This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Representations of the pp-adic GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6} and the Adjoint LL-Function

Mahdi Asgari and Kwangho Choiy Mahdi Asgari
Department of Mathematics, Oklahoma State University, Stillwater, OK 74078-1058, U.S.A.
[email protected] Kwangho Choiy
School of Mathematical and Statistical Sciences, Southern Illinois University, Carbondale, IL 62901-4408, U.S.A.
[email protected]
Abstract.

We prove a conjecture of B. Gross and D. Prasad about determination of generic LL-packets in terms of the analytic properties of the adjoint LL-function for pp-adic general even spin groups of semi-simple ranks 2 and 3. We also explicitly write the adjoint LL-function for each LL-packet in terms of the local Langlands LL-functions for the general linear groups.

1. Introduction

In this article, we provide further details on the local LL-packets for the non-Archimedean split general spin groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6}, following our earlier work [AC17]. We then use our explicit description of these LL-packets to prove a conjecture of B. Gross and D. Prasad [Gr22, GP92] determining which of the LL-packets are “generic” (i.e., contain an irreducible representation with a Whittaker model) in terms of the analytic properties at s=1s=1 of the adjoint LL-function of the packet. We also write the adjoint LL-function for each LL-packet in terms of the local Langlands LL-functions of the general linear groups. In addition to details about the representations that our results provide, given that the adjoint LL-functions have a significant role in the Gan-Gross-Prasad conjectures, we expect that our results in this paper would be helpful in that direction as well. Particularly striking is the generalization of the Gan-Gross-Prasad to the non-tempered case [GGP20] where the relevant adjoint LL-function does have a pole at s=1s=1.

Let FF be a pp-adic field of characteristic zero. Denote by WFW_{F} the Weil group of FF and let WF=WF×SL2()W^{\prime}_{F}=W_{F}\times\mathrm{SL}_{2}(\mathbb{C}) be the Weil-Deligne group of FF. Let GG be a connected, reductive, linear algebraic group over FF. The local Langlands Conjecture (LLC) predicts a surjective, finite-to-one map \mathcal{L} from the set Irr(G)\operatorname{Irr}(G) of equivalence classes of irreducible, smooth, complex representations of G(F)G(F) to the set Φ(G)\Phi(G) of G^\widehat{G}-conjugacy classes of LL-parameters of G(F)G(F), i.e., admissible homomorphisms ϕ:WFGL\phi:W^{\prime}_{F}\longrightarrow{}^{L}G. Here, GL{}^{L}G denotes the LL-group of GG with G^=G0L\widehat{G}={}^{L}G^{0} its connected component, i.e., the complex dual of GG [Bor79]. Among other properties, the map \mathcal{L} is supposed to preserve the local LL-, ϵ\epsilon-, and γ\gamma-factors. Moreover, the (finite) fibers Πϕ\Pi_{\phi}, for ϕΦ(G)\phi\in\Phi(G), of the map \mathcal{L} are called the LL-packets of GG and their structures are expected to be controlled by certain finite subgroups of G^\widehat{G}.

Consider the split general spin groups G=GSpin4G=\mathrm{GSpin}_{4} and G=GSpin6G=\mathrm{GSpin}_{6}, of type D2=A1×A2D_{2}=A_{1}\times A_{2} and D3=A3D_{3}=A_{3} respectively, whose algebraic structure we review in Section 2.3. We constructed most of the LL-packets for these two groups in [AC17] and proved that they satisfy the expected properties of preservation of the local factors and their internal structure. We review and complete the construction of these LL-packets. In particular, using the classification of representations of GLn,GL_{n}, we give more explicit descriptions of the LL-packets for GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6} in terms of given representations of GL2×GL2\mathrm{GL}_{2}\times\mathrm{GL}_{2} and GL4×GL1,\mathrm{GL}_{4}\times GL_{1}, respectively. As a byproduct, we are able to give the criteria for determining the size of the LL-packets for GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6} (see Sections 4 and 5).

The known cases of the LLC for the pp-adic groups include GLn\mathrm{GL}_{n}[HT01, Hen00, Sch13]; SLn\mathrm{SL}_{n} [GK82]; non-quasi-split FF-inner forms of GLn\mathrm{GL}_{n} and SLn\mathrm{SL}_{n} [HS12, ABPS16]; GSp4\operatorname*{GSp}_{4} and Sp4\operatorname*{Sp}_{4} [GT11, GT10]; non-quasi-split FF-inner form GSp1,1\operatorname*{GSp}_{1,1} of GSp4\operatorname*{GSp}_{4} [GT14]; Sp2n,SOn,\operatorname*{Sp}_{2n},\operatorname*{SO}_{n}, and quasi-split SO2n\operatorname*{SO}^{*}_{2n} [Art13]; Un\operatorname*{U}_{n} [Rog90, Mok15]; non quasi-split FF-inner forms of Un\operatorname*{U}_{n} [Rog90, KMSW14]; non-quasi-split FF-inner form Sp1,1\operatorname*{Sp}_{1,1} of Sp4\operatorname*{Sp}_{4} [Cho17]; GSpin4,GSpin6\mathrm{GSpin}_{4},\mathrm{GSpin}_{6} and their inner forms [AC17]; GSp2n\operatorname*{GSp}_{2n} and GO2n\mathrm{GO}_{2n} [Xu18].

Going back to the case of general GG, assume that ρ\rho is a finite-dimensional complex representation of GL{}^{L}G. When LLC is known, one can define the local Langlands LL-functions

L(s,π,ρ)=L(s,ρϕ)L(s,\pi,\rho)=L(s,\rho\circ\phi)

for each πΠϕ\pi\in\Pi_{\phi}. Here, the LL-factors on the right hand side are the Artin local factors associated to the given representation of WFW^{\prime}_{F}.

B. Gross and D. Prasad conjectured (in the generality of quasi-split groups) that the local LL-packet Πϕ(G)\Pi_{\phi}(G) is generic if and only if the adjoint LL-function L(s,Adϕ)L(s,\mathrm{Ad}\circ\phi) is regular at s=1s=1 [GP92, Conj. 2.6]. Here, Ad\mathrm{Ad} denotes the adjoint representation of GL{}^{L}G on the dual Lie algebra 𝔤^\widehat{\mathfrak{g}} of G^\widehat{G}. (Note that in the body of this paper we use Ad\mathrm{Ad} exclusively for the restriction of the adjoint representation to the derived group of 𝔤^\widehat{\mathfrak{g}} to distinguish it from the full adjoint LL-function, which would have an extra factor of the LL-function for the trivial character when 𝔤^\widehat{\mathfrak{g}} has a one-dimensional center.)

We prove the above conjecture for the groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6} as a consequence of our construction of the LL-packets for these groups. In fact, we prove the conjecture for a larger class of groups G=Gm,nr,sG=G_{m,n}^{r,s}, which are given as subgroups of GLm×GLn\mathrm{GL}_{m}\times\mathrm{GL}_{n} satisfying a certain determinant equality (2.6). We are able to work in the slightly larger generality because, as in the construction of the LL-packets, we use the approach of restricting representations from GLm(F)×GLn(F)\mathrm{GL}_{m}(F)\times\mathrm{GL}_{n}(F) to the subgroup GG.

Moreover, we also give the adjoint LL-function in all cases explicitly in terms of local Langlands LL-functions of the general linear groups. While we are able to prove the Gross-Prasad conjecture already without the explicit knowledge of the adjoint LL-function, the explicit description of the adjoint LL-function certainly also verifies the conjecture and we include it here since it may lead to other number theoretic or representation theoretic results.

Finally, we take this opportunity to correct a few inaccuracies in [AC17]. They do not affect the main results in that paper and fix some errors in our description of the LL-packets. The details are given in Section 6.

Acknowledgements

We are grateful to Behrang Noohi and Ralf Schmidt for helpful discussions. We also thank B. Gross for his interest in this paper and clarifying the history of his conjecture and the context in which it was made.

K. Choiy was supported by a gift from the Simons Foundation (#840755).

2. Preliminaries

2.1. Local Langlands Correspondence (LLC)

Let pp be a prime number and let FF be a pp-adic field of characteristic zero, i.e., a finite extension of p\mathbb{Q}_{p}. We fix an algebraic closure F¯\bar{F} of F.F. Denote the ring of integers of FF by 𝒪F\mathcal{O}_{F} and its unique maximal ideal by 𝒫F\mathcal{P}_{F}. Moreover, let qq denote the cardinality of the residue field 𝒪F/𝒫F\mathcal{O}_{F}/\mathcal{P}_{F} and fix a uniformizer ϖ\varpi with |ϖ|F=q1|\varpi|_{F}=q^{-1}. Also, let WFW_{F} denote the Weil group of FF, WFW^{\prime}_{F} the Weil-Deligne group of FF, and Γ\Gamma the absolute Galois group Gal(F¯/F)\operatorname*{Gal}(\bar{F}/F). Throughout the paper, we will use the notation ν()=||F\nu(\cdot)=|\cdot|_{F}.

Let GG be a connected, reductive, linear algebraic group over FF. Fixing Γ\Gamma-invariant splitting data we define the LL-group of GG as a semi-direct product GL:=G^Γ{}^{L}G:=\widehat{G}\rtimes\Gamma, where G^=G0L\widehat{G}={}^{L}G^{0} denotes the connected component of the LL-group of G,G, i.e., the complex dual of GG (see [Bor79, §2]).

LLC (still conjectural in this generality) asserts that there is a surjective, finite-to-one map from the set Irr(G)\operatorname*{Irr}(G) of isomorphism classes of irreducible smooth complex representations of G(F)G(F) to the set Φ(G)\Phi(G) of G^\widehat{G}-conjugacy classes of LL-parameters, i.e., admissible homomorphisms φ:WFGL\varphi:W^{\prime}_{F}\longrightarrow{}^{L}G.

Given φΦ(G),\varphi\in\Phi(G), its fiber Πφ(G)\Pi_{\varphi}(G), which is called an LL-packet for G,G, is expected to be controlled by a certain finite group living in the complex dual group G^.\widehat{G}. Furthermore, for πΠφ(G)\pi\in\Pi_{\varphi}(G) and ρ\rho a finite dimensional algebraic representation of GL{}^{L}G one defines the local factors

L(s,π,ρ)\displaystyle L(s,\pi,\rho) =\displaystyle= L(s,ρϕ),\displaystyle L(s,\rho\circ\phi), (2.1)
ϵ(s,π,ρ,ψ)\displaystyle\epsilon(s,\pi,\rho,\psi) =\displaystyle= ϵ(s,ρϕ,ψ),\displaystyle\epsilon(s,\rho\circ\phi,\psi), (2.2)
γ(s,π,ρ,ψ)\displaystyle\gamma(s,\pi,\rho,\psi) =\displaystyle= γ(s,ρϕ,ψ).\displaystyle\gamma(s,\rho\circ\phi,\psi). (2.3)

provided that LLC is known for the case in question. Here, the factors on the right are Artin factors.

2.2. The Adjoint LL-Function

What we recall in this subsection holds for GG quasi-split ([GP92, §2]). However, for simplicity we will take GG to be split over FF since the groups we are working with in this article are split. When GG is split over FF, we may replace the LL-group GL{}^{L}G by its connected component G^=G0L\widehat{G}={}^{L}G^{0}. Take ρ\rho to be the adjoint action of G^\widehat{G} on its Lie algebra. Then we obtain the adjoint LL-function L(s,π,AdG^)=L(s,AdG^ϕ)L(s,\pi,\mathrm{Ad}_{\widehat{G}})=L(s,\mathrm{Ad}_{\widehat{G}}\circ\phi) for all πΠφ(G)\pi\in\Pi_{\varphi}(G). The following is a conjecture of D. Gross and D. Prasad (see [GP92, Conj. 2.6]).

Conjecture 2.1.

Πφ(G)\Pi_{\varphi}(G) contains a generic member if and only if L(s,AdG^ϕ)L(s,\mathrm{Ad}_{\widehat{G}}\circ\phi) is regular at s=1s=1. (Equivalently, π\pi is generic if and only if L(s,π,AdG^)L(s,\pi,\mathrm{Ad}_{\widehat{G}}) is regular at s=1s=1.)

The conjecture is known in many cases in which the LLC is known. To mention a few, it was verified for GLn\mathrm{GL}_{n} by B. Gross and D. Prasad [GP92], for GSp4\operatorname*{GSp}_{4} in [GT11] and, for non-supercuspidals, in [AS08], and for SO\operatorname*{SO} and Sp\operatorname*{Sp} groups, it follows from the work of Arthur on endoscopic classification [Art13]. We will verify this conjecture for the small rank split groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6}.

2.3. The Groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6}

We gave detailed information about the structure of these two groups (as well as their inner forms) in [AC17, §2.2]. For now we just recall the incidental isomorphisms

GSpin4\displaystyle{\mathrm{GSpin}}_{4} \displaystyle\cong {(g1,g2)GL2×GL2:detg1=detg2}\displaystyle\left\{(g_{1},g_{2})\in{\mathrm{GL}}_{2}\times{\mathrm{GL}}_{2}:\det g_{1}=\det g_{2}\right\} (2.4)
GSpin6\displaystyle{\mathrm{GSpin}}_{6} \displaystyle\cong {(g1,g2)GL1×GL4:g12=detg2}.\displaystyle\left\{(g_{1},g_{2})\in{\mathrm{GL}}_{1}\times{\mathrm{GL}}_{4}:g_{1}^{2}=\det g_{2}\right\}. (2.5)

While our main interests in this article are the split general spin groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6}, for the purposes of Conjecture 2.1 it is no more difficult, and perhaps also more natural, to consider a slightly more general setup as follows.

Fix integers m,n1m,n\geq 1 and r,s1r,s\geq 1 and assume that gcd(r,s)=1\operatorname{gcd}(r,s)=1. Define

G=Gm,nr,s:={(g,h)GLm×GLn(detg)r=(deth)s}G=G_{m,n}^{r,s}:=\left\{(g,h)\in\mathrm{GL}_{m}\times\mathrm{GL}_{n}\mid(\det g)^{r}=(\det h)^{s}\right\} (2.6)
Proposition 2.2.

The group Gm,nr,sG_{m,n}^{r,s} is a split, connected, reductive, linear algebraic group over FF.

Proof.

Let X=(Xij)X=(X_{ij}) and Y=(Ykl)Y=(Y_{kl}) be m×mm\times m and n×nn\times n matrices, respectively. It is clear that Gm,nr,sG_{m,n}^{r,s}, being an almost direct product of SLm×SLnSL_{m}\times\mathrm{SL}_{n} and a torus, is reductive. The only issue that requires justification is that the polynomial f(X,Y)=(detX)r(detY)sf(X,Y)=(\det X)^{r}-(\det Y)^{s} is irreducible in F[Xij,Ykl]F[X_{ij},Y_{kl}] if and only if d=gcd(r,s)=1d=\gcd(r,s)=1. It is clear that if d>1d>1, then ff is reducible since it would be divisible by (detX)(r/d)(detY)(s/d)(\det X)^{(r/d)}-(\det Y)^{(s/d)}. It remains to show that if d=1d=1, then f(X,Y)f(X,Y) is irreducible. This assertion should be easy to see via elementary arguments considering the polynomials in a possible factorization of ff. However, we prove it below as a special case of a more general fact.

Assume that f(x,y)f(x,y) is an (arbitrary) irreducible polynomial in F[x,y]F[x,y]. Let

p(x1,x2,,xa)F[x1,x2,,xa] and p(y1,y2,,yb)F[y1,y2,,yb]p(x_{1},x_{2},\dots,x_{a})\in F[x_{1},x_{2},\dots,x_{a}]\quad\mbox{ and }\quad p(y_{1},y_{2},\dots,y_{b})\in F[y_{1},y_{2},\dots,y_{b}]

be two polynomials such that pαp-\alpha and qαq-\alpha are irreducible for all constants α\alpha. Then, f(p,q)f(p,q) is irreducible in F[x1,x2,,xa,y1,y2,,yb]F[x_{1},x_{2},\dots,x_{a},y_{1},y_{2},\dots,y_{b}].

Our Proposition would clearly follow from the above assertion since (detα)(\det-\alpha) is always an irreducible polynomial and it is well-known that the two-variable polynomial xrysx^{r}-y^{s} is irreducible in F[x,y]F[x,y] provided that d=gcd(r,s)=1d=\gcd(r,s)=1.

To prove the assertion above, we proceed as follows. By base extension to an algebraic closure we may assume, without loss of generality, that FF is algebraically closed.

Let AA be the subscheme of SpecF[x1,x2,,xa,y1,y2,,yb]\operatorname{Spec}F[x_{1},x_{2},\dots,x_{a},y_{1},y_{2},\dots,y_{b}] defined by f(p,q)f(p,q), and let BB be the subscheme of SpecF[x,y]\operatorname{Spec}F[x,y] defined by xrysx^{r}-y^{s}. The latter is irreducible since xrysx^{r}-y^{s} is an irreducible polynomial by our assumption that d=1d=1. There is a natural map ABA\to B which has irreducible (geometric) fibers. The result now follows from the following claim.

Claim: Let g:ABg:A\to B be an open morphism of schemes of finite type over an algebraically closed field FF such that the (geometric) fibers of gg are irreducible and BB is irreducible. Then AA is irreducible.

To see the claim let UU be an open in AA. We want to show that for any other open VV, we have that UVU\cap V is nonempty. Since BB is irreducible and gg is open, we have that g(U)g(V)g(U)\cap g(V) is nonempty so there is a fiber F0F_{0} of gg such that F0UF_{0}\cap U and F0VF_{0}\cap V are nonempty. Hence, by irreducibility of F0F_{0}, they have a nonempty intersection in F0F_{0}. In particular, UVU\cap V is nonempty, which gives the claim.

It only remains to check that the map ABA\to B above is open. In fact, it is flat since it is a base extension of the cartesian product of two flat morphisms p:SpecF[x1,,xa]SpecF[x]p:\operatorname{Spec}F[x_{1},...,x_{a}]\to\operatorname{Spec}F[x] and q:SpecF[y1,,yb]SpecF[y]q:\operatorname{Spec}F[y_{1},...,y_{b}]\to\operatorname{Spec}F[y]. (Here, we are using the fact that SpecF[x]\operatorname{Spec}F[x] is a curve.) This finishes the proof. ∎

Of particular interest to us in this paper are the cases

  • m=n=2m=n=2 and r=s=1r=s=1, when G=GSpin4G=\mathrm{GSpin}_{4}, and

  • m=1m=1, n=4n=4 and r=2r=2, s=1s=1, when G=GSpin6G=\mathrm{GSpin}_{6}.

The (connected) LL-group of GG is

Gm,nr,s 0L=G^(GLm()×GLn())/{(zrIm,zsIn):z×}{{}^{L}{G}_{m,n}^{{r,s}\,0}}=\widehat{G}\cong({\mathrm{GL}}_{m}(\mathbb{C})\times{\mathrm{GL}}_{n}(\mathbb{C}))/\{(z^{-r}I_{m},z^{s}I_{n}):z\in\mathbb{C}^{\times}\} (2.7)

and we have the exact sequence

1{(zrIm,zsIn):z×}×GLm()×GLn()prm,nr,sGm,nr,s^1.1\longrightarrow\{(z^{-r}I_{m},z^{s}I_{n}):z\in\mathbb{C}^{\times}\}\cong\mathbb{C}^{\times}\longrightarrow{\mathrm{GL}}_{m}(\mathbb{C})\times{\mathrm{GL}}_{n}(\mathbb{C})\xrightarrow{pr_{m,n}^{r,s}}\widehat{G_{m,n}^{r,s}}\longrightarrow 1. (2.8)

2.4. Computation of the Adjoint LL-Function for GG

Let π\pi be an irreducible admissible representation of G(F)G(F). There exist irreducible admissible representations πm\pi_{m} and πn\pi_{n} of GLm(F)\mathrm{GL}_{m}(F) and GLn(F)\mathrm{GL}_{n}(F), respectively, such that

πResG(F)GLm(F)×GLn(F)(πmπn).\pi\hookrightarrow{\operatorname*{Res}}_{G(F)}^{\mathrm{GL}_{m}(F)\times\mathrm{GL}_{n}(F)}\left(\pi_{m}\otimes\pi_{n}\right). (2.9)

Let AdG^\mathrm{Ad}_{\widehat{G}} denote the adjoint action of G^\widehat{G} on its Lie algebra

𝔤^={(X,Y)𝔤𝔩m()×𝔤𝔩n()rtr(X)=str(Y)}.\widehat{\mathfrak{g}}=\left\{(X,Y)\in\mathfrak{gl}_{m}(\mathbb{C})\times\mathfrak{gl}_{n}(\mathbb{C})\mid r\operatorname{tr}(X)=s\operatorname{tr}(Y)\right\}. (2.10)

In what follows, let us write

AdG^=trivAd\mathrm{Ad}_{\widehat{G}}=\operatorname{triv}\oplus\mathrm{Ad} (2.11)

and for i{m,n}i\in\{m,n\} we similarly write Adi=AdGL^i=trivAd,\mathrm{Ad}_{i}=\mathrm{Ad}_{\widehat{GL}_{i}}=\operatorname{triv}\oplus\mathrm{Ad}, where Ad\mathrm{Ad} here denotes the action of GLi()\mathrm{GL}_{i}(\mathbb{C}) on the space of traceless i×ii\times i complex matrices 𝔰li(){\mathfrak{s}l}_{i}(\mathbb{C}).

Let ϕπ:WF×SL2()G^\phi_{\pi}:W_{F}\times\mathrm{SL}_{2}(\mathbb{C})\to\widehat{G} be the LL-parameter of π\pi and let ϕi:WF×SL2()GLi()\phi_{i}:W_{F}\times\mathrm{SL}_{2}(\mathbb{C})\to\mathrm{GL}_{i}(\mathbb{C}), i=m,ni=m,n, be the LL-parameter of πi\pi_{i}. Recall by (2.8) that we have a natural map

pr=prm,nr,s:GLm()×GLn()G^.pr={pr_{m,n}^{r,s}}:\mathrm{GL}_{m}(\mathbb{C})\times\mathrm{GL}_{n}(\mathbb{C})\longrightarrow\widehat{G}. (2.12)

Then we have

ϕπ=pr(ϕmϕn).\phi_{\pi}=pr\circ(\phi_{m}\otimes\phi_{n}). (2.13)

Since the subgroup {(zrIm,zsIn):z×}\{(z^{-r}I_{m},z^{s}I_{n}):z\in\mathbb{C}^{\times}\} is central in GLm()×GLn()\mathrm{GL}_{m}(\mathbb{C})\times\mathrm{GL}_{n}(\mathbb{C}) the following diagram commutes.

GLm()×GLn(){\mathrm{GL}_{m}(\mathbb{C})\times\mathrm{GL}_{n}(\mathbb{C})}Aut(𝔤𝔩m()×𝔤𝔩n()){\operatorname{Aut}_{\mathbb{C}}\left(\mathfrak{gl}_{m}(\mathbb{C})\times\mathfrak{gl}_{n}(\mathbb{C})\right)}WF×SL2(){W_{F}\times\mathrm{SL}_{2}(\mathbb{C})}G^{\widehat{G}}Aut(𝔤^){\operatorname{Aut}_{\mathbb{C}}\left(\widehat{\mathfrak{g}}\right)}AdmAdn\scriptstyle{\mathrm{Ad}_{m}\otimes\mathrm{Ad}_{n}}pr\scriptstyle{pr}ϕmϕn\scriptstyle{\phi_{m}\otimes\phi_{n}}ϕπ\scriptstyle{\phi_{\pi}}AdG^\scriptstyle{\mathrm{Ad}_{\widehat{G}}}

Note that the adjoint action Adm\mathrm{Ad}_{m} of GLm()\mathrm{GL}_{m}(\mathbb{C}) on 𝔤lm(){\mathfrak{g}l}_{m}(\mathbb{C}) preserves the trace, and similarly for nn, so we obtain a right downward arrow by simply restricting any automorphism to the set of those pairs satisfying the trace equality in (2.10). We have

L(s,1F×)L(s,π,Ad)L(s,1F×)\displaystyle L(s,1_{F^{\times}})L(s,\pi,\mathrm{Ad})\cdot L(s,1_{F^{\times}}) =\displaystyle= L(s,π,AdG^)L(s,1F×)\displaystyle L(s,\pi,\mathrm{Ad}_{\widehat{G}})\cdot L(s,1_{F^{\times}}) (2.14)
=\displaystyle= L(s,AdG^ϕπ)L(s,1F×)\displaystyle L(s,\mathrm{Ad}_{\widehat{G}}\circ\phi_{\pi})\cdot L(s,1_{F^{\times}})
=\displaystyle= L(s,(AdmAdn)(ϕmϕn))\displaystyle L\left(s,(\mathrm{Ad}_{m}\otimes\mathrm{Ad}_{n})\circ(\phi_{m}\otimes\phi_{n})\right)
=\displaystyle= L(s,Admϕm)L(s,Adnϕn)\displaystyle L(s,\mathrm{Ad}_{m}\circ\phi_{m})L(s,\mathrm{Ad}_{n}\circ\phi_{n})
=\displaystyle= L(s,πm,Adm)L(s,πn,Adn)\displaystyle L(s,\pi_{m},\mathrm{Ad}_{m})L(s,\pi_{n},\mathrm{Ad}_{n})
=\displaystyle= L(s,1F×)2L(s,πm,Ad)L(s,πn,Ad).\displaystyle L(s,1_{F^{\times}})^{2}L(s,\pi_{m},\mathrm{Ad})L(s,\pi_{n},\mathrm{Ad}).

Therefore, we obtain the more convenient equality

L(s,π,Ad)=L(s,πm,Ad)L(s,πn,Ad),L(s,\pi,\mathrm{Ad})=L(s,\pi_{m},\mathrm{Ad})L(s,\pi_{n},\mathrm{Ad}), (2.15)

which holds thanks to our choice of the notation Ad\mathrm{Ad}. In Section 3.2 this relation helps verify Conjecture 2.1 for the groups of interest to us.

3. Genericity and The Conjecture of B. Gross and D. Prasad

3.1. Restriction of Generic Representations

Let us write D\square^{D} for the group Hom(,×)\operatorname*{Hom}(\square,\mathbb{C}^{\times}) of all continuous characters on a topological group \square. Dente by der\square_{\operatorname*{der}} the derived group of .\square. Let GG and G~\widetilde{G} be connected, reductive, linear, algebraic groups over FF satisfying the property that

Gder=G~derGG~.G_{\operatorname*{der}}=\widetilde{G}_{\operatorname*{der}}\subseteq G\subseteq\widetilde{G}. (3.1)

For any connected, reductive, linear, algebraic group \square over F,F, we write Irrsc()\operatorname*{Irr}_{\rm sc}(\square) and Irresq()\operatorname*{Irr}_{\rm esq}(\square) for the set of equivalence classes of supercuspidal and essentially square-integrable representations of (F),\square(F), respectively.

Assume G~\widetilde{G} and GG to be FF-split. Let B~\widetilde{B} be a Borel subgroup of G~\widetilde{G} with Levi decomposition B~=T~U~.\widetilde{B}=\widetilde{T}\widetilde{U}. Then B=B~GB=\widetilde{B}\cap G is a Borel subgroup of GG with B=TUB=TU. Note that T=T~GT=\widetilde{T}\cap G and U~=U.\widetilde{U}=U. Let ψ\psi be a generic character of U(F)U(F). From [Tad92, Proposition 2.8] we know that given a ψ\psi-generic irreducible representation σ~\widetilde{\sigma} of G~(F)\widetilde{G}(F) we have a unique ψ\psi-generic σ\sigma of G(F)G(F) such that

σResGG~(σ~).\sigma\hookrightarrow{\operatorname*{Res}}^{\widetilde{G}}_{G}(\widetilde{\sigma}).

The generic character associated with σ\sigma is not unique though.

Proposition 3.1.

Each generic character associated with σ\sigma is determined up to the action of T~(F)/T(F).\widetilde{T}(F)/T(F).

Proof.

We let σ~Irr(G~)\widetilde{\sigma}\in\operatorname*{Irr}(\widetilde{G}) be ψ\psi-generic. Then there is a unique ψ\psi-generic σψΠσ~(G)\sigma_{\psi}\in\Pi_{\widetilde{\sigma}}(G). On the other hand, for each σΠσ~(G)\sigma\in\Pi_{\widetilde{\sigma}}(G) there exists tT~(F)/T(F)G~/G(F)t\in\widetilde{T}(F)/T(F)\cong\widetilde{G}/G(F) such that σ=σψt,\sigma={{}^{t}}\sigma_{\psi}, where σψt(g)=σ(t1gt).{}^{t}\sigma_{\psi}(g)=\sigma(t^{-1}gt). This implies that σ\sigma is ψt{}^{t}\psi-generic. Here ψt{}^{t}\psi is defined as ψt(u)=ψ(t1ut).{}^{t}\psi(u)=\psi(t^{-1}ut).

Remark 3.2.

We say σIrr(G)\sigma\in\operatorname*{Irr}(G), resp. σ~Irr(G~)\widetilde{\sigma}\in\operatorname*{Irr}(\widetilde{G}), is generic if it is ψ\psi-generic with respect to some generic character ψ\psi. With this notation, σIrr(G)\sigma\in\operatorname*{Irr}(G) is generic if and only if is σ~Irr(G~).\widetilde{\sigma}\in\operatorname*{Irr}(\widetilde{G}).

3.2. Criterion for Genericity

In this section we verify Conjecture 2.1 for the small rank general spin groups we are considering in this article.

Theorem 3.3.

Let G=Gm,nr,sG=G_{m,n}^{r,s} be the group defined in (2.6). Let π\pi be an irreducible admissible representation of G(F)G(F). Then π\pi is generic if and only if L(s,π,Ad)L(s,\pi,\mathrm{Ad}) is regular at s=1s=1.

Proof.

Given π\pi there exist irreducible admissible representations πm\pi_{m} of GLm(F)\mathrm{GL}_{m}(F) and πn\pi_{n} of GLn(F)\mathrm{GL}_{n}(F) such that π\pi is a subrepresentation of the restriction to G(F)G(F) of πmπn\pi_{m}\otimes\pi_{n} as in (2.9). Now, π\pi is generic if and only if both πm\pi_{m} and πn\pi_{n} are generic. By the truth of Conjecture 2.1 for the general linear groups, the latter is equivalent to both L(s,πm,Ad)L(s,\pi_{m},\mathrm{Ad}) and L(s,πn,Ad)L(s,\pi_{n},\mathrm{Ad}) being regular at s=1s=1. Hence, by (2.15) and the fact that neither of the LL-functions can have a zero at s=1s=1, we have that π\pi is generic if and only if L(s,π,Ad)L(s,\pi,\mathrm{Ad}) is regular at s=1s=1. This proves the theorem. ∎

As we observed in Section 2.3, the split groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6} are special cases of Gm,nr,sG_{m,n}^{r,s}. Therefore, we have the following.

Corollary 3.4.

Conjecture 2.1 holds for the groups GSpin4\mathrm{GSpin}_{4} and GSpin6\mathrm{GSpin}_{6}.

4. Representations of GSpin4\mathrm{GSpin}_{4}

In this section we list all the irreducible representations of GSpin4(F)\mathrm{GSpin}_{4}(F) and then calculate their associated adjoint LL-function explicitly. To this end, we give the nilpotent matrix associated to their parameter in each case.

4.1. The Reprsentations

4.1.1. Classification of representations of GSpin4\mathrm{GSpin}_{4}

Following [AC17], we have

1GSpin4(F)GL2(F)×GL2(F)F×1.1\longrightarrow{\mathrm{GSpin}}_{4}(F)\longrightarrow{\mathrm{GL}}_{2}(F)\times{\mathrm{GL}}_{2}(F)\longrightarrow F^{\times}\longrightarrow 1. (4.1)

Recall that

GSpin4(F){(g1,g2)GL2(F)×GL2(F):detg1=detg2},{\mathrm{GSpin}}_{4}(F)\cong\{(g_{1},g_{2})\in{\mathrm{GL}}_{2}(F)\times{\mathrm{GL}}_{2}(F):\det g_{1}=\det g_{2}\}, (4.2)
GSpin4L=GSpin4^=GSO4()(GL2()×GL2())/{(z1,z):z×},{{}^{L}{\mathrm{GSpin}}_{4}}=\widehat{{\mathrm{GSpin}}_{4}}={\mathrm{GSO}}_{4}(\mathbb{C})\cong({\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C}))/\{(z^{-1},z):z\in\mathbb{C}^{\times}\}, (4.3)

and

1×GL2()×GL2()pr4GSpin4^1.1\longrightarrow\mathbb{C}^{\times}\longrightarrow{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})\overset{pr_{4}}{\longrightarrow}\widehat{{\mathrm{GSpin}}_{4}}\longrightarrow 1. (4.4)

When convenient, we view GSO4\mathrm{GSO}_{4} as the group similitude orthogonal 4×44\times 4 matrices with respect to the anti-diagonal matrix

J=J4=[0001001001001000].J=J_{4}=\begin{bmatrix}0&0&0&1\\ 0&0&1&0\\ 0&1&0&0\\ 1&0&0&0\end{bmatrix}. (4.5)

The Lie algebra of this group is also defined with respect to JJ and an element XX in this Lie algebra satisfies

XtJ+JX=0.{}^{t}XJ+JX=0.

4.1.2. Construction of the LL-packets of GSpin4\mathrm{GSpin}_{4} (recalled from [AC17])

Given σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) we have a lift σ~Irr(GL2×GL2)\widetilde{\sigma}\in\operatorname*{Irr}({\mathrm{GL}}_{2}\times{\mathrm{GL}}_{2}) such that

σResGSpin4GL2×GL2(σ~).\sigma\hookrightarrow{\operatorname*{Res}}_{{\mathrm{GSpin}}_{4}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}(\widetilde{\sigma}).

It follows form the LLC for GLnGL_{n} [HT01, Hen00, Sch13] that there is a unique φ~σ~Φ(GL2×GL2)\widetilde{\varphi}_{\widetilde{\sigma}}\in\Phi({\mathrm{GL}}_{2}\times{\mathrm{GL}}_{2}) corresponding to the representation σ~.\widetilde{\sigma}. We now have a surjective, finite-to-one map

4:Irr(GSpin4)\displaystyle{\mathcal{L}}_{4}:{\operatorname*{Irr}}({\mathrm{GSpin}}_{4}) \displaystyle\longrightarrow Φ(GSpin4)\displaystyle\Phi({\mathrm{GSpin}}_{4}) (4.6)
σ\displaystyle\sigma \displaystyle\longmapsto pr4φ~σ~,\displaystyle pr_{4}\circ\widetilde{\varphi}_{\widetilde{\sigma}},

which does not depend on the choice of the lifting σ~.\widetilde{\sigma}. Then, for each φΦ(GSpin4),\varphi\in\Phi(\mathrm{GSpin}_{4}), all inequivalent irreducible constituents of σ~\widetilde{\sigma} constitutes the LL-packet

Πφ(GSpin4):=Πσ~(GSpin4)={σ|σResGSpin4GL2×GL2(σ~)}/.\Pi_{\varphi}({\mathrm{GSpin}}_{4}):=\Pi_{\widetilde{\sigma}}({\mathrm{GSpin}}_{4})=\left\{\sigma\,\middle|\,\sigma\hookrightarrow{\operatorname*{Res}}_{{\mathrm{GSpin}}_{4}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}(\widetilde{\sigma})\right\}\Big{/}\cong. (4.7)

Here, σ~\widetilde{\sigma} is the member in the singleton Πφ~(GL2×GL2)\Pi_{\widetilde{\varphi}}(\mathrm{GL}_{2}\times\mathrm{GL}_{2}) and φ~Φ(GL2×GL2)\widetilde{\varphi}\in\Phi(\mathrm{GL}_{2}\times\mathrm{GL}_{2}) is such that pr4φ~=φ.pr_{4}\circ\widetilde{\varphi}=\varphi. We note that the construction does not depends on the choice of φ~,\widetilde{\varphi}, due to the LLC for GL2\mathrm{GL}_{2}, [GK82, Lemma 2.4], [Tad92, Corollary 2.5], and [HS12, Lemma 2.2]. Further details can be found in [AC17, Section 5.1].

4.1.3. The LL-parameters of GL2{\mathrm{GL}}_{2}

We recall the generic representations of GL2(F)\mathrm{GL}_{2}(F) in this paragraph. We refer to [Wed08, Kud94, GR10] for details. Let χ:F××\chi:F^{\times}\rightarrow\mathbb{C}^{\times} denote a continuous quasi-character of F×F^{\times}. By Zelevinski ([Zel80, Theorem 9.7] or [Kud94, Theorem 2.3.1]) we know that the generic representations of GL2{\mathrm{GL}}_{2} are: the supercuspidals, 𝖲𝗍(χdet)\mathsf{St}\otimes(\chi\circ\det) where 𝖲𝗍\mathsf{St} denotes the Steinberg representation, and normally induced representations iGL1×GL1GL2(χ1χ2)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2}) with χ1χ2ν±1.\chi_{1}\neq\chi_{2}\nu^{\pm 1}. The only non-generic representation is χdet.\chi\circ\det.

4.2. Generic Representations of GSpin4\mathrm{GSpin}_{4}

Following [AC17, Section 5.3], given φΦ(GSpin4),\varphi\in\Phi(\mathrm{GSpin}_{4}), fix the lift

φ~=φ~1φ~2Φ(GL2×GL2)\widetilde{\varphi}=\widetilde{\varphi}_{1}\otimes\widetilde{\varphi}_{2}\in\Phi({\mathrm{GL}}_{2}\times{\mathrm{GL}}_{2})

with φ~iΦ(GL2)\widetilde{\varphi}_{i}\in\Phi({\mathrm{GL}}_{2}) such that φ=pr4φ~\varphi=pr_{4}\circ\widetilde{\varphi}. Let

σ~=σ~1σ~2Πφ~(GL2×GL2)\widetilde{\sigma}=\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\in\Pi_{\widetilde{\varphi}}({\mathrm{GL}}_{2}\times{\mathrm{GL}}_{2})

be the unique member such that {σ~i}=Πφ~i(GL2).\{\widetilde{\sigma}_{i}\}=\Pi_{\widetilde{\varphi}_{i}}({\mathrm{GL}}_{2}).

Recall the notation

IGSpin4(σ~):={χ(GL2(F)×GL2(F)/GSpin4(F))D|σ~χσ~}.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma}):=\left\{\chi\in\left({\mathrm{GL}}_{2}(F)\times{\mathrm{GL}}_{2}(F)/{\mathrm{GSpin}}_{4}(F)\right)^{D}\,\middle|\,\widetilde{\sigma}\otimes\chi\cong\widetilde{\sigma}\right\}.

Then we have

Πφ(GSpin4)11IGSpin4(σ~),\Pi_{\varphi}({\mathrm{GSpin}}_{4})\,\overset{1-1}{\longleftrightarrow}\,I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma}), (4.8)

and we recall that, by [AC17, Proposition 5.7], we have

IGSpin4(σ~)={ISL2(σ~1),if σ~2σ~1η~ for some η~(F×)D;ISL2(σ~1)ISL2(σ~2),if σ~2≇σ~1η~ for any η~(F×)D.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})=\left\{\begin{array}[]{lll}I^{{\mathrm{SL}}_{2}}(\widetilde{\sigma}_{1}),&\mbox{if $\widetilde{\sigma}_{2}\cong\widetilde{\sigma}_{1}\widetilde{\eta}$ for some $\widetilde{\eta}\in(F^{\times})^{D}$};\\ I^{{\mathrm{SL}}_{2}}(\widetilde{\sigma}_{1})\cap I^{{\mathrm{SL}}_{2}}(\widetilde{\sigma}_{2}),&\mbox{if $\widetilde{\sigma}_{2}\not\cong\widetilde{\sigma}_{1}\widetilde{\eta}$ for any $\widetilde{\eta}\in(F^{\times})^{D}$}.\end{array}\right. (4.9)

4.2.1. Irreducible Parameters

Let φΦ(GSpin4)\varphi\in\Phi(\mathrm{GSpin}_{4}) be irreducible. Then φ~,\widetilde{\varphi}, φ~1,\widetilde{\varphi}_{1}, and φ~2\widetilde{\varphi}_{2} are all irreducible. By Section 3.1, we have the following.

Proposition 4.1.

Let φΦ(GSpin4)\varphi\in\Phi(\mathrm{GSpin}_{4}) be irreducible. Then every member in Πφ(GSpin4)\Pi_{\varphi}(\mathrm{GSpin}_{4}) is supercuspidal and generic.

To study the internal structure of Πφ(GSpin4)\Pi_{\varphi}(\mathrm{GSpin}_{4}), by (4.8), we need to know the structure of IGSpin4(σ~)I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma}), as we now recall from [AC17].

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(a)

    When σ~2σ~1η~\widetilde{\sigma}_{2}\cong\widetilde{\sigma}_{1}\widetilde{\eta} for some η~(F×)D,\widetilde{\eta}\in(F^{\times})^{D}, we have

    IGSpin4(σ~){{1},if φ~1 (and hence also φ~2) is primitive or non-trivial on SL2();/2,if φ~1 (and hence also φ~2) is dihedral w.r.t. one quadratic extension;(/2)2,if φ~1 (and hence also φ~2) is dihedral w.r.t. three quadratic extensions.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\left\{\begin{array}[]{llll}\{1\},&\mbox{if $\widetilde{\varphi}_{1}$ (and hence also $\widetilde{\varphi}_{2}$) is primitive or non-trivial on $\mathrm{SL}_{2}(\mathbb{C})$};\\ \mathbb{Z}/2\mathbb{Z},&\mbox{if $\widetilde{\varphi}_{1}$ (and hence also $\widetilde{\varphi}_{2}$) is dihedral w.r.t. one quadratic extension};\\ (\mathbb{Z}/2\mathbb{Z})^{2},&\mbox{if $\widetilde{\varphi}_{1}$ (and hence also $\widetilde{\varphi}_{2}$) is dihedral w.r.t. three quadratic extensions}.\end{array}\right.
  2. 𝔤𝔫𝔯\mathfrak{gnr}-(b)

    When σ~2≇σ~1η~\widetilde{\sigma}_{2}\not\cong\widetilde{\sigma}_{1}\widetilde{\eta} for any η~(F×)D\widetilde{\eta}\in(F^{\times})^{D}, then by (4.9) we have

    IGSpin4(σ~){1}or /2.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\{1\}~{}\text{or }\mathbb{Z}/2\mathbb{Z}.

    Since σ~2≇σ~1η~\widetilde{\sigma}_{2}\not\cong\widetilde{\sigma}_{1}\widetilde{\eta} for any η~(F×)D\widetilde{\eta}\in(F^{\times})^{D}, the case of both φ~1\widetilde{\varphi}_{1} and φ~2\widetilde{\varphi}_{2} being diredral w.r.t. three quadratic extensions is excluded. Thus, we have the following list:

    • If at least one of φ~i\widetilde{\varphi}_{i} is primitive, then IGSpin4(σ~){1}.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\{1\}.

    • If both are dihedral, then IGSpin4(σ~)/2.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\mathbb{Z}/2\mathbb{Z}.

From [AC17, Proposition 2.1], we recall the identification

Δ={β1=f11f12,β2=f21f22},\Delta^{\vee}=\left\{\beta^{\vee}_{1}=f^{*}_{11}-f^{*}_{12},\beta^{\vee}_{2}=f^{*}_{21}-f^{*}_{22}\right\}, (4.10)

using the notation fijf_{ij} and fij,f^{*}_{ij}, 1i,j2,1\leq i,j\leq 2, for the usual \mathbb{Z}-basis of characters and cocharacters of GL2×GL2\mathrm{GL}_{2}\times\mathrm{GL}_{2} and β1,β2\beta_{1},\beta_{2} denote the simple roots of GSpin4\mathrm{GSpin}_{4}. We can use this identification to relate the nilpotent matrices associated to the parameters of GL2×GL2\mathrm{GL}_{2}\times\mathrm{GL}_{2} and GSpin4\mathrm{GSpin}_{4}, respectively.

For both (a) and (b) above, we have

NGL2()×GL2()=([0000],[0000])(4.10)NGSO4()=04×4.N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&0\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=0_{4\times 4}.
Remark 4.2.

We note that case (b) above was mentioned, less precisely, in [AC17, Remark 5.10].

4.2.2. Reducible Parameters

If φΦ(GSpin4)\varphi\in\Phi(\mathrm{GSpin}_{4}) is reducible, then at least one φ~i\widetilde{\varphi}_{i} must be reducible. Since the number of irreducible constituents in ResSL2GL2(σ~i)\operatorname*{Res}_{\mathrm{SL}_{2}}^{{\mathrm{GL}}_{2}}(\widetilde{\sigma}_{i}) is at most 2, we have ISL2(σ~i){1},or /2.I^{\mathrm{SL}_{2}}(\widetilde{\sigma}_{i})\cong\{1\},~{}\text{or }\mathbb{Z}/2\mathbb{Z}. This implies that

IGSpin4(σ~){1},or /2.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\{1\},~{}\text{or }\mathbb{Z}/2\mathbb{Z}.

If φ~i\widetilde{\varphi}_{i} is reducible and generic, then σ~i\widetilde{\sigma}_{i} is either the Steinberg representation twisted by a character or an irreducibly induced representation from the Borel subgroup of GL2.{\mathrm{GL}}_{2}. We make case-by-case arguments as follows.

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(i)

    Note that the Steinberg representation of GL2×GL2\mathrm{GL}_{2}\times\mathrm{GL}_{2} is of the form 𝖲𝗍GL2𝖲𝗍GL2.{\mathsf{St}}_{\mathrm{GL}_{2}}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}. We have

    ResGSpin4GL2×GL2(𝖲𝗍GL2𝖲𝗍GL2)=𝖲𝗍GSpin4{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}({\mathsf{St}}_{\mathrm{GL}_{2}}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}})={\mathsf{St}}_{\mathrm{GSpin}_{4}} (4.11)

    and

    ResGSpin4GL2×GL2(𝖲𝗍GL2χ1𝖲𝗍GL2χ2)=𝖲𝗍GSpin4χ{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left({\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi_{1}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi_{2}\right)={\mathsf{St}}_{\mathrm{GSpin}_{4}}\otimes\chi

    for some χ.\chi. We have IGSpin4(σ~){1}I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\{1\} as IG(𝖲𝗍G){1}.I^{G}(\mathsf{St}_{G})\cong\{1\}. Thus, by (4.9), the LL-packet remains a singleton and the restriction is irreducible.

    • To determine χ,\chi, we use the required properties of χ1,χ2\chi_{1},\chi_{2}. Using

      T={([a00b],[c00d])|ab=cd},T=\left\{\left(\begin{bmatrix}a&0\\ 0&b\end{bmatrix},\begin{bmatrix}c&0\\ 0&d\end{bmatrix}\right)\,\middle|\,ab=cd\right\}, (4.12)

      we have χ1(ab)=χ2(cd)χ1=χ2.\chi_{1}(ab)=\chi_{2}(cd)~{}~{}\Leftrightarrow~{}~{}\chi_{1}=\chi_{2}. Denote χ1=χ2\chi_{1}=\chi_{2} by χ\chi.

    For (4.11), we have

    NGL2()×GL2()=([0100],[0100])(4.10)NGSO4()=[0110000100010000]N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&1\\ 0&0\end{bmatrix},\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=\begin{bmatrix}0&1&1&0\\ 0&0&0&-1\\ 0&0&0&-1\\ 0&0&0&0\end{bmatrix}
  2. 𝔤𝔫𝔯\mathfrak{gnr}-(ii)

    Next we consider

    ResGSpin4GL2×GL2(iGL1×GL1GL2(χ1χ2)𝖲𝗍GL2χ).{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi\right). (4.13)

    By (4.9), the fact that σ~2≇σ~1η~\widetilde{\sigma}_{2}\not\cong\widetilde{\sigma}_{1}\widetilde{\eta} for any η~(F×)D\widetilde{\eta}\in(F^{\times})^{D}, and since IG(𝖲𝗍G){1}I^{G}(\mathsf{St}_{G})\cong\{1\}, it follows that

    IGSpin4(σ~){1}.I^{\mathrm{GSpin}_{4}}(\widetilde{\sigma})\cong\{1\}.

    Thus, the LL-packet remains a singleton and the restriction (4.13) is irreducible.

    • To describe the restriction (4.13), we proceed similarly as above. We have

      χ1(a)χ2(b)=χ(cd)=χ(ab)χ1χ1(a)=χ21χ(b)\chi_{1}(a)\chi_{2}(b)=\chi(cd)=\chi(ab)~{}~{}\Leftrightarrow~{}~{}\chi_{1}\chi^{-1}(a)=\chi_{2}^{-1}\chi(b)

      Specializing to a=ba=b and c=dc=d in the center, we have

      χ1χ2χ2=1\chi_{1}\chi_{2}\chi^{-2}=1

    For (4.13) , we have

    NGL2()×GL2()=([0000],[0100])(4.10)NGSO4()=[0010000100000000].N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=\begin{bmatrix}0&0&1&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}.
  3. 𝔤𝔫𝔯\mathfrak{gnr}-(iii)

    We consider

    ResGSpin4GL2×GL2(iGL1×GL1GL2(χ1χ2)iGL1×GL1GL2(χ3χ4))=iTGSpin4(χ1χ2,χ3χ1χ2χ31).{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{3}\otimes\chi_{4})\right)=i_{T}^{\mathrm{GSpin}_{4}}\left(\chi_{1}\otimes\chi_{2},\chi_{3}\otimes\chi_{1}\chi_{2}\chi_{3}^{-1}\right).

    Here, χ1χ2ν±1\chi_{1}\neq\chi_{2}\nu^{\pm 1} and χ3χ4ν±1.\chi_{3}\neq\chi_{4}\nu^{\pm 1}. Note that by (4.9) this induced representation may be irreducible or consist of two irreducible inequivalent constituents. We have

    NGL2()×GL2()=([0000],[0000])(4.10)NGSO4()=[0000000000000000].N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&0\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}.
  4. 𝔤𝔫𝔯\mathfrak{gnr}-(iv)

    Given a supercuspidal σ~Irr(GL2)\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}), we consider

    ResGSpin4GL2×GL2(σ~𝖲𝗍GL2χ).{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(\widetilde{\sigma}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi\right). (4.14)

    Since IG(𝖲𝗍G){1},I^{G}(\mathsf{St}_{G})\cong\{1\}, due to (4.9), the restriction (4.14) is irreducible. We then have

    NGL2()×GL2()=([0000],[0100])(4.10)NGSO4()=[0010000100000000].N_{\mathrm{GL}_{2}(\mathbb{C})\times\mathrm{GL}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=\begin{bmatrix}0&0&1&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}.
  5. 𝔤𝔫𝔯\mathfrak{gnr}-(v)

    Given supercuspidal σ~Irr(GL2),\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}), we next consider

    ResGSpin4GL2×GL2(σ~iGL1×GL1GL2(χ1χ2)).{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(\widetilde{\sigma}\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\right).

    Note from (4.9) that this may be irreducible or consist of two irreducible inequivalent constituents. We have

    NGL2()×GL2()=([0000],[0000])(4.10)NGSO4()=04×4.N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&0\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=0_{4\times 4}.

4.3. Non-Generic Representations of GSpin4\mathrm{GSpin}_{4}

If σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) is non-generic, then σ\sigma is of the form

ResGSpin4GL2×GL2((χdet)σ~),{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left((\chi\circ\det)\boxtimes\widetilde{\sigma}\right), (4.15)

with σ~Irr(GL2).\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}). Note this restriction is irreducible due to (4.9), and that as χdet\chi\circ\det is non-generic, so is the restriction σ\sigma for any σ~Irr(GL2).\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}).

For σ~=𝖲𝗍Irr(GL2),\widetilde{\sigma}=\mathsf{St}\in\operatorname*{Irr}(\mathrm{GL}_{2}), we have

NGL2()×GL2()=([0000],[0100])(4.10)NGSO4()=[0010000100000000],N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=\begin{bmatrix}0&0&1&0\\ 0&0&0&-1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},

and otherwise we have

NGL2()×GL2()=([0000],[0000])(4.10)NGSO4()=04×4.N_{{\mathrm{GL}}_{2}(\mathbb{C})\times{\mathrm{GL}}_{2}(\mathbb{C})}=\left(\begin{bmatrix}0&0\\ 0&0\end{bmatrix},\begin{bmatrix}0&0\\ 0&0\end{bmatrix}\right)\overset{\eqref{indentity}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{4}(\mathbb{C})}=0_{4\times 4}.

We summarize the above information about the representations of GSpin4\mathrm{GSpin}_{4} in Table 1.

4.4. Computation of the Adjoint LL-function for GSpin4\mathrm{GSpin}_{4}

We now give explicit expressions for the adjoint LL-function for each of the representations of GSpin4(F)\mathrm{GSpin}_{4}(F). We start by recalling that the adjoint LL-functions of the representations σ~Irr(GL2)\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}) are as follows.

L(s,σ~,Ad2)={L(s)2L(s,χ1χ21)L(s,χ11χ2), if σ~=iGL1×GL1GL2(χ1χ2) with χ1χ21ν±1;L(s)L(s+1),if σ~=𝖲𝗍GL2χ;L(s)L(s,σ~,Sym2ωσ~1), if σ~ is supercuspidal;L(s)2L(s1)L(s+1), if σ~=χdet.L(s,\widetilde{\sigma},\mathrm{Ad}_{2})=\begin{cases}L(s)^{2}L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2}),&\mbox{ if }\widetilde{\sigma}=i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\boxtimes\chi_{2})\mbox{ with }\chi_{1}\chi_{2}^{-1}\neq\nu^{\pm 1};\\ L(s)L(s+1),&~{}~{}\text{if }\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\chi;\\ L(s)L(s,\widetilde{\sigma},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}}^{-1}),&\mbox{ if }\widetilde{\sigma}\mbox{ is supercuspidal};\\ L(s)^{2}L(s-1)L(s+1),&\mbox{ if }\widetilde{\sigma}=\chi\circ\det.\end{cases}

Here, L(s)=L(s,1F×)L(s)=L(s,1_{F^{\times}}). Recall our choice of notation

L(s,σ~,Ad2)=L(s)L(s,σ~,Ad).L(s,\widetilde{\sigma},\mathrm{Ad}_{2})=L(s)L(s,\widetilde{\sigma},\mathrm{Ad}).

Combining with (2.14), Sections 4.2.1 and 4.2.2, we have the following.

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(a)&(b)

    Given a supercuspidal σIrr(GSpin4),\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}), we recall that

    σResGSpin4GL2×GL2(σ~1σ~2)\sigma\subset{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2})

    for some supercuspidal σ~1σ~2Irr(GL2×GL2).\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\in\operatorname*{Irr}(\mathrm{GL}_{2}\times\mathrm{GL}_{2}). By (2.15) we have

    L(s,σ,Ad)=L(s,σ~1,Sym2ωσ~11)L(s,σ~2,Sym2ωσ~21).L(s,\sigma,\mathrm{Ad})=L(s,\widetilde{\sigma}_{1},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{1}}^{-1})L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1}).
  1. 𝔤𝔫𝔯\mathfrak{gnr}-(i)

    Given

    σ=𝖲𝗍GSpin4χIrr(GSpin4),\sigma=\mathsf{St}_{\mathrm{GSpin}_{4}}\otimes\chi\in\operatorname*{Irr}(\mathrm{GSpin}_{4}),

    by (2.15) we have

    L(s,σ,Ad)=L(s+1)2.L(s,\sigma,\mathrm{Ad})=L(s+1)^{2}.
  2. 𝔤𝔫𝔯\mathfrak{gnr}-(ii)

    Given σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) such that

    σ=ResGSpin4GL2×GL2(iGL1×GL1GL2(χ1χ2)𝖲𝗍GL2χ),\sigma={\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi\right),

    by (2.15) we have

    L(s,σ,Ad)=L(s)L(s,χ1χ21)L(s,χ11χ2)L(s+1).L(s,\sigma,\mathrm{Ad})=L(s)L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2})L(s+1).
  3. 𝔤𝔫𝔯\mathfrak{gnr}-(iii)

    Given σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) such that

    σResGSpin4GL2×GL2(iGL1×GL1GL2(χ1χ2)iGL1×GL1GL2(χ3χ4))\sigma\subset{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{3}\otimes\chi_{4})\right)

    by (2.15) we have

    L(s,σ,Ad)=L(s)2L(s,χ1χ21)L(s,χ11χ2)L(s,χ3χ41)L(s,χ31χ4).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2})L(s,\chi_{3}\chi_{4}^{-1})L(s,\chi_{3}^{-1}\chi_{4}).
  4. 𝔤𝔫𝔯\mathfrak{gnr}-(iv)

    Given σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) such that

    σ=ResGSpin4GL2×GL2(σ~𝖲𝗍GL2χ)\sigma={\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(\widetilde{\sigma}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi\right)

    by (2.15) we have

    L(s,σ,Ad)=L(s,σ~2,Sym2ωσ~21)L(s+1).L(s,\sigma,\mathrm{Ad})=L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1})L(s+1).
  5. 𝔤𝔫𝔯\mathfrak{gnr}-(v)

    Given σIrr(GSpin4)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}) such that

    σResGSpin4GL2×GL2(σ~iGL1×GL1GL2(χ1χ2))\sigma\subset{\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}\left(\widetilde{\sigma}\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\right)

    by (2.15) we have

    L(s,σ,Ad)=L(s)L(s,σ~2,Sym2ωσ~21)L(s,χ1χ21)L(s,χ11χ2).L(s,\sigma,\mathrm{Ad})=L(s)L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1})L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2}).
  1. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}

    Given a non-generic σIrr(GSpin4),\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{4}), from (4.15), we recall that

    σ=ResGSpin4GL2×GL2(χdetσ~)\sigma={\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}(\chi\circ\det\,\boxtimes\,\widetilde{\sigma})

    and by (2.15) we have

    L(s,σ,Ad)=L(s)L(s1)L(s+1)L(s,σ~,Ad).L(s,\sigma,\mathrm{Ad})=L(s)L(s-1)L(s+1)L(s,\widetilde{\sigma},\mathrm{Ad}).

We summarize the explicit computations above in Table 2.

5. Representations of GSpin6\mathrm{GSpin}_{6}

We now list all the representations of GSpin6(F)\mathrm{GSpin}_{6}(F) and then calculate their associated adjoint LL-function explicitly. Again, we do this explicit calculation by finding the 6×66\times 6 nilpotent matrix in the complex dual group GSO6()\mathrm{GSO}_{6}(\mathbb{C}) in each case that is associated with the parameter of the representation.

5.1. The Represenations

5.1.1. Classification of representations of GSpin6\mathrm{GSpin}_{6}

Again, following [AC17], we have

1GSpin6(F)GL1(F)×GL4(F)F×1.1\longrightarrow{\mathrm{GSpin}}_{6}(F)\longrightarrow{\mathrm{GL}}_{1}(F)\times{\mathrm{GL}}_{4}(F)\longrightarrow F^{\times}\longrightarrow 1. (5.1)

Recall that

GSpin6(F){(g1,g2)GL1(F)×GL4(F):g12=detg2},{\mathrm{GSpin}}_{6}(F)\cong\left\{(g_{1},g_{2})\in{\mathrm{GL}}_{1}(F)\times{\mathrm{GL}}_{4}(F):g_{1}^{2}=\det g_{2}\right\}, (5.2)
GSpin6L=GSpin6^=GSO6()(GL1()×GL4())/{(z2,z):z×},{{}^{L}{\mathrm{GSpin}}_{6}}=\widehat{{\mathrm{GSpin}}_{6}}={\mathrm{GSO}}_{6}(\mathbb{C})\cong({\mathrm{GL}}_{1}(\mathbb{C})\times{\mathrm{GL}}_{4}(\mathbb{C}))/\{(z^{-2},z):z\in\mathbb{C}^{\times}\}, (5.3)

and

1×GL1()×GL4()pr6GSpin6^1.1\longrightarrow\mathbb{C}^{\times}\longrightarrow{\mathrm{GL}}_{1}(\mathbb{C})\times{\mathrm{GL}}_{4}(\mathbb{C})\overset{pr_{6}}{\longrightarrow}\widehat{{\mathrm{GSpin}}_{6}}\longrightarrow 1. (5.4)

Just as the rank two case, here too we view GSO6\mathrm{GSO}_{6} as the group similitude orthogonal 6×66\times 6 matrices with respect to the analogous 6×66\times 6, anti-diagonal, matrix J=J6J=J_{6} as in (4.5), and similarly define its Lie algebra with respect to JJ.

5.1.2. Construction of the LL-packets of GSpin6\mathrm{GSpin}_{6} (recalled from [AC17])

Given σIrr(GSpin6)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{6}) we have a lift σ~Irr(GL1×GL4)\widetilde{\sigma}\in\operatorname*{Irr}({\mathrm{GL}}_{1}\times{\mathrm{GL}}_{4}) such that

σResGSpin6GL1×GL4(σ~).\sigma\hookrightarrow{\operatorname*{Res}}_{{\mathrm{GSpin}}_{6}}^{\mathrm{GL}_{1}\times\mathrm{GL}_{4}}(\widetilde{\sigma}).

It follows from the LLC for GLnGL_{n} [HT01, Hen00, Sch13] that there is a unique φ~σ~Φ(GL1×GL4)\widetilde{\varphi}_{\widetilde{\sigma}}\in\Phi({\mathrm{GL}}_{1}\times{\mathrm{GL}}_{4}) corresponding to the representation σ~.\widetilde{\sigma}. We now have a surjective, finite-to-one map

6:Irr(GSpin6)\displaystyle{\mathcal{L}}_{6}:{\operatorname*{Irr}}({\mathrm{GSpin}}_{6}) \displaystyle\longrightarrow Φ(GSpin6)\displaystyle\Phi({\mathrm{GSpin}}_{6}) (5.5)
σ\displaystyle\sigma \displaystyle\longmapsto pr6φ~σ~,\displaystyle pr_{6}\circ\widetilde{\varphi}_{\widetilde{\sigma}},

which does not depend on the choice of the lifting σ~.\widetilde{\sigma}. Then, for each φΦ(GSpin6),\varphi\in\Phi({\mathrm{GSpin}}_{6}), all inequivalent irreducible constituents of σ~\widetilde{\sigma} constitutes the LL-packet

Πφ(GSpin6):=Πσ~(GSpin6)={σ:σResGSpin6GL1×GL4(σ~)}/,\Pi_{\varphi}({\mathrm{GSpin}}_{6}):=\Pi_{\widetilde{\sigma}}({\mathrm{GSpin}}_{6})=\left\{\sigma:\sigma\hookrightarrow{\operatorname*{Res}}_{{\mathrm{GSpin}}_{6}}^{\mathrm{GL}_{1}\times\mathrm{GL}_{4}}(\widetilde{\sigma})\right\}\Big{/}\cong, (5.6)

where σ~\widetilde{\sigma} is the unique member of Πφ~(GL1×GL4)\Pi_{\widetilde{\varphi}}(\mathrm{GL}_{1}\times\mathrm{GL}_{4}) and φ~Φ(GL1×GL4)\widetilde{\varphi}\in\Phi(\mathrm{GL}_{1}\times\mathrm{GL}_{4}) is such that pr6φ~=φ.pr_{6}\circ\widetilde{\varphi}=\varphi. We note that the construction does not depends on the choice of φ~\widetilde{\varphi}. Further details can be found in [AC17, Section 6.1].

Following [AC17, Section 6.3], given φΦ(GSpin6),\varphi\in\Phi(\mathrm{GSpin}_{6}), fix the lift

φ~=η~φ~0Φ(GL1×GL4)\widetilde{\varphi}=\widetilde{\eta}\otimes\widetilde{\varphi}_{0}\in\Phi({\mathrm{GL}}_{1}\times{\mathrm{GL}}_{4})

with φ~0Φ(GL4)\widetilde{\varphi}_{0}\in\Phi({\mathrm{GL}}_{4}) such that φ=pr6φ~\varphi=pr_{6}\circ\widetilde{\varphi}. Let

σ~=η~σ~0Πφ~(GL1×GL4)\widetilde{\sigma}=\widetilde{\eta}\boxtimes\widetilde{\sigma}_{0}\in\Pi_{\widetilde{\varphi}}({\mathrm{GL}}_{1}\times{\mathrm{GL}}_{4})

be the unique member such that {σ~0}=Πφ~0(GL4).\{\widetilde{\sigma}_{0}\}=\Pi_{\widetilde{\varphi}_{0}}({\mathrm{GL}}_{4}).

Recall that

IGSpin6(σ~):={χ~(GL1(F)×GL4(F)/GSpin6(F))D:σ~χ~σ~}.I^{\mathrm{GSpin}_{6}}(\widetilde{\sigma}):=\left\{\widetilde{\chi}\in\Big{(}{\mathrm{GL}}_{1}(F)\times{\mathrm{GL}}_{4}(F)/{\mathrm{GSpin}}_{6}(F)\Big{)}^{D}:\widetilde{\sigma}\otimes\widetilde{\chi}\cong\widetilde{\sigma}\right\}.

Then we have

Πφ(GSpin6)11IGSpin6(σ~),\Pi_{\varphi}({\mathrm{GSpin}}_{6})\,\overset{1-1}{\longleftrightarrow}\,I^{\mathrm{GSpin}_{6}}(\widetilde{\sigma}), (5.7)

and by [AC17, Lemma 6.5 and Proposition 6.6] we have

IGSpin6(σ~){χ~ISL4(σ~0):χ~2=1F×}I^{\mathrm{GSpin}_{6}}(\widetilde{\sigma})\cong\{\widetilde{\chi}\in I^{\mathrm{SL}_{4}}(\widetilde{\sigma}_{0}):\widetilde{\chi}^{2}=1_{F^{\times}}\} (5.8)

and any χ~IGSpin6(σ~)\widetilde{\chi}\in I^{\mathrm{GSpin}_{6}}(\widetilde{\sigma}) is of the form

χ~=(χ~)2χ~,\widetilde{\chi}=(\widetilde{\chi}^{\prime})^{-2}\boxtimes\widetilde{\chi}^{\prime},

for some χ~(F×)D.\widetilde{\chi}^{\prime}\in(F^{\times})^{D}.

5.2. Generic Representations of GSpin6\mathrm{GSpin}_{6}

Thanks to the group structure (5.2) and the relation of generic representations in Section 3.1, in order to classify the generic representations of GSpin6,\mathrm{GSpin}_{6}, it suffices to classify the generic representations of GL4GL_{4}.

Here are two key facts from the GL\mathrm{GL} theory.

  • Recall from [Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1] that a generic representation of GL4\mathrm{GL}_{4} is of the form

    iMGL4(σ)i_{M_{\flat}}^{GL_{4}}(\sigma_{\flat})

    where MM_{\flat} runs through any FF-Levi subgroup of GL4\mathrm{GL}_{4} (including GL4\mathrm{GL}_{4} itself) and σ\sigma_{\flat} is any essentially square-integrable representation of M.M_{\flat}.

  • For their LL-parameters, we note from [Kud94, §5.2] that the generic representations of GL4GL_{4} have Langlands parameters (i.e., 4-dimensional Weil-Deligne representations (ρ,N)(\rho,N)) of the form

    (ρ1sp(r1))..(ρtsp(rt))(\rho_{1}\otimes sp(r_{1}))\otimes..\otimes(\rho_{t}\otimes sp(r_{t}))

    with t4,t\leq 4, where ρi\rho_{i}’s are irreducible and no two segments are linked.

5.2.1. Irreducible Parameters

Let φΦ(GSpin6)\varphi\in\Phi(\mathrm{GSpin}_{6}) be irreducible. Then φ~\widetilde{\varphi} and φ~0\widetilde{\varphi}_{0} are also irreducible. By Section 3.1, we have the following.

Proposition 5.1.

Let φΦ(GSpin6)\varphi\in\Phi(\mathrm{GSpin}_{6}) be irreducible. Every member in Πφ(GSpin6)\Pi_{\varphi}(\mathrm{GSpin}_{6}) is supercuspidal and generic.

To see the internal structure of Πφ(GSpin6),\Pi_{\varphi}(\mathrm{GSpin}_{6}), we need, by (5.7), to know the detailed structure of IGSpin6(σ~)I^{\mathrm{GSpin}_{6}}(\widetilde{\sigma}) as follows.

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(a)

    Given σIrrsc(GSpin6),\sigma\in\operatorname*{Irr}_{\rm sc}(\mathrm{GSpin}_{6}), we have

    σ~=σ~0η~Irrsc(GL4×GL1).\widetilde{\sigma}=\widetilde{\sigma}_{0}\boxtimes\widetilde{\eta}\in{\operatorname*{Irr}}_{\rm sc}(\mathrm{GL}_{4}\times\mathrm{GL}_{1}). (5.9)

    From [AC17, Proposition 2.1], we recall the identification:

    Δ={β1=f2f3,β2=f1f2,β3=f3f4}.\Delta^{\vee}=\left\{\beta^{\vee}_{1}=f^{*}_{2}-f^{*}_{3},\beta^{\vee}_{2}=f^{*}_{1}-f^{*}_{2},\beta^{\vee}_{3}=f^{*}_{3}-f^{*}_{4}\right\}. (5.10)

    using the notation fijf_{ij} and fij,f^{*}_{ij}, 1i,j4,1\leq i,j\leq 4, for the usual \mathbb{Z}-basis of characters and cocharacters of GL4\mathrm{GL}_{4}. Also, {β1,β2,β3}\{\beta_{1},\beta_{2},\beta_{3}\} are the simple roots of GSpin6\mathrm{GSpin}_{6}.

    We have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

5.2.2. Reducible Parameters

When φ~0\widetilde{\varphi}_{0} is not irreducible, we have proper parabolic inductions. An exhaustive list of FF-Levi subgroups 𝐌\mathbf{M} of GSpin6\mathrm{GSpin}_{6} (up to isomorphism) is as follows.

  • 𝐌GL1×GL1×GL1×GL1=𝕄~GSpin6\mathbf{M}\cong\mathrm{GL}_{1}\times GL_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}=\widetilde{\mathbb{M}}\cap\mathrm{GSpin}_{6}, where 𝕄~=(GL1×GL1×GL1×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

  • 𝐌GL2×GL1×GL1=𝕄~GSpin6\mathbf{M}\cong\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}=\widetilde{\mathbb{M}}\cap\mathrm{GSpin}_{6}, where 𝕄~=(GL2×GL1×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

  • 𝐌GL3×GL1=𝕄~GSpin6\mathbf{M}\cong\mathrm{GL}_{3}\times\mathrm{GL}_{1}=\widetilde{\mathbb{M}}\cap\mathrm{GSpin}_{6}, where 𝕄~=(GL3×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}. (Note: The factor GL1\mathrm{GL}_{1} of 𝐌\mathbf{M} is GSpin0\mathrm{GSpin}_{0} by convention.)

  • 𝐌GL1×GSpin4=𝕄~GSpin6\mathbf{M}\cong\mathrm{GL}_{1}\times\mathrm{GSpin}_{4}=\widetilde{\mathbb{M}}\cap\mathrm{GSpin}_{6}, where 𝕄~=(GL2×GL2)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}.

  • 𝐌GSpin6=𝕄~GSpin6,\mathbf{M}\cong\mathrm{GSpin}_{6}=\widetilde{\mathbb{M}}\cap\mathrm{GSpin}_{6}, where 𝕄~=GL4×GL1.\widetilde{\mathbb{M}}=\mathrm{GL}_{4}\times\mathrm{GL}_{1}.

(Note that 𝐌GL2×GL2\mathbf{M}\cong\mathrm{GL}_{2}\times\mathrm{GL}_{2} does not occur on this list.) We now consider each case and, by abuse of notation, conflate algebraic groups and their FF-points.

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(I)

    𝐌GL1×GL1×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{1}\times GL_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL1×GL1×GL1×GL1)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given χi(F×)D\chi_{i}\in(F^{\times})^{D} we consider

    iMGSpin6(χ1χ2χ3χ4).i_{M}^{\mathrm{GSpin}_{6}}(\chi_{1}\boxtimes\chi_{2}\boxtimes\chi_{3}\boxtimes\chi_{4}). (5.11)

    Write χ1χ2χ3χ4=(χ~1χ~2χ~3χ~4η~)|M\chi_{1}\boxtimes\chi_{2}\boxtimes\chi_{3}\boxtimes\chi_{4}=(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta})|_{M} with χ~i,η~(F×)D\widetilde{\chi}_{i},\widetilde{\eta}\in(F^{\times})^{D} so that

    χ~1χ~2χ~3χ~4=η~2.\widetilde{\chi}_{1}\widetilde{\chi}_{2}\widetilde{\chi}_{3}\widetilde{\chi}_{4}=\widetilde{\eta}^{2}.

    Then we have the following relations

    χ1=χ~1,χ2=χ~2,χ3=χ~3,χ4=η~2(χ~2χ~3χ~4)1.\chi_{1}=\widetilde{\chi}_{1},~{}\chi_{2}=\widetilde{\chi}_{2},~{}\chi_{3}=\widetilde{\chi}_{3},~{}\chi_{4}=\widetilde{\eta}^{2}(\widetilde{\chi}_{2}\widetilde{\chi}_{3}\widetilde{\chi}_{4})^{-1}. (5.12)

    By Section 3.1, we know that the representation (5.11) is generic if and only if its lift

    iM~GL4×GL1(χ~1χ~2χ~3χ~4η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta}) (5.13)

    is generic if and only if

    iGL1×GL1×GL1×GL1GL4(χ~1χ~2χ~3χ~4)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}) (5.14)

    is generic. By the classification of the generic representations of GLn\mathrm{GL}_{n} ([Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1]), this amounts to (5.14) being irreducible. By [Kud94, Theorem 2.1.1] and [BZ77, Zel80], the necessary and sufficient condition for this to occur is that there is no pair i,ji,j with iji\neq j such that

    χ~i=νχ~j.\widetilde{\chi}_{i}=\nu\widetilde{\chi}_{j}.

    We have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}
  2. 𝔤𝔫𝔯\mathfrak{gnr}-(II)

    𝐌GL2×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL2×GL1×GL1)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given σ0Irresq(GL2)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}) and χ1,χ2(F×)D\chi_{1},\chi_{2}\in(F^{\times})^{D}, we consider

    iMGSpin6(σ0χ1χ2).i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi_{1}\boxtimes\chi_{2}). (5.15)

    Write σ0χ1χ2=(σ~0χ~1χ~2η~)|M\sigma_{0}\boxtimes\chi_{1}\boxtimes\chi_{2}=(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta})|_{M} with σ~0Irresq(GL2),χ~i,η~(F×)D\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\widetilde{\chi}_{i},\widetilde{\eta}\in(F^{\times})^{D}.

    Given (g,h1,h2,h3)M~(g,h_{1},h_{2},h_{3})\in\widetilde{M} with det(gh1h2)=h32,\det(gh_{1}h_{2})=h_{3}^{2},

    • if we set (g,h1,h3)M(g,h_{1},h_{3})\in M, we have

      σ~0(g)χ~1(h1)χ~2(h2)η~(h3)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}_{1}(h_{1})\widetilde{\chi}_{2}(h_{2})\widetilde{\eta}(h_{3}) =\displaystyle= σ~0(g)χ~1(h1)χ~2(detg1h11h32)η~(h3)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}_{1}(h_{1})\widetilde{\chi}_{2}(\det g^{-1}h_{1}^{-1}h_{3}^{2})\widetilde{\eta}(h_{3})
      =\displaystyle= (σ~0χ~21det)(g)(χ~1χ~21)(h1)(χ~22η~)(h3)\displaystyle(\widetilde{\sigma}_{0}\widetilde{\chi}^{-1}_{2}\circ\det)(g)(\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})(h_{1})(\widetilde{\chi}_{2}^{2}\widetilde{\eta})(h_{3})
      =\displaystyle= σ(g)χ1(h1)χ2(h3).\displaystyle\sigma(g)\chi_{1}(h_{1})\chi_{2}(h_{3}).

      Then we have

      σ~0=σ0χ~2,χ~1=χ1χ~2,η~=χ2χ~22.\widetilde{\sigma}_{0}=\sigma_{0}\widetilde{\chi}_{2},~{}~{}\widetilde{\chi}_{1}=\chi_{1}\widetilde{\chi}_{2},~{}~{}\widetilde{\eta}=\chi_{2}\widetilde{\chi}_{2}^{-2}.
    • If we set (g,h2,h3)M(g,h_{2},h_{3})\in M, we have

      σ~0(g)χ~1(h1)χ~2(h2)η~(h3)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}_{1}(h_{1})\widetilde{\chi}_{2}(h_{2})\widetilde{\eta}(h_{3}) =\displaystyle= σ~0(g)χ~1(detg1h21h32)χ~2(h2)η~(h3)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}_{1}(\det g^{-1}h_{2}^{-1}h_{3}^{2})\widetilde{\chi}_{2}(h_{2})\widetilde{\eta}(h_{3})
      =\displaystyle= (σ~0χ~11det)(g)(χ~2χ~11)(h2)(χ~12η~)(h3)\displaystyle(\widetilde{\sigma}_{0}\widetilde{\chi}^{-1}_{1}\circ\det)(g)(\widetilde{\chi}_{2}\widetilde{\chi}_{1}^{-1})(h_{2})(\widetilde{\chi}_{1}^{2}\widetilde{\eta})(h_{3})
      =\displaystyle= σ(g)χ1(h2)χ2(h3).\displaystyle\sigma(g)\chi_{1}(h_{2})\chi_{2}(h_{3}).

      Then we have

      σ~0=σ0χ~1,χ~2=χ2χ~1,η~=χ1χ~12.\widetilde{\sigma}_{0}=\sigma_{0}\widetilde{\chi}_{1},~{}~{}\widetilde{\chi}_{2}=\chi_{2}\widetilde{\chi}_{1},~{}~{}\widetilde{\eta}=\chi_{1}\widetilde{\chi}_{1}^{-2}. (5.16)

    As before, the representation (5.15) is generic if and only if its lift

    iM~GL4×GL1(σ~0χ~1χ~2η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta}) (5.17)

    is generic if and only if

    iGL2×GL1×GL1GL4(σ~0χ~1χ~2)i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}) (5.18)

    is generic. Again by the classification of the generic representations of GLn\mathrm{GL}_{n} this amounts to (5.18) being irreducible. Hence, we must have

    χ~1ν±1χ~2.\widetilde{\chi}_{1}\neq\nu^{\pm 1}\widetilde{\chi}_{2}.

    In other words, given (g,h1,h2,h3)M~(g,h_{1},h_{2},h_{3})\in\widetilde{M} with det(gh1h2)=h32,\det(gh_{1}h_{2})=h_{3}^{2},

    • if we set (g,h1,h3)M,(g,h_{1},h_{3})\in M, then

      χ1ν±1;\chi_{1}\neq\nu^{\pm 1};
    • if we set (g,h2,h3)M,(g,h_{2},h_{3})\in M, then

      χ2ν±1.\chi_{2}\neq\nu^{\pm 1}.

    We have the following two cases. If σ0\sigma_{0} is supercuspidal, then

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

    If σ0\sigma_{0} is non-supercuspidal, then

    NGL4()×GL1()=([0100000000000000],0)(5.10)NGSO6()=[000000001000000000000010000000000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix}.
  3. 𝔤𝔫𝔯\mathfrak{gnr}-(III)

    𝐌GL3×GL1\mathbf{M}\cong\mathrm{GL}_{3}\times\mathrm{GL}_{1} and 𝕄~=(GL3×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given σ0Irresq(GL3)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}) and χ(F×)D\chi\in(F^{\times})^{D}, we consider

    iMGSpin6(σ0χ).i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi). (5.19)

    Write σ0χ=(σ~0χ~η~)|M\sigma_{0}\boxtimes\chi=(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta})|_{M} with σ~0Irresq(GL3),χ~,η~(F×)D.\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}),\widetilde{\chi},\widetilde{\eta}\in(F^{\times})^{D}.

    Given (g,h1,h2)M~(g,h_{1},h_{2})\in\widetilde{M} with det(gh1)=h22\det(gh_{1})=h_{2}^{2}, if we set (g,h2)M(g,h_{2})\in M, then we have

    σ~0(g)χ~(h1)η~(h2)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}(h_{1})\widetilde{\eta}(h_{2}) =\displaystyle= σ~0(g)χ~(detg1h22)η~(h2)\displaystyle\widetilde{\sigma}_{0}(g)\widetilde{\chi}(\det g^{-1}h_{2}^{2})\widetilde{\eta}(h_{2})
    =\displaystyle= (σ~0χ~1det)(g)(χ~2η~)(h2)\displaystyle(\widetilde{\sigma}_{0}\widetilde{\chi}^{-1}\circ\det)(g)(\widetilde{\chi}^{2}\widetilde{\eta})(h_{2})
    =\displaystyle= σ(g)χ(h2).\displaystyle\sigma(g)\chi(h_{2}).

    Then, we have

    σ~0=σ0χ~ and η~=χ2χ~2.\widetilde{\sigma}_{0}=\sigma_{0}\widetilde{\chi}\quad\mbox{ and }\quad\widetilde{\eta}=\chi_{2}\widetilde{\chi}^{-2}.

    As before, (5.19) is generic if and only if its lift

    iM~GL4×GL1(σ~0χ~η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta}) (5.21)

    is generic if and only if

    iGL3×GL1GL4(σ~0χ~)i_{\mathrm{GL}_{3}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}) (5.22)

    is generic. This amounts to (5.22) being irreducible as before, which is always true since σ~0\widetilde{\sigma}_{0} is an essentially square integrable representation of GL3\mathrm{GL}_{3}. Note that by the classification of essentially square-integrable representations of GL3\mathrm{GL}_{3} ([Kud94, Proposition 1.1.2]), σ~0\widetilde{\sigma}_{0} must be either supercuspidal or the unique subrepresentation of

    iGL1×GL1×GL1GL3(νχχν1χ)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{3}}\left(\nu\chi\boxtimes\chi\boxtimes\nu^{-1}\chi\right) (5.23)

    with any χ(F×)D.\chi\in(F^{\times})^{D}.

    We have the following two cases. If σ0\sigma_{0} is supercuspidal, then

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

    If σ0\sigma_{0} is the non-supercuspidal, unique, subrepresentation of (5.23), then

    NGL4()×GL1()=([0100001000000000],0)(5.10)NGSO6()=[010000001000000000000010000001000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix}.
  4. 𝔤𝔫𝔯\mathfrak{gnr}-(IV)

    𝐌GL1×GSpin4\mathbf{M}\cong\mathrm{GL}_{1}\times\mathrm{GSpin}_{4} and 𝕄~=(GL2×GL2)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}.

    Given σ0Irresq(GSpin4)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GSpin}_{4}) and χ(F×)D\chi\in(F^{\times})^{D} we consider

    iMGSpin6(χσ0).i_{M}^{\mathrm{GSpin}_{6}}(\chi\boxtimes\sigma_{0}). (5.24)

    Write χσ0(σ~1σ~2η~)|M\chi\boxtimes\sigma_{0}\subset(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\boxtimes\widetilde{\eta})|_{M} with σ~iIrresq(GL2),η~(F×)D.\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\widetilde{\eta}\in(F^{\times})^{D}.

    As before, (5.24) is generic if and only if its lift

    iM~GL4×GL1(σ~1σ~2η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\boxtimes\widetilde{\eta}) (5.25)

    is generic if and only if

    iGL2×GL2GL4(σ~1σ~2)i_{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}^{GL_{4}}(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}) (5.26)

    is generic. This amounts to (5.26) being irreducible. Thus, we must have

    σ~1ν±1σ~2.\widetilde{\sigma}_{1}\neq\nu^{\pm 1}\widetilde{\sigma}_{2}.

    We have several cases to consider. If σ0\sigma_{0} is supercuspidal (so are σ~1\widetilde{\sigma}_{1} and σ~2\widetilde{\sigma}_{2}), then

    NGL4()×GL1()=(04×40)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4}0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

    If σ0\sigma_{0} is non-supercuspidal, then for supercuspidal σ~1\widetilde{\sigma}_{1} and non-supercuspidal σ~2\widetilde{\sigma}_{2} we have

    NGL4()×GL1()=([0000000000010000],0)(5.10)NGSO6()=[000000000100000010000000000000000000];N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix};

    for non-supercuspidal σ~1\widetilde{\sigma}_{1} and supercuspidal σ~2\widetilde{\sigma}_{2} we have

    NGL4()×GL1()=([0100000000000000],0)(5.10)NGSO6()=[000000001000000000000010000000000000];N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix};

    and for non-supercuspidal σ~1\widetilde{\sigma}_{1} and σ~2\widetilde{\sigma}_{2} we have

    NGL4()×GL1()=([0100000000010000],0)(5.10)NGSO6()=[000000001100000010000010000000000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix}.
  5. 𝔤𝔫𝔯\mathfrak{gnr}-(V)

    𝐌GSpin6\mathbf{M}\cong\mathrm{GSpin}_{6} and 𝕄~=GL4×GL1.\widetilde{\mathbb{M}}=\mathrm{GL}_{4}\times\mathrm{GL}_{1}.

    Given σIrresq(GSpin6)Irrsc(GSpin6)\sigma\in\operatorname*{Irr}_{\rm esq}(\mathrm{GSpin}_{6})\setminus\operatorname*{Irr}_{\rm sc}(\mathrm{GSpin}_{6}), we consider

    σ(σ~η~)|M\sigma\subset(\widetilde{\sigma}\boxtimes\widetilde{\eta})|_{M}

    with σ~Irresq(GL4)Irrsc(GL4),η~(F×)D.\widetilde{\sigma}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{4})\setminus\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4}),\widetilde{\eta}\in(F^{\times})^{D}. Here, we note that φΦ(GSpin6)\varphi\in\Phi(\mathrm{GSpin}_{6}) is not irreducible and neither σ~\widetilde{\sigma} nor σ\sigma is supercuspidal. It is clear that σ\sigma is generic as σ~η~\widetilde{\sigma}\boxtimes\widetilde{\eta} is. By the classification of essentially square-integrable representations of GL4\mathrm{GL}_{4} ([Kud94, Proposition 1.1.2]), σ~\widetilde{\sigma} must be the unique subrepresentation of either

    iGL1×GL1×GL1×GL1GL4(ν3/2χ~ν1/2χ~ν1/2χ~ν3/2χ~)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}}\left(\nu^{3/2}\widetilde{\chi}\boxtimes\nu^{1/2}\widetilde{\chi}\boxtimes\nu^{-1/2}\widetilde{\chi}\boxtimes\nu^{-3/2}\widetilde{\chi}\right) (5.27)

    with any χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D} (i.e., σ~=𝖲𝗍GL4χ~\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{4}}\otimes\widetilde{\chi}), or of

    iGL2×GL2GL4(ν1/2τ~ν1/2τ~)i_{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}^{\mathrm{GL}_{4}}\left(\nu^{1/2}\widetilde{\tau}\boxtimes\nu^{-1/2}\widetilde{\tau}\right) (5.28)

    with any τ~Irrsc(GL2)\widetilde{\tau}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2}).

    Now, for (5.27) we have

    NGL4()×GL1()=([0100001000010000],0)(5.10)NGSO6()=[010000001100000010000010000001000000];N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&1&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix};

    and for (5.28) we have

    NGL4()×GL1()=([0010000100000000],0)(5.10)NGSO6()=[001100000000000001000001000000000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&1&1&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix}.

(We note, cf. [Tat79, (4.1.5)], that NGL4()N_{{\mathrm{GL}}_{4}(\mathbb{C})} is of the form O2×2I2×2+[0100]I2×2.O_{2\times 2}\otimes I_{2\times 2}+\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\otimes I_{2\times 2}.)

5.3. Non-Generic Representaions of GSpin6\mathrm{GSpin}_{6}

Using the transitivity of the parabolic induction and the classification of generic representations of GLn\mathrm{GL}_{n}, ([Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1]), the non-generic representations of GSpin6\mathrm{GSpin}_{6} are as follows.

  1. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A)

    𝐌GL1×GL1×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{1}\times GL_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL1×GL1×GL1×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given χi(F×)D\chi_{i}\in(F^{\times})^{D}, by Section 3.1 and using (5.12), the representation (5.11) contains a non-generic constituent if and only if the same is true for

    iM~GL4×GL1(χ~1χ~2χ~3χ~4η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta}) (5.29)

    if and only if

    iGL1×GL1×GL1×GL1GL4(χ~1χ~2χ~3χ~4)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}) (5.30)

    contains a non-generic constituent. This amounts to (5.30) being reducible. As before, the necessary and sufficient condition for this to occur is that there is some pair i,ji,j with iji\neq j such that χ~i=νχ~j\widetilde{\chi}_{i}=\nu\widetilde{\chi}_{j}.

    By the Langlands classification and the description of constituents of the parabolic induction (see [Zel80, Theorem 7.1], [Rod82, Theorem 7.1], and [Kud94, Theorems 2.1.1 §5.1.1]), each constituent can be described as a Langlands quotient, denoted by Q()Q(...), as follows.

    The first case is when there is only one pair, say χ~1=ν1/2χ~\widetilde{\chi}_{1}=\nu^{1/2}\widetilde{\chi} and χ~2=ν1/2χ~\widetilde{\chi}_{2}=\nu^{-1/2}\widetilde{\chi} for some χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D} while χ~3ν±1χ~j\widetilde{\chi}_{3}\neq\nu^{\pm 1}\widetilde{\chi}_{j} for j3j\neq 3 and χ~4ν±1χ~j\widetilde{\chi}_{4}\neq\nu^{\pm 1}\widetilde{\chi}_{j} for j4.j\neq 4. Then we have the non-generic constituent

    Q([ν1/2χ~],[ν1/2χ~],[χ~3],[χ~4]),Q\left([\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\widetilde{\chi}_{3}],[\widetilde{\chi}_{4}]\right), (5.31)

    which is the Langlands quotient of

    iGL2×GL1×GL1GL4(Q([ν1/2χ~],[ν1/2χ~])χ~3χ~4)=iGL2×GL1×GL1GL4((χ~det)χ~3χ~4).i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}\left(Q\left([\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}]\right)\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\right)=i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}\left(\left(\widetilde{\chi}\circ\det\right)\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\right).

    We have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

    Note that the other constituent of this induced representation, which is generic, is

    Q([ν1/2χ~,ν1/2χ~],[χ~3],[χ~4])\displaystyle Q\left([\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}],[\widetilde{\chi}_{3}],[\widetilde{\chi}_{4}]\right) =\displaystyle= iGL2×GL1×GL1GL4(Q([ν1/2χ~,ν1/2χ~])χ~3χ~4)\displaystyle i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}\left(Q\left([\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}]\right)\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\right)
    =\displaystyle= iGL2×GL1×GL1GL4((𝖲𝗍χ~)χ~3χ~4).\displaystyle i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}\left((\mathsf{St}\otimes\widetilde{\chi})\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\right).

    The next case is when there are two pairs, say χ~1=νχ~\widetilde{\chi}_{1}=\nu\widetilde{\chi}, χ~2=χ~\widetilde{\chi}_{2}=\widetilde{\chi}, and χ~3=ν1χ~\widetilde{\chi}_{3}=\nu^{-1}\widetilde{\chi} for some χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D} and χ~4ν±1χ~i\widetilde{\chi}_{4}\neq\nu^{\pm 1}\widetilde{\chi}_{i} for i=1,2,3i=1,2,3. Then we have the following three non-generic constituents:

    Q([νχ~],[χ~],[ν1χ~],[χ~4])\displaystyle Q\left([\nu\widetilde{\chi}],[\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right) =\displaystyle= iGL3×GL1GL4((χ~det)χ~3χ~4);\displaystyle i_{\mathrm{GL}_{3}\times\mathrm{GL}_{1}}^{GL_{4}}((\widetilde{\chi}\circ\det)\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}); (5.32)
    Q([χ~,νχ~],[ν1χ~],[χ~4]);\displaystyle Q\left([\widetilde{\chi},\nu\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right); (5.33)
    Q([νχ~],[χ~,ν1χ~],[χ~4]).\displaystyle Q\left([\nu\widetilde{\chi}],[\widetilde{\chi},\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right). (5.34)

    For (5.32) we have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6,N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6},

    for (5.33) we have

    NGL4()×GL1()=([0100000000000000],0)(5.10)NGSO6()=[000000001000000000000010000000000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix},

    and for (5.34) we have

    NGL4()×GL1()=([0000001000000000],0)(5.10)NGSO6()=[010000000000000000000000000001000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix}.

    Finally, in the case where we have three pairs we are in the situation of (5.27). Then we have the following seven non-generic constituents:

    Q([ν3/2χ~],[ν1/2χ~],[ν1/2χ~],[ν3/2χ~])\displaystyle Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right) =χ~det;\displaystyle=\widetilde{\chi}\circ\det; (5.35)
    Q([ν1/2χ~,ν3/2χ~],[ν1/2χ~],[ν3/2χ~]);\displaystyle Q\left([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right); (5.36)
    Q([ν3/2χ~],[ν1/2χ~,ν1/2χ~],[ν3/2χ~]);\displaystyle Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right); (5.37)
    Q([ν3/2χ~],[ν1/2χ~],[ν3/2χ~,ν1/2χ~]);\displaystyle Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]\right); (5.38)
    Q([ν1/2χ~,ν3/2χ~],[ν3/2χ~,ν1/2χ~]);\displaystyle Q\left([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]\right); (5.39)
    Q([ν1/2χ~,ν1/2χ~,ν3/2χ~],[ν3/2χ~]);\displaystyle Q\left([\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right); (5.40)
    Q([ν3/2χ~],[ν3/2χ~,ν1/2χ~,ν1/2χ~]).\displaystyle Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}]\right). (5.41)

    For (5.35) we have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6,N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6},

    for (5.36) we have

    NGL4()×GL1()=([0100000000000000],0)(5.10)NGSO6()=[000000001000000000000010000000000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix},

    for (5.37) we have

    NGL4()×GL1()=([0000001000000000],0)(5.10)NGSO6()=[010000000000000000000000000001000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix},

    for (5.38) we have

    NGL4()×GL1()=([0000000000010000],0)(5.10)NGSO6()=[000000000100000010000000000000000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix},

    for (5.39) we have

    NGL4()×GL1()=([0100000000010000],0)(5.10)NGSO6()=[000000001100000010000010000000000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&1&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix},

    for (5.40) we have

    NGL4()×GL1()=([0100001000000000],0)(5.10)NGSO6()=[010000001000000000000010000001000000],N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&1&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix},

    and for (5.41) we have

    NGL4()×GL1()=([0000001000010000],0)(5.10)NGSO6()=[010000000100000010000000000001000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&1&0&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&-1\\ 0&0&0&0&0&0\end{bmatrix}.
  2. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(B)

    𝐌GL2×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL2×GL1×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given σ0Irr(GL2)\sigma_{0}\in\operatorname*{Irr}(\mathrm{GL}_{2}) and χ1,χ2(F×)D\chi_{1},\chi_{2}\in(F^{\times})^{D}, we consider

    iMGSpin6(σ0χ1χ2).i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi_{1}\boxtimes\chi_{2}). (5.42)

    Write

    σ0χ1χ2=(σ~0χ~1χ~2η~)|M\sigma_{0}\boxtimes\chi_{1}\boxtimes\chi_{2}=(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta})|_{M}

    with σ~0Irr(GL2)\widetilde{\sigma}_{0}\in\operatorname*{Irr}(\mathrm{GL}_{2}) and χ~i,η~(F×)D\widetilde{\chi}_{i},\widetilde{\eta}\in(F^{\times})^{D}. By (5.16), it follows that (5.42) contains a non-generic constituent if and only if its lift

    iM~GL4×GL1(σ~0χ~1χ~2η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta}) (5.43)

    contains a non-generic constituent if and only if

    iGL2×GL1×GL1GL4(σ~0χ~1χ~2)i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}) (5.44)

    does. Recalling 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A), it is sufficient to consider the case of σ~0Irr(GL2)\widetilde{\sigma}_{0}\in\operatorname*{Irr}(\mathrm{GL}_{2}), χ~1=ν1/2χ~\widetilde{\chi}_{1}=\nu^{1/2}\widetilde{\chi}, and χ~2=ν1/2χ~\widetilde{\chi}_{2}=\nu^{-1/2}\widetilde{\chi} for χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D}, where the segment Δσ~0\Delta_{\widetilde{\sigma}_{0}} of σ~0\widetilde{\sigma}_{0} does not precede either χ~1\widetilde{\chi}_{1} or χ~2\widetilde{\chi}_{2}. We then have the following sole non-generic constituent:

    Q([Δσ~0],[ν1/2χ~],[ν1/2χ~]).Q([\Delta_{\widetilde{\sigma}_{0}}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}]). (5.45)

    We have

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.
  3. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(C)

    𝐌GL3×GL1\mathbf{M}\cong\mathrm{GL}_{3}\times\mathrm{GL}_{1} and 𝕄~=(GL3×GL1)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}.

    Given a non-generic σ0Irr(GL3)\sigma_{0}\in\operatorname*{Irr}(\mathrm{GL}_{3}) and any χ(F×)D\chi\in(F^{\times})^{D}, we consider

    iMGSpin6(σ0χ).i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi). (5.46)

    Write

    σ0χ=(σ~0χ~η~)|M\sigma_{0}\boxtimes\chi=(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta})|_{M}

    with non-generic σ~0Irr(GL3)\widetilde{\sigma}_{0}\in\operatorname*{Irr}(\mathrm{GL}_{3}) and χ~,η~(F×)D.\widetilde{\chi},\widetilde{\eta}\in(F^{\times})^{D}. As in (III) we have

    σ~0=σ0χ~, and η~=χ2χ~2.\widetilde{\sigma}_{0}=\sigma_{0}\widetilde{\chi},\quad\mbox{ and }\quad\widetilde{\eta}=\chi_{2}\widetilde{\chi}^{-2}.

    As before, (5.46) contains a non-generic constituent if and only if its lift

    iM~GL4×GL1(σ~0χ~η~)i_{\widetilde{M}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta}) (5.47)

    also contains one if and only if

    iGL3×GL1GL4(σ~0χ~)i_{\mathrm{GL}_{3}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}) (5.48)

    does. To have a non-generic σ~0\widetilde{\sigma}_{0} of GL3(F)\mathrm{GL}_{3}(F), the irreducible representation σ~0\widetilde{\sigma}_{0} must be some constituent in a reducible induction. This case has been covered in 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A) and (B) above.

  4. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(D)

    𝐌GL1×GSpin4\mathbf{M}\cong\mathrm{GL}_{1}\times\mathrm{GSpin}_{4} and 𝕄~=(GL2×GL2)×GL1.\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}.

    Given a non-generic σ0Irr(GSpin4)\sigma_{0}\in\operatorname*{Irr}(\mathrm{GSpin}_{4}), by Section 4.3, we know that it must be of the form

    ResGSpin4GL2×GL2((χdet)σ~){\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}((\chi\circ\det)\boxtimes\widetilde{\sigma})

    for σ~Irr(GL2).\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2}). For η(F×)D,\eta\in(F^{\times})^{D}, the induced representation

    iMGSpin6((χdet)σ~η)i_{M}^{\mathrm{GSpin}_{6}}((\chi\circ\det)\boxtimes\widetilde{\sigma}\boxtimes\eta) (5.49)

    contains a non-generic constituent if and only if so does

    iGL2×GL2GL4((χdet)σ~),i_{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}^{\mathrm{GL}_{4}}((\chi\circ\det)\boxtimes\widetilde{\sigma}),

    which is always the case. Therefore, if σ~\widetilde{\sigma} is supercuspidal, then

    NGL4()×GL1()=(04×4,0)(5.10)NGSO6()=06×6.N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(0_{4\times 4},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=0_{6\times 6}.

    If σ~\widetilde{\sigma} is non-supercuspidal, then it suffices to consider the case σ~=𝖲𝗍GL2η\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\eta with η(F×)D\eta\in(F^{\times})^{D} since the other case has been covered in 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A). Thus, we have

    NGL4()×GL1()=([0000000000010000],0)(5.10)NGSO6()=[000000000100000010000000000000000000].N_{{\mathrm{GL}}_{4}(\mathbb{C})\times{\mathrm{GL}}_{1}(\mathbb{C})}=\left(\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix},0\right)\overset{\eqref{indentitygspin6}}{\Longleftrightarrow}N_{{\mathrm{GSO}}_{6}(\mathbb{C})}=\begin{bmatrix}0&0&0&0&0&0\\ 0&0&0&1&0&0\\ 0&0&0&0&-1&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\end{bmatrix}.
  5. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(E)

    𝐌GSpin6\mathbf{M}\cong\mathrm{GSpin}_{6} and 𝕄~=GL4×GL1.\widetilde{\mathbb{M}}=\mathrm{GL}_{4}\times\mathrm{GL}_{1}.

    Given a non-generic σIrr(GSpin6),\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{6}), it must be of the form

    ResGSpin6GL4×GL1(χ~detη~)=χdet,{\operatorname*{Res}}^{\mathrm{GL}_{4}\times\mathrm{GL}_{1}}_{\mathrm{GSpin}_{6}}\left(\widetilde{\chi}\circ\det\boxtimes\widetilde{\eta}\right)=\chi\circ\det, (5.50)

    for some χ~,η~(F×)D.\widetilde{\chi},\widetilde{\eta}\in(F^{\times})^{D}. This is the case Q([ν3/2χ~],[ν1/2χ~],[ν1/2χ~],[ν3/2χ~])Q([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]) in 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A).

5.4. Computation of the Adjoint L-function for GSpin6\mathrm{GSpin}_{6}

We now give explicit expressions for the adjoint LL-function of each of the representations of GSpin6(F)\mathrm{GSpin}_{6}(F). Recall that if we have a parameter (ϕ,N)(\phi,N) with NN a nilpotent matrix on the vector space VV, then its adjoint LL-function is

L(s,ϕ,Ad)=det(1qsAd(ϕ)|VNI)1,L(s,\phi,\mathrm{Ad})=\det\left(1-q^{-s}\mathrm{Ad}(\phi)|V_{N}^{I}\right)^{-1},

where VN=ker(N)V_{N}=\ker(N), VIV^{I} the vectors fixed by the inertia group, and VNI=VIVNV_{N}^{I}=V^{I}\cap V_{N}. Below for the cases where NN is non-zero, we write ker(Ad(N))\ker(\mathrm{Ad}(N)) and we use LαL_{\alpha} to denote the root group associated with the root α\alpha.

We now consider each case. Using (2.14) and Sections 5.2, and 5.3, we have the following.

  1. 𝔤𝔫𝔯\mathfrak{gnr}-(a)

    Given σIrrsc(GSpin6)\sigma\in\operatorname*{Irr}_{\rm sc}(\mathrm{GSpin}_{6}), we have σ~=σ~0η~Irrsc(GL4×GL1).\widetilde{\sigma}=\widetilde{\sigma}_{0}\boxtimes\widetilde{\eta}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4}\times\mathrm{GL}_{1}). Then

    L(s,1F×)L(s,σ,Ad)=L(s,σ~0,AdGL^4)L(s,1_{F^{\times}})L(s,\sigma,\mathrm{Ad})=L(s,\widetilde{\sigma}_{0},\mathrm{Ad}_{\widehat{GL}_{4}})

    or

    L(s,σ,Ad)=L(s,σ~0,Ad).L(s,\sigma,\mathrm{Ad})=L(s,\widetilde{\sigma}_{0},\mathrm{Ad}).
  2. 𝔤𝔫𝔯\mathfrak{gnr}-(I)

    Given 𝐌GL1×GL1×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{1}\times GL_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL1×GL1×GL1×GL1)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}, we recall

    iGL1×GL1×GL1×GL1GL4(χ~1χ~2χ~3χ~4)i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4})

    must be irreducible. Thus, given σIrr(GSpin6)\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{6}) such that

    σ=iMGSpin6(χ~1χ~2χ~3χ~4),\sigma=i_{M}^{\mathrm{GSpin}_{6}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}),

    we have

    L(s,σ,Ad)=L(s)3ijL(s,χ~iχ~j1).L(s,\sigma,\mathrm{Ad})=L(s)^{3}\prod_{i\neq j}L(s,\widetilde{\chi}_{i}\widetilde{\chi}_{j}^{-1}).
  3. 𝔤𝔫𝔯\mathfrak{gnr}-(II)

    Given 𝐌GL2×GL1×GL1\mathbf{M}\cong\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1} and 𝕄~=(GL2×GL1×GL1)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}, for σ0Irresq(GL2)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}) and χ1,χ2(F×)D\chi_{1},\chi_{2}\in(F^{\times})^{D}, we have an irreducible induced representation

    σ=iMGSpin6(σ0χ1χ2)=ResGSpin6GL4×GL1(iGL2×GL1×GL1GL4(σ~0χ~1χ~2η~)),\sigma=i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi_{1}\boxtimes\chi_{2})={\operatorname*{Res}}_{\mathrm{GSpin}_{6}}^{\mathrm{GL}_{4}\times\mathrm{GL}_{1}}\left(i_{\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta})\right),

    for some σ~0Irresq(GL2)\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}), and χ~i,η~(F×)D\widetilde{\chi}_{i},\widetilde{\eta}\in(F^{\times})^{D}. For supercuspidal σ~0\widetilde{\sigma}_{0} we have

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)2L(s,σ~0,Ad)L(s,σ~0×χ~11)L(s,σ~0×χ~1)\displaystyle L(s)^{2}L(s,\widetilde{\sigma}_{0},\mathrm{Ad})L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}_{1}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi}_{1})
    L(s,σ~0×χ~21)L(s,σ~0×χ~2)L(s,χ~1χ~21)L(s,χ~2χ~11).\displaystyle L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\chi}_{2}\widetilde{\chi}_{1}^{-1}).

    For non-supercuspidal σ~0Irr(GL2)\widetilde{\sigma}_{0}\in\operatorname*{Irr}(\mathrm{GL}_{2}), i.e., σ0=𝖲𝗍GL2χ~\sigma_{0}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi} for some χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D}, we have

    ker(ad[0100000000000000])=[a0000a0000b0000c],Lf1f2,Lf1f3,Lf1f4,Lf3f2,Lf3f4,Lf4f2,Lf4f3.\ker\left(\mathrm{ad}\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&0&0&0\\ 0&a&0&0\\ 0&0&b&0\\ 0&0&0&c\end{bmatrix},L_{f_{1}-f_{2}},L_{f_{1}-f_{3}},L_{f_{1}-f_{4}},L_{f_{3}-f_{2}},L_{f_{3}-f_{4}},L_{f_{4}-f_{2}},L_{f_{4}-f_{3}}\right\rangle. (5.51)

    It follows that

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)2L(s+1)L(s+1,χ~χ~11)L(s+1,χ~χ~21)\displaystyle L(s)^{2}L(s+1)L(s+1,\widetilde{\chi}\widetilde{\chi}_{1}^{-1})L(s+1,\widetilde{\chi}\widetilde{\chi}_{2}^{-1})
    L(s,χ~1χ~1)L(s,χ~1χ~2)L(s,χ~1χ~21)L(s,χ~2χ~11).\displaystyle\cdot L(s,\widetilde{\chi}^{-1}\widetilde{\chi}_{1})L(s,\widetilde{\chi}^{-1}\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\chi}_{2}\widetilde{\chi}_{1}^{-1}).
  4. 𝔤𝔫𝔯\mathfrak{gnr}-(III)

    Given 𝐌GL3×GL1\mathbf{M}\cong\mathrm{GL}_{3}\times\mathrm{GL}_{1} and 𝕄~=(GL3×GL1)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}, for σ0Irresq(GL3)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}) and χ(F×)D\chi\in(F^{\times})^{D}, we have an irreducible induced representation

    σ=iMGSpin6(σ0χ)=ResGSpin6GL4×GL1(iGL3×GL1×GL1GL4×GL1(σ~0χ~η~)),\sigma=i_{M}^{\mathrm{GSpin}_{6}}(\sigma_{0}\boxtimes\chi)={\operatorname*{Res}}_{\mathrm{GSpin}_{6}}^{\mathrm{GL}_{4}\times\mathrm{GL}_{1}}\left(i_{\mathrm{GL}_{3}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{GL_{4}\times\mathrm{GL}_{1}}\left(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta}\right)\right),

    for σ~0Irresq(GL3)\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}) and χ~,η~(F×)D\widetilde{\chi},\widetilde{\eta}\in(F^{\times})^{D}. If σ~0Irresq(GL3)\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}) is supercuspidal, then we have

    L(s,σ,Ad)=L(s)L(s,σ~0,Ad)L(s,σ~0×χ~1)L(s,σ~0×χ~).L(s,\sigma,\mathrm{Ad})=L(s)L(s,\widetilde{\sigma}_{0},\mathrm{Ad})L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi}).

    For non-supercuspidal σ~0Irresq(GL3),\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3}), i.e., σ0=𝖲𝗍GL3χ~0\sigma_{0}=\mathsf{St}_{\mathrm{GL}_{3}}\otimes\widetilde{\chi}_{0} for some χ~0(F×)D,\widetilde{\chi}_{0}\in(F^{\times})^{D}, we have

    ker(ad[0100001000000000])=[ac000ac000a0000b],Lf1f3,Lf1f4,Lf4f3.\ker\left(\mathrm{ad}\begin{bmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&c&0&0\\ 0&a&c&0\\ 0&0&a&0\\ 0&0&0&b\end{bmatrix},L_{f_{1}-f_{3}},L_{f_{1}-f_{4}},L_{f_{4}-f_{3}}\right\rangle. (5.52)

    It follows that

    L(s,σ,Ad)=L(s)L(s+1)L(s+2)L(s+1,χ~χ~01)L(s+1,χ~1χ~0).L(s,\sigma,\mathrm{Ad})=L(s)L(s+1)L(s+2)L(s+1,\widetilde{\chi}\widetilde{\chi}_{0}^{-1})L(s+1,\widetilde{\chi}^{-1}\widetilde{\chi}_{0}).
  5. 𝔤𝔫𝔯\mathfrak{gnr}-(IV)

    Given 𝐌GL1×GSpin4\mathbf{M}\cong\mathrm{GL}_{1}\times\mathrm{GSpin}_{4} and 𝕄~=(GL2×GL2)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}, we have the representation (5.24)

    σ=iMGSpin6(χσ0)\sigma=i_{M}^{\mathrm{GSpin}_{6}}(\chi\boxtimes\sigma_{0})

    with σ0Irresq(GSpin4)\sigma_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GSpin}_{4}), and χ(F×)D\chi\in(F^{\times})^{D}. We have the irreducible iGL2×GL2GL4(σ~1σ~2)i_{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}^{GL_{4}}(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}) as in (5.26), where χσ0(σ~1σ~2η~)|M\chi\boxtimes\sigma_{0}\subset(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\boxtimes\widetilde{\eta})|_{M} with σ~iIrresq(GL2),η~(F×)D.\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\widetilde{\eta}\in(F^{\times})^{D}. Thus, if σ0\sigma_{0} is supercuspidal (and hence so are σ~1\widetilde{\sigma}_{1} and σ~2\widetilde{\sigma}_{2}) we have

    L(s,σ,Ad)=L(s)L(s,σ~1,Ad)L(s,σ~2,Ad)L(s,σ~1×σ~2)L(s,σ~1×σ~1).L(s,\sigma,\mathrm{Ad})=L(s)L(s,\widetilde{\sigma}_{1},\mathrm{Ad})L(s,\widetilde{\sigma}_{2},\mathrm{Ad})L(s,\widetilde{\sigma}_{1}\times\widetilde{\sigma}_{2}^{\vee})L(s,\widetilde{\sigma}_{1}^{\vee}\times\widetilde{\sigma}_{1}).

    If σ0\sigma_{0} is non-supercuspidal, with σ~1\widetilde{\sigma}_{1} supercuspidal and σ~2\widetilde{\sigma}_{2} non-supercuspidal, i.e., σ~2=𝖲𝗍GL2χ~\widetilde{\sigma}_{2}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi} for some χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D}, we have

    ker(ad[0000000000010000])=[a0000b0000c0000c],Lf1f2,Lf1f4,Lf2f1,Lf2f4,Lf3f1,Lf3f2,Lf3f4,\ker\left(\mathrm{ad}\begin{bmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&0&0&0\\ 0&b&0&0\\ 0&0&c&0\\ 0&0&0&c\end{bmatrix},L_{f_{1}-f_{2}},L_{f_{1}-f_{4}},L_{f_{2}-f_{1}},L_{f_{2}-f_{4}},L_{f_{3}-f_{1}},L_{f_{3}-f_{2}},L_{f_{3}-f_{4}}\right\rangle, (5.53)

    and it then follows that

    L(s,σ,Ad)=L(s)L(s+1)L(s,σ~1,Ad)L(s+12,σ~1×χ~)L(s+12,σ~1×χ~1).L(s,\sigma,\mathrm{Ad})=L(s)L(s+1)L(s,\widetilde{\sigma}_{1},\mathrm{Ad})L(s+\frac{1}{2},\widetilde{\sigma}_{1}^{\vee}\times\widetilde{\chi})L(s+\frac{1}{2},\widetilde{\sigma}_{1}\times\widetilde{\chi}^{-1}).

    If σ0\sigma_{0} is non-supercuspidal, with σ~1\widetilde{\sigma}_{1} non-supercuspidal and σ~2\widetilde{\sigma}_{2} supercuspidal, i.e., σ~1=𝖲𝗍GL2χ~\widetilde{\sigma}_{1}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi} for some χ~(F×)D\widetilde{\chi}\in(F^{\times})^{D}, then ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.51) and we have

    L(s,σ,Ad)=L(s)L(s+1)L(s,σ~2,Ad)L(s+12,σ~2×χ~)L(s+12,σ~2×χ~1).L(s,\sigma,\mathrm{Ad})=L(s)L(s+1)L(s,\widetilde{\sigma}_{2},\mathrm{Ad})L(s+\frac{1}{2},\widetilde{\sigma}_{2}^{\vee}\times\widetilde{\chi})L(s+\frac{1}{2},\widetilde{\sigma}_{2}\times\widetilde{\chi}^{-1}).

    If both σ~1\widetilde{\sigma}_{1} and σ~2\widetilde{\sigma}_{2} are non-supercuspidal, i.e., σ~i=𝖲𝗍GL2χ~i\widetilde{\sigma}_{i}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}_{i} with χ~1,χ~2(F×)D\widetilde{\chi}_{1},\widetilde{\chi}_{2}\in(F^{\times})^{D} satisfying χ~1χ~2ν±1\widetilde{\chi}_{1}\neq\widetilde{\chi}_{2}\nu^{\pm 1}, we have

    ker(ad[0100000000010000])=[a0c00a0cd0b00d0b],Lf1f2,Lf1f4,Lf3f2,Lf3f4,\ker\left(\mathrm{ad}\begin{bmatrix}0&1&0&0\\ 0&0&0&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&0&c&0\\ 0&a&0&c\\ d&0&b&0\\ 0&d&0&b\end{bmatrix},L_{f_{1}-f_{2}},L_{f_{1}-f_{4}},L_{f_{3}-f_{2}},L_{f_{3}-f_{4}}\right\rangle, (5.54)

    and it follows that

    L(s,σ,Ad)=L(s)L(s+1)2L(s+1,χ~1χ~21)L(s+1,χ~11χ~2)L(s,χ~11χ~2)L(s,χ~1χ~21).L(s,\sigma,\mathrm{Ad})=L(s)L(s+1)^{2}L(s+1,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s+1,\widetilde{\chi}_{1}^{-1}\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}^{-1}\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1}).
  6. 𝔤𝔫𝔯\mathfrak{gnr}-(V)

    Given 𝐌GL1×GSpin4\mathbf{M}\cong\mathrm{GL}_{1}\times\mathrm{GSpin}_{4} and 𝕄~=(GL2×GL2)×GL1\widetilde{\mathbb{M}}=(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}, we consider σIrresq(GSpin6)\sigma\in\operatorname*{Irr}_{\rm esq}(\mathrm{GSpin}_{6}) and σ~Irresq(GL4)\widetilde{\sigma}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{4}) and η~(F×)D\widetilde{\eta}\in(F^{\times})^{D} such that σ(σ~η~)|M.\sigma\subset(\widetilde{\sigma}\boxtimes\widetilde{\eta})|_{M}. Then, σ~\widetilde{\sigma} must be either (5.27) or (5.28).

    For (5.27) (i.e., σ~=𝖲𝗍GL4χ~\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{4}}\otimes\widetilde{\chi}), we have

    ker(ad[0100001000010000])=[abc00abc00ab000a],Lf1f4,\ker\left(\mathrm{ad}\begin{bmatrix}0&1&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&b&c&0\\ 0&a&b&c\\ 0&0&a&b\\ 0&0&0&a\end{bmatrix},L_{f_{1}-f_{4}}\right\rangle, (5.55)

    and it follows that

    L(s,σ,Ad)=L(s+3)L(s+2)L(s+1).L(s,\sigma,\mathrm{Ad})=L(s+3)L(s+2)L(s+1).

    For (5.28) (i.e., τ~Irrsc(GL2)\widetilde{\tau}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})), we have

    ker(ad[0010000100000000])=[ac00db0000ac00db],Lf1f3,Lf1f4,Lf2f3,Lf2f4,\ker\left(\mathrm{ad}\begin{bmatrix}0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&c&0&0\\ d&b&0&0\\ 0&0&a&c\\ 0&0&d&b\end{bmatrix},L_{f_{1}-f_{3}},L_{f_{1}-f_{4}},L_{f_{2}-f_{3}},L_{f_{2}-f_{4}}\right\rangle, (5.56)

    and it follows that

    L(s,σ,Ad)=L(s,τ~,Ad)L(s,τ~×τ~).L(s,\sigma,\mathrm{Ad})=L(s,\widetilde{\tau},\mathrm{Ad})L(s,\widetilde{\tau}\times\widetilde{\tau}^{\vee}).
  7. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(A)

    For Q([ν1/2χ~],[ν1/2χ~],[χ~3],[χ~4])Q([\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\widetilde{\chi}_{3}],[\widetilde{\chi}_{4}]) (5.31), we have

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)3L(s+1)L(s1)L(s,χ~3χ~41)L(s,χ~31χ~4)\displaystyle L(s)^{3}L(s+1)L(s-1)L(s,\widetilde{\chi}_{3}\widetilde{\chi}_{4}^{-1})L(s,\widetilde{\chi}_{3}^{-1}\widetilde{\chi}_{4})
    i=3,4(L(s+12,χ~χ~i1)L(s12,χ~1χ~i)L(s12,χ~χ~i1)L(s+12,χ~1χ~i))\displaystyle\prod_{i=3,4}\left(L(s+\frac{1}{2},\widetilde{\chi}\widetilde{\chi}_{i}^{-1})L(s-\frac{1}{2},\widetilde{\chi}^{-1}\widetilde{\chi}_{i})L(s-\frac{1}{2},\widetilde{\chi}\widetilde{\chi}_{i}^{-1})L(s+\frac{1}{2},\widetilde{\chi}^{-1}\widetilde{\chi}_{i})\right)

    For Q([νχ~],[χ~],[ν1χ~],[χ~4])Q\left([\nu\widetilde{\chi}],[\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right) (5.32), we have

    L(s,σ,Ad)=L(s)3L(s+1)2L(s1)2L(s+2)L(s2)t=0,1,1(L(s+t,χ~χ~41)L(s+t,χ~1χ~4)),L(s,\sigma,\mathrm{Ad})=L(s)^{3}L(s+1)^{2}L(s-1)^{2}L(s+2)L(s-2)\prod_{t=0,1,-1}\left(L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4})\right),

    For Q([χ~,νχ~],[ν1χ~],[χ~4])Q([\widetilde{\chi},\nu\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]) (5.33), we have ker(ad(N))\ker(\mathrm{ad}(N)) as in (5.51) and

    L(s,σ,Ad)=L(s)2L(s1)2L(s2)t=1,0L(s+t,χ~χ~41)t=±1L(s+t,χ~1χ~4).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s-1)^{2}L(s-2)\prod\limits_{t=-1,0}L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})\prod\limits_{t=\pm 1}L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4}).

    For Q([νχ~],[χ~,ν1χ~],[χ~4])Q\left([\nu\widetilde{\chi}],[\widetilde{\chi},\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right) (5.34), since

    ker(ad[0000001000000000])=[a0000b0000b0000c],Lf1f3,Lf1f4,Lf2f1,Lf2f3,Lf2f4,Lf4f1,Lf4f3,\ker\left(\mathrm{ad}\begin{bmatrix}0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&0&0&0\\ 0&b&0&0\\ 0&0&b&0\\ 0&0&0&c\end{bmatrix},L_{f_{1}-f_{3}},L_{f_{1}-f_{4}},L_{f_{2}-f_{1}},L_{f_{2}-f_{3}},L_{f_{2}-f_{4}},L_{f_{4}-f_{1}},L_{f_{4}-f_{3}}\right\rangle, (5.57)

    we have

    L(s,σ,Ad)=L(s)2L(s+2)L(s1)L(s+1)t=0,1L(s+t,χ~χ~41)t=±1L(s+t,χ~1χ~4).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s+2)L(s-1)L(s+1)\prod\limits_{t=0,1}L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})\prod_{t=\pm 1}L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4}).

    For Q([ν3/2χ~],[ν1/2χ~],[ν1/2χ~],[ν3/2χ~])Q([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]) (5.35), we have

    L(s,σ,Ad)=L(s)3L(s+1)3L(s1)3L(s+2)2L(s2)2L(s+3)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)^{3}L(s+1)^{3}L(s-1)^{3}L(s+2)^{2}L(s-2)^{2}L(s+3)L(s-3).

    For Q([ν1/2χ~,ν3/2χ~],[ν1/2χ~],[ν3/2χ~])Q\left([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right) (5.36), we have ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.51) and

    L(s,σ,Ad)=L(s)2L(s1)2L(s+1)2L(s2)L(s+2)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s-1)^{2}L(s+1)^{2}L(s-2)L(s+2)L(s-3).

    For Q([ν3/2χ~],[ν1/2χ~,ν1/2χ~],[ν3/2χ~])Q([\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]) (5.37), we have ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.57) and

    L(s,σ,Ad)=L(s)2L(s+1)2L(s+2)L(s1)2L(s3)L(s2).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s+1)^{2}L(s+2)L(s-1)^{2}L(s-3)L(s-2).

    For Q([ν3/2χ~],[ν1/2χ~],[ν3/2χ~,ν1/2χ~])Q([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]) (5.38), we have ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.53) and

    L(s,σ,Ad)=L(s)2L(s+1)2L(s1)2L(s2)L(s+2)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)^{2}L(s+1)^{2}L(s-1)^{2}L(s-2)L(s+2)L(s-3).

    For Q([ν1/2χ~,ν3/2χ~],[ν3/2χ~,ν1/2χ~])Q([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]) (5.39), we have ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.54) and

    L(s,σ,Ad)=L(s)L(s1)2L(s+1)L(s+2)L(s2)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)L(s-1)^{2}L(s+1)L(s+2)L(s-2)L(s-3).

    For Q([ν1/2χ~,ν1/2χ~,ν3/2χ~],[ν3/2χ~])Q([\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]) (5.40), we have ker(ad(N))\ker(\mathrm{ad}(N)) is as in (5.52) and

    L(s,σ,Ad)=L(s)L(s1)L(s2)L(s+1)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)L(s-1)L(s-2)L(s+1)L(s-3).

    Finally, for Q([ν3/2χ~],[ν3/2χ~,ν1/2χ~,ν1/2χ~])Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}]\right) (5.41), since

    ker(ad[0000001000010000])=[a0000bc000bc000b],Lf1f4,Lf2f1,Lf2f4,\ker\left(\mathrm{ad}\begin{bmatrix}0&0&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&0&0&0\end{bmatrix}\right)=\left\langle\begin{bmatrix}a&0&0&0\\ 0&b&c&0\\ 0&0&b&c\\ 0&0&0&b\end{bmatrix},L_{f_{1}-f_{4}},L_{f_{2}-f_{1}},L_{f_{2}-f_{4}}\right\rangle, (5.58)

    we have

    L(s,σ,Ad)=L(s)L(s+1)L(s1)L(s2)L(s3).L(s,\sigma,\mathrm{Ad})=L(s)L(s+1)L(s-1)L(s-2)L(s-3).
  8. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(B)

    For Q([Δσ~0],[ν1/2χ~],[ν1/2χ~])Q([\Delta_{\widetilde{\sigma}_{0}}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}]) (5.45), with say [Δσ~0]=iGL1×GL1GL2(η~1η~2),η~1η~21ν±1[\Delta_{\widetilde{\sigma}_{0}}]=i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\widetilde{\eta}_{1}\boxtimes\widetilde{\eta}_{2}),~{}\widetilde{\eta}_{1}\widetilde{\eta}_{2}^{-1}\neq\nu^{\pm 1} we have

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)3L(s+1)L(s1)L(s,η~1η~21)L(s,η~11η~2)\displaystyle L(s)^{3}L(s+1)L(s-1)L(s,\widetilde{\eta}_{1}\widetilde{\eta}_{2}^{-1})L(s,\widetilde{\eta}_{1}^{-1}\widetilde{\eta}_{2})
    i=1,2(L(s12,η~iχ~1)L(s+12,η~iχ~1)L(s+12,η~i1χ~)L(s12,η~i1χ~)).\displaystyle\prod_{i=1,2}\left(L(s-\frac{1}{2},\widetilde{\eta}_{i}\widetilde{\chi}^{-1})L(s+\frac{1}{2},\widetilde{\eta}_{i}\widetilde{\chi}^{-1})L(s+\frac{1}{2},\widetilde{\eta}_{i}^{-1}\widetilde{\chi})L(s-\frac{1}{2},\widetilde{\eta}_{i}^{-1}\widetilde{\chi})\right).
  9. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(C)

    As mentioned before, all the possibilities in this case were covered in (A) and (B) above.

  10. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(D)

    For (5.49) with σ~\widetilde{\sigma} supercuspidal, we have

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)2L(s+1)L(s1)L(s,σ,Ad)\displaystyle L(s)^{2}L(s+1)L(s-1)L(s,\sigma,\mathrm{Ad})
    L(s12,σ×χ1)L(s+12,σ×χ1)L(s12,σ×χ)L(s+12,σ×χ),\displaystyle L(s-\frac{1}{2},\sigma\times\chi^{-1})L(s+\frac{1}{2},\sigma\times\chi^{-1})L(s-\frac{1}{2},\sigma^{\vee}\times\chi)L(s+\frac{1}{2},\sigma^{\vee}\times\chi),

    For (5.49) with non-supercuspidal σ~=𝖲𝗍GL2η,η(F×)D\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\eta,~{}\eta\in(F^{\times})^{D} we have ker(ad(N))\ker(\mathrm{ad}(N)) as in (5.53) and

    L(s,σ,Ad)\displaystyle L(s,\sigma,\mathrm{Ad}) =\displaystyle= L(s)2L(s+1)2L(s1)L(s,χη1)L(s+1,χη1)L(s+1,χ1η)L(s,χ1η).\displaystyle L(s)^{2}L(s+1)^{2}L(s-1)L(s,\chi\eta^{-1})L(s+1,\chi\eta^{-1})L(s+1,\chi^{-1}\eta)L(s,\chi^{-1}\eta).

    Recall that the remaining possibilities in this case were already covered in (A) above.

  11. 𝔫𝔬𝔫𝔤𝔫𝔯\mathfrak{nongnr}-(E)

    Finally, as mentioned before, all the possibilities in this case we also covered in (A).

6. Correction to [AC17]

We take this opportunity to correct the following errors in our earlier work [AC17]. They do not affect the main results in that paper.

6.1. Proposition 5.5 and 6.4

  • Change “1,2,4,8, if p=2p=2” to “1,2,4,8,…, 2[F:2]+2,2^{[F:\mathbb{Q}_{2}]+2}, if p=2.p=2.” We have 2[F:p]+22^{[F:\mathbb{Q}_{p}]+2} due to the fact that |F×/(F×)2|=2[F:2]+2\left|F^{\times}/(F^{\times})^{2}\right|=2^{[F:\mathbb{Q}_{2}]+2}.

  • For Proposition 5.5, using [GP92, Corollary 7.7], it follows that the case of p=2p=2 is bounded by |(/2)41|=8.|(\mathbb{Z}/2\mathbb{Z})^{4-1}|=8. Here 44 is coming from GSpin4^=GSO(4,).\widehat{\mathrm{GSpin}_{4}}=\mathrm{GSO}(4,\mathbb{C}).

  • For Proposition 6.4, using [GP92, Corollary 7.7], it follows that the case of p=2p=2 is bounded by |(/2)61|=32.|(\mathbb{Z}/2\mathbb{Z})^{6-1}|=32. Here 66 is coming from GSpin6^=GSO(6,).\widehat{\mathrm{GSpin}_{6}}=\mathrm{GSO}(6,\mathbb{C}).

6.2. Remark 5.11

  • The formula (5.13) should read as follows:

    |Πφ(GSpin4)|=|Πφ(GSpin41,1)|=4,|Πφ(GSpin42,1)|=1.\Big{|}\,\Pi_{\varphi}\left(\mathrm{GSpin}_{4}\right)\Big{|}=\Big{|}\,\Pi_{\varphi}(\mathrm{GSpin}_{4}^{1,1})\Big{|}=4,\quad\quad\left|\,\Pi_{\varphi}\left(\mathrm{GSpin}_{4}^{2,1}\right)\right|=1. (5.13)

    Also, in the following sentence change “in which case the multiplicity is 2” to “in which case the multiplicity 2 could also occur”. We thank Hengfei Lu [Lu20] for bringing this error to our attention.

  • In addition, it is more accurate that we use ‘not irreducible’ rather than ‘reducible’ in this Remark since one may have indecomposable parameters. Alternatively, we may write φ~i|WF\widetilde{\varphi}_{i}|_{W_{F}} is reducible. Thus, at the beginning the Remark, change “When φ~i\widetilde{\varphi}_{i} is reducible,” to “When φ~i\widetilde{\varphi}_{i} is not irreducible,”.

References

  • [Art13] J. Arthur. The endoscopic classification of representations. Orthogonal and symplectic groups. American Mathematical Society Colloquium Publications, 61. American Mathematical Society, Providence, RI, 2013.
  • [AC17] M. Asgari and K. Choiy. The local Langlands conjecture for pp-adic GSpin4\rm GSpin_{4}, GSpin6\rm GSpin_{6}, and their inner forms. Forum Math., 29(6):1261–1290, 2017.
  • [AS08] M. Asgari and R. Schmidt. On the adjoint LL-function of the pp-adic GSp(4)\rm GSp(4). J. Number Theory, 128 (8):2340–2358, 2008.
  • [ABPS16] A.-M. Aubert, P. Baum, R. Plymen, and M. Solleveld. The local Langlands correspondence for inner forms of SLn\rm{SL}_{n}. Res. Math. Sci., 3:Paper No. 32, 34, 2016.
  • [BZ77] I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive pp-adic groups. I. Ann. Sci. École Norm. Sup. (4), 10(4):441–472, 1977.
  • [Bor79] A. Borel. Automorphic LL-functions. Automorphic forms, representations and LL-functions. Proc. Sympos. Pure Math., XXXIII, Part 2, 27–61, Amer. Math. Soc., Providence, R.I., 1979.
  • [Cho17] K. Choiy. The local Langlands conjecture for the p\rm p-adic inner form of Sp(4)\rm Sp(4). Int. Math. Res. Not. IMRN, 2017(6):1830, 2017.
  • [GGP20] W. T. Gan, B.H. Gross and D. Prasad. Branching laws for classical groups: the non-tempered case. Compositio Math., 156 (11), 2298–2367, 2020..
  • [GT10] W. T. Gan and S. Takeda. The local Langlands conjecture for Sp(4). Int. Math. Res. Not. IMRN, (15):2987–3038, 2010.
  • [GT11] W. T. Gan and S. Takeda. The local Langlands conjecture for GSp(4){\rm GSp}(4). Ann. of Math. (2), 173(3):1841–1882, 2011.
  • [GT14] W. T. Gan and W. Tantono. The local Langlands conjecture for GSp(4)\rm GSp(4), II: the case of inner forms. Amer. J. Math., 136(3):761–805, 2014.
  • [GK82] S. S. Gelbart and A. W. Knapp. LL-indistinguishability and RR groups for the special linear group. Adv. in Math., 43(2):101–121, 1982.
  • [Gr22] B. Gross. The road to GGP. Pure Appl. Math. Q., 18 (5): 2131–2157, 2022.
  • [GP92] B. Gross and D. Prasad. On the decomposition of a representation of SOn{\rm SO}_{n} when restricted to SOn1{\rm SO}_{n-1}. Canad. J. Math., 44(5):974–1002, 1992.
  • [GR10] B. Gross and M. Reeder. Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431–508, 2010.
  • [HT01] M. Harris and R. Taylor. The geometry and cohomology of some simple Shimura varieties. With an appendix by Vladimir G. Berkovich. Annals of Mathematics Studies, 151. Princeton University Press, Princeton, NJ, 2001.
  • [Hen00] G. Henniart. Une preuve simple des conjectures de Langlands pour GL(n){\rm GL}(n) sur un corps pp-adique. Invent. Math., 139(2):439–455, 2000.
  • [HS12] K. Hiraga and H. Saito. On LL-packets for inner forms of SLnSL_{n}. Mem. Amer. Math. Soc., 215 (1013), 2012.
  • [KMSW14] T. Kaletha, A. Minguez, S. W. Shin, and P.-J. White. Endoscopic classification of representations: Inner forms of unitary groups. Available at arXiv:1409.3731v2 [math.NT], 2014.
  • [Kud94] S. Kudla. The local Langlands correspondence: the non-Archimedean case. Motives (Seattle, WA, 1991), 365–391, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994.
  • [Lab85] J.-P. Labesse. Cohomologie, LL-groupes et fonctorialité. Compositio Math., 55(2):163–184, 1985.
  • [Lu20] H. Lu. Some applications of theta correspondence to branching laws. Math. Res. Lett., 27(1):243–263, 2020.
  • [Mok15] C. P. Mok. Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc., 235 (1108), 2015.
  • [Rod82] F. Rodier. Représentations de GL(n,k){\rm GL}(n,\,k)kk est un corps pp-adique. Bourbaki Seminar, Vol. 1981/1982, pp. 201–218, Astérisque, 92–93. Soc. Math. France, Paris, 1982.
  • [Rog90] J. Rogawski. Automorphic representations of unitary groups in three variables. Annals of Mathematics Studies, 123. Princeton University Press, Princeton, NJ, 1990.
  • [Sch13] P. Scholze. The local Langlands correspondence for GLn\rm{GL}_{n} over pp-adic fields. Invent. Math., 192(3):663–715, 2013.
  • [Tad92] M. Tadić. Notes on representations of non-Archimedean SL(n){\rm SL}(n). Pacific J. Math., 152(2):375–396, 1992.
  • [Tat79] J. Tate. Number theoretic background. Automorphic forms, representations and LL-functions. Proc. Sympos. Pure Math., XXXIII, Part 2, 3–26, Amer. Math. Soc., Providence, R.I., 1979.
  • [Wed08] T. Wedhorn. The local Langlands correspondence for GL(n){\rm GL}(n) over pp-adic fields. School on Automorphic Forms on GL(n){\rm GL}(n), 237–320, ICTP Lect. Notes, 21. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008.
  • [Xu18] B. Xu. L-packets of quasisplit GSp(2n)GSp(2n) and GO(2n)GO(2n). Math. Ann., 370(1-2):71–189, 2018.
  • [Zel80] A. V. Zelevinsky. Induced representations of reductive pp-adic groups. II. On irreducible representations of GL(n){\rm GL}(n). Ann. Sci. École Norm. Sup. (4), 13(2):165–210, 1980.
Table 1. Representations of GSpin4(F)\mathrm{GSpin}_{4}(F)
ResGSpin4GL2×GL2 ofL-packet Structuregeneric(a)(σ~1σ~2),σ~2σ~1η~,σ~iIrrsc(GL2){1},/2,(/2)2(b)(σ~1σ~2),σ~2≇σ~1η~,σ~iIrrsc(GL2){1},/2(i)(𝖲𝗍GL2𝖲𝗍GL2)=𝖲𝗍GSpin4(irreducible){1}(ii)(iGL1×GL1GL2(χGL1×GL1GL2(χ1χ2)𝖲𝗍GL2χ)(irreducible){1}(iii)(iGL1×GL1GL2(χ1χ2)iGL1×GL1GL2(χ3χ4)),χ1ν±1χ2,χ3ν±1χ4{1},/2(iv)(σ~𝖲𝗍GL2χ),σ~Irrsc(GL2)(irreducible){1}(v)(σ~iGL1×GL1GL2(χ1χ2)),σ~Irrsc(GL2){1},/2𝔫𝔬𝔫𝔤𝔫𝔯(χdetσ~),σ~Irr(GL2)(irreducible){1}\begin{array}[]{|c|l|l|c|}\hline\cr&\mbox{${\operatorname*{Res}}^{\mathrm{GL}_{2}\times\mathrm{GL}_{2}}_{\mathrm{GSpin}_{4}}$ of}&\mbox{$L$-packet Structure}&\mbox{generic}\\ \hline\cr\hline\cr\mbox{(a)}&(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}),\quad\widetilde{\sigma}_{2}\cong\widetilde{\sigma}_{1}\widetilde{\eta},\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\{1\},\mathbb{Z}/2\mathbb{Z},(\mathbb{Z}/2\mathbb{Z})^{2}&\bullet\\ \hline\cr\mbox{(b)}&(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}),\quad\widetilde{\sigma}_{2}\not\cong\widetilde{\sigma}_{1}\widetilde{\eta},\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\{1\},\mathbb{Z}/2\mathbb{Z}&\bullet\\ \hline\cr\mbox{(i)}&({\mathsf{St}}_{\mathrm{GL}_{2}}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}})={\mathsf{St}}_{\mathrm{GSpin}_{4}}\quad\mbox{(irreducible)}&\{1\}&\bullet\\ \hline\cr\mbox{(ii)}&(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi)\quad\mbox{(irreducible)}&\{1\}&\bullet\\ \hline\cr\mbox{(iii)}&(i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{3}\otimes\chi_{4})),\chi_{1}\neq\nu^{\pm 1\chi_{2}},\chi_{3}\neq\nu^{\pm 1}\chi_{4}&\{1\},\mathbb{Z}/2\mathbb{Z}&\bullet\\ \hline\cr\mbox{(iv)}&(\widetilde{\sigma}\boxtimes{\mathsf{St}}_{\mathrm{GL}_{2}}\otimes\chi),\quad\widetilde{\sigma}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})\quad\mbox{(irreducible)}&\{1\}&\bullet\\ \hline\cr\mbox{(v)}&(\widetilde{\sigma}\boxtimes i_{\mathrm{GL}_{1}\times\mathrm{GL}_{1}}^{\mathrm{GL}_{2}}(\chi_{1}\otimes\chi_{2})),\quad\widetilde{\sigma}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\{1\},\mathbb{Z}/2\mathbb{Z}&\bullet\\ \hline\cr\mathfrak{nongnr}&(\chi\circ\det\boxtimes\widetilde{\sigma}),\quad\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2})\quad\mbox{(irreducible)}\par&\{1\}&\\ \hline\cr\end{array}

Table 2. The adjoint LL-function L(s,σ,Ad)L(s,\sigma,\mathrm{Ad}) for GSpin4\mathrm{GSpin}_{4}
L(s,σ,Ad)ords=1(a)&(b)L(s,σ~1,Sym2ωσ~11)L(s,σ~2,Sym2ωσ~21)0(i)L(s+1)20(ii)L(s)L(s+1)L(s,χ1χ21)L(s,χ11χ2)0(iii)L(s)2L(s,χ1χ21)L(s,χ11χ2)L(s,χ3χ41)L(s,χ31χ4)0(iv)L(s+1)L(s,σ~2,Sym2ωσ~21)0(v)L(s)L(s,χ1χ21)L(s,χ11χ2)L(s,σ~2,Sym2ωσ~21)0𝔫𝔬𝔫𝔤𝔫𝔯L(s1)L(s)L(s+1)L(s,σ~,Ad)1+ords=1L(s,σ~,Ad)\begin{array}[]{|c|l|c|}\hline\cr&L(s,\sigma,\mathrm{Ad})&\operatorname{ord}_{s=1}\\ \hline\cr\hline\cr\mbox{(a)\&(b)}&L(s,\widetilde{\sigma}_{1},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{1}}^{-1})L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1})&0\\ \hline\cr\mbox{(i)}&L(s+1)^{2}&0\\ \hline\cr\mbox{(ii)}&L(s)L(s+1)L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2})&0\\ \hline\cr\mbox{(iii)}&L(s)^{2}L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2})L(s,\chi_{3}\chi_{4}^{-1})L(s,\chi_{3}^{-1}\chi_{4})&0\\ \hline\cr\mbox{(iv)}&L(s+1)L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1})&0\\ \hline\cr\mbox{(v)}&L(s)L(s,\chi_{1}\chi_{2}^{-1})L(s,\chi_{1}^{-1}\chi_{2})L(s,\widetilde{\sigma}_{2},\operatorname{Sym}^{2}\otimes\omega_{\widetilde{\sigma}_{2}}^{-1})&0\\ \hline\cr\mathfrak{nongnr}&L(s-1)L(s)L(s+1)L(s,\widetilde{\sigma},\mathrm{Ad})&1+\operatorname{ord}_{s=1}L(s,\widetilde{\sigma},\mathrm{Ad})\\ \hline\cr\end{array}
Table 3. Representations of GSpin6(F)\mathrm{GSpin}_{6}(F)
ResGSpin6GL4×GL1 ofgeneric(a)(σ~0η~),σ~0Irrsc(GL4)(I)i(GL1×GL1×GL1×GL1)×GL1GL4×GL1(χ~1χ~2χ~3χ~4η~),χ~iνχ~j(II)i(GL2×GL1×GL1)×GL1GL4×GL1(σ~0χ~1χ~2η~),σ~0Irresq(GL2),χ~1ν±1χ~2(III)i(GL3×GL1)×GL1GL4×GL1(σ~0χ~η~),σ~0Irresq(GL3)(IV)i(GL2×GL2)×GL1GL4×GL1(σ~1σ~2η~),σ~iIrresq(GL2),σ~1ν±1σ~2(V)(σ~η~),σ~Irresq(GL4)Irrsc(GL4)(A)i(GL1×GL1×GL1×GL1)×GL1GL4×GL1(χ~1χ~2χ~3χ~4η~),χ~i=νχ~j(B)i(GL2×GL1×GL1)×GL1GL4×GL1(σ~0χ~1χ~2η~),σ~0Irresq(GL2), or χ~1=ν±1χ~2(C)i(GL3×GL1)×GL1GL4×GL1(σ~0χ~η~),non-generic σ~0Irr(GL3)(D)i(GL2×GL2)×GL1GL4×GL1((χdet)σ~η~),σ~Irr(GL2)(E)(χ~detη~),σ~Irresq(GL4)Irrsc(GL4)\begin{array}[]{|c|l|c|}\hline\cr&\mbox{${\operatorname*{Res}}^{\mathrm{GL}_{4}\times\mathrm{GL}_{1}}_{\mathrm{GSpin}_{6}}$ of}&\mbox{generic}\\ \hline\cr\hline\cr\mbox{(a)}&(\widetilde{\sigma}_{0}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4})&\bullet\\ \hline\cr\mbox{(I)}&i_{(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta}),\quad\widetilde{\chi}_{i}\neq\nu\widetilde{\chi}_{j}&\bullet\\ \hline\cr\mbox{(II)}&i_{(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\widetilde{\chi}_{1}\neq\nu^{\pm 1}\widetilde{\chi}_{2}&\bullet\\ \hline\cr\mbox{(III)}&i_{(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{3})&\bullet\\ \hline\cr\mbox{(IV)}&i_{(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{1}\boxtimes\widetilde{\sigma}_{2}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\widetilde{\sigma}_{1}\neq\nu^{\pm 1}\widetilde{\sigma}_{2}&\bullet\\ \hline\cr\mbox{(V)}&(\widetilde{\sigma}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{4})\setminus\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4})&\bullet\\ \hline\cr\mbox{(A)}&i_{(\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta}),\quad\widetilde{\chi}_{i}=\nu\widetilde{\chi}_{j}&\\ \hline\cr\mbox{(B)}&i_{(\mathrm{GL}_{2}\times\mathrm{GL}_{1}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}_{0}\not\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{2}),\mbox{ or }\widetilde{\chi}_{1}=\nu^{\pm 1}\widetilde{\chi}_{2}&\\ \hline\cr\mbox{(C)}&i_{(\mathrm{GL}_{3}\times\mathrm{GL}_{1})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}(\widetilde{\sigma}_{0}\boxtimes\widetilde{\chi}\boxtimes\widetilde{\eta}),\quad\mbox{non-generic }\widetilde{\sigma}_{0}\in\operatorname*{Irr}(\mathrm{GL}_{3})&\\ \hline\cr\mbox{(D)}&i_{(\mathrm{GL}_{2}\times\mathrm{GL}_{2})\times\mathrm{GL}_{1}}^{\mathrm{GL}_{4}\times GL_{1}}((\chi\circ\det)\boxtimes\widetilde{\sigma}\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}\in\operatorname*{Irr}(\mathrm{GL}_{2})&\\ \hline\cr\mbox{(E)}&(\widetilde{\chi}\circ\det\boxtimes\widetilde{\eta}),\quad\widetilde{\sigma}\in\operatorname*{Irr}_{\rm esq}(\mathrm{GL}_{4})\setminus\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4})&\\ \hline\cr\end{array}
Table 4. The adjoint LL-function L(s,σ,Ad)L(s,\sigma,\mathrm{Ad}) for GSpin6\mathrm{GSpin}_{6}
σIrr(GSpin6(F)) determined by L(s,σ,Ad)ords=1(a)(5.9)σ~0Irrsc(GL4)L(s,σ~0,Ad)0(I)(5.14)χ~1χ~2χ~3χ~4η~L(s)3ijL(s,χ~iχ~j1)0(II)(5.18)σ~0Irrsc(GL2)L(s)2L(s,σ~0,Ad)L(s,σ~0×χ~11)L(s,σ~0×χ~1)L(s,σ~0×χ~21)L(s,σ~0×χ~2)L(s,χ~1χ~21)L(s,χ~2χ~11)0(II)(5.18)σ~0=𝖲𝗍GL2χ~L(s)2L(s+1)L(s+1,χ~χ~11)L(s+1,χ~χ~21)L(s,χ~1χ~1)L(s,χ~1χ~2)L(s,χ~1χ~21)L(s,χ~2χ~11)0(III)(5.22)σ~0Irrsc(GL3)L(s)L(s,σ~0,Ad)L(s,σ~0×χ~1)L(s,σ~0×χ~)0(III)(5.22)σ~0=𝖲𝗍GL3χ~0L(s)L(s+1)L(s+2)L(s+1,χ~χ~01)L(s+1,χ~1χ~0)0(IV)(5.26)σ~iIrrsc(GL2)L(s)L(s,σ~1,Ad)L(s,σ~2,Ad)L(s,σ~1×σ~2)L(s,σ~1×σ~1)0(IV)(5.26)σ~1Irrsc(GL2),σ~2=𝖲𝗍GL2χ~L(s)L(s+1)L(s,σ~1,Ad)L(s+12,σ~1×χ~)L(s+12,σ~1×χ~1)0(IV)(5.26)σ~2Irrsc(GL2),σ~1=𝖲𝗍GL2χ~L(s)L(s+1)L(s,σ~2,Ad)L(s+12,σ~2×χ~)L(s+12,σ~2×χ~1)0(IV)(5.26)σ~1=𝖲𝗍GL2χ~1σ~2=𝖲𝗍GL2χ~2L(s)L(s+1)2L(s,χ~11χ~2)L(s,χ~1χ~21)L(s+1,χ~1χ~21)L(s+1,χ~11χ~2)0(V)(5.27)σ~=𝖲𝗍GL4χ~L(s+1)L(s+2)L(s+3)0(V)(5.28)σ~=Δ[ν1/2,ν1/2],τ~Irrsc(GL2)L(s,τ~,Ad)L(s,τ~×τ~)0(A)(5.31)Q([ν1/2χ~],[ν1/2χ~],[χ~3],[χ~4])L(s1)L(s)3L(s+1)L(s,χ~3χ~41)L(s,χ~31χ~4)i=3,4(L(s+12,χ~χ~i1)L(s12,χ~1χ~i)L(s12,χ~χ~i1)L(s+12,χ~1χ~i))1(A)(5.32)Q([νχ~],[χ~],[ν1χ~],[χ~4])L(s2)L(s1)2L(s)3L(s+1)2L(s+2)t=1,0,1(L(s+t,χ~χ~41)L(s+t,χ~1χ~4))2(A)(5.33)Q([χ~,νχ~],[ν1χ~],[χ~4])L(s2)L(s1)2L(s)2t=1,0L(s+t,χ~χ~41)t=1,1L(s+t,χ~1χ~4)2(A)(5.34)Q([νχ~],[χ~,ν1χ~],[χ~4])L(s1)L(s)2L(s+1)L(s+2)t=0,1L(s+t,χ~χ~41)t=1,1L(s+t,χ~1χ~4)1(A)(5.35)Q([ν3/2χ~],[ν1/2χ~],[ν1/2χ~],[ν3/2χ~])L(s3)L(s2)2L(s1)3L(s)3L(s+1)3L(s+2)2L(s+3)3(A)(5.36)Q([ν1/2χ~,ν3/2χ~],[ν1/2χ~],[ν3/2χ~])L(s3)L(s2)L(s1)2L(s)2L(s+1)2L(s+2)2(A)(5.37)Q([ν3/2χ~],[ν1/2χ~,ν1/2χ~],[ν3/2χ~])L(s3)L(s2)L(s1)2L(s)2L(s+1)2L(s+2)2(A)(5.38)Q([ν3/2χ~],[ν1/2χ~],[ν3/2χ~,ν1/2χ~])L(s3)L(s2)L(s1)2L(s)2L(s+1)2L(s+2)2(A)(5.39)Q([ν1/2χ~,ν3/2χ~],[ν3/2χ~,ν1/2χ~])L(s3)L(s2)L(s1)2L(s)L(s+1)L(s+2)2(A)(5.40)Q([ν1/2χ~,ν1/2χ~,ν3/2χ~],[ν3/2χ~])L(s3)L(s2)L(s1)L(s)L(s+1)1(A)(5.41)Q([ν3/2χ~],[ν3/2χ~,ν1/2χ~,ν1/2χ~])L(s3)L(s2)L(s1)L(s)L(s+1)1(B)(5.45)Q([iBGL2(η~1η~2)],[χ~ν1/2],[χ~ν1/2]),η~1η~21ν±1L(s1)L(s)3L(s+1)L(s,η~1η~21)L(s,η~11η~2)t=±12i=1,2(L(s+t,η~iχ~1)L(s+t,η~i1χ~))1(B)(5.45) (others covered in (A)) (C)(5.48) (covered in (A) and (B)) (D)(5.49) with σ~Irrsc(GL2)L(s1)L(s)2L(s+1)L(s,σ,Ad)t=±12(L(s+t,σ×χ1)L(s+t,σ×χ))1(D)(5.49) with σ~=𝖲𝗍GL2ηL(s1)L(s)2L(s+1)2L(s,χη1)L(s+1,χη1)L(s+1,χ1η)L(s,χ1η)1(D)(5.49) (others covered in (A)) (E)(5.50) (covered in (A)) \begin{array}[]{|c|l|l|c|}\hline\cr&\sigma\in\operatorname*{Irr}(\mathrm{GSpin}_{6}(F))\mbox{ determined by }&\begin{array}[]{l}L(s,\sigma,\mathrm{Ad})\end{array}&\mbox{ord}_{s=1}\\ \hline\cr\hline\cr\mbox{(a)}&\eqref{sc gl4}\,\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{4})&\begin{array}[]{l}L(s,\widetilde{\sigma}_{0},\mathrm{Ad})\end{array}&0\\ \hline\cr\mbox{(I)}&\eqref{ps gl4}\,\widetilde{\chi}_{1}\boxtimes\widetilde{\chi}_{2}\boxtimes\widetilde{\chi}_{3}\boxtimes\widetilde{\chi}_{4}\boxtimes\widetilde{\eta}&\begin{array}[]{l}L(s)^{3}\prod_{i\neq j}L(s,\widetilde{\chi}_{i}\widetilde{\chi}_{j}^{-1})\end{array}&0\\ \hline\cr\mbox{(II)}&\eqref{ps gl4 II}\,\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\begin{array}[]{l}L(s)^{2}L(s,\widetilde{\sigma}_{0},\mathrm{Ad})L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}_{1}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi}_{1})\\ L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\chi}_{2}\widetilde{\chi}_{1}^{-1})\end{array}&0\\ \hline\cr\mbox{(II)}&\eqref{ps gl4 II}\,\widetilde{\sigma}_{0}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}&\begin{array}[]{l}L(s)^{2}L(s+1)L(s+1,\widetilde{\chi}\widetilde{\chi}_{1}^{-1})L(s+1,\widetilde{\chi}\widetilde{\chi}_{2}^{-1})\\ L(s,\widetilde{\chi}^{-1}\widetilde{\chi}_{1})L(s,\widetilde{\chi}^{-1}\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s,\widetilde{\chi}_{2}\widetilde{\chi}_{1}^{-1})\end{array}&0\\ \hline\cr\mbox{(III)}&\eqref{ps gl4 III}\,\widetilde{\sigma}_{0}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{3})&\begin{array}[]{l}L(s)L(s,\widetilde{\sigma}_{0},\mathrm{Ad})L(s,\widetilde{\sigma}_{0}\times\widetilde{\chi}^{-1})L(s,\widetilde{\sigma}_{0}^{\vee}\times\widetilde{\chi})\end{array}&0\\ \hline\cr\mbox{(III)}&\eqref{ps gl4 III}\,\widetilde{\sigma}_{0}=\mathsf{St}_{\mathrm{GL}_{3}}\otimes\widetilde{\chi}_{0}&\begin{array}[]{l}L(s)L(s+1)L(s+2)L(s+1,\widetilde{\chi}\widetilde{\chi}_{0}^{-1})L(s+1,\widetilde{\chi}^{-1}\widetilde{\chi}_{0})\end{array}&0\\ \hline\cr\mbox{(IV)}&\eqref{ps gl4 IV}\,\widetilde{\sigma}_{i}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\begin{array}[]{l}L(s)L(s,\widetilde{\sigma}_{1},\mathrm{Ad})L(s,\widetilde{\sigma}_{2},\mathrm{Ad})\\ L(s,\widetilde{\sigma}_{1}\times\widetilde{\sigma}_{2}^{\vee})L(s,\widetilde{\sigma}_{1}^{\vee}\times\widetilde{\sigma}_{1})\end{array}&0\\ \hline\cr\mbox{(IV)}&\eqref{ps gl4 IV}\,\widetilde{\sigma}_{1}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2}),\widetilde{\sigma}_{2}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}&\begin{array}[]{l}L(s)L(s+1)L(s,\widetilde{\sigma}_{1},\mathrm{Ad})\\ L(s+\frac{1}{2},\widetilde{\sigma}_{1}^{\vee}\times\widetilde{\chi})L(s+\frac{1}{2},\widetilde{\sigma}_{1}\times\widetilde{\chi}^{-1})\end{array}&0\\ \hline\cr\mbox{(IV)}&\eqref{ps gl4 IV}\,\widetilde{\sigma}_{2}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2}),\widetilde{\sigma}_{1}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}&\begin{array}[]{l}L(s)L(s+1)L(s,\widetilde{\sigma}_{2},\mathrm{Ad})\\ L(s+\frac{1}{2},\widetilde{\sigma}_{2}^{\vee}\times\widetilde{\chi})L(s+\frac{1}{2},\widetilde{\sigma}_{2}\times\widetilde{\chi}^{-1})\end{array}&0\\ \hline\cr\mbox{(IV)}&\eqref{ps gl4 IV}\,\widetilde{\sigma}_{1}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}_{1}\widetilde{\sigma}_{2}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\widetilde{\chi}_{2}&\begin{array}[]{l}L(s)L(s+1)^{2}L(s,\widetilde{\chi}_{1}^{-1}\widetilde{\chi}_{2})L(s,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})\\ L(s+1,\widetilde{\chi}_{1}\widetilde{\chi}_{2}^{-1})L(s+1,\widetilde{\chi}_{1}^{-1}\widetilde{\chi}_{2})\end{array}&0\\ \hline\cr\mbox{(V)}&\eqref{4gl1}\,\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{4}}\otimes\widetilde{\chi}&\begin{array}[]{l}L(s+1)L(s+2)L(s+3)\end{array}&0\\ \hline\cr\mbox{(V)}&\eqref{2gl2}\,\widetilde{\sigma}=\Delta[\nu^{1/2},\nu^{-1/2}],\widetilde{\tau}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\begin{array}[]{l}L(s,\widetilde{\tau},\mathrm{Ad})L(s,\widetilde{\tau}\times\widetilde{\tau}^{\vee})\end{array}&0\\ \hline\cr\mbox{(A)}&\eqref{nongenericA1}\,Q\left([\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\widetilde{\chi}_{3}],[\widetilde{\chi}_{4}]\right)&\begin{array}[]{l}L(s-1)L(s)^{3}L(s+1)L(s,\widetilde{\chi}_{3}\widetilde{\chi}_{4}^{-1})L(s,\widetilde{\chi}_{3}^{-1}\widetilde{\chi}_{4})\\ \prod\limits_{i=3,4}\left(\begin{array}[]{l}L(s+\frac{1}{2},\widetilde{\chi}\widetilde{\chi}_{i}^{-1})L(s-\frac{1}{2},\widetilde{\chi}^{-1}\widetilde{\chi}_{i})\\ L(s-\frac{1}{2},\widetilde{\chi}\widetilde{\chi}_{i}^{-1})L(s+\frac{1}{2},\widetilde{\chi}^{-1}\widetilde{\chi}_{i})\end{array}\right)\end{array}&\geq 1\\ \hline\cr\mbox{(A)}&\eqref{nongenericA2}\,Q\left([\nu\widetilde{\chi}],[\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right)&\begin{array}[]{l}L(s-2)L(s-1)^{2}L(s)^{3}L(s+1)^{2}L(s+2)\\ \prod\limits_{t=-1,0,1}\left(L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4})\right)\end{array}&\geq 2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA3}\,Q\left([\widetilde{\chi},\nu\widetilde{\chi}],[\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right)&\begin{array}[]{l}L(s-2)L(s-1)^{2}L(s)^{2}\\ \prod\limits_{t=-1,0}L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})\prod\limits_{t=-1,1}L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4})\end{array}&\geq 2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA4}\,Q\left([\nu\widetilde{\chi}],[\widetilde{\chi},\nu^{-1}\widetilde{\chi}],[\widetilde{\chi}_{4}]\right)&\begin{array}[]{l}L(s-1)L(s)^{2}L(s+1)L(s+2)\\ \prod\limits_{t=0,1}L(s+t,\widetilde{\chi}\widetilde{\chi}_{4}^{-1})\prod\limits_{t=-1,1}L(s+t,\widetilde{\chi}^{-1}\widetilde{\chi}_{4})\end{array}&\geq 1\\ \hline\cr\mbox{(A)}&\eqref{nongenericA5}\,Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right)&\begin{array}[]{l}L(s-3)L(s-2)^{2}L(s-1)^{3}L(s)^{3}\\ L(s+1)^{3}L(s+2)^{2}L(s+3)\end{array}&3\\ \hline\cr\mbox{(A)}&\eqref{nongenericA6}\,Q\left([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)^{2}L(s)^{2}L(s+1)^{2}L(s+2)&2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA7}\,Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)^{2}L(s)^{2}L(s+1)^{2}L(s+2)&2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA8}\,Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{1/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)^{2}L(s)^{2}L(s+1)^{2}L(s+2)&2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA9}\,Q\left([\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)^{2}L(s)L(s+1)L(s+2)&2\\ \hline\cr\mbox{(A)}&\eqref{nongenericA10}\,Q\left([\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi},\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)L(s)L(s+1)&1\\ \hline\cr\mbox{(A)}&\eqref{nongenericA11}\,Q\left([\nu^{3/2}\widetilde{\chi}],[\nu^{-3/2}\widetilde{\chi},\nu^{-1/2}\widetilde{\chi},\nu^{1/2}\widetilde{\chi}]\right)&L(s-3)L(s-2)L(s-1)L(s)L(s+1)&1\\ \hline\cr\mbox{(B)}&\eqref{nongenericB}\begin{array}[]{c}Q\left([i_{B}^{\mathrm{GL}_{2}}(\widetilde{\eta}_{1}\boxtimes\widetilde{\eta}_{2})],[\widetilde{\chi}\nu^{1/2}],[\widetilde{\chi}\nu^{-1/2}]\right)\!,\\ \widetilde{\eta}_{1}\widetilde{\eta}_{2}^{-1}\neq\nu^{\pm 1}\end{array}&\begin{array}[]{l}L(s-1)L(s)^{3}L(s+1)L(s,\widetilde{\eta}_{1}\widetilde{\eta}_{2}^{-1})L(s,\widetilde{\eta}_{1}^{-1}\widetilde{\eta}_{2})\\ \prod\limits_{t=\pm\frac{1}{2}}\prod\limits_{i=1,2}\left(L(s+t,\widetilde{\eta}_{i}\widetilde{\chi}^{-1})L(s+t,\widetilde{\eta}_{i}^{-1}\widetilde{\chi})\right)\end{array}&\geq 1\\ \hline\cr\mbox{(B)}&\eqref{nongenericB}\,\mbox{ (others covered in (A)) }&\vrule\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr\mbox{(C)}&\eqref{ps gl4 III non}\,\mbox{ (covered in (A) and (B)) }&\vrule\lx@intercol\hfil\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr\mbox{(D)}&\eqref{ps gspin6 IV non}\,\mbox{ with }\widetilde{\sigma}\in\operatorname*{Irr}_{\rm sc}(\mathrm{GL}_{2})&\begin{array}[]{l}L(s-1)L(s)^{2}L(s+1)L(s,\sigma,\mathrm{Ad})\\ \prod\limits_{t=\pm\frac{1}{2}}\left(L(s+t,\sigma\times\chi^{-1})L(s+t,\sigma^{\vee}\times\chi)\right)\\ \end{array}&1\\ \hline\cr\mbox{(D)}&\eqref{ps gspin6 IV non}\,\mbox{ with }\widetilde{\sigma}=\mathsf{St}_{\mathrm{GL}_{2}}\otimes\eta&\begin{array}[]{l}L(s-1)L(s)^{2}L(s+1)^{2}\\ L(s,\chi\eta^{-1})L(s+1,\chi\eta^{-1})L(s+1,\chi^{-1}\eta)L(s,\chi^{-1}\eta)\end{array}&\geq 1\\ \hline\cr\mbox{(D)}&\eqref{ps gspin6 IV non}\,\mbox{ (others covered in (A)) }&\vrule\lx@intercol\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr\mbox{(E)}&\eqref{ps gspin6 E non}\,\mbox{ (covered in (A)) }&\vrule\lx@intercol\hfil\lx@intercol\vrule\lx@intercol\\ \hline\cr\end{array}