime}(\Sigma-s^{\prime})^{2} represents a factor dependent on ss^{\prime}. The correlation between Σ\Sigma and ss^{\prime} can be easily determined through kinematic analysis, as ss^{\prime} only varies on a small scale. Therefore, we can consider Σ\Sigma as a constant. This allows us to cancel out the term s1s2ds(Σs)2\int_{s_{1}^{\prime}}^{s_{2}^{\prime}}\mathrm{d}s^{\prime}(\Sigma-s^{\prime})^{2} in both the numerator and denominator, resulting in ACPΩA_{CP}^{\Omega} no longer depending on the high invariant mass of positive and negative particles.

IV The amplitudes of quasi-two-body decay processes within the framework of perturbative QCD (PQCD)

IV.1 Formulation of calculations

The three-body decay process is accompanied by intricate and multifaceted dynamical mechanisms. The perturbative QCD (PQCD) method is known for its efficacy in handling perturbation corrections, which has been successfully applied to two-body non-light decay processes and holds promise for quasi-two-body decay processes as well. In the framework of PQCD, within the rest frame of a heavy B meson, the decay process involves the production of two light mesons with significantly large momenta that exhibit rapid motion. The dominance of hard interactions in this decay amplitude arises due to insufficient time for exchanging soft gluons with the final-state mesons. Given the high velocity of these final-state mesons, a hard gluon imparts momentum to the light spectator quark within the B meson, resulting in the formation of a rapidly moving final-state meson. Consequently, this hard interaction is described by six quark operators. The nonperturbative dynamics are encapsulated within the meson wave function, which can be extracted through experimental measurements. On the other hand, employing perturbation theory allows for computation of this aforementioned hard contribution. Quasi-two-body decay can be computed by defining the intermediate state of decay.

By employing the quasi-two-body decay method, the total amplitude of B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0\rho^{0}, ω\omega) π0\pi^{0} K+Kπ0\rightarrow K^{+}K^{-}\pi^{0} is composed of two components: B¯sϕ\bar{B}_{s}\rightarrow\phi (ρ0\rho^{0}, ω\omega) π0\pi^{0} and ϕ\phi (ρ0\rho^{0}, ω)K+K\omega)\rightarrow K^{+}K^{-}. In this study, we illustrate the methodology of quasi-two-body decay process using the example of B¯sϕπ0K+Kπ0\bar{B}_{s}\rightarrow\phi\pi^{0}\rightarrow K^{+}K^{-}\pi^{0}, based on the matrix elements involving VtbV_{tb}, VtsV_{ts}^{*} and VubV_{ub},VubV_{ub}^{*}.

2A(B¯sπ0ϕ(ϕK+K))=\displaystyle\sqrt{2}A\left(\bar{B}_{s}\rightarrow\pi^{0}\phi\left(\phi\rightarrow K^{+}K^{-}\right)\right)= GFpB¯sλ=0,±1ϵ(λ)gϕϵ(λ)(pk+pk)2sϕ\displaystyle\frac{\left.G_{F}p_{\bar{B}_{s}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\phi}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)\right.}{\sqrt{2}s_{\phi}} (13)
×{VubVus[fπFB¯sϕLL(a2)+MB¯sϕLL(C2)].\displaystyle\times\bigg{\{}V_{ub}V_{us}^{*}\left[f_{\pi}F_{\bar{B}_{s}\rightarrow\phi}^{LL}(a_{2})+M_{\bar{B}_{s}\rightarrow\phi}^{LL}(C_{2})\right]\bigg{.}
VtbVts[fπFB¯sϕLL(32a932a7)+MB¯sϕLL(32C8+32C10)]},\displaystyle\left.-V_{tb}V_{ts}^{*}\left[f_{\pi}F_{\bar{B}_{s}\rightarrow\phi}^{LL}\left(\frac{3}{2}a_{9}-\frac{3}{2}a_{7}\right)+M_{\bar{B}_{s}\rightarrow\phi}^{LL}\left(\frac{3}{2}C_{8}+\frac{3}{2}C_{10}\right)\right]\right\},

where PB¯sP_{\bar{B}_{s}}, pk+p_{k^{+}} and pkp_{k^{-}} are the momentum of B¯s\bar{B}_{s}, K+K^{+} and KK^{-}, respectively. CiC_{i} (aia_{i}) is Wilson coefficient (associated Wilson coefficient), ϵ\epsilon is the polarization of vector meson . GFG_{F} is the Fermi constant. fπf_{\pi} refers to the decay constants of π\pi Li:2006jv . Besides FB¯sϕLLF_{\bar{B}_{s}\rightarrow\phi}^{LL} and MB¯sϕLLM_{\bar{B}_{s}\rightarrow\phi}^{LL} represent emission graphs that are factorable and non-factorable. FannLLF_{ann}^{LL} and MannLLM_{ann}^{LL} represent annihilation graphs that are factorable and non-factorable. LLLL, LRLR, and SPSP correspond to three flow structures Ali:2007ff .

The additional representations of the three-body decay amplitudes that necessitate consideration for calculating CP violation through the mixed mechanism in this paper are as follows:

2A(B¯s0ρ0(ρ0K+K)π0)=\displaystyle 2A\left(\bar{B}_{s}^{0}\rightarrow\right.\left.\rho^{0}\left(\rho^{0}\rightarrow K^{+}K^{-}\right)\pi^{0}\right)= GFpB¯s0λ=0,±1ϵ(λ)gρϵ(λ)(pk+pk)2sρ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\rho}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\rho}} (14)
×{VubVus[fBsFannLL(a2)+MannLL(C2)+fBsFannLL(a2)+MannLL(C2)]\displaystyle\times\left\{V_{ub}V_{us}^{*}\left[f_{B_{s}}F_{ann}^{LL}(a_{2})+M_{ann}^{LL}(C_{2})+f_{B_{s}}F_{ann}^{LL^{\prime}}(a_{2})+M_{ann}^{LL^{\prime}}(C_{2})\right]\right.
VtbVts[fBsFannLL(a3+a9)fBsFannLR(a5+a7)+MannLL(C4+C10)\displaystyle-V_{tb}V_{ts}^{*}\left[f_{B_{s}}F_{ann}^{LL}\left(a_{3}+a_{9}\right)\right.\left.-f_{B_{s}}F_{ann}^{LR}\left(a_{5}+a_{7}\right)+M_{ann}^{LL}\left(C_{4}+C_{10}\right)\right.
MannSP(C6+C8)+[π+ρ]+fBsFannLL(a3+a9)fBsFannLR(a5+a7)\displaystyle-M_{ann}^{SP}\left(C_{6}+C_{8}\right)+\left[\pi^{+}\leftrightarrow\rho^{-}\right]+f_{B_{s}}F_{ann}^{LL^{\prime}}\left(a_{3}+a_{9}\right)-f_{B_{s}}F_{ann}^{LR^{\prime}}\left(a_{5}+a_{7}\right)
+MannLL(C4+C10)MannSP(C6+C8)+[ρ+π]]}.\displaystyle\left.\left.+M_{ann}^{LL^{\prime}}\left(C_{4}+C_{10}\right)-M_{ann}^{SP^{\prime}}\left(C_{6}+C_{8}\right)+\left[\rho^{+}\leftrightarrow\pi^{-}\right]\right]\right\}.
2A(B¯s0π0ω(ωK+K))=\displaystyle 2A\left(\bar{B}_{s}^{0}\rightarrow\pi^{0}\omega\left(\omega\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gωϵ(λ)(pk+pk)2sω\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\omega}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\omega}} (15)
×\displaystyle\times {VubVusMannLL(c2)VtbVts[MannLL(32c10)MannSP(32c8)+[π0ω]]}.\displaystyle\left\{V_{ub}V_{us}^{*}M_{ann}^{LL}\left(c_{2}\right)-V_{tb}V_{ts}^{*}\left[M_{ann}^{LL}\left(\frac{3}{2}c_{10}\right)-M_{ann}^{SP}\left(\frac{3}{2}c_{8}\right)+\left[\pi^{0}\leftrightarrow\omega\right]\right]\right\}.
A(B¯s0K0ϕ(ϕK+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow K^{0}\phi\left(\phi\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gϕϵ(λ)(pk+pk)2sϕ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\phi}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\phi}} (16)
×{VtbVtd[fϕFBsKLL(a3+a512a712a9)+fKFBsϕLL(a412a10)\displaystyle\times\left\{-V_{tb}V_{td}^{*}\left[f_{\phi}F_{B_{s}\rightarrow K}^{LL}\left(a_{3}+a_{5}-\frac{1}{2}a_{7}-\frac{1}{2}a_{9}\right)+f_{K}F_{B_{s}\rightarrow\phi}^{LL}\left(a_{4}-\frac{1}{2}a_{10}\right)\right.\right.
fKFBsϕSP(a612a8)+MBsKLL(C412C10)+MBsϕLL(C312C9)\displaystyle\left.\left.-f_{K}F_{B_{s}\rightarrow\phi}^{SP}\left(a_{6}-\frac{1}{2}a_{8}\right)+M_{B_{s}\rightarrow K}^{LL}\left(C_{4}-\frac{1}{2}C_{10}\right)+M_{B_{s}\rightarrow\phi}^{LL}\left(C_{3}-\frac{1}{2}C_{9}\right)\right.\right.
MBsKSP(C612C8)MBsϕLR(C512C7)+fBsFannLL(a412a10)\displaystyle\left.\left.-M_{B_{s}\rightarrow K}^{SP}\left(C_{6}-\frac{1}{2}C_{8}\right)-M_{B_{s}\rightarrow\phi}^{LR}\left(C_{5}-\frac{1}{2}C_{7}\right)+f_{B_{s}}F_{ann}^{LL}\left(a_{4}-\frac{1}{2}a_{10}\right)\right.\right.
fBsFannSP(a612a8)+MannLL(C312C9)MannLR(C512C7)]}.\displaystyle\left.\left.-f_{B_{s}}F_{ann}^{SP}\left(a_{6}-\frac{1}{2}a_{8}\right)+M_{ann}^{LL}\left(C_{3}-\frac{1}{2}C_{9}\right)-M_{ann}^{LR}\left(C_{5}-\frac{1}{2}C_{7}\right)\right]\right\}.
2A(B¯s0K0ρ(ρK+K))=\displaystyle\sqrt{2}A\left(\bar{B}_{s}^{0}\rightarrow K^{0}\rho\left(\rho\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gϕϵ(λ)(pk+pk)2sρ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\phi}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\rho}} (17)
×{VubVud[fρFBsKLL(a2)+MBsKLL(C2)]VtbVtd[MBsKLR(C5+12C7)\displaystyle\times\left\{V_{ub}V_{ud}^{*}\left[f_{\rho}F_{B_{s}\rightarrow K}^{LL}\left(a_{2}\right)+M_{B_{s}\rightarrow K}^{LL}\left(C_{2}\right)\right]-V_{tb}V_{td}^{*}\left[M_{B_{s}\rightarrow K}^{LR}\left(-C_{5}+\frac{1}{2}C_{7}\right)\right.\right.
+fρFBsKLL(a4+32a7+12a10+32a9)MBsKSP(32C8)\displaystyle\left.+f_{\rho}F_{B_{s}\rightarrow K}^{LL}\left(-a_{4}+\frac{3}{2}a_{7}+\frac{1}{2}a_{10}+\frac{3}{2}a_{9}\right)-M_{B_{s}\rightarrow K}^{SP}\left(\frac{3}{2}C_{8}\right)\right.
+MBsKLL(C3+12C9+32C10)+fBsFannLL(a4+12a10)\displaystyle\left.\left.+M_{B_{s}\rightarrow K}^{LL}\left(-C_{3}+\frac{1}{2}C_{9}+\frac{3}{2}C_{10}\right)+f_{B_{s}}F_{ann}^{LL}\left(-a_{4}+\frac{1}{2}a_{10}\right)\right.\right.
+fBsFannSP(a6+12a8)+MannLL(C3+12C9)+MannLR(C5+12C7)]}.\displaystyle\left.\left.+f_{B_{s}}F_{ann}^{SP}\left(-a_{6}+\frac{1}{2}a_{8}\right)+M_{ann}^{LL}\left(-C_{3}+\frac{1}{2}C_{9}\right)+M_{ann}^{LR}\left(-C_{5}+\frac{1}{2}C_{7}\right)\right]\right\}.
2A(B¯s0K0ω(ωK+K))=\displaystyle\sqrt{2}A\left(\bar{B}_{s}^{0}\rightarrow K^{0}\omega\left(\omega\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gωϵ(λ)(pk+pk)2sω\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\omega}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\omega}} (18)
×{VubVud[fωFBsKLL(a2)+MBsKLL(C2)]VtbVtd[MBsKLR(C512C7)\displaystyle\times\left\{V_{ub}V_{ud}^{*}\left[f_{\omega}F_{B_{s}\rightarrow K}^{LL}\left(a_{2}\right)+M_{B_{s}\rightarrow K}^{LL}\left(C_{2}\right)\right]-V_{tb}V_{td}^{*}\left[M_{B_{s}\rightarrow K}^{LR}\left(C_{5}-\frac{1}{2}C_{7}\right)\right.\right.
+fωFBsKLL(2a3+a4+2a5+12a7+12a912a10)\displaystyle\left.+f_{\omega}F_{B_{s}\rightarrow K}^{LL}\left(2a_{3}+a_{4}+2a_{5}+\frac{1}{2}a_{7}+\frac{1}{2}a_{9}-\frac{1}{2}a_{10}\right)\right.
+MBsKLL(C3+2C412C9+12C10)+MannLL(C312C9)\displaystyle+M_{B_{s}\rightarrow K}^{LL}\left(C_{3}+2C_{4}-\frac{1}{2}C_{9}+\frac{1}{2}C_{10}\right)+M_{ann}^{LL}\left(C_{3}-\frac{1}{2}C_{9}\right)
MBsKSP(2C6+12C8)+fBsFannLL(a412a10)\displaystyle\left.-M_{B_{s}\rightarrow K}^{SP}\left(2C_{6}+\frac{1}{2}C_{8}\right)+f_{B_{s}}F_{ann}^{LL}\left(a_{4}-\frac{1}{2}a_{10}\right)\right.
+fBsFannSP(a612a8)+MannLR(C512C7)]}.\displaystyle\left.\left.+f_{B_{s}}F_{ann}^{SP}\left(a_{6}-\frac{1}{2}a_{8}\right)+M_{ann}^{LR}\left(C_{5}-\frac{1}{2}C_{7}\right)\right]\right\}.
A(B¯s0ηϕ(ϕK+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta\phi\left(\phi\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gϕϵ(λ)(pk+pk)2sϕ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\phi}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\phi}} (19)
×{cosθ2{VubVus[fnFBsϕLL(a2)+MBsϕLL(C2)].\displaystyle\times\left\{\frac{\cos\theta}{\sqrt{2}}\bigg{\{}V_{ub}V_{us}^{*}\left[f_{n}F_{B_{s}\rightarrow\phi}^{LL}\left(a_{2}\right)+M_{B_{s}\rightarrow\phi}^{LL}\left(C_{2}\right)\right]\bigg{.}\right.
VtbVts[fnFBsϕLL(2a32a512a7+12a9)\displaystyle-V_{tb}V_{ts}^{*}\left[f_{n}F_{B_{s}\rightarrow\phi}^{LL}\left(2a_{3}-2a_{5}-\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right.
+MBsϕLL(2C4+12C10)+MBsϕSP(2C6+12C8)]}\displaystyle\left.\left.+M_{B_{s}\rightarrow\phi}^{LL}\left(2C_{4}+\frac{1}{2}C_{10}\right)+M_{B_{s}\rightarrow\phi}^{SP}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right]\right\}
sinθ{VtbVts[fsFBsϕLL(a3+a4a5+12a712a912a10)\displaystyle-\sin\theta\left\{-V_{tb}V_{ts}^{*}\left[f_{s}F_{B_{s}\rightarrow\phi}^{LL^{\prime}}\left(a_{3}+a_{4}-a_{5}+\frac{1}{2}a_{7}-\frac{1}{2}a_{9}-\frac{1}{2}a_{10}\right)\right.\right.
+MBsϕSP(C612C8)+fBsFannLL(a3+a4a5+12a712a912a10)\displaystyle+M_{B_{s}\rightarrow\phi}^{SP^{\prime}}\left(C_{6}-\frac{1}{2}C_{8}\right)+f_{B_{s}}F_{ann}^{LL^{\prime}}\left(a_{3}+a_{4}-a_{5}+\frac{1}{2}a_{7}-\frac{1}{2}a_{9}-\frac{1}{2}a_{10}\right)
+MannLL(C3+C412C912C10)fBsFannSP(a612a8)\displaystyle+M_{ann}^{LL^{\prime}}\left(C_{3}+C_{4}-\frac{1}{2}C_{9}-\frac{1}{2}C_{10}\right)-f_{B_{s}}F_{ann}^{SP^{\prime}}\left(a_{6}-\frac{1}{2}a_{8}\right)
MannLR(C512C7)MannSP(C612C8)]+[ηsϕ]}}.\displaystyle\left.\left.\left.-M_{ann}^{LR^{\prime}}\left(C_{5}-\frac{1}{2}C_{7}\right)-M_{ann}^{SP^{\prime}}\left(C_{6}-\frac{1}{2}C_{8}\right)\right]+\left[\eta_{s}\leftrightarrow\phi\right]\right\}\right\}.
A(B¯s0ηρ0(ρ0K+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta\rho^{0}\left(\rho^{0}\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gρϵ(λ)(pk+pk)2sρ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\rho}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\rho}} (20)
×{cosθ2{VtbVts[fBsFannLL(32a932a7)+MannLL(32C10)MannSP(32C8)]\displaystyle\times\left\{\frac{\cos\theta}{2}\left\{-V_{tb}V_{ts}^{*}\left[f_{B_{s}}F_{ann}^{LL}\left(\frac{3}{2}a_{9}-\frac{3}{2}a_{7}\right)+M_{ann}^{LL}\left(\frac{3}{2}C_{10}\right)-M_{ann}^{SP}\left(\frac{3}{2}C_{8}\right)\right]\right.\right.
+VubVus[fBsFannLL(a2)+MannLL(C2)]+[ρ0ηn]}\displaystyle\left.+V_{ub}V_{us}^{*}\bigg{[}f_{B_{s}}F_{ann}^{LL}\left(a_{2}\right)+M_{ann}^{LL}\left(C_{2}\right)\bigg{]}+\left[\rho^{0}\leftrightarrow\eta_{n}\right]\right\}
sinθ2{VubVus[fρFBsηsLL(a2)+MBsηsLL(C2)]\displaystyle-\frac{\sin\theta}{\sqrt{2}}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{\rho}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(a_{2}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(C_{2}\right)\bigg{]}\right.
VtbVts[fρFBsηsLL(32a7+32a9)+MBsηsLL(32C10)MBsηsSP(32C8)]}}.\displaystyle\left.\left.-V_{tb}V_{ts}^{*}\left[f_{\rho}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(\frac{3}{2}a_{7}+\frac{3}{2}a_{9}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(\frac{3}{2}C_{10}\right)-M_{B_{s}\rightarrow\eta_{s}}^{SP^{\prime}}\left(\frac{3}{2}C_{8}\right)\right]\right\}\right\}.
A(B¯s0ηω(ωK+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta\omega\left(\omega\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gωϵ(λ)(pk+pk)2sω\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\omega}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\omega}} (21)
×{cosθ2{VubVus[fBsFannLL(a2)+MannLL(C2)]\displaystyle\times\left\{\frac{\cos\theta}{2}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{B_{s}}F_{ann}^{LL}\left(a_{2}\right)+M_{ann}^{LL}\left(C_{2}\right)\bigg{]}\right.\right.
VtbVts[MannLL(2C4+12C10)MannSP(2C6+12C8)\displaystyle-V_{tb}V_{ts}^{*}\left[M_{ann}^{LL}\left(2C_{4}+\frac{1}{2}C_{10}\right)-M_{ann}^{SP}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right.
+\displaystyle+ fBsFannLL(2a32a512a7+12a9)]+[ηnω]}\displaystyle\left.\left.f_{B_{s}}F_{ann}^{LL}\left(2a_{3}-2a_{5}-\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right]+\left[\eta_{n}\leftrightarrow\omega\right]\right\}
sinθ2{VubVus[fωFBsηsLL(a2)+MBsηsLL(C2)]\displaystyle-\frac{\sin\theta}{\sqrt{2}}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{\omega}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(a_{2}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(C_{2}\right)\bigg{]}\right.
VtbVts[fωFBsηsLL(2a3+2a5+12a7+12a9)\displaystyle-V_{tb}V_{ts}^{*}\left[f_{\omega}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(2a_{3}+2a_{5}+\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right.
+MBsηsLL(2C4+12C10)MBsηsSP(2C6+12C8)]}}.\displaystyle\left.\left.\left.+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(2C_{4}+\frac{1}{2}C_{10}\right)-M_{B_{s}\rightarrow\eta_{s}}^{SP^{\prime}}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right]\right\}\right\}.
A(B¯s0ηϕ(ϕK+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta^{\prime}\phi\left(\phi\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gϕϵ(λ)(pk+pk)2sϕ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\phi}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\phi}} (22)
×{sinθ2{VubVus[fnFBsϕLL(a2)+MBsϕLL(C2)].\displaystyle\times\left\{\frac{\sin\theta}{\sqrt{2}}\bigg{\{}V_{ub}V_{us}^{*}\left[f_{n}F_{B_{s}\rightarrow\phi}^{LL}\left(a_{2}\right)+M_{B_{s}\rightarrow\phi}^{LL}\left(C_{2}\right)\right]\bigg{.}\right.
VtbVts[fnFBsϕLL(2a32a512a7+12a9)\displaystyle-V_{tb}V_{ts}^{*}\left[f_{n}F_{B_{s}\rightarrow\phi}^{LL}\left(2a_{3}-2a_{5}-\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right.
+MBsϕLL(2C4+12C10)+MBsϕSP(2C6+12C8)]}\displaystyle\left.\left.+M_{B_{s}\rightarrow\phi}^{LL}\left(2C_{4}+\frac{1}{2}C_{10}\right)+M_{B_{s}\rightarrow\phi}^{SP}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right]\right\}
+cosθ{VtbVts[fsFBsϕLL(a3+a4a5+12a712a912a10)\displaystyle+\cos\theta\left\{-V_{tb}V_{ts}^{*}\left[f_{s}F_{B_{s}\rightarrow\phi}^{LL^{\prime}}\left(a_{3}+a_{4}-a_{5}+\frac{1}{2}a_{7}-\frac{1}{2}a_{9}-\frac{1}{2}a_{10}\right)\right.\right.
+MBsϕSP(C612C8)+fBsFannLL(a3+a4a5+12a712a912a10)\displaystyle+M_{B_{s}\rightarrow\phi}^{SP^{\prime}}\left(C_{6}-\frac{1}{2}C_{8}\right)+f_{B_{s}}F_{ann}^{LL^{\prime}}\left(a_{3}+a_{4}-a_{5}+\frac{1}{2}a_{7}-\frac{1}{2}a_{9}-\frac{1}{2}a_{10}\right)
+MannLL(C3+C412C912C10)fBsFannSP(a612a8)\displaystyle+M_{ann}^{LL^{\prime}}\left(C_{3}+C_{4}-\frac{1}{2}C_{9}-\frac{1}{2}C_{10}\right)-f_{B_{s}}F_{ann}^{SP^{\prime}}\left(a_{6}-\frac{1}{2}a_{8}\right)
MannLR(C512C7)MannSP(C612C8)]+[ηsϕ]}}.\displaystyle\left.\left.\left.-M_{ann}^{LR^{\prime}}\left(C_{5}-\frac{1}{2}C_{7}\right)-M_{ann}^{SP^{\prime}}\left(C_{6}-\frac{1}{2}C_{8}\right)\right]+\left[\eta_{s}\leftrightarrow\phi\right]\right\}\right\}.
A(B¯s0ηρ0(ρ0K+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta^{\prime}\rho^{0}\left(\rho^{0}\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gρϵ(λ)(pk+pk)2sρ\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\rho}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\rho}} (23)
×{sinθ2{VtbVts[fBsFannLL(32a932a7)+MannLL(32C10)MannSP(32C8)]\displaystyle\times\left\{\frac{\sin\theta}{2}\left\{-V_{tb}V_{ts}^{*}\left[f_{B_{s}}F_{ann}^{LL}\left(\frac{3}{2}a_{9}-\frac{3}{2}a_{7}\right)+M_{ann}^{LL}\left(\frac{3}{2}C_{10}\right)-M_{ann}^{SP}\left(\frac{3}{2}C_{8}\right)\right]\right.\right.
+VubVus[fBsFannLL(a2)+MannLL(C2)]+[ρ0ηn]}\displaystyle\left.+V_{ub}V_{us}^{*}\bigg{[}f_{B_{s}}F_{ann}^{LL}\left(a_{2}\right)+M_{ann}^{LL}\left(C_{2}\right)\bigg{]}+\left[\rho^{0}\leftrightarrow\eta_{n}\right]\right\}
+cosθ2{VubVus[fρFBsηsLL(a2)+MBsηsLL(C2)]\displaystyle+\frac{\cos\theta}{\sqrt{2}}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{\rho}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(a_{2}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(C_{2}\right)\bigg{]}\right.
VtbVts[fρFBsηsLL(32a7+32a9)+MBsηsLL(32C10)MBsηsSP(32C8)]}}.\displaystyle\left.\left.-V_{tb}V_{ts}^{*}\left[f_{\rho}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(\frac{3}{2}a_{7}+\frac{3}{2}a_{9}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(\frac{3}{2}C_{10}\right)-M_{B_{s}\rightarrow\eta_{s}}^{SP^{\prime}}\left(\frac{3}{2}C_{8}\right)\right]\right\}\right\}.
A(B¯s0ηω(ωK+K))=\displaystyle A\left(\bar{B}_{s}^{0}\rightarrow\eta^{\prime}\omega\left(\omega\rightarrow K^{+}K^{-}\right)\right)= GFpB¯s0λ=0,±1ϵ(λ)gωϵ(λ)(pk+pk)2sω\displaystyle\frac{G_{F}p_{\bar{B}_{s}^{0}}\cdot\sum_{\lambda=0,\pm 1}\epsilon(\lambda)g_{\omega}\epsilon^{*}(\lambda)\cdot\left(p_{k^{+}}-p_{k^{-}}\right)}{\sqrt{2}s_{\omega}} (24)
×{sinθ2{VubVus[fBsFannLL(a2)+MannLL(C2)]\displaystyle\times\left\{\frac{\sin\theta}{2}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{B_{s}}F_{ann}^{LL}\left(a_{2}\right)+M_{ann}^{LL}\left(C_{2}\right)\bigg{]}\right.\right.
VtbVts[MannLL(2C4+12C10)MannSP(2C6+12C8)\displaystyle-V_{tb}V_{ts}^{*}\left[M_{ann}^{LL}\left(2C_{4}+\frac{1}{2}C_{10}\right)-M_{ann}^{SP}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right.
+\displaystyle+ fBsFannLL(2a32a512a7+12a9)]+[ηnω]}\displaystyle\left.\left.f_{B_{s}}F_{ann}^{LL}\left(2a_{3}-2a_{5}-\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right]+\left[\eta_{n}\leftrightarrow\omega\right]\right\}
+cosθ2{VubVus[fωFBsηsLL(a2)+MBsηsLL(C2)]\displaystyle+\frac{\cos\theta}{\sqrt{2}}\left\{V_{ub}V_{us}^{*}\bigg{[}f_{\omega}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(a_{2}\right)+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(C_{2}\right)\bigg{]}\right.
VtbVts[fωFBsηsLL(2a3+2a5+12a7+12a9)\displaystyle-V_{tb}V_{ts}^{*}\left[f_{\omega}F_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(2a_{3}+2a_{5}+\frac{1}{2}a_{7}+\frac{1}{2}a_{9}\right)\right.
+MBsηsLL(2C4+12C10)MBsηsSP(2C6+12C8)]}}.\displaystyle\left.\left.\left.+M_{B_{s}\rightarrow\eta_{s}}^{LL^{\prime}}\left(2C_{4}+\frac{1}{2}C_{10}\right)-M_{B_{s}\rightarrow\eta_{s}}^{SP^{\prime}}\left(2C_{6}+\frac{1}{2}C_{8}\right)\right]\right\}\right\}.

where the form factor involving ηs\eta_{s} is distinguished from ηn\eta_{n} by introducing a prime distinction in the upper right corner of F and M with respect to ηs\eta_{s}.

IV.2 Input parameters

The VtbV_{tb}, VtsV_{ts}, VubV_{ub}, VusV_{us}, VtdV_{td}, and VudV_{ud} terms in the above equation are derived from the CKM matrix element within the framework of the Standard Model. The CKM matrix, whose elements are determined through experimental observations, can be expressed in terms of the Wolfenstein parameters AA, ρ\rho, λ\lambda, and η\eta: VtbVts=λV_{tb}V_{ts}^{*}=\lambda, VubVus=Aλ4(ρiη)V_{ub}V_{us}^{*}=A\lambda^{4}(\rho-i\eta), VubVud=Aλ3(ρiη)(1λ22)V_{ub}V_{ud}^{*}=A\lambda^{3}(\rho-i\eta)(1-\frac{\lambda^{2}}{2}), VtbVtd=Aλ3(1ρ+iη)V_{tb}V_{td}^{*}=A\lambda^{3}(1-\rho+i\eta). The most recent values for the parameters in the CKM matrix are λ=0.22650±0.00048\lambda=0.22650\pm 0.00048, A=0.7900.012+0.017A=0.790_{-0.012}^{+0.017}, ρ¯=0.1410.017+0.016\bar{\rho}=0.141_{-0.017}^{+0.016}, and η¯=0.357±0.011\bar{\eta}=0.357\pm 0.011. Here, we define ρ¯=ρ(1λ22)\bar{\rho}=\rho\left(1-\frac{\lambda^{2}}{2}\right) and η¯=η(1λ22)\bar{\eta}=\eta\left(1-\frac{\lambda^{2}}{2}\right) CKM . The physical quantities involved in the calculation are presented in the subsequent table :

Table 1: The remaining parameters ParticleDataGroup:2022pth ; wol (in the unit of GeV)
mBsm_{B_{s}} = 5.3675.367        mηm_{\eta} = 0.5480.548     fϕ\enspace f_{\phi} = 0.230.23      fk\>f_{k} = 0.1560.156     fωT\enspace\;f_{\omega}^{T} = 0.140.14
mK0=0.498m_{K^{0}}=0.498       mηm_{\eta^{\prime}} = 0.9580.958       fϕTf_{\phi}^{T} = 0.220.22     fρ\enspace f_{\rho} = 0.2090.209         fωf_{\omega} = 0.1950.195
mϕm_{\phi} = 1.0191.019       mπ0m_{\pi^{0}} = 0.134980.13498       fπf_{\pi} = 0.130.13      fρTf_{\rho}^{T} = 0.1650.165     Γρ\enspace\,\;\Gamma_{\rho} = 0.150.15
mωm_{\omega} = 0.7820.782       mWm_{W} = 80.38580.385       fnf_{n} = 0.170.17      fBsf_{B_{s}} = 0.230.23        Γω\Gamma_{\omega} = 8.49×1038.49\times 10^{-3}
     ​ mρm_{\rho} = 0.7750.775      mπ±m_{\pi^{\pm}} = 0.139570.13957       fsf_{s} = 0.140.14      CFC_{F} = 4/34/3        Γϕ\Gamma_{\phi} = 4.23×1034.23\times 10^{-3}

V Analysis of data results

V.1 The direct CP violation from the mixing of three vector mesons

Refer to caption
Figure 2: Plot of ACPA_{CP} as a function of s\sqrt{s} corresponding to central parameter values of CKM matrix elements. The Solid line (dashed line) corresponds to the decay channel of B¯sK+Kπ(K0)\bar{B}_{s}\rightarrow K^{+}K^{-}\pi(K^{0}).
Refer to caption
Figure 3: Plot of ACPA_{CP} as a function of s\sqrt{s} corresponding to central parameter values of CKM matrix elements. The Solid line (dashed line) corresponds to the decay channel of B¯sK+Kη(η)\bar{B}_{s}\rightarrow K^{+}K^{-}\eta(\eta^{\prime}), respectively.

We present the plots illustrating the CP violation in the decay processes of B¯sKK+P\bar{B}_{s}\rightarrow K^{-}K^{+}P. These plots are shown in Fig. 2 and Fig. 3, where we investigate the mixing of ρωϕ\rho-\omega-\phi particles. Fig. 2 and Fig. 3 depict the variation of ACPA_{CP} as a function of s\sqrt{s}, which represents the invariant mass of K+KK^{+}K^{-}. The central parameter values of CKM matrix elements are used to obtain these results. The observed CPCP violation in these decay processes provides valuable insights into fundamental physics phenomena such as vector mesons interferences.

The maximum of CP violation from the decay process B¯sK+Kπ\bar{B}_{s}\rightarrow K^{+}K^{-}\pi in Fig.2, with a value of 38%-38\%, occurs at an invariant mass of 1.02 GeV, which corresponds to the mass position of the ϕ\phi meson. Additionally, small peaks are also observed in the invariant mass range of ρ0ω\rho^{0}-\omega. Therefore, it can be concluded that the decay process B¯sϕπK+Kπ\bar{B}_{s}\rightarrow\phi\pi\rightarrow K^{+}K^{-}\pi plays a significant role in this decay channel. Furthermore, for the decay process B¯sK+KK0\bar{B}_{s}\rightarrow K^{+}K^{-}K^{0}, a sharp variation in CP violation is observed when the invariant masses of K+KK^{+}K^{-} pairs fall within the region around 0.75 GeV, reaching a peak value of 70%-70\%. In this case, it is effects from the ρ0ω\rho^{0}-\omega mixing mechanism rather than contributions from the QCD penguin dominant decay B¯sϕK0\bar{B}_{s}\rightarrow\phi K^{0}. Consequently, interference effects are expected to occur within a range near 0.7 GeV- 0.8 GeV. It should be noted that only the tree graph contributes to the B¯sϕK0\bar{B}_{s}\rightarrow\phi K^{0} decay. However, the mixed resonance effect between ϕωρ\phi-\omega-\rho leads to a smaller violation peak shift in the invariant mass position of the ϕ\phi meson.

While the decay process B¯sK+Kη(η)\bar{B}_{s}\rightarrow K^{+}K^{-}\eta(\eta^{\prime}) is more intricate, we first consider the decay process B¯sVη(η)\bar{B}_{s}\rightarrow V\eta(\eta^{\prime}) involving η(η)\eta(\eta^{\prime}). The physical states of η\eta and η\eta^{\prime} mesons are composed of a mixture of flavor eigenstates, namely ηn\eta_{n} and ηs\eta_{s}. Furthermore, there is no contribution from penguin graphs in the decay process B¯sϕηs\bar{B}_{s}\rightarrow\phi\eta_{s}; hence, the amplitude contribution of the decay BsK+Kη(η)B_{s}\to K^{+}K^{-}\eta(\eta^{\prime}) within this entire mixture is negligible. As depicted in Fig.3, resonant interplay between large CP violation in both invariant mass intervals (ρ0ω\rho^{0}-\omega and ϕ\phi) ultimately leads to the observed effect shown in Fig.3. In the figure, it is evident that the CP violation peak in B¯sK+Kη(η)\bar{B}_{s}\rightarrow K^{+}K^{-}\eta(\eta^{\prime}) occurs with a magnitude of 74%-74\% (88%-88\%) near the range 0.80.8 GeV. This observation allows us to comprehend the trend of CP violation in these decay processes, which is advantageous for our research. Additionally, we can determine the invariant mass value of the K+KK^{+}K^{-} pair during significant CP violation events, providing an opportunity for experimental measurement.

V.2 Numerical results of the localized integrated CP asymmetry

The relationship between CP violation and invariant mass in the decay process, as derived from the preceding section, provides valuable insights into the dynamics of CP violation. However, to comprehensively investigate regional CP violation and establish for future experiments, we perform a local integration analysis of CP violation within the studied decay process. Consequently, Table II presents the localized CP violation for the aforementioned decay processes.

Table 2: The peak local(0.98GeVs1.06GeV)(0.98GeV\leq\sqrt{s}\leq 1.06GeV) integral of ACPΩ\mathrm{A}^{\Omega}_{\mathrm{CP}} from different resonance rangs for B¯sK+Kπ\bar{B}_{s}\rightarrow K^{+}K^{-}\pi (K0,η,η)(K^{0},\eta,\eta^{\prime}) decay processes.
Decay channel ϕρω\phi-\rho-\omega mixing ϕρ\phi-\rho mixing ϕω\phi-\omega mixing ρω\rho-\omega mixing
B¯sK+Kπ0\bar{B}_{s}\rightarrow K^{+}K^{-}\pi^{0} 0.124±0.012\mathrm{-0.124\pm 0.012} 0.126±0.008\mathrm{-0.126\pm 0.008} 0.147±0.004\mathrm{-0.147\pm 0.004} 0.124±0.010\mathrm{-0.124\pm 0.010}
B¯sK+KK0\bar{B}_{s}\rightarrow K^{+}K^{-}K^{0} 0.001±0.000\mathrm{-0.001\pm 0.000} 0.0003±0.0001\mathrm{0.0003\pm 0.0001} 0.0008±0.0002\mathrm{0.0008\pm 0.0002} 0.169±0.004\mathrm{0.169\pm 0.004}
B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta 0.021±0.0001\mathrm{0.021\pm 0.0001} 0.0174±0.0002\mathrm{0.0174\pm 0.0002} 0.010±0.001\mathrm{0.010\pm 0.001} 0.237±0.007\mathrm{-0.237\pm 0.007}
B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta^{\prime} 0.014±0.005\mathrm{-0.014\pm 0.005} 0.012±0.008\mathrm{-0.012\pm 0.008} 0.007±0.002\mathrm{-0.007\pm 0.002} 0.240±0.005\mathrm{-0.240\pm 0.005}

According to Table II, the integration range (0.98 GeV-1.06 GeV) corresponds to the threshold of VK+KV\rightarrow K^{+}K^{-} decay process. The resonance effect between different particles can lead to more pronounced CP violation phenomena in various energy intervals. However, considering the threshold effect for generating K+KK^{+}K^{-} meson pairs, we provide the local integral values as shown in Table II. To compare the similarities and differences between three-particle and two-particle resonance effects, we also present the local integral results of CP value under two-particle resonance in Table II.

In the B¯sK+Kπ0\bar{B}_{s}\rightarrow K^{+}K^{-}\pi^{0} decay process, the value of CP violation changes less in the resonance regions above the threshold values due to any two-particle or three-particle mixing. Although the mixed resonance contributes a peak value of 38%-38\% for B¯s0K+Kπ0\bar{B}_{s}^{0}\rightarrow K^{+}K^{-}\pi^{0} decay process in Fig. 2, the local integral values have minimal variation within a specific range in comparison to the overall resonance interval. The values of ACPΩA_{CP}^{\Omega} exhibit a consistent magnitude of approximately 0.124.

The values of ACPΩA_{CP}^{\Omega} are small due to the contributions from ϕρω\phi-\rho-\omega mixing, ϕρ\phi-\rho mixing, and ϕω\phi-\omega mixing. However, a significant CP violation of 0.169 can be observed from the contribution of ρω\rho-\omega mixing. This behavior changes in the decay process B¯sK+KK0\bar{B}_{s}\rightarrow K^{+}K^{-}K^{0} since it involves the QCD penguin dominant decay B¯sϕK0\bar{B}_{s}\rightarrow\phi K^{0} without any tree-level contribution. In this case, only the decay process involving intermediate states with ρω\rho-\omega particles exhibits noticeable CP violation.

The decay process B¯sK+Kη(η)\bar{B}_{s}\rightarrow K^{+}K^{-}\eta(\eta^{\prime}) is also a special decay process, characterized by the presence of meson mixing between η\eta and η\eta^{\prime}. The process B¯sϕηs\bar{B}_{s}\rightarrow\phi\eta_{s} is the QCD penguin dominant decays without any contribution from a tree diagram, while the process B¯sϕηn\bar{B}_{s}\rightarrow\phi\eta_{n} involves tree diagram and penguin diagram contributed. Thus ηs\eta_{s} and ηn\eta_{n} mixing results in the presence of a smaller tree contribution for η\eta (η\eta^{\prime}). Consequently, the involvement of ϕ\phi as an intermediate state in the decay process leads to a reduction in the value of ACPΩA_{CP}^{\Omega}. The CP violation induced by the decay process involving ρω\rho-\omega mixing exhibits distinct characteristics, with a maximum value of 0.237(0.240)-0.237(-0.240) observed for the processes B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta (B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta^{\prime}), respectively.

Theoretical errors give rise to uncertainties in the results. In general, the major theoretical uncertainties arise from power corrections beyond the heavy quark limit, necessitating the inclusion of 1/mb1/m_{b} power corrections. Unfortunately, there exist numerous possible 1/mb1/m_{b} power suppressed effects that are typically nonperturbative in nature and therefore not calculable using perturbation theory. Consequently, this scheme introduces additional sources of uncertainty. The first error arises from variations in the CKM parameters, while the stems from hadronic parameters, such as the shape parameters, form factors, decay constants, and the wave function of the Bs meson. The third error corresponds to selecting appropriate hard scales that characterize the size of next-to-leading order QCD contributions. By employing central values for these parameters, we initially compute numerical results for CP violation and subsequently incorporate errors based on standard deviation in Table II. It has been determined that the impact of mixing parameter errors on local CP violation is negligible compared to the overall CP asymmetry, therefore this influence value will not be further discussed.

VI Summary and conclusion

The CP violation in the decay process of B¯s0\bar{B}_{s}^{0} meson is predicted through an invariant mass analysis of K+KK^{+}K^{-} meson pairs within the resonance region, resulting from the mixing of ϕ\phi, ω\omega, and ρ\rho mesons. We observe a sharp change in CP violation within the resonance regions of these mesons. Local CP violation is quantified by integrating over phase space. For the decay process B¯sK+Kπ0\bar{B}_{s}\rightarrow K^{+}K^{-}\pi^{0}, we find a local CP violation value around 0.12-0.12 arising from interference between ϕ\phi, ω\omega, and ρ\rho mesons. In decays such as B¯sK+KK0\bar{B}_{s}\rightarrow K^{+}K^{-}K^{0}, B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta and B¯sK+Kη\bar{B}_{s}\rightarrow K^{+}K^{-}\eta^{\prime}, CP violations are observed due to contributions from both two-meson mixing and three-meson mixing processes. Particularly involving the ρ\rho - ω\omega mixing, the local CP violation is large. Experimental detection of local CP violation can be achieved by reconstructing the resonant states of ϕ\phi, ω\omega, and ρ\rho mesons within the resonance regions.

We propose a quasi-two-body approach, namely, B¯s0VPK+KP\bar{B}_{s}^{0}\rightarrow VP\rightarrow K^{+}K^{-}P to elucidate the three-body decay mechanism of B¯s0K+KP\bar{B}_{s}^{0}\rightarrow K^{+}K^{-}P. During this process, V acts as an intermediate state and undergoes resonance with other particles, ultimately decaying into pairs of K+KK^{+}K^{-} mesons. The three-body decay process of bottom is appropriately formulated using the chain decay of quasi-two-body. We consider the BRP3B\rightarrow RP_{3} decay process as a case study for analyzing quasi-two-body decays, where R represents an intermediate resonance state that can further decay into harons P1,2P_{1,2}, while P3P_{3} denotes another final hadron. The process under consideration can be factorized utilizing the narrow width approximation (NWA). The expression for BRP3B\rightarrow RP_{3} can be written as follows: (BRP3P1P2P3)=(BRP3)(BP1P2)\mathcal{B}\left(B\rightarrow RP_{3}\rightarrow P_{1}P_{2}P_{3}\right)=\mathcal{B}\left(B\rightarrow RP_{3}\right)\mathcal{B}\left(B\rightarrow P_{1}P2\right) which holds true due to the branching ratio. The effects of small widths ϕ\phi, ρ\rho, and ω\omega in quasi-two-body decay processes into KKKK can be safely neglected. Considering the substantial decay rate of ρ(770)\rho(770), it is reasonable to perform a correction. From the QCD factorization approach, the correction factor for the decays process of Bρ(770)ππ+ππB^{-}\rightarrow\rho(770)\pi^{-}\rightarrow\pi^{+}\pi^{-}\pi^{-} is at level 7%7\%. The parameter ηR\eta_{R} is introduced as a quant approximation between Γ(BRP3)(BP1P2)\varGamma\left(B\rightarrow RP_{3}\right)\mathcal{B}\left(B\rightarrow P_{1}P_{2}\right) and Γ(BRP3P1P2P3)\varGamma\left(B\rightarrow RP_{3}\rightarrow P_{1}P_{2}P_{3}\right) chenghaiyang2021prd ; chenghaiyang2021plb . When calculating the CP violation, this constant can be eliminated, thereby exerting no influence on our ultimate outcome.

Recently, the LHCb experimental group has made significant progress in investigating the three-body decay of B mesons and has obtained noteworthy findings LHCb:2022fpg . By analyzing previous experimental data, they have measured direct CP violation in various decay modes such as B±K+KK±B^{\pm}\rightarrow K^{+}K^{-}K^{\pm}, B±π+πK±B^{\pm}\rightarrow\pi^{+}\pi^{-}K^{\pm}, B±π+ππ±B^{\pm}\rightarrow\pi^{+}\pi^{-}\pi^{\pm}, and B±K+Kπ±B^{\pm}\rightarrow K^{+}K^{-}\pi^{\pm}. Based on LHCb experiments, it is anticipated that future investigations will primarily focus on exploring the three-body decays of B¯s\bar{B}_{s}.

Acknowledgements

This work was supported by Natural Science Foundation of Henan (Project No. 232300420115) .

References

  • (1) N. Cabibbo, Phys. Rev. Lett. 10, 531(1963).
  • (2) R. Aaij, et al. [LHCb Collaboration]. LHCb-CONF-2012-018(2012).
  • (3) R. Aaij, et al. [LHCb Collaboration]. LHCb-CONF-2012-028(2012).
  • (4) C. Wang, et al. Eur. Phys. J. C 75 no.11, 536(2015).
  • (5) R. Aaij, et al. [LHCb Collaboration]. Phys. Rev. Lett. 111, 101801 (2013).
  • (6) Ahmed Aliet, et al. Phys. Rev. D 76, 074018(2007).
  • (7) Zhen-Jun Xiao, Dong-qin Guo, and Xin-fen Chen, Phys. Rev. D 75, 014018(2007) .
  • (8) J. Hua, et al. Phys. Rev. D 104,016025(2021).
  • (9) Z. T. Zou, et al. Eur. Phys. J. C 80, 517(2020).
  • (10) J. P. Lees, et al. [BaBar]. Phys. Rev. Lett. 113 no.20, 201801(2014).
  • (11) V.Bertacchi. [Belle-II]. Nucl. Part. Phys. Proc. 324-329 , 107-112(2023).
  • (12) N. E. Adam, et al. [CLEO]. Phys. Rev. Lett. 99,041802(2007) .
  • (13) R. Aaij, et al. [LHCb Collaboration]. Phys. Rev. Lett. 111, 101801 (2013).
  • (14) P.M. IVANOV, et al. Phys. Lett. B 107, 297 (1981).
  • (15) M. N. Achasov, et al, Phys. Rev. D 94, 112006 (2016).
  • (16) Gang Lü, et al. Chin. Phys. C 46, 113101(2022).
  • (17) Gang Lü, et al. Eur. Phys. J. C 83, 345 (2023).
  • (18) C. E. Wolfe, K. Maltman, Phys. Rev. D80, 114024 (2009).
  • (19) C. E. Wolfe, K. Maltman, Phys. Rev. D83, 077301 (2011).
  • (20) Gang Lü, et al. Phys. Rev. D 98, no.1, 013004 (2018).
  • (21) M. N. Achasov, et.al., Nucl. Phys. B569, 158 (2000).
  • (22) Y. H. Chen, et al. Phys. Rev. D 60, 094014(1999).
  • (23) C.E.Wolfe, et al. Phys. Rev. D 83, 077301(2011).
  • (24) C.E.Wolfe, et al. Phys. Rev. D 80, 114024(2009).
  • (25) C.Bruch, et al. Eur. Phys. J. C 39, 41-54 (2005).
  • (26) X. H. Guo, et al. Phys. Rev. D 63, 056012 (2001).
  • (27) Z.H.Zhang, et al. Phys. Rev. D 87, no.7, 076007 (2013).
  • (28) Hsiang-nan Li, et al. Phys. Rev. D 74, 094020(2006).
  • (29) L. Wolfenstein, Phys. Rev. Lett. 51,1945 (1983).
  • (30) R. L. Workman et al. (Particle Data Group). Review of Particle Physics, PTEP 2022, 083C01(2022).
  • (31) L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964).
  • (32) Hai-Yang Cheng, Cheng-Wei Chiang, Chun-Khiang Chua, Phys. Rev. D103, 036017 (2021).
  • (33) Hai-Yang Cheng, Cheng-Wei Chiang, Chun-Khiang Chua, Phys. Lett. B813, 136058 (2021).
  • (34) R. Aaij, et al.[LHCb]. Phys. Rev. D 108, no.1, 012008 (2023).