This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resolutions of locally analytic principal series representations of GL2GL_{2}

Aranya Lahiri Department of Mathematics, Indiana University, Bloomington [email protected]
Abstract.

For a finite field extension F/pF/{{\mathbb{Q}}_{p}} we associate a coefficient system attached on the Bruhat-Tits tree of G:=GL2(F)G:={\rm GL}_{2}(F) to a locally analytic representation VV of GG. This is done in analogy to the work of Schneider and Stuhler for smooth representations. This coefficient system furnishes a chain-complex which is shown, in the case of locally analytic principal series representations VV, to be a resolution of VV.

1. Introduction

Let F/pF/{{\mathbb{Q}}_{p}} be a finite field extension and G=𝐆(F)G={\bf G}(F) the group of FF-valued points of a connected reductive group 𝐆{\bf G} over FF. In [5] Peter Schneider and Ulrich Stuhler associated to a smooth representation VV of GG (over the complex numbers) coefficient systems on the Bruhat-Tits building BT=BT(𝐆)BT=BT({\bf G}) of 𝐆{\bf G} (and also defined sheaves associated to VV on BTBT). These coefficient systems were shown to furnish resolutions of VV. The purpose of this paper is to define analogous coefficient systems for locally analytic representations of GL2(F){\rm GL}_{2}(F) and to show that they too give rise to resolutions if the representation VV is a locally analytic principal series representation.

We quickly recall the coefficient system construction of Schneider and Stuhler for the general linear group, cf. [4].

For each vertex vv of BT=BT(GLn,F)BT=BT({\rm GL}_{n,F}) let Gv(0):=Stab(v)GLn(F)G_{v}(0):={\rm Stab}(v)\subset{\rm GL}_{n}(F), and let Gv(k)G_{v}(k) be the kthk^{\rm th} congruence subgroup of Gv(0)G_{v}(0) for some k1k\geq 1. The coefficient system on BTBT attached to a smooth representation VV of GLn(F){\rm GL}_{n}(F) is defined as follows

  • To each vertex vBTv\in BT we associate Vv:=VGv(k)V_{v}:=V^{G_{v}(k)}, the space of Gv(k)G_{v}(k)-fixed vectors of VV. And to each simplex σ:={v0,v1,,vd}\sigma:=\{v_{0},v_{1},\cdots,v_{d}\} we associate Vσ=VGσ(k)V_{\sigma}=V^{G_{\sigma}(k)} where Gσ(k):=Gv0(k),,Gvd(k)G_{\sigma}(k):=\langle G_{v_{0}}(k),\cdots,G_{v_{d}}(k)\rangle, is the group generated by Gvi(k)G_{v_{i}}(k)’s.

  • If στ\sigma\subseteq\tau are two simplices, then Gσ(k)Gτ(k)G_{\sigma}(k)\subset G_{\tau}(k), and there is hence an inclusion rστ:VτVσr_{\sigma}^{\tau}:V_{\tau}\rightarrow V_{\sigma}. These transition maps satisfy the conditions rσσ=idr^{\sigma}_{\sigma}={\rm id}, and , rστrτξ=rσξr_{\sigma}^{\tau}\circ r_{\tau}^{\xi}=r_{\sigma}^{\xi} for simplices στξ\sigma\subseteq\tau\subseteq\xi.

This coefficient system naturally gives rise to a chain-complex. One of the key results of [4, 5] is that this complex is exact.

In section 2 of this paper we associate an analogous coefficient system to a locally analytic representation VV of G:=GL2(F)G:={\rm GL}_{2}(F), replacing Gv(k)G_{v}(k)-fixed vectors by the rigid-analytic vectors V𝔾v(k)anV_{{\mathbb{G}}_{v}(k)-{\rm an}} for the corresponding rigid analytic group 𝔾v(k){\mathbb{G}}_{v}(k) and construct a chain complex [2.2.1] associated to it. In fact, the construction of the coefficient system and the associated chain-complex can be generalized to locally analytic representations of any (connected) pp-adic reductive group. It is natural to ask, when is this chain complex a resolution of VV?

In section 3 we show that under some assumptions on kk,

Theorem 1.1.1 (see 3.1.3).

For the locally analytic principal series V:=IndBG(χ)V:=Ind^{G}_{B}(\chi), the chain-complex 2.2.1 is a resolution of VV.

Notation. We denote by F/pF/{{\mathbb{Q}}_{p}} a finite field extension of p{{\mathbb{Q}}_{p}}, by 𝒪{\mathcal{O}} its ring of integers, by ϖ{\varpi} a uniformizer, and by 𝔽q{{\mathbb{F}}_{q}} its residue field of cardinality qq. We will denote by E/FE/F a finite field extension (the ‘coefficient field’), and all locally analytic representations will be over EE. Throughout this paper GG will denote the group GL2(F){\rm GL}_{2}(F). For a locally FF-analytic manifold XX, we denote by Cla(X,E)C^{\rm la}(X,E) the the space of EE-valued locally FF-analytic functions on XX as defined in [6] (in the reference, the authors use Can(X,E)C^{\rm an}(X,E) for this space).

2. A coefficient system and complex

2.1. The Bruhat-Tits tree and associated subgroups

2.1.1.

The building. Recall that the semisimple Bruhat-Tits building BTBT of GL2{\rm GL}_{2} over FF is a one-dimensional simplicial complex whose set of vertices BT0BT_{0} we can identify with the set of homothety classes of 𝒪{\mathcal{O}}-lattices ΛF2\Lambda\subset F^{2}. We write [Λ][\Lambda] for the homothety class of Λ\Lambda. Two vertices vv and vv^{\prime} are adjacent (or form an edge) if and only if there are representing lattices Λ\Lambda of vv and Λ\Lambda^{\prime} of vv^{\prime}, such that ϖΛΛΛ{\varpi}\Lambda\subsetneq\Lambda^{\prime}\subsetneq\Lambda. The set of edges of BTBT will be denoted by BT1BT_{1}, and we write e={v,v}e=\{v,v^{\prime}\} if the vertices vv and vv^{\prime} form an edge. We define the distance function d:BT0×BT00d:BT_{0}\times BT_{0}\rightarrow{\mathbb{Z}}_{\geq 0} as follows: d(v,v)=0d(v,v^{\prime})=0, if v=vv=v^{\prime}, and d(v,v)=nd(v,v^{\prime})=n, if there is a sequence of vertices v=v0,v1,v2,,vn=vv=v_{0},v_{1},v_{2},\ldots,v_{n}=v^{\prime} such that {vi,vi+1}\{v_{i},v_{i+1}\} is an edge for all i{0,,n1}i\in\{0,\ldots,n-1\}, and vi+1vi1v_{i+1}\neq v_{i-1} for i{1,,n1}i\in\{1,\ldots,n-1\}. We further recall that BTBT is a homogeneous tree of degree q+1q+1, in particular the distance function is well-defined.

An oriented edge is an ordered pair (v,v)(v,v^{\prime}) of adjacent vertices. An orientation of BTBT is a set BT1orBT0×BT0BT_{1}^{\rm or}\subset BT_{0}\times BT_{0} consisting of oriented edges, and such that the map BT1orBT1BT_{1}^{\rm or}\rightarrow BT_{1}, (v,v){v,v}(v,v^{\prime})\mapsto\{v,v^{\prime}\}, is bijective. For a vertex vv and an edge e={v1,v2}e=\{v_{1},v_{2}\}, or an oriented edge e=(v1,v2)e=(v_{1},v_{2}), we set d(e,v)=max{d(v1,v),d(v2,v)}d(e,v)=\max\{d(v_{1},v),d(v_{2},v)\}.

The group G=GL2(F)G={\rm GL}_{2}(F) acts on BTBT by g.[Λ]=[g.Λ]g.[\Lambda]=[g.\Lambda], and by g.{v,v}={g.v,g.v}g.\{v,v^{\prime}\}=\{g.v,g.v^{\prime}\}. The action of GG on BT0BT_{0} and BT1BT_{1} are well known to be transitive. In 3.4.7 we will need the following transitivity of GG-action.

Lemma 2.1.2.

Let v,vv,v^{\prime} and w,ww,w^{\prime} be two pairs of vertices with d(v,v)=d(w,w)=n0d(v,v^{\prime})=d(w,w^{\prime})=n\geq 0, and let v=v0,v1,v2,,vn=vv=v_{0},v_{1},v_{2},\ldots,v_{n}=v^{\prime} and w=w0,w1,w2,,wn=ww=w_{0},w_{1},w_{2},\ldots,w_{n}=w^{\prime} be the unique paths connecting vv with vv^{\prime} and ww with ww^{\prime}, respectively. Then there exists gGg\in G such that for all i{0,,n}i\in\{0,\ldots,n\} one has g.vi=wig.v_{i}=w_{i}, i.e., the action of GG on paths of length n0n\geq 0 is transitive.

Proof.

The proof proceeds by induction on nn. The assertion is true in the case when n1n\leq 1 because of the transitivity of the GG-action on BT0BT_{0} and BT1BT_{1}, as mentioned above. We thus assume that n2n\geq 2 in the following. Furthermore, it is enough to prove the assertion under the assumption that v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] and vi=[(ϖi)𝒪]v_{i}=[({\varpi}^{i})\oplus{\mathcal{O}}] for 0in0\leq i\leq n. By induction, there this hGh\in G such that h.vi=wih.v_{i}=w_{i} for 0in10\leq i\leq n-1. Then h1.wnh^{-1}.w_{n} is adjacent to vn1=h1.wn1v_{n-1}=h^{-1}.w_{n-1} and is different from vn2v_{n-2}. The vertices which have this property are of the form vα,n:=[(ϖn,0),([α],1)]v_{\alpha,n}:=[\langle({\varpi}^{n},0),([\alpha],1)\rangle], the homothety class of 𝒪{\mathcal{O}}-lattice generated by (ϖn,0)({\varpi}^{n},0) and ([α],1)([\alpha],1) where α(ϖ)n1/(ϖ)n\alpha\in({\varpi})^{n-1}/({\varpi})^{n}. Then h:=[1α01]h^{\prime}:=\begin{bmatrix}1&\alpha\\ 0&1\end{bmatrix} takes vα,nv_{\alpha,n} to vnv_{n} while fixing viv_{i} for 0in10\leq i\leq n-1. The element g=h(h)1g=h(h^{\prime})^{-1} has then the desired property. ∎

2.1.3.

The groups Gσ(k)G_{\sigma}(k). Given a vertex v=[Λ]v=[\Lambda] we set Gv(0)=StabG(Λ)={gG|g.Λ=Λ}G_{v}(0)={\rm Stab}_{G}(\Lambda)=\{g\in G{\;|\;}g.\Lambda=\Lambda\}, and for a positive integer kk we put

Gv(k)={gGv(0)|xΛ:g.xxmodϖkΛ}G_{v}(k)=\{g\in G_{v}(0){\;|\;}\forall\,x\in\Lambda:\;g.x\equiv x\;{\rm mod}\;{\varpi}^{k}\Lambda\}

Given an edge e={v,v}e=\{v,v^{\prime}\} (or an oriented edge e=(v,v)e=(v,v^{\prime})) and k>0k\in{\mathbb{Z}}_{>0} we let Ge(k)=Gv(k),Gv(k)G_{e}(k)=\langle G_{v}(k),G_{v^{\prime}}(k)\rangle be the subgroup of GG generated by Gv(k)G_{v}(k) and Gv(k)G_{v^{\prime}}(k). As GG acts transitively on BT0BT_{0} and BT1BT_{1}, GG acts transitively on {Gv(k)|vBT0}\{G_{v}(k){\;|\;}v\in BT_{0}\} as well as on {Ge(k)|eBT1}\{G_{e}(k){\;|\;}e\in BT_{1}\} by conjugation.

For later purposes it will be useful to describe some of the groups Gv(k)G_{v}(k) and Ge(k)G_{e}(k) explicitly.

Lemma 2.1.4.

Fix k>0k\in{\mathbb{Z}}_{>0}. If v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}], then

(2.1.5) Gv0(k)={[1+ϖkaϖkbϖkc1+ϖkd]|a,b,c,d𝒪},G_{v_{0}}(k)=\left\{\begin{bmatrix}1+{\varpi}^{k}a&{\varpi}^{k}b\\ {\varpi}^{k}c&1+{\varpi}^{k}d\end{bmatrix}\Big{|}\;a,b,c,d\in{\mathcal{O}}\right\}\;,

and if e={v0,v1}e=\{v_{0},v_{1}\} with v1=[(ϖ)𝒪]v_{1}=[({\varpi})\oplus{\mathcal{O}}], then

(2.1.6) Ge(k)={[1+ϖkaϖkbϖk1c1+ϖkd]|a,b,c,d𝒪}.G_{e}(k)=\left\{\begin{bmatrix}1+{\varpi}^{k}a&{\varpi}^{k}b\\ {\varpi}^{k-1}c&1+{\varpi}^{k}d\end{bmatrix}\Big{|}\;a,b,c,d\in{\mathcal{O}}\right\}\;.
Proof.

The first assertion is well-known and straightforward to verify. For the second assertion we note that v1=diag(ϖ,1).v0v_{1}={\rm diag}({\varpi},1).v_{0} and therefore

Gv1(k)=diag(ϖ,1)Gv0(k)diag(ϖ,1)1={[1+ϖkaϖk+1bϖk1c1+ϖkd]|a,b,c,d𝒪},G_{v_{1}}(k)={\rm diag}({\varpi},1)G_{v_{0}}(k){\rm diag}({\varpi},1)^{-1}=\left\{\begin{bmatrix}1+{\varpi}^{k}a&{\varpi}^{k+1}b\\ {\varpi}^{k-1}c&1+{\varpi}^{k}d\end{bmatrix}\Big{|}\;a,b,c,d\in{\mathcal{O}}\right\}\;,

By definition, Ge(k)=Gv0(k),Gv1(k)G_{e}(k)=\langle G_{v_{0}}(k),G_{v_{1}}(k)\rangle. Let HH be the group on the right hand side of 2.1.6. An easy computation shows that

(i) Gv0(k).Gv1(k)=Gv1(k).Gv0(k)G_{v_{0}}(k).G_{v_{1}}(k)=G_{v_{1}}(k).G_{v_{0}}(k), and hence Ge(k)=Gv0(k).Gv1(k)G_{e}(k)=G_{v_{0}}(k).G_{v_{1}}(k), and that

(ii) Gv0(k).Gv1(k)HG_{v_{0}}(k).G_{v_{1}}(k)\subset H.

Now we observe that for any a,b,c,d𝒪Fa,b,c,d\in{\mathcal{O}}_{F} we have

[1+ϖkaϖkbϖk1c1+ϖkd]=[1+ϖka0ϖk1c1].[1ϖkb1+ϖka01+ϖk(dϖk1cb1+ϖka)]\begin{bmatrix}1+{\varpi}^{k}a&{\varpi}^{k}b\\ {\varpi}^{k-1}c&1+{\varpi}^{k}d\end{bmatrix}\;=\begin{bmatrix}1+{\varpi}^{k}a&0\\ {\varpi}^{k-1}c&1\end{bmatrix}.\begin{bmatrix}1&{\varpi}^{k}\frac{b}{1+{\varpi}^{k}a}\\ 0&1+{\varpi}^{k}\Big{(}d-{\varpi}^{k-1}\frac{cb}{1+{\varpi}^{k}a}\Big{)}\end{bmatrix}

This finishes the proof. ∎

2.1.7.

A Coefficient System on BTBT. We choose k>0k\in{\mathbb{Z}}_{>0} such that for any simplex (edge or vertex) σ\sigma of BTBT the group Gσ(k)G_{\sigma}(k) as defined above is a uniform pro-pp group [1]. Under this assumption we can associate to Gσ(k)G_{\sigma}(k) a rigid analytic subgroup 𝔾σ(k){\mathbb{G}}_{\sigma}(k) of the analytification GL2rig{\rm GL}_{2}^{\rm rig} of the algebraic group GL2{\rm GL}_{2} over FF. See [3, 3.5] for a description of this process.

Given a locally analytic representation VV of GG, we define a coefficient system 𝒞V(k){\mathcal{C}}^{(k)}_{V} on BTBT as follows.

  • To each simplex σBT\sigma\subset BT we associate Vσ:=V𝔾σ(k)anV_{\sigma}:=V_{{\mathbb{G}}_{\sigma}(k)-{\rm an}}, the space of 𝔾σ(k){\mathbb{G}}_{\sigma}(k)-analytic vectors111See [2, 3.3.13] for the definition of analytic vectors of a representation with respect to a good analytic subgroup. of VV .

  • If στ\sigma\subseteq\tau are two simplices, then Gσ(k)Gτ(k)G_{\sigma}(k)\subset G_{\tau}(k), and there is hence an inclusion rστ:VτVσr_{\sigma}^{\tau}:V_{\tau}\rightarrow V_{\sigma}. These transition maps satisfy the conditions rσσ=idr^{\sigma}_{\sigma}={\rm id}, and therefore, rστrτξ=rσξr_{\sigma}^{\tau}\circ r_{\tau}^{\xi}=r_{\sigma}^{\xi} for simplices στξ\sigma\subseteq\tau\subseteq\xi.

2.2. The chain complex associated to a coefficient system on BTBT

We associate to 𝒞V(k){\mathcal{C}}^{(k)}_{V} the following complex

(2.2.1) 0eBT1orVe1vBT0Vv0V00\rightarrow\bigoplus_{e\in BT_{1}^{\rm or}}V_{e}\stackrel{{\scriptstyle\partial_{1}}}{{\longrightarrow}}\bigoplus_{v\in BT_{0}}V_{v}\stackrel{{\scriptstyle\partial_{0}}}{{\longrightarrow}}V\rightarrow 0

Where there maps are defined as follows: given an oriented edge e=(v1,v2)BT1ore=(v_{1},v_{2})\in BT_{1}^{\rm or} the map 1|Ve\partial_{1}|_{V_{e}} is defined by

1|Ve:VevBT0Vvf(fv)v,\begin{array}[]{ccc}\partial_{1}|_{V_{e}}:V_{e}&\longrightarrow&\bigoplus_{v\in BT_{0}}V_{v}\\ f&\longmapsto&(f_{v})_{v}\;,\end{array}

where fv1=ff_{v_{1}}=f, fv2=ff_{v_{2}}=-f, and fv=0f_{v}=0 for all v{v1,v2}v\not\in\{v_{1},v_{2}\}. The map 0\partial_{0} is defined by

0:vBT0Vv\displaystyle\partial_{0}:\bigoplus_{v\in BT_{0}}V_{v} V\displaystyle\longrightarrow V
(fv)v\displaystyle(f_{v})_{v} vfv,\displaystyle\rightarrow\sum_{v}f_{v}\;,

where the sum is taken inside VV using the vector space embeddings VvVV_{v}\hookrightarrow V.

3. Locally analytic principal series representations

3.1. Locally analytic induction

3.1.1.

Let TGT\subset G be the the maximal torus comprising of diagonal matrices and B with, TBGT\subset B\subset G be the standard Borel subgroup of upper triangular matrices. We also fix once and for all a finite extension E/FE/F. For a locally FF-analytic character χ:TE×\chi:T\rightarrow E^{\times} we consider the locally analytic principal series representation

V:=IndBG(χ)={f:GE locally F-analytic|gGbB:f(bg)=χ(b)f(g)}.\begin{array}[]{rcl}V&:=&{\rm Ind}^{G}_{B}(\chi)\\ &&\\ &=&\Big{\{}f:G\rightarrow E\mbox{ locally $F$-analytic}\Big{|}\,\forall\,g\in G\;\forall\;b\in B:\;f(bg)=\chi(b)f(g)\Big{\}}\;.\end{array}

The action of GG on VV is given by g.f(x)=f(x.g1)g.f(x)=f(x.g^{-1}). We will consider IndBG(χ){\rm Ind}^{G}_{B}(\chi) as a topological vector space as follows. Set G0=GL2(𝒪)G_{0}={\rm GL}_{2}({\mathcal{O}}) and B0=BG0B_{0}=B\cap G_{0}. Then G=BG0G=B\cdot G_{0} and the canonical map of quotients B0\G0B\GB_{0}\backslash G_{0}\rightarrow B\backslash G is an isomorphism of locally FF-analytic manifolds. Therefore, restricting locally FF-analytic functions from GG to G0G_{0} gives an isomorphism of vector spaces IndBG(χ)IndB0G0(χ){\rm Ind}^{G}_{B}(\chi)\rightarrow{\rm Ind}^{G_{0}}_{B_{0}}(\chi). Since G0G_{0} is compact, the space Cla(G0,E)C^{\rm la}(G_{0},E) of EE-valued locally FF-analytic functions on G0G_{0} naturally carries the structure of an EE-vector space of compact type [6, Lemma 2.1]. We equip IndBG(χ){\rm Ind}^{G}_{B}(\chi) with the structure of a locally convex EE-vector space so that the map IndBG(χ)IndB0G0(χ){\rm Ind}^{G}_{B}(\chi)\rightarrow{\rm Ind}^{G_{0}}_{B_{0}}(\chi) becomes an isomorphism of topological vectors spaces.

3.1.2.

For a simplex σBT\sigma\in BT (or an oriented edge eBT1ore\in BT_{1}^{{\rm or}}), let

Ωσ,k=B\G/Gσ(k)\Omega_{\sigma,k}=B\backslash G/G_{\sigma}(k)

be the set of BB-Gσ(k)G_{\sigma}(k) double cosets in GG, which is finite because B\GB\backslash G is compact and Gσ(k)G_{\sigma}(k) open in GG. As Gσ(k)G_{\sigma}(k) is an open subgroup, so is any double coset ΔΩσ,k{\Delta}\in\Omega_{\sigma,k}. Given ΔΩσ,k{\Delta}\in\Omega_{\sigma,k}, we set

I(Δ,χ)={ΔfE|f is loc. F-analytic,bB,xΔ,f(bx)=χ(b)f(x)}I({\Delta},\chi)=\Big{\{}{\Delta}\stackrel{{\scriptstyle f}}{{\longrightarrow}}E\;\Big{|}\;f\mbox{ is loc. $F$-analytic},\,\forall\;b\in B,x\in{\Delta},f(bx)=\chi(b)f(x)\Big{\}}

Note that by extending functions in I(Δ,χ)I({\Delta},\chi) by zero outside Δ{\Delta}, we obtain an embedding I(Δ,χ)VI({\Delta},\chi)\hookrightarrow V, and the image of this map, which we will henceforth identify with I(Δ,χ)I({\Delta},\chi), is stable under the action of Gσ(k)G_{\sigma}(k) on VV. Because G=ΔΩσ,kΔG=\coprod_{{\Delta}\in\Omega_{\sigma,k}}{\Delta}, we have

V𝔾σ(k)an=ΔΩσ,kI(Δ,χ)𝔾σ(k)an.V_{{\mathbb{G}}_{\sigma}(k)-{\rm an}}=\oplus_{{\Delta}\in\Omega_{\sigma,k}}I({\Delta},\chi)_{{\mathbb{G}}_{\sigma}(k)-{\rm an}}\;.

The main result of this article is

Theorem 3.1.3.

There exists an integer k01k_{0}\geq 1 such that for all kk0k\geq k_{0} the chain complex 2.2.1 is a resolution when applied to V=IndBG(χ)V={\rm Ind}^{G}_{B}(\chi).

The rest of the article is dedicated to the proof of 3.1.3. A crucial role in our proof will be played by the following sets of vertices and edges:

BT0,n={vBT0|d(v,v0)n},BT1,nor={e=(v,v)BT1or|d(e,v0)n}\begin{array}[]{lclclc}BT_{0,n}&=&\Big{\{}v\in BT_{0}\;\Big{|}\;d(v,v_{0})\leq n\Big{\}}\;,\\ &&\\ BT^{\rm or}_{1,n}&=&\Big{\{}e=(v,v^{\prime})\in BT^{\rm or}_{1}\;\Big{|}\;d(e,v_{0})\leq n\Big{\}}\end{array}

where v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] is as above.

3.2. Injectivity of 1\partial_{1}

Proposition 3.2.1.

The map 1:eBT1orVevBT0Vv\partial_{1}:\bigoplus_{e\in BT_{1}^{\rm or}}V_{e}\longrightarrow\bigoplus_{v\in BT_{0}}V_{v} is injective.

Proof.

Let f=(fe)e0f=(f_{e})_{e}\neq 0 be supported on BT1,norBT_{1,n}^{\rm or} but not on BT1,n1orBT_{1,n-1}^{\rm or} for some n1n\geq 1 (BT1,0orBT_{1,0}^{\rm or} is the empty set), i.e., there is e=(v1,v2)BT1ore=(v_{1},v_{2})\in BT^{\rm or}_{1} such that d(e,v0)=nd(e,v_{0})=n and fe0f_{e}\neq 0, and fe=0f_{e^{\prime}}=0 for all edges ee^{\prime} with d(e,v0)>nd(e^{\prime},v_{0})>n. If then i{1,2}i\in\{1,2\} is such that d(vi,v0)=nd(v_{i},v_{0})=n, we have 1(f)vi=±fe0\partial_{1}(f)_{v_{i}}=\pm f_{e}\neq 0. ∎

3.3. The action of GG on 1(F){\mathbb{P}}^{1}(F)

In the rest of the paper we will let \infty be a symbol different from all elements in FF and put 1(F)=F{}{\mathbb{P}}^{1}(F)=F\cup\{\infty\}. We equip 1(F){\mathbb{P}}^{1}(F) with an action from the right by GG via Möbius transformations. Explicitly, the action of g=[abcd]Gg=\begin{bmatrix}a&b\\ c&d\end{bmatrix}\in G on z1(F)z\in{\mathbb{P}}^{1}(F) is given by

(3.3.1) z.g={az+cbz+d,zab,z=z.g=\left\{\begin{array}[]{ccl}\frac{az+c}{bz+d}&,&z\neq\infty\\ \frac{a}{b}&,&z=\infty\end{array}\right.

where az+cbz+d\frac{az+c}{bz+d} (resp. ab\frac{a}{b}) is \infty if the denominator vanishes. The stabilizer of the point 01(F)0\in{\mathbb{P}}^{1}(F) is BB, and the map

ι:B\G1(F),Bg0.g,\iota:B\backslash G\longrightarrow{\mathbb{P}}^{1}(F)\;,\;\;Bg\mapsto 0.g\;,

is bijective and GG-equivariant, if we consider the right translation action of GG on B\GB\backslash G. The quotient B\GB\backslash G inherits the structure of a locally FF-analytic manifold from GG, and we equip 1(F){\mathbb{P}}^{1}(F) with the structure of a locally FF-analytic manifold via ι\iota (so that ι\iota becomes an isomorphism of locally FF-analytic manifolds). Each gGg\in G acts as a locally FF-analytic automorphism on 1(F){\mathbb{P}}^{1}(F).

We denote by PΩσ,k{\rm P\Omega}_{\sigma,k} the set of Gσ(k)G_{\sigma}(k)-orbits on 1(F){\mathbb{P}}^{1}(F). By the discussion in the preceding paragraph, there is a canonical bijection between BB-Gσ(k)G_{\sigma}(k) double cosets of GG and orbits of (right) action of Gσ(k)G_{\sigma}(k) on 1(F){\mathbb{P}}^{1}(F), given by

Ωσ,k1:1PΩσ,k,ΔPΔ:=B\Δ.\Omega_{\sigma,k}\stackrel{{\scriptstyle 1:1}}{{\longrightarrow}}{\rm P\Omega}_{\sigma,k}\;,\;{\Delta}\mapsto{\rm P{\Delta}}:=B\backslash{\Delta}\;.

For z0F1(F)z_{0}\in F\subset{\mathbb{P}}^{1}(F) and r>0r\in{\mathbb{R}}_{>0} we then set 𝐁z(z0,r)={xF||xz0|r}{\bf B}_{z}(z_{0},r)=\{x\in F{\;|\;}|x-z_{0}|\leq r\}, which is a closed disc of radius rr around z0z_{0}. Similarly, for r>0r\in{\mathbb{R}}_{>0} and w01(F){0}w_{0}\in{\mathbb{P}}^{1}(F)\setminus\{0\} we set 𝐁w(w0,r)={xF×{}||1x1w0|r}{\bf B}_{w}(w_{0},r)=\{x\in F^{\times}\cup\{\infty\}{\;|\;}\left|\frac{1}{x}-\frac{1}{w_{0}}\right|\leq r\}, where we interpret 1\frac{1}{\infty} as zero. In particular, 1(F)=𝐁z(0,1)𝐁w(,|ϖ|){\mathbb{P}}^{1}(F)={\bf B}_{z}(0,1)\sqcup{\bf B}_{w}(\infty,|{\varpi}|).

Proposition 3.3.2.

For v0=[𝒪𝒪],v1=[(ϖ)𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}],v_{1}=[({\varpi})\oplus{\mathcal{O}}] and e0={v,v1}e_{0}=\{v,v_{1}\}, the orbits of Gv0(k),Gv1(k)G_{v_{0}}(k),G_{v_{1}}(k) and Ge0(k)G_{e_{0}}(k) can be described as follows

(i) The orbits of Gv0(k)G_{v_{0}}(k) on 1(F){\mathbb{P}}^{1}(F) are discs of radius |ϖ|k|{\varpi}|^{k} of the form 𝐁z(z0,|ϖ|k){\bf B}_{z}(z_{0},|{\varpi}|^{k}) on 𝐁z(0,1){\bf B}_{z}(0,1) with z0𝐁z(0,1)z_{0}\in{\bf B}_{z}(0,1) and are of the form 𝐁w(w0,|ϖ|k){\bf B}_{w}(w_{0},|{\varpi}|^{k}) on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) with w0𝐁w(,|ϖ|)w_{0}\in{\bf B}_{w}(\infty,|{\varpi}|).

(ii)The orbits of Gv1(k)G_{v_{1}}(k) are discs of radius |ϖ|k1|{\varpi}|^{k-1} of the form 𝐁z(z0,|ϖ|k1{\bf B}_{z}(z_{0},|{\varpi}|^{k-1} on 𝐁z(0,1){\bf B}_{z}(0,1) with z0𝐁z(0,1)z_{0}\in{\bf B}_{z}(0,1) and discs of radius |ϖ|k+1|{\varpi}|^{k+1} of the form 𝐁w(w0,|ϖ|k+1){\bf B}_{w}(w_{0},|{\varpi}|^{k+1}) on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) with w0𝐁w(,|ϖ|)w_{0}\in{\bf B}_{w}(\infty,|{\varpi}|).

(iii) The orbits Ge0(k)G_{e_{0}}(k)-orbits on 𝐁z(0,1){\bf B}_{z}(0,1) are of the form 𝐁z(z0,|ϖ|k1){\bf B}_{z}(z_{0},|{\varpi}|^{k-1}) (i.e., same as orbits of of Gv1(k)G_{v_{1}}(k)) with z0𝐁z(0,1)z_{0}\in{\bf B}_{z}(0,1) and on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) they are of the form 𝐁w(w0,|ϖ|k){\bf B}_{w}(w_{0},|{\varpi}|^{k}) (i.e., same as orbits of of Gv0(k)G_{v_{0}}(k)) with w0𝐁w(,|ϖ|)w_{0}\in{\bf B}_{w}(\infty,|{\varpi}|) .

Proof.

(i) and (ii) To compute the orbits of Gv0(k)G_{v_{0}}(k) on 𝐁z(0,1){\bf B}_{z}(0,1) we use the description of Gv0(k)G_{v_{0}}(k) from 2.1.5 and the description of the action in 3.3.1 to get for zo𝐁z(0,1)z_{o}\in{\bf B}_{z}(0,1)

az0+cbz0+d=(z0+O(ϖk))(1+O(ϖk))=z0+O(ϖk)\displaystyle\frac{az_{0}+c}{bz_{0}+d}=(z_{0}+O({\varpi}^{k}))(1+O({\varpi}^{k}))=z_{0}+O({\varpi}^{k})

for g=[abcd]Gv0(k)g=\begin{bmatrix}a&b\\ c&d\end{bmatrix}\in G_{v_{0}}(k). This shows that the orbit of z0z_{0} is contained in 𝐁z(z0,|ϖ|k){\bf B}_{z}(z_{0},|{\varpi}|^{k}). Via the translation z0z0.[10c1]=z0+cz_{0}\rightarrow z_{0}.\begin{bmatrix}1&0\\ c&1\end{bmatrix}=z_{0}+c, we conclude that the orbit is indeed 𝐁z(z0,|ϖ|k){\bf B}_{z}(z_{0},|{\varpi}|^{k}). A similar computation shows that the orbit of w0𝐁w(,|ϖ|)w_{0}\in{\bf B}_{w}(\infty,|{\varpi}|) is 𝐁w(w0,|ϖ|k){\bf B}_{w}(w_{0},|{\varpi}|^{k}).

For g=[abcd]Gv1(k)g=\begin{bmatrix}a&b\\ c&d\end{bmatrix}\in G_{v_{1}}(k) we have,

az0+cbz0+d=(z0+O(ϖk1))(1+O(ϖk))=z0+O(ϖk1)\displaystyle\frac{az_{0}+c}{bz_{0}+d}=(z_{0}+O({\varpi}^{k-1}))(1+O({\varpi}^{k}))=z_{0}+O({\varpi}^{k-1})

And again by using matrices of the form [10c1]\begin{bmatrix}1&0\\ c&1\end{bmatrix} we obtain that the orbits on 𝐁z(0,1){\bf B}_{z}(0,1) are 𝐁z(z0,|ϖ|k1){\bf B}_{z}(z_{0},|{\varpi}|^{k-1}). On the other hand, on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) we have,

1w0.g=bw0+daw0+c=b+d1w0a+c1w0=(1w0+O(ϖk+1))(1+O(ϖk))=1w0+O(ϖk+1)\displaystyle\frac{1}{w_{0}.g}=\frac{bw_{0}+d}{aw_{0}+c}=\frac{b+d\frac{1}{w_{0}}}{a+c\frac{1}{w_{0}}}=(\frac{1}{w_{0}}+O({\varpi}^{k+1}))(1+O({\varpi}^{k}))=\frac{1}{w_{0}}+O({\varpi}^{k+1})

thus the orbits on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) of Gv1(k)G_{v_{1}}(k) are disjoint discs 𝐁w(w0,|ϖ|k+1){\bf B}_{w}(w_{0},|{\varpi}|^{k+1}) and 𝐁w(,|ϖ|k+1){\bf B}_{w}(\infty,|{\varpi}|^{k+1}). This shows assertion (ii).

(iii) Using 2.1.6, we can show via an analogous computation that the orbits of Ge0(k)G_{e_{0}}(k) on 𝐁z(0,1){\bf B}_{z}(0,1) are of the form 𝐁z(z0,|ϖ|k1){\bf B}_{z}(z_{0},|{\varpi}|^{k-1}) (i.e., orbit of of Gv1(k)G_{v_{1}}(k)) and on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) they are of the form 𝐁w(w0,|ϖ|k),w0𝐁w(,|ϖ|){\bf B}_{w}(w_{0},|{\varpi}|^{k}),w_{0}\in{\bf B}_{w}(\infty,|{\varpi}|) (i.e., orbits of Gv0(k)G_{v_{0}}(k)). ∎

We can make a more general statement based on the previous proposition.

Proposition 3.3.3.

Let v,vBT0v,v^{\prime}\in BT_{0} and e={v,v}BT1e=\{v,v^{\prime}\}\in BT_{1}. We have,

(i) Ωv,kΩv,k=\Omega_{v,k}\cap\Omega_{v^{\prime},k}=\emptyset.

(ii) For every ΔΩv,k{\Delta}\in\Omega_{v,k} there is ΔΩv,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k} such that ΔΔ{\Delta}\subset{\Delta}^{\prime} or ΔΔ{\Delta}^{\prime}\subset{\Delta}. Furthermore, Ωv,kv:={ΔΩv,k|ΔΩv,k:ΔΔ}\Omega_{v,k}^{v^{\prime}}:=\{{\Delta}\in\Omega_{v,k}{\;|\;}\exists{\Delta}^{\prime}\in\Omega_{v^{\prime},k}:{\Delta}^{\prime}\subset{\Delta}\} has cardinality qk1q^{k-1} and each ΔΩv,kv{\Delta}\in\Omega_{v,k}^{v^{\prime}} contains qq orbits of Ωv,k\Omega_{v^{\prime},k}.

(iii) If ΔΩe,k{\Delta}\in\Omega_{e,k} then ΔΩv,k{\Delta}\in\Omega_{v,k} or ΔΩv,k{\Delta}\in\Omega_{v^{\prime},k}.

(iv) If ΔΩv,kΩe,k{\Delta}\in\Omega_{v,k}\cap\Omega_{e,k} then there exists ΔΩv,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k} such that ΔΔ{\Delta}^{\prime}\subset{\Delta} and similarly, if ΔΩv,kΩe,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k}\cap\Omega_{e,k} then there exists ΔΩv,k{\Delta}\in\Omega_{v,k} such that ΔΔ{\Delta}\subset{\Delta}^{\prime}.

(v) If ΔΔ{\Delta}^{\prime}\subset{\Delta} for double-cosets in Ωv,k\Omega_{v^{\prime},k} and Ωv,k\Omega_{v,k}, respectively, then ΔΩv,kΩe,k.{\Delta}\in\Omega_{v,k}\cap\Omega_{e,k}.

Proof.

Via the canonical bijection ΔPΔ{\Delta}\leftrightarrow{\rm P{\Delta}} it is enough to show the corresponding assertions for orbits on 1(F){\mathbb{P}}^{1}(F).

Since the action of GG on BT0BT_{0} and BT1BT_{1} is transitive it is enough to prove the statements for v0,v1v_{0},v_{1} and e0={v0,v1}e_{0}=\{v_{0},v_{1}\}, where v0v_{0} and v1v_{1} are as in 3.3.2.

(i), (ii) and (iii) Follows directly from 3.3.2.

(iv) If PΔ=𝐁w(w0,|ϖ|k)𝐁w(,|ϖ|)PΩv0,kPΩe0,k{\rm P{\Delta}}={\bf B}_{w}(w_{0},|{\varpi}|^{k})\subset{\bf B}_{w}(\infty,|{\varpi}|)\in{\rm P\Omega}_{v_{0},k}\cap{\rm P\Omega}_{e_{0},k} then we can take PΔ=𝐁w(w0,|ϖ|k+1)Ωv1,k{\rm P{\Delta}}^{\prime}={\bf B}_{w}(w_{0},|{\varpi}|^{k+1})\in\Omega_{v_{1},k}. And if PΔ=𝐁z(z0,|ϖ|k1)𝐁z(0,1)PΩv1,kPΩe0,k{\rm P{\Delta}}={\bf B}_{z}(z_{0},|{\varpi}|^{k-1})\subset{\bf B}_{z}(0,1)\in{\rm P\Omega}_{v_{1},k}\cap{\rm P\Omega}_{e_{0},k} then we can take PΔ=𝐁z(z0,|ϖ|k){\rm P{\Delta}}^{\prime}={\bf B}_{z}(z_{0},|{\varpi}|^{k}).

(v) The only orbits for which the relation PΔPΔ{\rm P{\Delta}}^{\prime}\subset{\rm P{\Delta}} with PΔPΩv1,k,PΔPΩv0,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v_{1},k},{\rm P{\Delta}}\in{\rm P\Omega}_{v_{0},k} holds are of the form 𝐁w(w0,|ϖ|k+1)𝐁w(w0,|ϖ|k){\bf B}_{w}(w_{0},|{\varpi}|^{k+1})\subset{\bf B}_{w}(w_{0},|{\varpi}|^{k}). And any such 𝐁w(w0,|ϖ|k)PΩv0,k{\bf B}_{w}(w_{0},|{\varpi}|^{k})\in{\rm P\Omega}_{v_{0},k} also belongs to PΩe0,k{\rm P\Omega}_{e_{0},k}. ∎

Remark 3.3.4.

Let σ,σ\sigma^{\prime},\sigma be two simplices in BTBT with σ=g.σ\sigma^{\prime}=g.\sigma for gGg\in G. The map

Ωσ,kΩσ,k,PΩσ,kPΩσ,kΔΔ.g1,PΔPΔ.g1\begin{array}[]{cccccc}\Omega_{\sigma,k}&\longrightarrow&\Omega_{\sigma^{\prime},k},\;\;\;\;\;\;{\rm P\Omega}_{\sigma,k}&\longrightarrow&{\rm P\Omega}_{\sigma^{\prime},k}\\ {\Delta}&\longrightarrow&{\Delta}.g^{-1},\;\;\;\;{\rm P{\Delta}}&\longrightarrow&{\rm P{\Delta}}.g^{-1}\end{array}

defines a bijection between Ωσ,k\Omega_{\sigma,k} and Ωσ,k\Omega_{\sigma^{\prime},k} and between PΩσ,k{\rm P\Omega}_{\sigma,k} and PΩσ,k{\rm P\Omega}_{\sigma^{\prime},k} respectively.

Lemma 3.3.5.

Let vα,1:=[(1,α),(0,ϖ)]v_{\alpha,1}:=[\langle(1,\alpha),(0,{\varpi})\rangle], α𝒪/(ϖ)\alpha\in{\mathcal{O}}/({\varpi}), be the vertex corresponding to the homothety class of the 𝒪{\mathcal{O}}-lattice (1,[α]),(0,ϖ)F2\langle(1,[\alpha]),(0,{\varpi})\rangle\subset F^{\oplus 2}. Then the orbits of Gvα,1(k)G_{v_{\alpha,1}}(k) on 𝐁z([α],|ϖ|)𝐁z(0,1){\bf B}_{z}([\alpha],|{\varpi}|)\subset{\bf B}_{z}(0,1) are of the form 𝐁z(β,|ϖ|k+1){\bf B}_{z}(\beta,|{\varpi}|^{k+1}), for β𝐁z([α],|ϖ|)\beta\in{\bf B}_{z}([\alpha],|{\varpi}|). Moreover each of the orbits of Gvα,1,kG_{v_{\alpha,1},k} of the form 𝐁z(β,|ϖ|k+1){\bf B}_{z}(\beta,|{\varpi}|^{k+1}) on 𝐁z([α],|ϖ|){\bf B}_{z}([\alpha],|{\varpi}|) is contained in an orbit of the form 𝐁z(z0,|ϖ|k){\bf B}_{z}(z_{0},|{\varpi}|^{k}) of Gv0,kG_{v_{0},k}.

Each of the other orbits of Gvα,1(k)G_{v_{\alpha,1}}(k) contains qq orbits of Gv0(k)G_{v_{0}}(k).

Proof.

Note that vα,1=gα.v0v_{\alpha,1}=g_{\alpha}.v_{0}, where gα=[10[α]ϖ]g_{\alpha}=\begin{bmatrix}1&0\\ [\alpha]&{\varpi}\end{bmatrix} and v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] as in 3.3.3. Thus by 3.3.4 we have PΩvα,1,k=PΩv0,k.gα1{\rm P\Omega}_{v_{\alpha,1},k}={\rm P\Omega}_{v_{0},k}.g_{\alpha}^{-1}. Now

β.gα1=β.[10[α]ϖϖ1]=β[α]ϖϖ1=ϖ.β[α].\beta.g_{\alpha}^{-1}=\beta.\begin{bmatrix}1&0\\ -\frac{[\alpha]}{{\varpi}}&{\varpi}^{-1}\end{bmatrix}=\frac{\beta-\frac{[\alpha]}{{\varpi}}}{{\varpi}^{-1}}={\varpi}.\beta-[\alpha].

This transformation takes 𝐁z(0,|ϖ|k).gα1=𝐁z([α],|ϖ|k+1){\bf B}_{z}(0,|{\varpi}|^{k}).g_{\alpha}^{-1}={\bf B}_{z}([\alpha],|{\varpi}|^{k+1}) and very similarly we can compute the other orbits. The containment relation is clear from the radius of the respective orbits. ∎

3.3.6.

We also introduce the following notation for the rest of the paper

Ω0,k=vBT0Ωv,k,PΩ0,k=vBT0PΩv,kΩ0,k,n=vBT0,nΩv,k,PΩ0,k,n=vBT0,nPΩv,kΩ1,k=eBT1orΩe,k,PΩ1,k=eBT1orPΩe,kΩ1,k,n=eBT1,norΩe,k,PΩ1,k,n=eBT1,norPΩe,kΩ¯0,k=vBT0Ωv,k,PΩ¯0,k=vBT0PΩv,kΩ¯0,k,n=vBT0,nΩv,k,PΩ¯0,k,n=vBT0,nPΩv,kΩ¯1,k=eBT1orΩe,k,PΩ¯1,k=eBT1orPΩe,kΩ¯1,k,n=eBT1,norΩe,k,PΩ¯1,k,n=eBT1,norPΩe,k\begin{array}[]{lclclclclclc}\Omega_{0,k}&=&\bigsqcup_{v\in BT_{0}}\Omega_{v,k}\;,&\;{\rm P\Omega}_{0,k}&=&\bigsqcup_{v\in BT_{0}}{\rm P\Omega}_{v,k}\\ &&\\ \Omega_{0,k,n}&=&\bigsqcup_{v\in BT_{0,n}}\Omega_{v,k}\;,&\;{\rm P\Omega}_{0,k,n}&=&\bigsqcup_{v\in BT_{0,n}}{\rm P\Omega}_{v,k}\\ &&\\ \Omega_{1,k}&=&\bigsqcup_{e\in BT_{1}^{{\rm or}}}\Omega_{e,k}\;,&\;{\rm P\Omega}_{1,k}&=&\bigsqcup_{e\in BT_{1}^{{\rm or}}}{\rm P\Omega}_{e,k}\\ &&\\ \Omega_{1,k,n}&=&\bigsqcup_{e\in BT^{{\rm or}}_{1,n}}\Omega_{e,k}\;,&\;{\rm P\Omega}_{1,k,n}&=&\bigsqcup_{e\in BT^{{\rm or}}_{1,n}}{\rm P\Omega}_{e,k}\\ &&\\ {\overline{\Omega}}_{0,k}&=&\bigcup_{v\in BT_{0}}\Omega_{v,k}\;,&\;{\overline{{\rm P\Omega}}}_{0,k}&=&\bigcup_{v\in BT_{0}}{\rm P\Omega}_{v,k}\\ &&\\ {\overline{\Omega}}_{0,k,n}&=&\bigcup_{v\in BT_{0,n}}\Omega_{v,k}\;,&\;{\overline{{\rm P\Omega}}}_{0,k,n}&=&\bigcup_{v\in BT_{0,n}}{\rm P\Omega}_{v,k}\\ &&\\ {\overline{\Omega}}_{1,k}&=&\bigcup_{e\in BT_{1}^{{\rm or}}}\Omega_{e,k}\;,&\;{\overline{{\rm P\Omega}}}_{1,k}&=&\bigcup_{e\in BT_{1}^{{\rm or}}}{\rm P\Omega}_{e,k}\\ &&\\ {\overline{\Omega}}_{1,k,n}&=&\bigcup_{e\in BT^{{\rm or}}_{1,n}}\Omega_{e,k}\;,&\;{\overline{{\rm P\Omega}}}_{1,k,n}&=&\bigcup_{e\in BT^{{\rm or}}_{1,n}}{\rm P\Omega}_{e,k}\end{array}
Remark 3.3.7.

Note that, (iii) of 3.3.3 says, If ΔΩe,k{\Delta}\in\Omega_{e,k} for e={v,v}e=\{v,v^{\prime}\} then ΔΩv,k{\Delta}\in\Omega_{v,k} or ΔΩv,k{\Delta}\in\Omega_{v^{\prime},k}. From this it is clear that we can think of Ω1,k\Omega_{1,k} as a subset of Ω0,k\Omega_{0,k}. And we can similarly conclude PΩ1,kPΩ0,k,Ω¯1,kΩ¯1,k{\rm P\Omega}_{1,k}\subset{\rm P\Omega}_{0,k},{\overline{\Omega}}_{1,k}\subset{\overline{\Omega}}_{1,k} and PΩ¯1,kPΩ¯0,k{\overline{{\rm P\Omega}}}_{1,k}\subset{\overline{{\rm P\Omega}}}_{0,k}.

We equip Ω¯0,k{\overline{\Omega}}_{0,k} (and PΩ¯0,k{\overline{{\rm P\Omega}}}_{0,k}) with the partial order via inclusion.

Remark 3.3.8.

Note that Ω0,k,n\Omega_{0,k,n} and Ω¯0,k,n{\overline{\Omega}}_{0,k,n} (and by extension Ω0,k\Omega_{0,k} and Ω¯0,k{\overline{\Omega}}_{0,k}) are not the same. For example, by 3.3.5, 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) is in both Ωv1,1,2\Omega_{v_{1,1},2} and Ωv0,1,2\Omega_{v_{0,1},2}, where v0,1v_{0,1} and v1,1v_{1,1} are as in 3.3.5. There is an obvious map pr:Ω0,kΩ¯0,k{\rm pr}:\Omega_{0,k}\rightarrow{\overline{\Omega}}_{0,k} which restricts to a map from pr:Ω0,k,nΩ¯0,k,n{\rm pr}:\Omega_{0,k,n}\rightarrow{\overline{\Omega}}_{0,k,n}, taking every orbit in Ω¯0,k{\overline{\Omega}}_{0,k} that are same as sets to the same set in Ω¯0,k{\overline{\Omega}}_{0,k}. We will use the same notation for the map pr:PΩ0,kPΩ¯0,k{\rm pr}:{\rm P\Omega}_{0,k}\rightarrow{\overline{{\rm P\Omega}}}_{0,k}.

For sake of clarity, from now on let Δ¯=pr(Δ)\overline{{\Delta}}={\rm pr}({\Delta}) and PΔ¯=pr(PΔ)\overline{{\rm P{\Delta}}}={\rm pr}({\rm P{\Delta}}). When we want to emphasize that the double coset ΔΩv,k{\Delta}\in\Omega_{v,k} (resp. the orbit PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k}) is just considered as a subset of GG (resp. a subset of 1(F){\mathbb{P}}^{1}(F)), then we write Δ¯\overline{{\Delta}} (resp. PΔ¯\overline{{\rm P{\Delta}}}) for it.

Proposition 3.3.9.

For Gv(k)G_{v}(k)-orbits on 1(F){\mathbb{P}}^{1}(F) we have the following:

(i) Given any z1(F)z\in{\mathbb{P}}^{1}(F) and k>0k\in{\mathbb{Z}}_{>0}, the set

{PΔ¯|vBT0,PΔPΩv,k,zPΔ¯}\{\overline{{\rm P{\Delta}}}{\;|\;}v\in BT_{0}\,,\;{\rm P{\Delta}}\in{\rm P\Omega}_{v,k}\,,\;z\in\overline{{\rm P{\Delta}}}\}

is a fundamental system of open compact neighborhoods of zz.

(ii) Given any covering 𝒰{\mathcal{U}} of 1(F){\mathbb{P}}^{1}(F) there is a finite subset of PΩ¯0,k{\overline{{\rm P\Omega}}}_{0,k} that refines 𝒰{\mathcal{U}}.

Proof.

(i) Without loss of generality we may assume that z=0z=0. Consider the vertices vn:=[𝒪(ϖn)],n1v_{n}:=[{\mathcal{O}}\oplus({\varpi}^{n})],n\geq 1. We have gn.v0=vng_{n}.v_{0}=v_{n}, where gn=[100ϖn]g_{n}=\begin{bmatrix}1&0\\ 0&{\varpi}^{n}\end{bmatrix}. Let PΔ0:=𝐁z(0,|ϖ|k)PΩv0,k{\rm P{\Delta}}_{0}:={\bf B}_{z}(0,|{\varpi}|^{k})\in{\rm P\Omega}_{v_{0},k}, then we can compute that PΔn:=PΔ0.gn1=𝐁z(0,|ϖ|n+k)PΩvn,k{\rm P{\Delta}}_{n}:={\rm P{\Delta}}_{0}.g_{n}^{-1}={\bf B}_{z}(0,|{\varpi}|^{n+k})\in{\rm P\Omega}_{v_{n},k}. And, {PΔ¯n}n1{PΔ¯PΩv,k|vBT0,zPΔ¯}\{\overline{{\rm P{\Delta}}}_{n}\}_{n\geq 1}\subset\{\overline{{\rm P{\Delta}}}\in{\rm P\Omega}_{v,k}{\;|\;}v\in BT_{0},z\in\overline{{\rm P{\Delta}}}\} forms a fundamental neighborhood around z=0z=0 of compact open subsets of 1(F){\mathbb{P}}^{1}(F).

(ii) This is an immediate corollary of (i). ∎

3.4. Containment relations between the orbits

3.4.1.

Another description of IndBG(χ){\rm Ind}^{G}_{B}(\chi). We define an locally FF-analytic embedding s:1(F)Gs:{\mathbb{P}}^{1}(F)\rightarrow G by

s(z)=(10z1),if |z|1,s(z)=(0111z),if |z|>1.s(z)=\left(\begin{array}[]{cc}1&0\\ z&1\end{array}\right),\;\mbox{if }|z|\leq 1\,,\;s(z)=\left(\begin{array}[]{cc}0&-1\\ 1&\frac{1}{z}\end{array}\right),\;\mbox{if }|z|>1\;.

Then, for every z1(F)z\in{\mathbb{P}}^{1}(F) and gGg\in G, one has ξ(z,g):=s(z)gs(z.g)1B\xi(z,g):=s(z)gs(z.g)^{-1}\in B and

(3.4.2) g=ξ(0,g)s(0.g), and ξ(z,gg)=ξ(z,g)ξ(z.g,g).g=\xi(0,g)s(0.g)\,,\mbox{ and }\xi(z,gg^{\prime})=\xi(z,g)\xi(z.g,g^{\prime})\;.
Lemma 3.4.3.

The map

ζ:IndBG(χ)Cla(1(F),E),ζ(f)(z)=f(s(z))\zeta:{\rm Ind}^{G}_{B}(\chi)\longrightarrow C^{\rm la}({\mathbb{P}}^{1}(F),E),\;\zeta(f)(z)=f(s(z))\;

is an isomorphism of topological vector spaces.

Proof.

Because ss and ff are locally FF-analytic, so is ζ(f)\zeta(f). We define another map ζ~:Cla(1(F),E))IndGB(χ)\tilde{\zeta}:C^{\rm la}({\mathbb{P}}^{1}(F),E))\rightarrow{\rm Ind}^{G}_{B}(\chi) by ζ~(f1)(g)=χ(ξ(0,g))f1(s(0.g))\tilde{\zeta}(f_{1})(g)=\chi(\xi(0,g))f_{1}(s(0.g)). We leave it to the reader to check that these maps are continuous when IndBG(χ){\rm Ind}^{G}_{B}(\chi) is equipped with the structure of a compact inductive limit, as explained in 3.1.1, and Cla(1(F),E)C^{\rm la}({\mathbb{P}}^{1}(F),E) is also considered as a vector space of compact type, cf. [6, Lemma 2.1]. And it is easy to see that ζ\zeta and ζ~\tilde{\zeta} are inverses of each other. ∎

Using ζ\zeta we equip Cla(1(F),E)C^{\rm la}({\mathbb{P}}^{1}(F),E) with a GG-action. Explicitly, on fCla(1(F),E)f\in C^{\rm la}({\mathbb{P}}^{1}(F),E), the group action is given by

(3.4.4) (g.χf)(z)=χ(ξ(z,g))f(z.g).(g._{\chi}f)(z)=\chi(\xi(z,g))f(z.g)\;.

If we write χ(diag(a,d))=χ1(ad)χ2(d)\chi({\rm diag}(a,d))=\chi_{1}(ad)\chi_{2}(d), and if g=(abcd)g=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right), then 3.4.4 becomes

(3.4.5) (g.χf)(z)=χ1(adbc)χ2(bz+d)f(az+cbz+d).(g._{\chi}f)(z)=\chi_{1}(ad-bc)\chi_{2}(bz+d)f\Big{(}\frac{az+c}{bz+d}\Big{)}\;.
Lemma 3.4.6.

Let vv be a vertex in BTBT, then for every orbit PΔ{\rm P{\Delta}} of Gv(k)G_{v}(k) there is an edge e={v,v}e=\{v,v^{\prime}\} and an orbit PΔ{\rm P{\Delta}}^{\prime} of Gv(k)G_{v^{\prime}}(k) which is contained properly in Δ{\Delta}.

Proof.

Without loss of generality we can assume that v=v0:=[𝒪𝒪]v=v_{0}:=[{\mathcal{O}}\oplus{\mathcal{O}}]. Then let PΔ=𝐁z(z0,|ϖ|k)PΩv0,k{\rm P{\Delta}}={\bf B}_{z}(z_{0},|{\varpi}|^{k})\in{\rm P\Omega}_{v_{0},k}, if z0𝐁z([α],|ϖ|)z_{0}\in{\bf B}_{z}([\alpha],|{\varpi}|) for some α𝐅q\alpha\in{\bf F}_{q}, then Gvα,1(k)G_{v_{\alpha,1}}(k) has as an orbit 𝐁z(z0,|ϖ|k+1){\bf B}_{z}(z_{0},|{\varpi}|^{k+1}) where vα,1v_{\alpha,1} is as in 3.3.5. If PΔ=𝐁w(w0,|ϖ|k)𝐁(,|ϖ|){\rm P{\Delta}}={\bf B}_{w}(w_{0},|{\varpi}|^{k})\subset{\bf B}(\infty,|{\varpi}|) then by 3.3.3 we have PΔ=𝐁w(w0,|ϖ|k+1){\rm P{\Delta}}^{\prime}={\bf B}_{w}(w_{0},|{\varpi}|^{k+1}) as an orbit of Gv1(k)G_{v_{1}}(k).

Lemma 3.4.7.

We have the following relations between Gv(k)G_{v}(k)-orbits for varying vBT0v\in BT_{0}.

(i) Let {v,v}BT1\{v,v^{\prime}\}\in BT_{1} be an edge. Suppose there are PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} and PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v^{\prime},k} such that PΔ¯PΔ¯\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}. Then for any edge {v′′,v}BT1\{v^{\prime\prime},v^{\prime}\}\in BT_{1} with d(v,v′′)=2d(v,v^{\prime\prime})=2 there is PΔ′′PΩv′′,k{\rm P{\Delta}}^{\prime\prime}\in{\rm P\Omega}_{v^{\prime\prime},k} with PΔ¯PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime}.

(ii) Let {v,v′′}BT1\{v^{\prime},v^{\prime\prime}\}\in BT_{1} be an edge. Suppose there are PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v^{\prime},k} and PΔ′′PΩv′′,k{\rm P{\Delta}}^{\prime\prime}\in{\rm P\Omega}_{v^{\prime\prime},k} such that PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime}. Then there exists some {v,v}BT1\{v,v^{\prime}\}\in BT_{1} with d(v,v′′)=2d(v,v^{\prime\prime})=2 and PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} such that PΔ¯PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime}.

(iii) Let {v,v′′}BT1\{v^{\prime},v^{\prime\prime}\}\in BT_{1} be an edge. Suppose that for some PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v^{\prime},k} and PΔ′′PΩv′′,k{\rm P{\Delta}}^{\prime\prime}\in{\rm P\Omega}_{v^{\prime\prime},k} we have PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime}. Then

PΔ¯={v,v}BT1,vv′′PΔPΩv,kPΔ¯PΔ¯PΔ¯\overline{{\rm P{\Delta}}}^{\prime}=\bigcup_{\begin{subarray}{c}\{v^{\prime},v\}\in BT_{1},v\neq v^{\prime\prime}\\ {\rm P{\Delta}}\in{\rm P\Omega}_{v,k}\\ \overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}\end{subarray}}\overline{{\rm P{\Delta}}}
Proof.

(i) By 2.1.2 we can assume that v′′=v0,v=v1v^{\prime\prime}=v_{0},v^{\prime}=v_{1} and v=v2v=v_{2} where v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] and v1=[(ϖ)𝒪]v_{1}=[({\varpi})\oplus{\mathcal{O}}] as before and v2v_{2} is defined as v2:=[(ϖ2)𝒪]v_{2}:=[({\varpi}^{2})\oplus{\mathcal{O}}].

We have already shown that the orbits of Gv0(k)G_{v_{0}}(k) on 1(F){\mathbb{P}}^{1}(F) are discs of radius |ϖ|k|{\varpi}|^{k}. On the other hand, the orbits of Gv1(k)G_{v_{1}}(k) are discs of radius |ϖ|k1|{\varpi}|^{k-1} on 𝐁z(0,1){\bf B}_{z}(0,1) and discs of radius |ϖ|k+1|{\varpi}|^{k+1} on 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|). Similarly, orbits of Gv2(k)G_{v_{2}}(k) on 𝐁z(0,|ϖ|1){\bf B}_{z}(0,|{\varpi}|^{-1}) are discs of radius |ϖ|k2|{\varpi}|^{k-2} and on 𝐁w(,|ϖ|2){\bf B}_{w}(\infty,|{\varpi}|^{2}) they are discs of radius |ϖ|k+2|{\varpi}|^{k+2}.

Therefore, if for PΔPΩv2,k,PΔ¯{\rm P{\Delta}}\in{\rm P\Omega}_{v_{2},k},\overline{{\rm P{\Delta}}} is contained in PΔ¯\overline{{\rm P{\Delta}}}^{\prime} for PΔPΩv1,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v_{1},k}, then PΔ¯\overline{{\rm P{\Delta}}} is a disc of radius |ϖ|k+2|{\varpi}|^{k+2} and PΔ¯\overline{{\rm P{\Delta}}}^{\prime} is a disc of |ϖ|k+1|{\varpi}|^{k+1} containing it. But any such disc of radius |ϖ|k+1|{\varpi}|^{k+1} is contained in a disc of radius |ϖ|k|{\varpi}|^{k} which is an orbit of Gv0(k)G_{v_{0}}(k). This proves our claim.

(ii) For computational ease we pick v′′=v0=[𝒪𝒪]v^{\prime\prime}=v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] and v=v1=[(ϖ)𝒪]v^{\prime}=v_{1}=[({\varpi})\oplus{\mathcal{O}}]. From 3.3.2 we see that if PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime} with PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P\Omega}_{v^{\prime},k} and PΔ′′PΩv′′,k{\rm P{\Delta}}^{\prime\prime}\in{\rm P\Omega}_{v^{\prime\prime},k} then PΔ¯\overline{{\rm P{\Delta}}}^{\prime} is a disc of radius |ϖ|k+1|{\varpi}|^{k+1} inside 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|). Let aFa\in F belong to PΔ¯\overline{{\rm P{\Delta}}}^{\prime}, then choosing v=[(ϖ2,0),(a,1)]v=[({\varpi}^{2},0),(a,1)] and noting v=[ϖ2a01].v0v=\begin{bmatrix}{\varpi}^{2}&a\\ 0&1\end{bmatrix}.v_{0}, we can see that [ϖ2a01]1\begin{bmatrix}{\varpi}^{2}&a\\ 0&1\end{bmatrix}^{-1} transforms 𝐁w(,|ϖ|k){\bf B}_{w}(\infty,|{\varpi}|^{k}) to PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k}, a disc of radius |ϖ|k+2|{\varpi}|^{k+2} such that PΔ¯PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime}. (iii) This is an extension of calculations of (ii), and it can be seen that the any disc of radius |ϖ|k+1|{\varpi}|^{k+1} that is an orbit of Gv1(k)G_{v_{1}}(k) is covered by a subset of discs of radius |ϖ|k+2|{\varpi}|^{k+2} which are orbits of various Gv(K)G_{v}(K) with {v1,v}BT1,2\{v_{1},v\}\in BT_{1,2}.

3.4.8.

Minimal Orbits. Recall that we partially order Ω¯0,k,n{\overline{\Omega}}_{0,k,n} and PΩ¯0,k,n{\overline{{\rm P\Omega}}}_{0,k,n} via inclusion. Then we define

Ω¯0,k,nmin:={Δ¯Ω¯0,k,n|Δ¯ minimal w.r.t. the partial ordering of Ω¯0,k,n}{\overline{\Omega}}_{0,k,n}^{\min}:=\big{\{}\overline{{\Delta}}\in{\overline{\Omega}}_{0,k,n}\big{|}\;\overline{{\Delta}}\;\mbox{ minimal w.r.t. the partial ordering of }{\overline{\Omega}}_{0,k,n}\big{\}}

and

PΩ¯0,k,nmin:={PΔ¯PΩ¯0,k,n|PΔ¯ minimal w.r.t. the partial ordering of PΩ¯0,k,n}.{\overline{{\rm P\Omega}}}_{0,k,n}^{\min}:=\big{\{}\overline{{\rm P{\Delta}}}\in{\overline{{\rm P\Omega}}}_{0,k,n}\big{|}\;\overline{{\rm P{\Delta}}}\;\mbox{ minimal w.r.t. the partial ordering of }{\overline{{\rm P\Omega}}}_{0,k,n}\big{\}}\;.
Lemma 3.4.9.

Fix PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} with vBT0,nv\in BT_{0,n}, let n1n\geq 1.

(a) PΔ¯PΩ¯0,k,n\overline{{\rm P{\Delta}}}\in{\overline{{\rm P\Omega}}}_{0,k,n} belongs to PΩ¯0,k,nmin{\overline{{\rm P\Omega}}}_{0,k,n}^{\min} iff both of the following conditions hold

(i) d(v,v0)=nd(v,v_{0})=n

(ii) Let v1v_{1} be the unique vertex of BTBT such that {v,v1}BT1,n\{v,v_{1}\}\in BT_{1,n}. Then there exists PΔ1PΩv1,k{\rm P{\Delta}}_{1}\in{\rm P\Omega}_{v_{1},k} such PΔ¯PΔ¯1\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}_{1}.

(b) Condition (ii) above is equivalent to the condition

(ii)’ For every vertex vBT0,nv^{\prime}\in BT_{0,n} if v=v1,,vm=vv=v_{1},\cdots,v_{m}=v^{\prime} is the path connecting vv and vv^{\prime} there exists PΔiPΩvi,k{\rm P{\Delta}}_{i}\in{\rm P\Omega}_{v_{i},k} such that PΔ¯=PΔ¯1PΔ¯m\overline{{\rm P{\Delta}}}=\overline{{\rm P{\Delta}}}_{1}\subset\cdots\subset\overline{{\rm P{\Delta}}}_{m}.

Proof.

(b) To see the equivalence of (ii)’ and (ii) we first note that (ii)’ definitely implies (ii). Now assume (ii) holds, i.e., there are orbits PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} and PΔ1PΩv1,k{\rm P{\Delta}}_{1}\in{\rm P\Omega}_{v_{1},k} such that PΔ¯PΔ¯1\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}_{1}, where v1v_{1} is the unique neighboring vertex of vv in BT0,nBT_{0,n}. For any vertex vBT0,nv^{\prime}\in BT_{0,n} let the path connecting v,vv,v^{\prime} be v,v1,,vm=vv,v_{1},\cdots,v_{m}=v^{\prime}. Then by 3.4.7 we can find an orbit PΔ2{\rm P{\Delta}}_{2} in PΩv2,k{\rm P\Omega}_{v_{2},k} such that PΔ¯PΔ¯1PΔ¯2\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}_{1}\subset\overline{{\rm P{\Delta}}}_{2}. Continuing .this process we get a chain of nested orbits as in (ii)’

(a) We give a proof of (i) and (ii)’ below.

First, suppose PΔ¯\overline{{\rm P{\Delta}}} is minimal in PΩ¯0,k,n{\overline{{\rm P\Omega}}}_{0,k,n}. Then, d(v0,v)=nd(v_{0},v)=n, because otherwise all adjacent vertices vv^{\prime} with d(v,v)=1d(v,v^{\prime})=1 are also in BT0,nBT_{0,n}, and hence, by 3.4.6, any orbit of Gv(k)G_{v}(k) properly contains an orbit of Gv(k)G_{v^{\prime}}(k) for some such vv^{\prime}. And thus is not minimal in Ω0,k,n\Omega_{0,k,n}. We thus have d(v0,v)=nd(v_{0},v)=n.

Let v2v_{2} be the unique vertex adjacent to v=v1v=v_{1} and contained in BT0,nBT_{0,n}. Then every orbit of Gv(k)G_{v}(k) is contained in an orbit of Gv2(k)G_{v_{2}}(k), or contains an orbit of Gv2(k)G_{v_{2}}(k). Since PΔ¯=PΔ¯1\overline{{\rm P{\Delta}}}=\overline{{\rm P{\Delta}}}_{1} is minimal, PΔ¯\overline{{\rm P{\Delta}}} is contained in PΔ¯2\overline{{\rm P{\Delta}}}_{2} for an orbit PΔ¯2\overline{{\rm P{\Delta}}}_{2} of Gv2(k)G_{v_{2}}(k).

Now let vvv^{\prime}\neq v be any vertex in BT0,nBT_{0,n} (the assertion is trivial for v=vv^{\prime}=v). Let v=v1,v2,,vm=vv=v_{1},v_{2},...,v_{m}=v^{\prime} be the path from vv to vv^{\prime}. As we have seen, PΔ¯1\overline{{\rm P{\Delta}}}_{1} is contained in PΔ¯2\overline{{\rm P{\Delta}}}_{2} for an orbit PΔ2{\rm P{\Delta}}_{2} of v2v_{2}. By 3.4.7 we then find an orbit PΔ3{\rm P{\Delta}}_{3} of Gv3(k)G_{v_{3}}(k) such that PΔ¯2PΔ¯3\overline{{\rm P{\Delta}}}_{2}\subset\overline{{\rm P{\Delta}}}_{3}, and repeatedly applying 3.4.7 in the same way we conclude that (ii)’ holds true.

Conversely, assume that PΔ{\rm P{\Delta}} satisfies assumption (ii)’. Suppose PΔ¯\overline{{\rm P{\Delta}}} properly contains PΔ¯\overline{{\rm P{\Delta}}}^{\prime} for an orbit PΔ{\rm P{\Delta}}^{\prime} of some Gv(k)G_{v^{\prime}}(k) with vv^{\prime} in BT0,nBT_{0,n}. Let v=v1,,vm=vv=v_{1},...,v_{m}=v^{\prime} and PΔ¯=PΔ¯1PΔ¯2PΔ¯m\overline{{\rm P{\Delta}}}=\overline{{\rm P{\Delta}}}_{1}\subset\overline{{\rm P{\Delta}}}_{2}\subset...\subset\overline{{\rm P{\Delta}}}_{m} be as in (ii). Then PΔ¯PΔ¯PΔ¯m\overline{{\rm P{\Delta}}}^{\prime}\subsetneq\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}_{m} is a contradiction, because PΔ{\rm P{\Delta}}^{\prime} and PΔm{\rm P{\Delta}}_{m} are both orbits of Gv(k)G_{v^{\prime}}(k). Hence PΔ{\rm P{\Delta}} is minimal.

Proposition 3.4.10.

If v,vBT0,nv,v^{\prime}\in BT_{0,n}, and if PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} and PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P}\Omega_{v^{\prime},k} are such that their images in PΩ¯0,k,n\overline{{\rm P}\Omega}_{0,k,n} are minimal and (whose underlying sets) are equal, then v=vv=v^{\prime}.

Proof.

Let PΔPΩv,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k} and PΔPΩv,k{\rm P{\Delta}}^{\prime}\in{\rm P}\Omega_{v^{\prime},k} belong to PΩ¯0,k,n\overline{{\rm P}\Omega}_{0,k,n} and assume PΔ¯=PΔ¯\overline{{\rm P{\Delta}}}=\overline{{\rm P{\Delta}}}^{\prime}. Let v=v1,v2,,vm=vv=v_{1},v_{2},...,v_{m}=v^{\prime} be the path from vv to vv^{\prime}. By 3.4.9 there exists PΔiPΩvi,k{\rm P{\Delta}}_{i}\in{\rm P\Omega}_{v_{i},k} such that PΔ¯=PΔ¯1PΔ¯m\overline{{\rm P{\Delta}}}=\overline{{\rm P{\Delta}}}_{1}\subset\cdots\subset\overline{{\rm P{\Delta}}}_{m}. Note that PΔ¯1PΔ¯\overline{{\rm P{\Delta}}}_{1}\neq\overline{{\rm P{\Delta}}} since by 3.3.3 PΩv,kPΩv1,k={\rm P\Omega}_{v,k}\cap{\rm P\Omega}_{v_{1},k}=\emptyset. Hence, in particular PΔ¯PΔ¯mPΩv,k\overline{{\rm P{\Delta}}}^{\prime}\subsetneq\overline{{\rm P{\Delta}}}_{m}\in{\rm P\Omega}_{v^{\prime},k}. Which is a contradiction. ∎

Lemma 3.4.11.

PΩ¯0,k,nmin{\overline{{\rm P\Omega}}}_{0,k,n}^{\min} forms a disjoint covering of 1(F){\mathbb{P}}^{1}(F) for all n1n\geq 1.

Proof.

This is evidently true for n=0n=0. Assuming it is true for n1n-1, n1,n\geq 1, observe that it is enough to prove PΩ¯0,k,nmin{\overline{{\rm P\Omega}}}_{0,k,n}^{\min} forms a covering of PΩ¯0,k,n1min{\overline{{\rm P\Omega}}}_{0,k,n-1}^{\min}. Let PΔ¯PΩ¯0,k,n1min\overline{{\rm P{\Delta}}}^{\prime}\in{\overline{{\rm P\Omega}}}_{0,k,n-1}^{\min} then there exists a PΔ′′PΩv′′,k{\rm P{\Delta}}^{\prime\prime}\in{\rm P\Omega}_{v^{\prime\prime},k} with {v,v′′}BT1\{v^{\prime},v^{\prime\prime}\}\in BT_{1} such that PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime} (this is true for n=1n=1 by 3.3.3 and 3.3.5). Then by 3.4.7 PΔ¯\overline{{\rm P{\Delta}}}^{\prime} is covered by disjoint sets PΔ¯PΩv,k\overline{{\rm P{\Delta}}}\in{\rm P\Omega}_{v,k} with PΔ¯PΔ¯PΔ¯′′\overline{{\rm P{\Delta}}}\subset\overline{{\rm P{\Delta}}}^{\prime}\subset\overline{{\rm P{\Delta}}}^{\prime\prime} where vv ranges over all vertices of BTBT such that {v,v}BT1,vv′′\{v,v^{\prime}\}\in BT_{1},v\neq v^{\prime\prime}. But such a PΔ¯PΩ¯0,k,nmin\overline{{\rm P{\Delta}}}\in{\overline{{\rm P\Omega}}}_{0,k,n}^{\min} by 3.4.9. This proves our claim.

Remark 3.4.12.

The bijection between Ωv,k\Omega_{v,k} and PΩv,k{\rm P\Omega}_{v,k} naturally extends to Ω0,k,n\Omega_{0,k,n} and PΩ0,k,n{\rm P\Omega}_{0,k,n}, and the containment relations stated in this section about elements of PΩ0,k,n{\rm P\Omega}_{0,k,n} can be applied exactly in the same way to elements of Ω0,k,n\Omega_{0,k,n}. With this remark we will shift to working with Ω0,k,n\Omega_{0,k,n} in the subsequent sections. Further, let

Ω0,k,nmin=pr1(Ω¯0,k,nmin)\Omega_{0,k,n}^{\min}={\rm pr}^{-1}({\overline{\Omega}}_{0,k,n}^{\min})

Note that 3.4.10 applies to Ω0,k,n\Omega_{0,k,n} and Ω¯0,k,n{\overline{\Omega}}_{0,k,n} as well and pr:Ω0,k,nminΩ¯0,k,nmin{\rm pr}:\Omega_{0,k,n}^{\min}\rightarrow{\overline{\Omega}}_{0,k,n}^{\min} is a bijection.

Remark 3.4.13.

We record the following containment relations

(i) From 3.4.9 we see that for any vBT0,n1v\in BT_{0,n-1} we have

Ωv,kΩ0,k,nmin=\Omega_{v,k}\cap\Omega_{0,k,n}^{\min}=\emptyset

(ii) From (iv) of 3.3.3 and 3.4.9 it follows that for any ΔΩe,k{\Delta}\in\Omega_{e,k} with e={v,v}e=\{v,v^{\prime}\} and d(e,v0)=nd(e,v_{0})=n,

Ωe,kΩ0,k,nmin=\Omega_{e,k}\cap\Omega_{0,k,n}^{\min}=\emptyset

3.5. Detailed description of rigid analytic vectors

We will need the following lemma to prove an important detail in the subsequent lemma.

Lemma 3.5.1.

Let {\mathbb{H}} be an affinoid rigid analytic group over FF, and assume that {\mathbb{H}} is isomorphic as a rigid analytic space to 𝔹d{\mathbb{B}}^{d} via a chart x:𝔹dx:{\mathbb{H}}\rightarrow{\mathbb{B}}^{d}. Let 𝕌{\mathbb{U}} be an affinoid rigid analytic space which is equipped with a rigid analytic action of {\mathbb{H}} from the right. Furthermore, we assume that there is z0U=𝕌(F)z_{0}\in U={\mathbb{U}}(F) and a closed rigid analytic subgroup {\mathbb{H}}^{\prime}\subset{\mathbb{H}} such that the map 𝕌{\mathbb{H}}^{\prime}\rightarrow{\mathbb{U}}, hz0.hh\mapsto z_{0}.h, is an isomorphism of rigid analytic spaces.

We let HH act on V=Cla(U,E)V=C^{\rm la}(U,E) by (g.f)(z)=f(zg)(g.f)(z)=f(zg). Then fVf\in V is {\mathbb{H}}-analytic if and only if f𝒪(𝕌)f\in{\mathcal{O}}({\mathbb{U}}).

Proof.

(i) If f𝒪(𝕌)f\in{\mathcal{O}}({\mathbb{U}}), then we consider ff as a rigid analytic morphism f:𝕌𝔸1,rigf:{\mathbb{U}}\rightarrow{\mathbb{A}}^{1,{\rm rig}}. Because the group action μ:𝕌×𝕌\mu:{\mathbb{U}}\times{\mathbb{H}}\rightarrow{\mathbb{U}} is a rigid analytic morphism, so is fμf\circ\mu, and hence fμ𝒪(𝕌×)=𝒪(𝕌)^F𝒪()=𝒪(𝕌)x1,,xdf\circ\mu\in{\mathcal{O}}({\mathbb{U}}\times{\mathbb{H}})={\mathcal{O}}({\mathbb{U}})\widehat{\otimes}_{F}{\mathcal{O}}({\mathbb{H}})={\mathcal{O}}({\mathbb{U}})\langle x_{1},\ldots,x_{d}\rangle, where the latter is the ring of strictly convergent power series over the Banach algebra 𝒪(𝕌){\mathcal{O}}({\mathbb{U}}). Then, for hh\in{\mathbb{H}} and z𝕌z\in{\mathbb{U}} we have

(h.f)(z)=f(z.h)=(fμ)(z,h)=νdfν(z)x(h)ν.(h.f)(z)=f(z.h)=(f\circ\mu)(z,h)=\sum_{\nu\in{\mathbb{N}}^{d}}f_{\nu}(z)x(h)^{\nu}\;.

And hence ff is {\mathbb{H}}-analytic.

(ii) Conversely, if ff is {\mathbb{H}}-analytic, then we can write

h.f=νdfνx(h)νh.f=\sum_{\nu\in{\mathbb{N}}^{d}}f_{\nu}x(h)^{\nu}

where all functions fνf_{\nu} are in a single BH-subspace of Cla(U,E)C^{\rm la}(U,E). This means that there is a finite covering (Ui)i=1n(U_{i})_{i=1}^{n} of UU consisting of disjoint compact open subsets. After refining this covering, we may assume that each UiU_{i} is the set of FF-valued points of an afinoid subspace 𝕌i𝕌{\mathbb{U}}_{i}\subset{\mathbb{U}}. Put 𝕌=i=1n𝕌i{\mathbb{U}}^{\prime}=\coprod_{i=1}^{n}{\mathbb{U}}_{i}, which is again an affinoid subdomain of 𝕌{\mathbb{U}}, and which has the property that 𝕌(F)=𝕌(F)(=U){\mathbb{U}}^{\prime}(F)={\mathbb{U}}(F)\,(=U). The functions fνf_{\nu} are then all in 𝒪(𝕌){\mathcal{O}}({\mathbb{U}}^{\prime}), and we have

fν𝕌sup{|x(h)ν||h} 0as|ν|.\|f_{\nu}\|_{{\mathbb{U}}^{\prime}}\,\cdot\,\sup\{|x(h)^{\nu}|{\;|\;}h\in{\mathbb{H}}\}\;\longrightarrow\;0\;\;\mbox{as}\;\;|\nu|\rightarrow\infty\;.

If z0U=𝕌(F)z_{0}\in U={\mathbb{U}}^{\prime}(F) is as in the statement of the lemma, we find for all hHh\in H:

(3.5.1) f(z0h)=νfν(z0)x(h)νf(z_{0}h)=\sum_{\nu}f_{\nu}(z_{0})x(h)^{\nu}

The right hand side of 3.5.1 makes sense and converges for all hh\in{\mathbb{H}}, and is thus a rigid analytic function on {\mathbb{H}}. When we restrict the right hand side of 3.5.1 to {\mathbb{H}}^{\prime} it is hence rigid analytic on {\mathbb{H}}^{\prime}. Let α:𝕌\alpha:{\mathbb{H}}^{\prime}\rightarrow{\mathbb{U}}, be defined by hz0.hh\mapsto z_{0}.h. Then we find that fαf\circ\alpha is a rigid analytic map on {\mathbb{H}}^{\prime}, and f=(fα)α1f=(f\circ\alpha)\circ\alpha^{-1} is rigid analytic on 𝕌{\mathbb{U}}. ∎

Lemma 3.5.2.

There exists k0=k0(χ)𝐙1k_{0}=k_{0}(\chi)\in{\bf Z}_{\geq 1} such that for all kk0k\geq k_{0} the following statements holds. If e={v,v}e=\{v,v^{\prime}\} is a vertex and ΔΩe,kΩv,k{\Delta}\in\Omega_{e,k}\cap\Omega_{v,k}, then

I(Δ,χ)𝔾e(k)an=I(Δ,χ)𝔾v(k)anI({\Delta},\chi)_{{\mathbb{G}}_{e}(k)-{\rm an}}=I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}
Proof.

Let ΔPΔ{\Delta}\leftrightarrow{\rm P{\Delta}} be the bijection Ωv,kPΩv,k\Omega_{v,k}\leftrightarrow{\rm P\Omega}_{v,k}, as in 3.3.6. We set I(PΔ)=Cla(PΔ,E)I({\rm P{\Delta}})=C^{\rm la}({\rm P{\Delta}},E). Under the bijection ζ\zeta of 3.4.3, the space I(Δ,χ)I({\Delta},\chi) gets mapped isomorphically to I(PΔ)I({\rm P{\Delta}}). The latter carries the action of Ge(k)G_{e}(k) (and hence of Gv(k)Ge(k))G_{v}(k)\subset G_{e}(k)) defined by 3.4.5. With respect to this group action, it suffices to show that

(3.5.3) I(PΔ)𝔾e(k)an=I(PΔ)𝔾v(k)anI({\rm P{\Delta}})_{{\mathbb{G}}_{e}(k)-{\rm an}}=I({\rm P{\Delta}})_{{\mathbb{G}}_{v}(k)-{\rm an}}

From the transitivity of the GG-action on BT0BT_{0} and BT1BT_{1} it is easy to see given any two pairs (v1,e1),(v2,e2)(v_{1},e_{1}),(v_{2},e_{2}) with viBT0v_{i}\in BT_{0} and eiBT1e_{i}\in BT_{1} there is a gGg\in G such that (g.v2,g.e2)=(v1,e1)(g.v_{2},g.e_{2})=(v_{1},e_{1}). It follows that Ge1(k)=gGe2(k)g1G_{e_{1}}(k)=gG_{e_{2}}(k)g^{-1} and Gv1(k)=gGv2(k)g1G_{v_{1}}(k)=gG_{v_{2}}(k)g^{-1}. From [2, 3.5.1] it follows that for PΔΩe1,kΩv1,k{\rm P{\Delta}}\in\Omega_{e_{1},k}\cap\Omega_{v_{1},k} one has

(3.5.4) g.(I(PΔ)𝔾e1(k)an)=I(PΔ.g)𝔾e2(k)ang.\Big{(}I({\rm P{\Delta}})_{{\mathbb{G}}_{e_{1}}(k)-{\rm an}}\Big{)}=I({\rm P{\Delta}}.g)_{{\mathbb{G}}_{e_{2}}(k)-{\rm an}}

and

(3.5.5) g.(I(PΔ)𝔾v1(k)an)=I(PΔ.g)𝔾v2(k)an.g.\Big{(}I({\rm P{\Delta}})_{{\mathbb{G}}_{v_{1}}(k)-{\rm an}}\Big{)}=I({\rm P{\Delta}}.g)_{{\mathbb{G}}_{v_{2}}(k)-{\rm an}}\;.

In particular, it suffices to show 3.5.3 for a single pair (v,e)(v,e) which we are free to choose. The following choice is particularly convenient: e={v,v}e=\{v,v^{\prime}\} with v=[𝒪𝒪]v=[{\mathcal{O}}\oplus{\mathcal{O}}] and v=[(ϖ)𝒪]v^{\prime}=[({\varpi})\oplus{\mathcal{O}}]. By computations in 3.3.3 any PΔPΩv,kPΩe,k{\rm P{\Delta}}\in{\rm P\Omega}_{v,k}\cap{\rm P\Omega}_{e,k} is of the form 𝐁z(a,|ϖ|k){\bf B}_{z}(a,|{\varpi}|^{k}) with |a|1|a|\leq 1. Now action of Ge(k)G_{e}(k) and Gv(k)G_{v}(k) on I(PΔ)I({\rm P{\Delta}}) is given by

(g.χf)(x)=χ1(detg)χ2(bx+d)f(z.g)(g._{\chi}f)(x)=\chi_{1}(\det g)\chi_{2}(bx+d)f(z.g)

Note that for all gGe(k)g\in G_{e}(k) one has |detg1||ϖ|k|\det g-1|\leq|{\varpi}|^{k}, (and automatically for gGv(k)g\in G_{v}(k), since Gv(k)Ge(k)G_{v}(k)\subset G_{e}(k)) and for all |x|1|x|\leq 1 and for all gGe(k)g\in G_{e}(k) one has |bx+d1||ϖ|k|bx+d-1|\leq|{\varpi}|^{k}. Thus for large enough kk by local analyticity of χ1\chi_{1} and χ2\chi_{2} we can make sure that both χ1(detg)\chi_{1}(\det g) and χ2(bx+d)\chi_{2}(bx+d) are expressible as a power series for x𝐁z(a,|ϖ|k)x\in{\bf B}_{z}(a,|{\varpi}|^{k}) and gGe(k)g\in G_{e}(k). Now we see from 3.5.1 that both I(PΔ,χ)𝔾e(k)anI({\rm P{\Delta}},\chi)_{{\mathbb{G}}_{e}(k)-{\rm an}} and I(PΔ,χ)𝔾v(k)anI({\rm P{\Delta}},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}} are same as 𝒪(PΔ){\mathcal{O}}({\rm P{\Delta}}). Here we have used 3.5.1 twice with =𝔾e(k){\mathbb{H}}={\mathbb{G}}_{e}(k) and =𝔾v(k){\mathbb{H}}={\mathbb{G}}_{v}(k), respectively. This finishes the proof. ∎

3.6. Surjectivity of 0\partial_{0}

Proposition 3.6.1.

There exists k0=k0(χ)𝐙1k_{0}=k_{0}(\chi)\in{\bf Z}_{\geq 1} such that for all kk0k\geq k_{0}, the map 0:vBT0VvV\partial_{0}:\bigoplus_{v\in BT_{0}}V_{v}\longrightarrow V is surjective.

Proof.

Let fCla(1(F),E)f\in C^{\rm la}({\mathbb{P}}^{1}(F),E). Let us partition 1(F){\mathbb{P}}^{1}(F) into finitely many discs such that ff restricted to each of these discs is a rigid analytic function on that disc. Let α1(F)\alpha\in{\mathbb{P}}^{1}(F) and 𝐁α{\bf B}_{\alpha} be the disc containing α\alpha such that f|𝐁α𝒪(𝐁α)f|_{{\bf B}_{\alpha}}\in{\mathcal{O}}({\bf B}_{\alpha}). Let gGg\in G be such that α=0.g\alpha=0.g and let 0U0\in U be a neighborhood around 0 such that U.g=𝐁αU.g={\bf B}_{\alpha}. For vn:=[𝒪(ϖn)]v_{n}:=[{\mathcal{O}}\oplus({\varpi}^{n})] we can show that 𝐁z(0,|ϖ|k+n)PΩvn,k{\bf B}_{z}(0,|{\varpi}|^{k+n})\in{\rm P\Omega}_{v_{n},k}. Thus for any k0k\geq 0 there exists n0n\geq 0 such that 𝐁z(0,|ϖ|k+n)U{\bf B}_{z}(0,|{\varpi}|^{k+n})\subset U. By 3.4.5 the group action is given by the formula

(g.χf)(z)=χ1(detg)χ2(bz+d)f(z.g)(g._{\chi}f)(z)=\chi_{1}(\det g)\chi_{2}(bz+d)f(z.g)

Note that for all gGvn(k)g\in G_{v_{n}}(k) and for all z𝐁(0,|ϖ|k+n)z\in{\bf B}(0,|{\varpi}|^{k+n}) one has |detg1||ϖ|k|\det g-1|\leq|{\varpi}|^{k}, and |bz+d1||ϖ|k|bz+d-1|\leq|{\varpi}|^{k}.

Since f(z.g)f(z.g) is rigid analytic in 𝐁(0,|ϖ|k+n){\bf B}(0,|{\varpi}|^{k+n}) , by 3.5.1 we see that for large enough k=k0(χ)k=k_{0}(\chi) we have (g.χf)|𝐁(0,|ϖ|k+n)Vvn(g._{\chi}f)|_{{\bf B}(0,|{\varpi}|^{k+n})}\in V_{v_{n}}, note that k0(χ)k_{0}(\chi) depends only on χ\chi and not on the choice of ff . Let Uα=𝐁z(0,|ϖ|k+n).gU_{\alpha}={\bf B}_{z}(0,|{\varpi}|^{k+n}).g, then it is clear that UαPΩg.vn,kU_{\alpha}\in{\rm P\Omega}_{g.v_{n},k} and by 3.5.5 it follows that f|UαVg.vnf|_{U_{\alpha}}\in V_{g.v_{n}}. For each α1(F)\alpha\in{\mathbb{P}}^{1}(F) we find such a neighborhood UαU_{\alpha} and assign a unique vertex vαv_{\alpha} using the process above with f|UαVvαf|_{U_{\alpha}}\in V_{v_{\alpha}}. With this setup, for the covering 1(F)=αUα{\mathbb{P}}^{1}(F)=\cup_{\alpha}U_{\alpha}, there is a disjoint finite sub-covering 𝒟{\mathcal{D}} such that if we define

(3.6.2) fv={f|Uα,v=vα,Uα𝒟0,otherwise.f_{v}=\left\{\begin{array}[]{ccl}f|_{U_{\alpha}}&,&v=v_{\alpha},U_{\alpha}\in{\mathcal{D}}\\ 0&,&\mbox{otherwise.}\end{array}\right.

Then we have

0((fv)v)=f\partial_{0}((f_{v})_{v})=f

3.7. Counting Arguments

Lemma 3.7.1.

For any vBT0v\in BT_{0} and eBT1e\in BT_{1} (or BT1orBT_{1}^{{\rm or}}) we have

|Ωv,k|=qk1+qk=(q+1)qk1,|Ωe,k|=2qk1.|\Omega_{v,k}|=q^{k-1}+q^{k}=(q+1)q^{k-1},\;\;|\Omega_{e,k}|=2q^{k-1}.
Proof.

By 3.3.4, the sets Ωv,k\Omega_{v,k} and Ωv,k\Omega_{v^{\prime},k}, for any two vertices v,vBT0v,v^{\prime}\in BT_{0}, have the same cardinality. By 3.3.6, Ωv,k\Omega_{v,k} and PΩv,k{\rm P\Omega}_{v,k} have the same cardinality, hence it is enough to find |PΩv0,k||{\rm P\Omega}_{v_{0},k}| where v0=[𝒪𝒪]v_{0}=[{\mathcal{O}}\oplus{\mathcal{O}}] as above. From the descriptions as given in 3.3.3 we see that the orbits of Gv0(k)G_{v_{0}}(k) in both 𝐁z(0,1){\bf B}_{z}(0,1) and 𝐁w(,|ϖ|){\bf B}_{w}(\infty,|{\varpi}|) are balls of radius |ϖ|k|{\varpi}|^{k}. Thus |PΩv0,k|=1|ϖ|k+|ϖ||ϖ|k=qk+qk1|{\rm P\Omega}_{v_{0},k}|=\frac{1}{|{\varpi}|^{k}}+\frac{|{\varpi}|}{|{\varpi}|^{k}}=q^{k}+q^{k-1}. Similarly, we compute |PΩe,k||{\rm P\Omega}_{e,k}|, where e={v0,v1}e=\{v_{0},v_{1}\} with v1=[(ϖ)𝒪]v_{1}=[({\varpi})\oplus{\mathcal{O}}] by the explicit description in 3.3.3. ∎

Lemma 3.7.2.

Given a vertex vBT0v\in BT_{0} with d(v,v0)=nd(v,v_{0})=n,

|Ωv,kΩ0,k,nmin|=qk|\Omega_{v,k}\cap\Omega_{0,k,n}^{\min}|=q^{k}
Proof.

Given such a vertex vv, let vv^{\prime} be the unique vertex in BT0,n1BT_{0,n-1} such that {v,v}BT1,n\{v,v^{\prime}\}\in BT_{1,n}. Then by 3.4.9 ΔΩv,k{\Delta}\in\Omega_{v,k} belongs to Ω0,k,nmin\Omega_{0,k,n}^{\min} iff Δ¯Δ¯\overline{{\Delta}}\subset\overline{{\Delta}}^{\prime} for some ΔΩv,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k}. By transitivity of GG-action on BT1BT_{1}, we can look at the vertices v0,v1v_{0},v_{1} constituting the edge e={v0,v1}e=\{v_{0},v_{1}\} where v0,v1v_{0},v_{1} are as in 2.1.4. By 3.3.3 (ii), Ωv,kv:={ΔΩv,k|ΔΩv,k:ΔΔ}\Omega_{v^{\prime},k}^{v}:=\{{\Delta}^{\prime}\in\Omega_{v^{\prime},k}{\;|\;}\exists{\Delta}\in\Omega_{v,k}:{\Delta}\subset{\Delta}^{\prime}\} has cardinality qk1q^{k-1} and each ΔΩv,kv{\Delta}^{\prime}\in\Omega_{v^{\prime},k}^{v} contains qq orbits of Ωv,k\Omega_{v,k}. ∎

Recall that we have remarked in 3.3.7 that Ω1,kΩ0,k\Omega_{1,k}\subset\Omega_{0,k} and in fact it is easy to see that this induces an inclusion Ω1,k,nΩ0,k,n\Omega_{1,k,n}\subset\Omega_{0,k,n} on these subsets. With this identification in place we claim,

Proposition 3.7.3.
Ω0,k,nΩ0,k,nmin=Ω1,k,n.\displaystyle\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}=\Omega_{1,k,n}.
Proof.

Recall that from 3.4.13 it follows that Ω1,k,nΩ0,k,nmin=ϕ\Omega_{1,k,n}\cap\Omega_{0,k,n}^{\min}=\phi. Thus, from the remark just before the proposition, it is enough to prove |Ω0,k,nΩ0,k,nmin|=|Ω1,k,n|\big{|}\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}\big{|}=\big{|}\Omega_{1,k,n}\big{|}. First we compute |Ω1,k,n||\Omega_{1,k,n}|.

|{eBT1or|d(v0,e)=i}|=(q+1).qi1|BT1,nor|=i=1n|{eBT1or|d(v0,e)=i}|=(q+1).q0++(q+1)qn1=(q+1)qn1q1|Ωe,k|=2qk1|Ω1,k,n|=|Ωe,k|×|BT1,nor|=2qk1(q+1)qn1q1\begin{array}[]{lllll}|\{e\in BT_{1}^{{\rm or}}|d(v_{0},e)=i\}|&=&(q+1).q^{i-1}\\ |BT_{1,n}^{{\rm or}}|&=&\sum_{i=1}^{n}|\{e\in BT_{1}^{{\rm or}}|d(v_{0},e)=i\}|\\ &=&(q+1).q^{0}+\cdots+(q+1)q^{n-1}\\ &=&(q+1)\frac{q^{n}-1}{q-1}\\ |\Omega_{e,k}|&=&2q^{k-1}\\ \big{|}\Omega_{1,k,n}\big{|}&=&|\Omega_{e,k}|\times|BT_{1,n}^{{\rm or}}|=2q^{k-1}(q+1)\frac{q^{n}-1}{q-1}\end{array}

where the last but one formula is 3.7.1. To find |Ω0,k,nΩ0,k,nmin||\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}| first we collect the following (where here i1i\geq 1 in the first formula)

|{vBT0|d(v0,v)=i}|=(q+1).qi1|BT0,n1|=1+(q+1)q0++(q+1)qn2|Ω0,k,nminΩv,k|=0ifd(v0,v)n1(3.4.13 (i))|Ω0,k,nminΩv,k|=qkifd(v0,v)=n(3.7.2)\begin{array}[]{lclc}|\{v\in BT_{0}|d(v_{0},v)=i\}|&=&(q+1).q^{i-1}\\ |BT_{0,n-1}|&=&1+(q+1)q^{0}+\cdots+(q+1)q^{n-2}\\ |\Omega_{0,k,n}^{\min}\cap\Omega_{v,k}|&=&0\;\;\;\;\;\;\text{if}\;\;\;d(v_{0},v)\leq n-1\;\;(\ref{edgenotminimal}\mbox{ (i)})\\ |\Omega_{0,k,n}^{\min}\cap\Omega_{v,k}|&=&q^{k}\;\;\;\;\text{if}\;\;\;d(v_{0},v)=n\;\;(\ref{cardmin})\end{array}

Putting all these together we get

|Ω0,k,nΩ0,k,nmin|=(q+1)qk1|BT0,n1|+qk1|{vBT0|d(v0,v)=n}|=(q+1)qk1(1+(q+1)q0++(q+1)qn2)+qk1.(q+1).qn1=(q+1)qk1(1+q+1+q2+q++qn1+qn2+qn1)=2qk1(q+1)qn1q1\begin{array}[]{lll}&&\big{|}\Omega_{0,k,n}{\;\setminus\;}\Omega_{0,k,n}^{\min}\big{|}=(q+1)q^{k-1}|BT_{0,n-1}|+q^{k-1}|\{v\in BT_{0}|d(v_{0},v)=n\}|\\ &=&(q+1)q^{k-1}(1+(q+1)q^{0}+\cdots+(q+1)q^{n-2})+q^{k-1}.(q+1).q^{n-1}\\ &=&(q+1)q^{k-1}(1+q+1+q^{2}+q+\cdots+q^{n-1}+q^{n-2}+q^{n-1})\\ &=&2q^{k-1}(q+1)\frac{q^{n}-1}{q-1}\end{array}

3.8. Exactness in the middle

Let,

C0,n,k\displaystyle C_{0,n,k} =ΔΩv,kvBT0,nI(Δ,χ)𝔾v(k)an,\displaystyle=\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{v,k}\\ v\in BT_{0,n}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}},
C1,n,kor\displaystyle C_{1,n,k}^{\rm or} =ΔΩe,keBT1,norI(Δ,χ)𝔾e(k)an\displaystyle=\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{e,k}\\ e\in BT_{1,n}^{\rm or}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{e}(k)-{\rm an}}

In order to show that the sequence 2.2.1 is exact in the middle, it is enough to show that

0C1,n,kor1C0,n,k0V00\rightarrow C_{1,n,k}^{\rm or}\xrightarrow{\partial_{1}}C_{0,n,k}\xrightarrow{\partial_{0}}V\rightarrow 0

is exact in the middle for every n1n\geq 1, where 1\partial_{1} and 0\partial_{0} denote what technically are restrictions of those maps to C1,n,korC_{1,n,k}^{\rm or} and C0,n,kC_{0,n,k} respectively.

3.8.1.

Some sub-spaces of C0,n,kC_{0,n,k}. We put

C0,n,kmin=ΔΩ0,k,nminI(Δ,χ)𝔾v(k)anC_{0,n,k}^{\min}=\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{0,k,n}^{\min}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}

and

C0,n,knonmin=ΔΩ0,k,nΩ0,k,nminI(Δ,χ)𝔾v(k)an.C_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}}=\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}\;.

In the following, we write an element

fvVv=ΔΩv,kI(Δ,χ)𝔾v(k)anf_{v}\in V_{v}=\bigoplus_{{\Delta}^{\prime}\in\Omega_{v,k}}I({\Delta}^{\prime},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}

as fv=(fΔ,v)ΔΩv,kf_{v}=(f_{{\Delta}^{\prime},v})_{{\Delta}^{\prime}\in\Omega_{v,k}}.

Lemma 3.8.2.

Given k>0k>0 let v,vv,v^{\prime} be vertices in BT0,nBT_{0,n} and let ΔΩv,k{\Delta}\in\Omega_{v,k} and ΔΩv,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k} be such that Δ¯Δ¯\overline{{\Delta}}\subset\overline{{\Delta}}^{\prime} and ΔΩ0,k,nmin{\Delta}\in\Omega_{0,k,n}^{\min}. Then for fI(Δ,χ)𝔾v(k)anf\in I({\Delta}^{\prime},\chi)_{{\mathbb{G}}_{v}^{\prime}(k)-{\rm an}} we have f|ΔI(Δ,χ)𝔾v(k)anf|_{{\Delta}}\in I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}

Proof.

Let us first note that for an edge e={v,v}BT1e=\{v,v^{\prime}\}\in BT_{1} such that Δ¯Δ¯\overline{{\Delta}}\subset\overline{{\Delta}}^{\prime} with ΔΩv,k{\Delta}^{\prime}\in\Omega_{v^{\prime},k} and ΔΩv,k{\Delta}\in\Omega_{v,k} we have ΔΩe,k{\Delta}^{\prime}\in\Omega_{e,k} (by 3.3.3 (v)). Now by 3.5.2 we have I(Δ,χ)𝔾v(k)an=I(Δ,χ)𝔾e(k)anI({\Delta}^{\prime},\chi)_{{\mathbb{G}}_{v}^{\prime}(k)-{\rm an}}=I({\Delta}^{\prime},\chi)_{{\mathbb{G}}_{e}(k)-{\rm an}}. For fI(Δ,χ)𝔾v(k)an=I(Δ,χ)𝔾e(k)anVef\in I({\Delta}^{\prime},\chi)_{{\mathbb{G}}_{v^{\prime}}(k)-{\rm an}}=I({\Delta},\chi)_{{\mathbb{G}}_{e}(k)-{\rm an}}\subset V_{e} we have f|ΔI(Δ,χ)𝔾v(k)anf|_{{\Delta}}\in I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}, since VeVvV_{e}\hookrightarrow V_{v}.

Now let d(v,v)>1d(v,v^{\prime})>1 and let v=v0,,vm=vv=v_{0},\cdots,v_{m}=v^{\prime} be the path from vv to vv^{\prime}. By 3.4.9 we have, for ΔΩ0,k,nmin{\Delta}\in\Omega_{0,k,n}^{\min} a nested sequence of double cosets (seen as a subset of GG) Δ¯=Δ¯0Δ¯1Δ¯n1Δ¯m=Δ¯\overline{{\Delta}}=\overline{{\Delta}}_{0}\subset\overline{{\Delta}}_{1}\subset\overline{{\Delta}}_{n-1}\subset\cdots\subset\overline{{\Delta}}_{m}=\overline{{\Delta}}^{\prime} with ΔiΩvi,k{\Delta}_{i}\in\Omega_{v_{i},k}. Let ei:={vi,vi+1}BT1e_{i}:=\{v_{i},v_{i+1}\}\in BT_{1}. Since Δ¯iΔ¯i+1\overline{{\Delta}}_{i}\subset\overline{{\Delta}}_{i+1} by 3.3.3 (v) we have that Δi+1Ωei,k{\Delta}_{i+1}\in\Omega_{e_{i},k}. Thus I(Δi+1,χ)𝔾ei(k)an=I(Δi+1,χ)𝔾vi+1(k)anI({\Delta}_{i+1},\chi)_{{\mathbb{G}}_{e_{i}(k)}-{\rm an}}=I({\Delta}_{i+1},\chi)_{{\mathbb{G}}_{v_{i+1}(k)}-{\rm an}} and we successively get that f|ΔiI(Δi,χ)𝔾vi(k)anf|_{{\Delta}_{i}}\in I({\Delta}_{i},\chi)_{{\mathbb{G}}_{v_{i}}(k)-{\rm an}} for each ii. Proving our claim. ∎

Lemma 3.8.3.

The projection of

(3.8.4) C0,n,k=C0,n,kminC0,n,knonminC_{0,n,k}=C_{0,n,k}^{\min}\oplus C_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}}

onto C0,n,knonminC_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}} maps Ker(C0,n,k0V){\rm Ker}(C_{0,n,k}\xrightarrow{\partial_{0}}V) isomorphically onto C0,n,knonminC_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}}.

Proof.

By 3.4.11 the union of the minimal orbit in PΩ¯0,k,n{\overline{{\rm P\Omega}}}_{0,k,n} is equal to 1(F){\mathbb{P}}^{1}(F). Hence, the union of the minimal double cosets in Ω0,k,n\Omega_{0,k,n} is equal to GG. Now, if (fv)vBT0,n(f_{v})_{v\in BT_{0,n}} is in ker(0)\ker(\partial_{0}), then vBT0,nΔΩv,kfΔ,v=0\sum_{v\in BT_{0,n}}\sum_{{\Delta}^{\prime}\in\Omega_{v,k}}f_{{\Delta}^{\prime},v}=0. Now we restrict both sides of this equation to a minimal double coset ΔΩ0,k,nmin{\Delta}\in\Omega_{0,k,n}^{\min} and obtain

ΔΩ0,k,nΔΔfΔ,v|Δ=0,\sum_{{\Delta}^{\prime}\in\Omega_{0,k,n}}\sum_{{\Delta}^{\prime}\supset{\Delta}}f_{{\Delta}^{\prime},v}|_{{\Delta}}=0\;,

equivalently

fΔ,v=ΔΩ0,k,nΔΔfΔ,v|Δ.f_{{\Delta},v}=-\sum_{{\Delta}^{\prime}\in\Omega_{0,k,n}}\sum_{{\Delta}^{\prime}\supsetneq{\Delta}}f_{{\Delta}^{\prime},v^{\prime}}|_{{\Delta}}\;.

This shows that the components fΔ,vf_{{\Delta},v} with ΔΩv,k{\Delta}\in\Omega_{v,k} and in Ω0,k,nmin\Omega_{0,k,n}^{\min} are uniquely determined by the other components. Note that by 3.8.2 we see that fΔ,v|ΔI(Δ,χ)𝐆v(k)anf_{{\Delta}^{\prime},v^{\prime}}|_{{\Delta}}\in I({\Delta},\chi)_{{\bf G}_{v}(k)-{\rm an}} for any ΔΩv,k{\Delta}\in\Omega_{v,k} such that ΔΩ0,k,nmin{\Delta}\in\Omega_{0,k,n}^{\min} and Δ¯Δ¯\overline{{\Delta}}\subset\overline{{\Delta}}^{\prime}. So the equation is well-defined in particular. Conversely, for any element

(fΔ,v)ΔΩ0,k,nΩ0,k,nminC0,n,knonmin(f_{{\Delta}^{\prime},v})_{{\Delta}^{\prime}\in\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}}\in C_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}}

we obtain an element (fv)v(f_{v})_{v} of ker(0)\ker(\partial_{0}) by defining the components fΔ,vf_{{\Delta},v} for ΔΩv,k{\Delta}\in\Omega_{v,k} and in Ω0,k,nmin\Omega_{0,k,n}^{\min} by the previous equation, the equation being well defined by 3.8.2. This proves our claim. ∎

Let p:C0,n,kker(0)p:C_{0,n,k}\rightarrow\ker(\partial_{0}) be the projection on to the second summand as in 3.8.4. With these identifications we write the composition map as

C1,n,kor1C0,n,k𝑝ker(0)C_{1,n,k}^{\rm or}\xrightarrow{\partial_{1}}C_{0,n,k}\xrightarrow{p}\ker(\partial_{0})

and call it, ¯1:=p1{\overline{\partial}}_{1}:=p\circ\partial_{1}.

Proposition 3.8.5.

There exists some k0(χ)>0k_{0}(\chi)\in{\mathbb{Z}}_{>0} such that for all kk0(χ)k\geq k_{0}(\chi) the composite map ¯1=p1{\overline{\partial}}_{1}=p\circ\partial_{1} is an isomorphism from C1,k,norC_{1,k,n}^{{\rm or}} onto ker(0)\ker(\partial_{0}).

Proof.

We refine the partial ordering on Ω¯0,k,n{\overline{\Omega}}_{0,k,n} to a total ordering on Ω0,k,nΩ0,k,nmin\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}. By 3.5.2 and 3.7.3 C1,k,nC_{1,k,n} maps isomorphically onto C0,k,nnonminC_{0,k,n}^{\rm\mathop{non\mathchar 45\relax min}} for all kk0(χ)k\geq k_{0}(\chi) for some k0(χ)>0k_{0}(\chi)\in{\mathbb{Z}}_{>0}. Thus we can view (for kk0(χ)k\geq k_{0}(\chi)) ¯1{\overline{\partial}}_{1} explicitly as a map between

[ΔΩ0,k,nΩ0,k,nminI(Δ,χ)𝔾v(k)an]¯1[ΔΩ0,k,nΩ0,k,nminI(Δ,χ)𝔾v(k)an]\left[\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}\right]\stackrel{{\scriptstyle{\overline{\partial}}_{1}}}{{\longrightarrow}}\left[\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}}\right]

Let us define for e={v1,v2}BT1e=\{v_{1},v_{2}\}\in BT_{1}, sgnvie={1if(vi,vj)BT1or1if(vj,vi)BT1or{\rm sgn}^{e}_{v_{i}}=\begin{cases}1\;\;\;\;\;\mbox{if}\;(v_{i},v_{j})\in BT_{1}^{{\rm or}}\\ -1\;\;\;\mbox{if}\;(v_{j},v_{i})\in BT_{1}^{{\rm or}}\end{cases}.

Given fΔ,vI(Δ,χ)𝔾ean=I(Δ,χ)𝔾vanf_{{\Delta},v}\in I({\Delta},\chi)_{{\mathbb{G}}_{e}-{\rm an}}=I({\Delta},\chi)_{{\mathbb{G}}_{v}-{\rm an}} for some e={v,v}BT1,ne=\{v,v^{\prime}\}\in BT_{1,n} and ΔΩe,kΩv,k{\Delta}\in\Omega_{e,k}\cap\Omega_{v,k} indexing elements of ΔΩ0,k,nΩ0,k,nminI(Δ,χ)𝔾v(k)an\bigoplus_{\begin{subarray}{c}{\Delta}\in\Omega_{0,k,n}\setminus\Omega_{0,k,n}^{\min}\end{subarray}}I({\Delta},\chi)_{{\mathbb{G}}_{v}(k)-{\rm an}} as (fΔ,v)Δ,v(f_{{\Delta},v})_{{\Delta},v} we see that,

(3.8.6) ¯1(0,,fΔ,v,,0)=(gΔα,vα)Δα,vα={sgnve.fΔ,v,ifΔα=Δ,vα=v,sgnve.fΔ,v|Δ,ifΔα=Δ,vα=v,Δ¯Δ¯0,otherwise\begin{array}[]{cl}&{\overline{\partial}}_{1}(0,\cdots,f_{{\Delta},v},\cdots,0)\\ &\\ =&(g_{{\Delta}_{\alpha},v_{\alpha}})_{{\Delta}_{\alpha},v_{\alpha}}\\ &\\ =&\left\{\begin{array}[]{ccl}{\rm sgn}^{e}_{v}.f_{{\Delta},v}&,&\mbox{if}\;\;{\Delta}_{\alpha}={\Delta},v_{\alpha}=v,\\ {\rm sgn}^{e}_{v}.f_{{\Delta},v}|_{{\Delta}^{\prime}}&,&\mbox{if}\;\;{\Delta}_{\alpha}={\Delta}^{\prime},v_{\alpha}=v^{\prime},\overline{{\Delta}}^{\prime}\subset\overline{{\Delta}}\\ 0&,&\mbox{otherwise}\end{array}\right.\end{array}

This shows that ¯1{\overline{\partial}}_{1} can be expressed as a lower triangular r×rr\times r matrix with ±Id\pm Id on the diagonal and ±resΔΔ\pm{\rm res}^{{\Delta}}_{{\Delta}^{\prime}} maps on the off-diagonal elements which corresponds to ((Δ,v),(Δ,v))(({\Delta},v),({\Delta}^{\prime},v^{\prime})) such that ΔΔ{\Delta}^{\prime}\subset{\Delta} and {v,v}BT1\{v,v^{\prime}\}\in BT_{1} and 0 elsewhere, where r=2qk1(q+1)qn1q1r=2q^{k-1}(q+1)\frac{q^{n}-1}{q-1} and resΔΔ(fΔ,v):=gΔ,v=fΔ|Δ{\rm res}^{{\Delta}}_{{\Delta}^{\prime}}(f_{{\Delta},v}):=g_{{\Delta}^{\prime},v^{\prime}}=f_{\Delta}|_{{\Delta}^{\prime}}. Thus ¯1{\overline{\partial}}_{1} is an isomorphism as claimed. ∎

The exactness of the chain complex 2.2.1 for V:=IndBG(χ)V:={\rm Ind}^{G}_{B}(\chi) now follows from 3.2.1, 3.6.1 and 3.8.5.

3.9. An example of the matrix of ¯1{\overline{\partial}}_{1}

We give an example of the matrix of ¯1{\overline{\partial}}_{1} in the case of n=1,k=1n=1,k=1. Let v0,v1,vv^{0},v^{1},v^{\infty} be the vertices adjacent to v0v_{0}. Let Δ0{\Delta}_{0}, Δ1{\Delta}_{1}, Δ{\Delta}_{\infty} be the BB-Gv0(1)G_{v_{0}}(1) double cosets. Let e0,e1,ee_{0},e_{1},e_{\infty} be the oriented edges connecting v0v_{0} (origin) with v0,v1,vv^{0},v^{1},v^{\infty}, respectively. We may assume that Δi{\Delta}_{i} and Δjk:=ΔjΔk{\Delta}_{j\cup k}:={\Delta}_{j}\cup{\Delta}_{k} are the two BB-Gei(1)G_{e_{i}}(1) double cosets of Gei(1)G_{e_{i}}(1), where {i,j,k}={0,1,}\{i,j,k\}=\{0,1,\infty\}. The group Gvi(1)G_{v^{i}}(1) has then the BB-Gvi(1)G_{v^{i}}(1) double cosets Δ0i,Δ1i{\Delta}^{i}_{0},{\Delta}^{i}_{1}, whose union is Δi{\Delta}_{i}, and the double coset Δjk{\Delta}_{j\cup k} for jij\neq i, kik\neq i (and jkj\neq k). We then have

Ω0,1,1min={Δ00,Δ10,Δ01,Δ11,Δ0,Δ1}\Omega_{0,1,1}^{\min}=\{{\Delta}^{0}_{0},{\Delta}^{0}_{1},{\Delta}^{1}_{0},{\Delta}^{1}_{1},{\Delta}^{\infty}_{0},{\Delta}^{\infty}_{1}\}

and

Ω0,1,1nonmin={Δ0,Δ1,Δ,Δ01,Δ0,Δ1}\Omega_{0,1,1}^{{\rm\mathop{non\mathchar 45\relax min}}}=\{{\Delta}_{0},{\Delta}_{1},{\Delta}_{\infty},{\Delta}_{0\cup 1},{\Delta}_{0\cup\infty},{\Delta}_{1\cup\infty}\}

Let pp be the projection from C0,n,kC_{0,n,k} to C0,n,knonminC_{0,n,k}^{\rm\mathop{non\mathchar 45\relax min}}, and set ¯1=p1{\overline{\partial}}_{1}=p\circ\partial_{1}. We write

C1,1,1or=I(Δ1,χ)Ge0anI(Δ0,χ)Ge1anI(Δ01,χ)GeanI(Δ0,χ)Ge0anI(Δ1,χ)Ge1anI(Δ,χ)Gean\begin{array}[]{rcl}C_{1,1,1}^{\rm or}&=&I({\Delta}_{1\cup\infty},\chi)_{G_{e_{0}}-{\rm an}}\oplus I({\Delta}_{0\cup\infty},\chi)_{G_{e_{1}}-{\rm an}}\oplus I({\Delta}_{0\cup 1},\chi)_{G_{e_{\infty}}-{\rm an}}\\ &&\oplus I({\Delta}_{0},\chi)_{G_{e_{0}}-{\rm an}}\oplus I({\Delta}_{1},\chi)_{G_{e_{1}}-{\rm an}}\oplus I({\Delta}_{\infty},\chi)_{G_{e_{\infty}}-{\rm an}}\end{array}
C0,1,1nonmin=I(Δ1,χ)Gv0,0anI(Δ0,χ)Gv0,1anI(Δ01,χ)Gv0,anI(Δ0,χ)Gv0anI(Δ1,χ)Gv0anI(Δ,χ)Gv0an\begin{array}[]{rcl}C_{0,1,1}^{\rm\mathop{non\mathchar 45\relax min}}&=&I({\Delta}_{1\cup\infty},\chi)_{G_{v_{0,0}}-{\rm an}}\oplus I({\Delta}_{0\cup\infty},\chi)_{G_{v_{0,1}}-{\rm an}}\oplus I({\Delta}_{0\cup 1},\chi)_{G_{v_{0,\infty}}-{\rm an}}\\ &&\oplus I({\Delta}_{0},\chi)_{G_{v_{0}}-{\rm an}}\oplus I({\Delta}_{1},\chi)_{G_{v_{0}}-{\rm an}}\oplus I({\Delta}_{\infty},\chi)_{G_{v_{0}}-{\rm an}}\end{array}

The the matrix of ¯1{\overline{\partial}}_{1} is given by

(1000000100000010000res00res001100res110res101010res1res00001)\left(\begin{array}[]{cccccc}-1&0&0&0&0&0\\ 0&-1&0&0&0&0\\ 0&0&-1&0&0&0\\ 0&{\rm res}^{0\cup\infty}_{0}&{\rm res}^{0\cup 1}_{0}&1&0&0\\ {\rm res}^{1\cup\infty}_{1}&0&{\rm res}^{0\cup 1}_{1}&0&1&0\\ {\rm res}^{1\cup\infty}_{\infty}&{\rm res}^{0\cup\infty}_{\infty}&0&0&0&1\\ \end{array}\right)

where resiij(fΔij,vk):=gΔi,v0=fΔij|Δi{\rm res}^{i\cup j}_{i}(f_{{\Delta}_{i\cup j,v^{k}}}):=g_{{\Delta}_{i},v_{0}}=f_{{\Delta}_{i\cup j}}|_{{\Delta}_{i}}.

References

  • [1] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal. Analytic pro-pp-groups, volume 157 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1991.
  • [2] M. Emerton. Locally analytic vectors in representations of locally pp-adic analytic groups. Mem. Amer. Math. Soc., 248(1175):iv+158, 2017.
  • [3] A. Lahiri. Rigid analytic vectors in locally analytic representations. Annales mathématiques du Québec. Available at https://arxiv.org/pdf/1907.12220.pdf, 2020.
  • [4] P. Schneider and U. Stuhler. Resolutions for smooth representations of the general linear group over a local field. J. Reine Angew. Math., 436:19–32, 1993.
  • [5] P. Schneider and U. Stuhler. Representation theory and sheaves on the Bruhat-Tits building. Inst. Hautes Études Sci. Publ. Math., (85):97–191, 1997.
  • [6] P. Schneider and J. Teitelbaum. Locally analytic distributions and pp-adic representation theory, with applications to GL2{\rm GL}_{2}. J. Amer. Math. Soc., 15(2):443–468, 2002.