This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resolving Power of Asteroseismic Inversion of the Kepler Legacy Sample

Alexander G. Kosovichev1    Irina N. Kitiashvili2 1New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
email: [email protected]
2 NASA Ames Research Center
Moffett Field, CA 94035, U.S.A.
email: [email protected]
(2020)
Abstract

The Kepler Asteroseismic Legacy Project provided frequencies, separation ratios, error estimates, and covariance matrices for 66 Kepler main sequence targets. Most of the previous analysis of these data was focused on fitting standard stellar models. We present results of direct asteroseismic inversions using the method of optimally localized averages (OLA), which effectively eliminates the surface effects and attempts to resolve the stellar core structure. The inversions are presented for various structure properties, including the density stratification and sound speed. The results show that the mixed modes observed in post-main sequence F-type stars allow us to resolve the stellar core structure and reveal significant deviations from the evolutionary models obtained by the grid-fitting procedure to match the observed oscillation frequencies.

keywords:
stars: interiors, stars: late-type, stars: oscillations, methods: data analysis, stars: individual (KIC 10162436, KIC 5773345)
volume: 354journal: Solar and Stellar Magnetic Fields: Origins and Manifestationseditors: A.G. Kosovichev, K. Strassmeier & M. Jardine, eds.

1 Introduction

The Kepler mission (Borucki et al., 2010) provided a wealth of stellar oscillation data enabling asteroseismic investigation of the internal structure and rotation of many stars across the HR diagram. A primary tool of asteroseismology employed for interpretation of observed oscillation frequencies used a method of grids of stellar models. In this method, the asteroseismic calibration of stellar models is performed by matching the observed oscillation frequencies to theoretical mode frequencies calculated for a grid of standard evolutionary models. In combination with spectroscopic constraints, this approach provided estimates of stellar radius, composition, and age with unprecedented precision (see Chaplin et al., 2010; Metcalfe et al., 2010, and referencies therein). In addition, the high accuracy measurements of oscillation frequencies opened a new opportunity for asteroseismic inversions which allows us to reconstruct the internal structure and test evolutionary stellar models. A similar approach has been used in helioseismology for more than two decades.

A specific feature of asteroseismology data is that only low-degree oscillations can be observed, typically for modes of spherical harmonic degrees, =0,1,2\ell=0,1,2, and sometimes, =3\ell=3. In this situation, only the structure of stellar cores can be resolved by inversion techniques. An additional difficulty is caused by uncertainties in the mass and radius of distant stars. Gough and Kosovichev (1993a) showed that this difficulty can be overcome by an additional condition in the inversion procedure, which constraints the frequency scaling factor, q=M/R3q=M/R^{3}, where MM and RR are the stellar mass and radius. They showed that if the low-\ell mode frequencies are measured with precision of 0.1μ0.1~{}\muHz then the structure of the stellar core can reconstructed even when the stellar mass and radius are not known. When the measurement precision is relatively low (e.g. 1μ1~{}\muHz), the localization of the inversion accuracy is degraded. For such cases, Gough and Kosovichev (1993b) suggested a procedure of calibration of the averaging kernels to estimate averaged properties of the stellar core. The effectiveness of this procedure was demonstrated by applying it to the low-degree solar oscillation frequencies observed by the IPHIR instrument that measured the total solar irradiance onboard the PHOBOS spacecraft(Toutain and Froehlich, 1992). For analysis of the Kepler asteroseismology data, the inversion technique has been recently used by Bellinger et al. (2019), and the kernel calibration method was applied by Buldgen et al. (2017) to estimate integrated properties of stellar structure.

Table 1: Characteristics of the stellar models that are used for inversion of the observed oscillation frequencies.
KIC M/M lg(R/R) Age(Gyr) lg(L/L) Ysurf Zsurf Teff alpha
7206837 1.298 0.1980 2.90 0.5523 0.2800 0.0220 6320 1.791
1435467 1.382 0.2436 2.56 0.6694 0.2637 0.0197 6414 1.692
10162436 1.461 0.3082 2.51 0.8110 0.2460 0.0173 6494 1.684
9353712 1.516 0.3261 2.03 0.9008 0.2603 0.0180 6665 1.713
5773345 1.579 0.3074 2.07 0.7931 0.2593 0.0306 6400 1.715
12069127 1.588 0.3403 1.76 0.9385 0.2669 0.0216 6700 1.672

In this paper, we show that the detection of mixed modes in the oscillation spectra of F-type stars allows us to resolve the structure of the inner stellar cores. The mixed modes have properties of internal gravity waves (g-modes) in the convectively stable helium core and properties of acoustic modes outside the core. The oscillation frequencies of these modes may be quite sensitive to the properties of the core. Including them in the inversion procedure allows us to localize the averaging kernels in the core region. This opens a unique opportunity for testing the stellar evolution theory for subgiant stars where the energy release is in a hydrogen shell surrounding a helium core.

2 Target selection. Evolutionary models.

From the Kepler Asteroseismic Legacy Sample (Silva Aguirre et al., 2017) we selected 6 stars in the mass range from about 1.3 to 1.6 solar masses, and, using the MESA stellar evolutionary code (Paxton et al., 2011), we calculated models of the internal structure, matching as close as possible the stellar parameters determined by grid fitting methods. Specifically, we chose the stellar mass, chemical composition, and the mixing parameter from the grid pipeline YMCM (Silva Aguirre et al., 2015) and evolved starting from a pre-main sequence phase to the age estimated from the grid fitted models. Basic parameters of the calculated models are shown in Table 1.

Refer to caption
Figure 1: Distributions of the density, the sound speed and the Brunt-Väisälä frequency in the stellar models of: a) KIC 10162436, and b) KIC 5773345.

In this paper, we present results for two models: KIC 10162436 and KIC 5773345, the radial profiles of the density, sound speed, and Brunt-Väisäilä frequency are shown in Figure 1. The Brunt-Väisäilä frequency displays a sharp peak at the helium core outer boundary, located at about 0.05R0.05~{}R_{\odot} in KIC 10162436, and at 0.07R0.07~{}R_{\odot} in KIC 577334.

Figure 2 shows the difference between the observed and modeled frequencies plotted as a function of the radius of the acoustic inner turning points, rtr_{t}, calculated from the asymptotic relation: rt/cS(rt)=(l+1/2)/ωnlr_{t}/c_{S}(r_{t})=(l+1/2)/\omega_{nl}, where cS(r)c_{S}(r) is the sound-speed profile, \ell is the angular degree, and ωnl\omega_{nl} is the mode frequency. The acoustic turning points form three branches corresponding to the modes of angular degree ł=0,1,\l=0,1, and 2. Behavior of the frequency deviations for both models is similar, indicating a systematic difference of the evolutionary models from the real stellar structure.

Refer to caption
Figure 2: The differences between the observed and modeled frequencies as a function of the acoustic inner turning points for: a) KIC 10162436 and b)KIC 5773345.

3 Sensitivity kernels

The acoustic turning points of some =0\ell=0 modes are located in the stellar core. Nevertheless, the sensitivity of these modes to the core structure is low. Some of the observed low-frequency non-radial modes of =1\ell=1 and 2 represent mixed acoustic-gravity modes which have properties of internal gravity (g) modes in the stellar cores and acoustic (p) modes outside the core. The oscillation frequencies of these modes are very sensitive to the core properties.

Refer to caption
Figure 3: Sensitivity kernels of oscillation frequencies for two mixed modes of =1\ell=1 (panels aba-b) and =2\ell=2 (cdc-d) to relative variations in stellar density (aca-c), and variations in the abundance of helium (bdb-d), for KIC 10162436 )

Using explicit formulations for the variational principle, frequency perturbations can be reduced to a system of integral equations for a chosen pair of independent variables; e.g. for (ρ,γ)(\rho,\gamma):

δω(n,l)ω(n,l)=0RKρ,γ(n,l)δρρ𝑑r+0RKγ,ρ(n,l)δγγ𝑑r,\frac{\delta\omega^{(n,l)}}{\omega^{(n,l)}}=\int_{0}^{R}\,K_{\rho,\gamma}^{(n,l)}\frac{\delta\rho}{\rho}dr+\int_{0}^{R}\,K_{\gamma,\rho}^{(n,l)}\frac{\delta\gamma}{\gamma}dr,

where Kρ,γ(n,l)(r)K_{\rho,\gamma}^{(n,l)}(r) and Kγ,ρ(n,l)(r)K_{\gamma,\rho}^{(n,l)}(r) are sensitivity (or ‘seismic’) kernels. These are calculated using the initial solar model parameters, ρ0\rho_{0}, P0P_{0}, γ\gamma, and the oscillation eigenfunctions for these model, ξ\vec{\xi} (for an explicit formulation, see e.g. Kosovichev, 1999). The sensitivity for various pairs of solar parameters, such the sound speed, Brunt-Väisälä frequency, temperature, and chemical abundances, can be obtained by using the relations among these parameters, which follow from the equations of solar structure (‘stellar evolution theory’). These ‘secondary’ kernels are then used for direct inversion of the various parameters (Gough and Kosovichev, 1988). A general procedure for calculating the sensitivity kernels can be illustrated in operator form (Kosovichev, 2011). Consider two pairs of solar variables, X\vec{X} and Y\vec{Y}, e.g.

X=(δρρ,δγγ);X=(δρρ,δYY),\vec{X}=\left(\frac{\delta\rho}{\rho},\frac{\delta\gamma}{\gamma}\right);\;\;\vec{X}=\left(\frac{\delta\rho}{\rho},\frac{\delta Y}{Y}\right),

where YY is the helium abundance. The linearized structure equations (the hydrostatic equilibrium equation and the equation of state) that relate these variables can be written symbolically as

AX=Y.A\vec{X}=\vec{Y}.

Let KX{\mathop{\vec{K}}\nolimits_{X}} and KY{\mathop{\vec{K}}\nolimits_{Y}} be the sensitivity kernels for XX and YY; then the frequency perturbation is:

δωω=0RKXX𝑑rKXX,\frac{\delta\omega}{\omega}=\int_{0}^{R}\vec{K}_{X}\cdot\vec{X}dr\equiv\left\langle\vec{K}_{X}\cdot\vec{X}\right\rangle,

where <><\cdot> denotes the inner product. Similarly,

δωω=KYY.\frac{\delta\omega}{\omega}=\left\langle\vec{K}_{Y}\cdot\vec{Y}\right\rangle.

Then from the stellar structure equation AX=YA\vec{X}=\vec{Y}:

KYY=KYAX=AKYX,\left\langle\vec{K}_{Y}\cdot\vec{Y}\right\rangle=\left\langle\vec{K}_{Y}\cdot A\vec{X}\right\rangle=\left\langle A^{*}\vec{K}_{Y}\cdot\vec{X}\right\rangle,

where AA^{*} is an adjoint operator. Thus: AKYX=KXX.\left\langle A^{*}\vec{K}_{Y}\cdot\vec{X}\right\rangle=\left\langle\vec{K}_{X}\cdot\vec{X}\right\rangle. This is valid for any X\vec{X} if AKY=KX.A^{*}{\mathop{\vec{K}_{Y}}\nolimits}=\vec{K}_{X}. This means that the equation for the sensitivity kernels is adjoint to the stellar structure equations. An explicit formulation in terms of the stellar structure parameters and mode eigenfunctions was given by Kosovichev (1999).

Refer to caption
Figure 4: The same as Fig. 3 for KIC 5773345.

Examples of the sensitivity kernels to density and helium-abundance deviations for the mixed acoustic-gravity modes of =1\ell=1 and =2\ell=2 for KIC 10162436, and KIC 5773345 are shown in Figures 3 and 4, respectively. In the case of KIC 10162436, the sensitivity of the mode frequencies to the density stratification is high in the central core. In the case of KIC 5773345, the sensitivity of the observed mixed modes in the core is not that high but still quite significant. In such cases the mixed oscillation modes open a unique opportunity for probing the stellar cores by direct structure inversion. The sensitivity kernels for helium abundance are concentrated in the helium and hydrogen ionization zones.

4 Inversion procedure

In the inversion procedure it is important to take into account potential systematic uncertainties in the stellar mass and radius. Because the oscillation frequencies are scaled linearly with the factor q=M/R3q=M/R^{3}, then, following (Gough and Kosovichev, 1993a), the mode frequencies ωi\omega_{i} can be expressed in terms of their relative small difference δωi2/ωi2\delta\omega_{i}^{2}/\omega_{i}^{2} from those of a standard reference model of similar mass and radius according to the linearized expression

δωi2/ωi2=01(Kf,Yiδff+KY,fiδY)𝑑xIqiδq,\delta\omega_{i}^{2}/\omega_{i}^{2}=\int_{0}^{1}\left(K_{f,Y}^{i}\frac{\delta f}{f}+K_{Y,f}^{i}\delta Y\right)dx-I_{q}^{i}\delta q,

where x=r/Rx=r/R, q=M/R3q=M/R^{3}, YY is the helium abundance, and ff can be any function of pp and ρ\rho (Däppen et al., 1991); MM and RR are stellar mass and radius, in solar units, Kf,YK_{f,Y} and KY,fK_{Y,f} are appropriate kernels, and IqI_{q} is an integral over the reference model. In this paper we consider two cases: f=ρf=\rho, and f=uP/ρf=u\equiv P/\rho (Dziembowski et al., 1991).

These constraints can provide localized averages of δlnf\delta\ln f and estimates of δY\delta Y and δq\delta q of the kind

δlnf¯01iai(x0)Kf,Yiδlnfdx01Af,Y(x,x0)δlnfdx=iai(x0)δωi2ωi2\displaystyle\overline{\delta\ln f}\equiv\int_{0}^{1}\sum_{i}a_{i}(x_{0})K_{f,Y}^{i}\delta\ln fdx\equiv\int_{0}^{1}A_{f,Y}(x,x_{0})\delta\ln fdx=\sum_{i}a_{i}(x_{0})\frac{\delta\omega_{i}^{2}}{\omega_{i}^{2}}

by minimizing over the coefficients ai(x0)a_{i}(x_{0}) the functional (Backus and Gilbert, 1968):

,01Af,Y2(x,x0)Jfdx+λ101(iaiKY,fi)2JYdx+λ2(iaiIqi)2+αiai2ϵi2\displaystyle,\int_{0}^{1}A_{f,Y}^{2}(x,x_{0})J_{f}dx+\lambda_{1}\int_{0}^{1}\left(\sum_{i}a_{i}K_{Y,f}^{i}\right)^{2}J_{Y}dx+\lambda_{2}\left(\sum_{i}a_{i}I_{q}^{i}\right)^{2}+\alpha\sum_{i}a_{i}^{2}\epsilon_{i}^{2}

for tradeoff parameters λ1\lambda_{1}, λ2\lambda_{2} and α\alpha, where Jf=(xx0)2J_{f}=(x-x_{0})^{2}, and ϵi\epsilon_{i} are standard relative errors in the data. The tradeoff parameters are chosen empirically, by selecting a sufficiently smooth solution and using the L-curve criterion (Hansen, 1992).

Refer to caption
Figure 5: The relative deviations of the stellar structure from the evolutionary models of density (aba-b)and parameter u=P/ρu=P/\rho (cdc-d) as a function of radius for KIC 10162436 and KIC 5773345, obtained by inversion of the observed mode frequencies. Crosses show the center locations the localized averaging kernels, the horizontal bars show the spread of the averaging kernels, and the vertical bars show the uncertainties calculated using error estimates of the observed frequencies.

The non-adiabatic frequency shift (aka ‘surface effect’) can be approximated by a smooth function of frequency, F(ω)F(\omega) scaled with the factor, QI(ω)/I0(ω)Q\equiv I(\omega)/I_{0}(\omega), where I(ω)I(\omega) is the mode inertia, and I0(ω)I_{0}(\omega) is the mode inertia of radial modes (l=0l=0), calculated at frequency ω\omega; that is:

δωnonad,i2ωi2=F(ωi)/Q(ωi).\frac{\delta\omega_{{\rm n}onad,i}^{2}}{\omega_{i}^{2}}=F(\omega_{i})/Q(\omega_{i}).

Function F(ω)F(\omega) can be approximated by a polynomial function of degree KK (Dziembowski et al., 1990):

F(ωi)=k=0KckPk(ωi),F(\omega_{i})=\sum_{k=0}^{K}c_{k}P_{k}(\omega_{i}),

where PkP_{k} are the Legendre polynomials of degree kk. Then the influence of nonadiabatic effects is reduced by applying K+1K+1 additional constraints for aia_{i}:

i=1NaiPk(ωi)Q(ωi)=0,k=0,,K.\sum_{i=1}^{N}a_{i}P_{k}(\omega_{i})Q(\omega_{i})=0,\;\;\;\;k=0,...,K.

5 Inversion results

The inversion results obtained by the Optimally Localized Averaging (OLA) procedure described in the previous section are shown in Figure 5. They show the relative deviations in stellar structure from the evolutionary models of density and parameter u=P/ρu=P/\rho as a function of radius for KIC 10162436 and KIC 5773345. Crosses show the center locations the localized averaging kernels, the horizontal bars show the spread of the averaging kernels, and the vertical bars show the uncertainties calculated using the observational error estimates (for the definitions of these properties see, Kosovichev, 1999). It is remarkable that the mixed modes observed in the oscillation spectra of these stars allow us to obtain constraints on the density stratification in the central helium core and the hydrogen-burning shell. The averaging kernels for the parameter uu (or, equivalently, the sound speed) are localized only outside the core. Therefore, it is very important to choose the pairs of inversion variables that provide the best resolution. These variables can be different for different regions of a star. In our cases only the density inversions provide the optimally localized averaging kernels centered in the stellar cores. The sound-speed inversions are incapable of resolving the core.

For both stars, the inversion results show that the density of the core and the surrounding shell are about 5% higher than in the stellar models, but lower outside the energy-release shell. The boundary of the helium core is located at 0.05R0.05~{}R_{\odot} in KIC 10162436, and at 0.07R0.07~{}R_{\odot} in KIC 5773345. Outside the helium cores, the nuclear energy production shells extend 0.3R0.3~{}R_{\odot}, with the peak rate at 0.08R\sim 0.08~{}R_{\odot} in both models. Perhaps these stellar regions involve physical processes that are not described by the evolutionary models. For understanding these deviations it will be beneficial to perform more detailed structure inversion studies for a large sample of post-main sequence stars with hydrogen-burning shells.

6 Conclusion

High accuracy measurements of oscillation frequencies for a large number stars as well as identification of the observed oscillations in terms of normal modes for stellar models by the grid-fitting techniques open possibilities for performing asteroseismic inversions and for testing evolutionary models. The discovery of the oscillation modes with mixed g- and p-mode characteristics in post-main sequence stars allows us to reconstruct the density stratification in the stellar helium cores and hydrogen burning shell.

We applied the previously developed asteroseismic inversion method (Gough and Kosovichev, 1993a) to two F-type stars from the Kepler Asteroseismic Legacy Project (Silva Aguirre et al., 2017) and performed inversions for the density and squared isothermal sound-speed parameter. The background models were calculated using the MESA code, and the mass, composition, and age were previously determined by the model-grid fitting method. The inversion technique takes potential discrepancies in the estimated mass and radius from the actual properties, as well as the potential frequency shifts due non-adiabatic near-surface effects, and constructs optimally localized averaging kernels following the (Backus and Gilbert, 1968) method.

The inversion results for both stars showed that the density in the helium core and the inner part of the hydrogen shell may be about 5% higher than in the evolutionary models, and, in the outer part of the shell, lower. This suggests that the differences may be due to physical processes not described by the evolutionary models. However, more detailed inversion studies for a large sample of stars are needed for quantifying the deviations more precisely.

Acknowledgments. The work was partially supported by the NASA Astrophysics Theory Program and grants: NNX14AB7CG and NNX17AE76A.

References

  • Backus and Gilbert (1968) Backus, G. and Gilbert, F.: 1968, Geophysical Journal 16(2), 169
  • Bellinger et al. (2019) Bellinger, E. P., Basu, S., Hekker, S., and Christensen-Dalsgaard, J.: 2019, ApJ 885(2), 143
  • Borucki et al. (2010) Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., Caldwell, J., Christensen-Dalsgaard, J., Cochran, W. D., DeVore, E., Dunham, E. W., Dupree, A. K., Gautier, T. N., Geary, J. C., Gilliland, R., Gould, A., Howell, S. B., Jenkins, J. M., Kondo, Y., Latham, D. W., Marcy, G. W., Meibom, S., Kjeldsen, H., Lissauer, J. J., Monet, D. G., Morrison, D., Sasselov, D., Tarter, J., Boss, A., Brownlee, D., Owen, T., Buzasi, D., Charbonneau, D., Doyle, L., Fortney, J., Ford, E. B., Holman, M. J., Seager, S., Steffen, J. H., Welsh, W. F., Rowe, J., Anderson, H., Buchhave, L., Ciardi, D., Walkowicz, L., Sherry, W., Horch, E., Isaacson, H., Everett, M. E., Fischer, D., Torres, G., Johnson, J. A., Endl, M., MacQueen, P., Bryson, S. T., Dotson, J., Haas, M., Kolodziejczak, J., Van Cleve, J., Chandrasekaran, H., Twicken, J. D., Quintana, E. V., Clarke, B. D., Allen, C., Li, J., Wu, H., Tenenbaum, P., Verner, E., Bruhweiler, F., Barnes, J., and Prsa, A.: 2010, Science 327(5968), 977
  • Buldgen et al. (2017) Buldgen, G., Reese, D., and Dupret, M.-A.: 2017, in European Physical Journal Web of Conferences, Vol. 160 of European Physical Journal Web of Conferences, p. 03005
  • Chaplin et al. (2010) Chaplin, W. J., Appourchaux, T., Elsworth, Y., García, R. A., Houdek, G., Karoff, C., Metcalfe, T. S., Molenda-Żakowicz, J., Monteiro, M. J. P. F. G., Thompson, M. J., Brown, T. M., Christensen-Dalsgaard, J., Gilliland, R. L., Kjeldsen, H., Borucki, W. J., Koch, D., Jenkins, J. M., Ballot, J., Basu, S., Bazot, M., Bedding, T. R., Benomar, O., Bonanno, A., Brandão, I. M., Bruntt, H., Campante, T. L., Creevey, O. L., Di Mauro, M. P., Doǧan, G., Dreizler, S., Eggenberger, P., Esch, L., Fletcher, S. T., Frandsen, S., Gai, N., Gaulme, P., Handberg, R., Hekker, S., Howe, R., Huber, D., Korzennik, S. G., Lebrun, J. C., Leccia, S., Martic, M., Mathur, S., Mosser, B., New, R., Quirion, P. O., Régulo, C., Roxburgh, I. W., Salabert, D., Schou, J., Sousa, S. G., Stello, D., Verner, G. A., Arentoft, T., Barban, C., Belkacem, K., Benatti, S., Biazzo, K., Boumier, P., Bradley, P. A., Broomhall, A. M., Buzasi, D. L., Claudi, R. U., Cunha, M. S., D’Antona, F., Deheuvels, S., Derekas, A., García Hernández, A., Giampapa, M. S., Goupil, M. J., Gruberbauer, M., Guzik, J. A., Hale, S. J., Ireland, M. J., Kiss, L. L., Kitiashvili, I. N., Kolenberg, K., Korhonen, H., Kosovichev, A. G., Kupka, F., Lebreton, Y., Leroy, B., Ludwig, H. G., Mathis, S., Michel, E., Miglio, A., Montalbán, J., Moya, A., Noels, A., Noyes, R. W., Pallé, P. L., Piau, L., Preston, H. L., Roca Cortés, T., Roth, M., Sato, K. H., Schmitt, J., Serenelli, A. M., Silva Aguirre, V., Stevens, I. R., Suárez, J. C., Suran, M. D., Trampedach, R., Turck-Chièze, S., Uytterhoeven, K., Ventura, R., and Wilson, P. A.: 2010, ApJ 713(2), L169
  • Däppen et al. (1991) Däppen, W., Gough, D. O., Kosovichev, A. G., and Thompson, M. J.: 1991, A New Inversion for the Hydrostatic Stratification of the Sun, Vol. 388, p. 111
  • Dziembowski et al. (1991) Dziembowski, W. A., Pamiatnykh, A. A., and Sienkiewicz, R. .: 1991, MNRAS 249, 602
  • Dziembowski et al. (1990) Dziembowski, W. A., Pamyatnykh, A. A., and Sienkiewicz, R.: 1990, MNRAS 244, 542
  • Gough and Kosovichev (1988) Gough, D. O. and Kosovichev, A. G.: 1988, in E. J. Rolfe (ed.), Seismology of the Sun and Sun-Like Stars, Vol. 286 of ESA Special Publication, pp 195–201
  • Gough and Kosovichev (1993a) Gough, D. O. and Kosovichev, A. G.: 1993a, in W. W. Weiss and A. Baglin (eds.), IAU Colloq. 137: Inside the Stars, Vol. 40 of Astronomical Society of the Pacific Conference Series, p. 541
  • Gough and Kosovichev (1993b) Gough, D. O. and Kosovichev, A. G.: 1993b, Seismic Analysis of Stellar P-Mode Spectra, Vol. 42 of Astronomical Society of the Pacific Conference Series, p. 351
  • Hansen (1992) Hansen, P. C.: 1992, SIAM Review 34(4), 561
  • Kosovichev (1999) Kosovichev, A. G.: 1999, Journal of Computational and Applied Mathematics 109(1), 1
  • Kosovichev (2011) Kosovichev, A. G.: 2011, Advances in Global and Local Helioseismology: An Introductory Review, In: The Pulsations of the Sun and the Stars, pp 3–84, Springer Berlin Heidelberg, Berlin, Heidelberg
  • Metcalfe et al. (2010) Metcalfe, T. S., Monteiro, M. J. P. F. G., Thompson, M. J., Molenda-Żakowicz, J., Appourchaux, T., Chaplin, W. J., Doǧan, G., Eggenberger, P., Bedding, T. R., Bruntt, H., Creevey, O. L., Quirion, P. O., Stello, D., Bonanno, A., Silva Aguirre, V., Basu, S., Esch, L., Gai, N., Di Mauro, M. P., Kosovichev, A. G., Kitiashvili, I. N., Suárez, J. C., Moya, A., Piau, L., García, R. A., Marques, J. P., Frasca, A., Biazzo, K., Sousa, S. G., Dreizler, S., Bazot, M., Karoff, C., Frandsen, S., Wilson, P. A., Brown, T. M., Christensen-Dalsgaard, J., Gilliland, R. L., Kjeldsen, H., Campante, T. L., Fletcher, S. T., Hand berg, R., Régulo, C., Salabert, D., Schou, J., Verner, G. A., Ballot, J., Broomhall, A. M., Elsworth, Y., Hekker, S., Huber, D., Mathur, S., New, R., Roxburgh, I. W., Sato, K. H., White, T. R., Borucki, W. J., Koch, D. G., and Jenkins, J. M.: 2010, ApJ 723(2), 1583
  • Paxton et al. (2011) Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F.: 2011, ApJS 192(1), 3
  • Silva Aguirre et al. (2015) Silva Aguirre, V., Davies, G. R., Basu, S., Christensen-Dalsgaard, J., Creevey, O., Metcalfe, T. S., Bedding, T. R., Casagrande, L., Handberg, R., Lund, M. N., Nissen, P. E., Chaplin, W. J., Huber, D., Serenelli, A. M., Stello, D., Van Eylen, V., Campante, T. L., Elsworth, Y., Gilliland, R. L., Hekker, S., Karoff, C., Kawaler, S. D., Kjeldsen, H., and Lundkvist, M. S.: 2015, MNRAS 452(2), 2127
  • Silva Aguirre et al. (2017) Silva Aguirre, V., Lund, M. N., Antia, H. M., Ball, W. H., Basu, S., Christensen-Dalsgaard, J., Lebreton, Y., Reese, D. R., Verma, K., Casagrande, L., Justesen, A. B., Mosumgaard, J. R., Chaplin, W. J., Bedding, T. R., Davies, G. R., Handberg, R., Houdek, G., Huber, D., Kjeldsen, H., Latham, D. W., White, T. R., Coelho, H. R., Miglio, A., and Rendle, B.: 2017, ApJ 835(2), 173
  • Toutain and Froehlich (1992) Toutain, T. and Froehlich, C.: 1992, A&A 257(1), 287