This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Relating Translation functor and Jacquet functor via Chan-Wong’s comparison functor

Chang Huang Yau Mathematical Sciences Center, Tsinghua University, Haidian District, Beijing 100084, China [email protected]
Abstract.

Kei Yuen Chan and Kayue Daniel Wong constructed a functor from the category of Harish-Chandra modules of GL(n,){\mathrm{GL}}(n,{\mathbb{C}}) to the category of modules over graded Hecke algebra m{\mathbb{H}}_{m} of type A. This functor has several nice properties, such as compatible with parabolic inductions, and preserving standard and irreducible objects. Based on their results, we show this functor relates translation functor on the real side and Jacquet functor on the pp-adic side.

1. Preliminaries

Ciubotaru and Trapa [2] established functorial connections between the representation categories for some real and pp-adic groups. For the case of GL(n,){\mathrm{GL}}(n,{\mathbb{R}}), they obtained nicer properties in [3]. Later, [4] considered the simpler case of GL(n,){\mathrm{GL}}(n,{\mathbb{C}}), and matched more objects and structures defined in parallel on the real side and the pp-adic side. For example, their functors Γn,m\Gamma_{n,m} preserve parabolically induced modules, standard modules, irreducible modules, unitary modules and Dirac series.

This paper provides a new matching: the translation functor on the real side, and the Jacquet functor on the pp-adic side.

We will review some basic definitions in [4] from subsection 1.1 to 1.5, and then present our main theorem 1.3. Section 2 collects several results necessary for the subsequent proof. Section 3 provides the natural transformation claimed in the main theorem, and reduces the proof of isomorphism to objects easier to handle. Section 4 contains the most technical calculations. Section 5 discusses the dual version of theorem 1.3.

Acknowledgement

The author would like to thank Professor Bin Xu, Taiwang Deng and Qixian Zhao for patient guidance.

1.1. Translation

For a real Lie group GG, take a multiplicative functional χ\chi over Z(𝔤)Z({\mathfrak{g}}), and then there is a category 𝒞χ(G){\mathcal{HC}}_{\chi}(G) consisting of Harish-Chandra modules over GG with generalized infinitesimal character χ\chi. Fix a Cartan subalgebra 𝔥{\mathfrak{h}} of 𝔤{\mathfrak{g}}, the complex Lie algebra of GG, then χ\chi determines uniquely a Weyl group orbit in 𝔥{\mathfrak{h}}^{*} according to Harish-Chandra isomorphism. Conversely, a linear functional λ𝔥\lambda\in{\mathfrak{h}}^{*} determines a multiplicative functional χλ\chi_{\lambda} over Z(𝔤)Z({\mathfrak{g}}), and we abbretive 𝒞χλ(G){\mathcal{HC}}_{\chi_{\lambda}}(G) by 𝒞λ(G){\mathcal{HC}}_{\lambda}(G).

Chapter VII of [5] defines the translation functor Tλλ+μ:𝒞λ(G)𝒞λ+μ(G)T_{\lambda}^{\lambda+\mu}:{\mathcal{HC}}_{\lambda}(G)\to{\mathcal{HC}}_{\lambda+\mu}(G) for an integral weight μ𝔥\mu\in{\mathfrak{h}}^{*}. It is given by Tλλ+μ(X)=Pλ+μ(XFμ)T_{\lambda}^{\lambda+\mu}(X)=P_{\lambda+\mu}(X\otimes F^{\mu}), where FμF^{\mu} is a finite dimensional representation of GG with extreme weight μ\mu, and Pλ+μP_{\lambda+\mu} is the projection to (λ+μ)(\lambda+\mu)-primary subspace with respect to Z(𝔤)Z({\mathfrak{g}}).

1.2. Jacquet functor

The graded Hecke algebra m{\mathbb{H}}_{m} is generated by the polynomial ring [y1,,ym]{\mathbb{C}}[y_{1},\cdots,y_{m}] and group algebra [Sn]{\mathbb{C}}[S_{n}] subject to the relations siyiyi+1si=1s_{i}y_{i}-y_{i+1}s_{i}=1, and siyjyjsi=0,ji,i+1s_{i}y_{j}-y_{j}s_{i}=0,j\not=i,i+1, where si=(i,i+1)s_{i}=(i,i+1) are adjacent swaps that form the Coxeter generators of SnS_{n}. Denote the category of finite dimensional modules over m{\mathbb{H}}_{m} by m-Mod{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}.

There is an embedding of algebra m1m{\mathbb{H}}_{m-1}\to{\mathbb{H}}_{m} given by yiyi+1y_{i}\mapsto y_{i+1}, sisi+1s_{i}\mapsto s_{i+1}. It image is commutative with y1my_{1}\in{\mathbb{H}}_{m}. Then we may define the functor Jacx:m-Modm1-Mod{\mathrm{Jac}}_{x}:{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}} by taking the generalized aa-eigenspace with respect to y1y_{1}, where aa is any complex number.

1.3. Representations of GL(n,){\mathrm{GL}}(n,{\mathbb{C}})

Although G=GL(n,)G={\mathrm{GL}}(n,{\mathbb{C}}) has complex structure, we understand it as a real Lie group, and study its representations through (𝔤,K)({\mathfrak{g}},K)-modules.

Denote the Lie algebra of GG by 𝔤0=𝔤𝔩(n,){\mathfrak{g}}_{0}={\mathfrak{gl}}(n,{\mathbb{C}}), and its complexfication by 𝔤=𝔤0{\mathfrak{g}}={\mathfrak{g}}_{0}\otimes_{\mathbb{R}}{\mathbb{C}}. Then we have the decomposition of real vector space 𝔤=𝔤0j𝔤0{\mathfrak{g}}={\mathfrak{g}}_{0}\oplus j{\mathfrak{g}}_{0}, where jj denotes the action of 1\sqrt{-1}\in{\mathbb{C}} on 𝔤{\mathfrak{g}}. However, it is not a decomposition as complex Lie algebra.

Take the embeddings of complex Lie algebra ϕL,ϕR:𝔤0𝔤\phi^{L},\phi^{R}:{\mathfrak{g}}_{0}\to{\mathfrak{g}} defined by

ϕL(E)=12(EjiE),ϕR(E)=12(E¯+jiE¯).\phi^{L}(E)=\frac{1}{2}(E-jiE),\quad\phi^{R}(E)=\frac{1}{2}(\bar{E}+ji\bar{E}).

One may check (ϕL,ϕR):𝔤0×𝔤0𝔤(\phi^{L},\phi^{R}):{\mathfrak{g}}_{0}\times{\mathfrak{g}}_{0}\to{\mathfrak{g}} gives an isomorphism of complex Lie algebra. We may denote the element ϕL(E)+ϕR(E)𝔤\phi^{L}(E)+\phi^{R}(E^{\prime})\in{\mathfrak{g}} by (E,E)𝔤0×𝔤0(E,E^{\prime})\in{\mathfrak{g}}_{0}\times{\mathfrak{g}}_{0}.

Under this coordinate, the image of natural embedding 𝔤0𝔤0=𝔤𝔤0×𝔤0{\mathfrak{g}}_{0}\to{\mathfrak{g}}_{0}\otimes_{\mathbb{R}}{\mathbb{C}}={\mathfrak{g}}\cong{\mathfrak{g}}_{0}\times{\mathfrak{g}}_{0} is given by {(E,E¯)E𝔤0}\{(E,\bar{E})\mid E\in{\mathfrak{g}}_{0}\}, and the Cartan involution θ\theta is given by (E,E)(Et,Et)(E,E^{\prime})\mapsto(-E^{\prime t},-E^{t}). Take 𝔥0𝔤0{\mathfrak{h}}_{0}\subseteq{\mathfrak{g}}_{0} consisting of diagonal matrices, and then 𝔥=𝔥0𝔤{\mathfrak{h}}={\mathfrak{h}}_{0}\otimes_{\mathbb{R}}{\mathbb{C}}\subseteq{\mathfrak{g}} is a Cartan subalgebra, with compact part 𝔱:=𝔥θ,1={(H,H)H𝔥0}{\mathfrak{t}}:={\mathfrak{h}}^{\theta,1}=\{(H,-H)\mid H\in{\mathfrak{h}}_{0}\}, split part 𝔞:=𝔥θ,1={(H,H)H𝔥0}{\mathfrak{a}}:={\mathfrak{h}}^{\theta,-1}=\{(H,H)\mid H\in{\mathfrak{h}}_{0}\}.

The maximal compact subgroup of GG is K=U(n)K={\mathrm{U}}(n). The diagonal subgroup HH decomposes into direct product of torus part TT and split part AA; of course T=HKT=H\cap K. The Lie algebra of KK coincides with θ\theta fixed points of 𝔤0{\mathfrak{g}}_{0}. The complexfications of Lie algebra of TT, AA are exactly 𝔱{\mathfrak{t}} and 𝔞{\mathfrak{a}} respectively.

A weight λ𝔥\lambda\in{\mathfrak{h}}^{*} can be denoted by (λL,λR)(\lambda_{L},\lambda_{R}) under coordinate 𝔥𝔥0𝔥0{\mathfrak{h}}\cong{\mathfrak{h}}_{0}\oplus{\mathfrak{h}}_{0}, and (μ,ν)(\mu,\nu) under 𝔥𝔱𝔞{\mathfrak{h}}\cong{\mathfrak{t}}\oplus{\mathfrak{a}}. These two coordinates are related by μ=λLλR\mu=\lambda_{L}-\lambda_{R}, ν=λL+λR\nu=\lambda_{L}+\lambda_{R}. If μ𝔱\mu\in{\mathfrak{t}}^{*} is integral, λ\lambda can be lifted to a character of H=TAH=TA, and to a one dimensional representation λ{\mathbb{C}}_{\lambda} of the Borel subgroup BB. Then take the function space IndBGλ={fC(G)f(bg)=δ(b)12λ(b)f(g)},{\operatorname{Ind}}_{B}^{G}{\mathbb{C}}_{\lambda}=\{f\in C^{\infty}(G)\mid f(bg)=\delta(b)^{\frac{1}{2}}\lambda(b)f(g)\}, where

δ:(b1bn)i=1n|bi|2i1n\delta:\begin{pmatrix}b_{1}&&*\\ &\ddots&\\ &&b_{n}\end{pmatrix}\mapsto\prod_{i=1}^{n}|b_{i}|^{2i-1-n}

is the modular character of BB, and GG acts by right translation. Denote it by X(λ)X(\lambda), and call it principle series representation. It also has a (𝔤,K)({\mathfrak{g}},K)-module version by taking KK-finite subspace. Its infinitesimal character is given by λ\lambda.

Fix a weight λ𝔥\lambda\in{\mathfrak{h}}^{*}, and let 𝒞λ{\mathcal{HC}}_{\lambda} denote the category of Z(𝔤)Z({\mathfrak{g}})-finite (𝔤,K)({\mathfrak{g}},K)-module of GG with generalized infinitesimal character (determined by) λ\lambda. It is an Abelian category, with Grothendieck group denoted by K𝒞λK{\mathcal{HC}}_{\lambda}. This group has a basis given by {X(wλ)wWλ}\{X(w\lambda)\mid w\in W_{\lambda}\}, where Wλ={wW(𝔤,𝔥)wλλW_{\lambda}=\{w\in W({\mathfrak{g}},{\mathfrak{h}})\mid w\lambda-\lambda is integral }\}. Under the cordinate (ϕL,ϕR)(\phi^{L},\phi^{R}), W(𝔤,𝔥)=Sn×SnW({\mathfrak{g}},{\mathfrak{h}})=S_{n}\times S_{n}, and Wλ=WλL×WλRW_{\lambda}=W_{\lambda_{L}}\times W_{\lambda_{R}}. Since λLλR=μ\lambda_{L}-\lambda_{R}=\mu is integral, WλLW_{\lambda_{L}} coincides with WλRW_{\lambda_{R}} as a subgroup of Sn=W(𝔤0,𝔥0)S_{n}=W({\mathfrak{g}}_{0},{\mathfrak{h}}_{0}). Denote it by WW^{\prime}, and then Wλ=W×WW_{\lambda}=W^{\prime}\times W^{\prime}. According to theorem 2.1 of [4], the basis {X(wλ)wWλ}\{X(w\lambda)\mid w\in W_{\lambda}\} is in bijection to (ΔW)\(W×W)(\Delta W^{\prime})\backslash(W^{\prime}\times W^{\prime}), which admits a set of representatives given by W×1W×WW^{\prime}\times 1\subseteq W^{\prime}\times W^{\prime}.

1.4. Representations of m{\mathbb{H}}_{m}

There is a natural embedding m1m2m1+m2{\mathbb{H}}_{m_{1}}\otimes_{\mathbb{C}}{\mathbb{H}}_{m_{2}}\to{\mathbb{H}}_{m_{1}+m_{2}}. Hence we have the parabolic induction m1-Mod×m2-Modm1+m2-Mod{\mathbb{H}}_{m_{1}}{\textrm{-}\mathrm{Mod}}\times{\mathbb{H}}_{m_{2}}{\textrm{-}\mathrm{Mod}}\to{\mathbb{H}}_{m_{1}+m_{2}}{\textrm{-}\mathrm{Mod}} given by

M1×M2:=m1+m2m1m2(M1M2).M_{1}\times M_{2}:={\mathbb{H}}_{m_{1}+m_{2}}\otimes_{{\mathbb{H}}_{m_{1}}\otimes_{\mathbb{C}}{\mathbb{H}}_{m_{2}}}(M_{1}\boxtimes M_{2}).

Irreducible representations of m{\mathbb{H}}_{m} are classified by multi-segements in {\mathbb{C}}. By a segement [a,b][a,b] with a,ba,b\in{\mathbb{C}}, bab-a\in\mathbb{Z} we mean the set {a,a+1,b}\{a,a+1,\cdots b\}. If b<ab<a, then this set is empty.

Irreducible representation of 1=[y]{\mathbb{H}}_{1}={\mathbb{C}}[y] is given by the evaluation ψc:yc\psi_{c}:y\mapsto c at cc\in{\mathbb{C}}. Then for the segement Δ=[a,b]\Delta=[a,b] with length m=ba+1m=b-a+1, there is a representation of m{\mathbb{H}}_{m} given by ψa××ψb\psi_{a}\times\cdots\times\psi_{b}. It has a unique irreducible quotient denoted by St(Δ){\mathrm{St}}(\Delta). This is a one dimensional representation, with SmS_{m} acting by sgn{\mathrm{sgn}}, and y1,,ymy_{1},\cdots,y_{m} acting by a,,ba,\cdots,b. For Δ=\Delta=\varnothing, we define St(Δ){\mathrm{St}}(\Delta) to be the trivial representation {\mathbb{C}} of 0={\mathbb{H}}_{0}={\mathbb{C}}.

Remark 1.4.1.

By the above discussion we know

Jaca(St(Δ))={St(Δ),if Δ starts at a,0,otherwise,{\mathrm{Jac}}_{a}({\mathrm{St}}(\Delta))=\left\{\begin{aligned} &{\mathrm{St}}({}^{-}\Delta),&\textrm{if }\Delta\textrm{ starts at }a,\\ &0,&\textrm{otherwise},\end{aligned}\right.

where Δ=[a+1,b]{}^{-}\Delta=[a+1,b] if Δ=[a,b]\Delta=[a,b].

For 𝔪{\mathfrak{m}} a multi-segement in {\mathbb{C}}, enumerate its segements by Δ1,,Δn\Delta_{1},\cdots,\Delta_{n} properly; see subsection 2.4 of [4] for detail. Then St(Δ1)××St(Δn){\mathrm{St}}(\Delta_{1})\times\cdots\times{\mathrm{St}}(\Delta_{n}) would have a unique irreducible qoutient, denoted by Speh(𝔪)\mathrm{Speh}({\mathfrak{m}}). Such representations exhaust all irreducible representations of m{\mathbb{H}}_{m}. In other words, let KmK{\mathbb{H}}_{m} denote the Grothendieck group of m-Mod{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}, and then it has a basis given by

{Speh(𝔪)length of segements in 𝔪 sum up to m}.\{\mathrm{Speh}({\mathfrak{m}})\mid\textrm{length of segements in }{\mathfrak{m}}\textrm{ sum up to }m\}.

Moreover, take the graded ring

K=m0Km,K{\mathbb{H}}=\bigoplus_{m\geqslant 0}K{\mathbb{H}}_{m},

with multiplication given by parabolic induction. It is a polynomial ring (over \mathbb{Z}), with indeterminates given by {St(Δ)Δ\{{\mathrm{St}}(\Delta)\mid\Delta\subset{\mathbb{C}} segements }\}. We also denote St(Δ){\mathrm{St}}(\Delta) by [Δ][\Delta] when regarding it as an element in the KK-group.

Lemma 1.1.

[M1],[M2]K\forall[M_{1}],[M_{2}]\in K{\mathbb{H}}, Jaca([M1]×[M2])=(Jaca[M1])×[M2]+[M1]×(Jaca[M2]){\mathrm{Jac}}_{a}([M_{1}]\times[M_{2}])=({\mathrm{Jac}}_{a}[M_{1}])\times[M_{2}]+[M_{1}]\times({\mathrm{Jac}}_{a}[M_{2}]). In other words, Jaca{\mathrm{Jac}}_{a} is a derivation over the graded ring KK{\mathbb{H}}.

1.5. The functor Γn,m\Gamma_{n,m}

Let VV denote the conjugate standard representation of G=GL(n,)G={\mathrm{GL}}(n,{\mathbb{C}}). This means V=nV={\mathbb{C}}^{n}, and gGg\in G acts on it by left multiplication of the matrix g¯\bar{g}.

For X𝒞λX\in{\mathcal{HC}}_{\lambda}, Γn,m(X)=(XVm)K\Gamma_{n,m}(X)=(X\otimes V^{\otimes m})^{K} as a vector space. To make it into an m{\mathbb{H}}_{m}-module, [4] defines an action of m{\mathbb{H}}_{m} on XVmX\otimes V^{\otimes m}, which is commutative with the action of GG, and then would preserve KK-fixed point of XVX\otimes V. Here we present the conceret actions of sk,ylms_{k},y_{l}\in{\mathbb{H}}_{m} on v0v1vmXVmv_{0}\otimes v_{1}\otimes\cdots\otimes v_{m}\in X\otimes V^{\otimes m} as follows: let Ei,j𝔤0E_{i,j}\in{\mathfrak{g}}_{0} denote the n×nn\times n matrix with 11 on the (i,j)(i,j)-entry, and 0 on the other entries, and then

(1) skv0vm=\displaystyle s_{k}\cdot v_{0}\otimes\cdots\otimes v_{m}= 1i,jnv0(0,Ei,j)vk(0,Ej,i)vk+1vm,\displaystyle-\sum_{1\leqslant i,j\leqslant n}v_{0}\otimes\cdots\otimes(0,E_{i,j})v_{k}\otimes(0,E_{j,i})v_{k+1}\otimes\cdots\otimes v_{m},
ylv0vm=\displaystyle y_{l}\cdot v_{0}\otimes\cdots\otimes v_{m}= 0x<l1i,jnv0(0,Ei,j)vx(0,Ej,i)vlvm\displaystyle\sum_{0\leqslant x<l}\sum_{1\leqslant i,j\leqslant n}v_{0}\otimes\cdots\otimes(0,E_{i,j})v_{x}\otimes\cdots\otimes(0,E_{j,i})v_{l}\otimes\cdots\otimes v_{m}
+n2v0vm.\displaystyle+\frac{n}{2}v_{0}\otimes\cdots\otimes v_{m}.

According to [2, equation (2.3)], actions of sk,ylms_{k},y_{l}\in{\mathbb{H}}_{m} are commutative with ϕR(𝔤0)\phi^{R}({\mathfrak{g}}_{0}); they are commutative with ϕL(𝔤0)\phi^{L}({\mathfrak{g}}_{0}) due to the commutativtity of ϕR(𝔤0)\phi^{R}({\mathfrak{g}}_{0}) and ϕL(𝔤0)\phi^{L}({\mathfrak{g}}_{0}). According to [2, lemma 2.3.3], skms_{k}\in{\mathbb{H}}_{m} acts on XVmX\otimes V^{\otimes m} by

v0vkvk+1vmv0vk+1vkvm.v_{0}\otimes\cdots\otimes v_{k}\otimes v_{k+1}\otimes\cdots v_{m}\mapsto-v_{0}\otimes\cdots\otimes v_{k+1}\otimes v_{k}\otimes\cdots v_{m}.
Lemma 1.2.

Let λ=(μ,ν)\lambda=(\mu,\nu) be a weight with μ𝔱\mu\in{\mathfrak{t}}^{*} integral. If all μi0\mu_{i}\geqslant 0, and μ1++μn=m\mu_{1}+\cdots+\mu_{n}=m, then X(λ)X(\lambda) is sent to St(Δ1)××St(Δn){\mathrm{St}}(\Delta_{1})\times\cdots\times{\mathrm{St}}(\Delta_{n}) under the functor Γn,m\Gamma_{n,m}, where Δi=[λR,i+12,λL,i12]\Delta_{i}=[\lambda_{R,i}+\frac{1}{2},\lambda_{L,i}-\frac{1}{2}]. Otherwise, it is sent to 0.

This follows from [4, Lemma 6.1 and Theorem 6.4].

1.6. Main results

Theorem 1.3.

The following diagram is commutative:

𝒞(λL,λR)m-Modm1-Mod𝒞(λL,λR+ei)Γn,mJacλR,i+12T(λL,λR)(λL,λR+ei)Γn,m1,\leavevmode\hbox to166.28pt{\vbox to89.49pt{\pgfpicture\makeatletter\hbox{\hskip 31.17534pt\lower-73.49815pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} \pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.89946pt}{-1.66666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathcal{HC}}_{(\lambda_{L},\lambda_{R})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{81.70952pt}{-2.86945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{79.37619pt}{-59.47551pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.93222pt}{-58.57217pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathcal{HC}}_{(\lambda_{L},\lambda_{R}+e_{i})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{ {\pgfsys@beginscope{} {} {} {} \pgfsys@moveto{1.99997pt}{0.0pt}\pgfsys@lineto{-1.19998pt}{1.59998pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{-1.19998pt}{-1.59998pt}\pgfsys@fill\pgfsys@endscope}} }{}{}{{}}\pgfsys@moveto{19.43246pt}{0.0pt}\pgfsys@lineto{76.17654pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{76.17654pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.76262pt}{5.82744pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Gamma_{n,m}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{99.58466pt}{-7.608pt}\pgfsys@lineto{99.58466pt}{-46.99811pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{99.58466pt}{-46.99811pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{103.11766pt}{-29.88971pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{-8.69966pt}\pgfsys@lineto{0.0pt}{-46.20589pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{0.0pt}{-46.20589pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.84233pt}{-31.16942pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{}{}{}{{}}\pgfsys@moveto{23.46523pt}{-56.90552pt}\pgfsys@lineto{73.84322pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{73.84322pt}{-56.90552pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.279pt}{-67.27184pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Gamma_{n,m-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where ein𝔥0e_{i}\in{\mathbb{C}}^{n}\cong{\mathfrak{h}}_{0}^{*} is the iith standard unit vector. More precisely, there is a natural isomorphism Γn,m1T(λL,λR)(λL,λR+ei)JacλR,i+12Γn,m\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}\simeq{\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m}.

One of main theorems in [4] is relating (generalized) Bernstein-Zelevinsky functors on the pp-adic side with tensoring functors on the real side. Our theorem 1.3 could be regarded as a refinement of theirs. We will explain furthur in the remark after lemma 3.1.

There is also a dual statement asserting a natural isomorphism between the following compositions:

Γn,m1T(λL,λR)(λLei,λR)JacλL,i12Γn,m.\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L}-e_{i},\lambda_{R})}\simeq{\mathrm{Jac}}^{\lambda_{L,i}-\frac{1}{2}}\circ\Gamma_{n,m}.

Here, Jaca:m-Modm1-Mod{\mathrm{Jac}}^{a}:{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}} denotes the functor that takes the generalized aa-eigenspace with respect to ymmy_{m}\in{\mathbb{H}}_{m}, and regards it as an m1-Mod{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}} via the natural embedding m1m{\mathbb{H}}_{m-1}\to{\mathbb{H}}_{m}, yiyiy_{i}\mapsto y_{i}, sisis_{i}\mapsto s_{i}. We will discuss it in section 5.

Proof of Theorem 1.3 will be based on the results in [4], and the following lemma.

Lemma 1.4.

There is a filtration 0=X0X1Xn=X(λ)V0=X_{0}\subset X_{1}\subset\cdots\subset X_{n}=X(\lambda)\otimes V such that k=1,,n\forall k=1,\cdots,n,

Xk/Xk1X(λL,λR+ek).X_{k}/X_{k-1}\cong X(\lambda_{L},\lambda_{R}+e_{k}).

Here we prove the KK-group version of theorem 1.3, which asserts commutativity of the following diagram of Abelian groups:

K𝒞(λL,λR)KmK𝒞(λL,λR+ei)Km1.\leavevmode\hbox to140.59pt{\vbox to71.41pt{\pgfpicture\makeatletter\hbox{\hskip 70.29338pt\lower-35.75262pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-70.29338pt}{-35.65279pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 24.80917pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.50363pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{K\mathcal{HC}_{(\lambda_{L},\lambda_{R})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 24.80917pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 39.11812pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.8126pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{K\mathbb{H}_{m}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 15.11815pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 28.84193pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.53639pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{K\mathcal{HC}_{(\lambda_{L},\lambda_{R}+e_{i})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.84193pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 41.45145pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.14594pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{K\mathbb{H}_{m-1}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 17.45148pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope \pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-2.07988pt}{2.39986pt}\pgfsys@curveto{-1.69989pt}{0.95992pt}{-0.85313pt}{0.27998pt}{0.0pt}{0.0pt}\pgfsys@curveto{-0.85313pt}{-0.27998pt}{-1.69989pt}{-0.95992pt}{-2.07988pt}{-2.39986pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.44228pt}{20.50005pt}\pgfsys@lineto{37.1238pt}{20.50005pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.32378pt}{20.50005pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.45145pt}{10.64034pt}\pgfsys@lineto{-41.45145pt}{-24.5598pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-41.45145pt}{-24.75978pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{52.8419pt}{12.9348pt}\pgfsys@lineto{52.8419pt}{-24.5598pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{52.8419pt}{-24.75978pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.40952pt}{-33.15279pt}\pgfsys@lineto{34.79047pt}{-33.15279pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{34.99045pt}{-33.15279pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

This simpler version will be useful for Corollary 3.4, and subsequently Theorem 1.3. It sufficies to prove commutativity for the basis of K𝒞λK{\mathcal{HC}}_{\lambda} given by principle series {X(wλL,λR)wW}\{X(w\lambda_{L},\lambda_{R})\mid w\in W^{\prime}\}. We may denote (wλL,λR)(w\lambda_{L},\lambda_{R}) by λ=(λL,λR)\lambda^{\prime}=(\lambda_{L}^{\prime},\lambda_{R}). Take the index set I={kλL,k>λR,k=λR,i}I=\{k\mid\lambda_{L,k}^{\prime}>\lambda_{R,k}=\lambda_{R,i}\}. According to lemma 1.1 and lemma 1.2, we have the following in Km1K{\mathbb{H}}_{m-1} if Γn,m(X(λ))0\Gamma_{n,m}(X(\lambda^{\prime}))\not=0:

JacλR,i+12Γn,m[X(λL,λR)]=\displaystyle{\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m}[X(\lambda_{L}^{\prime},\lambda_{R})]= JacλR,i+12([Δ1]××[Δn])\displaystyle{\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}([\Delta_{1}]\times\cdots\times[\Delta_{n}])
=\displaystyle= kI[Δ1]××[Δk]××[Δn],\displaystyle\sum_{k\in I}[\Delta_{1}]\times\cdots\times[{}^{-}\Delta_{k}]\times\cdots\times[\Delta_{n}],

where Δk=[λR,k+12,λL,k12]\Delta_{k}=[\lambda_{R,k}+\frac{1}{2},\lambda_{L,k}^{\prime}-\frac{1}{2}], and Δk=[λR,k+32,λL,k12]{}^{-}\Delta_{k}=[\lambda_{R,k}+\frac{3}{2},\lambda_{L,k}^{\prime}-\frac{1}{2}] is obtained from Δk\Delta_{k} by deleting its beginning. On the other hand, in the Grothendieck group of 𝒞{\mathcal{HC}} we have

T(λL,λR)(λL,λR+ei)[X(λL,λR)]=P(λL,λR+ei)(k=1n[X(λL,λR+ek)])=λR,k=λR,i[X(λL,λR+ek)]T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}[X(\lambda_{L}^{\prime},\lambda_{R})]=P_{(\lambda_{L},\lambda_{R}+e_{i})}\left(\sum_{k=1}^{n}[X(\lambda_{L}^{\prime},\lambda_{R}+e_{k})]\right)=\sum_{\lambda_{R,k}=\lambda_{R,i}}[X(\lambda_{L}^{\prime},\lambda_{R}+e_{k})]

according to lemma 1.4. Note that if λL,kλR,k+1\lambda_{L,k}^{\prime}\geqslant\lambda_{R,k}+1, then

Γn,m1[X(λL,λR+ek)]=[Δ1]××[Δk]××[Δn],\Gamma_{n,m-1}[X(\lambda_{L}^{\prime},\lambda_{R}+e_{k})]=[\Delta_{1}]\times\cdots\times[{}^{-}\Delta_{k}]\times\cdots\times[\Delta_{n}],

and otherwise is 0. Therefore, we have Γn,m1T(λL,λR)(λL,λR+ei)=JacλR,i+12Γn,m\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}={\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m} holds for such X(wλL,λR)X(w\lambda_{L},\lambda_{R}). The case when Γn,m(X(λ))=0\Gamma_{n,m}(X(\lambda^{\prime}))=0 is trivial. We thus conclude the commutativity for KK-groups.

2. Parabolic induction over GL(n,){\mathrm{GL}}(n,{\mathbb{C}})

Suppose τ\tau is a Casselman-Wallach representation of PP, a parabolic subgroup of GG. Then we may define its parabolic induction by taking the space

IndPGτ={f:Gτ smoothf(pk)=δ12(p)(pf(k))},{\operatorname{Ind}}_{P}^{G}\tau=\{f:G\to\tau\textrm{ smooth}\mid f(pk)=\delta^{\frac{1}{2}}(p)(p\cdot f(k))\},

where δ\delta is the modular character of PP, and GG acts on it by right translation. Parabolic induction also has its (𝔤,K)({\mathfrak{g}},K)-module version.

2.1. Mackey isomorphism

For any Harish-Chandra module ZZ of GG, there is a standard Mackey isomorphism (IndPGτ)ZIndPG(τZ)({\operatorname{Ind}}_{P}^{G}\tau)\otimes Z\cong{\operatorname{Ind}}_{P}^{G}(\tau\otimes Z) sending fzf\otimes z to the function [gf(g)z][g\mapsto f(g)\otimes z]; see for example [5, Theorem 2.103].

Then we may give

Proof of lemma 1.4. We have to establish a filtration over X(λ)V=IndBG(λ)VIndBG(λV)X(\lambda)\otimes V={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda})\otimes V\cong{\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V). Consider the standard flag on V=nV={\mathbb{C}}^{n}: 0=V0V1Vn=V0=V_{0}\subset V_{1}\subset\cdots\subset V_{n}=V, where Vk=span{e1,,ek}V_{k}=\operatorname{span}\{e_{1},\cdots,e_{k}\} consists of column vectors with first kk components non-zero only. It is also a filtration of BB-representation. Hence, X(λ)VX(\lambda)\otimes V would have a filtration 0=X0X1Xn0=X_{0}\subset X_{1}\subset\cdots\subset X_{n} given by

Xk=IndBG(λVk).X_{k}={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V_{k}).

Since parabolic induction is exact, we know

Xk/Xk1IndBG(λ(Vk/Vk1)),X_{k}/X_{k-1}\cong{\operatorname{Ind}}_{B}^{G}\left({\mathbb{C}}_{\lambda}\otimes(V_{k}/V_{k-1})\right),

where

λ(Vk/Vk1)=(λL,λR+ek){\mathbb{C}}_{\lambda}\otimes(V_{k}/V_{k-1})={\mathbb{C}}_{(\lambda_{L},\lambda_{R}+e_{k})}

as representation of BB. Consequently, Xk/Xk1X(λL,λR+ek)X_{k}/X_{k-1}\cong X(\lambda_{L},\lambda_{R}+e_{k}), and lemma 1.4 follows. ∎

2.2. Frobenius reciporcity

There is a Frobenius reciporcity (IndPGτ)KτKP({\operatorname{Ind}}_{P}^{G}\tau)^{K}\cong\tau^{K\cap P} given by evaluatinng ff(1)f\mapsto f(1).

As a corollary, there is an isomorphism

(2) Φ:IndBG(λV)K(μVm)T.\Phi:{\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V)^{K}\cong({\mathbb{C}}_{\mu}\otimes V^{\otimes m})^{T}.

Note that as TT-representation,

V=k=1nek,V=\bigoplus_{k=1}^{n}{\mathbb{C}}_{-e_{k}},

where the ek-e_{k}-weight space is spanned by ekn=Ve_{k}\in{\mathbb{C}}^{n}=V. For κ:{1,,m}{1,,n}\kappa:\{1,\cdots,m\}\to\{1,\cdots,n\}, define eκ:=eκ(1)eκ(m)Vme_{\kappa}:=e_{\kappa(1)}\otimes\cdots\otimes e_{\kappa(m)}\in V^{\otimes m}. Then we know (μVm)T({\mathbb{C}}_{\mu}\otimes V^{\otimes m})^{T} has a basis given by

{1eκ#κ1(i)=μi}.\{1\otimes e_{\kappa}\mid\#\kappa^{-1}(i)=\mu_{i}\}.

In particular, this space would be non-zero only when μi0\mu_{i}\geqslant 0 and μ1++μn=m\mu_{1}+\cdots+\mu_{n}=m, and in this case it has dimension m!μ1!μn!\frac{m!}{\mu_{1}!\cdots\mu_{n}!}. This is the proof for lemma 1.2 given in [4, subsection 5.2].

2.3. Details of compatibility with Γn,m\Gamma_{n,m}

[4, Section 5] proved Γn,m\Gamma_{n,m} is compatible with parabolic induction. More explicitly, for Y1𝒞(μ1,ν1)Y_{1}\in{\mathcal{HC}}_{(\mu_{1},\nu_{1})}, Y2𝒞(μ2,ν2)Y_{2}\in{\mathcal{HC}}_{(\mu_{2},\nu_{2})}, there is natural isomorphism Γn,m(Y1×Y2)Γn1,m1(Y1)×Γn2,m2(Y2)\Gamma_{n,m}(Y_{1}\times Y_{2})\cong\Gamma_{n_{1},m_{1}}(Y_{1})\times\Gamma_{n_{2},m_{2}}(Y_{2}), where n=n1+n2n=n_{1}+n_{2}, m=m1+m2m=m_{1}+m_{2}, and mim_{i} is the sum of components of μi\mu_{i}. Here we review some details in its proof.

There is a natural embedding Sm1×Sm2SmS_{m_{1}}\times S_{m_{2}}\hookrightarrow S_{m}. Take Sm1,m2SmS^{m_{1},m_{2}}\subseteq S_{m} to be the set of minimal representatives of (Sm1×Sm2)\Sm(S_{m_{1}}\times S_{m_{2}})\backslash S_{m}.

Let {e1,,en}\{e_{1},\cdots,e_{n}\} be the standard basis of V=nV={\mathbb{C}}^{n}, V1=span{e1,,en1}V_{1}=\operatorname{span}_{\mathbb{C}}\{e_{1},\cdots,e_{n_{1}}\} and V2=span{en1+1,,en}V_{2}=\operatorname{span}_{\mathbb{C}}\{e_{n_{1}+1},\cdots,e_{n}\}. Then for wSm1,m2w\in S^{m_{1},m_{2}}, there is 𝒳wVm\mathcal{X}_{w}\subseteq V^{\otimes m} spanned by vectors v1vmv_{1}\otimes\cdots\otimes v_{m} where

vi{V1,if w(i){1,,m1},V2,if w(i){m1+1,,m}.v_{i}\in\left\{\begin{aligned} &V_{1},&\textrm{if }w(i)\in\{1,\cdots,m_{1}\},\\ &V_{2},&\textrm{if }w(i)\in\{m_{1}+1,\cdots,m\}.\end{aligned}\right.

Take the parabolic subgroup PG=GL(n,)P\subseteq G={\mathrm{GL}}(n,{\mathbb{C}}) consisting of matrices

(g1g2),giGL(ni,).\begin{pmatrix}g_{1}&*\\ &g_{2}\end{pmatrix},\quad g_{i}\in{\mathrm{GL}}(n_{i},{\mathbb{C}}).

Then PK=K1×K2P\cap K=K_{1}\times K_{2}, with Ki=U(ni)Gi:=GL(ni,)K_{i}={\mathrm{U}}(n_{i})\subseteq G_{i}:={\mathrm{GL}}(n_{i},{\mathbb{C}}). Denote Y=Y1Y2Y=Y_{1}\boxtimes Y_{2}, and PP acts on it via PG1×G2P\twoheadrightarrow G_{1}\times G_{2}. Since Γn,m(Y1×Y2)=(IndPG(Y)Vm)K\Gamma_{n,m}(Y_{1}\times Y_{2})=\left({\operatorname{Ind}}_{P}^{G}(Y)\otimes V^{\otimes m}\right)^{K} is isomorphic to IndPG(YVm)K(YVm)K1×K2{\operatorname{Ind}}_{P}^{G}(Y\otimes V^{\otimes m})^{K}\cong(Y\otimes V^{\otimes m})^{K_{1}\times K_{2}}, we may denote by 𝒲w\mathcal{W}_{w} the subspace of Γn,m(Y1×Y2)\Gamma_{n,m}(Y_{1}\times Y_{2}) sent to (Y𝒳w)K1×K2(Y\otimes\mathcal{X}_{w})^{K_{1}\times K_{2}} via this isomorphism .

Proposition 2.1.

As vector space, Γn,m(Y1×Y2)\Gamma_{n,m}(Y_{1}\times Y_{2}) is the direct sum of 𝒲w,\mathcal{W}_{w}, wSm1,m2w\in S^{m_{1},m_{2}}. Moreover, 𝒲1Γn1,m1(Y1)Γn2,m2(Y2)\mathcal{W}_{1}\cong\Gamma_{n_{1},m_{1}}(Y_{1})\boxtimes\Gamma_{n_{2},m_{2}}(Y_{2}) as m1m2{\mathbb{H}}_{m_{1}}\otimes{\mathbb{H}}_{m_{2}}-modules, and wSmw\in S_{m} sends 𝒲1\mathcal{W}_{1} to 𝒲w\mathcal{W}_{w}.

The first and second statement is Claim 1 and 2 in proof of [4, theorem 5.7]. The third statement is implied by [4, lemma 5.5]; we have also pointed in subsection 1.5 that wSmmw\in S_{m}\subseteq{\mathbb{H}}_{m} acts on xv1vm(XVm)K=Γn,m(X)x\otimes v_{1}\otimes\cdots\otimes v_{m}\in(X\otimes V^{\otimes m})^{K}=\Gamma_{n,m}(X) by

xv1vm(1)l(w)xvw1(1)vw1(m).x\otimes v_{1}\otimes\cdots\otimes v_{m}\mapsto(-1)^{l(w)}x\otimes v_{w^{-1}(1)}\otimes\cdots\otimes v_{w^{-1}(m)}.

3. Natural transformation

Here we define a natural transformation Γn,m1T(λL,λR)(λL,λR+ei)JacλR,i+12Γn,m\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}\Rightarrow{\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m}, and discuss how to prove it to be an isomorphism.

3.1. Decompose into generalized eigenspaces

Denote the forgetful functor by For:m-Modm1-Mod{\mathrm{For}}:{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}. There is a natural isomorphism

ForaJaca.{\mathrm{For}}\simeq\bigoplus_{a\in{\mathbb{C}}}{\mathrm{Jac}}_{a}.

On the level of objects, it is merely the decomposition into generalized eigenspaces of y1y_{1}.

Consequently, there is a natural isomorphism of functors 𝒞λm1-Mod{\mathcal{HC}}_{\lambda}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}:

ForΓn,maJacaΓn,m.{\mathrm{For}}\circ\Gamma_{n,m}\simeq\bigoplus_{a\in{\mathbb{C}}}{\mathrm{Jac}}_{a}\circ\Gamma_{n,m}.

We will see later that if aλR,k+12,ka\not=\lambda_{R,k}+\frac{1}{2},\forall k, then JacaΓn,m{\mathrm{Jac}}_{a}\circ\Gamma_{n,m} would be zero. Hence the right hand side of above isomorphism would be a finite sum.

3.2. Consistency of m1{\mathbb{H}}_{m-1} actions

Denote the category of Z(𝔤)Z({\mathfrak{g}})-finite Harish-Chandra modules over G=GL(n,)G={\mathrm{GL}}(n,{\mathbb{C}}) by 𝒞fin{\mathcal{HC}}_{\mathrm{fin}}. There is a natural transformation of functors 𝒞λ𝒞fin{\mathcal{HC}}_{\lambda}\to{\mathcal{HC}}_{\mathrm{fin}} given by

T(λL,λR)(λL,λR+ei)(X)XV.T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(X)\hookrightarrow X\otimes V.

Consequently, we have Γn,m1T(λL,λR)(λL,λR+ei)Γn,m1(V)\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}\Rightarrow\Gamma_{n,m-1}\circ(-\otimes V).

Lemma 3.1.

As functors 𝒞λm1-Mod{\mathcal{HC}}_{\lambda}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}, Γn,m1(V)\Gamma_{n,m-1}\circ(-\otimes V) coincides with ForΓn,m{\mathrm{For}}\circ\Gamma_{n,m}. More explictly, X𝒞λ\forall X\in{\mathcal{HC}}_{\lambda}, the action of m1{\mathbb{H}}_{m-1} on Γn,m1(XV)=(XVm)K\Gamma_{n,m-1}(X\otimes V)=(X\otimes V^{\otimes m})^{K} coincides with that on ForΓn,m(X)=(XVm)K{\mathrm{For}}\circ\Gamma_{n,m}(X)=(X\otimes V^{\otimes m})^{K}.

Remark 3.2.1.

This lemma is a straightforward consequence of [4, Theorem 8.2], obtained by setting i=1i=1, and considering τ\tau as the trivial representation of S1S_{1}. Consequently, our main theorem (proposition 3.2) can be regarded as a refinement of this established result.

Proof. According to (1), the action of ylm1y_{l}\in{\mathbb{H}}_{m-1} on v0vm(XVm)K=ForΓn,m(X)v_{0}\otimes\cdots\otimes v_{m}\in(X\otimes V^{\otimes m})^{K}={\mathrm{For}}\circ\Gamma_{n,m}(X) is

ylv0vm=n2v0vm+0x<l+11i,jnv0(0,Ei,j)vx(0,Ej,i)vl+1vm,y_{l}\cdot v_{0}\otimes\cdots\otimes v_{m}=\frac{n}{2}v_{0}\otimes\cdots\otimes v_{m}+\sum_{0\leqslant x<l+1}\sum_{1\leqslant i,j\leqslant n}v_{0}\otimes\cdots\otimes(0,E_{i,j})v_{x}\otimes\cdots\otimes(0,E_{j,i})v_{l+1}\otimes\cdots\otimes v_{m},

and the action of ylm1y_{l}\in{\mathbb{H}}_{m-1} on v0vm(XVm)K=Γn,m1(XV)v_{0}\otimes\cdots\otimes v_{m}\in(X\otimes V^{\otimes m})^{K}=\Gamma_{n,m-1}(X\otimes V) would be

yl(v0v1)vm=\displaystyle y_{l}\cdot(v_{0}\otimes v_{1})\otimes\cdots\otimes v_{m}= n2v0vm+1i,jn(0,Ei,j)(v0v1)v2(0,Ej,i)vl+1vm\displaystyle\frac{n}{2}v_{0}\otimes\cdots\otimes v_{m}+\sum_{1\leqslant i,j\leqslant n}(0,E_{i,j})(v_{0}\otimes v_{1})\otimes v_{2}\otimes\cdots\otimes(0,E_{j,i})v_{l+1}\otimes\cdots\otimes v_{m}
+2x<l+11i,jn(v0v1)(0,Ei,j)vx(0,Ej,i)vl+1vm.\displaystyle+\sum_{2\leqslant x<l+1}\sum_{1\leqslant i,j\leqslant n}(v_{0}\otimes v_{1})\otimes\cdots\otimes(0,E_{i,j})v_{x}\otimes\cdots\otimes(0,E_{j,i})v_{l+1}\otimes\cdots\otimes v_{m}.

Since by definition of the action of 𝔤{\mathfrak{g}} on XVX\otimes V, we know

(0,Ei,j)(v0v1)=(0,Ei,j)v0v1+v0(0,Ei,j)v1,(0,E_{i,j})(v_{0}\otimes v_{1})=(0,E_{i,j})v_{0}\otimes v_{1}+v_{0}\otimes(0,E_{i,j})v_{1},

Then the consistency of actions of ylm1y_{l}\in{\mathbb{H}}_{m-1} follows easily.

The consistency of actions of skm1s_{k}\in{\mathbb{H}}_{m-1} follows either by direct computation like above, or the observation of [2, lemma 2.3.3] as pointed out in subsection 1.5. ∎

Now we obtain the natural transformations of functors 𝒞λm1-Mod{\mathcal{HC}}_{\lambda}\to{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}

θai:Γn,m1T(λL,λR)(λL,λR+ei)ForΓn,mJacaΓn,m.\theta^{i}_{a}:\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}\Rightarrow{\mathrm{For}}\circ\Gamma_{n,m}\Rightarrow{\mathrm{Jac}}_{a}\circ\Gamma_{n,m}.

We have to prove

Proposition 3.2.

X𝒞λ\forall X\in{\mathcal{HC}}_{\lambda}, θa,Xi:Γn,m1T(λL,λR)(λL,λR+ei)(X)JacaΓn,m(X)\theta^{i}_{a,X}:\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(X)\to{\mathrm{Jac}}_{a}\circ\Gamma_{n,m}(X) is an isomorphism when a=λR,i+12a=\lambda_{R,i}+\frac{1}{2}, and zero otherwise.

3.3. On principle series

We claim that proposition 3.2 holds for each principle series X(wλ),wWλX(w\lambda),w\in W_{\lambda}. It sufficies to prove for X(λ)X(\lambda), as the other X(wλ)X(w\lambda) can be easily incorporated into subsequent argument well.

We have given a filtration 0=X0X1Xn0=X_{0}\subset X_{1}\subset\cdots\subset X_{n} of X(λ)VX(\lambda)\otimes V in subsection 2.1, where Xk=IndBG(λVk)X_{k}={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V_{k}), and Xk/Xk1X(λL,λR+ek)X_{k}/X_{k-1}\cong X(\lambda_{L},\lambda_{R}+e_{k}).

Proposition 3.3.

Each Γn,m1(Xk)=(XkV(m1))KΓn,m(X)\Gamma_{n,m-1}(X_{k})=(X_{k}\otimes V^{\otimes(m-1)})^{K}\subseteq\Gamma_{n,m}(X) is preserved by y1my_{1}\in{\mathbb{H}}_{m}. Moreover, on Γn,m1(Xk/Xk1),\Gamma_{n,m-1}(X_{k}/X_{k-1}), y1y_{1} acts by generalized eigenvalue λR,k+12\lambda_{R,k}+\frac{1}{2}.

This proposition will be proved in section 4. Based on it, we then have

Corollary 3.4.

For priciple series X=X(λL,λR)X=X(\lambda_{L},\lambda_{R}),

Γn,m1T(λL,λR)(λL,λR+ei)(X)=JacλR,i+12Γn,m(X)\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(X)={\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m}(X)

as subspace, and thus m1{\mathbb{H}}_{m-1}-submodule of Γn,m\Gamma_{n,m}.

Proof. Denote Tλλ(X(λ))T_{\lambda}^{\lambda^{\prime}}\left(X(\lambda)\right) by XX^{\prime}, and regard it as the λ\lambda^{\prime}-primary subspace of X(λ)VX(\lambda)\otimes V under Z(𝔤)Z({\mathfrak{g}}). We have to prove Γn,m1(X)=(XV(m1))K\Gamma_{n,m-1}(X^{\prime})=(X^{\prime}\otimes V^{\otimes(m-1)})^{K} is invariant under action of y1y_{1}. According to [2, equation (2.3)], the endomorphism on X(λ)VX(\lambda)\otimes V given by

xv1i,jn(0,Ei,j)x(0,Ej,i)vx\otimes v\mapsto\sum_{1\leqslant i,j\leqslant n}(0,E_{i,j})x\otimes(0,E_{j,i})v

would be commutative with actions of ϕR(𝔤0)\phi^{R}({\mathfrak{g}}_{0}), and hence the whole 𝔤{\mathfrak{g}}. Then this endomorphism would preserve the λ\lambda^{\prime}-primary subspace XX^{\prime} under Z(𝔤)Z({\mathfrak{g}}). Following from the definition in (1), y1my_{1}\in{\mathbb{H}}_{m} would preserve XV(m1)X(λ)VV(m1)X^{\prime}\otimes V^{\otimes(m-1)}\subset X(\lambda)\otimes V\otimes V^{\otimes(m-1)}, and hence Γn,m1(X)=(XV(m1))K(X(λ)Vm)K=Γn,m(X(λ))\Gamma_{n,m-1}(X^{\prime})=(X^{\prime}\otimes V^{\otimes(m-1)})^{K}\subset(X(\lambda)\otimes V^{\otimes m})^{K}=\Gamma_{n,m}(X(\lambda)).

There is an induced filtration 0=X0Xn0=X_{0}^{\prime}\subseteq\cdots\subseteq X_{n}^{\prime} with Xk=XXkX_{k}^{\prime}=X^{\prime}\cap X_{k}. Then Xk/Xk1Xk/Xk1X^{\prime}_{k}/X^{\prime}_{k-1}\hookrightarrow X_{k}/X_{k-1} is exactly the λ\lambda^{\prime}-primary subspace. But Xk/Xk1X(λL,λR+ek)X_{k}/X_{k-1}\cong X(\lambda_{L},\lambda_{R}+e_{k}) is (λL,λR+ek)(\lambda_{L},\lambda_{R}+e_{k})-primary, so Xk/Xk1X_{k}^{\prime}/X_{k-1}^{\prime} is either 0, or isomorphic to X(λL,λR+ek)X(\lambda_{L},\lambda_{R}+e_{k}). The latter case happens if and only if (λL,λR+ek)(\lambda_{L},\lambda_{R}+e_{k}) belongs to the same Sn×SnS_{n}\times S_{n}-orbit as λ\lambda^{\prime}. In particular, for λ=(λL,λR+ei)\lambda^{\prime}=(\lambda_{L},\lambda_{R}+e_{i}), if λR,kλR,i\lambda_{R,k}\not=\lambda_{R,i}, then Xk/Xk1X_{k}^{\prime}/X_{k-1}^{\prime} is zero.

Due to Proposition 3.3, y1y_{1} would preserve Γn,m1(Xk)=Γn,m1(X)Γn,m1(Xk)\Gamma_{n,m-1}(X_{k}^{\prime})=\Gamma_{n,m-1}(X^{\prime})\cap\Gamma_{n,m-1}(X_{k}), and act on Γn,m1(Xk/Xk1)Γn,m1(Xk/Xk1)\Gamma_{n,m-1}(X_{k}^{\prime}/X_{k-1}^{\prime})\subseteq\Gamma_{n,m-1}(X_{k}/X_{k-1}) by generalized eignevalue λR,k+12\lambda_{R,k}+\frac{1}{2}. Combine it with the previous discussion on the filtration of Γn,m1(X)\Gamma_{n,m-1}(X^{\prime}), we know y1y_{1} would act on it by the unique generalized eigenvalue λR,i+12\lambda_{R,i}+\frac{1}{2}. Then at least Γn,m1(X)JacλR,i+12Γn,m(X)\Gamma_{n,m-1}(X^{\prime})\subseteq{\mathrm{Jac}}_{\lambda_{R,i}+\frac{1}{2}}\circ\Gamma_{n,m}(X). Since we have verified they coincide in Km1K{\mathbb{H}}_{m-1} in subsection 1.6, we may conclude they are the same as subspaces of Γn,m(X)\Gamma_{n,m}(X) now. ∎

3.4. On irreducible objects

Proposition 3.5.

Suppose XYX\twoheadrightarrow Y is an epimorphism, and proposition 3.2 holds for XX, then it also holds for YY.

Proof. For an epimorphism XYX\twoheadrightarrow Y, there is a commutative diagram due to the naturality of θai\theta^{i}_{a}:

Γn,m1T(λL,λR)(λL,λR+ei)(X)JacaΓn,m(X)Γn,m1T(λL,λR)(λL,λR+ei)(Y)JacaΓn,m(Y)θa,Xiθa,Yi.\leavevmode\hbox to172.84pt{\vbox to77.02pt{\pgfpicture\makeatletter\hbox{\hskip 86.42157pt\lower-43.0446pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-86.42157pt}{-33.97751pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 34.98311pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.10812pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(X)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 34.98311pt\hfil&\hfil\hskip 21.59998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 51.43846pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.9635pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{Jac}_{a}\circ\Gamma_{n,m}(X)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 29.83849pt\hfil\cr\vskip 16.20004pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 16.20004pt\cr\hfil\hskip 34.51437pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-30.63939pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(Y)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 34.51437pt\hfil&\hfil\hskip 21.59998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 50.96971pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-25.49475pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{Jac}_{a}\circ\Gamma_{n,m}(Y)}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 29.36974pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.25536pt}{18.70004pt}\pgfsys@lineto{26.14464pt}{18.70004pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.34462pt}{18.70004pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.04576pt}{22.76752pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta^{i}_{a,X}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-51.43846pt}{9.5563pt}\pgfsys@lineto{-51.43846pt}{-22.04382pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-51.43846pt}{-20.8039pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-51.43846pt}{-22.2438pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{56.58308pt}{10.4563pt}\pgfsys@lineto{56.58308pt}{-23.3338pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{56.58308pt}{-22.09387pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{56.58308pt}{-23.53378pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.72409pt}{-31.47751pt}\pgfsys@lineto{26.61339pt}{-31.47751pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.81337pt}{-31.47751pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.04576pt}{-39.17712pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta^{i}_{a,Y}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The vertical arrows are surjective since both functors are exact. Hence if θa,Xi\theta^{i}_{a,X} is zero or surjective, then so is θa,Yi\theta^{i}_{a,Y}.

Consequently, θa,Yi\theta^{i}_{a,Y} is zero if aλR,i+12a\not=\lambda_{R,i}+\frac{1}{2}, and is at least surjective when a=λR,i+12a=\lambda_{R,i}+\frac{1}{2}. The injectivity in the second case would follow from the fact that aθa,Yi\oplus_{a}\theta^{i}_{a,Y} is an injection given by composition:

Γn,m1T(λL,λR)(λL,λR+ei)(Y)ForΓn,m(Y)aJacaΓn,m(Y).\Gamma_{n,m-1}\circ T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L},\lambda_{R}+e_{i})}(Y)\hookrightarrow{\mathrm{For}}\circ\Gamma_{n,m}(Y)\cong\bigoplus_{a\in{\mathbb{C}}}{\mathrm{Jac}}_{a}\circ\Gamma_{n,m}(Y).

Since any irreducible object in 𝒞λ{\mathcal{HC}}_{\lambda} can be quotient of some principle series ([4, Theorem 2.2]), we know proposition 3.2 holds for irreducible objects now.

3.5. On finite length objects

One can deduce proposition 3.2 for finite-length module from naturality of θai\theta^{i}_{a} and five-lemma easily.

In the meanwhile, all objects in 𝒞λ{\mathcal{HC}}_{\lambda} is of finite length. According to [4, theorem 2.1], the irreducible objects in 𝒞λ{\mathcal{HC}}_{\lambda} are finite (up to isomorphism). If an object XX has infinitely many subquotients, then it must have one irreducible object repreating infinitely many times as its subquotients. Then XX would have infinite dimensional KK-isotypic subspaces, which contradicts to the admissibility in the definition of Harish-Chandra module.

Hence, we have fully proved proposition 3.2 (assuming proposition 3.3).

4. Generalized eigenvalues of y1y_{1}

Proposition 3.3 follows easily once we verified FΓn,m1(Xk)\forall F\in\Gamma_{n,m-1}(X_{k}),

(3) y1F=(λR,k+12)FmodΓn,m1(Xk1).y_{1}\cdot F=(\lambda_{R,k}+\frac{1}{2})F\mod\Gamma_{n,m-1}(X_{k-1}).

Its proof will be induction on n,kn,k.

The starting point is n=1n=1. In this case X=(λL,λR)X={\mathbb{C}}_{(\lambda_{L},\lambda_{R})} is a one-dimensional representation of GL(1,)=×{\mathrm{GL}}(1,{\mathbb{C}})={\mathbb{C}}^{\times}, and Γn,m(X)=St(Δ)\Gamma_{n,m}(X)={\mathrm{St}}(\Delta) is a one-dimensional module over m{\mathbb{H}}_{m}, with Δ=[λR+12,λL12]\Delta=[\lambda_{R}+\frac{1}{2},\lambda_{L}-\frac{1}{2}]. We already know y1my_{1}\in{\mathbb{H}}_{m} act by the scalar λR+12\lambda_{R}+\frac{1}{2} on St(Δ){\mathrm{St}}(\Delta), as pointed out in subsection 1.4.

4.1. Case k=1k=1

We need the result in subsection 2.3. Take Y1=(λL,1,λR,1)Y_{1}={\mathbb{C}}_{(\lambda_{L,1},\lambda_{R,1})}, a representation of G1=GL(1,)G_{1}={\mathrm{GL}}(1,{\mathbb{C}}), and Y2=X(λL,λR)Y_{2}=X(\lambda_{L}^{\prime},\lambda_{R}^{\prime}), a representation of G2=GL(n1,)G_{2}={\mathrm{GL}}(n-1,{\mathbb{C}}), where λL=(λL,2,,λL,n)\lambda_{L}^{\prime}=(\lambda_{L,2},\cdots,\lambda_{L,n}), λR=(λR,2,,λR,n)\lambda_{R}^{\prime}=(\lambda_{R,2},\cdots,\lambda_{R,n}). Denote Y=Y1Y2Y=Y_{1}\boxtimes Y_{2}.

We know from proposition 2.1 a isomorphism of m1m2{\mathbb{H}}_{m_{1}}\otimes{\mathbb{H}}_{m_{2}}-modules

𝒲1Γ1,m1(Y1)Γn1,m2(Y2),\mathcal{W}_{1}\cong\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2}),

where 𝒲1\mathcal{W}_{1} is the preimage of (Y𝒳1)K1×K2(Y\otimes\mathcal{X}_{1})^{K_{1}\times K_{2}} under the isomorphism

Γn,m(X)IndPG(YVm)K(YVm)K1×K2,\Gamma_{n,m}(X)\cong{\operatorname{Ind}}_{P}^{G}(Y\otimes V^{\otimes m})^{K}\cong(Y\otimes V^{\otimes m})^{K_{1}\times K_{2}},

and 𝒳1=e1m1Vm2Vm\mathcal{X}_{1}={\mathbb{C}}e_{1}^{\otimes m_{1}}\otimes V^{\prime\otimes m_{2}}\subseteq V^{\otimes m}, with VVV^{\prime}\subseteq V is spanned by e2,,ene_{2},\cdots,e_{n}.

Lemma 4.1.

The m1{\mathbb{H}}_{m-1}-module Γn,m1(X1)\Gamma_{n,m-1}(X_{1}) can be generated by 𝒲1\mathcal{W}_{1}.

Assume it for a meanwhile. Then we could deduce that y1y_{1} acts on Γn,m1(X1)\Gamma_{n,m-1}(X_{1}) by scalar λR,1+12\lambda_{R,1}+\frac{1}{2}. Indeed, y1m1my_{1}\in{\mathbb{H}}_{m_{1}}\subset{\mathbb{H}}_{m} acts on the m1m2{\mathbb{H}}_{m_{1}}\otimes{\mathbb{H}}_{m_{2}}-module 𝒲1Γ1,m1(Y1)Γn1,m2(Y2)\mathcal{W}_{1}\cong\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2}) by this scalar. Then its act as so on the whole Γn,m1(X1)=m1𝒲1\Gamma_{n,m-1}(X_{1})={\mathbb{H}}_{m-1}\mathcal{W}_{1} since y1y_{1} is commutative with m1{\mathbb{H}}_{m-1}.

Proof of lemma 4.1. Recall the definitions in subsection 2.1 that X1=IndBG(λe1)X_{1}={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes{\mathbb{C}}e_{1}). Then

Γn,m1(X1)=IndBG(λe1V(m1))K\Gamma_{n,m-1}(X_{1})={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes{\mathbb{C}}e_{1}\otimes V^{\otimes(m-1)})^{K}

would be sent to (μe1V(m1))T({\mathbb{C}}_{\mu}\otimes{\mathbb{C}}e_{1}\otimes V^{\otimes(m-1)})^{T} under the isomorphism

IndBG(λVm)K(μVm)T.{\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V^{\otimes m})^{K}\cong({\mathbb{C}}_{\mu}\otimes V^{\otimes m})^{T}.

Then we prove 𝒲1\mathcal{W}_{1} is sent to (μ𝒳1)T({\mathbb{C}}_{\mu}\otimes\mathcal{X}_{1})^{T} as follows. We have the natural isomorphism of vector spaces

(Y𝒳1)K1×K2=\displaystyle(Y\otimes\mathcal{X}_{1})^{K_{1}\times K_{2}}= (Y1Y2e1m1Vm2)K1×K2\displaystyle(Y_{1}\boxtimes Y_{2}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}}\otimes V^{\prime\otimes m_{2}})^{K_{1}\times K_{2}}\cong
(Y1e1m1)K1(Y2Vm2)K2=Γ1,m1(Y1)Γn1,m2(Y2),\displaystyle(Y_{1}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}})^{K_{1}}\otimes(Y_{2}\otimes V^{\prime\otimes m_{2}})^{K_{2}}=\Gamma_{1,m_{1}}(Y_{1})\otimes\Gamma_{n-1,m_{2}}(Y_{2}),

which fits into the following commutative diagram

IndPG(YVm)K{{\mathrm{Ind}_{P}^{G}(Y\otimes V^{\otimes m})^{K}}}(YVm)K1×K2{{(Y\otimes V^{\otimes m})^{K_{1}\times K_{2}}}}(Y𝒳1)K1×K2{{(Y\otimes\mathcal{X}_{1})^{K_{1}\times K_{2}}}}𝒲1{{\mathcal{W}_{1}}}Γ1,m1(Y1)Γn1,m2(Y2){{\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2})}}\scriptstyle{\sim}\scriptstyle{\sim}\scriptstyle{\sim}

of {\mathbb{H}}-modules. Apply (2) to Y2=IndB2G2((μ,ν))Y_{2}={\operatorname{Ind}}_{B_{2}}^{G_{2}}({\mathbb{C}}_{(\mu^{\prime},\nu^{\prime})}) furthur, we would obtain

((Y1Y2)Vm)K1×K2(μVm)T((Y1Y2)𝒳1)K1×K2(μ𝒳1)TΓ1,m1(Y1)Γn1,m2(Y2)(μ1e1m1)T1(μVm2)T2.\leavevmode\hbox to245.98pt{\vbox to84.78pt{\pgfpicture\makeatletter\hbox{\hskip 122.9876pt\lower-42.44109pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-122.9876pt}{-42.34125pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 46.4586pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.58362pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{((Y_{1}\boxtimes Y_{2})\otimes V^{\otimes m})^{K_{1}\times K_{2}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 46.4586pt\hfil&\hfil\hskip 21.59998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 47.8636pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.38864pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{(\mathbb{C}_{\mu}\otimes V^{\otimes m})^{T}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 26.26363pt\hfil\cr\vskip 16.20004pt\cr\hfil\hskip 42.29602pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-38.42104pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{((Y_{1}\boxtimes Y_{2})\otimes\mathcal{X}_{1})^{K_{1}\times K_{2}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 42.29602pt\hfil&\hfil\hskip 21.59998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 43.70102pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.22606pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{(\mathbb{C}_{\mu}\otimes\mathcal{X}_{1})^{T}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 22.10104pt\hfil\cr\vskip 16.20004pt\cr\hfil\hskip 43.8828pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.00781pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 43.8828pt\hfil&\hfil\hskip 21.59998pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 76.52899pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-51.05403pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{(\mathbb{C}_{\mu_{1}}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}})^{T_{1}}\otimes(\mathbb{C}_{\mu^{\prime}}\otimes V^{\prime\otimes m_{2}})^{T_{2}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 54.92902pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.87039pt}{27.1778pt}\pgfsys@lineto{41.19499pt}{27.1778pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.39497pt}{27.1778pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.41228pt}{29.31528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{-76.52899pt}{4.57391pt}\pgfsys@lineto{-76.52899pt}{18.53409pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-76.52899pt}{4.57391pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-76.52899pt}{18.73407pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{}{{}}\pgfsys@moveto{68.05858pt}{4.57391pt}\pgfsys@lineto{68.05858pt}{18.53409pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{68.05858pt}{4.57391pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{68.05858pt}{18.73407pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-76.52899pt}{-32.0975pt}\pgfsys@lineto{-76.52899pt}{-14.97543pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-76.52899pt}{-14.77545pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-74.39151pt}{-24.49214pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-32.4462pt}{-39.84125pt}\pgfsys@lineto{12.5296pt}{-39.84125pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.72958pt}{-39.84125pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.20831pt}{-37.70377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{68.05858pt}{-30.37552pt}\pgfsys@lineto{68.05858pt}{-14.97543pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{68.05858pt}{-14.77545pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{61.0211pt}{-23.63115pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

The top isomorphisms of above two diagrams compose into IndBG(λVm)K(μVm)T{\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V^{\otimes m})^{K}\cong({\mathbb{C}}_{\mu}\otimes V^{\otimes m})^{T} exactly, so we know 𝒲1\mathcal{W}_{1} is sent to (μ𝒳1)T({\mathbb{C}}_{\mu}\otimes\mathcal{X}_{1})^{T}. Consequently, Γn,m1(X1)\Gamma_{n,m-1}(X_{1}) ccontains 𝒲1\mathcal{W}_{1}, and hence Γn,m1(X1)m1𝒲1\Gamma_{n,m-1}(X_{1})\supseteq{\mathbb{H}}_{m-1}\mathcal{W}_{1}.

The conclusion follows by showing the latter space has dimension no less than the former one. According to the calculation in subsection 2.2, we have

dimΓn,m1(X1)=(m1)!(μ11)!μ2!μn!,dim𝒲1=m2!μ2!μn!.\dim_{\mathbb{C}}\Gamma_{n,m-1}(X_{1})=\frac{(m-1)!}{(\mu_{1}-1)!\cdot\mu_{2}!\cdots\mu_{n}!},\quad\dim_{\mathbb{C}}\mathcal{W}_{1}=\frac{m_{2}!}{\mu_{2}!\cdots\mu_{n}!}.

It sufficies to show m1𝒲1{\mathbb{H}}_{m-1}\mathcal{W}_{1} has at least (m1)!(m11)!m2!\frac{(m-1)!}{(m_{1}-1)!m_{2}!} copies of 𝒲1\mathcal{W}_{1}; note that m1=μ1m_{1}=\mu_{1}.

Consider the embedding Sm1SmS_{m-1}\hookrightarrow S_{m}, sisi+1s_{i}\mapsto s_{i+1}. It would pull back Sm1×Sm2SmS_{m_{1}}\times S_{m_{2}}\hookrightarrow S_{m} to Sm11×Sm2Sm1S_{m_{1}-1}\times S_{m_{2}}\hookrightarrow S_{m-1}. Then we may check easily that elements in Sm11,m2Sm1S^{m_{1}-1,m_{2}}\subseteq S_{m-1} has distinguished image in (Sm1×Sm2)\Sm(S_{m_{1}}\times S_{m_{2}})\backslash S_{m}. Consequently,

m1𝒲1wSm11,m2w𝒲1.{\mathbb{H}}_{m-1}\mathcal{W}_{1}\supseteq\sum_{w\in S^{m_{1}-1,m_{2}}}w\cdot\mathcal{W}_{1}.

According to proposition 2.1, the right hand side is a direct sum, so

dimm1𝒲1\displaystyle\dim_{\mathbb{C}}{\mathbb{H}}_{m-1}\mathcal{W}_{1}\geqslant |Sm11,m2|dim𝒲1=|(Sm11×Sm2)\Sm1|m2!μ2!μn!\displaystyle|S^{m_{1}-1,m_{2}}|\cdot\dim_{\mathbb{C}}\mathcal{W}_{1}=|(S_{m_{1}-1}\times S_{m_{2}})\backslash S_{m-1}|\cdot\frac{m_{2}!}{\mu_{2}!\cdots\mu_{n}!}
=\displaystyle= (m1)!(m11)!m2!m2!μ2!μn!=(m1)!(μ11)!μ2!μn!=dimΓn,m1(X1).\displaystyle\frac{(m-1)!}{(m_{1}-1)!m_{2}!}\cdot\frac{m_{2}!}{\mu_{2}!\cdots\mu_{n}!}=\frac{(m-1)!}{(\mu_{1}-1)!\cdot\mu_{2}!\cdots\mu_{n}!}=\dim_{\mathbb{C}}\Gamma_{n,m-1}(X_{1}).

Now the conclusion follows. ∎

Consequently, (3) holds in the case k=1k=1.

4.2. Case 1<kn1<k\leqslant n

Next, we verify (3) for the case 1<kn1<k\leqslant n by induction.

Note that V=span{e2,,en}V^{\prime}=\operatorname{span}_{\mathbb{C}}\{e_{2},\cdots,e_{n}\} becomes conjugate standard representation of G2=GL(n1,)G_{2}={\mathrm{GL}}(n-1,{\mathbb{C}}) via G2GGL(V)G_{2}\hookrightarrow G\to{\mathrm{GL}}_{\mathbb{C}}(V), so we may apply induction hypothesis to it. More precisely, denote the induced filtration on VV^{\prime} by 0V2Vn=V0\subset V^{\prime}_{2}\subset\cdots\subset V_{n}^{\prime}=V^{\prime}, where Vk=VVkV_{k}^{\prime}=V^{\prime}\cap V_{k}, and then we know FIndB2G2(λVkV(m21))K2\forall F^{\prime}\in{\operatorname{Ind}}_{B_{2}}^{G_{2}}({\mathbb{C}}_{\lambda^{\prime}}\otimes V_{k}^{\prime}\otimes V^{\prime\otimes(m_{2}-1)})^{K_{2}}, y1m2y_{1}\in{\mathbb{H}}_{m_{2}} sends it into

(λR,k+12)F+IndB2G2(λVk1V(m21))K2.(\lambda_{R,k}+\frac{1}{2})F^{\prime}+{\operatorname{Ind}}_{B_{2}}^{G_{2}}({\mathbb{C}}_{\lambda^{\prime}}\otimes V_{k-1}^{\prime}\otimes V^{\prime\otimes(m_{2}-1)})^{K_{2}}.

Now look at the following commutative diagram of m1m2{\mathbb{H}}_{m_{1}}\otimes{\mathbb{H}}_{m_{2}}-modules:

𝒲1(μe1m1Vm2)TΓ1,m1(Y1)Γn1,m2(Y2)(μ1e1m1)T1(μVm2)T2.\leavevmode\hbox to267.58pt{\vbox to74.96pt{\pgfpicture\makeatletter\hbox{\hskip 133.79082pt\lower-37.5293pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-133.79082pt}{-37.42946pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 10.84444pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.5389pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathcal{W}_{1}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 10.84444pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 65.97992pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.67441pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{(\mathbb{C}_{\mu}\otimes\mathbb{C}e_{1}^{\otimes m_{1}}\otimes V^{\prime\otimes m_{2}})^{T}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 41.97995pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 48.75862pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-44.45308pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 48.75862pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 85.0322pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.72668pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{(\mathbb{C}_{\mu_{1}}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}})^{T_{1}}\otimes(\mathbb{C}_{\mu^{\prime}}\otimes V^{\prime\otimes m_{2}})^{T_{2}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 61.03223pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-73.98776pt}{20.30339pt}\pgfsys@lineto{30.17868pt}{20.30339pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.37866pt}{20.30339pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.42679pt}{22.65616pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-85.0322pt}{-26.06975pt}\pgfsys@lineto{-85.0322pt}{11.73927pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-85.0322pt}{11.93925pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-92.82942pt}{-8.24931pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-36.07358pt}{-34.92946pt}\pgfsys@lineto{11.1264pt}{-34.92946pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.32639pt}{-34.92946pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.99583pt}{-32.57669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{72.75859pt}{-24.15642pt}\pgfsys@lineto{72.75859pt}{11.04372pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{72.75859pt}{11.2437pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{64.96136pt}{-7.64043pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

For any Fk,z𝒲1F_{k,z}\in\mathcal{W}_{1} such that Fk,z(1)=1e1m1ekzF_{k,z}(1)=1\otimes e_{1}^{\otimes m_{1}}\otimes e_{k}\otimes z with zV(m21)z\in V^{\prime\otimes(m_{2}-1)}, it would correspond to 1Fk,zΓ1,m1(Y1)Γn1,m2(Y2)1\otimes F_{k,z}^{\prime}\in\Gamma_{1,m_{1}}(Y_{1})\boxtimes\Gamma_{n-1,m_{2}}(Y_{2}) with

Fk,z(1)=1ekz(μVm2)T2.F_{k,z}^{\prime}(1)=1\otimes e_{k}\otimes z\in(\mathbb{C}_{\mu^{\prime}}\otimes V^{\prime\otimes m_{2}})^{T_{2}}.

We already know y1m2y_{1}\in{\mathbb{H}}_{m_{2}} sends it into

(λR,k+12)Fk,z+IndB2G2(λVk1V(m21))K2,(\lambda_{R,k}+\frac{1}{2})F_{k,z}^{\prime}+{\operatorname{Ind}}_{B_{2}}^{G_{2}}({\mathbb{C}}_{\lambda^{\prime}}\otimes V_{k-1}^{\prime}\otimes V^{\prime\otimes(m_{2}-1)})^{K_{2}},

so in m{\mathbb{H}}_{m}, the action of ym1+1m2y_{m_{1}+1}\in{\mathbb{H}}_{m_{2}} on Fk,zF_{k,z} would satisfy

(ym1+1Fk,z)(1)=(λR,k+12)Fk,z(1)mod(μe1m1Vk1V(m21))T.(y_{m_{1}+1}\cdot F_{k,z})(1)=(\lambda_{R,k}+\frac{1}{2})F_{k,z}(1)\mod({\mathbb{C}}_{\mu}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}}\otimes V_{k-1}^{\prime}\otimes V^{\prime\otimes(m_{2}-1)})^{T}.

For FΓn,m1(Xk)=IndBG(λVkV(m1))K,F\in\Gamma_{n,m-1}(X_{k})={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V_{k}\otimes V^{\otimes(m-1)})^{K}, with

F(1)=1eke1m1z(μVkV(m1))T,F(1)=1\otimes e_{k}\otimes e_{1}^{\otimes m_{1}}\otimes z\in({\mathbb{C}}_{\mu}\otimes V_{k}\otimes V^{\otimes(m-1)})^{T},

we know from TT-fixed property that zV(m21)z\in V^{\prime\otimes(m_{2}-1)}, and then

(sm1s1F)(1)=(1)m11e1m1ekz=Fk,z(1).(s_{m_{1}}\cdots s_{1}\cdot F)(1)=(-1)^{m_{1}}1\otimes e_{1}^{\otimes m_{1}}\otimes e_{k}\otimes z=F_{k,z}(1).

Consequently,

(1)m1y1F=\displaystyle(-1)^{m_{1}}y_{1}\cdot F= y1s1sm1Fk,z\displaystyle y_{1}\cdot s_{1}\cdots s_{m_{1}}\cdot F_{k,z}
=\displaystyle= s1y2s2sm1Fk,z+s2sm1Fk,z\displaystyle s_{1}y_{2}s_{2}\cdots s_{m_{1}}\cdot F_{k,z}+s_{2}\cdots s_{m_{1}}\cdot F_{k,z}
=\displaystyle= s1sm1ym1+1Fk,z+i=1m1s1s^ism1Fk,z.\displaystyle s_{1}\cdots s_{m_{1}}\cdot y_{m_{1}+1}\cdot F_{k,z}+\sum_{i=1}^{m_{1}}s_{1}\cdots\hat{s}_{i}\cdots s_{m_{1}}\cdot F_{k,z}.

Since

(ym1+1Fk,z)(1)=(λR,k+12)Fk,z(1)mod(μe1m1Vk1V(m21))T,(y_{m_{1}+1}\cdot F_{k,z})(1)=(\lambda_{R,k}+\frac{1}{2})F_{k,z}(1)\mod({\mathbb{C}}_{\mu}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}}\otimes V_{k-1}^{\prime}\otimes V^{\prime\otimes(m_{2}-1)})^{T},

then

(s1sm1ym1+1Fk,z)(1)=(λR,k+12)s1sm1Fk,z(1)mod(μVk1e1m1V(m21))T,(s_{1}\cdots s_{m_{1}}\cdot y_{m_{1}+1}\cdot F_{k,z})(1)=(\lambda_{R,k}+\frac{1}{2})s_{1}\cdots s_{m_{1}}\cdot F_{k,z}(1)\mod({\mathbb{C}}_{\mu}\otimes V_{k-1}^{\prime}\otimes{\mathbb{C}}e_{1}^{\otimes m_{1}}\otimes V^{\prime\otimes(m_{2}-1)})^{T},

so

s1sm1ym1+1Fk,z=(λR,k+12)s1sm1Fk,zmodIndBG(λVk1V(m1))K.s_{1}\cdots s_{m_{1}}\cdot y_{m_{1}+1}\cdot F_{k,z}=(\lambda_{R,k}+\frac{1}{2})s_{1}\cdots s_{m_{1}}\cdot F_{k,z}\mod{\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V_{k-1}\otimes V^{\otimes(m-1)})^{K}.

Moreover, one check easily by evaluating at 11 that

s1s^ism1Fk,z𝒲1Γn,m1(X1).s_{1}\cdots\hat{s}_{i}\cdots s_{m_{1}}\cdot F_{k,z}\in\mathcal{W}_{1}\subseteq\Gamma_{n,m-1}(X_{1}).

It follows then (3):

y1F=(λR,k+12)FmodΓn,m1(Xk1)y_{1}\cdot F=(\lambda_{R,k}+\frac{1}{2})F\mod\Gamma_{n,m-1}(X_{k-1})

holds for those special FF we chose.

We know from subsection 2.2 that Γn,m1(Xk)=IndBG(λVkV(m1))K\Gamma_{n,m-1}(X_{k})={\operatorname{Ind}}_{B}^{G}({\mathbb{C}}_{\lambda}\otimes V_{k}\otimes V^{\otimes(m-1)})^{K} is spanned by Γn,m1(Xk1)\Gamma_{n,m-1}(X_{k-1}) and FκF_{\kappa}, where

Fκ(1)=1ekeκ(2)eκ(m)(μVm)T,F_{\kappa}(1)=1\otimes e_{k}\otimes e_{\kappa(2)}\otimes\cdots\otimes e_{\kappa(m)}\in({\mathbb{C}}_{\mu}\otimes V^{\otimes m})^{T},

with κ:{2,,m}{1,,n}\kappa:\{2,\cdots,m\}\to\{1,\cdots,n\}, and #κ1(i)=μiδi,k\#\kappa^{-1}(i)=\mu_{i}-\delta_{i,k}. We have assumed k>1k>1, so κ1(1){2,,m}\kappa^{-1}(1)\subseteq\{2,\cdots,m\} has mm elements. Then there is wSm1Smw\in S_{m-1}\hookrightarrow S_{m} permutes them to {2,,m1+1}\{2,\cdots,m_{1}+1\}, and (wFκ)(w\cdot F_{\kappa}) takes value 1eke1m11\otimes e_{k}\otimes e_{1}^{\otimes m_{1}}\otimes\cdots at 1G1\in G. This wFw\cdot F is what we have considered previously, so known that

y1(wFκ)=(λR,k+12)wFκmodΓn,m1(Xk1).y_{1}\cdot(w\cdot F_{\kappa})=(\lambda_{R,k}+\frac{1}{2})w\cdot F_{\kappa}\mod\Gamma_{n,m-1}(X_{k-1}).

Since wSm1m1w\in S_{m-1}\subseteq{\mathbb{H}}_{m-1} is commutative with y1my_{1}\in{\mathbb{H}}_{m}, we obtain (3) for F=FκF=F_{\kappa}:

y1Fκ=(λR,k+12)FκmodΓn,m1(Xk1).y_{1}\cdot F_{\kappa}=(\lambda_{R,k}+\frac{1}{2})F_{\kappa}\mod\Gamma_{n,m-1}(X_{k-1}).

Since {Fκ}\{F_{\kappa}\} gives rise to a basis for Γn,m1(Xk)/Γn,m1(Xk1)\Gamma_{n,m-1}(X_{k})/\Gamma_{n,m-1}(X_{k-1}), we verified (3) completely.

5. A dual version

We now discuss the dual version of theorem 1.3, specifically the commutativity of following diagram:

𝒞(λL,λR)Γn,mm-ModJacλL,i12m1-ModT(λL,λR)(λLei,λR)𝒞(λLei,λR)Γn,m1.\leavevmode\hbox to188.25pt{\vbox to94.64pt{\pgfpicture\makeatletter\hbox{\hskip 43.94043pt\lower-79.63156pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} \pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.89946pt}{-1.66666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathcal{HC}}_{(\lambda_{L},\lambda_{R})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{69.13193pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13193pt}{0.0pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{41.75046pt}{4.84375pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Gamma_{n,m}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{81.70952pt}{-2.86945pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{99.58466pt}{-14.22638pt}\pgfsys@lineto{99.58466pt}{-54.90555pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{99.58466pt}{-54.90555pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{115.09451pt}{-39.95482pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathrm{Jac}}^{\lambda_{L,i}-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.22163pt}{-73.70189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{0.0pt}{-14.22638pt}\pgfsys@lineto{0.0pt}{-54.90555pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{0.0pt}{-54.90555pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.60742pt}{-38.28261pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$T_{(\lambda_{L},\lambda_{R})}^{(\lambda_{L}-e_{i},\lambda_{R})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.53322pt}{-72.79855pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{${\mathcal{HC}}_{(\lambda_{L}-e_{i},\lambda_{R})}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{}{}{{}}\pgfsys@moveto{28.45276pt}{-71.1319pt}\pgfsys@lineto{69.13193pt}{-71.1319pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.13193pt}{-71.1319pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.41713pt}{-65.98871pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Gamma_{n,m-1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

It can be deduced from the following diagrams:

𝒞(λL,λR)m-Mod𝒞(λR¯,λL¯)m-Mod𝒞(λR¯,λL¯+ei)m1-Mod𝒞(λLei,λR)m1-Modθhrcc.\leavevmode\hbox to265.09pt{\vbox to125.5pt{\pgfpicture\makeatletter\hbox{\hskip 132.54294pt\lower-62.79874pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-132.54294pt}{-62.6989pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 20.205pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.89946pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(\lambda_{L},\lambda_{R})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 20.205pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 46.18065pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.87514pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 22.18068pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 44.48886pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.18335pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(-\overline{\lambda_{R}},-\overline{\lambda_{L}})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.48889pt\hfil&\hfil\hskip 46.18065pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.87514pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 22.18068pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 48.52162pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.21611pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(-\overline{\lambda_{R}},-\overline{\lambda_{L}}+e_{i})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.52165pt\hfil&\hfil\hskip 48.51398pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.20847pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.514pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 22.99332pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.68777pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(\lambda_{L}-e_{i},\lambda_{R})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 22.99332pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 48.51398pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.20847pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.514pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-89.14462pt}{47.43504pt}\pgfsys@lineto{85.24829pt}{47.43504pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.44827pt}{47.43504pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.74818pt}{47.43504pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-89.83232pt}{37.57533pt}\pgfsys@lineto{-54.77132pt}{20.04303pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.89441}{-0.44725}{0.44725}{0.89441}{-54.59245pt}{19.95358pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{-76.99796pt}{25.28291pt}{9.75pt}{6.87366pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-74.84518pt}{27.43568pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-109.54962pt}{37.57533pt}\pgfsys@lineto{-109.54962pt}{-51.60591pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-109.54962pt}{-51.8059pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{108.02893pt}{39.86978pt}\pgfsys@lineto{108.02893pt}{-51.4948pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{108.02893pt}{-51.69478pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-17.3458pt}{11.67113pt}\pgfsys@lineto{12.2203pt}{11.67113pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.42029pt}{11.67113pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-38.03468pt}{1.6403pt}\pgfsys@lineto{-38.03468pt}{-15.6709pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-38.03468pt}{-15.87088pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{51.95808pt}{19.97528pt}\pgfsys@lineto{92.2258pt}{39.6939pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8981}{0.43979}{-0.43979}{0.8981}{92.40541pt}{39.78183pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{67.39655pt}{26.4857pt}{9.75pt}{6.87366pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.54932pt}{28.63847pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{35.00095pt}{4.10587pt}\pgfsys@lineto{35.00095pt}{-15.55978pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{35.00095pt}{-15.75977pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{{ {\pgfsys@beginscope {{}} \pgfsys@setlinewidth{0.39998pt}\pgfsys@setdash{}{0.0pt}\pgfsys@roundcap\pgfsys@roundjoin{} {}{}{} {}{}{} \pgfsys@moveto{-1.29811pt}{2.56715pt}\pgfsys@curveto{-0.66843pt}{1.21092pt}{1.02686pt}{0.04845pt}{1.99559pt}{0.0pt}\pgfsys@curveto{1.02686pt}{-0.04845pt}{-0.66843pt}{-1.21092pt}{-1.29811pt}{-2.56715pt}\pgfsys@stroke\pgfsys@endscope}} }{}{}{{}}{}{}{{}}\pgfsys@moveto{-21.3816pt}{-16.07086pt}\pgfsys@lineto{17.6613pt}{3.13667pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-21.3816pt}{-16.07086pt}\pgfsys@lineto{17.6613pt}{3.13667pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8973}{0.44144}{-0.44144}{0.8973}{17.6613pt}{3.13667pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{-4.67094pt}{-10.56581pt}{7.59164pt}{9.16663pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.51817pt}{-8.41304pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\theta}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-13.31303pt}{-24.26389pt}\pgfsys@lineto{9.88698pt}{-24.26389pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.08696pt}{-24.26389pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{43.45181pt}{-15.95975pt}\pgfsys@lineto{91.62085pt}{31.32623pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{43.45181pt}{-15.95975pt}\pgfsys@lineto{91.62085pt}{31.32623pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.71362}{0.70055}{-0.70055}{0.71362}{91.62083pt}{31.32622pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{67.71852pt}{7.3717pt}{8.33865pt}{9.16663pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.87129pt}{9.52448pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{h}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{51.58836pt}{-32.42804pt}\pgfsys@lineto{90.80103pt}{-51.71822pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8973}{-0.44142}{0.44142}{0.8973}{90.98045pt}{-51.80649pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{66.49913pt}{-45.59822pt}{9.75pt}{6.87366pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{68.6519pt}{-43.44545pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-93.64197pt}{-44.20956pt}\pgfsys@lineto{-49.55527pt}{0.08418pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-93.64197pt}{-44.20956pt}\pgfsys@lineto{-49.55527pt}{0.08418pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.70544}{0.70876}{-0.70876}{0.70544}{-49.55528pt}{0.08418pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{-78.53319pt}{-28.8425pt}{7.65808pt}{7.31943pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-76.38042pt}{-26.68973pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{r}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-93.2481pt}{-52.00587pt}\pgfsys@lineto{-58.34644pt}{-34.47423pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8936}{0.44887}{-0.44887}{0.8936}{-58.16774pt}{-34.38448pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{-80.49356pt}{-46.58713pt}{9.75pt}{6.87366pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-78.34079pt}{-44.43436pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-86.35631pt}{-60.1989pt}\pgfsys@lineto{82.91496pt}{-60.1989pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{83.11494pt}{-60.1989pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.52069pt}{-60.1989pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-29.72427pt}{19.86415pt}\pgfsys@lineto{-7.57321pt}{41.69435pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-29.72427pt}{19.86415pt}\pgfsys@lineto{-7.57321pt}{41.69435pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.71225}{0.70193}{-0.70193}{0.71225}{-7.57323pt}{41.69434pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{-19.75363pt}{29.64494pt}{7.33481pt}{7.31943pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.60086pt}{31.79771pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{c}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{3.45638pt}{-55.30249pt}\pgfsys@lineto{25.14189pt}{-33.96783pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{3.45638pt}{-55.30249pt}\pgfsys@lineto{25.14189pt}{-33.96783pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.71284}{0.70132}{-0.70132}{0.71284}{25.14188pt}{-33.96785pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} {\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\pgfsys@rect{9.27574pt}{-49.62895pt}{7.33481pt}{7.31943pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.42851pt}{-47.47618pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{c}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Here, each of the four \sim is an equivalence of categories induced from Hermitian dual. The θ\theta denotes the natural isomorphism in theorem 1.3, The two cc assert the compability between Γn,m\Gamma_{n,m} and Hermitian dual, as established in [4, Theorem 7.5]. To complete the picture, it remains to explain the compability of Hermitian dual with translation and Jacquet functor, which are given by the natural isomorphism rr and hh respectively.

5.1. On the real side

We follow the definition and notations in [4]. Note that the complex conjugate over 𝔤=𝔤0𝔤0×𝔤0{\mathfrak{g}}={\mathfrak{g}}_{0}\otimes{\mathbb{C}}\cong{\mathfrak{g}}_{0}\times{\mathfrak{g}}_{0} is (E,E)(E¯,E¯)(E,E^{\prime})\mapsto(\bar{E}^{\prime},\bar{E}).

Then we may define the Hermitial dual XhX^{h} of a Harish-Chandra module XX of GL(n,){\mathrm{GL}}(n,{\mathbb{C}}). It is the space of KK-finite conjugate linear functionals over XX, which gives rise to a non-degenerate sesquilinear pairing ,:Xh×X\left\langle-,-\right\rangle:X^{h}\times X\to{\mathbb{C}}, with structure of (𝔤,K)({\mathfrak{g}},K)-module determined by

(E,E)f,x=f,(E¯,E¯)x,kf,x=f,k1x.\left\langle(E,E^{\prime})\cdot f,x\right\rangle=-\left\langle f,(\bar{E}^{\prime},\bar{E})\cdot x\right\rangle,\quad\left\langle k\cdot f,x\right\rangle=\left\langle f,k^{-1}\cdot x\right\rangle.

An alternative definition of the Hermitian dual, which can be found in [5, section VI.2], arises from the composition of contragredient functor and conjugation functor. It follows that the functor XXhX\mapsto X^{h} is exact, and XhhXX^{hh}\cong X naturally.

According to [1, equation (2.4.2)], the Hermitian dual of principle series is still a priciple series:

(4) X(λL,λR)hX(λ¯R,λ¯L).X(\lambda_{L},\lambda_{R})^{h}\cong X(-\overline{\lambda}_{R},-\overline{\lambda}_{L}).

Due to the exactness of Hermitian dual, we may imitate the argument presented in section 3 to conclude that Hermitian dual sends 𝒞(λL,λR){\mathcal{HC}}_{(\lambda_{L},\lambda_{R})} to 𝒞(λR¯,λL¯),{\mathcal{HC}}_{(-\overline{\lambda_{R}},-\overline{\lambda_{L}})}, and preserves 𝒞fin{\mathcal{HC}}_{\mathrm{fin}}.

The natural isomorphism rr would follows from the following diagram:

𝒞(λL,λR)𝒞𝒞(λL,λR+ei)𝒞(λR¯,λL¯)𝒞𝒞(λR¯ei,λL¯)VP(λL,λR+ei)VhP(λR¯ei,λL¯).\leavevmode\hbox to208.79pt{\vbox to81.59pt{\pgfpicture\makeatletter\hbox{\hskip 104.39325pt\lower-45.85353pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-104.39325pt}{-35.73834pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 20.205pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.89946pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(\lambda_{L},\lambda_{R})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 20.205pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 35.66663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.36111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathcal{HC}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 11.66666pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 48.23773pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.93222pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(\lambda_{L},\lambda_{R}+e_{i})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.23776pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 20.48889pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.18335pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(-\overline{\lambda_{R}},-\overline{\lambda_{L}})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.48889pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 35.66663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.36111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathcal{HC}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.66666pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 47.27718pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.97166pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathcal{HC}}_{(-\overline{\lambda_{R}}-e_{i},-\overline{\lambda_{L}})}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 23.2772pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-63.49936pt}{20.41449pt}\pgfsys@lineto{-16.01549pt}{20.41449pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.8155pt}{20.41449pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-46.26578pt}{23.35057pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{-\otimes V}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-83.90436pt}{10.55478pt}\pgfsys@lineto{-83.90436pt}{-24.64536pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-83.90436pt}{-24.84534pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-91.70158pt}{-8.52933pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{8.11778pt}{20.41449pt}\pgfsys@lineto{55.31776pt}{20.41449pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.51775pt}{20.41449pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{19.386pt}{25.36058pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{P_{(\lambda_{L},\lambda_{R}+e_{i})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-3.74887pt}{14.05478pt}\pgfsys@lineto{-3.74887pt}{-24.64536pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-3.74887pt}{-24.84534pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.3961pt}{-6.77933pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{80.15549pt}{10.55478pt}\pgfsys@lineto{80.15549pt}{-24.64536pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{80.15549pt}{-24.84534pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.50826pt}{-8.52933pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-71.67021pt}{-25.04532pt}\pgfsys@lineto{-15.07085pt}{12.83365pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-71.67021pt}{-25.04532pt}\pgfsys@lineto{-15.07085pt}{12.83365pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.83105}{0.55618}{-0.55618}{0.83105}{-15.07085pt}{12.83363pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-63.21547pt}{-33.23834pt}\pgfsys@lineto{-16.01549pt}{-33.23834pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.8155pt}{-33.23834pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-47.27614pt}{-41.76332pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{-\otimes V^{h}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{8.11778pt}{-25.65764pt}\pgfsys@lineto{62.89297pt}{9.3719pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{8.11778pt}{-25.65764pt}\pgfsys@lineto{62.89297pt}{9.3719pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.84245}{0.53876}{-0.53876}{0.84245}{62.89296pt}{9.3719pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{8.11778pt}{-33.23834pt}\pgfsys@lineto{56.27832pt}{-33.23834pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.4783pt}{-33.23834pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{20.07129pt}{-40.37444pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{P_{(-\overline{\lambda_{R}}-e_{i},-\overline{\lambda_{L}})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Note that the Hermitian dual of conjugate standard representation VV is given by Vh=nV^{h}={\mathbb{C}}^{n}, with gGg\in G acting by left multiplication of (gt)1(g^{t})^{-1}.

5.2. On the pp-adic side

We follow the definition and notations in [4]. There is a conjugate linear anti-involution over m{\mathbb{H}}_{m}, determined by si=sis_{i}^{*}=s_{i}, yi=w0(ym+1i)w01,y_{i}^{*}=-w_{0}(y_{m+1-i})w_{0}^{-1}, where w0Smw_{0}\in S_{m} is the longest element in it.

Then we may define the Hermitian dual MM^{*} of an m{\mathbb{H}}_{m}-module MM. It is the space of conjugate linear functionals from MM to {\mathbb{C}}, with action of m{\mathbb{H}}_{m} determined by

(hf)(x)=f(hx).(h\cdot f)(x)=f(h^{*}\cdot x).

In particular, there is a non-degenerate sesquilinear pairing ,:M×M\left\langle-,-\right\rangle:M^{*}\times M\to{\mathbb{C}} such that hf,x=f,hx\left\langle h\cdot f,x\right\rangle=\left\langle f,h^{*}\cdot x\right\rangle.

One may combine [4, Theorem 7.5], lemma 1.2 and (4) to see St(Δ)=St(Δ¯){\mathrm{St}}(\Delta)^{*}={\mathrm{St}}(-\overline{\Delta}), and

(St(Δ1)××St(Δr))=St(Δr¯)×St(Δ1¯).\left({\mathrm{St}}(\Delta_{1})\times\cdots\times{\mathrm{St}}(\Delta_{r})\right)^{*}={\mathrm{St}}(-\overline{\Delta_{r}})\times\cdots{\mathrm{St}}(-\overline{\Delta_{1}}).

Here by Δ¯-\overline{\Delta} we mean [b¯,a¯][-\bar{b},-\bar{a}] if Δ=[a,b]\Delta=[a,b]. Furthermore, the following lemma is well-known, and can be verified by direct computation:

Lemma 5.1.

There is a natural isomorphism fitting into the following diagram of functors:

m-Modm-Modm1-Modm1-ModJacaJaca¯.\leavevmode\hbox to146.06pt{\vbox to72.11pt{\pgfpicture\makeatletter\hbox{\hskip 73.02798pt\lower-38.34256pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-73.02798pt}{-33.7689pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 22.18068pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.87514pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 22.18068pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 46.18065pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.87514pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 22.18068pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 24.514pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.20847pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.514pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 48.51398pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.20847pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{{\mathbb{H}}_{m-1}{\textrm{-}\mathrm{Mod}}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 24.514pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.1333pt}{20.20059pt}\pgfsys@lineto{25.73334pt}{20.20059pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.93332pt}{20.20059pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{22.55336pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-48.51398pt}{12.63533pt}\pgfsys@lineto{-48.51398pt}{-22.5648pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-48.51398pt}{-22.76479pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-63.18944pt}{-7.12582pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{{\mathrm{Jac}}_{a}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{48.51398pt}{12.63533pt}\pgfsys@lineto{48.51398pt}{-22.5648pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{48.51398pt}{-22.76479pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{50.86674pt}{-8.69193pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{{\mathrm{Jac}}^{-\bar{a}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-32.86618pt}{-22.96477pt}\pgfsys@lineto{32.3161pt}{11.60657pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-32.86618pt}{-22.96477pt}\pgfsys@lineto{32.3161pt}{11.60657pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.88342}{0.46857}{-0.46857}{0.88342}{32.31609pt}{11.60655pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-23.79997pt}{-31.2689pt}\pgfsys@lineto{23.40001pt}{-31.2689pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.59999pt}{-31.2689pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-36.18979pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

Informally speaking, the Hermitian dual of generalized aa-eigenspace with respecct to y1y_{1} is naturally isomorphic to the generalized (a¯)(-\bar{a})-eigenspace of Hermitian dual with respect to ymy_{m}.

Proof. Two ways of embedding 1m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1} into m{\mathbb{H}}_{m} are involved in this lemma. To be precise, denote the polynomial generators and group generators of m1{\mathbb{H}}_{m-1} by zi,tiz_{i},t_{i} (instead of yi,siy_{i},s_{i}) respectively, and let 1=[z]{\mathbb{H}}_{1}={\mathbb{C}}[z]. The two embeddings of 1m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1} into m{\mathbb{H}}_{m} are given by

ι1:zy1,ziyi+1,tisi+1;ιm:zym,ziyi,tisi.\iota_{1}:z\mapsto y_{1},z_{i}\mapsto y_{i+1},t_{i}\mapsto s_{i+1};\quad\iota_{m}:z\mapsto y_{m},z_{i}\mapsto y_{i},t_{i}\mapsto s_{i}.

Then we have:

  • Jaca{\mathrm{Jac}}_{a} is given by restricting m{\mathbb{H}}_{m}-module to 11m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}-module via ι1\iota_{1}, and then taking generalized aa-eigenspace with respecct to z1z\in{\mathbb{H}}_{1};

  • Jaca¯{\mathrm{Jac}}^{-\bar{a}} is given by restricting m{\mathbb{H}}_{m}-module to 11m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}-module via ιm\iota_{m}, and then taking generalized (a¯)(-\bar{a})-eigenspace with respecct to z1z\in{\mathbb{H}}_{1}.

Let MM be an m{\mathbb{H}}_{m}-module, and MM^{*} be its Hermitial dual. By definition, we have a non-degenerate sesquilinear pairing ,m:M×M\left\langle-,-\right\rangle_{m}:M^{*}\times M\to{\mathbb{C}} such that hm\forall h\in{\mathbb{H}}_{m}, hf,xm=f,hxm\left\langle h\cdot f,x\right\rangle_{m}=\left\langle f,h^{*}\cdot x\right\rangle_{m}. Restricting MM and MM^{*} to 1m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}-modules via ι1\iota_{1} and ιm\iota_{m} respectively. We would like to define a non-degenerate sesquilinear pairing ,m1:M×M\left\langle-,-\right\rangle_{m-1}:M^{*}\times M\to{\mathbb{C}} such that h1m1\forall h\in{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}, hf,xm1=f,hxm1\left\langle h\cdot f,x\right\rangle_{m-1}=\left\langle f,h^{*}\cdot x\right\rangle_{m-1}, where the conjugate linear anti-involution over 1m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1} is induced from those over 1{\mathbb{H}}_{1} and m1{\mathbb{H}}_{m-1} naturally.

Once such a ,m1\left\langle-,-\right\rangle_{m-1} is defined, then by zf,xm1=f,zxm1\left\langle z\cdot f,x\right\rangle_{m-1}=\left\langle f,-z\cdot x\right\rangle_{m-1} we obtain a non-degenerate sesquilinear pairing between generalized aa-eigenspace of MM and generalized (a¯)(-\bar{a})-eigenspace of MM^{*} with respecct to zz. Moreover, by hf,xm1=f,hxm1\left\langle h\cdot f,x\right\rangle_{m-1}=\left\langle f,h^{*}\cdot x\right\rangle_{m-1} for hm1h\in{\mathbb{H}}_{m-1} we know such two subspaces becomes Hermitian dual of each other as m1{\mathbb{H}}_{m-1}-modules. This is exactly what we want.

Denote the longest element in Sm1S_{m-1} by u0u_{0}, and we may define

f,xm1:=f,w0ι1(u01)xm.\left\langle f,x\right\rangle_{m-1}:=\left\langle f,w_{0}\iota_{1}(u_{0}^{-1})\cdot x\right\rangle_{m}.

The verification of hf,xm1=f,hxm1\left\langle h\cdot f,x\right\rangle_{m-1}=\left\langle f,h^{*}\cdot x\right\rangle_{m-1} are left to reader. ∎

Remark 5.2.1.

Here we scketch another, perhaps easier proof. Let (π,M)(\pi,M) be an m{\mathbb{H}}_{m} module. Its inner twist πw\pi^{w} by wSmw\in S_{m} is naturally isomorphic to π\pi; here we define πw(h)=π(whw1)\pi^{w}(h)=\pi(whw^{-1}), and the intertwining operator ππw\pi\stackrel{{\scriptstyle\sim}}{{\to}}\pi^{w} can be given by xπ(w)xx\mapsto\pi(w)x. As a consequence, we may use another conjugate linear anti-involution over m{\mathbb{H}}_{m} for an alternative definition of Hermitian dual, which differs from by an inner twist, in order to simplify the verification of lemma 5.1.

Set si=smi,yi=ym+1is_{i}^{\star}=s_{m-i},y_{i}^{\star}=-y_{m+1-i}, and one calculates that h1m1\forall h\in{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}, ι1(h)=ιm(h)\iota_{1}(h)^{\star}=\iota_{m}(h^{\star}). Suppose now we have a non-degenerate sesquilinear pairing ,:M×M\left\langle-,-\right\rangle:M^{\star}\times M\to{\mathbb{C}} such that hm\forall h\in{\mathbb{H}}_{m}, hf,x=f,hx\left\langle h\cdot f,x\right\rangle=\left\langle f,h^{\star}\cdot x\right\rangle. Restricting MM^{\star} and MM to 1m1{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}-modules via ιm\iota_{m} and ι1\iota_{1} respectively, and we would get h1m1\forall h\in{\mathbb{H}}_{1}\otimes{\mathbb{H}}_{m-1}, hf,x=f,hx\left\langle h\cdot f,x\right\rangle=\left\langle f,h^{\star}\cdot x\right\rangle automatically. Consequently, generalized eigenspaces of MM^{\star} and MM with respect to z1z\in{\mathbb{H}}_{1} are paired respectively under ,\left\langle-,-\right\rangle. Now the lemma follows.

This lemma provides the desired natural isomorphism hh.

References

  • Bar [89] Dan Barbasch. The unitary dual for complex classical Lie groups. Inventiones Mathematicae, 96(1):103–176, 1989.
  • CT [11] Dan Ciubotaru and Peter E Trapa. Functors for unitary representations of classical real groups and affine Hecke algebras. Advances in Mathematics, 227(4):1585–1611, 2011.
  • CT [12] Dan Ciubotaru and Peter E Trapa. Duality between GL(n,)\mathrm{GL}(n,\mathbb{R}), GL(n,p)\mathrm{GL}(n,\mathbb{Q}_{p}), and the degenerate affine Hecke algebra for 𝔤𝔩(n)\mathfrak{gl}(n). American Journal of Mathematics, 134(1):141–170, 2012.
  • CW [24] Kei Yuen Chan and Kayue Daniel Wong. On the Lefschetz principle for GL(n,)\mathrm{GL}(n,\mathbb{C}) and GL(m,p)\mathrm{GL}(m,\mathbb{Q}_{p}), 2024.
  • KVJ [95] Anthony W Knapp and David A Vogan Jr. Cohomological Induction and Unitary Representations, volume 45. Princeton University Press, 1995.