This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Removing Interlopers From Intensity Mapping Probes Of Primordial Non-Gaussianity

Chang Chen,1 Anthony R. Pullen,1,2
1Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY, 10003, U.S.A.
2Center for Computational Astrophysics, Flatiron institute, New York, NY 10010, U.S.A
E-mail: [email protected]
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

Line intensity mapping (LIM) has the potential to produce highly precise measurements of scale-dependence bias from primordial non-Gaussianity (PNG) due to its ability to map much larger volumes than are available from galaxy surveys. PNG parameterized by fNLf_{NL} leads to a scale-dependent correction to the bias, and therefore a correction to the line intensity power spectrum. However, LIM experiences contamination from foreground emission, including interloping emission lines from other redshifts which alter the power spectra of the maps at these scales, potentially biasing measurements of fNLf_{NL}. Here we model the effect of line interlopers on upcoming line intensity mapping probes of primordial non-Gaussianity (PNG) from inflation. As an example, we consider the [CII][\rm CII] line at target redshift zt=3.6z_{t}=3.6 to probe PNG, with the important systematic concern being foreground contamination from CO lines residing at redshifts different from the target redshift. We find interloper lines can lead to a significant bias and an increase in errors for our PNG constraints, leading to a false positive for non-standard inflation models. We model how well the cross-correlation technique could reduce this interloper contamination. We find the uncertainty of fNLf_{NL} reduces by factors of two and six for local and orthogonal shape PNG respectively, and by a factor of five for local shape if we consider seven interloper lines, almost eliminating the effect of interlopers. This work shows that using cross-power and auto-power spectra of line intensity maps jointly could potentially remove the effects of interlopers when measuring non-Gaussianity.

keywords:
large-scale structure of Universe – diffuse radiation – inflation
pubyear: 2015pagerange: Removing Interlopers From Intensity Mapping Probes Of Primordial Non-GaussianityRemoving Interlopers From Intensity Mapping Probes Of Primordial Non-Gaussianity

1 INTRODUCTION

Inflation theory has been enormously successful in explaining the origin of large-scale structure in the universe (Guth, 1981; Linde, 1987). The simplest inflation model predicts almost scale-invariant, adiabatic and Gaussian perturbations. Primordial Non-Gaussianity (PNG) of the local shape is parameterized by fNLlocf_{NL}^{loc} (Komatsu & Spergel, 2001; Gangui et al., 1994) as

Φ=ϕ+fNLlocϕ2\Phi=\phi+f_{NL}^{loc}\phi^{2} (1)

where ϕ\phi is the Gaussian primordial potential. The parameter fNLf_{NL} for the standard single-field inflation model is very small, of order 10210^{-2} (Maldacena, 2003), while fNLlocf_{NL}^{loc} for more general models, e.g. multi-field inflation(Linde & Mukhanov, 1997; Lyth et al., 2003) is much higher, even up to fNL𝒪(1)f_{NL}\sim\mathcal{O}(1). In addition, the orthogonal shape PNG, which can be produced by models with higher derivative interactions and Galilean inflation (Senatore et al., 2010), is parameterized by fNLorthf_{NL}^{orth}. Therefore, probing fNLf_{NL} can serve as a strong discriminant among cosmological models.

Currently, the best constraints on fNLf_{NL} are from CMB bispectra measurements from Planck satellite, given as fNLloc=0.9±5.1f_{NL}^{loc}=-0.9\pm 5.1 and fNLorth=38±24f_{NL}^{orth}=-38\pm 24 (Planck Collaboration et al., 2019). Complimentary large-scale structure (LSS) surveys such as BOSS (Alam et al., 2017), DES (Abbott et al., 2018), EUCLID (Amendola et al., 2018) could probe fNLf_{NL} scale-dependent bias on large scales (Matarrese & Verde, 2008; Afshordi & Tolley, 2008) and are promising to achieve higher precision than CMB data.As of now, current constraints on fNLlocf_{NL}^{loc} from scale-dependent bias are not yet competitive with CMB constraints (Leistedt et al., 2014; Castorina et al., 2019; Dai & Xia, 2020), with the most precise constraints still coming from quasars in Leistedt et al. (2014), 49<fNLloc<31-49<f_{NL}^{loc}<31. For PNG of the general shape, non-zero primordial bispectrum induces a scale-dependent correction to the bias (Dalal et al., 2008; Matarrese & Verde, 2008; Afshordi & Tolley, 2008; Desjacques et al., 2011), leaving a signature in the power spectrum on large scales.

Unlike galaxy surveys which probe individual tracers, line intensity mapping measures cumulative intensity fluctuations from all luminous sources including faint ones unresolved in galaxy surveys. Line intensity mapping experiments could have the potential to access over 80%80\% of the volume of the observable Universe (Kovetz et al., 2019). Therefore, it has the potential to further the study of large-scale structure in the universe, especially of the Epoch of Reionization when sources with low luminosity inaccessible to galaxy surveys reionized the universe (Robertson et al., 2015). The fine-structure line from ionized carbon ([CII]) (Gong et al., 2012; Silva et al., 2015), the brightest line for star formation galaxies, makes it an ideal candidate for probing the line intensity power spectrum on large scales to improve constraints of PNG (Moradinezhad Dizgah & Keating, 2019; Moradinezhad Dizgah et al., 2019).

An important systematic effect when considering intensity mapping is foreground interloper emission (Visbal & Loeb, 2010; Lidz & Taylor, 2016) from lines residing at the same observed frequency as the target line. Interloper emission, in which different emission lines from galaxies with different epochs redshift to the same observed frequency, contaminates intensity maps and introduces extra correlations in the measured power spectrum that can bias parameter estimations. This deposits a distinct signature at large scales where effects from non-Gaussianity reside due to the features in the power spectrum at these scales such as baryon acoustic oscillations and the peak corresponding to matter-radiation equality.

In our case, we consider a target line of [CII][\rm CII] emission with rest-frame frequency νt=1901\nu_{t}=1901 GHz emitted from sources at redshift ztz_{t} contaminated by interloping rotational lines of carbon monoxide (CO(JJ1)\rm CO\left(J\rightarrow J-1\right)) (Visbal & Loeb, 2010) with rest-frame frequency νi=115×JGHz\nu_{i}=115\times JGHz emitted from sources at redshifts ziz_{i} lower than target redshift ztz_{t}. Those CO lines can be confused as [CII][\rm CII] line if they reside at the same observed frequency νobs\nu_{obs} as the target line, i.e. νobs=νt/(1+zt)=νi/(1+zi)\nu_{obs}=\nu_{t}/(1+z_{t})=\nu_{i}/(1+z_{i}). These interloper CO lines can distort power spectrum detections and contaminate the forecast for constraints on PNG. A recent paper (Gong et al., 2020) discusses the interloper contamination on constraints of cosmological and astrophysical parameters. Assuming the target redshift ztz_{t} in converting the observed frequencies and angles to their co-moving coordinates, the interloper lines will be mapped to the wrong longitudinal and transverse co-moving wavenumbers, causing an anisotropy of the interloper power spectrum contribution (Visbal & Loeb, 2010; Gong et al., 2014; Lidz & Taylor, 2016).

In this paper we adopt this approach, where we seek how best to reduce the contamination when measuring fNLf_{\rm NL} using power spectrum measurements. In this work we consider a line intensity mapping survey using a Planck-like telescope with a high-resolution spectrograph, similar to the instrument modeled in Moradinezhad Dizgah et al. (2019), to forecast measurement errors for fNLf_{\rm NL}. We find through a Fisher analysis that not only do interlopers significantly increase the error on fNLf_{\rm NL}, but that a properly modeled auto-power spectrum analysis cannot reduce the error effectively. Specifically, we find that interlopers can bias the fNLf_{NL} measurement, producing a false 3σ\sigma detection of non-Gaussianity favoring non-standard inflation models.

Next, we consider cross-correlation to separate anisotropic interloper emission from the [CII][\rm CII] auto power spectrum. We model the cross-correlation between [CII][\rm CII] and CO(4-3) at the same redshift, z=3.6z=3.6 in our case with a different frequency to avoid bias from interloper emission. We calculate auto-power spectra and cross-power spectrum of [CII][\rm CII] and CO(4-3) maps and perform a Fisher analysis to forecast the errors. We find the interloper contamination for the PNG probing can be largely removed using this method, reducing the Fisher analysis error by factors of two and five for fNLlocf_{NL}^{loc} and fNLorthf_{NL}^{orth} respectively if we only consider 1 interloper line, and by a factor of five for fNLlocf_{NL}^{loc} if we consider 7 interloper lines. For both cases we find that including the cross-power in the analysis removes most of this interloper bias, making the fNLf_{\rm NL} measurement rather insensitive to contamination from interlopers. However, we also find that the auto-power spectra can still play a large role in regards to the precision of the fNLf_{\rm NL} measurement. Specifically, we find that for fNLlocf_{\rm NL}^{loc}, the precision comes solely from the cross-power spectrum, while for fNLorthof_{\rm NL}^{ortho} the precision comes roughly equally from the auto-power and cross-power spectra.

The outline of the rest of the paper is as follows. In Section 2, we review the theoretical model of the line intensity power spectrum detection for PNG, and the interloper contamination for this detection. In Section 3, we describe the Fisher analysis and data bias approach. In Section 4, we detail our fiducial survey and present the results for constraints on fNLlocf_{NL}^{loc}. We further discuss the prospect for using cross-correlation with another emission line in Section 5. In Section 6 we forecast the constraints on the orthogonal shape PNG. We further consider different astrophysical models in Section 7. Based on our results, we draw our conclusions in Section 8. Throughout this paper we adopt a flat cosmological model with H0=67.74,Ωm=0.26,Ωb=0.049,σ8=0.816H_{0}=67.74,\Omega_{m}=0.26,\Omega_{b}=0.049,\sigma_{8}=0.816.

2 PNG LINE INTENSITY POWER SPECTRUM DETECTION AND INTERLOPER CONTAMINATION

In this section we review the formalism for the scale-dependent correction to clustering bias due to non-zero fNLf_{NL}, present how this correction to bias would manifest itself in the line intensity power spectrum detection, and highlight the interloper contamination of the power spectrum.

2.1 PNG review

Local shape PNG is produced by super-horizon non-linear evolution of primordial curvature perturbations. In the absence of PNG, on large scales the halo bias bhb_{h} is assumed to be constant. Local shape PNG, parameterized by fNLlocf_{NL}^{\rm loc}, leads to a scale-dependent correction to the linear halo bias (Dalal et al., 2008; Matarrese & Verde, 2008; Afshordi & Tolley, 2008).

bh(M,z)bh(M,z)+Δbhloc(M,k,z)b_{h}(M,z)\rightarrow b_{h}(M,z)+\Delta b_{h}^{\rm loc}(M,k,z) (2)
Δbhloc(M,k,z)=3fNLlocδc[bh(M,z)1]ΩmH02k2T(k)D(z)\Delta b_{h}^{\rm loc}(M,k,z)=\frac{3f_{\rm NL}^{\rm loc}\delta_{c}\left[b_{h}(M,z)-1\right]\Omega_{m}H_{0}^{2}}{k^{2}T(k)D(z)} (3)

where δc=1.686\delta_{c}=1.686 is the threshold of spherical collapse at z=0z=0, T(k)T(k) is the matter linear transfer function T(k0)=1T(k\rightarrow 0)=1 and D(z)D(z) is the normalized linear growth factor [D(z=0)=1D(z=0)=1].

On large scales this k2k^{-2} scale-dependent correction has been used to constrain fNLlocf_{\rm NL}^{\rm loc} from power spectrum detections of LSS biased tracers due to its clean signal (Slosar et al., 2008; Leistedt et al., 2014; Ho et al., 2015). Alternatively, line intensity mapping can provide a more economical survey over larger volume to probe power spectrum on large scales.

Orthogonal shape PNG can be produced by models with higher-derivative interactions and Galilean inflation (Senatore et al., 2010). Parameterized by fNLorthf_{NL}^{orth}, on large scales, orthogonal shape PNG leads to a scale-dependent correction to the linear halo bias (Desjacques et al., 2011)

Δbhorth(k)\displaystyle\Delta b_{h}^{orth}(k) =\displaystyle= 6fNLσαs2σ0s2[(bh1)δc+2(lnσαslnσ0s1)]\displaystyle-6f_{NL}\frac{\sigma_{\alpha s}^{2}}{\sigma_{0s}^{2}}\left[(b_{h}-1)\delta_{c}+2\left(\frac{\partial ln\sigma_{\alpha s}}{\partial ln\sigma_{0s}}-1\right)\right] (4)
×k2αRs(k,z)1\displaystyle\times k^{-2\alpha}\mathcal{M}_{R_{s}}(k,z)^{-1}

α=(ns4)/6\alpha=(n_{s}-4)/6, Rs(k,z)=WRs(k)(k,z)\mathcal{M}_{R_{s}}(k,z)=W_{R_{s}}(k)\mathcal{M}(k,z), where (k,z)=25k2T(k)D(z)ΩmH02\mathcal{M}(k,z)=\frac{2}{5}\frac{k^{2}T(k)D(z)}{\Omega_{m}H_{0}^{2}}, and we choose the window function WRs(k)W_{R_{s}}(k) as the Fourier transform of a spherical top-hat filter with smoothing length Rs=(3M/4πρ¯)1/3R_{s}=(3M/4\pi\bar{\rho})^{1/3},

WRs(k)=3[sin(kRs)kRcos(kRs)](kRs)3W_{R_{s}}(k)=\frac{3\left[{sin}(kR_{s})-kR\ {cos}(kR_{s})\right]}{(kR_{s})^{3}} (5)

the general spectrum moment is

σαs2=12π20𝑑kk2(α+1)PΦ(k)Rs(k,z)1\sigma^{2}_{\alpha s}=\frac{1}{2\pi^{2}}\int^{\infty}_{0}dkk^{2(\alpha+1)}P_{\Phi}(k)\mathcal{M}_{R_{s}}(k,z)^{-1} (6)

2.2 Line intensity power spectrum

Here we model the [CII][\rm CII] line intensity power spectrum to predict how well it could constrain PNG. The relation between the mean intensity of the emission line and the luminosity of [CII][\rm CII]-luminous galaxies in their host halos (Visbal & Loeb, 2010; Moradinezhad Dizgah & Keating, 2019) at redshift z is expressed as

ICII(z)=c2fduty2kBνobs2MminMmax𝑑MdndML(M,z)4π𝒟L2(dldθ)2dldν\langle I_{\rm CII}\rangle(z)=\frac{c^{2}f_{\rm duty}}{2k_{B}\nu_{\rm obs}^{2}}\int_{M_{\rm min}}^{M_{\rm max}}dM\frac{dn}{dM}\frac{L(M,z)}{4\pi\mathcal{D}_{L}^{2}}\left(\frac{dl}{d\theta}\right)^{2}\frac{dl}{d\nu} (7)

where MminM_{\rm min} and MmaxM_{\rm max} are the minimum and maximum mass of [CII][\rm CII]-emitting halos, fdutyf_{\rm duty} is the duty cycle of line emitting halos, (i.e. the fraction of halos in the given mass range which emit [CII][\rm CII] line at redshift z), dn/dMdn/dM is the halo mass function, L(M,z)L(M,z) is the luminosity of the [CII][\rm CII]-luminous galaxies from dark matter halo of mass M at redshift zz, 𝒟L{\mathcal{D}}_{L} is the luminosity distance. We set Mmin=109MM_{\rm min}=10^{9}M_{\odot} and Mmax=1014.5MM_{\rm max}=10^{14.5}M_{\odot}. We replace fdutyf_{\rm duty} with pn,σp_{n,\sigma} as given in (Moradinezhad Dizgah & Keating, 2019). We use the Tinker halo mass function (Tinker et al., 2008). dl/dθdl/d\theta and dl/dνdl/d\nu convert comoving lengths ll to frequency ν\nu and angular size θ\theta, dl/dθ=DA,co(z)dl/d\theta=D_{\rm A,co}(z), dldν=c(1+z)νobsH(z)\frac{dl}{d\nu}=\frac{c(1+z)}{\nu_{\rm obs}H(z)}, where DA,co(z)D_{\rm A,co}(z) is the comoving angular diameter distance (For a flat universe, DA,co(z)=χ(z)D_{\rm A,co}(z)=\chi(z) where χ(z)\chi(z) is the co-moving distance to redshift zz.) and H(z)H(z) is the Hubble parameter at redshift z. For our fiducial model we use the result of the m1m1 model of Silva et al. (2015) to relate the [CII][\rm CII] luminosity to the average star formation rate SFR¯(M,z)\overline{\rm SFR}(M,z) of Behroozi et al. (2013)

logLCII=0.8475×logSFR¯(M,z)+7.2203\log L_{\rm CII}=0.8475\times\log\overline{\rm SFR}(M,z)+7.2203 (8)

[CII][\rm CII] line bias is related to halo bias bh(M,z)b_{h}(M,z) as (Moradinezhad Dizgah & Keating, 2019)

bline(z)=MminMmax𝑑MdndMbh(M,z)L(M,z)MminMmax𝑑MdndML(M,z)b_{\rm line}(z)=\frac{\int_{M_{\rm min}}^{M_{\rm max}}dM\ \frac{dn}{dM}\ b_{h}(M,z)L(M,z)}{\int_{M_{\rm min}}^{M_{\rm max}}dM\ \frac{dn}{dM}\ L(M,z)} (9)

We use halo bias bh(M,z)b_{h}(M,z) of (Tinker et al., 2010).

Setting z=3.60z=3.60, we get ICII(3.6)=0.30μK\langle I_{\rm CII}(3.6)\rangle=0.30\mu K from (7) and bline(3.6)=3.47b_{\rm line}(3.6)=3.47 from (9).

The shot noise power spectrum is

Pshot(z)=c4fduty4kB2νobs4MminMmax𝑑MdndM[L(M,z)4π𝒟L2(dldθ)2dldν]2.P_{\rm shot}(z)=\frac{c^{4}f_{\rm duty}}{4k_{B}^{2}\nu_{\rm obs}^{4}}\int_{M_{\rm min}}^{M_{\rm max}}dM\frac{dn}{dM}{\left[\frac{L(M,z)}{4\pi\mathcal{D}_{L}^{2}}\left(\frac{dl}{d\theta}\right)^{2}\frac{dl}{d\nu}\right]}^{2}. (10)

Including redshift space distortions, the line clustering power spectrum can be expressed as

P(k,μ,z)\displaystyle P(k,\mu,z) =ICII(z)2bline2(z)P0(k,z)\displaystyle=\langle I_{\rm CII}\rangle(z)^{2}b_{\rm line}^{2}(z)P_{0}(k,z)
×[1+μ2β(k,z)]2exp(k2μ2σv2H2(z))\displaystyle\times\left[1+\mu^{2}\beta(k,z)\right]^{2}{\rm exp}\left(-\frac{k^{2}\mu^{2}\sigma_{v}^{2}}{H^{2}(z)}\right) (11)

The factor of [1+μ2β(k,z)]2\left[1+\mu^{2}\beta(k,z)\right]^{2} comes from the Kaiser effect (Kaiser, 1987), β(k,z)=f/bline(z)\beta(k,z)=f/b_{\rm line}(z),where ff is the logarithmic derivative of the growth factor, μ=k/k\mu=k_{\parallel}/k is the cosine of the angle between the k and the line of sight direction. The factor of exp(k2μ2σv2H2(z)){\rm exp}\left(-\frac{k^{2}\mu^{2}\sigma_{v}^{2}}{H^{2}(z)}\right) is from the finger-of-god effect (Jackson, 1972) with the pairwise velocity dispersion approximated as σv2=(1+z)2[σFOG2(z)2+c2σz2]\sigma_{v}^{2}=(1+z)^{2}\left[\frac{\sigma_{\rm FOG}^{2}(z)}{2}+c^{2}\sigma_{z}^{2}\right], where σFOG(z)=σFOG,01+z\sigma_{\rm FOG}(z)=\sigma_{{\rm FOG},0}\sqrt{1+z}, σz=0.001(1+z)\sigma_{z}=0.001(1+z) and σFOG,0=250km.s1\sigma_{{\rm FOG},0}=250km.s^{-1}. According to Eqs. (9), (2) and (3) will manifest as a scale-dependent correction to the blineb_{\rm line} and therefore to the line power spectrum (11).

2.3 Interloper contamination

Line emission of CO interloper line at redshift ziz_{i} confuses with target [CII][\rm CII] line by residing at the same observed frequency νobs\nu_{obs} as the [CII][\rm CII] line. When we convert the observed frequency interval Δνobs\Delta\nu_{\rm obs} and angular separation Δθobs\Delta\theta_{obs} in a data cube to co-moving coordinates to calculate the power spectrum, if we adopt the target line redshift ztz_{t}, we will end up with wrong wavenumbers (Lidz & Taylor, 2016). The relation between the true wavenumbers kk_{\parallel} and k\textbf{k}_{\perp} and these apparent wavenumbers k~\tilde{k}_{\parallel} and k~\tilde{\textbf{k}}_{\perp}, calculated by wrongly adopting the ztz_{t} for coordinate conversion, is

k~=H(zt)H(zi)1+zi1+ztk=αk\tilde{k}_{\parallel}=\frac{H(z_{t})}{H(z_{i})}\frac{1+z_{i}}{1+z_{t}}k_{\parallel}=\alpha_{\parallel}k_{\parallel} (12)
k~=DA,co(zi)DA,co(zt)k=αk\tilde{\textbf{k}}_{\perp}=\frac{D_{\rm A,co}(z_{i})}{D_{\rm A,co}(z_{t})}\textbf{k}_{\perp}=\alpha_{\perp}\textbf{k}_{\perp} (13)

where α\alpha_{\parallel} and α\alpha_{\perp} are distortion factors caused by this incorrect redshift adoption. Therefore for the multiple interloper line emission case with N interloper lines, the total power spectrum in the data cube is

Ptot(k~,k~)=\displaystyle P_{\rm tot}(\tilde{k}_{\parallel},\tilde{\textbf{k}}_{\perp})= Pt(k,k)\displaystyle P_{t}(k_{\parallel},\textbf{k}_{\perp})
+j=1N1α(zj)α2(zj)Pj(k~α,k~α).\displaystyle+\sum_{j=1}^{N}\frac{1}{\alpha_{\parallel}(z_{j})\alpha_{\perp}^{2}(z_{j})}P_{j}\left(\frac{\tilde{k}_{\parallel}}{\alpha_{\parallel}},\frac{\tilde{\textbf{k}}_{\perp}}{\alpha_{\perp}}\right). (14)

where zjz_{j} is the redshift of the jjth interloper line. In this paper we consider up to 7 CO interloper lines, with JJ ranging from 4 to 10 in CO(JJ1)\rm CO\left(J\rightarrow J-1\right) molecule transitioning between rotational states JJ and J1J-1.

For CO(10)\rm CO\left(1\rightarrow 0\right), expressed in units of solar luminosity, the luminosity is

LCO(10)=4.9×105LCOL_{\rm CO(1-0)}=4.9\times 10^{-5}L^{\prime}_{\rm CO} (15)

Using the fit from (Carilli & Walter, 2013), CO line luminosity LCOL^{\prime}_{\rm CO}, which is expressed in units of Kkms1pc2\rm Kkms^{-1}pc^{2}, is related to the far-infrared luminosity LIRL_{IR}, which is in the unit of LL_{\odot} as

logLIR=1.37×logLCO1.74\log L_{\rm IR}=1.37\times\log L^{\prime}_{\rm CO}-1.74 (16)

We use the base model of Li et al. (2016), where LIRL_{\rm IR} is related to the SFR¯\overline{\rm SFR} in units of Myr1M_{\odot}{\rm yr}^{-1} via Kennicut relation (Kennicutt, 1998) using the results of Behroozi et al. (2013)

SFR¯(M,z)=δMF×1010LIR.{\overline{\rm SFR}}(M,z)=\delta_{\rm MF}\times 10^{-10}L_{\rm IR}. (17)

We use δMF=1\delta_{\rm MF}=1 (Behroozi et al., 2013; Li et al., 2016).

Using Eq. (7) we get intensities for CO(10)\rm CO\left(1\rightarrow 0\right) at different redshifts zjz_{j} that will interlope with the [CII][\rm CII] target line at z=3.6z=3.6, i.e. J×115GHzzj+1=1901GHz3.6+1\frac{\rm J\times 115\rm GHz}{z_{j}+1}=\frac{1901\rm GHz}{3.6+1}. In order to construct a rough estimate of the interloper luminosities, we use the ratio between the luminosity of 7 CO interloper lines with JJ ranging from 4 to 10 and that for the CO(10)\rm CO\left(1\rightarrow 0\right) (Visbal & Loeb, 2010) to get the intensities for these 7 interlopers, we also calculate the line biases for these interloper lines according to Eq. (9); these values for interlopers are listed in Table 1.

Table 1: Redshifts zjz_{j}, intensities I\langle I\rangle (in units of μK\mu K) and line biases blineb_{\rm line} for the 7 interloper CO lines
J 4 5 6 7 8 9 10
zjz_{j} 0.113 0.391 0.670 0.948 1.226 1.504 1.783
I\langle I\rangle 0.07 0.08 0.10 0.06 0.04 0.03 0.02
blineb_{\rm line} 0.6 0.8 1 1.2 1.3 1.4 1.6

According to the values in Table 1, we plot spherically averaged k3P(k)/(2π)2k^{3}P(k)/(2\pi)^{2} of the [CII][\rm CII] line at z=3.6z=3.6 and the 7 CO lines that interlope with it in Figure 1.

Refer to caption
Figure 1: Spherically averaged k3P(k)/(2π)2k^{3}P(k)/(2\pi)^{2}. The black solid line shows the [CII][\rm CII] line power spectrum at z=3.6z=3.6. The blue solid line shows the total interloper power spectrum from the 7 CO interloper lines. The 7 dashed lines show the interloper power spectrum for the 7 CO interloper lines respectively.

As in previous work (Lidz & Taylor, 2016; Gong et al., 2012), we plot contours of constant power in the kkk_{\perp}-k_{\parallel} plane in Figure 3 and 3 to visualize the anisotropy of the sum of the seven interloper power spectrum. Figure 3 characterizes the redshift space distortion in the target [CII][\rm CII] line power spectrum. The contours in Figure 3 illustrate the anisotropy of the power spectrum summation of the interloper CO lines from the coordinate mapping distortion, with the kk_{\parallel} strongly elongated.

Refer to caption
Figure 2: Contours of constant power in the kkk_{\perp}-k_{\parallel} plane for the target [CII][\rm CII] power spectrum at zt=3.6z_{t}=3.6. The black contours neglect redshift space distortions, while the black contours and color-scale include them.The colorbar is in units of μK2(Mpc/h)3\mu K^{2}(\rm Mpc/h)^{3}
Refer to caption
Figure 3: The contour with lowest power is at P(k)=2×103μK2(Mpc/h)3P(k)=2\times 10^{3}\mu K^{2}(\rm Mpc/h)^{3} and the contours increase inwards as ΔP=2×103μK2(Mpc/h)3\Delta P=2\times 10^{3}\mu K^{2}(\rm Mpc/h)^{3}. The black contours illustrate the anisotropy of the summation of the seven interloper line power spectrum including redshift space distortion and coordinate mapping distortion. The kk_{\parallel} direction is strongly elongated

3 PARAMETER ESTIMATION FORMALISM

The first part of this section describes the Fisher matrix forecast methodology. In the second part we derive the interloper bias to the measured power spectrum.

3.1 Fisher matrix forecast

We use the Fisher matrix methodology to forecast how well a hypothetical [CII][\rm CII] survey will constrain fNLf_{NL}. We first consider the simple case with only 1 CO interloper CO(43)\rm CO\left(4\rightarrow 3\right). We consider a parameter space q. Our forecast is conducted at zt=3.6z_{t}=3.6.

We investigate whether the fNLf_{NL} and [CII][\rm CII] target line, which is characterized by ICIII_{\rm CII} and bCIIb_{\rm CII} can be forecasted precisely with the interloper contamination which is characterized by ICO(43)\langle I_{\rm CO\left(4\rightarrow 3\right)}\rangle and bCO(43)b_{\rm CO\left(4\rightarrow 3\right)} by calculating the Fisher matrix with component for the ithi\rm th and jthj\rm th of q

Fij\displaystyle F_{ij} =\displaystyle= 11dμkminkmaxk2dk8π2Veff(k,μ,zt)lnPtot(k,μ,zt)qi\displaystyle\int_{-1}^{1}{\rm d}\mu\int_{k_{\rm min}}^{k_{\rm max}}\frac{k^{2}{\rm d}k}{8\pi^{2}}\ V_{\rm eff}(k,\mu,z_{t})\frac{\partial{\rm ln}P_{\rm tot}(k,\mu,z_{t})}{\partial q_{i}} (18)
×lnPtot(k,μ,zt)qj\displaystyle\times\frac{\partial{\rm ln}P_{\rm tot}(k,\mu,z_{t})}{\partial q_{j}}

where the total power spectrum including the [CII][\rm CII] and CO(43)\rm CO\left(4\rightarrow 3\right) power is given as Eq. (2.3). VeffV_{\rm eff} is the effective volume of the redshift bin at zt=3.6z_{t}=3.6, Veff=[Ptot(k,μ,zt)Ptot(k,μ,zt)+Pshot(zt)+P~N(k,μ)]2ViV_{\rm eff}=\left[\frac{P_{\rm tot}(k,\mu,z_{t})}{P_{\rm tot}(k,\mu,z_{t})+P_{\rm shot}(z_{t})+\tilde{P}_{N}(k,\mu)}\right]^{2}V_{i}, Pshot(zt)P_{\rm shot}(z_{t}) is given as Eq. (10), P~N(k,μ)\tilde{P}_{N}(k,\mu) is the effective instrumental noise power spectrum given later as Eq. (27), ViV_{i} is the volume of the redshift bin between zminz_{min} and zmaxz_{max} with a fraction of the sky fskyf_{sky}; specifically, Vi=4π3fsky[χ3(zmax)χ3(zmin)]V_{i}=\dfrac{4\pi}{3}f_{sky}[\chi^{3}(z_{max})-\chi^{3}(z_{min})], where χ(z)\chi(z) is the co-moving distance to redshift z.

3.2 Parameter bias forecast

The bias from interloper contamination in power spectrum detection can be calculated using the formalism constructed in Pullen et al. (2016). The parameter bias is

Δq=F1ΔD\Delta\textbf{q}=\textbf{F}^{-1}\Delta\textbf{D} (19)

where F is the Fisher matrix with the parameter space of q. The jjth component of ΔD\Delta\textbf{D} is given as

ΔDj\displaystyle\Delta D_{j} =\displaystyle= 11dμkminkmaxk2dk8π2Veff(k,μ,zt)ΔPt(k,μ,zt)Pt\displaystyle\int_{-1}^{1}{\rm d}\mu\int_{k_{\rm min}}^{k_{\rm max}}\frac{k^{2}{\rm d}k}{8\pi^{2}}\ V_{\rm eff}(k,\mu,z_{t})\frac{\Delta P_{t}(k,\mu,z_{t})}{P_{t}} (20)
×lnPt(k,μ,zt)qj\displaystyle\times\frac{\partial{\rm ln}P_{t}(k,\mu,z_{t})}{\partial q_{j}}

where ΔPt(k,μ,zt)\Delta P_{t}(k,\mu,z_{t}) is the bias the interlopers contribute to the target power spectrum Pt(k,μ,zt)P_{t}(k,\mu,z_{t}), i.e. the second term in Eq. (10).

4 FIDUCIAL SURVEY AND RESULTS

Having quantified the PNG contribution to the [CII][\rm CII] line power spectrum and its interloper contamination, we describe our hypothetical fiducial survey in the first part of this section, and present forecasts for using this to remove the CO interloper contributions from the [CII][\rm CII] local shape PNG power spectrum detection in the second part.

4.1 Fiducial survey description

As in Moradinezhad Dizgah & Keating (2019), we consider an Planck-like telescope having an aperture with dish length of Dant=1.5D_{ant}=1.5 m. We assume a frequency range of 310-620 GHz, corresponding to a [CII] redshift range of z=2.065.13z=2.06-5.13, and a frequency resolution Δν=0.4\Delta\nu=0.4 GHz, aperture temperature Taperture=40T_{\rm aperture}=40 K, and approximately Ndet=104N_{\rm det}=10^{4} detectors working for τtot=4×104\tau_{\rm tot}=4\times 10^{4} hours. We assume a survey sky coverage fraction fsky=0.34f_{\rm sky}=0.34, which leads to an angular limit on the sky of θmax=Ωsurv=4πfsky=118\theta_{max}=\sqrt{\Omega_{\rm surv}}=\sqrt{4\pi f_{\rm sky}}=118^{\circ}.

We include in our noise model photon noise from the CMB (TB=2.725T_{\rm B}=2.725 K), galactic dust (TB=18T_{\rm B}=18 K) and zodiacal dust (TB=240T_{\rm B}=240 K) contributions. The emissivity of the dust is ε=ε(ν/ν)β\varepsilon=\varepsilon_{\circ}(\nu/\nu_{\circ})^{\beta}, where for galactic dust emission ε=2×104\varepsilon_{\circ}=2\times 10^{-4}, ν=3\nu_{\circ}=3 THz, β=2\beta=2; while for zodiacal dust emission ε=3×107\varepsilon_{\circ}=3\times 10^{-7}, ν=2\nu_{\circ}=2 THz, β=2\beta=2. The radiation emitted at frequency ν\nu is

Iν=ε(ν)Bν(T)=ε(ν)2hν3c21ehνkBTB1.I_{\nu}=\varepsilon(\nu)B_{\nu}(T)=\varepsilon(\nu)\frac{2h\nu^{3}}{c^{2}}\frac{1}{e^{\frac{h\nu}{k_{B}T_{B}}}-1}\,. (21)

The Rayleigh-Jeans Law yields

Tdust=ε(ν)Bν(T)c22ν2kB=ε(ν)hν1kB(ehνkBTB1)T_{dust}=\frac{\varepsilon(\nu)B_{\nu}(T)c^{2}}{2\nu^{2}k_{B}}=\varepsilon(\nu)h\nu\frac{1}{k_{B}(e^{\frac{h\nu}{k_{B}T_{B}}}-1)} (22)

From Eq. (22) we get that at the observed frequency for the [CII][\rm CII] line, Tgalacticdust=46μKT_{\rm galactic\>\rm dust}=46\mu K and Tzodiacaldust=53μKT_{\rm zodiacal\>\rm dust}=53\mu K; therefore the systematic temperature is

Tsys=Taperture+TCMB+Tzodiacaldust+Tgalacticdust=42.725KT_{sys}=T_{\rm aperture}+T_{\rm CMB}+T_{\rm zodiacal\>\rm dust}+T_{\rm galactic\>\rm dust}=42.725K (23)

The instrumental noise for each k-mode is (Moradinezhad Dizgah et al., 2019)

PN=Tsys2τtotNdetΩsurv(dldθ)2dldν.P_{\rm N}=\frac{T_{\rm sys}^{2}}{\tau_{\rm tot}N_{\rm det}}\Omega_{\rm surv}\left(\frac{dl}{d\theta}\right)^{2}\frac{dl}{d\nu}. (24)

The scale-independent correction to the clustering bias is relatively negligible at small scales, so we set kmax=0.1hMpc1k_{\rm max}=0.1h\>Mpc^{-1}.

We consider the largest scales recoverable from foreground contamination. We model this with the parameter ηmin\eta_{\rm min}, defined as the ratio of the observed frequency divided by the maximum bandwidth over which the frequency dependent response of the instrument is assumed to be smooth, as in Moradinezhad Dizgah & Keating (2019). We model the recoverable largest-scale per-parallel mode from foregrounds as k,min=2πηmin[νobsdl/dv]1k_{\parallel,\rm min}=2\pi\eta_{\rm min}[\nu_{obs}dl/dv]^{-1}. Setting ηmin=4.5\eta_{\rm min}=4.5, which is 3×\times the frequency-bandwidth ratio of the fiducial instrument, we have k,min=0.0077k_{\parallel,\rm min}=0.0077 Mpc-1. The survey area sets the largest-scale perpendicular mode, given by k,min=2π[2sin(θmax/2)dldθ]1=0.0005k_{\bot,\rm min}=2\pi[2\sin(\theta_{\rm max}/2)\frac{dl}{d\theta}]^{-1}=0.0005 Mpc-1. The smallest-scale modes are generated by the spatial and spectral resolutions respectively, k,max2π[c/νobsDantdldθ]1k_{\bot,max}\approx 2\pi[\dfrac{c/\nu_{obs}}{D_{ant}}\frac{dl}{d\theta}]^{-1}, k,max2π[δνdldv]1k_{\parallel,\rm max}\approx 2\pi[\delta\nu\frac{dl}{dv}]^{-1}.

We introduce the attenuation of the signal due to foregrounds as in Moradinezhad Dizgah & Keating (2019)

γmin(k,k)=(1ek2/(k,min/2)2)×(1ek2/(k,min/2)2),\gamma_{\rm min}(k_{\perp},k_{\parallel})=\left(1-e^{-k_{\perp}^{2}/(k_{\perp,{\rm min}}/2)^{2}}\right)\times\left(1-e^{-k_{\parallel}^{2}/(k_{\parallel,{\rm min}}/2)^{2}}\right)\,, (25)

and due to finite spectral and angular resolution

γmax(k,k)=e(k/2k,max2+k/2k,max2),\gamma_{\rm max}(k_{\perp},k_{\parallel})=e^{-(k_{\perp}{{}^{2}}/k_{\perp,{\rm max}}^{2}+k_{\parallel}{{}^{2}}/k_{\parallel,{\rm max}}^{2})}\,, (26)

writing the effective instrumental noise as

P~N(k,μ,z)=PNγmax1(k,μ)γmin1(k,μ).\tilde{P}_{\rm N}(k,\mu,z)=P_{\rm N}\gamma^{-1}_{\rm max}(k,\mu)\gamma^{-1}_{\rm min}(k,\mu)\,. (27)

4.2 Forecast results

In this section we forecast the local shape fNLf_{NL} measured from only the auto-power spectrum. The Fisher analysis results for this section are listed in Table 2.

Table 2: Fisher analysis results for fNLlocf_{NL}^{loc}
Interloper number 0 1 7
σ(fNLloc)\sigma(f_{NL}^{loc}) for auto spectrum 1.32 1.64 4.04
σ(fNLloc)\sigma(f_{NL}^{loc}) for cross-correlation 0.65 0.69 0.85

In the first scenario we assume there is no interloper contamination. The parameter space includes four parameters q={fNLloc,ICII,bCII,PshotCII}\textbf{q}=\{f_{NL}^{loc},\langle I_{\rm CII}\rangle,b_{\rm CII},P^{\rm CII}_{\rm shot}\}. We set the fiducial value of the parameters as fNLloc=0f_{NL}^{loc}=0, ICII=0.30μK\langle I_{\rm CII}\rangle=0.30\mu K, bCII=3.47b_{\rm CII}=3.47, as what was calculated before, PshotCII=13.57μK2(Mpc/h)3P^{\rm CII}_{\rm shot}=13.57\mu K^{2}(\rm Mpc/h)^{3}. We find σ(fNLloc)=1.32\sigma(f_{NL}^{loc})=1.32, which being of order 𝒪(1)\mathcal{O}(1) is the target level of uncertainty needed to discriminate between inflation models. This result deviates from the one from Moradinezhad Dizgah & Keating (2019) because we adopted different fiducial survey parameters, and therefore yield a smaller instrumental noise. We plot the 1σ1-\sigma errors in different parameter planes shown as the yellow ellipses in Figure (4).

Refer to caption
Figure 4: 1σ1-\sigma forecast of the constraint on fNLlocf_{NL}^{loc} for the Fisher analysis without considering interlopers.

In the second scenario we include a contamination from one interloper CO(43)\rm CO\left(4\rightarrow 3\right) at zj=0.113z_{j}=0.113 according to the second term in Eq. (2.3), the anisotropic contribution to the [CII] power spectrum due to CO(43)\rm CO\left(4\rightarrow 3\right). The parameter space now includes seven parameters q={fNLloc,ICII,bCII,ICO(43)(zj),bCO(43)(zj),PshotCII,\textbf{q}=\{f_{NL}^{loc},\langle I_{\rm CII}\rangle,b_{\rm CII},\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{j})\rangle,b_{\rm CO\left(4\rightarrow 3\right)}(z_{j}),P^{\rm CII}_{\rm shot}, PshotCO(43)(zj)}P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{j})\}. We set the fiducial values of the interloper parameters as ICO(43)(zj)=0.07μK\langle I_{\rm CO\left(4\rightarrow 3\right)\rangle}(z_{j})\rangle=0.07\mu K, bCO(43)(zj)=0.6b_{\rm CO\left(4\rightarrow 3\right)}(z_{j})=0.6 as listed in Table 1, PshotCO(43)(zj)=1.35μK2(Mpc/h)3P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{j})=1.35\mu K^{2}(\rm Mpc/h)^{3}, and the remaining parameters are set as in the first scenario. We compute the marginalized σ(fNLloc)=1.64\sigma(f_{NL}^{loc})=1.64, a 24% increase due to interloper contamination. We plot the 1σ1-\sigma errors in different parameter planes shown as yellow ellipses in Figure (5). Alternatively, if we consider the interloper contamination as pure noise other than mixing signals for the target CII\rm CII line, the parameter space becomes q={fNLloc,ICII,bCII,PshotCII}\textbf{q}=\{f_{NL}^{loc},\langle I_{\rm CII}\rangle,b_{\rm CII},P^{\rm CII}_{\rm shot}\} and we find σ(fNLloc)=1.60\sigma(f_{NL}^{loc})=1.60. Note that treating the CO(4-3) line as noise gives you slightly less error in fNLlocf_{NL}^{loc} because this model has less degrees of freedom. The uncertainty in fNLlocf_{NL}^{loc} becomes much larger when multiple interloper lines are introduced. If we include interloper contamination from all the 7 CO interlopers whose fiducial intensities and biases are given in Table 1 and marginalize over all these fiducial quantities, we get σ(fNLloc)=4.04\sigma(f_{NL}^{loc})=4.04.

Refer to caption
Figure 5: 1σ1-\sigma forecast of the constraint on fNLlocf_{NL}^{loc} for the Fisher analysis with considering CO(43)\rm CO\left(4\rightarrow 3\right) interloper.

Considering the case where one interloper PCO(43)P_{\rm CO\left(4\rightarrow 3\right)} biases the measured power spectrum, we get the parameter bias ΔpT=[ΔfNLloc,ΔbCII,ΔICII,ΔPshotCII]=[4.54,5.45,0.49,6.87]\Delta\textbf{p}^{T}=[\Delta f_{NL}^{loc},\Delta b_{\rm CII},\Delta\langle I_{\rm CII}\rangle,\Delta P_{\rm shot}^{\rm CII}]=[4.54,-5.45,0.49,6.87]. This would suggest one interloper can masquerade as a 2.8σ\sigma detection of fNLf_{NL} while providing a false positive for non-standard inflation models. This result shows that the presence of interlopers are prohibitive when attempting to measure fNLlocf_{NL}^{loc} using an auto-power spectrum.

5 CROSS-CORRELATION WITH OTHER LINES

According to our Fisher analysis results, interloper contamination highly biases local PNG constraints. Next, we consider cross-correlating the target [CII][\rm CII] line with a data cube centered on a different frequency corresponding to a target redshift zt=3.6z_{t}=3.6 for the CO(43)\rm CO\left(4\rightarrow 3\right) line, which could reduce the interloper contamination to the PNG constraint. We label the auto power spectra of the [CII][\rm CII] and CO(43)\rm CO\left(4\rightarrow 3\right) at zt=3.6z_{t}=3.6 as PCII(k,μ)P_{\rm CII}(k,\mu) and PCO(43)(k,μ)P_{\rm CO\left(4\rightarrow 3\right)}(k,\mu), respectively. The cross-power spectrum between the [CII][\rm CII] and CO(43)\rm CO\left(4\rightarrow 3\right) data cubes is

Px(k,μ)=\displaystyle P_{\rm x}(k,\mu)= ICIIICO(43)bCIIbCO(43)(1+βCIIμ2)\displaystyle I_{\rm CII}I_{\rm CO\left(4\rightarrow 3\right)}b_{\rm CII}b_{\rm CO\left(4\rightarrow 3\right)}\left(1+\beta_{\rm CII}\mu^{2}\right)
×(1+βCO(43)μ2)exp(k2μ2σv2H2(z))P0(k,zt)+PshotX\displaystyle\times\left(1+\beta_{\rm CO\left(4\rightarrow 3\right)}\mu^{2}\right){\rm exp}\left(-\frac{k^{2}\mu^{2}\sigma_{v}^{2}}{H^{2}(z)}\right)P_{0}(k,z_{t})+P_{\rm shot}^{X} (28)

The shot noise in the cross-power spectrum is

PshotX(z)=c4fduty4kB2νobsCII2νobsCO(43)2MminMmax𝑑MdndM\displaystyle P_{\rm shot}^{X}(z)=\frac{c^{4}f_{\rm duty}}{4k_{B}^{2}\nu_{obs\rm CII}^{2}\nu_{obs\rm CO\left(4\rightarrow 3\right)}^{2}}\int_{M_{\rm min}}^{M_{\rm max}}dM\frac{dn}{dM}
×[L(M,z)4π𝒟L2(dldθ)2dldν]CII[L(M,z)4π𝒟L2(dldθ)2dldν]CO(43).\displaystyle\times{\left[\frac{L(M,z)}{4\pi\mathcal{D}_{L}^{2}}\left(\frac{dl}{d\theta}\right)^{2}\frac{dl}{d\nu}\right]}_{\rm CII}{\left[\frac{L(M,z)}{4\pi\mathcal{D}_{L}^{2}}\left(\frac{dl}{d\theta}\right)^{2}\frac{dl}{d\nu}\right]}_{\rm CO\left(4\rightarrow 3\right)}. (29)

Let the observables be the data vector d = {PCII(k,μ),PCO(43)(k,μ),Px}\{P_{\rm CII}(k,\mu),P_{\rm CO\left(4\rightarrow 3\right)}(k,\mu),P_{x}\}. We consider a parameter space q at zt=3.6z_{t}=3.6. The Fisher matrix element with component for the ithi\rm th and jthj\rm th of q is (Tegmark et al., 1997)

Fij=Vi11dμkminkmaxk2dk8π2dqi𝚵1dTqjF_{ij}=V_{i}\int_{-1}^{1}{\rm d}\mu\int_{k_{\rm min}}^{k_{\rm max}}\frac{k^{2}{\rm d}k}{8\pi^{2}}\frac{\partial\textbf{d}}{\partial q_{i}}\boldsymbol{\Xi}^{-1}\frac{\partial\textbf{d}^{T}}{\partial q_{j}} (30)

where the entries of the covariance matrix Ξ\Xi are given in Lidz et al. (2009). We can also use Eq. 19 to compute the shift in the parameters due to interloper contamination. In this case, the formula for ΔD\Delta D becomes

ΔDj=Vi11dμkminkmaxk2dk8π2Δd𝚵1dTqj,\Delta D_{j}=V_{i}\int_{-1}^{1}{\rm d}\mu\int_{k_{\rm min}}^{k_{\rm max}}\frac{k^{2}{\rm d}k}{8\pi^{2}}\Delta\textbf{d}\boldsymbol{\Xi}^{-1}\frac{\partial\textbf{d}^{T}}{\partial q_{j}}\,, (31)

where Δd\Delta\textbf{d} is the shift in the data vector due to interloper contamination.

The Fisher analysis results for this section are listed in Table 2.

We first consider the scenario without interloper lines, i.e. only the first term in Eq. 2.3 is considered. The parameter space is q={fNLloc,ICII(zt),bCII(zt),\textbf{q}=\{f_{NL}^{loc},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}), PshotCII(zt),ICO(43)(zt),bCO(43)(zt),PshotCO(43)(zt),PshotX}P^{\rm CII}_{\rm shot}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle,b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}),P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{t}),P^{X}_{\rm shot}\}, in which the fiducial values for the fNLlocf_{NL}^{loc}, ICII(zt)\langle I_{\rm CII}(z_{t})\rangle, bCII(zt)b_{\rm CII}(z_{t}) are set as in in Section 4, ICO(43)(zt)\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle and bCO(43)(zt)b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}) are calculated from the method discussed in Section 2, ICO(43)(zt)=0.60μK\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle=0.60\mu K, bCO(43)(zt)=2.8b_{\rm CO\left(4\rightarrow 3\right)}(z_{t})=2.8, PshotCO(43)(zt)=88.01μK2(Mpc/h)3P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{t})=88.01\mu K^{2}(\rm Mpc/h)^{3}, PshotX=32.13μK2(Mpc/h)3P^{X}_{\rm shot}=32.13\mu K^{2}(\rm Mpc/h)^{3}. We use the 8×88\times 8 Fisher matrix from Eq. 30 to find the constraint on the parameters. 1σ1-\sigma errors in different parameter planes are shown as the yellow ellipses in Figure 4. In this Fisher analysis assuming the dataset {PCII(k,μ),PCO(43)(k,μ),Px}\{P_{\rm CII}(k,\mu),P_{\rm CO\left(4\rightarrow 3\right)}(k,\mu),P_{x}\}, we find σ(fNLloc)=0.65\sigma(f_{NL}^{loc})=0.65, much lower than the initial experimental setup value for the [CII][\rm CII] auto power spectrum of σ(fNLloc)=1.32\sigma(f_{NL}^{loc})=1.32. This result is expected since having multiple lines add more constraining power, and we benefit from the multi-tracer cosmic variance cancellation, as addressed in Liu & Breysse (2021).

In the second scenario we include the contamination from one interloper CO(43)\rm CO\left(4\rightarrow 3\right) at redshift 0.113 according to the second term in Eq. 2.3, the anisotropic contribution to the [CII] power spectrum due to CO(43)\rm CO\left(4\rightarrow 3\right).

The parameter space includes eleven parameters q={fNLloc,ICII(zt),bCII(zt),PshotCII(zt),ICO(43)(zt),\textbf{q}=\{f_{NL}^{loc},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),P^{\rm CII}_{\rm shot}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle, bCO(43)(zt),PshotCO(43)(zt),IintCO(43)(zj),bintCO(43)(zj),b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}),P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{t}),\langle I_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j})\rangle,b_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j}), PshotCO(43)(zj),PshotX}P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{j}),P^{X}_{\rm shot}\}, in which the fiducial values IintCO(43)(zj)\langle I_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j})\rangle and bintCO(43)(zj)\>b_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j}) for the interloper parameters are set as section 4.2. We use the 11×1111\times 11 Fisher matrix from Eq. 30 to find the constraint on the parameters. 1σ1-\sigma errors in different parameter planes are shown as the red ellipses in Figure 5. We find that in this Fisher analysis σ(fNLloc)=0.69\sigma(f_{NL}^{loc})=0.69, which is only 6% more than the predicted fNLf_{NL} error in the case with no interlopers. Note this increase is 4x less than the increase in the fNLf_{NL} error from the auto-power spectrum constraint. We also see that the error for the two cross-correlation cases, one with no interlopers and one with interlopers, are equal within less than 6%, suggesting that interlopers do not significantly bias measurements of fNLf_{\rm NL} when the auto and cross-power spectra are used jointly. Alternatively, if we consider the interloper contamination as pure noise other than mixing signals for the target CII\rm CII line, we find σ(fNLloc)=0.78\sigma(f_{NL}^{loc})=0.78, the parameter bias ΔpT=Δ[fNLloc,ICII(zt),bCII(zt),ICO(43)(zt),bCO(43)(zt),\Delta\textbf{p}^{T}=\Delta[f_{NL}^{loc},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle,b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}), PshotCII(zt),PshotCO(43)(zt)]=[3.29,0.21,2.29,0.037,0.15,6.77,P_{\rm shot}^{\rm CII}(z_{t}),P_{\rm shot}^{\rm CO(4\rightarrow 3)}(z_{t})]=[3.29,0.21,-2.29,-0.037,0.15,6.77, 30.89]30.89]. This results shows that including the interlopers as pure noise other than signals can not help to remove the interloper contamination. If we assume the dataset only includes the cross-spectrum {Px}\{P_{x}\}, we find σ(fNLloc)=0.85\sigma(f_{NL}^{loc})=0.85, slightly higher than that from doing the cross-correlation considering auto-spectrum. This result shows that including the auto-spectrum does not aid much when removing the interlopers if you treat it as noise.

If we include all the 7 interlopers CO(43)\rm CO\left(4\rightarrow 3\right) to CO(109)\rm CO\left(10\rightarrow 9\right) at lower redshift, with all their intensities and biases being added to the parameter space q, in the cross-correlated Fisher analysis we get σ(fNLloc)=0.85\sigma(f_{NL}^{loc})=0.85, dropping significantly as compared to σ(fNLloc)=4.04\sigma(f_{NL}^{loc})=4.04 for the [CII][\rm CII] auto power spectrum Fisher analysis.

6 Constraints ON Orthogonal Shape PNG

In this section we derive how interlopers affect constraints on measurements of orthogonal shape PNG. We present the forecasts for the removal of CO interloper contributions to the [CII][\rm CII] auto power spectrum detection in the first subsection. In the second subsection we present the Fisher forecasts for the cross-correlation between [CII][\rm CII] line and other lines at the same redshift. The Fisher analysis results for this section are listed in Table 3.

Table 3: Fisher analysis results for fNLorthf_{NL}^{orth}
Interloper number 0 1
σ(fNLorth)\sigma(f_{NL}^{orth}) for auto spectrum 52.75 7.15
σ(fNLorth)\sigma(f_{NL}^{orth}) for cross-correlation 42.24 7.05

6.1 Auto power spectrum Fisher forecast

We forecast the orthogonal shape PNG rather than the equilateral PNG since the former brings larger correction to the clustering bias, and thus a stronger constraint on fNLf_{NL}. We set the fiducial value fNLorth=0f_{NL}^{orth}=0. We adopt the same fiducial survey and remaining parameter values as described in Section 4.

In the first scenario we assume there is no interloper contamination. The parameter space includes three parameters q={fNLorth,ICII,bCII,PshotCII}\textbf{q}=\{f_{NL}^{orth},\langle I_{\rm CII}\rangle,b_{\rm CII},P^{\rm CII}_{\rm shot}\}. We find σ(fNLorth)=52.75\sigma(f_{NL}^{orth})=52.75, and we plot the 1σ1-\sigma errors in different parameter planes shown as yellow ellipses in Figure 6.

Refer to caption
Figure 6: 1σ1-\sigma forecast of the constraint on fNLorthf_{NL}^{orth} for the Fisher analysis without considering interlopers.

In the second scenario we include the interloper contamination from one interloper CO(43)\rm CO\left(4\rightarrow 3\right) at zj=0.113z_{j}=0.113. The parameter space contains five parameters q={fNLorth,ICII(zt),bCII(zt),PshotCII(zt),ICO(43)(zj),\textbf{q}=\{f_{NL}^{orth},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),P^{\rm CII}_{\rm shot}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{j})\rangle, bCO(43)(zj),PshotCO(43)(zj)}b_{\rm CO\left(4\rightarrow 3\right)}(z_{j}),P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{j})\}. We plot the 1σ1-\sigma errors in different parameter planes shown as yellow ellipses in Figure 7. We find the marginalized σ(fNLorth)=42.24\sigma(f_{NL}^{orth})=42.24. The reason for this error being smaller than that in the first scenario, as contrary to the case for fNLlocf_{NL}^{loc} is that Δbhorth\Delta b_{h}^{orth} in  (4) are of the same sign for the target line and the interloper, while Δbhloc\Delta b_{h}^{loc} in  (3) are of different signs.

Considering the case where one interloper PCO(43)P_{\rm CO\left(4\rightarrow 3\right)} biases the measured power spectrum, we compute the parameter bias ΔpT=[ΔfNLorth,ΔbCII,ΔICII,ΔPshotCII]=[49.20,5.58,0.51,6.25]\Delta\textbf{p}^{T}=[\Delta f_{NL}^{orth},\Delta b_{\rm CII},\Delta\langle I_{\rm CII}\rangle,\Delta P_{\rm shot}^{\rm CII}]=[49.20,-5.58,0.51,6.25]. This points to a modest bias relative to the predicted errors, in that the interlopers could masquerade as a 1.2-sigma measurement of fNLf_{NL}.

6.2 Cross-correlation Fisher forecast

We adopt the same fiducial survey and value of parameters for cross-correlation as in Section 5. We first consider the scenario without interloper lines with the parameter space being q={fNLorth,ICII(zt),bCII(zt),PshotCII(zt),ICO(43)(zt),\textbf{q}=\{f_{NL}^{orth},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),P^{\rm CII}_{\rm shot}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle, bCO(43)(zt),PshotCO(43)(zt),PshotX}b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}),P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{t}),P^{X}_{\rm shot}\}. 1σ1-\sigma errors in different parameter planes are shown as red ellipses in Figure 6. We find that in this cross-correlated Fisher analysis σ(fNLorth)=7.05\sigma(f_{NL}^{orth})=7.05, dropping significantly as compared to σ(fNLorth)=52.75\sigma(f_{NL}^{orth})=52.75 for the [CII][\rm CII] auto power spectrum Fisher analysis.

In the second scenario we include the interloper contamination from one interloper CO(43)\rm CO\left(4\rightarrow 3\right) at redshift 0.113. The parameter space includes seven parameters q={fNLorth,ICII(zt),bCII(zt),PshotCII(zt),ICO(43)(zt),\textbf{q}=\{f_{NL}^{orth},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),P^{\rm CII}_{\rm shot}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle, bCO(43)(zt),PshotCO(43)(zt),IintCO(43)(zj),bintCO(43)(zj),b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}),P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{t}),\langle I_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j})\rangle,b_{\rm int\>CO\left(4\rightarrow 3\right)}(z_{j}), PshotCO(43)(zj),PshotX}P^{\rm CO\left(4\rightarrow 3\right)}_{\rm shot}(z_{j}),P^{X}_{\rm shot}\}. 1σ1-\sigma errors in different parameter planes are shown as red ellipses in Figure 7. We note that in this cross-correlated Fisher analysis σ(fNLorth)=7.05\sigma(f_{NL}^{orth})=7.05, dropping significantly as compared to σ(fNLorth)=42.24\sigma(f_{NL}^{orth})=42.24 for the [CII][\rm CII] auto power spectrum Fisher analysis. Similar to the local PNG case, cross-power spectra tend to remove the effect of interlopers when measuring fNLf_{\rm NL}. Alternatively, if we consider the interloper contamination as pure noise other than mixing signals for the target CII\rm CII line, we find σ(fNLorth)=7.29\sigma(f_{NL}^{orth})=7.29, the parameter bias ΔpT=[fNLorth,ICII(zt),bCII(zt),ICO(43)(zt),bCO(43)(zt),\Delta\textbf{p}^{T}=[f_{NL}^{orth},\langle I_{\rm CII}(z_{t})\rangle,b_{\rm CII}(z_{t}),\langle I_{\rm CO\left(4\rightarrow 3\right)}(z_{t})\rangle,b_{\rm CO\left(4\rightarrow 3\right)}(z_{t}), PshotCII(zt),PshotCO(zt)]=[59.31,0.47,5.53,0.041,0.20,6.56,P_{\rm shot}^{\rm CII}(z_{t}),P_{\rm shot}^{\rm CO}(z_{t})]=[59.31,0.47,-5.53,0.041,-0.20,6.56, 30.84]30.84]. This results shows that including the interlopers as pure noise other than signals can not help to remove the interloper contamination. If we assume the dataset only includes the cross-spectrum {Px}\{P_{x}\}, we find σ(fNLorth)=13.51\sigma(f_{NL}^{orth})=13.51, larger than that from considering both the cross-spedtrum and the auto-spectra. This result shows that including the auto-spectrum is necessary for removing the interlopers when treating it as noise.

Refer to caption
Figure 7: 1σ1-\sigma forecast of the constraint on fNLorthf_{NL}^{orth} for the Fisher analysis with considering CO(43)\rm CO\left(4\rightarrow 3\right) interloper.

7 DISCUSSION

In this section we discuss how the PNG constraints depend on astrophysical models.Specifically, we consider how both different modelling of CO line luminosity and the minimum mass of halos that emit lines affect the PNG constraints.

We set Mmin=109MM_{\rm min}=10^{9}M_{\odot} in our base model.In the fiducial [CII] model we use throughout the paper, we set the minimum halo mass for [CII] line emission to be Mmin=109MM_{\rm min}=10^{9}M_{\odot}. This parameter is very uncertain, with reasonable values between Mmin=10911MM_{\rm min}=10^{9-11}M_{\odot}. We find when setting Mmin=1010MM_{\rm min}=10^{10}M_{\odot} without considering interloper contamination, ICII(zt)\langle I_{\rm CII}(z_{t})\rangle gets lower and therefore yields a weaker constraint. Specifically, for the case with only the auto-power spectrum only and no interlopers present, σ(fNLloc)=1.54\sigma(f_{NL}^{loc})=1.54, a 17% increase. For the case with both auto-power and cross-power spectrum, σ(fNLloc)=0.78\sigma(f_{NL}^{loc})=0.78, a 13%13\% increase.

For the fiducial CO model in this work we use the Li et al. (2016) model for the interlopers. Including only one CO interloper CO(43)CO\left(4\rightarrow 3\right) line contamination, we consider two other models with the CO luminosity linearly related to the halo mass. In model A considering fduty=ts/tage(z)f_{\rm duty}=t_{s}/t_{\rm age}(z) in Pullen et al. (2013), we find a lower intensity for CO(43)CO\left(4\rightarrow 3\right), and thus a stronger constraint on PNG. Specifically, for the auto-power only case with one interloper we find σ(fNLloc)=1.55\sigma(f_{NL}^{loc})=1.55, a 6% reduction; for the case with both auto-power and cross-power, σ(fNLloc)=0.67\sigma(f_{NL}^{loc})=0.67, a 3%3\% reduction. In Keating et al. (2016), we get higher intensity for CO(43)CO\left(4\rightarrow 3\right), and thus a weaker constraint on PNG with σ(fNLloc)=1.76\sigma(f_{NL}^{loc})=1.76 and σ(fNLloc)=0.83\sigma(f_{NL}^{loc})=0.83 for cases with only auto-power and with both auto-power and cross-power spectrum respectively.

We use the luminosity model in Visbal & Loeb (2010) to get the intensity ratios between CO(JJ1)CO\left(J\rightarrow J-1\right) and CO(10)CO\left(1\rightarrow 0\right). Considering instead the relationship CO(JJ1)=J3CO(10)CO\left(J\rightarrow J-1\right)=J^{3}CO\left(1\rightarrow 0\right) in Obreschkow et al. (2009) and get higher interloper intensities, and thus a weaker constraint on PNG with σ(fNLloc)=4.80\sigma(f_{NL}^{loc})=4.80 if we include seven interlopers. While the relationship of CO(JJ1)=CO(10)CO\left(J\rightarrow J-1\right)=CO\left(1\rightarrow 0\right) in Lidz et al. (2011) yields lower interloper intensities, and thus a stronger constraint on PNG with σ(fNLloc)=1.34\sigma(f_{NL}^{loc})=1.34 and σ(fNLloc)=0.60\sigma(f_{NL}^{loc})=0.60 for cases with only auto-power and with both auto-power and cross-power spectrum respectively.

8 CONCLUSION

Probing constraints on Primordial Non-Gaussianity (PNG) characterized by fNLf_{NL} is a strong discriminant among cosmological models. PNG leads to a scale-dependent clustering bias for emission lines. We consider [CII][\rm CII] line intensity mapping at the target redshift zt=3.6z_{t}=3.6 to model how interlopers affect measurements of fNLlocf_{NL}^{loc} and fNLorthf_{NL}^{orth}.

Interloper contamination from CO line confusion provides an important systematic concern for our intensity mapping method. We separate the anisotropic CO interloper contamination at the power spectrum level. We obtained constraints on fNLf_{NL} from a future survey with and without CO lines interloping, and found that the interloper contamination leads to weaker constraints on fNLf_{NL} along with significant bias to the parameter.

We model the cross-correlation between [CII][\rm CII] and CO(4-3) at the same redshift as a way to reduce the interloper contamination at target redshift. We model constraints on fNLf_{NL} by calculating auto power spectrum and cross power spectrum between the data cubes which contain [CII][\rm CII] and CO(4-3). We find the interloper contamination for the PNG probing can be largely removed using this method.

Primordial Non-Gaussianity will shed light on physics of primordial fluctuations. Line intensity mapping is a potential technique to probe PNG by providing complimentary information undetectable with other traditional galaxy surveys. Interloper contamination is an important systematic concern for this technique, as obtained by using the power anisotropy separation method; but it can be reduced largely by using cross-correlation techniques.

Acknowledgements

We thank Patrick Breysse for his helpful feedback on an earlier version of this manuscript. ARP was supported by the Simons Foundation and by NASA under award numbers 80NSSC18K1014 and NNH17ZDA001N.

References

  • Abbott et al. (2018) Abbott T. M. C., et al., 2018, Phys. Rev. D, 98, 043526
  • Afshordi & Tolley (2008) Afshordi N., Tolley A. J., 2008, Phys. Rev. D, 78, 123507
  • Alam et al. (2017) Alam S., et al., 2017, MNRAS, 470, 2617
  • Amendola et al. (2018) Amendola L., et al., 2018, Living Reviews in Relativity, 21, 2
  • Behroozi et al. (2013) Behroozi P. S., Wechsler R. H., Conroy C., 2013, ApJ, 762, L31
  • Carilli & Walter (2013) Carilli C. L., Walter F., 2013, ARA&A, 51, 105
  • Castorina et al. (2019) Castorina E., et al., 2019, J. Cosmology Astropart. Phys., 2019, 010
  • Dai & Xia (2020) Dai J.-P., Xia J.-Q., 2020, MNRAS, 491, L61
  • Dalal et al. (2008) Dalal N., Doré O., Huterer D., Shirokov A., 2008, Phys. Rev. D, 77, 123514
  • Desjacques et al. (2011) Desjacques V., Jeong D., Schmidt F., 2011, Phys. Rev. D, 84, 063512
  • Gangui et al. (1994) Gangui A., Lucchin F., Matarrese S., Mollerach S., 1994, ApJ, 430, 447
  • Gong et al. (2012) Gong Y., Cooray A., Silva M., Santos M. G., Bock J., Bradford C. M., Zemcov M., 2012, ApJ, 745, 49
  • Gong et al. (2014) Gong Y., Silva M., Cooray A., Santos M. G., 2014, ApJ, 785, 72
  • Gong et al. (2020) Gong Y., Chen X., Cooray A., 2020, ApJ, 894, 152
  • Guth (1981) Guth A. H., 1981, Phys. Rev. D, 23, 347
  • Ho et al. (2015) Ho S., et al., 2015, J. Cosmology Astropart. Phys., 2015, 040
  • Jackson (1972) Jackson J. C., 1972, MNRAS, 156, 1P
  • Kaiser (1987) Kaiser N., 1987, MNRAS, 227, 1
  • Keating et al. (2016) Keating G. K., Marrone D. P., Bower G. C., Leitch E., Carlstrom J. E., DeBoer D. R., 2016, ApJ, 830, 34
  • Kennicutt (1998) Kennicutt Robert C. J., 1998, ARA&A, 36, 189
  • Komatsu & Spergel (2001) Komatsu E., Spergel D. N., 2001, Phys. Rev. D, 63, 063002
  • Kovetz et al. (2019) Kovetz E., et al., 2019, BAAS, 51, 101
  • Leistedt et al. (2014) Leistedt B., Peiris H. V., Roth N., 2014, Phys. Rev. Lett., 113, 221301
  • Li et al. (2016) Li T. Y., Wechsler R. H., Devaraj K., Church S. E., 2016, ApJ, 817, 169
  • Lidz & Taylor (2016) Lidz A., Taylor J., 2016, ApJ, 825, 143
  • Lidz et al. (2009) Lidz A., Zahn O., Furlanetto S. R., McQuinn M., Hernquist L., Zaldarriaga M., 2009, ApJ, 690, 252
  • Lidz et al. (2011) Lidz A., Furlanetto S. R., Oh S. P., Aguirre J., Chang T.-C., Doré O., Pritchard J. R., 2011, ApJ, 741, 70
  • Linde (1987) Linde A. D., 1987, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. p. 149
  • Linde & Mukhanov (1997) Linde A., Mukhanov V., 1997, Phys. Rev. D, 56, R535
  • Liu & Breysse (2021) Liu R. H., Breysse P. C., 2021, Phys. Rev. D, 103, 063520
  • Lyth et al. (2003) Lyth D. H., Ungarelli C., Wands D., 2003, Phys. Rev. D, 67, 023503
  • Maldacena (2003) Maldacena J., 2003, Journal of High Energy Physics, 2003, 013
  • Matarrese & Verde (2008) Matarrese S., Verde L., 2008, ApJ, 677, L77
  • Moradinezhad Dizgah & Keating (2019) Moradinezhad Dizgah A., Keating G. K., 2019, ApJ, 872, 126
  • Moradinezhad Dizgah et al. (2019) Moradinezhad Dizgah A., Keating G. K., Fialkov A., 2019, ApJ, 870, L4
  • Obreschkow et al. (2009) Obreschkow D., Heywood I., Klöckner H. R., Rawlings S., 2009, ApJ, 702, 1321
  • Planck Collaboration et al. (2019) Planck Collaboration et al., 2019, arXiv e-prints, p. arXiv:1905.05697
  • Pullen et al. (2013) Pullen A. R., Chang T.-C., Doré O., Lidz A., 2013, ApJ, 768, 15
  • Pullen et al. (2016) Pullen A. R., Hirata C. M., Doré O., Raccanelli A., 2016, PASJ, 68, 12
  • Robertson et al. (2015) Robertson B. E., Ellis R. S., Furlanetto S. R., Dunlop J. S., 2015, ApJ, 802, L19
  • Senatore et al. (2010) Senatore L., Smith K. M., Zaldarriaga M., 2010, J. Cosmology Astropart. Phys., 2010, 028
  • Silva et al. (2015) Silva M., Santos M. G., Cooray A., Gong Y., 2015, ApJ, 806, 209
  • Slosar et al. (2008) Slosar A., Hirata C., Seljak U., Ho S., Padmanabhan N., 2008, J. Cosmology Astropart. Phys., 2008, 031
  • Tegmark et al. (1997) Tegmark M., Taylor A., Heavens A., 1997, Astrophys. J., 480, 22
  • Tinker et al. (2008) Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G., Gottlöber S., Holz D. E., 2008, ApJ, 688, 709
  • Tinker et al. (2010) Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes G., Gottlöber S., 2010, ApJ, 724, 878
  • Visbal & Loeb (2010) Visbal E., Loeb A., 2010, J. Cosmology Astropart. Phys., 2010, 016