This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems

Mahieddine Adim IRMAR, Univ. Rennes , F-35000 Rennes, France. Roberta Bianchini IAC, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy. Vincent Duchêne IRMAR, Univ. Rennes , F-35000 Rennes, France. CNRS. Corresponding author: [email protected]
Abstract

We rigorously justify the bilayer shallow-water system as an approximation to the hydrostatic Euler equations in situations where the flow is density-stratified with close-to-piecewise constant density profiles, and close-to-columnar velocity profiles. Our theory accommodates with continuous stratification, so that admissible deviations from bilayer profiles are not pointwise small. This leads us to define refined approximate solutions that are able to describe at first order the flow in the pycnocline. Because the hydrostatic Euler equations are not known to enjoy suitable stability estimates, we rely on thickness-diffusivity contributions proposed by Gent and McWilliams. Our strategy also applies to one-layer and multilayer frameworks.

1 Introduction

Motivation

The bilayer shallow water system is a standard model for the description of internal waves in density-stratified flows in situations where the density distribution is such that the fluid can be approximately described as two layers with almost-constant densities separated by a thin a pycnocline; see e.g.  [27, Chap. 6]. In addition to this sharp stratification assumption, the formal derivation of the bilayer shallow water system relies on two additional ingredients. Firstly, the internal pressure is assumed to be hydrostatic, that is the pressure-gradient force balances the external force due to gravity. Secondly, the flow velocity is assumed to be columnar, that is the horizontal velocity of fluid particles is constant with respect to the vertical variable within each layer. Of course the validity of bilayer shallow water system relies on the expectation that, if originally approximately satisfied, these three assumptions remain accurate on a relevant timescale as the flow evolves.

The rigorous justification of the hydrostatic assumption in the shallow water regime —that is when the typical horizontal wavelength of the flow is large with respect to the vertical depth of the layer— has been rigorously analyzed either in situations of homogeneous density [5, 36, 23, 37], with smooth density distributions [42, 41], or in the bilayer framework [11, 21, 20]. In the bilayer framework and assuming that the pressure is hydrostatic, the columnar assumption is propagated exactly by the flow. By this we mean that the bilayer shallow water system produces exact solutions to the hydrostatic (incompressible) Euler equations with a density and horizontal velocity distributions which are piecewise constant with respect to the vertical variable. This statement is made explicit below.

In this work we investigate solutions to the hydrostatic Euler equations in the vicinity of such solutions, that is relaxing the sharp stratification as well as columnar motion assumptions. We prove that for initial data suitably close to the bilayer framework, the emerging solutions to the hydrostatic Euler equations remain close to the solution predicted by the bilayer shallow water system on a relevant timescale.

This task is made difficult in part because we lack good stability estimates for the hydrostatic Euler equations in the presence of density stratification. For that matter, as in our previous works [9, 1], we rely on the regularizing properties of thickness-diffusivity terms proposed by Gent and McWilliams [25] so as to model the effective contributions of geostrophic eddy correlations in non-eddy-resolving systems.

Description of our results

Specifically, the hydrostatic Euler equations we consider take the form

th+x((1+h)(u¯+u))\displaystyle\partial_{t}h+\partial_{x}((1+h)(\underline{u}+u)) =κx2h,\displaystyle=\kappa\partial_{x}^{2}h, (1.1)
tu+(u¯+uκxh1+h)xu+1ρ¯xΨ\displaystyle\partial_{t}u+\left(\underline{u}+u-\kappa\frac{\partial_{x}h}{1+h}\right)\partial_{x}u+\frac{1}{\underline{\rho}}\partial_{x}\Psi =0,\displaystyle=0,

where the Montgomery potential Ψ\Psi is given by

Ψ(t,x,r)=ρ¯(r)1rh(t,x,r)dr+r0ρ¯(r)h(t,x,r)dr.\Psi(t,x,r)=\underline{\rho}(r)\int_{-1}^{r}h(t,x,r^{\prime})\operatorname{{\rm d}\!}r^{\prime}+\int_{r}^{0}\underline{\rho}(r^{\prime})h(t,x,r^{\prime})\operatorname{{\rm d}\!}r^{\prime}. (1.2)

Here, the equations are formulated using isopycnal coordinates (in particular we assume that the fluid is stratified in the sense that the two-dimensional fluid domain is foliated through lines of equal density, namely isopycnals). The variable hh represents the deviation of the infinitesimal depth of isopycnals from the reference value 11, and uu is the deviation of the horizontal velocity of the fluid particles from the reference value u¯\underline{u}, and ρ¯\underline{\rho} their density. The unknowns h,uh,u depend on the time tt, the horizontal space xx, and the variable r(1,0)r\in(-1,0) referring to the isopycnal line at stake, while u¯\underline{u} and ρ¯\underline{\rho} are given and depend only on rr. The derivation of these equations from the more standard formulation in Eulerian coordinates is described for instance in [9].111Let us point out that in [9] we choose to label isopycnal lines using the value of the density of fluid particles: ϱ=ρ¯(r)\varrho=\underline{\rho}(r). Here we use a different convention, so as to set the reference infinitesimal depth of isopycnals at value h¯(r)=1\underline{h}(r)=1. Notice that the change of variable ϱ=ρ¯(r)\varrho=\underline{\rho}(r) is bijective in the stably stratified situation, i.e. when rρ¯(r)r\mapsto\underline{\rho}(r) is strictly decreasing, but that our choice in this work allows to consider stratifications that are not strictly monotonic such as homogeneous and layered configurations. Incidentally, let us mention that in (1.1) we have set the gravity acceleration to g=1g=1 and the total depth of the fluid domain at rest to 10h¯(r)dr=1\int_{-1}^{0}\underline{h}(r)\operatorname{{\rm d}\!}r=1 through suitable rescaling. Finally κ>0\kappa>0 is the thickness diffusivity coefficient and u=κxh1+hu_{\star}=-\kappa\frac{\partial_{x}h}{1+h} is often referred to as the “bolus velocity”.

The corresponding bilayer shallow water system reads

{tHs+x((H¯s+Hs)(U¯s+Us))=κx2Hs,tHb+x((H¯b+Hb)(U¯b+Ub))=κx2Hs,tUs+(U¯s+UsκxHsH¯s+Hs)xUs+xHs+xHb=0,tUb+(U¯b+UbκxHbH¯b+Hb)xUb+ρsρbxHs+xHb=0.\begin{cases}\partial_{t}H_{s}+\partial_{x}\big{(}(\underline{H}_{s}+H_{s})(\underline{U}_{s}+U_{s})\big{)}=\kappa\partial_{x}^{2}H_{s},\\ \partial_{t}H_{b}+\partial_{x}\big{(}(\underline{H}_{b}+H_{b})(\underline{U}_{b}+U_{b})\big{)}=\kappa\partial_{x}^{2}H_{s},\\ \partial_{t}U_{s}+(\underline{U}_{s}+U_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}U_{s}+\partial_{x}H_{s}+\partial_{x}H_{b}=0,\\ \partial_{t}U_{b}+(\underline{U}_{b}+U_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}U_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}+\partial_{x}H_{b}=0.\end{cases} (1.3)

Here, HsH_{s} (resp. HbH_{b}) represents the deviation of the depth of the upper (resp. lower) layer from the reference constant value H¯s\underline{H}_{s} (resp. H¯b\underline{H}_{b}), and UsU_{s} (resp. UbU_{b}) is the deviation of the horizontal velocity within the upper (resp. lower) layer from the reference constant value U¯s\underline{U}_{s} (resp. U¯b\underline{U}_{b}). Notice Hs,Hb,Us,UbH_{s},H_{b},U_{s},U_{b} depend only on the time and horizontal space variables, bringing about a relative ease of use of the bilayer model. We denote ρs\rho_{s} (resp. ρb\rho_{b}) the constant density of fluid particles in the upper (resp. lower) layers. Finally, κ>0\kappa>0 is again the thickness diffusivity coefficient.

As mentioned above, solutions to (1.3) provide exact solutions to (1.1). Specifically, if we denote

ρ¯bl(r)\displaystyle\underline{\rho}_{\rm bl}(r) =ρs𝟏(H¯s,0)(r)+ρb𝟏(1,H¯s)(r),\displaystyle=\rho_{s}{\bf 1}_{(-\underline{H}_{s},0)}(r)+\rho_{b}{\bf 1}_{(-1,-\underline{H}_{s})}(r), (1.4)
u¯bl(r)\displaystyle\underline{u}_{\rm bl}(r) =U¯s𝟏(H¯s,0)(r)+U¯b𝟏(1,H¯s)(r),\displaystyle=\underline{U}_{s}{\bf 1}_{(-\underline{H}_{s},0)}(r)+\underline{U}_{b}{\bf 1}_{(-1,-\underline{H}_{s})}(r),
ubl(,r)\displaystyle u_{\rm bl}(\cdot,r) =Us𝟏(H¯s,0)(r)+Ub𝟏(1,H¯s)(r),\displaystyle=U_{s}{\bf 1}_{(-\underline{H}_{s},0)}(r)+U_{b}{\bf 1}_{(-1,-\underline{H}_{s})}(r),
hbl(,r)\displaystyle h_{\rm bl}(\cdot,r) =HsH¯s𝟏(H¯s,0)(r)+HbH¯b𝟏(1,H¯s)(r),\displaystyle=\frac{H_{s}}{\underline{H}_{s}}{\bf 1}_{(-\underline{H}_{s},0)}(r)+\frac{H_{b}}{\underline{H}_{b}}{\bf 1}_{(-1,\underline{H}_{s})}(r),

where (ρs,ρb,H¯s,H¯b,U¯s,U¯b,Hs,Hb,Us,Ub)(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b},H_{s},H_{b},U_{s},U_{b}) is a solution to (1.3), then (ρ¯bl,u¯bl,hbl,ubl)(\underline{\rho}_{\rm bl},\underline{u}_{\rm bl},h_{\rm bl},u_{\rm bl}) is a solution to (1.1)-(1.2). In this work we shall compare these solutions with the ones emerging from profiles satisfying (1.4) only approximately. Specifically, our results are twofold.

  1. i.

    We prove that strong solutions to the bilayer shallow water system (1.3) emerge from sufficiently regular initial data satisfying some hyperbolicity conditions.

  2. ii.

    We prove that strong solutions to the hydrostatic Euler equations (1.1) emerge from profiles close to the piecewise constant profiles given by (1.4), and that these solutions remain close to the bilayer solutions.

Notice that to accommodate our aim of comparing solutions with a piecewise constant density distribution with a solution with a continuous density distribution, we need to consider deviations that can be pointwise large in small regions, that is the pycnocline. This demands to weaken the topology measuring the size of deviations in (ii). Yet a control in the strong LL^{\infty} topology associated with a Banach algebra turns out to be necessary to secure suitable convergence estimates. Our strategy then relies on the construction of a refined approximate solution, which is proved to be close to the corresponding solution to the hydrostatic Euler equation in a strong topology, and close to the bilayer solution in a weaker topology. Hence this refined approximate solution improves the description of the exact solution within the pycnocline.

A second important remark is that while the contribution of thickness diffusivity is essential to our stability estimates, we wish to control and compare solutions on a time interval which is uniform with respect to the thickness diffusivity parameter, 0<κ10<\kappa\leq 1. The dependency on the thickness parameter will appear only as a restriction on the size of admissible deviations. Concerning (i) this is made possible by the well-known fact that the bilayer shallow-water system is well-posed (under some hyperbolicity conditions) when κ=0\kappa=0 (see [40]). Yet obtaining the corresponding result for κ>0\kappa>0 is not straightforward and demands to use finely the structure of the thickness diffusivity parameters, following the “two-velocity” strategy developed in the context of the BD-entropy (see e.g. [16]). Concerning (ii) we use the existence of the bilayer solution and consequently the existence of the refined approximate solution to bootstrap the control of sufficiently close solutions to the hydrostatic Euler equations on the relevant timescale. For that purpose we strongly use the regularizing effect of thickness diffusivity contributions, but any non-uniformity with respect to the diffusivity parameter, κ\kappa, can be balanced through the smallness of the deviations.

Let us point out that the result (ii) applies to any given (sufficiently regular with respect to the time and horizontal space variables) solution to the hydrostatic Euler equations. Hence our work provides the same stability estimates around other solutions, constructed for instance in the framework of multiple layers and/or simple waves.

Related literature

Several existing works discuss the matter of modeling thin pycnoclines through the bilayer framework. Let us first recall that in the bilayer framework, non-hydrostatic pressure contributions trigger strong Kelvin–Helmholtz instabilities that in particular prevent the well-posedness of the initial-value problem in the absence of any additional regularizing ingredients; see [32]. Such regularizing ingredients include interfacial tension as proved in [34] but this is not expected to be te physically relevant mechanism. In [10], Bogucki and Garrett describe and model a scenario of interface-thickening due to mixing triggered by shear instabilities, up to a situation where the Richardson number in the interface becomes compatible with the celebrated Miles [39] and Howard [30] stability ion. Recall however that the bilayer shallow water system does not suffer from shear-induced instabilities when shear velocities are sufficiently small. Consistently, the authors in [19] discuss the simultaneous limits of sharp stratification together with shallow water (which can be considered as a low-frequency or hydrostatic pressure limit). In our work we impose the hydrostatic pressure assumption thus taming shear instabilities, although as pointed out previously the stability of continuously stratified hydrostatic Euler equations is poorly understood in the presence of density variations (see [43, 12, 28, 38] in the homogeneous framework). Notice also that shear-induced instabilities disappear when restricting the framework to purely traveling waves. In this framework, James [31] (improving upon [44, 4]) was able to rigorously justify the sharp stratification limit: writing the bilayer and continuously stratified problems in a unified formulation, James proved the existence of internal traveling waves associated with density stratifications in a small neighborhood (according to the L2L^{2} topology) of the bilayer framework which converge towards the bilayer solution in the limit of sharp stratification. Our results are in the same spirit: system (1.1) is our unified formulation, and the topology controlling the limit of sharp stratification in our work is the Lr1L^{1}_{r} topology. However, our results admit non-trivial dynamics thanks to the hydrostatic assumption and the presence of thickness diffusivity.

The propagation of internal waves with thin pycnoclines in relation with bilayer models was also investigated through experiments. In particular Grue et al. [29] set up precise experiments generating large-amplitude solitary waves and reported the dynamical development of rolls on the trailing side of the largest considered waves in accordance with the mechanism promoted by Bogucki and Garrett, while bilayer models provide very accurate predictions otherwise. Almgren, Camassa and Tiron [3] investigate thoroughly this matter through careful numerical simulations and analytical results of asymptotic bilayer models, analyzing the triggering of shear-induced instabilities in the region of maximal displacement as well as their advection into stable regions of the flow. White and Helfrich [46] consider internal bores generated by a dam-break, and compare continuously stratified and bilayer models with numerical experiments. From their findings they suggest an improvement on existing bilayer theories. In [18], Camassa and Tiron optimize bilayer models (specifically calibrating the top and bottom densities and the position of the sharp interface) and compare the analytical predictions of the optimized bilayer models with respect to the numerically computed continuously stratified solutions —considering infinitesimally small waves, internal bores and solitary waves— showing excellent agreement even in situations of relatively thick pycnoclines. Furthermore they propose a new asymptotic model taking into account thin pycnoclines in view of reconstructing analytically local properties of traveling waves within the pycnocline, which is similar in spirit with the “refined approximate solution” that we introduce in this work. Notice the authors consider that “fully time-dependent models governing the evolution of the pycnocline thickness probably constitute one of the most relevant extensions of the model [they] have introduced”, and we believe that our work provides a partial answer in that respect.

Outline

This manuscript is structured as follows. In Section 2 we study the bilayer shallow water systems. We first recall some known results without thickness diffusivity, and then consider the system with thickness diffusivity contributions. The main result is Proposition 2.7 which provides for any sufficiently regular initial data satisfying some hyperbolicity criterion the existence and control of strong solutions to the bilayer system on a time interval which is uniform with respect to 0<κ10<\kappa\leq 1, while Proposition 2.8 states the strong convergence as κ0\kappa\searrow 0. In Section 3 we study the hydrostatic Euler equations. We provide first some stability estimates with respect to perturbations of the equations and of the data using suitable distances. As a second step we introduce refined approximate solutions associated with some given reference exact solution and close-by profiles. Building upon these approximate solutions, we prove Proposition 3.8 which controls the difference between the reference solution and exact solutions to the hydrostatic Euler equations emerging from close-by profiles. Together, Proposition 2.7 and Proposition 3.8 provide the announced result that for profiles suitably close to the bilayer framework and satisfying some hyperbolicity criterion the emerging solutions to the hydrostatic Euler equations remain close to the solution predicted by the bilayer shallow water system on a relevant timescale. The rigorous statement is displayed in Section 4, completed with a discussion on analogous statements in the one-layer and multilayer frameworks.

Notations

Let us introduce some notations for functional spaces used in this work.

  • The spaces Lp()L^{p}(\mathbb{R}) are the standard Lebesgue spaces endowed with the usual norms denoted Lp\|\cdot\|_{L^{p}}.

  • The spaces Wk,p()W^{k,p}(\mathbb{R}) for kk\in\mathbb{N} are the LpL^{p}-based Sobolev spaces endowed with the usual norms denoted Wk,p\|\cdot\|_{W^{k,p}}.

  • The spaces Hs()H^{s}(\mathbb{R}) for ss\in\mathbb{R} are the L2L^{2}-based Sobolev spaces endowed with the usual norms denoted Hs\|\cdot\|_{H^{s}}.

  • Given II a real interval and XX a Banach space, Lp(I;X)L^{p}(I;X) (respectively Cn(I;X)C^{n}(I;X)) the space of pp-integrable (respectively nn-continuously differentiable) XX-valued functions, endowed with their usual norms.

  • When useful, we provide insights on the variables at stake in aforementioned functional spaces by means of subscripts. For instance for f:(x,r)×(1,0)f(x,r)f:(x,r)\in\mathbb{R}\times(-1,0)\mapsto f(x,r)\in\mathbb{R} we may denote

    fLrHxs=esssup({f(,r)Hs,r(1,0)}).\|f\|_{L^{\infty}_{r}H^{s}_{x}}=\operatorname*{ess\,sup}\big{(}\big{\{}\|f(\cdot,r)\|_{H^{s}}\ ,\ r\in(-1,0)\}).
  • We sometimes also use subscripts to provide information on the interval at stake in functional spaces. For instance for T>0T>0 and f:(t,x)[0,T]×f(t,x)f:(t,x)\in[0,T]\times\mathbb{R}\mapsto f(t,x)\in\mathbb{R} we may denote

    fLTHxs=esssup({f(t,)Hs,t[0,T]}).\|f\|_{L^{\infty}_{T}H^{s}_{x}}=\operatorname*{ess\,sup}\big{(}\big{\{}\|f(t,\cdot)\|_{H^{s}}\ ,\ t\in[0,T]\}).

2 The bilayer shallow water system

In this section we analyze the bilayer shallow water system (1.3). We first consider the case without diffusivity (κ=0\kappa=0) and recall the hyperbolicity analysis due to Ovsjannikov [40]. We complete it by exhibiting explicit symmetrizers of the system of conservation laws. The standard theory for quasilinear systems then provides the local well-posedness of the initial-value problem, that we state in Proposition 2.4.

Extending such result for the system with diffusivity (κ>0\kappa>0) uniformly with respect to κ(0,1]\kappa\in(0,1] is not as obvious as one could naively think, because the aforementioned symmetrizer behaves poorly with respect to diffusivity contributions. In order to deal with this issue, we exhibit regularization effects stemming from the diffusivity contributions that apply to the total velocity (that is adding the bolus velocities to the velocity unknowns). This is in the spirit of the BD entropy that arose in the context of the barotropic Euler equations with degenerate viscosities (see [16]). We infer a stability result on the linearized system, Lemma 2.6, which eventually yields the “large-time” —that is uniform with respect to κ(0,1]\kappa\in(0,1]— control of solutions stated in Proposition 2.7, and their strong convergence towards corresponding solutions to the non-diffusive system as κ0\kappa\searrow 0 stated in Proposition 2.8.

2.1 The system without thickness diffusivity

We consider the system

{tHs+x((H¯s+Hs)(U¯s+Us))=0,tHb+x((H¯b+Hb)(U¯b+Ub))=0,tUs+(U¯s+Us)xUs+xHs+xHb=0,tUb+(U¯b+Ub)xUb+ρsρbxHs+xHb=0.\begin{cases}\partial_{t}H_{s}+\partial_{x}((\underline{H}_{s}+H_{s})(\underline{U}_{s}+U_{s}))=0,\\ \partial_{t}H_{b}+\partial_{x}((\underline{H}_{b}+H_{b})(\underline{U}_{b}+U_{b}))=0,\\ \partial_{t}U_{s}+(\underline{U}_{s}+U_{s})\partial_{x}U_{s}+\partial_{x}H_{s}+\partial_{x}H_{b}=0,\\ \partial_{t}U_{b}+(\underline{U}_{b}+U_{b})\partial_{x}U_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}+\partial_{x}H_{b}=0.\end{cases} (2.1)

We shall also always assume ρs0\rho_{s}\geq 0 and ρb>0\rho_{b}>0. Through rescaling and Galilean invariance we can assume without loss of generality that H¯s+H¯b=1{\underline{H}_{s}+\underline{H}_{b}=1} and U¯s+U¯b=0{\underline{U}_{s}+\underline{U}_{b}=0}.

In compact form, the system reads

t𝑼+𝖠(𝑼¯+𝑼)x𝑼=0\partial_{t}\bm{U}+{\sf A}(\underline{\bm{U}}+\bm{U})\partial_{x}\bm{U}=0

with 𝑼:=(Hs,Hb,Us,Ub)\bm{U}:=(H_{s},H_{b},U_{s},U_{b}), 𝑼¯:=(H¯s,H¯b,U¯s,U¯b)\underline{\bm{U}}:=(\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b}) and where we introduce the matrix-valued function

𝖠:(Hs,Hb,Us,Ub)4(Us0Hs00Ub0Hb11Us0ρsρb10Ub).{\sf A}:(H_{s},H_{b},U_{s},U_{b})\in\mathbb{R}^{4}\mapsto\begin{pmatrix}U_{s}&0&H_{s}&0\\ 0&U_{b}&0&H_{b}\\ 1&1&U_{s}&0\\ \frac{\rho_{s}}{\rho_{b}}&1&0&U_{b}\end{pmatrix}. (2.2)

The following Lemma concerning the hyperbolicity domain of the bilayer shallow water system is proved in [40, 7, 45].

Lemma 2.1.

Let 0<ρs<ρb0<\rho_{s}<\rho_{b} and 𝐔:=(Hs,Hb,Us,Ub)4\bm{U}:=(H_{s},H_{b},U_{s},U_{b})\in\mathbb{R}^{4} be such that that Hs,Hb>0H_{s},H_{b}>0. There exist two values 0<Fr<Fr+0<\operatorname{Fr}_{-}<\operatorname{Fr}_{+} such that the following holds:

  1. 1.

    If |UbUs|<HbFr|U_{b}-U_{s}|<\sqrt{H_{b}}\operatorname{Fr}_{-}, then there exist four distinct real eigenvalues of the matrix 𝖠(𝑼){\sf A}(\bm{U}).

  2. 2.

    If HbFr<|UbUs|<HbFr+\sqrt{H_{b}}\operatorname{Fr}_{-}<|U_{b}-U_{s}|<\sqrt{H_{b}}\operatorname{Fr}_{+}, then there exist two distinct real eigenvalues of the matrix 𝖠(𝑼){\sf A}(\bm{U}) and two distinct complex conjugate eigenvalues.

  3. 3.

    If |UbUs|>HbFr+|U_{b}-U_{s}|>\sqrt{H_{b}}\operatorname{Fr}_{+}, then there exist four distinct real eigenvalues of the matrix 𝖠(𝑼){\sf A}(\bm{U}).

Moreover, Fr\operatorname{Fr}_{-} and Fr+\operatorname{Fr}_{+} depend only and smoothly on Hs/Hb(0,+)H_{s}/H_{b}\in(0,+\infty) and ρs/ρb(0,1)\rho_{s}/\rho_{b}\in(0,1).

Remark 2.2.

Ovsjannikov [40] —revisited by Barros and Choi [7] and then by Viríssimo and Milewski [45]— provided a nice geometrical approach to the critical values Fr+\operatorname{Fr}_{+} and Fr\operatorname{Fr}_{-}. The characteristic polynomial associated to 𝖠(𝐔){\sf A}(\bm{U}) is

P(λ)=((Ubλ)2Hb)((Usλ)2Hs)ρsρbHsHb.P(\lambda)=\big{(}(U_{b}-\lambda)^{2}-H_{b}\big{)}\big{(}(U_{s}-\lambda)^{2}-H_{s}\big{)}-\frac{\rho_{s}}{\rho_{b}}H_{s}H_{b}.

Notice that λ\lambda\in\mathbb{R} is a real root of PP if and only if (ps,pb):=(UsλHs,UbλHb)(p_{s},p_{b}):=(\frac{U_{s}-\lambda}{\sqrt{H_{s}}},\frac{U_{b}-\lambda}{\sqrt{H_{b}}}) satisfies the following identities:

(ps21)(pb21)=ρsρb,psHsUs=pbHbUb.\big{(}p_{s}^{2}-1\big{)}\big{(}p_{b}^{2}-1\big{)}=\frac{\rho_{s}}{\rho_{b}},\qquad p_{s}\sqrt{H_{s}}-U_{s}=p_{b}\sqrt{H_{b}}-U_{b}. (2.3)

The first equality describes a fourth-order curve parametrized by ρs/ρb\rho_{s}/\rho_{b} having four axes of symmetry and consisting of an inner closed curve and four hyperbolic branches and the second equality describes the straight line with slope Hs/Hb\sqrt{H_{s}/H_{b}} and intercept (UbUs)/Hb(U_{b}-U_{s})/\sqrt{H_{b}}. In this geometrical approach, Fr\operatorname{Fr}_{-} and Fr+\operatorname{Fr}_{+} (and their opposite) are the intercepts of the tangents to the fourth-order curves with slope Hs/Hb\sqrt{H_{s}/H_{b}}.

Figure 1 reproduces the aforementioned curves and straight lines for several parameter values.

Refer to caption
(a) ρs/ρb=0.1\rho_{s}/\rho_{b}=0.1
Refer to caption
(b) ρs/ρb=0.5\rho_{s}/\rho_{b}=0.5
Refer to caption
(c) ρs/ρb=0.9\rho_{s}/\rho_{b}=0.9
Figure 1: Solutions to (2.3) with Hs=1/3H_{s}=1/3, Hb=2/3H_{b}=2/3, and differnet values for ρs/ρb\rho_{s}/\rho_{b}. Solutions to the quartic equation are in black (plain). Solutions to the linear equation with (UbUs)/Hb=1/2(U_{b}-U_{s})/\sqrt{H_{b}}=1/2 (green, plain), (UbUs)/Hb=3/2(U_{b}-U_{s})/\sqrt{H_{b}}=3/2 (red, dashed) and (UbUs)/Hb=5/2(U_{b}-U_{s})/\sqrt{H_{b}}=5/2 (blue, dot-dashed).

In this work we restrict our analysis to the hyperbolic domain described by Lemma 2.1(1). While standard theory for strictly hyperbolic systems guarantees the existence of a symmetrizer to (2.1) by using spectral projections [8], the following Lemma provides an (almost) explicit expression for such a symmetrizer.

Lemma 2.3.

Let 0<ρs<ρb0<\rho_{s}<\rho_{b} and 𝐔:=(Hs,Hb,Us,Ub)4\bm{U}:=(H_{s},H_{b},U_{s},U_{b})\in\mathbb{R}^{4} be such that that Hs,Hb>0H_{s},H_{b}>0 and

|UsUb|<HbFr|U_{s}-U_{b}|<\sqrt{H_{b}}\operatorname{Fr}_{-} (2.4)

where Fr=Fr(Hs/Hb,ρs/ρb)>0\operatorname{Fr}_{-}=\operatorname{Fr}_{-}(H_{s}/H_{b},\rho_{s}/\rho_{b})>0 has been defined in Lemma 2.1.

There exists λ[min({Us,Ub}),max({Us,Ub})]\lambda\in[\min(\{U_{s},U_{b}\}),\max(\{U_{s},U_{b}\})] such that, denoting Uλ:=Uλ[|UbUs|,|UbUs|]U_{\ell}^{\lambda}:=U_{\ell}-\lambda\in[-|U_{b}-U_{s}|,|U_{b}-U_{s}|] for {s,b}\ell\in\{s,b\}) the matrix

𝖲λ(𝑼):=(ρsρbρsρbρsρbUsλ0ρsρb10UbλρsρbUsλ0ρsρbHs00Ubλ0Hb){\sf S}^{\lambda}(\bm{U}):=\begin{pmatrix}\frac{\rho_{s}}{\rho_{b}}&\frac{\rho_{s}}{\rho_{b}}&\frac{\rho_{s}}{\rho_{b}}U_{s}^{\lambda}&0\\ \frac{\rho_{s}}{\rho_{b}}&1&0&U_{b}^{\lambda}\\ \frac{\rho_{s}}{\rho_{b}}U_{s}^{\lambda}&0&\frac{\rho_{s}}{\rho_{b}}H_{s}&0\\ 0&U_{b}^{\lambda}&0&H_{b}\end{pmatrix}

satisfies (i) 𝖲λ𝖠{\sf S}^{\lambda}{\sf A} is symmetric; and (ii) 𝖲λ{\sf S}^{\lambda} is symmetric, definite positive.

Moreover, λ\lambda can be chosen so that λUH\frac{\lambda-U_{\ell}}{\sqrt{H_{\ell}}} (for {s,b}\ell\in\{s,b\}) depends only and smoothly on Hs/Hb>0H_{s}/H_{b}>0, ρs/ρb(0,1)\rho_{s}/\rho_{b}\in(0,1), and (UbUs)/Hb(Fr,Fr)(U_{b}-U_{s})/\sqrt{H_{b}}\in(-\operatorname{Fr}_{-},\operatorname{Fr}_{-}).

Proof.

It is straightforward to check that 𝖲λ{\sf S}^{\lambda} and 𝖲λ𝖠{\sf S}^{\lambda}{\sf A} are symmetric (and real-valued) for any value of λ\lambda\in\mathbb{R}. In order to prove that 𝖲λ{\sf S}^{\lambda} is definite positive for a suitable choice of λ\lambda, we rely on Sylvester’s criterion. We obtain the requirements

Hb>0,ρsρbHsHb>0,ρsρbHsHbρsρbHs(Ubλ)2>0H_{b}>0,\quad\frac{\rho_{s}}{\rho_{b}}H_{s}H_{b}>0,\quad\frac{\rho_{s}}{\rho_{b}}H_{s}H_{b}-\frac{\rho_{s}}{\rho_{b}}H_{s}(U_{b}^{\lambda})^{2}>0

and

(ρsρb)2(((Ubλ)2Hb)((Usλ)2Hs)ρsρbHsHb)>0.\big{(}\frac{\rho_{s}}{\rho_{b}}\big{)}^{2}\Big{(}\big{(}(U_{b}^{\lambda})^{2}-H_{b}\big{)}\big{(}(U_{s}^{\lambda})^{2}-H_{s}\big{)}-\frac{\rho_{s}}{\rho_{b}}H_{s}H_{b}\Big{)}>0.

The last inequality is equivalent to P(λ)>0P(\lambda)>0 where PP is the aforementioned characteristic polynomial. By Lemma 2.1, under the condition (2.4) there are four distinct real roots to PP, which we can denote λ1<λ2<λ3<λ4\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4} and P(λ)>0P(\lambda)>0 for any λ(λ2,λ3)\lambda\in(\lambda_{2},\lambda_{3}). Moreover for all λ(λ2,λ3)\lambda\in(\lambda_{2},\lambda_{3}), (psλ,pbλ):=(UsλHs,UbλHb)(p_{s}^{\lambda},p_{b}^{\lambda}):=(\frac{U_{s}-\lambda}{\sqrt{H_{s}}},\frac{U_{b}-\lambda}{\sqrt{H_{b}}}) belongs to the domain delimited by the inner closed curve, and in particular we have (pλ)2<1(p_{\ell}^{\lambda})^{2}<1. Hence we find that for all λ(λ2,λ3)\lambda\in(\lambda_{2},\lambda_{3}) all principal minors are positive, and hence 𝖲λ{\sf S}^{\lambda} is definite positive.

By the standard perturbation theory [33], pλp_{\ell}^{\lambda} for {s,b}\ell\in\{s,b\} and λ{λ2,λ3}\lambda\in\{\lambda_{2},\lambda_{3}\} depend smoothly on Hs/Hb>0H_{s}/H_{b}>0, ρs/ρb(0,1)\rho_{s}/\rho_{b}\in(0,1) and (UbUs)/Hb(Fr,Fr)(U_{b}-U_{s})/\sqrt{H_{b}}\in(-\operatorname{Fr}_{-},\operatorname{Fr}_{-}). What is more, we can always choose (smoothly) λ(λ2,λ3)\lambda\in(\lambda_{2},\lambda_{3}) so that psλ>0p_{s}^{\lambda}>0 and pbλ<0p_{b}^{\lambda}<0 when Ub<UsU_{b}<U_{s}, or psλ<0p_{s}^{\lambda}<0 and pbλ>0p_{b}^{\lambda}>0 when Ub>UsU_{b}>U_{s}, which corresponds to enforcing λ[min({Us,Ub}),max({Us,Ub})]\lambda\in[\min(\{U_{s},U_{b}\}),\max(\{U_{s},U_{b}\})]. This concludes the proof. ∎

The following proposition follows from the standard theory on strictly hyperbolic systems (see e.g. [8]). For convenience, we define for ς(0,1)\varsigma\in(0,1) a compact subset of the domain of strict hyperbolicity as

𝔭ς:={(ρs,ρb,Hs,Hb,Us,Ub)6:ς/2ρs/ρb1ς/2,ςHs/Hbς1,Hs+Hbς,Fr|UbUs|Hbς}\mathfrak{p}^{\varsigma}:=\big{\{}(\rho_{s},\rho_{b},H_{s},H_{b},U_{s},U_{b})\in\mathbb{R}^{6}\ :\\ \varsigma/2\leq\rho_{s}/\rho_{b}\leq 1-\varsigma/2,\quad\varsigma\leq H_{s}/H_{b}\leq\varsigma^{-1},\quad H_{s}+H_{b}\geq\varsigma,\quad\operatorname{Fr}_{-}-\tfrac{|U_{b}-U_{s}|}{\sqrt{H_{b}}}\geq\varsigma\big{\}} (2.5)

where Fr=Fr(ρs/ρb,Hs/Hb)\operatorname{Fr}_{-}=\operatorname{Fr}_{-}(\rho_{s}/\rho_{b},H_{s}/H_{b}) is defined in Lemma 2.1.

Proposition 2.4 (Well-posedness).

Let ss0>3/2s\geq s_{0}>3/2, ς>0\varsigma>0 and M0>0M_{0}>0. There exist C>0C>0 and T>0T>0 such that the following holds.

For all (ρs,ρb,H¯s,H¯b,U¯s,U¯b)6(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b})\in\mathbb{R}^{6} such that H¯s+H¯b=1\underline{H}_{s}+\underline{H}_{b}=1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0 and (Hs0,Hb0,Us0,Ub0)Hs()4(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\in H^{s}(\mathbb{R})^{4} such that

x,(ρs,ρb,H¯s+Hs0(x),H¯b+Hb0(x),U¯s+Us0(x),U¯b+Ub0(x))𝔭ς\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{0}(x),\underline{H}_{b}+H_{b}^{0}(x),\underline{U}_{s}+U_{s}^{0}(x),\underline{U}_{b}+U_{b}^{0}(x))\in\mathfrak{p}^{\varsigma}

and

(Hs0,Hb0,Us0,Ub0)Hs0M0\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\|_{H^{s_{0}}}\leq M_{0}

there exists a unique (Hs,Hb,Us,Ub)C([0,T);Hs()4)C1([0,T);Hs1()4)(H_{s},H_{b},U_{s},U_{b})\in C([0,T^{\star});H^{s}(\mathbb{R})^{4})\cap C^{1}([0,T^{\star});H^{s-1}(\mathbb{R})^{4}) maximal-in-time (classical) solution to (2.1) emerging from the initial data (Hs,Hb,Us,Ub)|t=0=(Hs0,Hb0,Us0,Ub0)(H_{s},H_{b},U_{s},U_{b})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0}).

Moreover, one has T>T/M0T^{\star}>T/M_{0} and for any t[0,T/M0]t\in[0,T/M_{0}] one has

x,(ρs,ρb,H¯s+Hs(t,x),H¯b+Hb(t,x),U¯s+Us(t,x),U¯b+Ub(t,x))𝔭ς/2\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}(t,x),\underline{H}_{b}+H_{b}(t,x),\underline{U}_{s}+U_{s}(t,x),\underline{U}_{b}+U_{b}(t,x))\in\mathfrak{p}^{\varsigma/2}

and

(Hs(t,),Hb(t,),Us(t,),Ub(t,))HsC(Hs0,Hb0,Us0,Ub0)Hs.\|(H_{s}(t,\cdot),H_{b}(t,\cdot),U_{s}(t,\cdot),U_{b}(t,\cdot))\|_{H^{s}}\leq C\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\|_{H^{s}}.

Moreover, the maximal existence time (resp. the emerging solution in C([0,T);Hs()4)C([0,T^{\star});H^{s}(\mathbb{R})^{4})) is a lower semi-continuous (resp. continuous) function of the initial data in Hs()4H^{s}(\mathbb{R})^{4} and if T<T^{\star}<\infty then

(Hs(t,),Hb(t,),Us(t,),Ub(t,))Hs0 as tT.\|(H_{s}(t,\cdot),H_{b}(t,\cdot),U_{s}(t,\cdot),U_{b}(t,\cdot))\|_{H^{s_{0}}}\to\infty\text{ as }t\to T^{\star}.

2.2 The system with diffusivity

We now consider the system

{tHs+x((H¯s+Hs)(U¯s+Us))=κx2Hs,tHb+x((H¯b+Hb)(U¯b+Ub))=κx2Hb,tUs+(U¯s+UsκxHsH¯s+Hs)xUs+xHs+xHb=0,tUb+(U¯b+UbκxHbH¯b+Hb)xUb+ρsρbxHs+xHb=0.\begin{cases}\partial_{t}H_{s}+\partial_{x}((\underline{H}_{s}+H_{s})(\underline{U}_{s}+U_{s}))=\kappa\partial_{x}^{2}H_{s},\\ \partial_{t}H_{b}+\partial_{x}((\underline{H}_{b}+H_{b})(\underline{U}_{b}+U_{b}))=\kappa\partial_{x}^{2}H_{b},\\ \partial_{t}U_{s}+(\underline{U}_{s}+U_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}U_{s}+\partial_{x}H_{s}+\partial_{x}H_{b}=0,\\ \partial_{t}U_{b}+(\underline{U}_{b}+U_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}U_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}+\partial_{x}H_{b}=0.\end{cases} (2.6)
Proposition 2.5 (Small time well-posedness).

Let ss0>3/2s\geq s_{0}>3/2, ς(0,1)\varsigma\in(0,1), M0>0M_{0}>0 and c>1c>1. There exists T>0T>0 such that the following holds.

For all κ>0\kappa>0, for all (ρs,ρb,H¯s,H¯b,U¯s,U¯b)6(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b})\in\mathbb{R}^{6} such that H¯s+H¯b=1\underline{H}_{s}+\underline{H}_{b}=1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0 and for all (Hs0,Hb0,Us0,Ub0)Hs()4(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\in H^{s}(\mathbb{R})^{4} such that

0ρs/ρbς1 and x,H¯s+Hs0(x)ς,H¯b+Hb0(x)ς0\leq\rho_{s}/\rho_{b}\leq\varsigma^{-1}\quad\text{ and }\quad\forall x\in\mathbb{R},\quad\underline{H}_{s}+H_{s}^{0}(x)\geq\varsigma,\quad\underline{H}_{b}+H_{b}^{0}(x)\geq\varsigma

and

(Hs0,Hb0,Us0,Ub0)Hs0M0\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\|_{H^{s_{0}}}\leq M_{0}

there exists a unique (Hs,Hb,Us,Ub)C([0,T);Hs()4)(H_{s},H_{b},U_{s},U_{b})\in C([0,T^{\star});H^{s}(\mathbb{R})^{4}) maximal-in-time strong solution to (2.6) emerging from the initial data (Hs,Hb,Us,Ub)|t=0=(Hs0,Hb0,Us0,Ub0)(H_{s},H_{b},U_{s},U_{b})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0}).

Moreover, T>κTT^{\star}>\kappa T and for any t[0,κT]t\in[0,\kappa T] one has

x,H¯s+Hs(t,x)ς/c,H¯b+Hb(t,x)ς/c\forall x\in\mathbb{R},\quad\underline{H}_{s}+H_{s}(t,x)\geq\varsigma/c,\quad\underline{H}_{b}+H_{b}(t,x)\geq\varsigma/c

and

max({(Hs,Hb,Us,Ub)L(0,t;Hs),κ1/2(xHs,xHb)L2(0,t;Hs)})c(Hs0,Hb0,Us0,Ub0)Hs.\max(\{\|(H_{s},H_{b},U_{s},U_{b})\|_{L^{\infty}(0,t;H^{s})},\kappa^{1/2}\|(\partial_{x}H_{s},\partial_{x}H_{b})\|_{L^{2}(0,t;H^{s})}\})\leq c\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\|_{H^{s}}.

Moreover, the maximal existence time (resp. the emerging solution in C([0,T);Hs()4)C([0,T^{\star});H^{s}(\mathbb{R})^{4})) is a lower semi-continuous (resp. continuous) function of the initial data in Hs()4H^{s}(\mathbb{R})^{4} and if T<T^{\star}<\infty then

(Hs(t,),Hb(t,),Us(t,),Ub(t,))Hs0 as tT.\|(H_{s}(t,\cdot),H_{b}(t,\cdot),U_{s}(t,\cdot),U_{b}(t,\cdot))\|_{H^{s_{0}}}\to\infty\text{ as }t\to T^{\star}.
Proof.

The proof has been given in [1], but we sketch it here for convenience. We view (2.6) as a system of two transport-diffusion equations and two transport equations, coupled only through order-zero source terms:

{tHs+(U¯s+Us)xHsκx2Hs=(H¯s+Hs)xUs,tHb+(U¯b+Ub)xHbκx2Hb=(H¯b+Hb)xUb,tUs+(U¯s+UsκxHsH¯s+Hs)xUs=xHsxHb,tUb+(U¯b+UbκxHbH¯b+Hb)xUb=ρsρbxHsxHb.\begin{cases}\partial_{t}H_{s}+(\underline{U}_{s}+U_{s})\partial_{x}H_{s}-\kappa\partial_{x}^{2}H_{s}=-(\underline{H}_{s}+H_{s})\partial_{x}U_{s},\\ \partial_{t}H_{b}+(\underline{U}_{b}+U_{b})\partial_{x}H_{b}-\kappa\partial_{x}^{2}H_{b}=-(\underline{H}_{b}+H_{b})\partial_{x}U_{b},\\ \partial_{t}U_{s}+(\underline{U}_{s}+U_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}U_{s}=-\partial_{x}H_{s}-\partial_{x}H_{b},\\ \partial_{t}U_{b}+(\underline{U}_{b}+U_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}U_{b}=-\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}-\partial_{x}H_{b}.\end{cases}

The standard theory on transport and transport-diffusion equations (see [6]) allows to bootstrap the standard fixed-point strategy through Picard iterates

{tHsn+1+(U¯s+Usn)xHsn+1κx2Hsn+1=(H¯s+Hsn)xUsn,tHbn+1+(U¯b+Ubn)xHbn+1κx2Hbn+1=(H¯b+Hbn)xUbn,tUsn+1+(U¯s+UsnκxHsnH¯s+Hsn)xUsn+1=xHsnxHbn,tUbn+1+(U¯b+UbnκxHbnH¯b+Hbn)xUbn+1=ρsρbxHsnxHbn,\begin{cases}\partial_{t}H_{s}^{n+1}+(\underline{U}_{s}+U_{s}^{n})\partial_{x}H_{s}^{n+1}-\kappa\partial_{x}^{2}H_{s}^{n+1}=-(\underline{H}_{s}+H_{s}^{n})\partial_{x}U_{s}^{n},\\ \partial_{t}H_{b}^{n+1}+(\underline{U}_{b}+U_{b}^{n})\partial_{x}H_{b}^{n+1}-\kappa\partial_{x}^{2}H_{b}^{n+1}=-(\underline{H}_{b}+H_{b}^{n})\partial_{x}U_{b}^{n},\\ \partial_{t}U_{s}^{n+1}+(\underline{U}_{s}+U_{s}^{n}-\kappa\frac{\partial_{x}H_{s}^{n}}{\underline{H}_{s}+H_{s}^{n}})\partial_{x}U_{s}^{n+1}=-\partial_{x}H_{s}^{n}-\partial_{x}H_{b}^{n},\\ \partial_{t}U_{b}^{n+1}+(\underline{U}_{b}+U_{b}^{n}-\kappa\frac{\partial_{x}H_{b}^{n}}{\underline{H}_{b}+H_{b}^{n}})\partial_{x}U_{b}^{n+1}=-\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}^{n}-\partial_{x}H_{b}^{n},\end{cases}

which defines a sequence satisfying the following estimates (where c0c_{0} is a non-essential constant depending on ss)

max({(Hsn+1,Hbn+1,Usn+1,Ubn+1)L(0,t;Hs),κ1/2(xHsn+1,xHbn+1)L2(0,t;Hs)})((Hs0,Hb0)Hs+κ1/2((H¯s+HsnL(0,t;Hs))UsnL2(0,t;Hs)+(H¯b+HbnL(0,t;Hs))UbnL2(0,t;Hs))+(Us0,Ub0)Hs+(1+ρsρb)(xHsn,xHbn)L1(0,t;Hs))×exp(c0(Usn,Ubn)L1(0,t;Hs)+c0κ(xHsnH¯s+Hsn,xHbnH¯b+Hbn)L1(0,t;Hs))\max(\{\|(H_{s}^{n+1},H_{b}^{n+1},U_{s}^{n+1},U_{b}^{n+1})\|_{L^{\infty}(0,t;H^{s})},\kappa^{1/2}\|(\partial_{x}H_{s}^{n+1},\partial_{x}H_{b}^{n+1})\|_{L^{2}(0,t;H^{s})}\})\\ \leq\Big{(}\|(H_{s}^{0},H_{b}^{0})\|_{H^{s}}+\kappa^{-1/2}\big{(}(\underline{H}_{s}+\|H_{s}^{n}\|_{L^{\infty}(0,t;H^{s})})\|U_{s}^{n}\|_{L^{2}(0,t;H^{s})}+(\underline{H}_{b}+\|H_{b}^{n}\|_{L^{\infty}(0,t;H^{s})})\|U_{b}^{n}\|_{L^{2}(0,t;H^{s})}\big{)}\\ +\|(U_{s}^{0},U_{b}^{0})\|_{H^{s}}+(1+\frac{\rho_{s}}{\rho_{b}})\|(\partial_{x}H_{s}^{n},\partial_{x}H_{b}^{n})\|_{L^{1}(0,t;H^{s})}\Big{)}\\ \times\exp\big{(}c_{0}\|(U_{s}^{n},U_{b}^{n})\|_{L^{1}(0,t;H^{s})}+c_{0}\kappa\|(\tfrac{\partial_{x}H_{s}^{n}}{\underline{H}_{s}+H_{s}^{n}},\tfrac{\partial_{x}H_{b}^{n}}{\underline{H}_{b}+H_{b}^{n}})\|_{L^{1}(0,t;H^{s})}\big{)}

and converging in C(0,t;Hs)C(0,t;H^{s}) provided t(0,κT]t\in(0,\kappa T] where TT is chosen sufficiently small.

The proof of the continuity of the flow map can be obtained along the same lines, using the continuity with respect to the initial data and Lipschitz-continuity with respect to source terms of the transport-diffusion and transport equations. ∎

The terminology “Small time well-posedness” in Proposition 2.5 refers to the fact that the time of existence and control of solutions of the above result is limited to TκT^{\star}\gtrsim\kappa, and in particular may vanish as κ0\kappa\searrow 0. Notice that, differently from the statement of Proposition 2.4, we do not assume that the flow is stably stratified, namely ρs<ρb\rho_{s}<\rho_{b}. Assuming additionally that the flow is stably stratified, the first author improved this result in situations with small shear velocities and small deviations from the shear equilibrium, and obtains in [1] the existence and uniform control of solution up to times T(1+κ1(|U¯bU¯s|2+M02))1{T^{\star}\gtrsim\big{(}1+\kappa^{-1}(|\underline{U}_{b}-\underline{U}_{s}|^{2}+M_{0}^{2})\big{)}^{-1}}.

In the following results, we complete the picture by showing that, in the situation where the shear velocity is small enough to guarantee that the flow is in the hyperbolic domain of the non-diffusive equation, then the time of existence is uniform with respect to κ(0,1]\kappa\in(0,1]. In fact we shall prove the expected property that solutions to the diffusive system (2.6) converge as κ0\kappa\searrow 0 towards corresponding solutions to the non-diffusive system (2.1) as long as the non-diffusive solution is bounded.

In order to obtain stability estimates that are uniform with respect to κ(0,1]\kappa\in(0,1], we rely on two main ideas. Firstly, we shall use energy estimates using the explicit symmetrizer adapted to the non-diffusive system introduced in Lemma 2.3 (while the strategy in [1] used only its block-diagonal component). Because the non-diagonal components of the symmetrizer behave poorly with respect to the diffusive contributions, we need another ingredient. Specifically, we notice that the total velocities V:=UκxHH¯+HV_{\ell}:=U_{\ell}-\kappa\frac{\partial_{x}H_{\ell}}{\underline{H}_{\ell}+H_{\ell}} ({s,b}\ell\in\{s,b\}) associated to solutions to (2.6) satisfy the system

{tHs+x((H¯s+Hs)(U¯s+Vs))=0,tHb+x((H¯b+Hb)(U¯s+Vb))=0,tVs+(U¯s+VsκxHsH¯s+Hs)xVs+xHs+xHb=κx2Vs,tVb+(U¯b+VbκxHbH¯b+Hb)xVb+ρsρbxHs+xHb=κx2Vb.\begin{cases}\partial_{t}H_{s}+\partial_{x}((\underline{H}_{s}+H_{s})(\underline{U}_{s}+V_{s}))=0,\\ \partial_{t}H_{b}+\partial_{x}((\underline{H}_{b}+H_{b})(\underline{U}_{s}+V_{b}))=0,\\ \partial_{t}V_{s}+(\underline{U}_{s}+V_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}V_{s}+\partial_{x}H_{s}+\partial_{x}H_{b}=\kappa\partial_{x}^{2}V_{s},\\ \partial_{t}V_{b}+(\underline{U}_{b}+V_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}V_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}+\partial_{x}H_{b}=\kappa\partial_{x}^{2}V_{b}.\end{cases} (2.7)

We observe that diffusive terms act as effective viscosity contributions on the total velocities. The last two equations read equivalently

{tVs+(U¯s+Vs)xVs+xHs+xHb=κH¯s+Hsx((H¯s+Hs)xVs),tVb+(U¯b+Vb)xVb+ρsρbxHs+xHb=κH¯b+Hbx((H¯b+Hb)xVb),\begin{cases}\partial_{t}V_{s}+(\underline{U}_{s}+V_{s})\partial_{x}V_{s}+\partial_{x}H_{s}+\partial_{x}H_{b}=\frac{\kappa}{\underline{H}_{s}+H_{s}}\partial_{x}((\underline{H}_{s}+H_{s})\partial_{x}V_{s}),\\ \partial_{t}V_{b}+(\underline{U}_{b}+V_{b})\partial_{x}V_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}H_{s}+\partial_{x}H_{b}=\frac{\kappa}{\underline{H}_{b}+H_{b}}\partial_{x}((\underline{H}_{b}+H_{b})\partial_{x}V_{b}),\end{cases}

and we recognize the shallow-water equations with degenerate viscosity contributions which were advocated by Gent in [24] and derived from the Navier–Stokes equations in [26, 17]. In their analysis of such systems (and generalizations thereof), Bresch and Desjardins introduced the so-called BD entropy in [15, 13, 14] (see also [16] for a refined analysis), which is based precisely in the reformulation of (2.7) as (2.6) (in dimension d=1d=1).

In the same spirit, we combine the regularizing effects of the effective diffusivity and viscosity terms with aforementioned energy estimates, which allows us to obtain suitable stability estimates presented in Lemma 2.6, below.

Applying Lemma 2.6 to (the derivatives of) solutions to (2.6)-(2.7), we find a time of existence which is uniform with respect to κ\kappa. We state the result in forthcoming Proposition 2.7.

Applying Lemma 2.6 to (the derivatives of) the difference between solutions to (2.6)-(2.7) and corresponding solutions to the non-diffusive system (2.1) (κ=0\kappa=0) yields the aforementioned convergence of the former towards the latter as κ0\kappa\searrow 0, on a time interval defined by the solutions without diffusivity. We state the result in forthcoming Proposition 2.8.

Lemma 2.6 (Stability).

Let ς(0,1)\varsigma\in(0,1) and M>0M>0. There exists c>0c>0 depending only on ς\varsigma and C>0C>0 depending also on MM such that the following holds.

Let κ(0,1]\kappa\in(0,1], 0<ρs<ρb0<\rho_{s}<\rho_{b} and 𝐔:=(Hs,Hb,Us,Ub),𝐕:=(Hs,Hb,Vs,Vb)C([0,T];W1,()4)C1([0,T];L()4)\bm{U}:=(H_{s},H_{b},U_{s},U_{b}),\ \bm{V}:=(H_{s},H_{b},V_{s},V_{b})\in{C([0,T];W^{1,\infty}(\mathbb{R})^{4})}\cap{C^{1}([0,T];L^{\infty}(\mathbb{R})^{4})} be such that for all t[0,T]t\in[0,T], the hyperbolicity condition holds:

x,(ρs,ρb,Hs(t,x),Hb(t,x),Us(t,x),Ub(t,x))𝔭ς,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},H_{s}(t,x),H_{b}(t,x),U_{s}(t,x),U_{b}(t,x))\in\mathfrak{p}^{\varsigma},

where 𝔭ς\mathfrak{p}^{\varsigma} is defined in (2.5), and

𝑼(t,)W1,+𝑽(t,)W1,+κ(x2Hs(t,),x2Hb(t,))L+κ1(𝑼𝑽)(t,)L+t𝑼(t,)LM.\|\bm{U}(t,\cdot)\|_{W^{1,\infty}}+\|\bm{V}(t,\cdot)\|_{W^{1,\infty}}+\kappa\|(\partial_{x}^{2}H_{s}(t,\cdot),\partial_{x}^{2}H_{b}(t,\cdot))\|_{L^{\infty}}+\kappa^{-1}\|(\bm{U}-\bm{V})(t,\cdot)\|_{L^{\infty}}+\|\partial_{t}\bm{U}(t,\cdot)\|_{L^{\infty}}\leq M.

Let 𝐔˙:=(H˙s,H˙b,U˙s,U˙b)\dot{\bm{U}}:=(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b}) and 𝐕˙:=(H˙s,H˙b,V˙s,V˙b)\dot{\bm{V}}:=(\dot{H}_{s},\dot{H}_{b},\dot{V}_{s},\dot{V}_{b}) be sufficiently regular solutions to the linearized equations with remainders

t𝑼˙+𝖠κ(𝑼)x𝑼˙=κ𝖣1x2𝑼˙+𝑹𝑼,\displaystyle\partial_{t}\dot{\bm{U}}+{\sf A}^{\kappa}(\bm{U})\partial_{x}\dot{\bm{U}}=\kappa{\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}}+\bm{R}_{\bm{U}},
t𝑽˙+𝖠κ(𝑽)x𝑽˙=κ𝖣2x2𝑽˙+𝑹𝑽,\displaystyle\partial_{t}\dot{\bm{V}}+{\sf A}^{\kappa}(\bm{V})\partial_{x}\dot{\bm{V}}=\kappa{\sf D}_{2}\partial_{x}^{2}\dot{\bm{V}}+\bm{R}_{\bm{V}},

where we denote

𝖠κ:(Hs,Hb,Us,Ub)(Us0Hs00Ub0Hb11UsκxHsHs0ρsρb10UbκxHbHb),{\sf A}^{\kappa}:(H_{s},H_{b},U_{s},U_{b})\mapsto\begin{pmatrix}U_{s}&0&H_{s}&0\\ 0&U_{b}&0&H_{b}\\ 1&1&U_{s}-\kappa\tfrac{\partial_{x}H_{s}}{H_{s}}&0\\ \frac{\rho_{s}}{\rho_{b}}&1&0&U_{b}-\kappa\tfrac{\partial_{x}H_{b}}{H_{b}}\end{pmatrix},

and

𝖣1=(1000010000000000),𝖣2=(0000000000100001).{\sf D}_{1}=\begin{pmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&0&0\\ 0&0&0&0\end{pmatrix},\qquad{\sf D}_{2}=\begin{pmatrix}0&0&0&0\\ 0&0&0&0\\ 0&0&1&0\\ 0&0&0&1\end{pmatrix}.

Moreover, denote R:=(Rs,Rb)R:=(R_{s},R_{b}) such that

V˙s=U˙sκxH˙sHs+Rs,V˙b=U˙bκxH˙bHb+Rb.\dot{V}_{s}=\dot{U}_{s}-\kappa\frac{\partial_{x}\dot{H}_{s}}{H_{s}}+R_{s},\quad\dot{V}_{b}=\dot{U}_{b}-\kappa\frac{\partial_{x}\dot{H}_{b}}{H_{b}}+R_{b}. (2.8)

Then, for any t[0,T]t\in[0,T], one has the estimate

𝑼˙(t,)L2+𝑽˙(t,)L2+cκ1/2x𝑽˙(t,)L2(0,t;L2)c1(𝑼˙(t=0,)L2+𝑽˙(t=0,)L2)exp(CMt)\displaystyle\|\dot{\bm{U}}(t,\cdot)\|_{L^{2}}+\|\dot{\bm{V}}(t,\cdot)\|_{L^{2}}+c\kappa^{1/2}\|\partial_{x}\dot{\bm{V}}(t,\cdot)\|_{L^{2}(0,t;L^{2})}\leq c^{-1}\,\big{(}\|\dot{\bm{U}}(t=0,\cdot)\|_{L^{2}}+\|\dot{\bm{V}}(t=0,\cdot)\|_{L^{2}}\big{)}\exp(C\,M\,t)
+C0t(𝑹𝑼(t,)L2+𝑹𝑽(t,)L2+MR(t,)H1)exp(CM(tt))dt.\displaystyle\quad+C\int_{0}^{t}\big{(}\|\bm{R}_{\bm{U}}(t^{\prime},\cdot)\|_{L^{2}}+\|\bm{R}_{\bm{V}}(t^{\prime},\cdot)\|_{L^{2}}+M\|R(t^{\prime},\cdot)\|_{H^{1}}\big{)}\exp(C\,M\,(t-t^{\prime}))\operatorname{{\rm d}\!}t.
Proof.

Denote

𝖲λ:(Hs,Hb,Us,Ub)(ρsρbρsρbρsρbUsλ0ρsρb10UbλρsρbUsλ0ρsρbHs00Ubλ0Hb){\sf S}^{\lambda}:(H_{s},H_{b},U_{s},U_{b})\mapsto\begin{pmatrix}\frac{\rho_{s}}{\rho_{b}}&\frac{\rho_{s}}{\rho_{b}}&\frac{\rho_{s}}{\rho_{b}}U_{s}^{\lambda}&0\\ \frac{\rho_{s}}{\rho_{b}}&1&0&U_{b}^{\lambda}\\ \frac{\rho_{s}}{\rho_{b}}U_{s}^{\lambda}&0&\frac{\rho_{s}}{\rho_{b}}H_{s}&0\\ 0&U_{b}^{\lambda}&0&H_{b}\end{pmatrix}

where Uλ:=UλU_{\ell}^{\lambda}:=U_{\ell}-\lambda (for {s,b}\ell\in\{s,b\}) with λ\lambda provided in Lemma 2.3. Using that 𝖲λ(){\sf S}^{\lambda}(\cdot) and 𝖲λ()𝖠0(){\sf S}^{\lambda}(\cdot){\sf A}^{0}(\cdot) are symmetric, and integration by parts, we have the energy identities

12ddt((𝖲λ(𝑼)𝑼˙,𝑼˙)L2+(𝖲λ(𝑼)𝑽˙,𝑽˙)L2)\displaystyle\frac{1}{2}\frac{\operatorname{{\rm d}\!}}{\operatorname{{\rm d}\!}t}\Big{(}\big{(}{\sf S}^{\lambda}(\bm{U})\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\big{(}{\sf S}^{\lambda}(\bm{U})\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}\Big{)}
=(𝖲λ(𝑼)t𝑼˙,𝑼˙)L2+(𝖲λ(𝑼)t𝑽˙,𝑽˙)L2+12([t,𝖲λ(𝑼)]𝑼˙,𝑼˙)L2+12([t,𝖲λ(𝑽)]𝑽˙,𝑽˙)L2\displaystyle=\big{(}{\sf S}^{\lambda}(\bm{U})\partial_{t}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\big{(}{\sf S}^{\lambda}(\bm{U})\partial_{t}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{U})]\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{V})]\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
=(𝖲λ(𝑼)𝖠κ(𝑼)x𝑼˙,𝑼˙)L2(𝖲λ(𝑼)𝖠κ(𝑽)x𝑽˙,𝑽˙)L2+κ(𝖲λ(𝑼)𝖣1x2𝑼˙,𝑼˙)L2+κ(𝖲λ(𝑼)𝖣2x2𝑽˙,𝑽˙)L2\displaystyle=-\big{(}{\sf S}^{\lambda}(\bm{U}){\sf A}^{\kappa}(\bm{U})\partial_{x}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}-\big{(}{\sf S}^{\lambda}(\bm{U}){\sf A}^{\kappa}(\bm{V})\partial_{x}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{2}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
+(𝖲λ(𝑼)𝑹𝑼,𝑼˙)L2+(𝖲λ(𝑼)𝑹𝑽,𝑽˙)L2+12([t,𝖲λ(𝑼)]𝑼˙,𝑼˙)L2+12([t,𝖲λ(𝑼)]𝑽˙,𝑽˙)L2\displaystyle\qquad+\big{(}{\sf S}^{\lambda}(\bm{U})\bm{R}_{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\big{(}{\sf S}^{\lambda}(\bm{U})\bm{R}_{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{U})]\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{U})]\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
=12([x,𝖲λ(𝑼)𝖠0(𝑼)]𝑼˙,𝑼˙)L2+12([x,𝖲λ(𝑽)𝖠0(𝑽)]𝑽˙,𝑽˙)L2\displaystyle=\frac{1}{2}\big{(}[\partial_{x},{\sf S}^{\lambda}(\bm{U}){\sf A}^{0}(\bm{U})]\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{x},{\sf S}^{\lambda}(\bm{V}){\sf A}^{0}(\bm{V})]\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
(𝖲λ(𝑼)(𝖠κ(𝑼)𝖠0(𝑼))x𝑼˙,𝑼˙)L2(𝖲λ(𝑽)(𝖠κ(𝑽)𝖠0(𝑽))x𝑽˙,𝑽˙)L2\displaystyle\qquad-\big{(}{\sf S}^{\lambda}(\bm{U})({\sf A}^{\kappa}(\bm{U})-{\sf A}^{0}(\bm{U}))\partial_{x}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}-\big{(}{\sf S}^{\lambda}(\bm{V})({\sf A}^{\kappa}(\bm{V})-{\sf A}^{0}(\bm{V}))\partial_{x}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
((𝖲λ(𝑼)𝖲λ(𝑽))𝖠κ(𝑽)x𝑽˙,𝑽˙)L2+12([t,𝖲λ(𝑼)]𝑼˙,𝑼˙)L2+12([t,𝖲λ(𝑼)]𝑽˙,𝑽˙)L2\displaystyle\qquad-\big{(}({\sf S}^{\lambda}(\bm{U})-{\sf S}^{\lambda}(\bm{V})){\sf A}^{\kappa}(\bm{V})\partial_{x}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{U})]\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\frac{1}{2}\big{(}[\partial_{t},{\sf S}^{\lambda}(\bm{U})]\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
+(𝖲λ(𝑼)𝑹𝑼,𝑼˙)L2+(𝖲λ(𝑼)𝑹𝑽,𝑽˙)L2+κ(𝖲λ(𝑼)𝖣1x2𝑼˙,𝑼˙)L2+κ(𝖲λ(𝑼)𝖣2x2𝑽˙,𝑽˙)L2\displaystyle\qquad+\big{(}{\sf S}^{\lambda}(\bm{U})\bm{R}_{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\big{(}{\sf S}^{\lambda}(\bm{U})\bm{R}_{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{2}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}
=:A(𝖲λ(𝑼)(𝖠κ(𝑼)𝖠0(𝑼))x𝑼˙,𝑼˙)L2+κ(𝖲λ(𝑼)𝖣1x2𝑼˙,𝑼˙)L2+κ(𝖲λ(𝑼)𝖣2x2𝑽˙,𝑽˙)L2.\displaystyle=:A-\big{(}{\sf S}^{\lambda}(\bm{U})({\sf A}^{\kappa}(\bm{U})-{\sf A}^{0}(\bm{U}))\partial_{x}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{2}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}.

By means of Cauchy–Schwarz inequality we find that

|A|C(𝑼˙L2+𝑽˙L2)×(M𝑼˙L2+M𝑽˙L2+κMx𝑽˙L2+𝑹𝑼L2+𝑹𝑽L2),|A|\leq C\,\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}\big{)}\times\big{(}M\|\dot{\bm{U}}\|_{L^{2}}+M\|\dot{\bm{V}}\|_{L^{2}}+\kappa M\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}+\|\bm{R}_{\bm{U}}\|_{L^{2}}+\|\bm{R}_{\bm{V}}\|_{L^{2}}\big{)},

where CC denotes a multiplicative constant depending only on ς\varsigma and MM, and which may change from line to line. We now focus on the remaining terms. We first notice that defects of symmetry in 𝖲λ(𝑼)(𝖠κ(𝑼)𝖠0(𝑼)){\sf S}^{\lambda}(\bm{U})({\sf A}^{\kappa}(\bm{U})-{\sf A}^{0}(\bm{U})) arise only in the first two rows, and that the first two components of 𝑼˙\dot{\bm{U}} equal the first two components of 𝑽˙\dot{\bm{V}}. Hence using integration by parts and Cauchy–Schwarz inequality we infer

|(𝖲λ(𝑼)(𝖠κ(𝑼)𝖠0(𝑼))x𝑼˙,𝑼˙)L2|κCM𝑼˙L2×(𝑼˙L2+x𝑽˙L2).|\big{(}{\sf S}^{\lambda}(\bm{U})({\sf A}^{\kappa}(\bm{U})-{\sf A}^{0}(\bm{U}))\partial_{x}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}|\leq\kappa\,C\,M\,\|\dot{\bm{U}}\|_{L^{2}}\times\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}\big{)}.

Then, again making use of the identity 𝖣1x2𝑼˙=(x2H˙1,x2H˙2,0,0)=𝖣1x2𝑽˙{\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}}=(\partial_{x}^{2}\dot{H}_{1},\partial_{x}^{2}\dot{H}_{2},0,0)={\sf D}_{1}\partial_{x}^{2}\dot{\bm{V}} we infer that

κ(𝖲λ(𝑼)𝖣1x2𝑼˙,𝑼˙)L2+κ(𝖲λ(𝑼)𝖣2x2𝑽˙,𝑽˙)L2=κ(𝖲λ(𝑼)(𝖣1+𝖣2)x2𝑽˙,𝑽˙)L2+κ(𝖲λ(𝑼)𝖣1x2𝑽˙,𝑼˙𝑽˙)L2.\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{2}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}=\kappa\big{(}{\sf S}^{\lambda}(\bm{U})({\sf D}_{1}+{\sf D}_{2})\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{U}}-\dot{\bm{V}}\big{)}_{L^{2}}.

After integration by parts, and since 𝖣1+𝖣2=Id{\sf D}_{1}+{\sf D}_{2}=\operatorname{Id}, we find that

κ(𝖲λ(𝑼)(𝖣1+𝖣2)x2𝑽˙,𝑽˙)L2κ(𝖲λ(𝑼)x𝑽˙,x𝑽˙)L2+κCMx𝑽˙L2𝑽˙L2.\kappa\big{(}{\sf S}^{\lambda}(\bm{U})({\sf D}_{1}+{\sf D}_{2})\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}}\leq-\kappa\big{(}{\sf S}^{\lambda}(\bm{U})\partial_{x}\dot{\bm{V}},\partial_{x}\dot{\bm{V}}\big{)}_{L^{2}}+\kappa\,C\,M\,\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}\|\dot{\bm{V}}\|_{L^{2}}.

Then, using from (2.8) that κxH˙=H((U˙V˙)+R)\kappa\partial_{x}\dot{H}_{\ell}=H_{\ell}((\dot{U}_{\ell}-\dot{V}_{\ell})+R_{\ell}) (where {s,b}\ell\in\{s,b\}), we obtain the identities

κ(𝖲λ(𝑼)𝖣1x2𝑽˙,𝑼˙𝑽˙)L2\displaystyle\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{U}}-\dot{\bm{V}}\big{)}_{L^{2}} =κ{s,b}(ρUλx2H˙,U˙V˙)L2\displaystyle=\kappa\sum_{\ell\in\{s,b\}}\big{(}\rho_{\ell}U_{\ell}^{\lambda}\partial_{x}^{2}\dot{H}_{\ell},\dot{U}_{\ell}-\dot{V}_{\ell}\big{)}_{L^{2}}
={s,b}(ρUλx(H(U˙V˙+R)),U˙V˙)L2\displaystyle=\sum_{\ell\in\{s,b\}}\big{(}\rho_{\ell}U_{\ell}^{\lambda}\partial_{x}(H_{\ell}(\dot{U}_{\ell}-\dot{V}_{\ell}+R_{\ell})),\dot{U}_{\ell}-\dot{V}_{\ell}\big{)}_{L^{2}}
={s,b}ρ2((UλxHHxUλ)(U˙V˙),U˙V˙)L2\displaystyle=\sum_{\ell\in\{s,b\}}\frac{\rho_{\ell}}{2}\big{(}(U_{\ell}^{\lambda}\partial_{x}H_{\ell}-H_{\ell}\partial_{x}U_{\ell}^{\lambda})(\dot{U}_{\ell}-\dot{V}_{\ell}),\dot{U}_{\ell}-\dot{V}_{\ell}\big{)}_{L^{2}}
+κ{s,b}ρ(Uλx(HR),U˙V˙)L2,\displaystyle\quad+\kappa\sum_{\ell\in\{s,b\}}\rho_{\ell}\big{(}U_{\ell}^{\lambda}\partial_{x}(H_{\ell}R_{\ell}),\dot{U}_{\ell}-\dot{V}_{\ell}\big{)}_{L^{2}},

where we used integration by parts in the last line. We infer

κ(𝖲λ(𝑼)𝖣1x2𝑽˙,𝑼˙𝑽˙)L2CM(𝑼˙L2+𝑽˙L2)2+CM(𝑼˙L2+𝑽˙L2)RH1.\kappa\big{(}{\sf S}^{\lambda}(\bm{U}){\sf D}_{1}\partial_{x}^{2}\dot{\bm{V}},\dot{\bm{U}}-\dot{\bm{V}}\big{)}_{L^{2}}\leq\,C\,M\,\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}\big{)}^{2}+C\,M\,\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}\big{)}\|R\|_{H^{1}}.

Combining all these estimate and denoting

:=(𝖲λ(𝑼)𝑼˙,𝑼˙)L2+(𝖲λ(𝑼)𝑽˙,𝑽˙)L2,{\mathcal{E}}:=\big{(}{\sf S}^{\lambda}(\bm{U})\dot{\bm{U}},\dot{\bm{U}}\big{)}_{L^{2}}+\big{(}{\sf S}^{\lambda}(\bm{U})\dot{\bm{V}},\dot{\bm{V}}\big{)}_{L^{2}},

one has

12ddt+κ(𝖲λ(𝑼)x𝑽˙,x𝑽˙)L2CM(𝑼˙L2+𝑽˙L2+κx𝑽˙L2)(𝑼˙L2+𝑽˙L2)+C(𝑹𝑼L2+𝑹𝑽L2+MRH1)(𝑼˙L2+𝑽˙L2).\frac{1}{2}\frac{\operatorname{{\rm d}\!}}{\operatorname{{\rm d}\!}t}{\mathcal{E}}+\kappa\big{(}{\sf S}^{\lambda}(\bm{U})\partial_{x}\dot{\bm{V}},\partial_{x}\dot{\bm{V}}\big{)}_{L^{2}}\leq C\,M\,\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}+\kappa\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}\big{)}\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}\big{)}\\ +C\big{(}\|\bm{R}_{\bm{U}}\|_{L^{2}}+\|\bm{R}_{\bm{V}}\|_{L^{2}}+M\|R\|_{H^{1}}\big{)}\big{(}\|\dot{\bm{U}}\|_{L^{2}}+\|\dot{\bm{V}}\|_{L^{2}}\big{)}. (2.9)

By using that 𝖲λ(𝑼){\sf S}^{\lambda}(\bm{U}) is definite positive, we find that there exists c>0c>0 depending only on ς\varsigma such that

c2𝑼˙L22+c2𝑽˙L22,(𝖲λ(𝑼)xV˙,xV˙)L2c2x𝑽˙L22.{\mathcal{E}}\geq c^{2}\|\dot{\bm{U}}\|_{L^{2}}^{2}+c^{2}\|\dot{\bm{V}}\|_{L^{2}}^{2},\quad\big{(}{\sf S}^{\lambda}(\bm{U})\partial_{x}\dot{V},\partial_{x}\dot{V}\big{)}_{L^{2}}\geq c^{2}\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}^{2}.

Hence we find (using the Peter Paul inequality and augmenting CC) that

12ddt+12c2κx𝑽˙L22CM+C(𝑹𝑼L2+𝑹𝑽L2+MRH1)1/2,\frac{1}{2}\frac{\operatorname{{\rm d}\!}}{\operatorname{{\rm d}\!}t}{\mathcal{E}}+\tfrac{1}{2}c^{2}\kappa\|\partial_{x}\dot{\bm{V}}\|_{L^{2}}^{2}\leq C\,M\,{\mathcal{E}}+C\big{(}\|\bm{R}_{\bm{U}}\|_{L^{2}}+\|\bm{R}_{\bm{V}}\|_{L^{2}}+M\|R\|_{H^{1}}\big{)}\,{\mathcal{E}}^{1/2},

and the result follows by Gronwall’s Lemma. ∎

Proposition 2.7 (Large-time well-posedness).

Let ss0>3/2s\geq s_{0}>3/2, ς(0,1)\varsigma\in(0,1) and M0>0M_{0}>0. There exists C>0C>0 and T>0T>0 such that the following holds.

Let κ(0,1]\kappa\in(0,1], (ρs,ρb,H¯s,H¯b,U¯s,U¯b)6(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b})\in\mathbb{R}^{6} such that H¯s+H¯b=1\underline{H}_{s}+\underline{H}_{b}=1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0, and let (Hs0,Hb0,Us0,Ub0)Hs+1()2×Hs()2(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\in H^{s+1}(\mathbb{R})^{2}\times H^{s}(\mathbb{R})^{2} such that the hyperbolicity condition holds:

x,(ρs,ρb,H¯s+Hs0(x),H¯b+Hb0(x),U¯s+Us0(x),U¯b+Ub0(x))𝔭ς,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{0}(x),\underline{H}_{b}+H_{b}^{0}(x),\underline{U}_{s}+U_{s}^{0}(x),\underline{U}_{b}+U_{b}^{0}(x))\in\mathfrak{p}^{\varsigma},

where 𝔭ς\mathfrak{p}^{\varsigma} is defined in (2.5), and

(Hs0,Hb0,Us0,Ub0,κxHs0,κxHb0)Hs0M0.\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0},\kappa\partial_{x}H_{s}^{0},\kappa\partial_{x}H_{b}^{0})\|_{H^{s_{0}}}\leq M_{0}.

Denote (Hs,Hb,Us,Ub)C([0,T);Hs()4)(H_{s},H_{b},U_{s},U_{b})\in C([0,T^{\star});H^{s}(\mathbb{R})^{4}) the maximal-in-time solution to (2.6) emerging from the initial data (Hs,Hb,Us,Ub)|t=0=(Hs0,Hb0,Us0,Ub0)(H_{s},H_{b},U_{s},U_{b})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0}) as defined in Proposition 2.5.

One has T>T/M0T^{\star}>T/M_{0} and for any t[0,T/M0]t\in[0,T/M_{0}],

x,(ρs,ρb,H¯s+Hs(t,x),H¯b+Hb(t,x),U¯s+Us(t,x),U¯b+Ub(t,x))𝔭ς/2,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}(t,x),\underline{H}_{b}+H_{b}(t,x),\underline{U}_{s}+U_{s}(t,x),\underline{U}_{b}+U_{b}(t,x))\in\mathfrak{p}^{\varsigma/2},

and

(Hs,Hb,Us,Ub,κxHs,κxHb)(t,)Hs+(tHs,tHb,tUs,tUb)(t,)Hs1C(Hs0,Hb0,Us0,Ub0,κxHs0,κxHb0)Hs.\|(H_{s},H_{b},U_{s},U_{b},\kappa\partial_{x}H_{s},\kappa\partial_{x}H_{b})(t,\cdot)\|_{H^{s}}+\|(\partial_{t}H_{s},\partial_{t}H_{b},\partial_{t}U_{s},\partial_{t}U_{b})(t,\cdot)\|_{H^{s-1}}\\ \leq C\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0},\kappa\partial_{x}H_{s}^{0},\kappa\partial_{x}H_{b}^{0})\|_{H^{s}}.
Proof.

We assume that the initial data is smooth, so that (Hs,Hb,Us,Ub,Vs,Vb)(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b}) are smooth on their domain of existence. The general case is obtained by regularizing the initial data and passing to the limit, thanks to the persistence of regularity and continuity of the flow map stated in Proposition 2.5.

Denote V:=UκxHH¯+HV_{\ell}:=U_{\ell}-\kappa\frac{\partial_{x}H_{\ell}}{\underline{H}_{\ell}+H_{\ell}} ({s,b}\ell\in\{s,b\}), Λs:=(Idx2)s/2\Lambda^{s}:=(\operatorname{Id}-\partial_{x}^{2})^{s/2} and

(H˙s,H˙b,U˙s,U˙b,V˙s,V˙b):=(ΛsHs,ΛsHb,ΛsUs,ΛsUb,ΛsVs,ΛsVb).(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b}):=(\Lambda^{s}H_{s},\Lambda^{s}H_{b},\Lambda^{s}U_{s},\Lambda^{s}U_{b},\Lambda^{s}V_{s},\Lambda^{s}V_{b}).

Applying the operator Λs\Lambda^{s} to (2.6) and (2.7), we obtain

{tH˙s+(H¯s+Hs)xU˙s+(U¯s+Us)xH˙s=κx2H˙s+RH(Hs,Us),tH˙b+(H¯b+Hb)xU˙b+(U¯b+Ub)xH˙b=κx2H˙b+RH(Hb,Ub),tU˙s+(U¯s+UsκxHsH¯s+Hs)xU˙s+xH˙s+xH˙b=RU(Hs,Us),tU˙b+(U¯b+UbκxHbH¯b+Hb)xU˙b+ρsρbxH˙s+xH˙b=RU(Hb,Ub),\begin{cases}\partial_{t}\dot{H}_{s}+(\underline{H}_{s}+H_{s})\partial_{x}\dot{U}_{s}+(\underline{U}_{s}+U_{s})\partial_{x}\dot{H}_{s}=\kappa\partial_{x}^{2}\dot{H}_{s}+R_{H}(H_{s},U_{s}),\\ \partial_{t}\dot{H}_{b}+(\underline{H}_{b}+H_{b})\partial_{x}\dot{U}_{b}+(\underline{U}_{b}+U_{b})\partial_{x}\dot{H}_{b}=\kappa\partial_{x}^{2}\dot{H}_{b}+R_{H}(H_{b},U_{b}),\\ \partial_{t}\dot{U}_{s}+(\underline{U}_{s}+U_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}\dot{U}_{s}+\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=R_{U}(H_{s},U_{s}),\\ \partial_{t}\dot{U}_{b}+(\underline{U}_{b}+U_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}\dot{U}_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=R_{U}(H_{b},U_{b}),\end{cases}

and

{tH˙s+(H¯s+Hs)xV˙s+(U¯s+Vs)xH˙s=RH(Hs,Vs),tH˙b+(H¯b+Hb)xV˙b+(U¯b+Vb)xH˙b=RH(Hb,Vb),tV˙s+(U¯s+VsκxHsH¯s+Hs)xV˙s+xH˙s+xH˙b=κx2V˙s+RU(Hs,Vs),tV˙b+(U¯b+VbκxHbH¯b+Hb)xV˙b+ρsρbxH˙s+xH˙b=κx2V˙s+RU(Hb,Vb),\begin{cases}\partial_{t}\dot{H}_{s}+(\underline{H}_{s}+H_{s})\partial_{x}\dot{V}_{s}+(\underline{U}_{s}+V_{s})\partial_{x}\dot{H}_{s}=R_{H}(H_{s},V_{s}),\\ \partial_{t}\dot{H}_{b}+(\underline{H}_{b}+H_{b})\partial_{x}\dot{V}_{b}+(\underline{U}_{b}+V_{b})\partial_{x}\dot{H}_{b}=R_{H}(H_{b},V_{b}),\\ \partial_{t}\dot{V}_{s}+(\underline{U}_{s}+V_{s}-\kappa\frac{\partial_{x}H_{s}}{\underline{H}_{s}+H_{s}})\partial_{x}\dot{V}_{s}+\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=\kappa\partial_{x}^{2}\dot{V}_{s}+R_{U}(H_{s},V_{s}),\\ \partial_{t}\dot{V}_{b}+(\underline{U}_{b}+V_{b}-\kappa\frac{\partial_{x}H_{b}}{\underline{H}_{b}+H_{b}})\partial_{x}\dot{V}_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=\kappa\partial_{x}^{2}\dot{V}_{s}+R_{U}(H_{b},V_{b}),\end{cases}

with remainders RHR_{H} and RVR_{V} defined as

RH(H,V):=[Λs,H]xV[Λs,V]xH and RU(H,V):=[Λs,VκxHH¯+H]xV.R_{H}(H,V):=-[\Lambda^{s},H]\partial_{x}V-[\Lambda^{s},V]\partial_{x}H\quad\text{ and }\quad R_{U}(H,V):=-[\Lambda^{s},V-\kappa\tfrac{\partial_{x}H}{\underline{H}+H}]\partial_{x}V.

Moreover, applying the operator Λs\Lambda^{s} to the identity V=UκxHH¯+HV_{\ell}=U_{\ell}-\kappa\frac{\partial_{x}H_{\ell}}{\underline{H}_{\ell}+H_{\ell}} ({s,b}\ell\in\{s,b\}) yields

V˙=U˙κxH˙H¯+H+R(H),\dot{V}_{\ell}=\dot{U}_{\ell}-\kappa\frac{\partial_{x}\dot{H}_{\ell}}{\underline{H}_{\ell}+H_{\ell}}+R(H_{\ell}),

with

R(H)=κ[Λs,1H¯+H]xH.R(H)=-\kappa[\Lambda^{s},\tfrac{1}{\underline{H}+H}]\partial_{x}H.

Standard commutator estimates and composition estimates in Sobolev spaces; see e.g. [35, Appendix B] yield

RH(H,V)L2\displaystyle\|R_{H}(H,V)\|_{L^{2}} C(HHs0+VHs0)(HHs+VHs),\displaystyle\leq C\big{(}\|H\|_{H^{s_{0}}}+\|V\|_{H^{s_{0}}}\big{)}\big{(}\|H\|_{H^{s}}+\|V\|_{H^{s}}\big{)},
RU(H,V)L2\displaystyle\|R_{U}(H,V)\|_{L^{2}} C(κxHHs0+VHs0)(κxHHs+VHs),\displaystyle\leq C\big{(}\kappa\|\partial_{x}H\|_{H^{s_{0}}}+\|V\|_{H^{s_{0}}}\big{)}\big{(}\kappa\|\partial_{x}H\|_{H^{s}}+\|V\|_{H^{s}}\big{)},
R(H)H1\displaystyle\|R(H)\|_{H^{1}} C(HHs0+κxHHs0)(HHs+κxHHs),\displaystyle\leq C\big{(}\|H\|_{H^{s_{0}}}+\kappa\|\partial_{x}H\|_{H^{s_{0}}}\big{)}\big{(}\|H\|_{H^{s}}+\kappa\|\partial_{x}H\|_{H^{s}}\big{)},

where CC is a positive constant depending only on s,s0s,s_{0}, HHs0\|H\|_{H^{s_{0}}} and inf(H¯+H)>0\inf_{\mathbb{R}}(\underline{H}+H)>0.

Moreover, notice that by using the equations (2.6), (2.7) and the identity κxH=(H¯+H)(UV)\kappa\partial_{x}H_{\ell}=(\underline{H}_{\ell}+H_{\ell})(U_{\ell}-V_{\ell}) for {s,b}\ell\in\{s,b\}, we have

(tHs,tHb,tUs,tUb)Hs1+κ(xHs,xHb)Hs+κ1(UsVs,UbVb)Hs1C(Hs,Hb,Us,Ub,Vs,Vb)Hs,\|(\partial_{t}H_{s},\partial_{t}H_{b},\partial_{t}U_{s},\partial_{t}U_{b})\|_{H^{s-1}}+\kappa\|(\partial_{x}H_{s},\partial_{x}H_{b})\|_{H^{s}}+\kappa^{-1}\|(U_{s}-V_{s},U_{b}-V_{b})\|_{H^{s-1}}\\ \leq C\,\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})\|_{H^{s}},

where the multiplicative constant CC depends on (Hs,Hb,Us,Ub,Vs,Vb)Hs0\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})\|_{H^{s_{0}}} and inf(H¯+H)>0\inf_{\mathbb{R}}(\underline{H}_{\ell}+H_{\ell})>0 (for {s,b}\ell\in\{s,b\}).

We may thus apply Lemma 2.6, and infer that we can set CC depending on s0,M0,ςs_{0},M_{0},\varsigma, and cc depending only on ς\varsigma, so that as long as

x,(ρs,ρb,H¯s+Hs(t,x),H¯b+Hb(t,x),U¯s+Us(t,x),U¯b+Ub(t,x))𝔭ς/2,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}(t,x),\underline{H}_{b}+H_{b}(t,x),\underline{U}_{s}+U_{s}(t,x),\underline{U}_{b}+U_{b}(t,x))\in\mathfrak{p}^{\varsigma/2}, (2.10)

and

(Hs,Hb,Us,Ub,Vs,Vb)(t,)Hs02cM0\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})(t,\cdot)\|_{H^{s_{0}}}\leq 2cM_{0} (2.11)

one has (using the standard Hs0W1,H^{s_{0}}\subset W^{1,\infty} continuous embedding and the fact that 0H¯s,H¯b10\leq\underline{H}_{s},\underline{H}_{b}\leq 1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0)

(Hs,Hb,Us,Ub,Vs,Vb)(t,)Hs0cM0exp(CM0t)+CM00t(Hs,Hb,Us,Ub,Vs,Vb)(t,)Hs0exp(CM0(tt))dt.\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})(t,\cdot)\|_{H^{s_{0}}}\leq c\,M_{0}\exp(C\,M_{0}\,t)\\ +CM_{0}\int_{0}^{t}\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})(t^{\prime},\cdot)\|_{H^{s_{0}}}\exp(C\,M_{0}\,(t-t^{\prime}))\operatorname{{\rm d}\!}t.

Applying Gronwall’s Lemma, we find that if CM0tCM_{0}t is smaller than a universal constant, then

(Hs,Hb,Us,Ub,Vs,Vb)(t,)Hs3c2M0.\|(H_{s},H_{b},U_{s},U_{b},V_{s},V_{b})(t,\cdot)\|_{H^{s}}\leq\frac{3c}{2}\,M_{0}.

What is more we have (augmenting CC if necessary)

|(Hs(t,)Hs0,Hb(t,)Hb0,Us(t,)Us0,Ub(t,)Ub0)|0t(tHs,tHb,tUs,tUb)LCM0t.|(H_{s}(t,\cdot)-H_{s}^{0},H_{b}(t,\cdot)-H_{b}^{0},U_{s}(t,\cdot)-U_{s}^{0},U_{b}(t,\cdot)-U_{b}^{0})|\leq\int_{0}^{t}\|(\partial_{t}H_{s},\partial_{t}H_{b},\partial_{t}U_{s},\partial_{t}U_{b})\|_{L^{\infty}}\leq CM_{0}t.

Hence lowering further CM0tCM_{0}t, we infer that (ρs,ρb,Hs(t,x),Hb(t,x),Us(t,x),Ub(t,x))𝔭ς/4(\rho_{s},\rho_{b},H_{s}(t,x),H_{b}(t,x),U_{s}(t,x),U_{b}(t,x))\in\mathfrak{p}^{\varsigma/4} for all xx\in\mathbb{R}. By the usual continuity argument we infer that the assumptions (2.10) and (2.11) do hold for t[0,T/M0]t\in[0,T/M_{0}] with TT depending on s,s0,M0,ςs,s_{0},M_{0},\varsigma. This yields the lower bound on the maximal time of existence and the claimed upper bound on the solution follows from the above estimates replacing s0s_{0} with ss. ∎

Combined together, Proposition 2.5 and Proposition 2.7 yield a time of existence for solutions to (2.6) emerging from sufficiently regular initial data which is independent of κ(0,1]\kappa\in(0,1]. The following result describes the behavior of these solutions as κ0\kappa\searrow 0.

Proposition 2.8 (Convergence).

Let ss0>3/2s\geq s_{0}>3/2, ς(0,1)\varsigma\in(0,1) and M0>0M_{0}>0.

Let κ(0,1]\kappa\in(0,1], (ρs,ρb,H¯s,H¯b,U¯s,U¯b)6(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b})\in\mathbb{R}^{6} such that H¯s+H¯b=1\underline{H}_{s}+\underline{H}_{b}=1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0, and (Hs0,Hb0,Us0,Ub0)Hs+2()4(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\in H^{s+2}(\mathbb{R})^{4} be such that the hyperbolicity condition holds

x,(ρs,ρb,H¯s+Hs0(x),H¯b+Hb0(x),U¯s+Us0(x),U¯b+Ub0(x))𝔭ς,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{0}(x),\underline{H}_{b}+H_{b}^{0}(x),\underline{U}_{s}+U_{s}^{0}(x),\underline{U}_{b}+U_{b}^{0}(x))\in\mathfrak{p}^{\varsigma},

where 𝔭ς\mathfrak{p}^{\varsigma} is defined in (2.5), and

(Hs0,Hb0,Us0,Ub0,κxHs0,κxHb0)Hs0M0.\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0},\kappa\partial_{x}H_{s}^{0},\kappa\partial_{x}H_{b}^{0})\|_{H^{s_{0}}}\leq M_{0}.

Denote

  • (Hs,Hb,Us,Ub)(H_{s},H_{b},U_{s},U_{b}) the maximal solution to the non-diffusive system (2.1) emerging from the initial data

    (Hs,Hb,Us,Ub)|t=0=(Hs0,Hb0,Us0,Ub0)(H_{s},H_{b},U_{s},U_{b})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})

    as defined in Proposition 2.4;

  • for all κ>0\kappa>0, (Hsκ,Hbκ,Usκ,Ubκ)(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa}) the maximal solution to system (2.6) emerging from the initial data

    (Hsκ,Hbκ,Usκ,Ubκ)|t=0=(Hs0,Hb0,Us0,Ub0)(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})

    as defined in Proposition 2.5;

  • T0>0T_{0}>0 and c0>1c_{0}>1 such that for all t[0,T0]t\in[0,T_{0}],

    x,(ρs,ρb,H¯s+Hs(t,x),H¯b+Hb(t,x),U¯s+Us(t,x),U¯b+Ub(t,x))𝔭ς/c0\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}(t,x),\underline{H}_{b}+H_{b}(t,x),\underline{U}_{s}+U_{s}(t,x),\underline{U}_{b}+U_{b}(t,x))\in\mathfrak{p}^{\varsigma/c_{0}}

    and

    (Hs,Hb,Us,Ub)(t,)Hs+2c0M0.\|(H_{s},H_{b},U_{s},U_{b})(t,\cdot)\|_{H^{s+2}}\leq c_{0}M_{0}.

Then there exists κ0>0\kappa_{0}>0 and C>0C>0, both depending only on s,s0,ς,M0,T0,c0s,s_{0},\varsigma,M_{0},T_{0},c_{0}, such that for all κ(0,κ0]\kappa\in(0,\kappa_{0}], (Hsκ,Hbκ,Usκ,Ubκ)(t,)(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa})(t,\cdot) is well-defined for all t[0,T0]t\in[0,T_{0}] and satisfies the hyperbolicity condition

x,(ρs,ρb,H¯s+Hsκ(t,x),H¯b+Hbκ(t,x),U¯s+Usκ(t,x),U¯b+Ubκ(t,x))𝔭ς/(2c0)\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{\kappa}(t,x),\underline{H}_{b}+H_{b}^{\kappa}(t,x),\underline{U}_{s}+U_{s}^{\kappa}(t,x),\underline{U}_{b}+U_{b}^{\kappa}(t,x))\in\mathfrak{p}^{\varsigma/(2c_{0})}

and the upper bound

(Hsκ,Hbκ,Usκ,Ubκ)(t,)Hs2c0M0.\|(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa})(t,\cdot)\|_{H^{s}}\leq 2c_{0}M_{0}.

Moreover, one has for all t[0,T0]t\in[0,T_{0}]

(HsκHs,HbκHb,UsκUs,UbκUb)(t,)HsκCM0.\|(H_{s}^{\kappa}-H_{s},H_{b}^{\kappa}-H_{b},U_{s}^{\kappa}-U_{s},U_{b}^{\kappa}-U_{b})(t,\cdot)\|_{H^{s}}\leq\kappa\,CM_{0}.
Proof.

Denote V:=UV_{\ell}:=U_{\ell} and Vκ:=UκκxHκH¯+HκV_{\ell}^{\kappa}:=U_{\ell}^{\kappa}-\kappa\frac{\partial_{x}H_{\ell}^{\kappa}}{\underline{H}_{\ell}+H_{\ell}^{\kappa}} ({s,b}\ell\in\{s,b\}), Λs:=(Idx2)s/2\Lambda^{s}:=(\operatorname{Id}-\partial_{x}^{2})^{s/2}, and

(H˙s,H˙b,U˙s,U˙b,V˙s,V˙b):=(Λs(HsκHs),Λs(HbκHb),Λs(UsκUs),Λs(UbκUb),Λs(VsκVs),Λs(VbκVb)).(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b}):=(\Lambda^{s}(H_{s}^{\kappa}-H_{s}),\Lambda^{s}(H_{b}^{\kappa}-H_{b}),\Lambda^{s}(U_{s}^{\kappa}-U_{s}),\Lambda^{s}(U_{b}^{\kappa}-U_{b}),\Lambda^{s}(V_{s}^{\kappa}-V_{s}),\Lambda^{s}(V_{b}^{\kappa}-V_{b})).

Substracting (2.6), (2.7) and (2.1) we obtain

{tH˙s+(H¯s+Hsκ)xU˙s+(U¯s+Usκ)xH˙s=κx2H˙s+κΛsx2Hs+RH(Hsκ,Usκ,Hs,Us),tH˙b+(H¯b+Hbκ)xU˙b+(U¯b+Ubκ)xH˙b=κx2H˙b+κΛsx2Hb+RH(Hbκ,Ubκ,Hb,Ub),tU˙s+(U¯s+UsκκxHsκH¯s+Hsκ)xU˙s+xH˙s+xH˙b=κΛs(xHsκH¯s+HsκxUs)+RU(Hsκ,Usκ,Hs,Us),tU˙b+(U¯b+UbκκxHbκH¯b+Hbκ)xU˙b+ρsρbxH˙s+xH˙b=κΛs(xHbκH¯b+HbκxUb)+RU(Hbκ,Ubκ,Hb,Ub),\begin{cases}\partial_{t}\dot{H}_{s}+(\underline{H}_{s}+H_{s}^{\kappa})\partial_{x}\dot{U}_{s}+(\underline{U}_{s}+U_{s}^{\kappa})\partial_{x}\dot{H}_{s}=\kappa\partial_{x}^{2}\dot{H}_{s}+\kappa\Lambda^{s}\partial_{x}^{2}H_{s}+R_{H}(H_{s}^{\kappa},U_{s}^{\kappa},H_{s},U_{s}),\\ \partial_{t}\dot{H}_{b}+(\underline{H}_{b}+H_{b}^{\kappa})\partial_{x}\dot{U}_{b}+(\underline{U}_{b}+U_{b}^{\kappa})\partial_{x}\dot{H}_{b}=\kappa\partial_{x}^{2}\dot{H}_{b}+\kappa\Lambda^{s}\partial_{x}^{2}H_{b}+R_{H}(H_{b}^{\kappa},U_{b}^{\kappa},H_{b},U_{b}),\\ \partial_{t}\dot{U}_{s}+(\underline{U}_{s}+U_{s}^{\kappa}-\kappa\frac{\partial_{x}H_{s}^{\kappa}}{\underline{H}_{s}+H_{s}^{\kappa}})\partial_{x}\dot{U}_{s}+\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=\kappa\Lambda^{s}\big{(}\frac{\partial_{x}H_{s}^{\kappa}}{\underline{H}_{s}+H_{s}^{\kappa}}\partial_{x}U_{s}\big{)}+R_{U}(H_{s}^{\kappa},U_{s}^{\kappa},H_{s},U_{s}),\\ \partial_{t}\dot{U}_{b}+(\underline{U}_{b}+U_{b}^{\kappa}-\kappa\frac{\partial_{x}H_{b}^{\kappa}}{\underline{H}_{b}+H_{b}^{\kappa}})\partial_{x}\dot{U}_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}=\kappa\Lambda^{s}\big{(}\frac{\partial_{x}H_{b}^{\kappa}}{\underline{H}_{b}+H_{b}^{\kappa}}\partial_{x}U_{b}\big{)}+R_{U}(H_{b}^{\kappa},U_{b}^{\kappa},H_{b},U_{b}),\end{cases}

and

{tH˙s+(H¯s+Hsκ)HsκxV˙s+(U¯s+Vsκ)xH˙s=RH(Hsκ,Vsκ,Hs,Vs),tH˙b+(H¯b+Hbκ)HbκxV˙b+(U¯b+Vbκ)xH˙b=RH(Hbκ,Vbκ,Hb,Vb),tV˙s+(U¯s+VsκκxHsκH¯s+Hsκ)xV˙s+xH˙s+xH˙b=κx2V˙s+κΛsx2Vs+κΛs(xHsκH¯s+HsκxVs)+RU(Hsκ,Vsκ,Hs,Vs),tV˙b+(U¯b+VbκκxHbκH¯b+Hbκ)xV˙b+ρsρbxH˙s+xH˙b=κx2V˙b+κΛsx2Vb+κΛs(xHbκH¯b+HbκxVb)+RU(Hbκ,Vbκ,Hb,Vb),\begin{cases}\partial_{t}\dot{H}_{s}+(\underline{H}_{s}+H_{s}^{\kappa})H_{s}^{\kappa}\partial_{x}\dot{V}_{s}+(\underline{U}_{s}+V_{s}^{\kappa})\partial_{x}\dot{H}_{s}=R_{H}(H_{s}^{\kappa},V_{s}^{\kappa},H_{s},V_{s}),\\ \partial_{t}\dot{H}_{b}+(\underline{H}_{b}+H_{b}^{\kappa})H_{b}^{\kappa}\partial_{x}\dot{V}_{b}+(\underline{U}_{b}+V_{b}^{\kappa})\partial_{x}\dot{H}_{b}=R_{H}(H_{b}^{\kappa},V_{b}^{\kappa},H_{b},V_{b}),\\ \partial_{t}\dot{V}_{s}+(\underline{U}_{s}+V_{s}^{\kappa}-\kappa\frac{\partial_{x}H_{s}^{\kappa}}{\underline{H}_{s}+H_{s}^{\kappa}})\partial_{x}\dot{V}_{s}+\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}\\ \hskip 142.26378pt=\kappa\partial_{x}^{2}\dot{V}_{s}+\kappa\Lambda^{s}\partial_{x}^{2}V_{s}+\kappa\Lambda^{s}\big{(}\frac{\partial_{x}H_{s}^{\kappa}}{\underline{H}_{s}+H_{s}^{\kappa}}\partial_{x}V_{s}\big{)}+R_{U}(H_{s}^{\kappa},V_{s}^{\kappa},H_{s},V_{s}),\\ \partial_{t}\dot{V}_{b}+(\underline{U}_{b}+V_{b}^{\kappa}-\kappa\frac{\partial_{x}H_{b}^{\kappa}}{\underline{H}_{b}+H_{b}^{\kappa}})\partial_{x}\dot{V}_{b}+\frac{\rho_{s}}{\rho_{b}}\partial_{x}\dot{H}_{s}+\partial_{x}\dot{H}_{b}\\ \hskip 142.26378pt=\kappa\partial_{x}^{2}\dot{V}_{b}+\kappa\Lambda^{s}\partial_{x}^{2}V_{b}+\kappa\Lambda^{s}\big{(}\frac{\partial_{x}H_{b}^{\kappa}}{\underline{H}_{b}+H_{b}^{\kappa}}\partial_{x}V_{b}\big{)}+R_{U}(H_{b}^{\kappa},V_{b}^{\kappa},H_{b},V_{b}),\end{cases}

where, for any {s,b}\ell\in\{s,b\}, we denote

RH(Hκ,Uκ,H,U)\displaystyle R_{H}(H_{\ell}^{\kappa},U_{\ell}^{\kappa},H_{\ell},U_{\ell}) =Λs((HκH)xU+(UκU)xH)\displaystyle=-\Lambda^{s}\big{(}(H_{\ell}^{\kappa}-H_{\ell})\partial_{x}U_{\ell}+(U_{\ell}^{\kappa}-U_{\ell})\partial_{x}H_{\ell}\big{)}
[Λs,Hκ](xUκxU)[Λs,Uκ](xHκxH),\displaystyle\quad-[\Lambda^{s},H_{\ell}^{\kappa}](\partial_{x}U_{\ell}^{\kappa}-\partial_{x}U_{\ell})-[\Lambda^{s},U_{\ell}^{\kappa}](\partial_{x}H_{\ell}^{\kappa}-\partial_{x}H_{\ell}),
RU(Hκ,Uκ,H,U)\displaystyle R_{U}(H_{\ell}^{\kappa},U_{\ell}^{\kappa},H_{\ell},U_{\ell}) =Λs((UκU)xU)[Λs,UκκxHκH¯+Hκ](xUκxU).\displaystyle=-\Lambda^{s}\big{(}(U_{\ell}^{\kappa}-U_{\ell})\partial_{x}U_{\ell}\big{)}-[\Lambda^{s},U_{\ell}^{\kappa}-\kappa\tfrac{\partial_{x}H_{\ell}^{\kappa}}{\underline{H}_{\ell}+H_{\ell}^{\kappa}}](\partial_{x}U_{\ell}^{\kappa}-\partial_{x}U_{\ell}).

Moreover, one has by definition

V˙=U˙κxH˙H¯+Hκ+R(Hκ,H)\dot{V}_{\ell}=\dot{U}_{\ell}-\kappa\frac{\partial_{x}\dot{H}_{\ell}}{\underline{H}_{\ell}+H_{\ell}^{\kappa}}+R(H_{\ell}^{\kappa},H_{\ell})

where

R(Hκ,H)=κ[Λs,1H¯+Hκ]xHκκxΛsHH¯+Hκ.R(H_{\ell}^{\kappa},H_{\ell})=-\kappa[\Lambda^{s},\tfrac{1}{\underline{H}_{\ell}+H_{\ell}^{\kappa}}]\partial_{x}H_{\ell}^{\kappa}-\kappa\frac{\partial_{x}\Lambda^{s}H_{\ell}}{\underline{H}_{\ell}+H_{\ell}^{\kappa}}.

Standard commutator estimates and composition estimates in Sobolev spaces; see e.g. [35, Appendix B] yield

RH(Hκ,Vκ,H,V)L2\displaystyle\|R_{H}(H_{\ell}^{\kappa},V_{\ell}^{\kappa},H_{\ell},V_{\ell})\|_{L^{2}} C(xHHs+xVHs+xHκHs1+xVκHs1)(H˙L2+V˙L2),\displaystyle\leq C\big{(}\|\partial_{x}H_{\ell}\|_{H^{s}}+\|\partial_{x}V_{\ell}\|_{H^{s}}+\|\partial_{x}H_{\ell}^{\kappa}\|_{H^{s-1}}+\|\partial_{x}V_{\ell}^{\kappa}\|_{H^{s-1}}\big{)}\big{(}\|\dot{H}_{\ell}\|_{L^{2}}+\|\dot{V}_{\ell}\|_{L^{2}}\big{)},
RU(Hκ,Vκ,H,V)L2\displaystyle\|R_{U}(H_{\ell}^{\kappa},V_{\ell}^{\kappa},H_{\ell},V_{\ell})\|_{L^{2}} C(xVHs+κxHκHs+xVκHs1)V˙L2,\displaystyle\leq C\big{(}\|\partial_{x}V_{\ell}\|_{H^{s}}+\kappa\|\partial_{x}H_{\ell}^{\kappa}\|_{H^{s}}+\|\partial_{x}V_{\ell}^{\kappa}\|_{H^{s-1}}\big{)}\|\dot{V}_{\ell}\|_{L^{2}},
R(Hκ,H)H1\displaystyle\|R(H_{\ell}^{\kappa},H_{\ell})\|_{H^{1}} Cκ(xHκHs+xHHs+1),\displaystyle\leq C\kappa\big{(}\|\partial_{x}H_{\ell}^{\kappa}\|_{H^{s}}+\|\partial_{x}H_{\ell}\|_{H^{s+1}}\big{)},

where CC is a positive constant depending only on ss, s0s_{0}, HκHs0\|H_{\ell}^{\kappa}\|_{H^{s_{0}}} and infH¯+Hκ>0\inf_{\mathbb{R}}\underline{H}_{\ell}+H_{\ell}^{\kappa}>0 for any {s,b}\ell\in\{s,b\}.

Moreover notice that by the equations (2.6) and (2.7) and using the identity κxHκ=(H¯+Hκ)(UκVκ)\kappa\partial_{x}H_{\ell}^{\kappa}=(\underline{H}_{\ell}+H_{\ell}^{\kappa})(U_{\ell}^{\kappa}-V_{\ell}^{\kappa}) we have

(tHsκ,tHbκ,tUsκ,tUbκ)Hs1+κ(xHsκ,xHbκ)Hs+κ1(UsκVsκ,UbκVbκ)Hs1C(Hsκ,Hbκ,Usκ,Ubκ,Vsκ,Vbκ)Hs,\|(\partial_{t}H_{s}^{\kappa},\partial_{t}H_{b}^{\kappa},\partial_{t}U_{s}^{\kappa},\partial_{t}U_{b}^{\kappa})\|_{H^{s-1}}+\kappa\|(\partial_{x}H_{s}^{\kappa},\partial_{x}H_{b}^{\kappa})\|_{H^{s}}+\kappa^{-1}\|(U_{s}^{\kappa}-V_{s}^{\kappa},U_{b}^{\kappa}-V_{b}^{\kappa})\|_{H^{s-1}}\\ \leq C\|(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa},V_{s}^{\kappa},V_{b}^{\kappa})\|_{H^{s}},

where the multiplicative constant CC depends on (Hsκ,Hbκ,Usκ,Ubκ,Vsκ,Vbκ)Hs0\|(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa},V_{s}^{\kappa},V_{b}^{\kappa})\|_{H^{s_{0}}} and infH¯+Hκ>0\inf_{\mathbb{R}}\underline{H}_{\ell}+H_{\ell}^{\kappa}>0 for {s,b}{\ell\in\{s,b\}}.

We may thus apply Lemma 2.6, and infer that we can set CC depending on s,s0,M0,ςs,s_{0},M_{0},\varsigma, and cc depending only on ς\varsigma, so that as long as

x,(ρs,ρb,H¯s+Hsκ(t,x),H¯b+Hbκ(t,x),U¯s+Usκ(t,x),U¯b+Ubκ(t,x))𝔭ς/(2c0),\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{\kappa}(t,x),\underline{H}_{b}+H_{b}^{\kappa}(t,x),\underline{U}_{s}+U_{s}^{\kappa}(t,x),\underline{U}_{b}+U_{b}^{\kappa}(t,x))\in\mathfrak{p}^{\varsigma/(2c_{0})}, (2.12)

and

(Hsκ,Hbκ,Usκ,Ubκ,Vsκ,Vbκ)(t,)Hs2c0M0\|(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa},V_{s}^{\kappa},V_{b}^{\kappa})(t,\cdot)\|_{H^{s}}\leq 2c_{0}M_{0} (2.13)

one has, using that (H˙s,H˙b,U˙s,U˙b,V˙s,V˙b)|t=0=(0,0,0,0,κΛs(xHsκH¯s+Hsκ)|t=0,κΛs(xHbκH¯b+Hbκ)|t=0)(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b})|_{t=0}=(0,0,0,0,-\kappa\Lambda^{s}(\frac{\partial_{x}H_{s}^{\kappa}}{\underline{H}_{s}+H_{s}^{\kappa}})|_{t=0},-\kappa\Lambda^{s}(\frac{\partial_{x}H_{b}^{\kappa}}{\underline{H}_{b}+H_{b}^{\kappa}})|_{t=0}),

(H˙s,H˙b,U˙s,U˙b,V˙s,V˙b)(t,)L2+cκ1/2(xH˙s,xH˙b,xV˙s,xV˙b)L2(0,t;L2)κCM0exp(Cc0M0t)+C0t(c0M0(H˙s,H˙b,U˙s,U˙b,V˙s,V˙b,κxH˙s,κxH˙b)(t,)L2+κ(xHsκ,xHbκ,x2Hs,x2Hb,x2Vs,x2Vb,xUs,xUb,xVs,xVb)(t,)Hs)exp(Cc0M0(tt))dt.\|(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b})(t,\cdot)\|_{L^{2}}+c\kappa^{1/2}\|(\partial_{x}\dot{H}_{s},\partial_{x}\dot{H}_{b},\partial_{x}\dot{V}_{s},\partial_{x}\dot{V}_{b})\|_{L^{2}(0,t;L^{2})}\leq\kappa CM_{0}\exp(Cc_{0}M_{0}t)\\ +C\int_{0}^{t}\Big{(}c_{0}M_{0}\|(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b},\kappa\partial_{x}\dot{H}_{s},\kappa\partial_{x}\dot{H}_{b})(t^{\prime},\cdot)\|_{L^{2}}\\ +\kappa\|(\partial_{x}H_{s}^{\kappa},\partial_{x}H_{b}^{\kappa},\partial_{x}^{2}H_{s},\partial_{x}^{2}H_{b},\partial_{x}^{2}V_{s},\partial_{x}^{2}V_{b},\partial_{x}U_{s},\partial_{x}U_{b},\partial_{x}V_{s},\partial_{x}V_{b})(t^{\prime},\cdot)\|_{H^{s}}\Big{)}\exp(C\,c_{0}M_{0}\,(t-t^{\prime}))\operatorname{{\rm d}\!}t.

Now, we use in the integrand the triangle inequality

(xHsκ,xHbκ)(t,)Hs(xH˙s,xH˙b)(t,)L2+(xHs,xHb)(t,)Hs.\|(\partial_{x}H_{s}^{\kappa},\partial_{x}H_{b}^{\kappa})(t^{\prime},\cdot)\|_{H^{s}}\leq\|(\partial_{x}\dot{H}_{s},\partial_{x}\dot{H}_{b})(t^{\prime},\cdot)\|_{L^{2}}+\|(\partial_{x}H_{s},\partial_{x}H_{b})(t^{\prime},\cdot)\|_{H^{s}}.

The first contribution may be absorbed by the left-hand side if κ\kappa is sufficiently small (depending on c,C,c0M0,T0c,C,c_{0}M_{0},T_{0}), and the second contribution is estimated, as other terms, using the assumption

sup({(Hs,Hb,Us,Ub)(t,)Hs+2:t[0,T0]})c0M0.\sup\big{(}\big{\{}\|(H_{s},H_{b},U_{s},U_{b})(t,\cdot)\|_{H^{s+2}}\ :\ t\in[0,T_{0}]\big{\}}\big{)}\leq c_{0}M_{0}.

Applying then Gronwall’s Lemma, we find that

(H˙s,H˙b,U˙s,U˙b,V˙s,V˙b)(t,)L2κCc0M0K\|(\dot{H}_{s},\dot{H}_{b},\dot{U}_{s},\dot{U}_{b},\dot{V}_{s},\dot{V}_{b})(t,\cdot)\|_{L^{2}}\leq\kappa Cc_{0}M_{0}K (2.14)

where KK depends only on Cc0M0T0Cc_{0}M_{0}T_{0}.

By using again the triangle inequality, we can lower further κ\kappa (depending on c0c_{0}) so that (2.14) implies

x,(ρs,ρb,Hsκ(t,x),Hbκ(t,x),Usκ(t,x),Ubκ(t,x))𝔭2ς/(3c0)\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},H_{s}^{\kappa}(t,x),H_{b}^{\kappa}(t,x),U_{s}^{\kappa}(t,x),U_{b}^{\kappa}(t,x))\in\mathfrak{p}^{2\varsigma/(3c_{0})}

and

(Hsκ,Hbκ,Usκ,Ubκ,Vsκ,Vbκ)(t,)Hs32c0M0.\|(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa},V_{s}^{\kappa},V_{b}^{\kappa})(t,\cdot)\|_{H^{s}}\leq\frac{3}{2}c_{0}M_{0}.

Hence by the usual continuity argument we infer that (Hsκ,Hbκ,Usκ,Ubκ)(t,)(H_{s}^{\kappa},H_{b}^{\kappa},U_{s}^{\kappa},U_{b}^{\kappa})(t,\cdot) is well-defined for all t[0,T0]t\in[0,T_{0}], and (2.12)-(2.13)-(2.14) hold. This concludes the proof. ∎

3 The hydrostatic Euler equations

In this section we study the stability of the hydrostatic Euler equations for stratified flows:

th+x((1+h)(u¯+u))\displaystyle\partial_{t}h+\partial_{x}((1+h)(\underline{u}+u)) =κx2h,\displaystyle=\kappa\partial_{x}^{2}h, (3.1)
tu+(u¯+uκxh1+h)xu+1ρ¯xΨ\displaystyle\partial_{t}u+\left(\underline{u}+u-\kappa\frac{\partial_{x}h}{1+h}\right)\partial_{x}u+\frac{1}{\underline{\rho}}\partial_{x}\Psi =0,\displaystyle=0,

where the Montgomery potential Ψ\Psi is given by

Ψ(,r)=ρ¯(r)1rh(,r)dr+r0ρ¯(r)h(,r)dr=:(𝖬[ρ¯]h)(r).\Psi(\cdot,r)=\underline{\rho}(r)\int_{-1}^{r}h(\cdot,r^{\prime})\operatorname{{\rm d}\!}r^{\prime}+\int_{r}^{0}\underline{\rho}(r^{\prime})h(\cdot,r^{\prime})\operatorname{{\rm d}\!}r^{\prime}=:({\sf M}[\underline{\rho}]h)(r). (3.2)

We recall that our stability results must accommodate with solutions generated by the bilayer system that are piecewise constant and allow the comparison with continuously stratified flows. Hence we must allow for deviations that can be large pointwise, while smallness stems from integration (with respect to the rr-variable). In practice we shall manipulate simultaneously the pointwise as well as the Lr1L^{1}_{r} topologies depending on the need. This is the case for instance in the following Lemma, measuring the Lipschitz continuity with respect to the density variable of the Montgomery operator 𝖬[ρ¯]{\sf M}[\underline{\rho}] defined (3.2).

Lemma 3.1.

Let M¯>0\underline{M}>0. There exists C>0C>0 such that for any ρ¯\underline{\rho}_{\ell} ({1,2}\ell\in\{1,2\}) such that

(ρ¯,1ρ¯)Lr1×LrM¯,\|(\underline{\rho}_{\ell},\tfrac{1}{\underline{\rho}_{\ell}})\|_{L^{1}_{r}\times L^{\infty}_{r}}\leq\underline{M},

and for any hLrh\in L^{\infty}_{r}, one has for almost any r(1,0)r\in(-1,0),

|(1ρ¯1𝖬[ρ¯1]h1ρ¯2𝖬[ρ¯2]h)(r)|(M¯3|ρ¯1ρ¯2|(r)+M¯ρ¯1ρ¯2Lr1)hLr\Big{|}\Big{(}\frac{1}{\underline{\rho}_{1}}{\sf M}[\underline{\rho}_{1}]h-\frac{1}{\underline{\rho}_{2}}{\sf M}[\underline{\rho}_{2}]h\Big{)}(r)\Big{|}\leq\Big{(}\underline{M}^{3}|\underline{\rho}_{1}-\underline{\rho}_{2}|(r)+\underline{M}\|\underline{\rho}_{1}-\underline{\rho}_{2}\|_{L^{1}_{r}}\Big{)}\|h\|_{L^{\infty}_{r}}
Proof.
(1ρ¯1𝖬[ρ¯1]h1ρ¯2𝖬[ρ¯2]h)(r)=(1ρ¯1(r)1ρ¯2(r))r0ρ¯1(r)h(r)dr+1ρ¯2(r)r0(ρ¯1(r)ρ¯2(r))h(r)dr.\Big{(}\frac{1}{\underline{\rho}_{1}}{\sf M}[\underline{\rho}_{1}]h-\frac{1}{\underline{\rho}_{2}}{\sf M}[\underline{\rho}_{2}]h\Big{)}(r)=\big{(}\frac{1}{\underline{\rho}_{1}(r)}-\frac{1}{\underline{\rho}_{2}(r)}\big{)}\int_{r}^{0}\underline{\rho}_{1}(r^{\prime})h(r^{\prime})\operatorname{{\rm d}\!}r^{\prime}+\frac{1}{\underline{\rho}_{2}(r)}\int_{r}^{0}(\underline{\rho}_{1}(r^{\prime})-\underline{\rho}_{2}(r^{\prime}))h(r^{\prime})\operatorname{{\rm d}\!}r^{\prime}.

Note also that we are seeking stability estimates for the system (3.1)-(3.2) with respect to perturbations of the equations —in particular through ρ¯ρ¯bl\underline{\rho}\approx\underline{\rho}_{\rm bl} and u¯u¯bl\underline{u}\approx\underline{u}_{\rm bl}— and with respect to perturbations of the initial data.

In Section 3.1, we first state a local well-posedness result associated with the initial-value problem for the system (3.1)-(3.2), and then provide some stability estimates. These two results by themselves are not sufficient to bootstrap in a standard manner the strong convergence of solutions as the size of deviations shrink, because the topology involved in the first result, namely LrL^{\infty}_{r}, is stronger than the topology used in the second result, which is roughly speaking Lr1L^{1}_{r}. For that matter we introduce and study in Section 3.2 a refined approximate solution which, compared with the original reference solution, improves the description of solutions associated with nearby profiles. Specifically, the refined approximate solution satisfies the following three properties:

  1. i.

    it is well-defined and controlled on a time interval which is uniform with respect to κ(0,1]\kappa\in(0,1];

  2. ii.

    the difference with respect to the nearby solution is controlled for the strong norm associated with LrL^{\infty}_{r};

  3. iii.

    the difference with respect to the reference solution is controlled for the weak norm associated with Lr1L^{1}_{r}.

The resulting convergence result, Proposition 3.8, is stated and proved in Section 3.3.

3.1 Stability estimates

Proposition 3.2 (Well-posedness).

Let ss0>3/2s\geq s_{0}>3/2, ς(0,1)\varsigma\in(0,1), M¯,M0>0\underline{M},M_{0}>0 and c>1c>1. There exists T>0T>0 such that the following holds.

For all κ(0,1]\kappa\in(0,1], all (ρ¯,u¯)L((1,0))(\underline{\rho},\underline{u})\in L^{\infty}((-1,0)) such that

(u¯,ρ¯,1ρ¯)LrM¯,\|(\underline{u},\underline{\rho},\tfrac{1}{\underline{\rho}})\|_{L^{\infty}_{r}}\leq\underline{M},

and all (h0,u0)L((1,0);Hs()2)(h^{0},u^{0})\in L^{\infty}((-1,0);H^{s}(\mathbb{R})^{2}) such that for almost all r(1,0)r\in(-1,0),

x,1+h0ς,\forall x\in\mathbb{R},\quad 1+h^{0}\geq\varsigma,

and

(h0,u0)LrHxs0M0\|(h^{0},u^{0})\|_{L^{\infty}_{r}H^{s_{0}}_{x}}\leq M_{0}

there exists a unique (h,u)C([0,T);L((1,0);Hs()2)(h,u)\in C([0,T^{\star});L^{\infty}((-1,0);H^{s}(\mathbb{R})^{2}) maximal-in-time strong solution to (3.1)–(3.2) emerging from the initial data (h,u)|t=0=(h0,u0)(h,u)\big{|}_{t=0}=(h^{0},u^{0}).

Moreover, T>κTT^{\star}>\kappa T and for any t[0,κT]t\in[0,\kappa T] and almost all r(1,0)r\in(-1,0) one has

x,1+h(t,x,r)ς/c\forall x\in\mathbb{R},\quad 1+h(t,x,r)\geq\varsigma/c

and

max({(h,u)L(0,t;LrHxs),κ1/2xhL2(0,t;LrHxs)})c(h0,u0)LrHxs.\max(\{\|(h,u)\|_{L^{\infty}(0,t;L^{\infty}_{r}H^{s}_{x})},\kappa^{1/2}\|\partial_{x}h\|_{L^{2}(0,t;L^{\infty}_{r}H^{s}_{x})}\})\leq c\|(h^{0},u^{0})\|_{L^{\infty}_{r}H^{s}_{x}}.

Moreover, the maximal existence time (resp. the emerging solution in C([0,T);L((1,0);Hs()2)C([0,T^{\star});L^{\infty}((-1,0);H^{s}(\mathbb{R})^{2})) is a lower semi-continuous (resp. continuous) function of the initial data in L((1,0);Hs()2L^{\infty}((-1,0);H^{s}(\mathbb{R})^{2} and if T<T^{\star}<\infty then

(h(t,),u(t,))LrHxs0 as tT.\|(h(t,\cdot),u(t,\cdot))\|_{L^{\infty}_{r}H^{s_{0}}_{x}}\to\infty\text{ as }t\to T^{\star}.
Proof.

The proof is very similar to the proof of Proposition 2.5, using estimates for transport and transport-diffusion equations pointwisely with respect to the variable r(1,0)r\in(-1,0). The essential arguments are that L((1,0))L^{\infty}((-1,0)) is a Banach algebra and that differentiation with respect to the space variable x\partial_{x} as well as the Fourier multiplier Λs=(Idx2)s/2{\Lambda^{s}=(\operatorname{Id}-\partial_{x}^{2})^{s/2}} commute with the operator 1ρ¯𝖬[ρ¯]\tfrac{1}{\underline{\rho}}{\sf M}[\underline{\rho}], and that the linear operator 1ρ¯𝖬[ρ¯]:LrLx2LrLx2\tfrac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]:L^{\infty}_{r}L^{2}_{x}\to L^{\infty}_{r}L^{2}_{x} is bounded for any ρ¯L((1,0))\underline{\rho}\in L^{\infty}((-1,0)). ∎

Proposition 3.3 (Stability).

Let s>3/2s>3/2, ς(0,1)\varsigma\in(0,1) and M¯,M1,M2>0\underline{M},M_{1},M_{2}>0. There exists C>0C>0 such that the following holds.

Let κ(0,1]\kappa\in(0,1] and T>0T>0 be such that

CTκ.CT\leq\kappa.

Let ρ¯\underline{\rho}_{\ell}, u¯\underline{u}_{\ell} (for {1,2}\ell\in\{1,2\}) be such that

(ρ¯,1ρ¯)LrM¯.\|(\underline{\rho}_{\ell},\tfrac{1}{\underline{\rho}_{\ell}})\|_{L^{\infty}_{r}}\leq\underline{M}.

Let (h,u)(h_{\ell},u_{\ell}) be solutions to (3.1)-(3.2) (with ρ¯=ρ¯\underline{\rho}=\underline{\rho}_{\ell} and u¯=u¯\underline{u}=\underline{u}_{\ell}) defined on the interval [0,T][0,T] and satisfying

(xh1,xu1)LTLrHxsM1,(h2,u2)LTLrHxs+κ1/2xh2LrLT2HxsM2,\|(\partial_{x}h_{1},\partial_{x}u_{1})\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s}_{x}}\leq M_{1},\qquad\|(h_{2},u_{2})\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s}_{x}}+\kappa^{1/2}\,\|\partial_{x}h_{2}\|_{L^{\infty}_{r}L^{2}_{T}H^{s}_{x}}\leq M_{2},

and

essinf(t,x,r)[0,T]××(1,0)1+h1(t,x,r)ς,essinf(t,x,r)[0,T]××(1,0)1+h2(t,x,r)ς.\operatorname*{ess\,inf}_{(t,x,r)\in[0,T]\times\mathbb{R}\times(-1,0)}1+h_{1}(t,x,r)\geq\varsigma,\qquad\operatorname*{ess\,inf}_{(t,x,r)\in[0,T]\times\mathbb{R}\times(-1,0)}1+h_{2}(t,x,r)\geq\varsigma.

Then one has

max({(h1h2,u1u2)LTLr1Hxs,κ1/2x(h1h2)LT2Lr1Hxs})2(h10h20,u10u20)Lr1Hxs+CT(ρ¯1ρ¯2,u¯1u¯2)Lr1\max(\{\|(h_{1}-h_{2},u_{1}-u_{2})\|_{L^{\infty}_{T}L^{1}_{r}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}(h_{1}-h_{2})\|_{L^{2}_{T}L^{1}_{r}H^{s}_{x}}\})\\ \leq 2\|(h_{1}^{0}-h_{2}^{0},u_{1}^{0}-u_{2}^{0})\|_{L^{1}_{r}H^{s}_{x}}+CT\,\|(\underline{\rho}_{1}-\underline{\rho}_{2},\underline{u}_{1}-\underline{u}_{2})\|_{L^{1}_{r}} (3.3)

and for almost any r(1,0)r\in(-1,0),

max({(h1h2,u1u2)(,r)LTHxs,κ1/2x(h1h2)(,r)LT2Hxs})2((h10h20,u10u20)(r)Hxs+(h10h20,u10u20)Lr1Hxs)+CT(|(ρ¯1ρ¯2,u¯1u¯2)(r)|+(ρ¯1ρ¯2,u¯1u¯2)Lr1).\max(\{\|(h_{1}-h_{2},u_{1}-u_{2})(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}(h_{1}-h_{2})(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\})\\ \leq 2\big{(}\|(h_{1}^{0}-h_{2}^{0},u_{1}^{0}-u_{2}^{0})(r)\|_{H^{s}_{x}}+\|(h_{1}^{0}-h_{2}^{0},u_{1}^{0}-u_{2}^{0})\|_{L^{1}_{r}H^{s}_{x}}\big{)}\\ +CT\,\big{(}|(\underline{\rho}_{1}-\underline{\rho}_{2},\underline{u}_{1}-\underline{u}_{2})(r)|+\|(\underline{\rho}_{1}-\underline{\rho}_{2},\underline{u}_{1}-\underline{u}_{2})\|_{L^{1}_{r}}\big{)}. (3.4)
Proof.

Let us denote h˙:=h1h2\dot{h}:=h_{1}-h_{2}, u˙:=u1u2\dot{u}:=u_{1}-u_{2}, ˙u¯:=u¯1u¯2\dot{}\underline{u}:=\underline{u}_{1}-\underline{u}_{2} and ρ¯˙=ρ¯1ρ¯2\dot{\underline{\rho}}=\underline{\rho}_{1}-\underline{\rho}_{2}. We have on the time interval I:=[0,T]I:=[0,T]

{th˙+(u¯2+u2)xh˙κx2h˙=r1+r2,tu˙+(u¯2+u2+u2)xu˙=r3,\begin{cases}\partial_{t}\dot{h}+(\underline{u}_{2}+u_{2})\partial_{x}\dot{h}-\kappa\partial_{x}^{2}\dot{h}=r_{1}+r_{2},\\ \partial_{t}\dot{u}+\left(\underline{u}_{2}+u_{2}+u_{2}^{\star}\right)\partial_{x}\dot{u}=r_{3},\end{cases}

where we denote u2:=κxh21+h2u_{2}^{\star}:=-\kappa\tfrac{\partial_{x}h_{2}}{1+h_{2}},

r1:=(˙u¯+u˙)xh1h˙xu1,r2:=(1+h2)xu˙r_{1}:=-(\dot{}\underline{u}+\dot{u})\partial_{x}h_{1}-\dot{h}\partial_{x}u_{1},\quad r_{2}:=-(1+h_{2})\partial_{x}\dot{u}

and

r3:=(˙u¯+u˙κxh˙1+h2+κh˙xh1(1+h1)(1+h2))xu1(1ρ¯1𝖬[ρ¯1]1ρ¯2𝖬[ρ¯2])xh11ρ¯2𝖬[ρ¯2]xh˙.r_{3}:=-\left(\dot{}\underline{u}+\dot{u}-\kappa\tfrac{\partial_{x}\dot{h}}{1+h_{2}}+\kappa\dot{h}\tfrac{\partial_{x}h_{1}}{(1+h_{1})(1+h_{2})}\right)\partial_{x}u_{1}-\left(\tfrac{1}{\underline{\rho}_{1}}{\sf M}[\underline{\rho}_{1}]-\tfrac{1}{\underline{\rho}_{2}}{\sf M}[\underline{\rho}_{2}]\right)\partial_{x}h_{1}-\tfrac{1}{\underline{\rho}_{2}}{\sf M}[\underline{\rho}_{2}]\partial_{x}\dot{h}.

We can now use standard estimates and transport-diffusion and transport equations ([6]) to infer that there exists c0c_{0} depending only on ss such that for almost any r(1,0)r\in(-1,0), one has

max({h˙(,r)LTHxs,κ1/2xh˙(,r)LT2Hxs})(h˙(t=0,,r)Hxs+r1(,r)LT1Hxs+κ1/2r2(,r)LT2Hxs1)×exp(c0xu2(,r)LT1Hs1)\max(\{\|\dot{h}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}\dot{h}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\})\leq\Big{(}\|\dot{h}(t=0,\cdot,r)\|_{H^{s}_{x}}+\|r_{1}(\cdot,r)\|_{L^{1}_{T}H^{s}_{x}}+\kappa^{-1/2}\|r_{2}(\cdot,r)\|_{L^{2}_{T}H^{s-1}_{x}}\Big{)}\\ \times\exp(c_{0}\|\partial_{x}u_{2}(\cdot,r)\|_{L^{1}_{T}H^{s-1}})

and

u˙(,r)LTHxs(u˙(t=0,,r)Hxs+r3(,r)LT1Hxs)×exp(c0xu2(,r)+xu2(,r)LT1Hxs1).\|\dot{u}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\leq\Big{(}\|\dot{u}(t=0,\cdot,r)\|_{H^{s}_{x}}+\|r_{3}(\cdot,r)\|_{L^{1}_{T}H^{s}_{x}}\Big{)}\times\exp(c_{0}\|\partial_{x}u_{2}(\cdot,r)+\partial_{x}u_{2}^{\star}(\cdot,r)\|_{L^{1}_{T}H^{s-1}_{x}}).

Using that Hs()H^{s^{\prime}}(\mathbb{R}) is a Banach algebra for all s>1/2s^{\prime}>1/2, we find that for any t[0,T]t\in[0,T]

r1(t,,r)HxsM1×(|˙u¯(r)|+u˙(t,,r)Hxs+h˙(t,,r)Hxs),r2(t,,r)Hxs1(1+M2)u˙(t,,r)Hxs,\|r_{1}(t,\cdot,r)\|_{H^{s}_{x}}\lesssim M_{1}\times\big{(}|\dot{}\underline{u}(r)|+\|\dot{u}(t,\cdot,r)\|_{H^{s}_{x}}+\|\dot{h}(t,\cdot,r)\|_{H^{s}_{x}}\big{)},\quad\|r_{2}(t,\cdot,r)\|_{H^{s-1}_{x}}\lesssim(1+M_{2})\|\dot{u}(t,\cdot,r)\|_{H^{s}_{x}},

and, making additionally use of standard composition estimates in Sobolev spaces ([35, Appendix B]) and Lemma 3.1,

r3(t,,r)HxsC(s,M¯,M1,M2,ς)(|˙u¯(r)|+u˙(t,,r)Hxs+κh˙(t,,r)Hxs+1+|ρ¯˙(r)|+ρ¯˙Lr1)M1+M¯2xh˙(t,)Lr1Hxs.\|r_{3}(t,\cdot,r)\|_{H^{s}_{x}}\leq C(s,\underline{M},M_{1},M_{2},\varsigma)\Big{(}|\dot{}\underline{u}(r)|+\|\dot{u}(t,\cdot,r)\|_{H^{s}_{x}}+\kappa\|\dot{h}(t,\cdot,r)\|_{H^{s+1}_{x}}+|\dot{\underline{\rho}}(r)|+\|\dot{\underline{\rho}}\|_{L^{1}_{r}}\Big{)}M_{1}\\ +\underline{M}^{2}\|\partial_{x}\dot{h}(t,\cdot)\|_{L^{1}_{r}H^{s}_{x}}.

Finally, using product and composition estimates on u2=κxh2+κh21+h2xh2u_{2}^{\star}=-\kappa\partial_{x}h_{2}+\kappa\tfrac{h_{2}}{1+h_{2}}\partial_{x}h_{2}, we have

xu2(t,,r)Hxs1C(M2,ς1)κxh2(t,,r)Hxs.\|\partial_{x}u_{2}^{\star}(t,\cdot,r)\|_{H^{s-1}_{x}}\leq C(M_{2},\varsigma^{-1})\,\kappa\,\|\partial_{x}h_{2}(t,\cdot,r)\|_{H^{s}_{x}}.

Collecting these estimates we infer that there exists C>0C>0 depending only on s,M¯,M1,M2,ςs,\underline{M},M_{1},M_{2},\varsigma such that

max({h˙(,r),u˙(,r)LTHxs,κ1/2xh˙(,r)LT2Hxs})exp(CM2(T+κ1/2T1/2))×((h˙(t=0,,r),u˙(t=0,,r))Hxs+Cκ1/2T1/2(u˙(,r)LTHxs+κ1/2xh˙LT2Lr1Hxs)+CM1T×(|˙u¯(r)|+|ρ¯˙(r)|+ρ¯˙Lr1+h˙(,r)LTHxs+u˙(,r)LTHxs+κT1/2xh˙(,r)LT2Hxs)).\max(\{\|\dot{h}(\cdot,r),\dot{u}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}\dot{h}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\})\leq\exp(CM_{2}(T+\kappa^{1/2}T^{1/2}))\\ \times\Big{(}\|(\dot{h}(t=0,\cdot,r),\dot{u}(t=0,\cdot,r))\|_{H^{s}_{x}}+C\kappa^{-1/2}T^{1/2}\big{(}\|\dot{u}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}+\kappa^{1/2}\|\partial_{x}\dot{h}\|_{L^{2}_{T}L^{1}_{r}H^{s}_{x}}\big{)}\\ +CM_{1}T\times\big{(}|\dot{}\underline{u}(r)|+|\dot{\underline{\rho}}(r)|+\|\dot{\underline{\rho}}\|_{L^{1}_{r}}+\|\dot{h}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}+\|\dot{u}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}+\kappa T^{-1/2}\|\partial_{x}\dot{h}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\big{)}\Big{)}.

Hence there exists C>0C>0, depending only on s,M¯,M1,M2,ςs,\underline{M},M_{1},M_{2},\varsigma such that for any TT sufficiently small so that one has M1T(36C)1M_{1}T\leq(36C)^{-1}, (κ1/2+κ1/2M1)T1/2(18C)1(\kappa^{-1/2}+\kappa^{1/2}M_{1})T^{1/2}\leq(18C)^{-1} and M2T+M2κ1/2T1/2C1ln(3/2)M_{2}T+M_{2}\kappa^{1/2}T^{1/2}\leq C^{-1}\ln(3/2) one has

56max({(h˙(,r),u˙(,r))LTHxs,κ1/2xh˙(,r)LT2Hxs})32((h˙(t=0,,r),u˙(t=0,,r))Hxs+118κ1/2xh˙LT2Lr1Hxs)+CM1T(|˙u¯(r)|+|ρ¯˙(r)|+ρ¯˙Lr1)).\frac{5}{6}\max(\{\|(\dot{h}(\cdot,r),\dot{u}(\cdot,r))\|_{L^{\infty}_{T}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}\dot{h}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\})\\ \leq\frac{3}{2}\Big{(}\|(\dot{h}(t=0,\cdot,r),\dot{u}(t=0,\cdot,r))\|_{H^{s}_{x}}+\tfrac{1}{18}\kappa^{1/2}\|\partial_{x}\dot{h}\|_{L^{2}_{T}L^{1}_{r}H^{s}_{x}}\big{)}+CM_{1}T\,\big{(}|\dot{}\underline{u}(r)|+|\dot{\underline{\rho}}(r)|+\|\dot{\underline{\rho}}\|_{L^{1}_{r}}\big{)}\Big{)}. (3.5)

Integrating this inequality with respect to the variable rr and using Minkowski’s inequality, we infer the first stability estimate, (3.3). Plugging (3.3) in the right-hand side of (3.5), the second stability estimate, (3.4), follows immediately. ∎

Remark 3.4.

The restriction TκT\lesssim\kappa in Propositions 3.2 and 3.3 is quite stringent. In [9], some improved stability estimates concerning the system (3.1)-(3.2) were derived by the authors. The latter estimates exploit a partial symmetric structure of the equations, and demand some extra regularity with respect to the variable rr. Because we cannot afford such regularity since our stability estimates will be used with piecewise constant functions, we use in the proof of Proposition 3.3 in a stronger way the parabolic regularization of thickness diffusivity.

In order to obtain a final result on a timescale which is independent of the parameter κ(0,1]\kappa\in(0,1] we shall exploit some a priori control on a reference solution and restrict to initial data as well as shear velocity and density distributions that are close to the reference data.

3.2 Refined approximation

In this section we consider a given reference solution to the hydrostatic Euler equation (3.1)-(3.2) and build from it a refined approximate solution associated with nearby profiles. Specifically, let ρ¯ref,u¯ref,href,uref\underline{\rho}_{\rm ref},\underline{u}_{\rm ref},h_{\rm ref},u_{\rm ref} be a solution to

thref+x((1+href)(u¯ref+uref))\displaystyle\partial_{t}h_{\rm ref}+\partial_{x}((1+h_{\rm ref})(\underline{u}_{\rm ref}+u_{\rm ref})) =κx2href,\displaystyle=\kappa\partial_{x}^{2}h_{\rm ref}, (3.6)
turef+(u¯ref+urefκxhref1+href)xuref+1ρ¯ref𝖬[ρ¯ref]xhref\displaystyle\partial_{t}u_{\rm ref}+\left(\underline{u}_{\rm ref}+u_{\rm ref}-\kappa\frac{\partial_{x}h_{\rm ref}}{1+h_{\rm ref}}\right)\partial_{x}u_{\rm ref}+\frac{1}{\underline{\rho}_{\rm ref}}{\sf M}[\underline{\rho}_{\rm ref}]\partial_{x}h_{\rm ref} =0,\displaystyle=0,

where we recall that the operator 𝖬{\sf M} is defined in (3.2). Considering profiles (ρ¯,u¯)(\underline{\rho},\underline{u}) which are in some sense close to (ρ¯ref,u¯ref)(\underline{\rho}_{\rm ref},\underline{u}_{\rm ref}) we construct approximate solutions (happ,uapp)(h_{\rm app},u_{\rm app}) as the solutions to

thapp+x((1+happ)(u¯+uapp))\displaystyle\partial_{t}h_{\rm app}+\partial_{x}((1+h_{\rm app})(\underline{u}+u_{\rm app})) =κx2happ,\displaystyle=\kappa\partial_{x}^{2}h_{\rm app}, (3.7)
tuapp+(u¯+uappκxhapp1+happ)xuapp\displaystyle\partial_{t}u_{\rm app}+\left(\underline{u}+u_{\rm app}-\kappa\frac{\partial_{x}h_{\rm app}}{1+h_{\rm app}}\right)\partial_{x}u_{\rm app} =1ρ¯𝖬[ρ¯]xhref.\displaystyle=-\frac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]\partial_{x}h_{\rm ref}.

Notice first that (happ,uapp)(h_{\rm app},u_{\rm app}) satisfies approximately the hydrostatic Euler equations associated with profiles (ρ¯,u¯)(\underline{\rho},\underline{u}).

Proposition 3.5.

For any s0s\geq 0 the refined approximate solution (happ,uapp)(h^{\rm app},u^{\rm app}) satisfies

thapp+x((1+happ)(u¯+uapp))\displaystyle\partial_{t}h_{\rm app}+\partial_{x}((1+h_{\rm app})(\underline{u}+u_{\rm app})) =κx2happ,\displaystyle=\kappa\partial_{x}^{2}h_{\rm app}, (3.8)
tuapp+(u¯+uappκxhapp1+happ)xuapp+1ρ¯𝖬[ρ¯]xhapp\displaystyle\partial_{t}u_{\rm app}+\left(\underline{u}+u_{\rm app}-\kappa\frac{\partial_{x}h_{\rm app}}{1+h_{\rm app}}\right)\partial_{x}u_{\rm app}+\frac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]\partial_{x}h_{\rm app} =rrem\displaystyle=r_{\rm rem}

with

rrem(t,)LrHxsρ¯Lr1ρ¯Lr(hrefhapp)(t,)Lr1Hxs+1\|r_{\rm rem}(t,\cdot)\|_{L^{\infty}_{r}H^{s}_{x}}\leq\|\underline{\rho}\|_{L^{\infty}_{r}}\|\tfrac{1}{\underline{\rho}}\|_{L^{\infty}_{r}}\|(h_{\rm ref}-h_{\rm app})(t,\cdot)\|_{L^{1}_{r}H^{s+1}_{x}}
Proof.

We have

rrem(,r)\displaystyle r_{\rm rem}(\cdot,r) =(1ρ¯𝖬[ρ¯](xhappxhref))(,r)\displaystyle=\Big{(}\frac{1}{\underline{\rho}}{\sf M}[\underline{\rho}](\partial_{x}h_{\rm app}-\partial_{x}h_{\rm ref})\Big{)}(\cdot,r)
=1r(xhappxhref)(,r)dr+1ρ¯(r)r0ρ¯(r)(xhappxhref)(,r)dr,\displaystyle=\int_{-1}^{r}(\partial_{x}h_{\rm app}-\partial_{x}h_{\rm ref})(\cdot,r^{\prime})\operatorname{{\rm d}\!}r^{\prime}+\frac{1}{\underline{\rho}(r)}\int_{r}^{0}\underline{\rho}(r^{\prime})(\partial_{x}h_{\rm app}-\partial_{x}h_{\rm ref})(\cdot,r^{\prime})\operatorname{{\rm d}\!}r^{\prime},

and the result follows since 1sup({ρ¯(r)/ρ¯(r):(r,r)(1,0)2})ρ¯Lr1ρ¯Lr1\leq\sup(\{\underline{\rho}(r^{\prime})/\underline{\rho}(r)\ :\ (r,r^{\prime})\in(-1,0)^{2}\})\leq\|\underline{\rho}\|_{L^{\infty}_{r}}\|\tfrac{1}{\underline{\rho}}\|_{L^{\infty}_{r}}. ∎

That the above remainder term rappr_{\rm app} is small is a consequence of the subsequent Proposition 3.7. We first prove that for any initial data (happ,uapp)|t=0=(h0,u0)(h_{\rm app},u_{\rm app})|_{t=0}=(h^{0},u^{0}), the emerging solution (happ,uapp)(h_{\rm app},u_{\rm app}) is well-defined and controlled on a time interval uniform with respect to κ(0,1]\kappa\in(0,1].

Proposition 3.6.

Let s>3/2s>3/2, ς(0,1)\varsigma\in(0,1), M¯,M0,Mref>0\underline{M},M_{0},M_{\rm ref}>0 and c>1c>1. There exists C>0C>0 and T>0T>0 such that the following holds.

Let hrefC([0,Tref);L1((0,1);Hxs+1()))h_{\rm ref}\in C([0,T_{\rm ref});L^{1}((0,1);H^{s+1}_{x}(\mathbb{R}))) be such that

xhrefLTref1Lr1HxsMref.\|\partial_{x}h_{\rm ref}\|_{L^{1}_{T_{\rm ref}}L^{1}_{r}H^{s}_{x}}\leq M_{\rm ref}.

For all κ(0,1]\kappa\in(0,1], all (ρ¯,u¯)L((1,0))(\underline{\rho},\underline{u})\in L^{\infty}((-1,0)) such that

(ρ¯,1ρ¯)LrM¯,\|(\underline{\rho},\tfrac{1}{\underline{\rho}})\|_{L^{\infty}_{r}}\leq\underline{M},

and all (h0,u0)L((0,1);Hs()2)(h^{0},u^{0})\in L^{\infty}((0,1);H^{s}(\mathbb{R})^{2}) such that for almost all r(1,0)r\in(-1,0)

x,1+h0ς\forall x\in\mathbb{R},\quad 1+h^{0}\geq\varsigma

and

max({h0LrHxs1,κ1/2h0LrHxs,u0LrHxs})M0,\max(\{\|h^{0}\|_{L^{\infty}_{r}H^{s-1}_{x}},\kappa^{1/2}\|h^{0}\|_{L^{\infty}_{r}H^{s}_{x}},\|u^{0}\|_{L^{\infty}_{r}H^{s}_{x}}\})\leq M_{0},

there exists a unique (happ,uapp)C([0,T);L((0,1);Hxs()2))(h_{\rm app},u_{\rm app})\in C([0,T^{\star});L^{\infty}((0,1);H^{s}_{x}(\mathbb{R})^{2})) maximal solution to (3.7) emerging from the initial data (happ,uapp)|t=0=(h0,u0)(h_{\rm app},u_{\rm app})|_{t=0}=(h^{0},u^{0}). Moreover one has TTapp:=min({Tref,T})T^{\star}\geq T_{\rm app}:=\min(\{T_{\rm ref},T\}) and for any t[0,Tapp]t\in[0,T_{\rm app}] and almost any r(1,0)r\in(-1,0) one has the upper bound

max({happ(,r)LTappHxs1,κ1/2happ(,r)LTappHxs,κxhapp(,r)LTapp2Hxs})+uapp(,r)LTappHxscmax({h0(,r)Hxs1,κ1/2h0(t=0,,r)Hxs,u0(,r)Hxs})+CMref.\max(\{\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s-1}_{x}},\kappa^{1/2}\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s}_{x}},\kappa\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T_{\rm app}}H^{s}_{x}}\})+\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s}_{x}}\\ \leq c\max(\{\|h^{0}(\cdot,r)\|_{H^{s-1}_{x}},\kappa^{1/2}\|h^{0}(t=0,\cdot,r)\|_{H^{s}_{x}},\|u^{0}(\cdot,r)\|_{H^{s}_{x}}\})+CM_{\rm ref}.
Proof.

The existence and uniqueness of (happ,uapp)C([0,T);L((0,1);Hxs()2))(h_{\rm app},u_{\rm app})\in C([0,T^{\star});L^{\infty}((0,1);H^{s}_{x}(\mathbb{R})^{2})) maximal solution to (3.7) is obtained as in Proposition 3.2. We set T[0,T)T\in[0,T^{\star}). By standard estimates on transport and transport-diffusion equations ([6]) applied to (3.7) we have

max({happ(,r)LTHxs1,κ1/2xhapp(,r)LT2Hxs1})(h0(,r)Hxs1+rapp(,r)LT1Hxs1)×exp(c0xuapp(,r)LT1Hs1)),\max(\{\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s-1}_{x}},\kappa^{1/2}\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T}H^{s-1}_{x}}\})\leq\Big{(}\|h^{0}(\cdot,r)\|_{H^{s-1}_{x}}+\|r_{\rm app}(\cdot,r)\|_{L^{1}_{T}H^{s-1}_{x}}\Big{)}\\ \times\exp(c_{0}\|\partial_{x}u_{\rm app}(\cdot,r)\|_{L^{1}_{T}H^{s-1})}),
max({happ(,r)LTHxs,κ1/2xhapp(,r)LT2Hxs})(h0(,r)Hxs+κ1/2rapp(,r)LT2Hxs1)×exp(c0xuapp(,r)LT1Hs1)),\max(\{\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}\})\leq\Big{(}\|h^{0}(\cdot,r)\|_{H^{s}_{x}}+\kappa^{-1/2}\|r_{\rm app}(\cdot,r)\|_{L^{2}_{T}H^{{s}-1}_{x}}\Big{)}\\ \times\exp(c_{0}\|\partial_{x}u_{\rm app}(\cdot,r)\|_{L^{1}_{T}H^{s-1})}),

and

uapp(,r)LTHxs(u0(,r)Hxs+rref(,r)LT1Hxs)×exp(c0xuapp(,r)+xuapp(,r)LT1Hxs1),\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\leq\Big{(}\|u^{0}(\cdot,r)\|_{H^{s}_{x}}+\|r_{\rm ref}(\cdot,r)\|_{L^{1}_{T}H^{s}_{x}}\Big{)}\times\exp(c_{0}\|\partial_{x}u_{\rm app}(\cdot,r)+\partial_{x}u_{\rm app}^{\star}(\cdot,r)\|_{L^{1}_{T}H^{s-1}_{x}}),

where we denote uapp:=κxhapp1+happu_{\rm app}^{\star}:=-\kappa\tfrac{\partial_{x}h_{\rm app}}{1+h_{\rm app}}, rapp:=(1+happ)xuappr_{\rm app}:=-(1+h_{\rm app})\partial_{x}u_{\rm app}, rref=1ρ¯𝖬[ρ¯]xhrefr_{\rm ref}=-\frac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]\partial_{x}h_{\rm ref}, and the constant c0c_{0} depends only on ss.

Now we notice that for almost any r(1,0)r\in(-1,0),

xuapp(t,,r)Hxs1\displaystyle\|\partial_{x}u_{\rm app}^{\star}(t,\cdot,r)\|_{H^{s-1}_{x}} C(happ(t,,r)Hxs1,ς1)κxhapp(t,,r)Hxs,\displaystyle\leq C(\|h_{\rm app}(t,\cdot,r)\|_{H^{s-1}_{x}},\varsigma^{-1})\,\kappa\,\|\partial_{x}h_{\rm app}(t,\cdot,r)\|_{H^{s}_{x}},
rapp(t,,r)Hxs1\displaystyle\|r_{\rm app}(t,\cdot,r)\|_{H^{s-1}_{x}} C(happ(t,,r)Hxs1)uapp(t,,r)Hxs,\displaystyle\leq C(\|h_{\rm app}(t,\cdot,r)\|_{H^{s-1}_{x}})\|u_{\rm app}(t,\cdot,r)\|_{H^{s}_{x}},
rref(t,,r)Hxs\displaystyle\|r_{\rm ref}(t,\cdot,r)\|_{H^{s}_{x}} C(ρ¯Lr1ρ¯Lr)xhref(t,)Lr1Hxs.\displaystyle\leq C(\|\underline{\rho}\|_{L^{\infty}_{r}}\|\tfrac{1}{\underline{\rho}}\|_{L^{\infty}_{r}})\|\partial_{x}h_{\rm ref}(t,\cdot)\|_{L^{1}_{r}H^{s}_{x}}.

From this we infer that there exists CC, depending only on s,happ(,r)LTHxs1,ς1,ρ¯Lr1ρ¯Lrs,\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s-1}_{x}},\varsigma^{-1},\|\underline{\rho}\|_{L^{\infty}_{r}}\|\tfrac{1}{\underline{\rho}}\|_{L^{\infty}_{r}} such that

max({happ(,r)LTHxs1,κ1/2happ(,r)LTHxs,κxhapp(,r)LT2Hxs,uapp(,r)LTHxs})(max({h0(,r)Hxs1,κ1/2h0(t=0,,r)Hxs,u0(,r)Hxs})+C(T+T1/2)uapp(,r)LTHxs+CxhrefLT1Lr1Hxs)×exp(CTuapp(,r)LTHxs+CT1/2κxhapp(,r)LT2Hxs).\max(\{\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s-1}_{x}},\kappa^{1/2}\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}},\kappa\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}},\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\})\\ \leq\Big{(}\max(\{\|h^{0}(\cdot,r)\|_{H^{s-1}_{x}},\kappa^{1/2}\|h^{0}(t=0,\cdot,r)\|_{H^{s}_{x}},\|u^{0}(\cdot,r)\|_{H^{s}_{x}}\})\\ +C(T+T^{1/2})\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}+C\|\partial_{x}h_{\rm ref}\|_{L^{1}_{T}L^{1}_{r}H^{s}_{x}}\Big{)}\\ \times\exp(CT\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}+CT^{1/2}\kappa\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T}H^{s}_{x}}).

By the standard continuity argument, we find that

max({happ(,r)LTappHxs1,κ1/2happ(,r)LTappHxs,κxhapp(,r)LTapp2Hxs,uapp(,r)LTappHxs})cmax({h0(,r)Hxs1,κ1/2h0(t=0,,r)Hxs,u0(,r)Hxs})+CMref\max(\{\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s-1}_{x}},\kappa^{1/2}\|h_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s}_{x}},\kappa\|\partial_{x}h_{\rm app}(\cdot,r)\|_{L^{2}_{T_{\rm app}}H^{s}_{x}},\|u_{\rm app}(\cdot,r)\|_{L^{\infty}_{T_{\rm app}}H^{s}_{x}}\})\\ \leq c\,\max(\{\|h^{0}(\cdot,r)\|_{H^{s-1}_{x}},\kappa^{1/2}\|h^{0}(t=0,\cdot,r)\|_{H^{s}_{x}},\|u^{0}(\cdot,r)\|_{H^{s}_{x}}\})+CM_{\rm ref}

for almost all r(0,1)r\in(0,1) and for all Tapp[0,T]T_{\rm app}\in[0,T] such that

(Tapp+Tapp1/2)M0C1(T_{\rm app}+T_{\rm app}^{1/2})M_{0}\leq C^{-1}

where CC depends only on s,ς,M¯,cM0s,\varsigma,\underline{M},cM_{0}. This concludes the proof. ∎

We conclude this section by investigating the difference between the reference solution and the refined approximate solution.

Proposition 3.7.

Let s>3/2s>3/2, ς(0,1)\varsigma\in(0,1) and M¯,Mref,Mapp>0\underline{M},M_{\rm ref},M_{\rm app}>0. There exists C>0C>0 such that the following holds.

Let κ(0,1]\kappa\in(0,1], T>0T>0 and let ρ¯ref\underline{\rho}_{\rm ref}, u¯ref,ρ¯,u¯Lr\underline{u}_{\rm ref},\underline{\rho},\underline{u}\in L^{\infty}_{r} be such that

(ρ¯ref,1ρ¯ref,ρ¯,1ρ¯)LrM¯.\|(\underline{\rho}_{\rm ref},\tfrac{1}{\underline{\rho}_{\rm ref}},\underline{\rho},\tfrac{1}{\underline{\rho}})\|_{L^{\infty}_{r}}\leq\underline{M}.

Let (href,uref)C([0,T];L((1,0);Hs+1()2)(h_{\rm ref},u_{\rm ref})\in C([0,T];L^{\infty}((-1,0);H^{s+1}(\mathbb{R})^{2}) be a solution to (3.6) (that is (3.1)-(3.2) with (ρ¯,u¯)=(ρ¯ref,u¯ref)(\underline{\rho},\underline{u})=(\underline{\rho}_{\rm ref},\underline{u}_{\rm ref})) defined on the time interval [0,T][0,T] and satisfying

(href,uref)LTLrHxs+1Mref.\|(h_{\rm ref},u_{\rm ref})\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s+1}_{x}}\leq M_{\rm ref}.

Let (happ,uapp)C([0,T];L((1,0);Hs+1()2)(h_{\rm app},u_{\rm app})\in C([0,T];L^{\infty}((-1,0);H^{s+1}(\mathbb{R})^{2}) be solution to (3.7) defined on the time interval [0,T][0,T] and satisfying

(happ,uapp)LTLrHxs+κ1/2xhappLrLT2HxsMapp,\|(h_{\rm app},u_{\rm app})\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s}_{x}}+\kappa^{1/2}\,\|\partial_{x}h_{\rm app}\|_{L^{\infty}_{r}L^{2}_{T}H^{s}_{x}}\leq M_{\rm app},

and such that for all t[0,T]t\in[0,T] and almost all r(1,0)r\in(-1,0)

infx1+href(t,x,r)ς,infx1+happ(t,x,r)ς.\inf_{x\in\mathbb{R}}1+h_{\rm ref}(t,x,r)\geq\varsigma,\qquad\inf_{x\in\mathbb{R}}1+h_{\rm app}(t,x,r)\geq\varsigma.

Then one has

(hrefhapp,urefuapp)(,r)LTHxs((hrefhapp,urefuapp)(t=0,,r)Hxs+Cκ(|(ρ¯refρ¯,u¯refu¯)(r)|+(ρ¯refρ¯)Lr1))exp(CT/κ).\|(h_{\rm ref}-h_{\rm app},u_{\rm ref}-u_{\rm app})(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\leq\Big{(}\|(h_{\rm ref}-h_{\rm app},u_{\rm ref}-u_{\rm app})(t=0,\cdot,r)\|_{H^{s}_{x}}\\ +C\kappa\,\big{(}|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})(r)|+\|(\underline{\rho}_{\rm ref}-\underline{\rho})\|_{L^{1}_{r}}\big{)}\Big{)}\exp(CT/\kappa). (3.9)
Proof.

Let us denote h˙:=hrefhapp\dot{h}:=h_{\rm ref}-h_{\rm app}, u˙:=urefuapp\dot{u}:=u_{\rm ref}-u_{\rm app}, ˙u¯:=u¯refu¯\dot{}\underline{u}:=\underline{u}_{\rm ref}-\underline{u} and ρ¯˙=ρ¯refρ¯\dot{\underline{\rho}}=\underline{\rho}_{\rm ref}-\underline{\rho}. We have on the time interval I:=[0,T]I:=[0,T] for which both function are well-defined

{th˙+(u¯+uapp)xh˙κx2h˙=r1+r2,tu˙+(u¯+uapp+uapp)xu˙=r3,\begin{cases}\partial_{t}\dot{h}+(\underline{u}+u_{\rm app})\partial_{x}\dot{h}-\kappa\partial_{x}^{2}\dot{h}=r_{1}+r_{2},\\ \partial_{t}\dot{u}+\left(\underline{u}+u_{\rm app}+u_{\rm app}^{\star}\right)\partial_{x}\dot{u}=r_{3},\end{cases}

where uapp:=κxhapp1+happu_{\rm app}^{\star}:=-\kappa\tfrac{\partial_{x}h_{\rm app}}{1+h_{\rm app}},

r1:=(˙u¯+u˙)xhrefh˙xuref,r2:=(1+happ)xu˙r_{1}:=-(\dot{}\underline{u}+\dot{u})\partial_{x}h_{\rm ref}-\dot{h}\partial_{x}u_{\rm ref},\quad r_{2}:=-(1+h_{\rm app})\partial_{x}\dot{u}

and

r3:=(˙u¯+u˙κxh˙1+happ+κh˙xhref(1+href)(1+happ))xuref(1ρ¯ref𝖬[ρ¯ref]1ρ¯𝖬[ρ¯])xhref.r_{3}:=-\left(\dot{}\underline{u}+\dot{u}-\kappa\tfrac{\partial_{x}\dot{h}}{1+h_{\rm app}}+\kappa\dot{h}\tfrac{\partial_{x}h_{\rm ref}}{(1+h_{\rm ref})(1+h_{\rm app})}\right)\partial_{x}u_{\rm ref}-\left(\tfrac{1}{\underline{\rho}_{\rm ref}}{\sf M}[\underline{\rho}_{\rm ref}]-\tfrac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]\right)\partial_{x}h_{\rm ref}.

We can proceed as in the proof of Proposition 3.3 with some straightforward adjustments as for the contributions of r3r_{3} since the contribution 1ρ¯𝖬[ρ¯]xh˙-\tfrac{1}{\underline{\rho}}{\sf M}[\underline{\rho}]\partial_{x}\dot{h} is nonexistent.

We infer that there exists CC depending only on s,ς,M¯,Mapp,Mrefs,\varsigma,\underline{M},M_{\rm app},M_{\rm ref} such that for all κ(0,1]\kappa\in(0,1] and T0(0,T]T_{0}\in(0,T] such that CT0κCT_{0}\leq\kappa, one has for almost any r(1,0)r\in(-1,0),

max({(h˙,u˙)(,r)LT0Hxs,κ1/2xh˙(,r)LT02Hxs})2(h˙,u˙)(t=0,,r)Hxs+C2T0(|˙ρ¯(r)|+|˙u¯(r)|+˙ρ¯Lr1).\max(\{\|(\dot{h},\dot{u})(\cdot,r)\|_{L^{\infty}_{T_{0}}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}\dot{h}(\cdot,r)\|_{L^{2}_{T_{0}}H^{s}_{x}}\})\leq 2\|(\dot{h},\dot{u})(t=0,\cdot,r)\|_{H^{s}_{x}}+C^{2}T_{0}\,\big{(}|\dot{}\underline{\rho}(r)|+|\dot{}\underline{u}(r)|+\|\dot{}\underline{\rho}\|_{L^{1}_{r}}\big{)}.

Iterating this control on Tn:=min({nκ/C,T})T_{n}:=\min(\{n\kappa/C,T\}), we find that

(h˙,u˙)(,r)LTnHxs2n+1(h˙,u˙)(t=0,,r)Hxs+C2nκ(|˙ρ¯(r)|+|˙u¯(r)|+˙ρ¯Lr1),\|(\dot{h},\dot{u})(\cdot,r)\|_{L^{\infty}_{T_{n}}H^{s}_{x}}\leq 2^{n+1}\|(\dot{h},\dot{u})(t=0,\cdot,r)\|_{H^{s}_{x}}+C2^{n}\kappa\,\big{(}|\dot{}\underline{\rho}(r)|+|\dot{}\underline{u}(r)|+\|\dot{}\underline{\rho}\|_{L^{1}_{r}}\big{)},

which yields the claimed estimate. ∎

3.3 Convergence

We now conclude our analysis with the following stability result for solutions to the hydrostatic Euler equations.

Proposition 3.8 (Convergence).

Let s>3/2s>3/2, M¯,Mref,M0>0\underline{M},M_{\rm ref},M_{0}>0, and κ(0,1]\kappa\in(0,1]. Then there exists C,TC,T independent of κ\kappa and δ0>0\delta_{0}>0 (depending on κ\kappa) such that the following holds.

Let (ρ¯ref,u¯ref)L((1,0))2(\underline{\rho}_{\rm ref},\underline{u}_{\rm ref})\in L^{\infty}((-1,0))^{2} and (href,uref)C([0,T];L((1,0);Hs+2()2)(h_{\rm ref},u_{\rm ref})\in C([0,T];L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) be a solution to (3.6) (that is (3.1)-(3.2) with (ρ¯,u¯)=(ρ¯ref,u¯ref)(\underline{\rho},\underline{u})=(\underline{\rho}_{\rm ref},\underline{u}_{\rm ref})) defined on the time interval [0,T][0,T] such that

(ρ¯ref,1ρ¯ref)LrM¯,(href,uref)LTLrHxs+2+xhrefLT1Lr1Hxs+2Mref.\|(\underline{\rho}_{\rm ref},\tfrac{1}{\underline{\rho}_{\rm ref}})\|_{L^{\infty}_{r}}\leq\underline{M},\quad\|(h_{\rm ref},u_{\rm ref})\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s+2}_{x}}+\|\partial_{x}h_{\rm ref}\|_{L^{1}_{T}L^{1}_{r}H^{s+2}_{x}}\leq M_{\rm ref}.

Let (ρ¯,u¯)L((1,0))2(\underline{\rho},\underline{u})\in L^{\infty}((-1,0))^{2} and (h0,u0)L((1,0);Hs+2()2)(h^{0},u^{0})\in L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) be such that

(ρ¯,1ρ¯)LrM¯,(h0,κ1/2xh0)LrHxs+1+u0LrHxs+2M0\|(\underline{\rho},\tfrac{1}{\underline{\rho}})\|_{L^{\infty}_{r}}\leq\underline{M},\quad\|(h^{0},\kappa^{1/2}\partial_{x}h^{0})\|_{L^{\infty}_{r}H^{s+1}_{x}}+\|u^{0}\|_{L^{\infty}_{r}H^{s+2}_{x}}\leq M_{0}

and

(ρ¯refρ¯,u¯refu¯)Lr1+(href|t=0h0,uref|t=0u0)Lr1Hs+1δ0.\|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})\|_{L^{1}_{r}}+\|(h_{\rm ref}|_{t=0}-h^{0},u_{\rm ref}|_{t=0}-u^{0})\|_{L^{1}_{r}H^{s+1}}\leq\delta_{0}.

Then (h,u)C([0,T);L((1,0);Hs+2()2)(h,u)\in C([0,T^{\star});L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) the maximal-in-time solution to  (3.1)-(3.2) emerging from initial data (h,u)|t=0=(h0,u0)(h,u)|_{t=0}=(h^{0},u^{0}) is defined on the time interval [0,T][0,T] and we have for almost all r(1,0)r\in(-1,0),

(hrefh,urefu)(,r)LTHxs((hrefh,urefu)(t=0,,r)Hxs+(hrefh,urefu)(t=0,)Lr1Hxs+1+|(ρ¯refρ¯,u¯refu¯)(r)|+(ρ¯refρ¯,u¯refu¯)Lr1)×Cexp(CT/κ).\|(h_{\rm ref}-h,u_{\rm ref}-u)(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\leq\Big{(}\|(h_{\rm ref}-h_{,}u_{\rm ref}-u)(t=0,\cdot,r)\|_{H^{s}_{x}}+\|(h_{\rm ref}-h,u_{\rm ref}-u)(t=0,\cdot)\|_{L^{1}_{r}H^{s+1}_{x}}\\ +|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})(r)|+\|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})\|_{L^{1}_{r}}\Big{)}\times C\exp(CT/\kappa). (3.10)
Proof.

We first recall that Proposition 3.7 provides an estimate on the difference between the reference solution (href,uref)C([0,T];L((1,0);Hs+2()2)(h_{\rm ref},u_{\rm ref})\in C([0,T];L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) and the corresponding approximate solution defined as the solution to the system (3.7) with initial data (happ,uapp)|t=0=(h0,u0)(h_{\rm app},u_{\rm app})|_{t=0}=(h^{0},u^{0}), (happ,uapp)C([0,T];L((1,0);Hxs+2()2))(h_{\rm app},u_{\rm app})\in C([0,T];L^{\infty}((-1,0);H^{s+2}_{x}(\mathbb{R})^{2})), whose existence and control on the time interval [0,T][0,T] (lessening TT if necessary) is provided by Proposition 3.6. Specifically we have for almost any r(1,0)r\in(-1,0)

(hrefhapp,urefuapp)(,r)LTHxs+1((hrefhapp,urefuapp)(t=0,,r)Hxs+1+Cκ(|(ρ¯refρ¯,u¯refu¯)(r)|+(ρ¯refρ¯)Lr1))exp(CT/κ),\|(h_{\rm ref}-h_{\rm app},u_{\rm ref}-u_{\rm app})(\cdot,r)\|_{L^{\infty}_{T}H^{s+1}_{x}}\leq\Big{(}\|(h_{\rm ref}-h_{\rm app},u_{\rm ref}-u_{\rm app})(t=0,\cdot,r)\|_{H^{s+1}_{x}}\\ +C\kappa\,\big{(}|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})(r)|+\|(\underline{\rho}_{\rm ref}-\underline{\rho})\|_{L^{1}_{r}}\big{)}\Big{)}\exp(CT/\kappa),

where CC depends only on s,ς,M¯,Mrefs,\varsigma,\underline{M},M_{\rm ref} and M0M_{0}.

We then consider the difference between the exact solution (h,u)C([0,T);L((1,0);Hxs+2()2))(h,u)\in C([0,T^{\star});L^{\infty}((-1,0);H^{s+2}_{x}(\mathbb{R})^{2})) —whose existence is provided by Proposition 3.2— and the approximate solution. By means of the consistency result, Proposition 3.5, we can adapt the proof of Proposition 3.3 and we find that under the assumptions that

(h,u)LTLrHxs+κ1/2xhLrLT2HxsM and essinf(t,x,r)[0,T]××(1,0)1+h(t,x,r)ς\|(h,u)\|_{L^{\infty}_{T}L^{\infty}_{r}H^{s}_{x}}+\kappa^{1/2}\,\|\partial_{x}h\|_{L^{\infty}_{r}L^{2}_{T}H^{s}_{x}}\leq M\quad\text{ and }\quad\operatorname*{ess\,inf}_{(t,x,r)\in[0,T]\times\mathbb{R}\times(-1,0)}1+h(t,x,r)\geq\varsigma (3.11)

there exists C>0C>0 depending only on s,ς,M¯,Mref,Ms,\varsigma,\underline{M},M_{\rm ref},M such that for all κ(0,1]\kappa\in(0,1] and t(0,min({T,T}))t\in(0,\min(\{T,T^{\star}\})) such that CtκCt\leq\kappa and for almost any r(1,0)r\in(-1,0) one has

max({(hhapp,uuapp)(,r)LtHxs,κ1/2x(hhapp)(,r)Lt2Hxs})2(hhapp,uuapp)(t=0,,r)LrHxs+Ct(hrefhapp)(t,)Lr1Hxs+1.\max(\{\|(h-h_{\rm app},u-u_{\rm app})(\cdot,r)\|_{L^{\infty}_{t}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}(h-h_{\rm app})(\cdot,r)\|_{L^{2}_{t}H^{s}_{x}}\})\\ \leq 2\|(h-h_{\rm app},u-u_{\rm app})(t=0,\cdot,r)\|_{L^{\infty}_{r}H^{s}_{x}}+Ct\,\|(h_{\rm ref}-h_{\rm app})(t,\cdot)\|_{L^{1}_{r}H^{s+1}_{x}}.

Iterating the stability estimate on Tn:=min({nT0,T})T_{n}:=\min(\{nT_{0},T\}) we deduce that (augmenting CC if necessary)

max({(hhapp,uuapp)LtLrHxs,κ1/2x(hhapp)LrLt2Hxs})exp(CT/κ)(hhapp,uuapp)(t=0,)LrHxs+Cκexp(CT/κ)hrefhappLTLr1Hxs+1.\max(\{\|(h-h_{\rm app},u-u_{\rm app})\|_{L^{\infty}_{t}L^{\infty}_{r}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}(h-h_{\rm app})\|_{L^{\infty}_{r}L^{2}_{t}H^{s}_{x}}\})\\ \leq\exp(CT/\kappa)\|(h-h_{\rm app},u-u_{\rm app})(t=0,\cdot)\|_{L^{\infty}_{r}H^{s}_{x}}+C\kappa\exp(CT/\kappa)\,\|h_{\rm ref}-h_{\rm app}\|_{L^{\infty}_{T}L^{1}_{r}H^{s+1}_{x}}.

Since by construction (happ,uapp)|t=0=(h,u)|t=0(h_{\rm app},u_{\rm app})|_{t=0}=(h,u)|_{t=0} and using the above control on hrefhapph_{\rm ref}-h_{\rm app} we infer (augmenting CC if necessary)

max({(hhapp,uuapp)LtLrHxs,κ1/2x(hhapp)LrLt2Hxs})Cκexp(CT/κ)(hrefh,urefu)(t=0,)Lr1Hxs+1+C(κexp(CT/κ))2(ρ¯refρ¯,u¯refu¯)Lr1.\max(\{\|(h-h_{\rm app},u-u_{\rm app})\|_{L^{\infty}_{t}L^{\infty}_{r}H^{s}_{x}},\kappa^{1/2}\|\partial_{x}(h-h_{\rm app})\|_{L^{\infty}_{r}L^{2}_{t}H^{s}_{x}}\})\\ \leq C\kappa\exp(CT/\kappa)\,\|(h_{\rm ref}-h,u_{\rm ref}-u)(t=0,\cdot)\|_{L^{1}_{r}H^{s+1}_{x}}+C\big{(}\kappa\exp(CT/\kappa)\big{)}^{2}\,\|(\underline{\rho}_{\rm ref}-\underline{\rho},\underline{u}_{\rm ref}-\underline{u})\|_{L^{1}_{r}}.

Notice that this estimate implies by triangle inequality an upper bound on (h,u)LtLrHxs+κ1/2xhLrLT2Hxs\|(h,u)\|_{L^{\infty}_{t}L^{\infty}_{r}H^{s}_{x}}+\kappa^{1/2}\,\|\partial_{x}h\|_{L^{\infty}_{r}L^{2}_{T}H^{s}_{x}} which (choosing MM sufficiently large and δ0\delta_{0} sufficiently small) enforces strictly the condition (3.11), so that by the standard continuity argument the above holds without restriction on t(0,min({T,T}))t\in(0,\min(\{T,T^{\star}\})). By the persistence of regularity stated in Proposition 3.2 we infer that T>TT^{\star}>T and the above holds for any t(0,T]t\in(0,T]. The estimate (3.10) then immediately follows from the triangle inequality. ∎

4 Conclusion

Thanks to Proposition 2.7 (concerning the well-posedness and control of solutions to the bilayer system) on one hand and Proposition 3.8 (concerning the control of the deviations of nearby solutions to some given reference solutions) on the other hand, one infers immediately the announced rigorous justification of the propagation in time of the columnar motion and sharp stratification assumptions in near-bilayer situations (within the hydrostatic framework). Specifically, we have the following result.

Theorem 4.1.

Let ss0>3/2s\geq s_{0}>3/2, M¯>0\underline{M}>0 ,M0>0M_{0}>0, ς(0,1)\varsigma\in(0,1), and κ(0,1]\kappa\in(0,1]. Then there exist C>0,T>0C>0,T>0 independent of κ\kappa and δ0>0\delta_{0}>0 (depending on κ\kappa) such that the following holds.

Let (ρ¯,u¯)L((1,0))2(\underline{\rho},\underline{u})\in L^{\infty}((-1,0))^{2} and (h0,u0)L((1,0);Hs+2()2)(h^{0},u^{0})\in L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) be such that

(ρ¯,1ρ¯)LrM¯,(h0,κ1/2xh0)LrHxs+1+u0LrHxs+2M0\|(\underline{\rho},\tfrac{1}{\underline{\rho}})\|_{L^{\infty}_{r}}\leq\underline{M},\quad\|(h^{0},\kappa^{1/2}\partial_{x}h^{0})\|_{L^{\infty}_{r}H^{s+1}_{x}}+\|u^{0}\|_{L^{\infty}_{r}H^{s+2}_{x}}\leq M_{0}

and there exists (ρs,ρb,H¯s,H¯b,U¯s,U¯b)6(\rho_{s},\rho_{b},\underline{H}_{s},\underline{H}_{b},\underline{U}_{s},\underline{U}_{b})\in\mathbb{R}^{6} such that H¯s+H¯b=1\underline{H}_{s}+\underline{H}_{b}=1 and U¯s+U¯b=0\underline{U}_{s}+\underline{U}_{b}=0 as well as (Hs0,Hb0,Us0,Ub0)Hs+4()2×Hs+3()2(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0})\in H^{s+4}(\mathbb{R})^{2}\times H^{s+3}(\mathbb{R})^{2} such that the hyperbolicity condition holds:

x,(ρs,ρb,H¯s+Hs0(x),H¯b+Hb0(x),U¯s+Us0(x),U¯b+Ub0(x))𝔭ς,\forall x\in\mathbb{R},\quad(\rho_{s},\rho_{b},\underline{H}_{s}+H_{s}^{0}(x),\underline{H}_{b}+H_{b}^{0}(x),\underline{U}_{s}+U_{s}^{0}(x),\underline{U}_{b}+U_{b}^{0}(x))\in\mathfrak{p}^{\varsigma},

where 𝔭ς\mathfrak{p}^{\varsigma} is defined in (2.5), and

(Hs0,Hb0,Us0,Ub0,κxHs0,κxHb0)Hs+3M0\|(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0},\kappa\partial_{x}H_{s}^{0},\kappa\partial_{x}H_{b}^{0})\|_{H^{s+3}}\leq M_{0}

and such that denoting (ρ¯bl0,u¯bl0,hbl0,ubl0)(\underline{\rho}_{\rm bl}^{0},\underline{u}_{\rm bl}^{0},h_{\rm bl}^{0},u_{\rm bl}^{0}) through (1.4) we have

(hbl0h0,ubl0u0)Lr1Hxs+1+(ρ¯blρ¯,u¯blu¯)Lr1δ0,\|(h_{\rm bl}^{0}-h^{0},u_{\rm bl}^{0}-u^{0})\|_{L^{1}_{r}H^{s+1}_{x}}+\|(\underline{\rho}_{\rm bl}-\underline{\rho},\underline{u}_{\rm bl}-\underline{u})\|_{L^{1}_{r}}\leq\delta_{0},

then

  1. 1.

    there exists (Hs,Hb,Us,Ub)C([0,T];Hs+3()4)(H_{s},H_{b},U_{s},U_{b})\in C([0,T];H^{s+3}(\mathbb{R})^{4}) solution to (1.3) emerging from the initial data

    (Hs,Hb,Us,Ub)|t=0=(Hs0,Hb0,Us0,Ub0);(H_{s},H_{b},U_{s},U_{b})\big{|}_{t=0}=(H_{s}^{0},H_{b}^{0},U_{s}^{0},U_{b}^{0});
  2. 2.

    there exists (h,u)C([0,T];L((1,0);Hs+2()2)(h,u)\in C([0,T];L^{\infty}((-1,0);H^{s+2}(\mathbb{R})^{2}) solution to  (1.1) emerging from initial data

    (h,u)|t=0=(h0,u0);(h,u)|_{t=0}=(h^{0},u^{0});
  3. 3.

    denoting (ρ¯bl,u¯bl,hbl,ubl)(\underline{\rho}_{\rm bl},\underline{u}_{\rm bl},h_{\rm bl},u_{\rm bl}) through (1.4) we have for almost all r(1,0)r\in(-1,0),

    (hblh,ublu)(,r)LTHxs((hbl0h0,ubl0u0)(,r)Hxs+(hbl0h0,ubl0u0)Lr1Hxs+1+|(ρ¯blρ¯,u¯blu¯)(r)|+(ρ¯blρ¯,u¯blu¯)Lr1)×Cexp(Ct/κ).\|(h_{\rm bl}-h,u_{\rm bl}-u)(\cdot,r)\|_{L^{\infty}_{T}H^{s}_{x}}\leq\Big{(}\|(h_{\rm bl}^{0}-h^{0},u_{\rm bl}^{0}-u^{0})(\cdot,r)\|_{H^{s}_{x}}+\|(h_{\rm bl}^{0}-h^{0},u_{\rm bl}^{0}-u^{0})\|_{L^{1}_{r}H^{s+1}_{x}}\\ +|(\underline{\rho}_{\rm bl}-\underline{\rho},\underline{u}_{\rm bl}-\underline{u})(r)|+\|(\underline{\rho}_{\rm bl}-\underline{\rho},\underline{u}_{\rm bl}-\underline{u})\|_{L^{1}_{r}}\Big{)}\times C\exp(Ct/\kappa).
Remark 4.2.

Proposition 3.8 is not limited to the bilayer framework and applies to any suitably regular reference solution. Hence it can be combined with results analogous to Proposition 2.7 to provide results analogous to Theorem 4.1 in the one-layer and multilayer frameworks.

The result analogous to Proposition 2.7 in the one-layer framework (that is associated with the standard shallow water equation with thickness diffusivity that was discussed for instance in [24]) is stated and proved in [2, Sect. 2.2]. Notice it requires neither the discussion on the hyperbolicity domain of the non-diffusive equations (since the standard non-cavitation assumption guarantees hyperbolicity) nor the discussion on the parabolic regularization of the total velocity (since the natural symmetrizer behaves well with diffusivity contributions).

A result analogous to Proposition 2.7 in the multilayer framework follows from combining the result of [22] with the analysis of Section 2.2. In the former, it is proved that assuming sufficiently small shear velocities is a sufficient condition for the (strict) hyperbolicity of the multilayer system in the stably stratified situation. Notice however that this smallness condition is implicit, and not uniform with respect to the number of layers.

Acknowledgements

The authors thank the Institute for applied mathematics “Mauro Picone” (IAC) for its hospitality when this work was initiated, and Laboratoire Ypatia des Sciences Mathématiques LYSM CNRS-INdAM International Research Laboratory as well as Univ. Rennes funding for its financial support. MA and VD thank the program Centre Henri Lebesgue ANR-11-LABX-0020-0, for fostering an attractive mathematical environment. RB acknowledges fundings from the Italian Ministry of University and Research, PRIN 2022HSSYPN (Teseo).

References

  • [1] M. Adim. Approximating a continuously stratified hydrostatic system by the multi-layer shallow water system. arXiv preprint: 2307.11426.
  • [2] M. Adim. Modèles continument stratifiés et systèmes multi-couches pour les écoulements géophysiques. PhD thesis, Univ. Rennes, 2024.
  • [3] A. Almgren, R. Camassa, and R. Tiron. Shear instability of internal solitary waves in Euler fluids with thin pycnoclines. J. Fluid Mech., 710:324–361, 2012.
  • [4] C. J. Amick and R. E. L. Turner. A global theory of internal solitary waves in two-fluid systems. Trans. Amer. Math. Soc., 298(2):431–484, 1986.
  • [5] P. Azérad and F. Guillén. Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal., 33(4):847–859, 2001.
  • [6] H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343. Springer, 2011.
  • [7] R. Barros and W. Choi. On the hyperbolicity of two-layer flows. In Frontiers of applied and computational mathematics, pages 95–103. World Sci. Publ., Hackensack, NJ, 2008.
  • [8] S. Benzoni-Gavage and D. Serre. Multidimensional hyperbolic partial differential equations. First-order systems and applications. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2007.
  • [9] R. Bianchini and V. Duchêne. On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity. To appear in Comm. Partial Differential Equations. arXiv preprint: 2206.01058.
  • [10] D. Bogucki and C. Garrett. A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr., 23(8):1767–1776, 1993.
  • [11] J. L. Bona, D. Lannes, and J.-C. Saut. Asymptotic models for internal waves. J. Math. Pures Appl. (9), 89(6):538–566, 2008.
  • [12] Y. Brenier. Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity, 12(3):495–512, 1999.
  • [13] D. Bresch and B. Desjardins. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238(1-2):211–223, 2003.
  • [14] D. Bresch and B. Desjardins. Some diffusive capillary models of Korteweg type. C. R., Méc., Acad. Sci. Paris, 332(11):881–886, 2004.
  • [15] D. Bresch, B. Desjardins, and C.-K. Lin. On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations, 28(3-4):843–868, 2003.
  • [16] D. Bresch, B. Desjardins, and E. Zatorska. Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global κ\kappa-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities. J. Math. Pures Appl. (9), 104(4):801–836, 2015.
  • [17] D. Bresch and P. Noble. Mathematical justification of a shallow water model. Methods Appl. Anal., 14(2):87–117, 2007.
  • [18] R. Camassa and R. Tiron. Optimal two-layer approximation for continuous density stratification. J. Fluid Mech., 669:32–54, 2011.
  • [19] B. Desjardins, D. Lannes, and J.-C. Saut. Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids. Water Waves, 3(1):153–192, 2021.
  • [20] V. Duchêne. Many Models for Water Waves. Open Math Notes, OMN:202109.111309, 2021.
  • [21] V. Duchêne. Asymptotic shallow water models for internal waves in a two-fluid system with a free surface. SIAM J. Math. Anal., 42(5):2229–2260, 2010.
  • [22] V. Duchêne. A note on the well-posedness of the one-dimensional multilayer shallow water model. HaL preprint: 00922045, 2013.
  • [23] K. Furukawa, Y. Giga, M. Hieber, A. Hussein, T. Kashiwabara, and M. Wrona. Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations. Nonlinearity, 33(12):6502–6516, 2020.
  • [24] P. R. Gent. The energetically consistent shallow-water equations. Journal of the atmospheric sciences, 50(9):1323–1325, 1993.
  • [25] P. R. Gent and J. C. McWilliams. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20(1):150–155, 1990.
  • [26] J.-F. Gerbeau and B. Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B, 1(1):89–102, 2001.
  • [27] A. E. Gill. Atmosphere-ocean dynamics, volume 30 of International geophysics series. Academic Press, 1982.
  • [28] E. Grenier. On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal., 33(5):965–970, 1999.
  • [29] J. Grue, A. Jensen, P.-O. Rusås, and J. K. Sveen. Properties of large-amplitude internal waves. J. Fluid Mech., 380:257–278, 1999.
  • [30] L. N. Howard. Note on a paper of John W. Miles. J. Fluid Mech., 10:509–512, 1961.
  • [31] G. James. Internal travelling waves in the limit of a discontinuously stratified fluid. Arch. Ration. Mech. Anal., 160(1):41–90, 2001.
  • [32] V. Kamotski and G. Lebeau. On 2D Rayleigh-Taylor instabilities. Asymptot. Anal., 42(1-2):1–27, 2005.
  • [33] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.
  • [34] D. Lannes. A Stability Criterion for Two-Fluid Interfaces and Applications. Arch. Ration. Mech. Anal., 208(2):481–567, 2013.
  • [35] D. Lannes. The water waves problem, volume 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics.
  • [36] J. Li and E. S. Titi. The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation. J. Math. Pures Appl. (9), 124:30–58, 2019.
  • [37] J. Li, E. S. Titi, and G. Yuan. The primitive equations approximation of the anisotropic horizontally viscous 3DD Navier-Stokes equations. J. Differential Equations, 306:492–524, 2022.
  • [38] N. Masmoudi and T. K. Wong. On the HsH^{s} theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal., 204(1):231–271, 2012.
  • [39] J. W. Miles. On the stability of heterogeneous shear flows. J. Fluid Mech., 10:496–508, 1961.
  • [40] L. V. Ovsjannikov. Models of two-layered “shallow water”. Zh. Prikl. Mekh. i Tekhn. Fiz., (2):3–14, 180, 1979.
  • [41] X. Pu and W. Zhou. On the rigorous mathematical derivation for the viscous primitive equations with density stratification. Acta Math. Sci. Ser. B (Engl. Ed.), 43(3):1081–1104, 2023.
  • [42] X. Pu and W. Zhou. Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation. Bull. Malays. Math. Sci. Soc., 46(3):Paper No. 88, 23, 2023.
  • [43] V. M. Teshukov. On Cauchy problem for long wave equations. In Free boundary problems in continuum mechanics (Novosibirsk, 1991), volume 106 of Internat. Ser. Numer. Math., pages 331–338. Birkhäuser, Basel, 1992.
  • [44] R. E. L. Turner. Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(4):513–573, 1981.
  • [45] F. d. M. Viríssimo and P. A. Milewski. Nonlinear stability of two-layer shallow water flows with a free surface. Proc. A., 476(2236):20190594, 20, 2020.
  • [46] B. L. White and K. R. Helfrich. A model for internal bores in continuous stratification. J. Fluid Mech., 761:282–304, 2014.