This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Reliable A Posteriori Error Estimator for a Multi-scale Cancer Invasion Model

Gopika P. B [email protected] Nishant Ranwan [email protected] Nagaiah Chamakuri [email protected] School of Mathematics, IISER Thiruvananthapuram, 695551 Kerala, India. Center for High-Performance Computing, IISER Thiruvananthapuram, 695551 Kerala, India
Abstract

In this work, we analyze the residual-based a posteriori error estimation of the multi-scale cancer invasion model, which is a system of three non-stationary reaction-diffusion equations. We present the numerical results of a study on a posteriori error control strategies for FEM approximations of the model. In this paper, we derive a residual type error estimator for the cancer invasion model and illustrate its practical performance on a series of computational tests in three-dimensional spaces. We show that the error estimator is reliable and efficient regarding the model’s small perturbation parameters.

keywords:
cancer invasion model, residual-type a posteriori estimator, multilevel finite element method, spatial grid adaptivity, and haptotaxis effect.
journal:

1 Introduction

A cell is known to be the fundamental unit of life in all living organisms. For the organisms to operate accurately, these cells must develop and split in a controlled manner according to a specific set of rules. Generally, cells are immobile and can develop, multiply, and kill themselves in a self-regulated mode. Occasionally, cells may expand freely without considering the standard ratio of growth and death. Cells damage host tissue if they develop and reproduce by forgetting the body’s needs and constraints. In a broad sense, cancer is a condition in which normal cells begin to replicate uncontrollably. It is a category of disease that has numerous origins and evolves over time and space. Therefore, cancer is a complex phenomenon to foresee. Comprehending the mechanism of cancer progression is critical to detecting and treating this disease. Understanding the process of cancer evolution relies on numerical simulations to a great extent, which entrusts us to see the growth and spreading of the tumor. Cancer models are treated as reaction-diffusion equations in numerous works of literature [6].

There is ample literature for a posterior analysis of finite element methods for elliptic and parabolic equations, to note a few [22, 3, 12]. The robust, reliable, and efficient residual-based error estimate for the singularly perturbed reaction-diffusion problem was derived in [21, 4, 2, 20]. In [22], reliable and efficient residual-based error estimators are discussed for linear and nonlinear elliptic equations and linear and quasilinear parabolic equations. In [12], the duality approach is used for a posteriori error estimation for a system of reaction-diffusion equations. To the author’s knowledge, theoretical a-posterior error estimates for the cancer invasion model were not done in the past. Also, previous works focused less on a coupled system of nonlinear parabolic equations to derive the theoretical estimates, where one unknown depends on the gradient of the other. The basic idea behind our work can be traced back to the method of residual-based error estimation in [22].

Numerical techniques to solve the tumor invasion model and associated continuum mathematical models are discussed in the following. Solving a mathematical model of angiogenesis by using the finite difference scheme was presented in [5, 10]. In [15], the research delved into the examination of the four-species tumor growth model through the application of a two-dimensional mixed Finite Element Method (FEM). Meanwhile, [23] presented numerical findings for the continuum tumor invasion model, employing the FEM while considering the expansion of capillaries within a two-dimensional spatial domain. To enhance computational efficiency in practical real-world scenarios, Adaptive Mesh Refinement (AMR) techniques, whether in the temporal or spatial domain, have found favorable utilization, as discussed in references [11, 19, 18, 9, 8]. In the study documented in [16], various time discretization methods and the adaptive finite volume approach were employed for conducting two-dimensional simulations. Furthermore, [24] harnessed an adaptive Finite Element Method (FEM) to address equations related to tumor angiogenesis in a two-dimensional context. Applied adaptive FEM to investigate a simplified three-equation reaction model that computes aspects of tumor-induced angiogenesis deterministically in [18]. The study presented numerical results for geometric models across dimensions, specifically considering dd-dimensional geometry, where d={1,2,3}d=\{1,2,3\} and utilized explicit time-stepping schemes. Recently, an administration technique for the bookkeeping of AMR on (hyper-)rectangular meshes is presented in [17] and a computational framework of space-time adaptivity for this mode in our previous work [7]. In [7], a computational framework based on the parallel space-adaptive techniques was presented based on the gradient type error estimator for spatial discretization. Still, the rigorous theoretical estimates of the error estimator were not presented. The previous studies investigated cancer or related models, and none of the works showed the theoretical study of a-posteriori error estimates and their numerical converge studies of cancer invasion models. This is the main focus of the current paper.

Let u(x,t)u(x,t), v(x,t)v(x,t), and w(x,t)w(x,t) be the three unknowns describing the cancer cell’s density, extracellular matrix (ECM) density, and concentration of matrix-degrading enzymes (MDE), respectively. The governing equations for the dimensionless form of the cancer invasion model are as follows.

ut\displaystyle\frac{\partial u}{\partial t} =\displaystyle= (d1(u,v,w)u)(χu(v)uv)+λu(1uv),\displaystyle\nabla\cdot(d_{1}(u,v,w)\nabla u)-\nabla\cdot(\chi_{u}(v)u\nabla v)+\lambda u(1-u-v),
vt\displaystyle\frac{\partial v}{\partial t} =\displaystyle= ρv(1uv)ηvw,\displaystyle\rho v(1-u-v)-\eta vw, (1)
wt\displaystyle\frac{\partial w}{\partial t} =\displaystyle= d2Δw+αu(1w)βw,\displaystyle d_{2}\Delta w+\alpha u(1-w)-\beta w,

where d1(u,v,w)d_{1}(u,v,w) is the density-dependent nonlinear diffusion coefficient, χu(v){\chi_{u}(v)} is the haptotactic sensitivity function, d2d_{2} is diffusion constant, and λ,ρ,η,α,β\lambda,\rho,\eta,\alpha,\beta are positive constants.
Assuming the interactions of the cancer cells with ECM and the degradation of ECM by MDE take place in an isolated system, zero-flux type boundary conditions are imposed on the model.

ξ(d1(u,v,w)u+χu(v)uv)\displaystyle\xi\cdot\left(-d_{1}(u,v,w)\nabla u+\chi_{u}(v)u\nabla v\right) =0 on Ω×[0,T],\displaystyle=0\text{ on }\partial\Omega\times[0,T],
wξ\displaystyle\dfrac{\partial w}{\partial\xi} =0 on Ω×[0,T],\displaystyle=0\text{ on }\partial\Omega\times[0,T], (2)

where ξ\xi is the outward normal vector on Ω\partial\Omega. The initial conditions for the given system of equations (1) are

u0\displaystyle u_{0} ={exp(r2ϵ),r[0,0.25],0,r(0.25,1]\displaystyle=\left\{\begin{array}[]{cc}\exp{\left(\frac{-r^{2}}{\epsilon}\right)},&r\in[0,0.25],\\ 0,&r\in(0.25,1]\end{array}\right. (5)
v0\displaystyle v_{0} =10.5u0,\displaystyle=1-0.5u_{0}, (6)
w0\displaystyle w_{0} =0.5u0, in Ω\displaystyle=0.5u_{0},\text{ in }\Omega

with ϵ=0.01\epsilon=0.01 and r2=x12+x22+x32r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}.

In this current work, we focus on the theoretical framework of a posteriori error estimates using the residual-based error estimator, and their numerical realization is investigated. This is one of the main goals of this paper. In section 2, the weak formulation of the model problem (1) and its space and temporal discretization are discussed. In section 3, first, we derive a relationship between the error and residuals for the given problem. And then, a residual-based error estimate is proposed by finding an upper bound for the residuals. The numerical results are discussed in section 4.

2 Weak formulation

Let Ω3\Omega\subset\mathbb{R}^{3} be the Lipschitz continuous bounded domain. As usual, we denote H1(Ω)H^{1}(\Omega) as the Sobolev space of the functions in L2(Ω)L^{2}(\Omega) whose weak derivatives also belong to L2(Ω)L^{2}(\Omega). To define spaces involving time, let XX be a real Banach space equipped with norm \|\cdot\| and T(>0)T(>0)\in\mathbb{R}. The space Lp(0,T;X)L^{p}(0,T;X) consists of all measurable functions u:[0,T]Xu~{}:~{}[0,T]\rightarrow X with

uLp(0,T;X)\displaystyle\|u\|_{L^{p}(0,T;X)}~{} :=(0Tu(t)p𝑑t)1/p< for 1p<\displaystyle:=~{}\left(\int_{0}^{T}\|u(t)\|^{p}dt\right)^{1/p}<\infty\text{ for }1\leq p<\infty
uL(0,T;X)\displaystyle\|u\|_{L^{\infty}(0,T;X)}~{} :=esssup0tTu(t)<\displaystyle:=~{}\underset{0\leq t\leq T}{ess~{}sup}\|u(t)\|~{}<\infty

The space H1(0,T;X)H^{1}(0,T;X) consists of all functions uL2(0,T;X)u\in L^{2}(0,T;X) such that uu^{\prime} exists in the weak sense and belongs to L2(0,T;X)L^{2}(0,T;X).

uH1(0,T;X):=(0Tu(t)2+u(t)2dt)12\displaystyle\|u\|_{H^{1}(0,T;X)}~{}:=~{}\left(\int_{0}^{T}\|u(t)\|^{2}~{}+~{}\|u^{\prime}(t)\|^{2}dt\right)^{\frac{1}{2}}

Let X(Ω)X(\Omega) be a Banach space and XX^{*} be its dual. Let \|\cdot\|_{*} denote the dual norm of elements in XX^{*}. So, from the definition of the dual norm, we have

ϕ=supvX\0<ϕ,v>v,\displaystyle\|\phi\|_{*}=\underset{v\in X\backslash{0}}{sup}\dfrac{<\phi,v>}{\|v\|},

where <,><\cdot,\cdot> denotes the duality pairing between XX and XX^{*}. We refer [13, 1] for more details on Sobolev spaces and Bochner spaces. To derive the weak formulation of model problem (1), we multiply the equations (1) by test functions and integrate over Ω\Omega. After applying integration by parts, we get the weak formulation of the model problem:

For given u0,v0,w0L2(Ω)u_{0},v_{0},w_{0}\in L^{2}(\Omega) find u,v,wL2(0,T;H1(Ω))u,v,w\in L^{2}(0,T;H^{1}(\Omega)) with ut,vt,wtL2(0,T;(H1(Ω)))\displaystyle\frac{\partial u}{\partial t},\frac{\partial v}{\partial t},\frac{\partial w}{\partial t}\in L^{2}(0,T;(H^{1}(\Omega))^{*}) such that

(ut,ψ1)+(d1(u,v,w)u,ψ1)(χu(v)uv,ψ1)=(λu(1uv),ψ1),\displaystyle\left(\frac{\partial u}{\partial t},\psi_{1}\right)+(d_{1}(u,v,w)\nabla u,\nabla\psi_{1})-(\chi_{u}(v)u\nabla v,\nabla\psi_{1})=(\lambda u(1-u-v),\psi_{1}),
(vt,ψ2)=(ρv(1uv),ψ2)(ηvw,ψ2),\displaystyle\left(\frac{\partial v}{\partial t},\psi_{2}\right)=(\rho v(1-u-v),\psi_{2})-(\eta vw,\psi_{2}), (7)
(wt,ψ3)+(d2w,ψ3)=(αu(1w),ψ3)(βw,ψ3),\displaystyle\left(\frac{\partial w}{\partial t},\psi_{3}\right)+(d_{2}\nabla w,\nabla\psi_{3})=(\alpha u(1-w),\psi_{3})-(\beta w,\psi_{3}),

for all ψ1,ψ2,ψ3H1(Ω)\psi_{1},\psi_{2},\psi_{3}\in H^{1}(\Omega). Further, (H1(Ω))(H^{1}(\Omega))^{*} is the dual space of H1(Ω))H^{1}(\Omega)).

To define the space discretization of weak formulation (2), we adopt the conforming Galerkin method. Let Ωh\Omega_{h} be the shape regular triangulation of Ω\Omega and VhV_{h} be finite-dimensional subspace of H1(Ω)H^{1}(\Omega), where hh is the discretization parameter. The discrete problem reads as : find uh,vh,whVhu_{h},v_{h},w_{h}\in V_{h} such that for a.e. t(0,T)t\in(0,T) and for all ψ1,h,ψ2,h,ψ3,hVh\psi_{1,h},\psi_{2,h},\psi_{3,h}\in V_{h}

(uht,ψ1,h)+(d1(uh,vh,wh)uh,ψ1,h)(χu(vh)uhvh,ψ1,h)\displaystyle\left(\frac{\partial u_{h}}{\partial t},\psi_{1,h}\right)+(d_{1}(u_{h},v_{h},w_{h})\nabla u_{h},\nabla\psi_{1,h})-(\chi_{u}(v_{h})u_{h}\nabla v_{h},\nabla\psi_{1,h})
=(λuh(1uhvh),ψ1,h),\displaystyle\hskip 170.71652pt=(\lambda u_{h}(1-u_{h}-v_{h}),\psi_{1,h}),
(vht,ψ2,h)=(ρvh(1uhvh),ψ2,h)(ηvhwh,ψ2,h),\displaystyle\left(\frac{\partial v_{h}}{\partial t},\psi_{2,h}\right)=(\rho v_{h}(1-u_{h}-v_{h}),\psi_{2,h})-(\eta v_{h}w_{h},\psi_{2,h}), (8)
(wht,ψ3,h)+(d2wh,ψ3,h)=(αuh(1wh),ψ3,h)(βwh,ψ3,h).\displaystyle\left(\frac{\partial w_{h}}{\partial t},\psi_{3,h}\right)+(d_{2}\nabla w_{h},\nabla\psi_{3,h})=(\alpha u_{h}(1-w_{h}),\psi_{3,h})-(\beta w_{h},\psi_{3,h}).

For each (ti,tj)(0,T)(t_{i},t_{j})\subset(0,T), consider the function space

(ti,tj)={z|zL2(ti,tj;H1(Ω))L(ti,tj;L2(Ω)),ztL2(ti,tj;(H1(Ω))}\mathcal{L}(t_{i},t_{j})=\Big{\{}z|z\in L^{2}(t_{i},t_{j};H^{1}(\Omega))\cap L^{\infty}(t_{i},t_{j};L^{2}(\Omega)),\frac{\partial z}{\partial t}\in L^{2}(t_{i},t_{j};(H^{1}(\Omega)^{*})\Big{\}}

We apply the backward Euler method for time discretization. Let 0=t0<t1<t2<<tJ=T0=t^{0}<t^{1}<t^{2}<\cdots<t^{J}=T be a partition of the considered time interval [0,T][0,T] with step size τn=tntn1,n=1,2,,J\tau^{n}=t^{n}-t^{n-1},~{}n=1,2,\ldots,J. Thus it follows from (2)

(uhn+1uhnτn+1,ψ1,h)+(d1(uhn+1,vhn+1,whn+1)uhn+1,ψ1,h)\displaystyle\left(\frac{u_{h}^{n+1}-u^{n}_{h}}{\tau^{n+1}},\psi_{1,h}\right)+(d_{1}(u_{h}^{n+1},v_{h}^{n+1},w_{h}^{n+1})\nabla u_{h}^{n+1},\nabla\psi_{1,h})
(χu(vhn+1)uhn+1vhn+1,ψ1,h)(λuhn+1(1uhn+1vhn+1),ψ1,h)=0,\displaystyle\hskip 36.135pt-(\chi_{u}(v_{h}^{n+1})u_{h}^{n+1}\nabla v_{h}^{n+1},\nabla\psi_{1,h})-(\lambda u_{h}^{n+1}(1-u_{h}^{n+1}-v_{h}^{n+1}),\psi_{1,h})=0,
(vhn+1vhnτn+1,ψ2,h)(ρvhn+1(1uhn+1vhn+1),ψ2,h)+(ηvhn+1whn+1,ψ2,h)=0,\displaystyle\left(\frac{v_{h}^{n+1}-v^{n}_{h}}{\tau^{n+1}},\psi_{2,h}\right)-(\rho v_{h}^{n+1}(1-u_{h}^{n+1}-v_{h}^{n+1}),\psi_{2,h})+(\eta v_{h}^{n+1}w_{h}^{n+1},\psi_{2,h})=0, (9)
(whn+1whnτn+1,ψ3,h)+(d2whn+1,ψ3,h)(αuhn+1(1whn+1),ψ3,h)\displaystyle\left(\frac{w_{h}^{n+1}-w^{n}_{h}}{\tau^{n+1}},\psi_{3,h}\right)+(d_{2}\nabla w_{h}^{n+1},\nabla\psi_{3,h})-(\alpha u_{h}^{n+1}(1-w_{h}^{n+1}),\psi_{3,h})
+(βwhn+1,ψ3,h)=0,\displaystyle\hskip 289.07999pt+(\beta w_{h}^{n+1},\psi_{3,h})=0,

where uhn+1(t),vhn+1(t),whn+1(t)Vhu^{n+1}_{h}(t),v^{n+1}_{h}(t),w^{n+1}_{h}(t)\in V_{h} for t[nτn,(n+1)τn),1nJ1t\in[n\tau^{n},(n+1)\tau^{n}),1\leq n\leq J-1. To derive the relationship between the error and residuals, we have the following assumptions on nonlinear diffusion and sensitivity function of (1)\eqref{Model:dim}.

For all s1,s2,s3,s~1,s~2,s~3s_{1},s_{2},s_{3},\tilde{s}_{1},\tilde{s}_{2},\tilde{s}_{3}\in\mathbb{R},

H1:\displaystyle\textbf{H1}: m|ξ|2ξTd1(s1,s2,s3)ξM|ξ|2for M>m>0, and ξ\displaystyle~{}m|\xi|^{2}\leq\xi^{T}d_{1}(s_{1},s_{2},s_{3})\xi\leq M|\xi|^{2}~{}~{}\text{for }M>m>0,\text{ and }\xi\in\mathbb{R}
H2:\displaystyle\textbf{H2}: |d1(s1,s2,s3)d1(s~1,s~2,s~3)|d(|s1s~1|+|s2s~2|+|s3s~3|),\displaystyle~{}|d_{1}(s_{1},s_{2},s_{3})-d_{1}(\tilde{s}_{1},\tilde{s}_{2},\tilde{s}_{3})|\leq d\left(|s_{1}-\tilde{s}_{1}|+|s_{2}-\tilde{s}_{2}|+|s_{3}-\tilde{s}_{3}|\right),
H3:\displaystyle\textbf{H3}: χu(v)L(0,T;L(Ω))\displaystyle~{}\chi_{u}(v)\in L^{\infty}(0,T;L^{\infty}(\Omega))
H4:\displaystyle\textbf{H4}: |χu(v1)χu(v2)|L|v1v2|\displaystyle~{}|\chi_{u}(v_{1})-\chi_{u}(v_{2})|\leq L|v_{1}-v_{2}|

For the existence and uniqueness of the fully discretized system (2), we refer to [7].
Here, we provide the finite element setting to derive the error estimates. To approximate the model problem (1), we associate a shape regular triangulation (𝒯hn)h>0(\mathcal{T}_{h}^{n})_{h>0} of Ω\Omega with each time step tnt_{n}. We denote the set of all faces of the partition (𝒯hn)(\mathcal{T}_{h}^{n}) as hn\mathcal{E}_{h}^{n}. Furthermore, let 𝒯~hn\tilde{\mathcal{T}}_{h}^{n} be the refinement of both triangulation 𝒯hn\mathcal{T}_{h}^{n} and 𝒯hn+1\mathcal{T}_{h}^{n+1}. Also, we denote by hKh_{K} the diameter of an element K𝒯~hnK\in\tilde{\mathcal{T}}_{h}^{n} and hKh_{K^{\prime}} denotes the diameter of an element K𝒯hnK^{\prime}\in\mathcal{T}_{h}^{n} such that KKK\subseteq K^{\prime}.

3 A posteriori error estimates

This section is devoted to the study of residual operators and error estimation for the discretized problem (2). In subsection 3.1, we define the residual operators and an upper bound for the error is derived in terms of the given initial data and the residuals. In subsection 3.2, we derive the upper bound for the residuals by splitting them into spatial and temporal residuals.

3.1 Residual operators

Suppose that uhn,vhn,whnu_{h}^{n},v_{h}^{n},w_{h}^{n} are the fully discretized solution of the problem (1) and Ωhn\Omega^{n}_{h} are the different tessellations at different instants. The collection of final indices {kn}n=0J\{k_{n}\}_{n=0}^{J} is denoted as 𝐤\bf k. The linear interpolates (uh𝐤,vh𝐤,wh𝐤)(u_{h}^{\bf k},v_{h}^{\bf k},w_{h}^{\bf k}) of continuous functions on [0,T][0,T] is given by

zh𝐤=ttn1τnzh,knn+tntτnzh,kn1n1,z_{h}^{\bf k}=\frac{t-t_{n-1}}{\tau_{n}}z_{h,k_{n}}^{n}+\frac{t_{n}-t}{\tau_{n}}z^{n-1}_{h,k_{n-1}},

where zz denotes the variables u,v,wu,v,w and t(tn1,tn],n=1,2,,Jt\in(t_{n-1},t_{n}],n=1,2,\ldots,J, and knk_{n} denotes the maximum number of Newton’s method iterations for each time step. Let (t)\mathcal{R}(t) be the residual operator in the space (H1(Ω),H1(Ω),H1(Ω))=(H1(Ω))×(H1(Ω))×(H1(Ω))(H^{1}(\Omega),H^{1}(\Omega),H^{1}(\Omega))^{*}=(H^{1}(\Omega))^{*}\times(H^{1}(\Omega))^{*}\times(H^{1}(\Omega))^{*}, and

(t),(ψ1,ψ2,ψ3)=1(t),ψ1+2(t),ψ2+3(t),ψ3,\langle\mathcal{R}(t),(\psi_{1},\psi_{2},\psi_{3})\rangle=\langle\mathcal{R}_{1}(t),\psi_{1}\rangle+\langle\mathcal{R}_{2}(t),\psi_{2}\rangle+\langle\mathcal{R}_{3}(t),\psi_{3}\rangle,

where i(t),ψi,i=1,2,3,\langle\mathcal{R}_{i}(t),\psi_{i}\rangle,~{}i=1,2,3, are defined as

1(t),ψ1=Ωuh𝐤tψ1𝑑xΩd1(uh𝐤,vh𝐤,wh𝐤)uh𝐤ψ1dx\displaystyle\langle\mathcal{R}_{1}(t),\psi_{1}\rangle=-\int_{\Omega}\frac{\partial u^{\mathbf{k}}_{h}}{\partial t}\psi_{1}dx-\int_{\Omega}d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})\nabla u^{\mathbf{k}}_{h}\nabla\psi_{1}dx
+Ωχu(vh𝐤)uh𝐤vh𝐤ψ1dx+Ωλuh𝐤(1uh𝐤vh𝐤)ψ1𝑑x,\displaystyle\hskip 72.26999pt+\int_{\Omega}\chi_{u}(v^{\mathbf{k}}_{h})u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla\psi_{1}dx+\int_{\Omega}\lambda u_{h}^{\mathbf{k}}(1-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})\psi_{1}dx,
2(t),ψ2=Ωvh𝐤tψ2𝑑x+Ωρvh𝐤(1uh𝐤vh𝐤)ψ2𝑑xΩηvh𝐤wh𝐤ψ2𝑑x,\displaystyle\langle\mathcal{R}_{2}(t),\psi_{2}\rangle=-\int_{\Omega}\frac{\partial v^{\mathbf{k}}_{h}}{\partial t}\psi_{2}dx+\int_{\Omega}\rho v^{\mathbf{k}}_{h}(1-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})\psi_{2}dx-\int_{\Omega}\eta v^{\mathbf{k}}_{h}w^{\mathbf{k}}_{h}\psi_{2}dx, (10)
3(t),ψ3=Ωwh𝐤tψ3𝑑xΩd2wh𝐤ψ3dx+Ωαuh𝐤(1wh𝐤)ψ3𝑑x\displaystyle\langle\mathcal{R}_{3}(t),\psi_{3}\rangle=-\int_{\Omega}\frac{\partial w^{\mathbf{k}}_{h}}{\partial t}\psi_{3}dx-\int_{\Omega}d_{2}\nabla w^{\mathbf{k}}_{h}\nabla\psi_{3}dx+\int_{\Omega}\alpha u^{\mathbf{k}}_{h}(1-w^{\mathbf{k}}_{h})\psi_{3}dx
Ωβwh𝐤ψ3𝑑x\displaystyle\hskip 289.07999pt-\int_{\Omega}\beta w^{\mathbf{k}}_{h}\psi_{3}dx
Lemma 1.

Let 1,2,3\mathcal{R}_{1},\mathcal{R}_{2},\mathcal{R}_{3} be the residuals as defined in (3.1). Then for t(0,T]t\in(0,T]

C(uuh𝐤(0,t)2+vvh𝐤L2(0,t;H1(Ω))2+wwh𝐤(0,t)2)\displaystyle C\left(\|u-u^{\mathbf{k}}_{h}\|_{\mathcal{L}(0,t)}^{2}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(0,t;H^{1}(\Omega))}^{2}+\|w-w^{\mathbf{k}}_{h}\|_{\mathcal{L}(0,t)}^{2}\right)
u0Πh0u0L2(Ω)2+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\leq\|u_{0}-\Pi_{h}^{0}u_{0}\|^{2}_{L^{2}(\Omega)}+\|v_{0}-\Pi_{h}^{0}v_{0}\|^{2}_{L^{2}(\Omega)}+\|w_{0}-\Pi_{h}^{0}w_{0}\|^{2}_{L^{2}(\Omega)}
+1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2\displaystyle\hskip 72.26999pt+\|\mathcal{R}_{1}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})}+\|\mathcal{R}_{2}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})}+\|\mathcal{R}_{3}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})} (11)
Proof.

Since (u,v,w)(u,v,w) is the solution of (1) and by definition of 1\mathcal{R}_{1} we have

1(t),ψ1=Ωuh𝐤tψ1𝑑xΩd1(uh𝐤,vh𝐤,wh𝐤)uh𝐤ψ1dx+Ωχu(vh𝐤)uh𝐤vh𝐤ψ1dx\displaystyle\langle\mathcal{R}_{1}(t),\psi_{1}\rangle=-\int_{\Omega}\frac{\partial u^{\mathbf{k}}_{h}}{\partial t}\psi_{1}dx-\int_{\Omega}d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})\nabla u^{\mathbf{k}}_{h}\nabla\psi_{1}dx+\int_{\Omega}\chi_{u}(v^{\mathbf{k}}_{h})u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla\psi_{1}dx
+Ωλuh𝐤(1uh𝐤vh𝐤)ψ1𝑑x+Ωutψ1𝑑x+Ωd1(u,v,w)uψ1dx\displaystyle+\int_{\Omega}\lambda u^{\mathbf{k}}_{h}(1-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})\psi_{1}dx+\int_{\Omega}\frac{\partial u}{\partial t}\psi_{1}dx+\int_{\Omega}d_{1}(u,v,w)\nabla u\nabla\psi_{1}dx
Ωχu(v)uvψ1dxΩλu(1uv)ψ1𝑑x.\displaystyle-\int_{\Omega}\chi_{u}(v)u\nabla v\nabla\psi_{1}dx-\int_{\Omega}\lambda u(1-u-v)\psi_{1}dx.

By taking ψ1=uuh𝐤\psi_{1}=u-u^{\mathbf{k}}_{h} we get

1,uuh𝐤=12ddtuuh𝐤L2(Ω)2+Ωd1(u,v,w)u(uuh𝐤)dx\displaystyle\langle\mathcal{R}_{1},u-u^{\mathbf{k}}_{h}\rangle=\frac{1}{2}\frac{d}{dt}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}d_{1}(u,v,w)\nabla u\nabla(u-u^{\mathbf{k}}_{h})dx
Ωd1(uh𝐤,vh𝐤,wh𝐤)uh𝐤(uuh𝐤)dxΩχu(v)uv(uuh𝐤)dx\displaystyle\hskip 85.35826pt-\int_{\Omega}d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})\nabla u^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\chi_{u}(v)u\nabla v\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(vh𝐤)uh𝐤vh𝐤(uuh𝐤)dxΩλu(1uv)(uuh𝐤)𝑑x\displaystyle\hskip 85.35826pt+\int_{\Omega}\chi_{u}(v^{\mathbf{k}}_{h})u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\lambda u(1-u-v)(u-u^{\mathbf{k}}_{h})dx
+Ωλuh𝐤(1uh𝐤vh𝐤)(uuh𝐤)𝑑x\displaystyle\hskip 85.35826pt+\int_{\Omega}\lambda u^{\mathbf{k}}_{h}(1-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})(u-u^{\mathbf{k}}_{h})dx (12)

Rearranging the terms, we get

12ddtuuh𝐤L2(Ω)2+Ωd1(u,v,w)(uuh𝐤)(uuh𝐤)dx=1,uuh𝐤\displaystyle\frac{1}{2}\frac{d}{dt}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}d_{1}(u,v,w)\nabla(u-u^{\mathbf{k}}_{h})\nabla(u-u^{\mathbf{k}}_{h})dx=\langle\mathcal{R}_{1},u-u^{\mathbf{k}}_{h}\rangle
+Ωd1(uh𝐤,vh𝐤,wh𝐤)uh𝐤(uuh𝐤)dxΩd1(u,v,w)uh𝐤(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})\nabla u^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}d_{1}(u,v,w)\nabla u^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(v)uv(uuh𝐤)dxΩχu(v)uvh𝐤(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)u\nabla v\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\chi_{u}(v)u\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(v)uvh𝐤(uuh𝐤)dxΩχu(v)uh𝐤vh𝐤(uuh𝐤)\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)u\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\chi_{u}(v)u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})
+Ωχu(v)uh𝐤vh𝐤(uuh𝐤)dxΩχu(vh𝐤)uh𝐤vh𝐤(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\chi_{u}(v^{\mathbf{k}}_{h})u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωλu(1uv)(uuh𝐤)𝑑xΩλuh𝐤(1uv)(uuh𝐤)𝑑x\displaystyle\hskip 71.13188pt+\int_{\Omega}\lambda u(1-u-v)(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\lambda u^{\mathbf{k}}_{h}(1-u-v)(u-u^{\mathbf{k}}_{h})dx
+Ωλuh𝐤(1uv)(uuh𝐤)𝑑xΩλuh𝐤(1uh𝐤vh𝐤)(uuh𝐤)𝑑x\displaystyle\hskip 71.13188pt+\int_{\Omega}\lambda u^{\mathbf{k}}_{h}(1-u-v)(u-u^{\mathbf{k}}_{h})dx-\int_{\Omega}\lambda u^{\mathbf{k}}_{h}(1-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})(u-u^{\mathbf{k}}_{h})dx
=1,uuh𝐤+Ω(d1(uh𝐤,vh𝐤,wh𝐤)d1(u,v,w))uh𝐤(uuh𝐤)dx\displaystyle\hskip 28.45274pt=\langle\mathcal{R}_{1},u-u^{\mathbf{k}}_{h}\rangle+\int_{\Omega}(d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})-d_{1}(u,v,w))\nabla u^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(v)(uuh𝐤)(vvh𝐤)(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)(u-u^{\mathbf{k}}_{h})\nabla(v-v^{\mathbf{k}}_{h})\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(v)uh𝐤(vvh𝐤)(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)u^{\mathbf{k}}_{h}\nabla(v-v^{\mathbf{k}}_{h})\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωχu(v)(uuh𝐤)vh𝐤(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}\chi_{u}(v)(u-u^{\mathbf{k}}_{h})\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ω(χu(v)χu(vh𝐤))uh𝐤vh𝐤(uuh𝐤)dx\displaystyle\hskip 71.13188pt+\int_{\Omega}(\chi_{u}(v)-\chi_{u}(v^{\mathbf{k}}_{h}))u^{\mathbf{k}}_{h}\nabla v^{\mathbf{k}}_{h}\nabla(u-u^{\mathbf{k}}_{h})dx
+Ωλ(uuh𝐤)(1(uuh𝐤)(vvh𝐤)uh𝐤vh𝐤)(uuh𝐤)𝑑x\displaystyle\hskip 71.13188pt+\int_{\Omega}\lambda(u-u^{\mathbf{k}}_{h})(1-(u-u^{\mathbf{k}}_{h})-(v-v^{\mathbf{k}}_{h})-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})(u-u^{\mathbf{k}}_{h})dx
Ωλ(u+vuh𝐤vh𝐤)uh𝐤(uuh𝐤)𝑑x.\displaystyle\hskip 71.13188pt-\int_{\Omega}\lambda(u+v-u^{\mathbf{k}}_{h}-v^{\mathbf{k}}_{h})u^{\mathbf{k}}_{h}(u-u^{\mathbf{k}}_{h})dx. (13)

We have uL2(Ω)< and vL2(Ω)<\|\nabla u\|_{L^{2}(\Omega)}<\infty\text{ and }\|\nabla v\|_{L^{2}(\Omega)}<\infty. Using the assumptions (H1)–(H4), Hölder’s inequality and Minkowski’s inequality, we get

12ddtuuh𝐤L2(Ω)2+m(uuh𝐤)L2(Ω)21uuh𝐤L2(Ω)\displaystyle\frac{1}{2}\frac{d}{dt}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+m\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}^{2}\leq\|\mathcal{R}_{1}\|_{*}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}
+D(uuh𝐤L2(Ω)+vvh𝐤L2(Ω)+wwh𝐤L2(Ω))(uuh𝐤)L2(Ω)\displaystyle\hskip 42.67912pt+D(\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}+\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)})\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}
+K1uuh𝐤L2(Ω)(uuh𝐤)L2(Ω)+K2uh𝐤L2(Ω)(uuh𝐤)L2(Ω)\displaystyle\hskip 42.67912pt+K_{1}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}+K_{2}\|u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}
+Lvvh𝐤L2(Ω)(uuh𝐤)L2(Ω)+λuuh𝐤L2(Ω)2\displaystyle\hskip 42.67912pt+L^{\prime}\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}+\lambda\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}
+λuuh𝐤L2(Ω)(uuh𝐤L2(Ω)+vvh𝐤L2(Ω)).\displaystyle\hskip 42.67912pt+\lambda\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}\left(\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}\right). (14)

Adding muuh𝐤L2(Ω)2m\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2} on both sides and then applying Young’s inequality with ϵ>0\epsilon>0,we get

12ddtuuh𝐤L2(Ω)2+muuh𝐤H1(Ω)212ϵ12+ϵ2uuh𝐤L2(Ω)2+muuh𝐤L2(Ω)2\displaystyle\frac{1}{2}\frac{d}{dt}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+m\|u-u^{\mathbf{k}}_{h}\|_{H^{1}(\Omega)}^{2}\leq\frac{1}{2\epsilon}\|\mathcal{R}_{1}\|_{*}^{2}+\frac{\epsilon}{2}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+m\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}
+3ϵ2(uuh𝐤)L2(Ω)2+D22ϵ(uuh𝐤L2(Ω)2+vvh𝐤L2(Ω)2+wwh𝐤L2(Ω)2)\displaystyle\hskip 28.45274pt+\frac{3\epsilon}{2}\|\nabla(u-u^{\mathbf{k}}_{h})\|^{2}_{L^{2}(\Omega)}+\frac{D^{2}}{2\epsilon}\left(\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+\|w-w^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}\right)
+K122ϵuuh𝐤L2(Ω)2+ϵ2(uuh𝐤)L2(Ω)2+K222ϵuh𝐤L2(Ω)2+ϵ2(uuh𝐤)L2(Ω)2\displaystyle\hskip 28.45274pt+\frac{K_{1}^{2}}{2\epsilon}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\frac{\epsilon}{2}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}^{2}+\frac{K_{2}^{2}}{2\epsilon}\|u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\frac{\epsilon}{2}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}^{2}
+L22ϵvvh𝐤L2(Ω)2+ϵ2(uuh𝐤)L2(Ω)2+λuuh𝐤L2(Ω)2+K3uuh𝐤L2(Ω)2\displaystyle\hskip 28.45274pt+\frac{L^{\prime 2}}{2\epsilon}\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\frac{\epsilon}{2}\|\nabla(u-u^{\mathbf{k}}_{h})\|_{L^{2}(\Omega)}^{2}+\lambda\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+K_{3}\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}
+K322ϵvvh𝐤L2(Ω)2+ϵ2uuh𝐤L2(Ω)2\displaystyle\hskip 28.45274pt+\frac{K_{3}^{2}}{2\epsilon}\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+\frac{\epsilon}{2}\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)} (15)

Simplifying further,

12ddtuuh𝐤L2(Ω)2+(m3ϵ)uuh𝐤H1(Ω)212ϵ12\displaystyle\frac{1}{2}\frac{d}{dt}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+(m-3\epsilon)\|u-u^{\mathbf{k}}_{h}\|^{2}_{H^{1}(\Omega)}\leq\frac{1}{2\epsilon}\|\mathcal{R}_{1}\|_{*}^{2}
+(ϵ2+m+D22ϵ+K122ϵ+λ+K3+ϵ2)uuh𝐤L2(Ω)2\displaystyle\hskip 113.81102pt+\left(\frac{\epsilon}{2}+m+\frac{D^{2}}{2\epsilon}+\frac{K_{1}^{2}}{2\epsilon}+\lambda+K_{3}+\frac{\epsilon}{2}\right)\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2} (16)
+(D22ϵ+K322ϵ+L22ϵ)vvh𝐤L2(Ω)2+D22ϵwwh𝐤L2(Ω)2\displaystyle\hskip 113.81102pt+\left(\frac{D^{2}}{2\epsilon}+\frac{K_{3}^{2}}{2\epsilon}+\frac{L^{\prime 2}}{2\epsilon}\right)\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+\frac{D^{2}}{2\epsilon}\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}

In similar kinds of calculations, we get

12ddtvvh𝐤L2(Ω)212ϵ22+(3ϵ2+ρ)vvh𝐤L2(Ω)2+ρ22ϵuuh𝐤L2(Ω)2\displaystyle\frac{1}{2}\frac{d}{dt}\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}\leq\frac{1}{2\epsilon}\|\mathcal{R}_{2}\|^{2}_{*}+(\frac{3\epsilon}{2}+\rho)\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}+\frac{\rho^{\prime 2}}{2\epsilon}\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)}
+η22ϵwwh𝐤L2(Ω)2\displaystyle\hskip 113.81102pt+\frac{\eta^{\prime 2}}{2\epsilon}\|w-w^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)} (17)
12ddtwwh𝐤L2(Ω)2+d2wwh𝐤H1(Ω)212ϵ32+(3ϵ2+d2)wwh𝐤L2(Ω)\displaystyle\frac{1}{2}\frac{d}{dt}\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+d_{2}\|w-w^{\mathbf{k}}_{h}\|^{2}_{H^{1}(\Omega)}\leq\frac{1}{2\epsilon}\|\mathcal{R}_{3}\|_{*}^{2}+(\frac{3\epsilon}{2}+d_{2})\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}
+(α22ϵ+α22ϵ)uuh𝐤L2(Ω)2\displaystyle\hskip 213.39566pt+\left(\frac{\alpha^{2}}{2\epsilon}+\frac{\alpha^{\prime 2}}{2\epsilon}\right)\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(\Omega)} (18)

Choosing m>3ϵm>3\epsilon and adding (3.1)-(18), we get

12ddt[uuh𝐤L2(Ω)2+vvh𝐤L2(Ω)2+wwh𝐤L2(Ω)2]+(m3ϵ)uuh𝐤H1(Ω)2\displaystyle\frac{1}{2}\frac{d}{dt}\Big{[}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}+\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}\Big{]}+(m-3\epsilon)\|u-u^{\mathbf{k}}_{h}\|^{2}_{H^{1}(\Omega)}
+d2wwh𝐤H1(Ω)212ϵ(12+|22+32)+C1uuh𝐤L2(Ω)2\displaystyle\hskip 14.22636pt+d_{2}\|w-w^{\mathbf{k}}_{h}\|^{2}_{H^{1}(\Omega)}\leq\frac{1}{2\epsilon}\left(\|\mathcal{R}_{1}\|_{*}^{2}+|\mathcal{R}_{2}\|^{2}_{*}+\|\mathcal{R}_{3}\|_{*}^{2}\right)+C_{1}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}
+C2vvh𝐤L2(Ω)2C3wwh𝐤L2(Ω)2\displaystyle\hskip 142.26378pt+C_{2}\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2}C_{3}\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}^{2} (19)

Integrating over 0 to tt, we have

u(t)uh𝐤(t)L2(Ω)2+v(t)vh𝐤(t)L2(Ω)2+w(t)wh𝐤(t)L2(Ω)2\displaystyle\|u(t)-u^{\mathbf{k}}_{h}(t)\|_{L^{2}(\Omega)}^{2}+\|v(t)-v^{\mathbf{k}}_{h}(t)\|_{L^{2}(\Omega)}^{2}+\|w(t)-w^{\mathbf{k}}_{h}(t)\|_{L^{2}(\Omega)}^{2}
+2(m3ϵ)uuh𝐤L2(0,t;H1(Ω))2+2d2wwh𝐤L2(0,t;H1(Ω))2\displaystyle\hskip 14.22636pt+2(m-3\epsilon)\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(0,t;H^{1}(\Omega))}+2d_{2}\|w-w^{\mathbf{k}}_{h}\|^{2}_{L^{2}(0,t;H^{1}(\Omega))}
u0Πh0u0L2(Ω)2+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\hskip 85.35826pt\leq\|u_{0}-\Pi_{h}^{0}u_{0}\|_{L^{2}(\Omega)}^{2}+\|v_{0}-\Pi_{h}^{0}v_{0}\|_{L^{2}(\Omega)}^{2}+\|w_{0}-\Pi_{h}^{0}w_{0}\|_{L^{2}(\Omega)}^{2}
+1ϵ(1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2)\displaystyle\hskip 99.58464pt+\frac{1}{\epsilon}\left(\|\mathcal{R}_{1}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{2}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{3}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}\right)
+C10t(uuh𝐤)(s)L2(Ω)2𝑑s+C20t(vvh𝐤)(s)L2(Ω)2𝑑s\displaystyle\hskip 99.58464pt+C_{1}\int_{0}^{t}\|(u-u^{\mathbf{k}}_{h})(s)\|_{L^{2}(\Omega)}^{2}ds+C_{2}\int_{0}^{t}\|(v-v^{\mathbf{k}}_{h})(s)\|^{2}_{L^{2}(\Omega)}ds
+C30t(wwh𝐤)(s)L2(Ω)2𝑑s\displaystyle\hskip 99.58464pt+C_{3}\int_{0}^{t}\|(w-w^{\mathbf{k}}_{h})(s)\|_{L^{2}(\Omega)}^{2}ds (20)

Using the integral form of Gronwall inequality,

u(t)uh𝐤(t)L2(Ω)2+v(t)vh𝐤(t)L2(Ω)2+w(t)wh𝐤(t)L2(Ω)2\displaystyle\|u(t)-u^{\mathbf{k}}_{h}(t)\|^{2}_{L^{2}(\Omega)}+\|v(t)-v^{\mathbf{k}}_{h}(t)\|^{2}_{L^{2}(\Omega)}+\|w(t)-w^{\mathbf{k}}_{h}(t)\|^{2}_{L^{2}(\Omega)}
eCt(u0Πh0u0L2(Ω)2+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\hskip 36.135pt\leq e^{Ct}\Bigg{(}\|u_{0}-\Pi_{h}^{0}u_{0}\|^{2}_{L^{2}(\Omega)}+\|v_{0}-\Pi_{h}^{0}v_{0}\|^{2}_{L^{2}(\Omega)}+\|w_{0}-\Pi_{h}^{0}w_{0}\|^{2}_{L^{2}(\Omega)}
+1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2)\displaystyle\hskip 57.81621pt+\|\mathcal{R}_{1}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{2}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{3}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}\Bigg{)} (21)

Since t(0,T]t\in(0,T] is arbitrary, we have

uuh𝐤L(0,t;L2(Ω))2+vvh𝐤L(0,t;L2(Ω))2+wwh𝐤L(0,t;L2(Ω))2\displaystyle\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{\infty}(0,t;L^{2}(\Omega))}+\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{\infty}(0,t;L^{2}(\Omega))}+\|w-w^{\mathbf{k}}_{h}\|^{2}_{L^{\infty}(0,t;L^{2}(\Omega))}
eCt(u0Πh0u0L2(Ω)2+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\hskip 36.135pt\leq e^{Ct}\Bigg{(}\|u_{0}-\Pi_{h}^{0}u_{0}\|^{2}_{L^{2}(\Omega)}+\|v_{0}-\Pi_{h}^{0}v_{0}\|^{2}_{L^{2}(\Omega)}+\|w_{0}-\Pi_{h}^{0}w_{0}\|^{2}_{L^{2}(\Omega)}
+1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2)\displaystyle\hskip 57.81621pt+\|\mathcal{R}_{1}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{2}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{3}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}\Bigg{)} (22)

Let =min{2(m3ϵ),2d2}\mathcal{M}=\min\{2(m-3\epsilon),2d_{2}\}. Then, from (3.1) we get

(uuh𝐤L2(0,t;H1(Ω))2+wwh𝐤L2(0,t;H1(Ω))2)u0Πh0u0L2(Ω)2\displaystyle\mathcal{M}\left(\|u-u^{\mathbf{k}}_{h}\|^{2}_{L^{2}(0,t;H^{1}(\Omega))}+\|w-w^{\mathbf{k}}_{h}\|^{2}_{L^{2}(0,t;H^{1}(\Omega))}\right)\leq\|u_{0}-\Pi_{h}^{0}u_{0}\|_{L^{2}(\Omega)}^{2}
+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\hskip 56.9055pt+\|v_{0}-\Pi_{h}^{0}v_{0}\|_{L^{2}(\Omega)}^{2}+\|w_{0}-\Pi_{h}^{0}w_{0}\|_{L^{2}(\Omega)}^{2}
+1ϵ(1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2)\displaystyle\hskip 56.9055pt+\frac{1}{\epsilon}\left(\|\mathcal{R}_{1}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{2}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}+\|\mathcal{R}_{3}\|_{L^{2}(0,t;H^{1}(\Omega)^{*})}^{2}\right)
+Ct(uuh𝐤L(0,t;L2(Ω))2+vvh𝐤L(0,t;L2(Ω))2\displaystyle\hskip 56.9055pt+Ct\Big{(}\|u-u^{\mathbf{k}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}^{2}+\|v-v^{\mathbf{k}}_{h}\|^{2}_{L^{\infty}(0,t;L^{2}(\Omega))}
+wwh𝐤L(0,t;L2(Ω))2)\displaystyle\hskip 227.62204pt+\|w-w^{\mathbf{k}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}^{2}\Big{)} (23)

From (3.1),

t(uuh𝐤)+t(vvh𝐤)+t(wwh𝐤)\displaystyle\Big{\|}\frac{\partial}{\partial t}(u-u^{\mathbf{k}}_{h})\Big{\|}_{*}+\Big{\|}\frac{\partial}{\partial t}(v-v^{\mathbf{k}}_{h})\Big{\|}_{*}+\Big{\|}\frac{\partial}{\partial t}(w-w^{\mathbf{k}}_{h})\Big{\|}_{*}
K[uuh𝐤L2(Ω)+vvh𝐤L2(Ω)+wwh𝐤L2(Ω)\displaystyle\hskip 28.45274pt\leq K\Big{[}\|u-u^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}+\|w-w^{\mathbf{k}}_{h}\|_{L^{2}(\Omega)}
+1+2+3]\displaystyle\hskip 56.9055pt+\|\mathcal{R}_{1}\|_{*}+\|\mathcal{R}_{2}\|_{*}+\|\mathcal{R}_{3}\|_{*}\Big{]} (24)

Now, we integrate over 0 to tt,

t(u(t)uh𝐤(t))L2(0,t;(H1(Ω)))+t(vvh𝐤)L2(0,t;(H1(Ω)))\displaystyle\Big{\|}\frac{\partial}{\partial t}(u(t)-u^{\mathbf{k}}_{h}(t))\Big{\|}_{L^{2}(0,t;(H^{1}(\Omega))^{*})}+\Big{\|}\frac{\partial}{\partial t}(v-v^{\mathbf{k}}_{h})\Big{\|}_{L^{2}(0,t;(H^{1}(\Omega))^{*})}
+t(wwh𝐤)L2(0,t;(H1(Ω)))K[uuh𝐤L(0,t;L2(Ω))+vvh𝐤L(0,t;L2(Ω))\displaystyle\hskip 28.45274pt+\Big{\|}\frac{\partial}{\partial t}(w-w^{\mathbf{k}}_{h})\Big{\|}_{L^{2}(0,t;(H^{1}(\Omega))^{*})}\leq K\Big{[}\|u-u^{\mathbf{k}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}+\|v-v^{\mathbf{k}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}
+wwh𝐤L(0,t;L2(Ω))+1L2(0,t;(H1(Ω)))\displaystyle\hskip 180.67499pt+\|w-w^{\mathbf{k}}_{h}\|_{L^{\infty}(0,t;L^{2}(\Omega))}+\|\mathcal{R}_{1}\|_{L^{2}(0,t;(H^{1}(\Omega))^{*})}
+2L2(0,t;(H1(Ω)))+3L2(0,t;(H1(Ω))]\displaystyle\hskip 180.67499pt+\|\mathcal{R}_{2}\|_{L^{2}(0,t;(H^{1}(\Omega))^{*})}+\|\mathcal{R}_{3}\|_{L^{2}(0,t;(H^{1}(\Omega)^{*})}\Big{]} (25)

Using (3.1), (3.1) and (3.1)

C(uuh𝐤(0,t)2+vvh𝐤L2(0,t;H1(Ω))2+wwh𝐤(0,t)2)\displaystyle C\left(\|u-u^{\mathbf{k}}_{h}\|_{\mathcal{L}(0,t)}^{2}+\|v-v^{\mathbf{k}}_{h}\|_{L^{2}(0,t;H^{1}(\Omega))}^{2}+\|w-w^{\mathbf{k}}_{h}\|_{\mathcal{L}(0,t)}^{2}\right)
u0Πh0u0L2(Ω)2+v0Πh0v0L2(Ω)2+w0Πh0w0L2(Ω)2\displaystyle\leq\|u_{0}-\Pi_{h}^{0}u_{0}\|^{2}_{L^{2}(\Omega)}+\|v_{0}-\Pi_{h}^{0}v_{0}\|^{2}_{L^{2}(\Omega)}+\|w_{0}-\Pi_{h}^{0}w_{0}\|^{2}_{L^{2}(\Omega)}
+1L2(0,t;H1(Ω))2+2L2(0,t;H1(Ω))2+3L2(0,t;H1(Ω))2.\displaystyle\hskip 72.26999pt+\|\mathcal{R}_{1}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})}+\|\mathcal{R}_{2}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})}+\|\mathcal{R}_{3}\|^{2}_{L^{2}(0,t;H^{1}(\Omega)^{*})}.

Hence, we proved it. ∎

3.2 A posteriori estimators

We split the residual operators mainly into two operators, namely, the residual form of the space discretization ih(t)\mathcal{R}_{i}^{h}(t), and temporal discretization iτ(t)\mathcal{R}_{i}^{\tau}(t).
Let g1(u,v)=χu(v)ug_{1}(u,v)=\chi_{u}(v)u and g2(u,v)=λu(1uv)g_{2}(u,v)=\lambda u(1-u-v). Then for the spatial discretization,

1h(t),ψ=Ωuh,knnuh,kn1n1τnψ𝑑x+Ωd1(uh,knn,vh,knn,wh,knn)uh,knnψ\displaystyle\langle\mathcal{R}_{1}^{h}(t),\psi\rangle=\int_{\Omega}\frac{u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}}}{\tau^{n}}\psi dx+\int_{\Omega}d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\nabla\psi
Ωg1(uh,knn,vh,knn)vh,knnψdxΩg2(uh,knn,vh,knn)ψ𝑑x.\displaystyle\hskip 56.9055pt-\int_{\Omega}g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\nabla\psi dx-\int_{\Omega}g_{2}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi dx. (26)

For the temporal discretization, 1τ(t)\mathcal{R}_{1}^{\tau}(t)

1τ(t),ψ=Ωd1(uh𝐤,vh𝐤,wh𝐤)uh𝐤ψ+Ωd1(uh,knn,vh,knn,wh,knn)uh,knnψdx\displaystyle\langle\mathcal{R}_{1}^{\tau}(t),\psi\rangle=-\int_{\Omega}d_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h},w^{\mathbf{k}}_{h})\nabla u^{\mathbf{k}}_{h}\nabla\psi+\int_{\Omega}d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\nabla\psi dx
+Ωg1(uh𝐤,vh𝐤)vh𝐤ψΩg1(uh,knn,vh,knn)vh,knnψ\displaystyle\hskip 72.26999pt+\int_{\Omega}g_{1}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h})\nabla v^{\mathbf{k}}_{h}\nabla\psi-\int_{\Omega}g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\nabla\psi
+Ωg2(uh𝐤,vh𝐤)ψ𝑑xΩg2(uh,knn,vh,knn)ψ𝑑x.\displaystyle\hskip 72.26999pt+\int_{\Omega}g_{2}(u^{\mathbf{k}}_{h},v^{\mathbf{k}}_{h})\psi dx-\int_{\Omega}g_{2}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi dx. (27)

3.2.1 Spatial indicators

On the interval (tn1,tn](t_{n-1},t_{n}], let d1,h and g1,hd_{1,h}\text{ and }g_{1,h} be the L2L^{2}–projections of d1 and g1d_{1}\text{ and }g_{1} onto the finite element space Ωhn\Omega_{h}^{n}. The element and edge residuals for (1)1\eqref{Model:dim}_{1} are respectively defined as

ρ1K=uhnuhn1τn(d1,h(uhn,vhn,whn)uhn)+(g1,h(uhn,vhn)vhn)g2(uhn,vhn),ρ1E=𝕁E(nE(d1,h(uhn,vhn,whn)uhng1,h(uhn,vhn)vhn))|Ehn,\displaystyle\begin{split}&&\rho_{1}^{K}=\frac{u_{h}^{n}-u^{n-1}_{h}}{\tau^{n}}-\nabla\cdot(d_{1,h}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n})+\nabla\cdot(g_{1,h}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n})-g_{2}(u_{h}^{n},v_{h}^{n}),\\ &&\rho_{1}^{E}=-\mathbb{J}_{E}(n_{E}\cdot(d_{1,h}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n}-g_{1,h}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n}))\Big{|}_{E\in\mathcal{E}_{h}^{n}},\end{split} (28)

where 𝕁E(.)\mathbb{J}_{E}(.) denote the jump function across the edge EE. The element-wise and edge-wise data errors are, respectively

η1K=(d1(uhn,vhn,whn)uhng1(uhn,vhn)vhnd1,h(uhn,vhn,whn)uhn\displaystyle\eta^{K}_{1}=\nabla\cdot\Big{(}d_{1}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n}-g_{1}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n}-d_{1,h}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n}
+g1,h(uhn,vhn)vhn)\displaystyle\hskip 199.16928pt+g_{1,h}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n}\Big{)} (29)
η1E=𝕁E(nE(d1(uhn,vhn,whn)uhng1(uhn,vhn)vhnd1,h(uhn,vhn,whn)uhn\displaystyle\eta^{E}_{1}=-\mathbb{J}_{E}(n_{E}\cdot(d_{1}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n}-g_{1}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n}-d_{1,h}(u_{h}^{n},v_{h}^{n},w_{h}^{n})\nabla u_{h}^{n}
+g1,h(uhn,vhn)vhn))|Ehn.\displaystyle\hskip 199.16928pt+g_{1,h}(u_{h}^{n},v_{h}^{n})\nabla v_{h}^{n}))\Big{|}_{E\in\mathcal{E}_{h}^{n}}.

Similarly,we define ρ2K,ρ3K,ρ2E,ρ3E,η2K,η3K,η2E,η3E.\rho_{2}^{K},\rho_{3}^{K},\rho_{2}^{E},\rho_{3}^{E},\eta_{2}^{K},\eta_{3}^{K},\eta_{2}^{E},\eta_{3}^{E}. Further, we define the spatial error indicator as

αkn=i=13K𝒯hnhK2ρiKL2(K)2+i=13EhnhEρiEL2(E)2\alpha_{k}^{n}=\sum_{i=1}^{3}\sum_{K\in\mathcal{T}_{h}^{n}}h_{K}^{2}\|\rho_{i}^{K}\|^{2}_{L^{2}(K)}+\sum_{i=1}^{3}\sum_{E\in\mathcal{E}_{h}^{n}}h_{E}\|\rho_{i}^{E}\|^{2}_{L^{2}(E)}

and the spatial data error indicator as

Θkn=i=13K𝒯hnhK2ηiKL2(K)2+i=13EhnhEηiEL2(E)2\Theta_{k}^{n}=\sum_{i=1}^{3}\sum_{K\in\mathcal{T}_{h}^{n}}h_{K}^{2}\|\eta_{i}^{K}\|^{2}_{L^{2}(K)}+\sum_{i=1}^{3}\sum_{E\in\mathcal{E}_{h}^{n}}h_{E}\|\eta_{i}^{E}\|^{2}_{L^{2}(E)} (30)

3.2.2 Time indicators

We define the indicators for temporal residuals

P1(t)=D(d1(uh,knn,vh,knn,wh,knn)uh,knn)L2(tn1,tn;H1(Ω))2\displaystyle P_{1}(t)=\|D(d_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}},w^{n}_{h,k_{n}})\nabla u^{n}_{h,k_{n}})\|_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}^{2}
+D(g1(uh,knn,vh,knn)vh,knn)L2(tn1,tn;H1(Ω))2\displaystyle\hskip 42.67912pt+\|D(g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}})\|_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}^{2}
+D(g2(uh,knn,vh,knn))L2(tn1,tn;H1(Ω))2\displaystyle\hskip 42.67912pt+\|D(g_{2}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}}))\|_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}^{2} (31)

where DD denotes the first-order differential operator and

κkn=(uh,knnuh,kn1n12+vh,knnvh,kn1n12+wh,knnwh,kn1n12)2\displaystyle\kappa_{k}^{n}=\left(\|u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}}\|^{2}+\|v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}}\|^{2}+\|w^{n}_{h,k_{n}}-w^{n-1}_{h,k_{n-1}}\|^{2}\right)^{2} (32)

Similarly, we can define the P2,P3.P_{2},P_{3}. Let γkn=P1(t)+P2(t)+P3(t).\gamma_{k}^{n}=P_{1}(t)+P_{2}(t)+P_{3}(t).

Lemma 2.

There exists a positive constant CC^{*} depending on the maximal ratio of the diameter of an element to the diameter of the largest ball inscribed in it and on the ratio hKhK\displaystyle\frac{h_{K^{\prime}}}{h_{K}} such that

1hL2(tn1,tn;H1(Ω)))2+2hL2(tn1,tn;H1(Ω)))2+3hL2(tn1,tn;H1(Ω)))2C(αkn+Θkn),\displaystyle\|\mathcal{R}_{1}^{h}\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*}))}+\|\mathcal{R}_{2}^{h}\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*}))}+\|\mathcal{R}_{3}^{h}\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*}))}\leq C^{*}(\alpha_{k}^{n}+\Theta_{k}^{n}), (33)

in (tn1,tn](t_{n-1},t_{n}] and for each n=1,2,3,Jn=1,2,3,\ldots J.

Proof.

For t(tn1,tn]t\in(t_{n-1},t_{n}], L2L^{2}-representation of the residual yields

1h,ψ1=K𝒯~hnKuh,knnuh,kn1n1τnψ1𝑑x+K𝒯~hnKd1(uh,knn,vh,knn,wh,knn)uh,knnψ1\displaystyle\langle\mathcal{R}_{1}^{h},\psi_{1}\rangle=\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\frac{u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}}}{\tau^{n}}\psi_{1}dx+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\nabla\psi_{1}
K𝒯~hnKg1(uh,knn,vh,knn)vh,knnψ1dxK𝒯~hnKg2(uh,knn,vh,knn)ψ1𝑑x\displaystyle\hskip 56.9055pt-\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\nabla\psi_{1}dx-\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}g_{2}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi_{1}dx
=K𝒯~hnKuh,knnuh,kn1n1τnψ1𝑑xK(d1(uh,knn,vh,knn,wh,knn)uh,knn)ψ1\displaystyle\hskip 38.41139pt=\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\frac{u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}}}{\tau^{n}}\psi_{1}dx-\int_{K}\nabla\cdot(d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}})\psi_{1}
+K𝒯~hnKnKd1(uh,knn,vh,knn,wh,knn)uh,knnψ1\displaystyle\hskip 56.9055pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{\partial K}n_{K}\cdot d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\psi_{1}
+K𝒯~hnK(g1(uh,knn,vh,knn)vh,knn)ψ1𝑑x\displaystyle\hskip 56.9055pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\nabla\cdot\left(g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\right)\psi_{1}dx
K𝒯~hnKnKg1(uh,knn,vh,knn)vh,knnψ1dx\displaystyle\hskip 56.9055pt-\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{\partial K}n_{K}\cdot g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\psi_{1}dx
K𝒯~hnKg2(uh,knn,vh,knn)ψ1𝑑x\displaystyle\hskip 56.9055pt-\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}g_{2}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi_{1}dx
=K𝒯~hnKρ1Kψ1𝑑x+E~hnEρ1Eψ1𝑑x\displaystyle\hskip 38.41139pt=\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\rho_{1}^{K}\psi_{1}dx+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}\int_{E}\rho_{1}^{E}\psi_{1}dx
+K𝒯~hnKη1Kψ1𝑑x+E~hnEη1Eψ1𝑑x\displaystyle\hskip 51.21504pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\eta_{1}^{K}\psi_{1}dx+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}\int_{E}\eta_{1}^{E}\psi_{1}dx (34)

Let Ihψ1I_{h}\psi_{1} be a quasi-interpolation [22] of ψ1\psi_{1}. Using the orthogonality property, we get

|1h,ψ1||1h,Ihψ1+1h,(ψ1Ihψ1)|\displaystyle|\langle\mathcal{R}_{1}^{h},\psi_{1}\rangle|\leq|\langle\mathcal{R}_{1}^{h},I_{h}\psi_{1}\rangle+\langle\mathcal{R}_{1}^{h},(\psi_{1}-I_{h}\psi_{1})\rangle|
K𝒯~hnK|ρ1K(ψ1Ihψ1)|𝑑x+E~hnE|ρ1E(ψ1Ihψ1)|𝑑x\displaystyle\hskip 51.21504pt\leq\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\Big{|}\rho_{1}^{K}(\psi_{1}-I_{h}\psi_{1})\Big{|}dx+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}\int_{E}\Big{|}\rho_{1}^{E}(\psi_{1}-I_{h}\psi_{1})\Big{|}dx
+K𝒯~hnK|η1K(ψ1Ihψ1)|𝑑x+E~hnE|η1E(ψ1Ihψ1)|𝑑x\displaystyle\hskip 62.59596pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}\int_{K}\Big{|}\eta_{1}^{K}(\psi_{1}-I_{h}\psi_{1})\Big{|}dx+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}\int_{E}\Big{|}\eta_{1}^{E}(\psi_{1}-I_{h}\psi_{1})\Big{|}dx (35)

By interpolation estimates for IhI_{h} and a standard trace theorem [22], we get

|1h,ψ1|C1(K𝒯~hnhKρ1KL2(K)ψ1L2(ωK)+E~hnhE12ρ1EL2(E)ψ1L2(ωE)\displaystyle|\langle\mathcal{R}_{1}^{h},\psi_{1}\rangle|\leq C_{1}\Big{(}\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}\|\rho^{K}_{1}\|_{L^{2}(K)}\|\nabla\psi_{1}\|_{L^{2}(\omega_{K})}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h^{\frac{1}{2}}_{E}\|\rho^{E}_{1}\|_{L^{2}(E)}\|\nabla\psi_{1}\|_{L^{2}(\omega_{E})}
+K𝒯~hnhKη1KL2(K)ψ1L2(ωK)+E~hnhE12η1EL2(E)ψ1L2(ωE))\displaystyle\hskip 56.9055pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}\|\eta^{K}_{1}\|_{L^{2}(K)}\|\nabla\psi_{1}\|_{L^{2}(\omega_{K})}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h^{\frac{1}{2}}_{E}\|\eta^{E}_{1}\|_{L^{2}(E)}\|\nabla\psi_{1}\|_{L^{2}(\omega_{E})}\Big{)} (36)

Then by Cauchy-Schwartz inequality for sums and shape regularity of 𝒯\mathcal{T},

1hC1(K𝒯~hnhK2ρ1KL2(K)2+E~hnhEρ1EL2(E)2\displaystyle\|\mathcal{R}_{1}^{h}\|_{*}\leq C_{1}\Bigg{(}\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}^{2}\|\rho^{K}_{1}\|_{L^{2}(K)}^{2}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h_{E}\|\rho^{E}_{1}\|_{L^{2}(E)}^{2}
+K𝒯~hnhK2η1KL2(K)2+E~hnhEη1EL2(E)2)12.\displaystyle\hskip 79.6678pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}^{2}\|\eta^{K}_{1}\|_{L^{2}(K)}^{2}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h_{E}\|\eta^{E}_{1}\|_{L^{2}(E)}^{2}\Bigg{)}^{\frac{1}{2}}. (37)

Similarly for i=2,3i=2,3, we get

ihCi(K𝒯~hnhK2ρikL2(K)2+E~hnhEρiEL2(E)2\displaystyle\|\mathcal{R}_{i}^{h}\|_{*}\leq C_{i}\Big{(}\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}^{2}\|\rho^{k}_{i}\|_{L^{2}(K)}^{2}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h_{E}\|\rho^{E}_{i}\|_{L^{2}(E)}^{2}
+K𝒯~hnhK2ηikL2(K)2+E~hnhEηiEL2(E)2)12.\displaystyle\hskip 71.13188pt+\sum_{K\in\tilde{\mathcal{T}}^{n}_{h}}h_{K}^{2}\|\eta^{k}_{i}\|_{L^{2}(K)}^{2}+\sum_{E\in\tilde{\mathcal{E}}_{h}^{n}}h_{E}\|\eta^{E}_{i}\|_{L^{2}(E)}^{2}\Big{)}^{\frac{1}{2}}. (38)

Here all the constants Ci,i=1,2,3C_{i},~{}i=1,2,3 depend on the ratio hKhK\frac{h_{K^{\prime}}}{h_{K}}. Squaring and adding (37) and (38), and integrating over (tn1,tn)(t_{n-1},t_{n}), it proves the Lemma 2. ∎

Lemma 3.

There exists a positive constant CC^{\dagger} such that

i=13iτL2(tn1,tn;H1(Ω)))2C(γkn+κkn)\displaystyle\sum_{i=1}^{3}\|\mathcal{R}_{i}^{\tau}\|_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*}))}^{2}\leq C^{\dagger}(\gamma_{k}^{n}+\kappa_{k}^{n}) (39)

in the interval (tn1,tn](t_{n-1},t_{n}] and for each n=1,2,3,,Jn=1,2,3,\ldots,J.

Proof.

We define G1:(L2(0,T;H1(Ω)))3(L2(0,T;H1(Ω)))3G_{1}:\left(L^{2}(0,T;H^{1}(\Omega))\right)^{3}\rightarrow\left(L^{2}(0,T;H^{1}(\Omega)^{*})\right)^{3} as,

G1(u,v,w),ψ1=Ωd1(u,v,w)uψ1Ωg1(u,v)vψ1dx\displaystyle\langle G_{1}(u,v,w),\psi_{1}\rangle=\int_{\Omega}d_{1}(u,v,w)\nabla u\nabla\psi_{1}-\int_{\Omega}g_{1}(u,v)\nabla v\nabla\psi_{1}dx
Ωg2(u,v)ψ1𝑑x,ψ1H1(Ω).\displaystyle\hskip 113.81102pt-\int_{\Omega}g_{2}(u,v)\psi_{1}dx,\hskip 28.45274pt\forall\psi_{1}\in H^{1}(\Omega). (40)

Then, by the definition of the temporal residual (3.1),

1τ(t)\displaystyle\mathcal{R}_{1}^{\tau}(t) =G1(uh,knn,vh,knn,wh,knn)G1(uh𝐤,vh,τn,wh𝐤)\displaystyle=G_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})-G_{1}(u^{\mathbf{k}}_{h},v^{n}_{{h,\tau}},w^{\mathbf{k}}_{h})
=01DG1(uh𝐤+s(uh,knnuh𝐤),vh𝐤+s(vh,knnvh𝐤),wh𝐤+s(wh,knnwh𝐤))\displaystyle=\int_{0}^{1}DG_{1}(u^{\mathbf{k}}_{h}+s(u^{n}_{h,k_{n}}-u^{\mathbf{k}}_{h}),v^{\mathbf{k}}_{h}+s(v^{n}_{{h,k_{n}}}-v^{\mathbf{k}}_{h}),w^{\mathbf{k}}_{h}+s(w^{n}_{{h,k_{n}}}-w^{\mathbf{k}}_{h}))\cdot
(uh,knnuh𝐤,vh,knnvh𝐤,wh,knnwh𝐤)ds\displaystyle\hskip 34.14322pt(u^{n}_{h,k_{n}}-u^{\mathbf{k}}_{h},v^{n}_{{h,k_{n}}}-v^{\mathbf{k}}_{h},w^{n}_{{h,k_{n}}}-w^{\mathbf{k}}_{h})ds
=DG1(uh,knn,vh,knn,wh,knn)(uh,knnuh𝐤,vh,knnvh𝐤,wh,knnwh𝐤)\displaystyle=DG_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})(u^{n}_{h,k_{n}}-u^{\mathbf{k}}_{h},v^{n}_{{h,k_{n}}}-v^{\mathbf{k}}_{h},w^{n}_{{h,k_{n}}}-w^{\mathbf{k}}_{h})
+01[(DG1(uh𝐤+s(uh,knnuh𝐤),vh𝐤+s(vh,knnvh𝐤),wh𝐤+s(wh,knnwh𝐤))\displaystyle\hskip 8.5359pt+\int_{0}^{1}[(DG_{1}(u^{\mathbf{k}}_{h}+s(u^{n}_{h,k_{n}}-u^{\mathbf{k}}_{h}),v^{\mathbf{k}}_{h}+s(v^{n}_{{h,k_{n}}}-v^{\mathbf{k}}_{h}),w^{\mathbf{k}}_{h}+s(w^{n}_{{h,k_{n}}}-w^{\mathbf{k}}_{h}))
DG1(uh,knn,vh,knn,wh,knn))(uh,knnuh𝐤,vh,knnvh𝐤,wh,knnwh𝐤)]ds\displaystyle\hskip 45.52458pt-DG_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}}))\cdot(u^{n}_{h,k_{n}}-u^{\mathbf{k}}_{h},v^{n}_{{h,k_{n}}}-v^{\mathbf{k}}_{h},w^{n}_{{h,k_{n}}}-w^{\mathbf{k}}_{h})]ds
=1,1τ(t)+1,2τ(t)\displaystyle=\mathcal{R}_{1,1}^{\tau}(t)+\mathcal{R}_{1,2}^{\tau}(t)

We define

rn,ψ1=Ω[d1u(uh,knn,vh,knn,wh,knn)uh,knnψ1(uh,knnuh,kn1n1)\displaystyle\langle r^{n},\psi_{1}\rangle=\int_{\Omega}\Big{[}d_{1}^{u}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{h,k_{n}}\nabla\psi_{1}(u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}})
+d1v(uh,knn,vh,knn,wh,knn)uh,knnψ1(vh,knnvh,kn1n1)\displaystyle\hskip 56.9055pt+d_{1}^{v}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\nabla\psi_{1}(v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}})
+d1w(uh,knn,vh,knn,wh,knn)uh,knnψ1(wh,knnwh,kn1n1)\displaystyle\hskip 56.9055pt+d_{1}^{w}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla u^{n}_{{h,k_{n}}}\nabla\psi_{1}(w^{n}_{h,k_{n}}-w^{n-1}_{h,k_{n-1}})
+d1(uh,knn,vh,knn,wh,knn)(uh,knnuh,kn1n1)ψ1\displaystyle\hskip 56.9055pt+d_{1}(u^{n}_{h,k_{n}},v^{n}_{{h,k_{n}}},w^{n}_{h,k_{n}})\nabla(u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}})\nabla\psi_{1}
g1u(uh,knn,vh,knn)vh,knnψ1(uh,knnuh,kn1n1)\displaystyle\hskip 56.9055pt-g_{1}^{u}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\nabla\psi_{1}(u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}})
g1v(uh,knn,vh,knn)vh,knnψ1(vh,knnvh,kn1n1)\displaystyle\hskip 56.9055pt-g_{1}^{v}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla v^{n}_{h,k_{n}}\nabla\psi_{1}(v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}})
g1(uh,knn,vh,knn)(vh,knnvh,kn1n1)ψ1\displaystyle\hskip 56.9055pt-g_{1}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\nabla(v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}})\nabla\psi_{1}
g2u(uh,knn,vh,knn)ψ1(uh,knnuh,kn1n1)\displaystyle\hskip 56.9055pt-g_{2}^{u}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi_{1}(u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}})
g2v(uh,knn,vh,knn)ψ1(vh,knnvh,kn1n1)]dx.\displaystyle\hskip 56.9055pt-g_{2}^{v}(u^{n}_{h,k_{n}},v^{n}_{h,k_{n}})\psi_{1}(v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}})\Big{]}dx. (41)

Then, on (tn1,tn](t_{n-1},t_{n}] we have

1,1τ(t),ψ1=(1ttn1τn)rn,ψ1\displaystyle\langle\mathcal{R}_{1,1}^{\tau}(t),\psi_{1}\rangle=\left(1-\dfrac{t-t_{n-1}}{\tau_{n}}\right)\langle r^{n},\psi_{1}\rangle (42)

By the Lemma 6.47 in [22], we get

1,1τL2(tn1,tn;H1(Ω))2τn3(rn2)\displaystyle\|\mathcal{R}_{1,1}^{\tau}\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}\leq\frac{\tau_{n}}{3}(\|r^{n}\|^{2})
=τn3P1(t)\displaystyle\hskip 96.73918pt=\frac{\tau_{n}}{3}P_{1}(t) (43)

Now, with conditions H1H4 and assuming that DG1DG_{1} is Locally Lipschitz continuous at the solution of (1), we get

1,2τ(t)L2(tn1,tn;H1(Ω))L(uh𝐤uh,knn2+vh𝐤vh,knn2+wh𝐤wh,knn2)\displaystyle\|\mathcal{R}_{1,2}^{\tau}(t)\|_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}\leq L\left(\|u^{\mathbf{k}}_{h}-u^{n}_{h,k_{n}}\|^{2}+\|v^{\mathbf{k}}_{h}-v^{n}_{h,k_{n}}\|^{2}+\|w^{\mathbf{k}}_{h}-w^{n}_{h,k_{n}}\|^{2}\right)
Lτn(uh,knnuh,kn1n12+vh,knnvh,kn1n12+wh,knnwh,kn1n12)\displaystyle\hskip 71.13188pt\leq L\tau_{n}\left(\|u^{n}_{h,k_{n}}-u^{n-1}_{h,k_{n-1}}\|^{2}+\|v^{n}_{h,k_{n}}-v^{n-1}_{h,k_{n-1}}\|^{2}+\|w^{n}_{h,k_{n}}-w^{n-1}_{h,k_{n-1}}\|^{2}\right)
1,2τ(t)L2(tn1,tn;H1(Ω))2Lκkn\displaystyle\|\mathcal{R}_{1,2}^{\tau}(t)\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}\leq L^{*}\kappa_{k}^{n} (44)

Similarly, we do the calculations for 2τ\mathcal{R}_{2}^{\tau} and 3τ\mathcal{R}_{3}^{\tau} and adding the results, we get

i=13iτL2(tn1,tn;H1(Ω))2C(γkn+κkn)\displaystyle\sum_{i=1}^{3}\|\mathcal{R}_{i}^{\tau}\|^{2}_{L^{2}(t_{n-1},t_{n};H^{1}(\Omega)^{*})}\leq C^{\dagger}(\gamma_{k}^{n}+\kappa_{k}^{n}) (45)

Theorem 1.

For the solution given by (uh,knn,vh,knn,wh,knn)(u_{h,k_{n}}^{n},v_{h,k_{n}}^{n},w_{h,k_{n}}^{n}) , n=1,2,,Nn=1,2,\ldots,N, k=1,2,3,knk=1,2,3\ldots,k_{n} , it holds

uuh,τk(0,tn)2+vvh,τkL2(0,tn;H1(Ω))2+wwh,τk(0,tn)2\displaystyle\|u-u_{h,\tau}^{k}\|_{\mathcal{L}(0,t_{n})}^{2}+\|v-v_{h,\tau}^{k}\|_{L^{2}(0,t_{n};H^{1}(\Omega))}^{2}+\|w-w_{h,\tau}^{k}\|_{\mathcal{L}(0,t_{n})}^{2}
C(u0uh,0L2(Ω)2+v0vh,0L2(Ω)2+w0wh,0L2(Ω)2\displaystyle\hskip 28.45274pt\leq C\left(\|u_{0}-u_{h,0}\|^{2}_{L^{2}(\Omega)}+\|v_{0}-v_{h,0}\|^{2}_{L^{2}(\Omega)}\right.+\|w_{0}-w_{h,0}\|^{2}_{L^{2}(\Omega)}
+αK+Θk+γk+κk),\displaystyle\hskip 113.81102pt\left.+\alpha_{K}+\Theta_{k}+\gamma_{k}+\kappa_{k}\right), (46)

where CC is the positive constant which depends on the maximal ratio of the diameter of an element to the diameter of the largest ball inscribed in it and hKhK.\frac{h_{K^{\prime}}}{h_{K}}.

Proof.

By the definition of the residuals,

i(t)=ih+iτ(t) for i=1,2,3.\mathcal{R}_{i}(t)=\mathcal{R}_{i}^{h}+\mathcal{R}_{i}^{\tau}(t)\mbox{ for }i=1,2,3.

The proof follows from Lemma 1-3. ∎

4 Numerical Experiments

This section presents a series of numerical experiments with the adaptive mesh refinement strategy based on the residual error estimators that were analyzed in section 3. Then, we compute its convergence order when hh diminishes. We used piecewise linear finite elements (i.e., polynomials of degree one) in all the experiments. The numerical simulations are performed in a 3D spatial domain that has the size of Ω=[0,1]×[0,1]×[0,1]\Omega=[0,1]\times[0,1]\times[0,1]. The presented numerical results are done on our local desktop, which consists of an Intel Core-i9 processor clocked at 2.80 GHz and equipped with 32 GB RAM. In this regard, we consider our first test example based on [14], which consists of the following model parameters (set-1):

c=d1=0.0001,d2=0.0005,χ=0.005,λ=0.75,η=10,ρ=1.5,β=0.1,α=0.25.c=d_{1}=0.0001,~{}d_{2}=0.0005,~{}\chi=0.005,~{}\lambda=0.75,~{}\eta=10,~{}\rho=1.5,~{}\beta=0.1,~{}\alpha=0.25.

In our computational domain, we choose the origin as the starting point for solid tumor formation and expand its size based on the time period. The initial and boundary conditions (Eqs. (1)-(5)) are applied to a coarse grid with 20×20×2020\times 20\times 20 mesh elements which consist of 48000 tetrahedrons and 9261 nodes. The Adaptive Mesh Refinement (AMR) method relies on a hierarchical structure of nested mesh levels and is a recognized strategy for effectively managing mesh resolutions to ensure reliability. Its key function involves post-processing a computed numerical solution at a particular time step within a computational domain to determine areas where the current computational mesh needs refinement or coarsening. This results in the creation of a dynamic mesh that adeptly captures the numerical solution with both efficiency and precision. In our simulations, we employ the AMR approach guided by the error indicator outlined in Eq. (30), and the spatial relative tolerance is set to TOLx=0.001TOL_{x}=0.001, see [7] for the detailed algorithm of the spatial grid adaptivity.

First, we illustrate the L2L_{2}-norm of the error between uniform and adaptive refinements in Figure 1. We allow the minimal size of an element in the adaptive grid refinement up to 0.0108253. The coarse grid is refined uniformly seven times to get the model problem’s reference solution due to the missing exact solution. In our computations, this fine mesh comprises 6,144,000 tetrahedral elements and 1,043,441 nodes. As expected, the convergence rate is far better in the case of adaptive mesh refinement than with uniform refinement w.r.t the number of degrees of freedom.

Refer to caption
Figure 1: L2L_{2}-norm of the error(log scale) w.r.t the degrees of freedom for the uniform and adaptive mesh refinement strategies using the parameter set 1.

The solution of cancer density and their corresponding computational mesh obtained using adaptive grid refinement is depicted in Figure 2. We observe that the error is concentrated at the solution boundaries in the computational domain’s bottom corners, and the error indicator suggests keeping more mesh points in this region. More information on the numerical solutions to the current problem can be referred to [7].

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: The evolution of cancer density (at top row) and the corresponding computational mesh at different times t=1,5,t=1,5, and 1010.
No. of mesh points L2L_{2} error CPU Time (seconds)
11,439 0.0863209 593.5
13,413 0.0552073 813.7
16,874 0.0343122 941.5
27,104 0.0218120 1302.2
36,107 0.0137021 1508.7
60,770 0.0081902 3010.6
78,945 0.0047541 3977.5
Table 1: L2L_{2} error estimates and the corresponding CPU times at different adaptive mesh levels for the first parameter set.

The computational times of the above simulation are given in Table 1. By obtaining a similar accuracy, we remark that the adaptive simulation is 4.91 times faster than the uniform grid refinement simulation. We can observe that there is a significant improvement in the CPU times by using the spatial grid adaptivity simulations. We can observe that this test case’s experimental order of convergence reaches 0.78.

The performance of the residual error estimator with a second set of model parameters is demonstrated in the following. We use the same computational setup as the previous test case except for the following essential parameters (set-2).

ρ=0.0,α=0.1,β=0.0,χ=0.00005.\rho=0.0,~{}\alpha=0.1,~{}\beta=0.0,~{}\chi=0.00005. (47)

To find the L2L_{2} error in the adaptive simulations, we used the solution of uniform refinement of the coarse grid with grid level 7. Also, in this test case, we can observe that the convergence rate of the solution is better for adaptive simulations, and note that adaptive simulation is 5.28 times faster than the static finer uniform grid simulation.

No. of mesh points L2L_{2} error CPU Time (seconds)
9,852 0.0361524 449.6
10,473 0.0197031 511.7
11,569 0.0128632 563.3
14,910 0.0084189 869.1
18,331 0.0056551 1058.6
26,616 0.0032899 1316.0
51,843 0.0017817 2464.5
Table 2: L2L_{2} error estimates and the corresponding CPU times at different adaptive mesh levels for the second parameter set.

The computational times for the second test case simulation are given in Table 2. In this test also, there is a significant improvement in the CPU times by using the spatial grid adaptivity simulations. For this test case, the experimental order of convergence reaches 0.88.

5 Conclusions

This paper analyzes residual-based a posteriori error estimates of a multi-scale cancer invasion model consisting of nonlinear reaction terms and sensitivity functions. We have derived a residual-based a posteriori error estimator for the coupled system and shown that it is reliable. We obtained an upper bound for the discretization error using the residual-based error estimator. The numerical results were demonstrated for two different set of parameters where the first set of parameters creates a stiffer system than the second set. In the case of using the first set of parameters, we obtained the experimental order of convergence is 0.78, and using the second set of parameters, it is 0.88. These results allow us to expect some improved computational and theoretical estimates for a multi-scale cancer invasion model in the future.

Acknowledgment

We gratefully acknowledge the financial support under R&D projects leading to HPC Applications (DST/NSM/R&D_HPC_Applications/2021/03.28), National Supercomputing Mission, India, and the support for high-performance computing time at Param Yukti, JNCASR, India. Also, we greatly acknowledge the support for high-performance computing time at the Padmanabha cluster, IISER Thiruvananthapuram, India.

Disclosure/Conflict-of-Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  • [1] R. A. Adams and J. J. Fournier. Pure and applied mathematics. Acad. press, 2003.
  • [2] M. Ainsworth and I. Babuska. Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM Journal on Numerical Analysis, 36(2):331–353, 1999.
  • [3] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, Ltd, 2000.
  • [4] M. Ainsworth and T. Vejchodský. Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Computer Methods in Applied Mechanics and Engineering, 281:184–199, 2014.
  • [5] A. R. Anderson and M. A. Chaplain. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of mathematical biology, 60(5):857–899, 1998.
  • [6] A. R. Anderson, M. A. Chaplain, E. L. Newman, R. J. Steele, and A. M. Thompson. Mathematical modelling of tumour invasion and metastasis. Computational and mathematical methods in medicine, 2(2):129–154, 2000.
  • [7] V. Aswin, J. Manimaran, and N. Chamakuri. Space-time adaptivity for a multi-scale cancer invasion model. Computers & Mathematics with Applications, 146:309–322, 2023.
  • [8] N. Chamakuri. Parallel and space-time adaptivity for the numerical simulation of cardiac action potentials. Applied Mathematics and Computation, 353:406 – 417, 2019.
  • [9] N. Chamakuri and P. Kügler. Parallel space-time adaptive numerical simulation of 3d cardiac electrophysiology. Applied Numerical Mathematics, 173:295–307, 2022.
  • [10] M. Chaplain and G. Lolas. Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Mathematical Models and Methods in Applied Sciences, 15(11):1685–1734, 2005.
  • [11] E. M. Cherry, H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Physical Review Letters, 84(6):1343, 2000.
  • [12] D. J. Estep, M. G. Larson, and R. D. Williams. Estimating the error of numerical solutions of systems of reaction-diffusion equations, volume 696. American Mathematical Soc., 2000.
  • [13] L. C. Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.
  • [14] S. Ganesan and S. Lingeshwaran. A biophysical model of tumor invasion. Communications in Nonlinear Science and Numerical Simulation, 46:135–152, 2017.
  • [15] A. Hawkins-Daarud, K. G. van der Zee, and J. Tinsley Oden. Numerical simulation of a thermodynamically consistent four-species tumor growth model. International Journal for Numerical Methods in Biomedical Engineering, 28(1):3–24, 2012.
  • [16] N. Kolbe, J. Katuchová, N. Sfakianakis, N. Hellmann, and M. Lukácová-Medvidová. A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model. Applied Mathematics and Computation, 273:353–376, 2016.
  • [17] N. Kolbe and N. Sfakianakis. An adaptive rectangular mesh administration and refinement technique with application in cancer invasion models. Journal of Computational and Applied Mathematics, 416:114442, 2022.
  • [18] J. Peterson, G. Carey, D. Knezevic, and B. Murray. Adaptive finite element methodology for tumour angiogenesis modelling. International journal for numerical methods in engineering, 69(6):1212–1238, 2007.
  • [19] J. A. Trangenstein and C. Kim. Operator splitting and adaptive mesh refinement for the luo–rudy i model. Journal of Computational Physics, 196(2):645–679, 2004.
  • [20] T. Vejchodský. Guaranteed and locally computable a posteriori error estimate. IMA Journal of Numerical Analysis, 26(3):525–540, 07 2006.
  • [21] R. Verfürth. Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numerische Mathematik, 78:479–493, 1998.
  • [22] R. Verfürth. A posteriori error estimation techniques for finite element methods. OUP Oxford, 2013.
  • [23] G. Vilanova, I. Colominas, and H. Gomez. Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. International Journal for Numerical Methods in Biomedical Engineering, 29(10):1015–1037, 2013.
  • [24] X. Zheng, S. Wise, and V. Cristini. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bulletin of Mathematical Biology, 67(2):211–259, Mar. 2005.