This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Regular singular differential equations and free proalgebraic groups

Michael Wibmer Michael Wibmer, Institute of Analysis and Number Therory, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria, https://sites.google.com/view/wibmer [email protected]
Abstract.

We determine the differential Galois group of the family of all regular singular differential equations on the Riemann sphere. It is the free proalgebraic group on a set of cardinality |||\mathbb{C}|.

Key words and phrases:
Regular singular differential equation, differential Galois theory, free proalgebraic group
2020 Mathematics Subject Classification:
14L15, 34M50
This work was supported by the NSF grants DMS-1760212, DMS-1760413, DMS-1760448 and the Lise Meitner grant M 2582-N32 of the Austrian Science Fund FWF

1. Introduction

The following table depicts the beautiful analogy between classical Galois theory and differential Galois theory over the rational function field (x)\mathbb{C}(x). Excellent introductions to these topics can be found in [Sza09] and [vdPS03].

Classical Galois theory Differential Galois theory
1 Univariate polynomials over (x)\mathbb{C}(x) Linear differential equations over (x)\mathbb{C}(x)
2 Galois extension of (x)\mathbb{C}(x) and their Galois groups Picard-Vessiot extensions of (x)\mathbb{C}(x) and their differential Galois groups
3 A finite Galois extensions LL of (x)\mathbb{C}(x) corresponds to a ramified cover p:X1()p\colon X\to\mathbb{P}^{1}(\mathbb{C}). If SS is the finite set of branch points and x0x_{0}\in\mathbb{C} is not in SS, then the Galois group of L/(x)L/\mathbb{C}(x) can be identified with the image of π1(1()S,x0)\pi_{1}(\mathbb{P}^{1}(\mathbb{C})\smallsetminus S,x_{0}) under its action on p1(x0)p^{-1}(x_{0}). Schlesinger’s density theorem: Let SS be a finite subset of 1()\mathbb{P}^{1}(\mathbb{C}) and x0x_{0}\in\mathbb{C} not in SS. The differential Galois group of a regular singular linear differential equation with singularities in SS, can be identified with the Zariski closure of the image of π1(1()S,x0)\pi_{1}(\mathbb{P}^{1}(\mathbb{C})\smallsetminus S,x_{0}) under its action on the local solution space at x0x_{0}.
4 For x0x_{0}\in\mathbb{C} and SS a finite subset of 1()\mathbb{P}^{1}(\mathbb{C}) not containing x0x_{0}, the Galois GG group of the maximal algebraic extension of (x)\mathbb{C}(x) with ramification only over SS, is the profinite completion of π1(1()S,x0)\pi_{1}(\mathbb{P}^{1}(\mathbb{C})\smallsetminus S,x_{0}), i.e., GG is the free profinite group on a set of cardinality |S|1|S|-1. For x0x_{0}\in\mathbb{C} and SS a finite subset of 1()\mathbb{P}^{1}(\mathbb{C}) not containing x0x_{0}, the differential Galois group GG of the family of all regular singular differential equations with singularities inside SS, is the proalgebraic completion of π1(1()S,x0)\pi_{1}(\mathbb{P}^{1}(\mathbb{C})\smallsetminus S,x_{0}), i.e., GG is the free proalgebraic group on a set of cardinality |S|1|S|-1.
5 Douady’s Theorem: The absolute Galois group of (x)\mathbb{C}(x) is the free profinite group on a set of cardinality |||\mathbb{C}|. ?

The main goal of this article is to fill in the above question mark. On the face of it, it may seem that the appropriate differential analog of Douady’s theorem is “The absolute differential Galois group of (x)\mathbb{C}(x) is the free proalgebraic group on a set of cardinality |||\mathbb{C}|”. This is in fact a true statement ([BHHW21a]). However, Douady arrived at 5 via 3 and 4. In this sense, an appropriate differential analog of Douady’s theorem should only be concerned with regular singular differential equations. Our main result is the following differential analog of Douady’s theorem.

Theorem A (Theorem 4.4).

The differential Galois group of the family of all regular singular differential equations over (x)\mathbb{C}(x) is the free proalgebraic group on a set of cardinality |||\mathbb{C}|.

At first glance, it might seem that 5 should follow from 4 rather immediately. However, in general, the projective limit of free profinite groups need not be a free profinite group ([RZ10, Ex. 9.1.14]). The question, when a projective limit of free profinite groups is itself free has attracted some attention but does not seem to be fully understood ([RZ10, Thm. 3.5.15 and Open Question 9.5.2]).

To get from 4 to 5 in the proof of Douady’s theorem (see [Sza09, Sec. 3.4] or [Dou64] for the original reference) one uses a compactness argument and that π1(1()S,x0)\pi_{1}(\mathbb{P}^{1}(\mathbb{C})\smallsetminus S,x_{0}) has more or less canonical generators. Another ingredient of the proof is that in the free profinite group on a set with rr elements, any subset of rr topological generators is a basis. As we will show (Example 2.3), the corresponding statement fails for free proalgebraic groups. Therefore, genuinely new ideas are needed in the differential case. In particular, we will use a characterization of free proalgebraic groups in terms of embedding problems.

For a finite subset XX of \mathbb{C}, it is an immediate consequence of the Riemann-Hilbert correspondence, that the differential Galois group of the family of all regular singular differential equations with singularities in X{}X\cup\{\infty\}, is the free proalgebraic group on a set of cardinality |X||X|. We generalize this result from finite subsets of \mathbb{C} to arbitrary subsets of \mathbb{C}. Indeed, the case X=X=\mathbb{C} is exactly Theorem A.

We note that there is also an analogy between differential Galois theory over (x)\mathbb{C}(x) and classical Galois theory over k(x)k(x), with kk an algebraically closed field of characteristic p>0p>0, such that regular singular points correspond to tamely ramified points, while irregular singular points correspond to wildly ramified points ([vdPS03, Section 11.6]). Based on this analogy, our result may seem more surprising, because the Galois group of the maximal tamely ramified extension of k(x)k(x) with branch locus in a fixed subset SS of 1(k)\mathbb{P}^{1}(k) is not a free profinite group.

We conclude the introduction with an outline of the article. In Section 2 we recall the definition of free proalgebraic groups and the required results concerning differential Galois theory and the Riemann-Hilbert correspondence. We then study projetive systems of abstract free groups in Section 3. Finally, in the last section the previous results are applied to prove Theorem A.

The author is grateful to David Harbater and Michael Singer for helpful comments.

2. Preliminaries and Notation

In this preparatory section we recall the basic definitions and results concerning regular singular differential equations and differential Galois theory. We also review the definition of free proalgebraic groups.

We use “==” or “\simeq” to denote canonical isomorphisms and “\cong” to denote isomorphisms. (As the implied isomorphism in Theorem A is not canonical, it seems worthwhile to make this distinction.)

2.1. Free proalgebraic groups

Throughout this article we work over the field \mathbb{C} of complex numbers. We use the term “algebraic group” in lieu of “affine group scheme of finite type over \mathbb{C}”. Similarly, a “proalgebraic group” is an “affine group scheme over \mathbb{C}”. By a closed subgroup of a proalgebraic group, we mean a closed subgroup scheme. Following [Mil17, Def. 5.5] a morphism GHG\to H of proalgebraic groups is called a quotient map if it is faithfully flat. We use GHG\twoheadrightarrow H to indicate quotient maps.

We begin by recalling the definition of free proalgebraic groups from [Wib20]. Let Γ\Gamma be a proalgebraic group and let XX be a set. A map φ:XΓ()\varphi\colon X\to\Gamma(\mathbb{C}) converges to 11 if almost all elements of XX map to 11 in any algebraic quotient of Γ\Gamma, i.e., for every algebraic group GG and every quotient map ϕ:ΓG\phi\colon\Gamma\twoheadrightarrow G, all but finitely many elements of XX map to 11 under X𝜑Γ()ϕG()X\xrightarrow{\varphi}\Gamma(\mathbb{C})\xrightarrow{\phi_{\mathbb{C}}}G(\mathbb{C}).

The following definition is the special case of [Wib20, Def. 2.18], where 𝒞\mathcal{C} is the formation of all algebraic groups and R=k=R=k=\mathbb{C}.

Definition 2.1.

Let XX be a set. A proalgebraic group Γ(X)\Gamma(X) together with a map ι:XΓ(X)()\iota\colon X\to\Gamma(X)(\mathbb{C}) converging to one is called a free proalgebraic group on XX if ι\iota satisfies the following universal property. For every proalgebraic group GG and every map φ:XG\varphi\colon X\to G converging to 11, there exists a unique morphism ϕ:Γ(X)G\phi\colon\Gamma(X)\to G of proalgebraic groups such that

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}φ\scriptstyle{\varphi}Γ(X)()\textstyle{\Gamma(X)(\mathbb{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi_{\mathbb{C}}}G()\textstyle{G(\mathbb{C})}

commutes.

As the pair (ι,Γ(X))(\iota,\Gamma(X)) is unique up to a unique isomorphism, we will usually speak of the free proalgebraic group Γ(X)\Gamma(X) on XX.

The map ι:XΓ(X)()\iota\colon X\to\Gamma(X)(\mathbb{C}) is injective. In fact, the induced map F(X)Γ(X)()F(X)\to\Gamma(X)(\mathbb{C}) from the (abstract) free group F(X)F(X) on XX to Γ(X)()\Gamma(X)(\mathbb{C}) is injective ([Wib21, Lem. 1.6]). We will therefore in the sequel identify XX with a subset of Γ(X)()\Gamma(X)(\mathbb{C}) via ι\iota.

Remark 2.2.

To verify that Γ(X)\Gamma(X) is the free proalgebraic group on XX, it suffices to verify the universal property of Definition 2.1 for GG algebraic ([Wib20, Rem. 2.19]).

For a proalgebraic group GG and a subset XX of G()G(\mathbb{C}), we denote the smallest closed subgroup HH of GG such that XH()X\subseteq H(\mathbb{C}) with X\langle X\rangle. In other words, X\langle X\rangle is the closed subgroup of GG generated by XX. By [Wib20, Thm. 2.17] we have Γ(X)=X\Gamma(X)=\langle X\rangle.

We next explain why the proof of Douady’s theorem (as presented in [Dou64] or [Sza09, Sec. 3.4]) does not have a direct differential analog. This proof uses a result ([Dou64, Prop. 1] or [Sza09, Lem. 3.4.11]) attributed to Serre by Douady, stating that, any set of nn elements that topologically generates a free profinite group of rank nn is a basis. Equivalently, a surjective endomorphism of a free profinite group of finite rank is an isomorphism. The proof of this result uses a counting argument and therefore does not apply in our context, where finite groups are replaced by algebraic groups. In fact, as shown in the following example, Serre’s result does not hold in our context.

Example 2.3.

Let X={}X=\{*\} be a set with one element *. We will show that not every generator of Γ(X)\Gamma(X) is a basis, i.e., there exists a quotient map Γ(X)Γ(X)\Gamma(X)\to\Gamma(X) that is not an isomorphism.

The free proalgebraic on one element is of the form Γ(X)=𝔾a×D(×)\Gamma(X)=\mathbb{G}_{a}\times D(\mathbb{C}^{\times}). See [Wib20, Ex. 2.22] or [Sau16, Cor. 16.26]. Here 𝔾a\mathbb{G}_{a} is the additive group and, as in [DG70, Ch. IV, §1, Sec. 1], for any abelian group MM, D(M)D(M) denotes the diagonalizable proalgebraic group with character group MM, i.e., D(M)(T)=Hom(M,T×)D(M)(T)=\operatorname{Hom}(M,T^{\times}) for any \mathbb{C}-algebra TT. The map ι:XΓ(X)()\iota\colon X\to\Gamma(X)(\mathbb{C}) is given by ι()=(1,id)×Hom(×,×)=𝔾a()×D(×)()\iota(*)=(1,\operatorname{id})\in\mathbb{C}\times\operatorname{Hom}(\mathbb{C}^{\times},\mathbb{C}^{\times})=\mathbb{G}_{a}(\mathbb{C})\times D(\mathbb{C}^{\times})(\mathbb{C}).

As an abelian group, ×\mathbb{C}^{\times} is isomorphic to (/)V(\mathbb{Q}/\mathbb{Z})\oplus V, where VV is a \mathbb{Q}-vector space of dimension |||\mathbb{C}|. In particular, there exists an injective endomorphism ψ:××\psi\colon\mathbb{C}^{\times}\to\mathbb{C}^{\times} that is not an isomorphism. Dualizing ψ\psi, we find a quotient map D(×)D(×)D(\mathbb{C}^{\times})\to D(\mathbb{C}^{\times}) that is not an isomorphism. This trivially extends to a quotient map Γ(X)Γ(X)\Gamma(X)\to\Gamma(X) that is not an isomorphism.

We will need the notion of proalgebraic completion of an abstract group. See e.g., [BLMM02]. Note that the proalgebraic completion is sometimes also referred to as the proalgebraic hull (e.g., in [Sau16]) or as the Hochschild-Mostow group (in honor of [HM57]).

Definition 2.4.

Let FF be an (abstract) group. The proalgebraic completion FalgF^{\operatorname{alg}} of FF is a proalgebraic group equipped with a morphism FFalg()F\to F^{\operatorname{alg}}(\mathbb{C}) of groups satisfying the following universal property: If GG is a proalgebraic and FG()F\to G(\mathbb{C}) is a morphism of groups, then there exists a unique morphism ϕ:FalgG\phi\colon F^{\operatorname{alg}}\to G of proalgebraic groups such that

F\textstyle{F\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Falg()\textstyle{F^{\operatorname{alg}}(\mathbb{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi_{\mathbb{C}}}G()\textstyle{G(\mathbb{C})}

commutes.

For XX a finite (!) set and F(X)F(X) the (abstract) free group on XX, it follows from the universal properties that F(X)algΓ(X)F(X)^{\operatorname{alg}}\simeq\Gamma(X). The proalgebraic completion FalgF^{\operatorname{alg}} of FF can be constructed as the fundamental group of the neutral tannakian category of all finite dimensional \mathbb{C}-linear representations of FF.

2.2. Differential Galois theory

Introductions to this topic can be found in [Mag94, vdPS03],[CH11] and [Sau16]. We recall the basic definitions and results, introducing our notation for the subsequent sections along the way.

We fix a differential field KK with derivation δ:KK\delta\colon K\to K. We assume that the field of constants Kδ={aK|δ(a)=a}K^{\delta}=\{a\in K|\ \delta(a)=a\} of KK is the field \mathbb{C} of complex numbers. We are mainly interested in the case when K=(x)K=\mathbb{C}(x) is the rational function field in one variable xx and δ=ddx\delta=\frac{d}{dx}. We consider a family =(δ(y)=Aiy)iI\mathcal{F}=(\delta(y)=A_{i}y)_{i\in I} of linear differential equations indexed by some set II, where AiKni×niA_{i}\in K^{n_{i}\times n_{i}} is a square matrix for every iIi\in I.

Definition 2.5.

A differential field extension L/KL/K with Lδ=L^{\delta}=\mathbb{C} is a Picard-Vessiot extension for \mathcal{F} if there exist matrices YiGLni(L)Y_{i}\in\operatorname{GL}_{n_{i}}(L) such that δ(Yi)=AiYi\delta(Y_{i})=A_{i}Y_{i} for iIi\in I and LL is generated as a field extension of KK be all entries of all YiY_{i}’s.

The KK-subalgebra RR of LL generated by all of entries of all YiY_{i}’s and 1det(Yi)\frac{1}{\det(Y_{i})}’s is a KK-δ\delta-subalgebra of LL and called a Picard-Vessiot ring for \mathcal{F}.

For a given family \mathcal{F}, a Picard-Vessiot extension exists and is unique up to a KK-δ\delta-isomorphism. The differential Galois group G(L/K)G(L/K) of the Picard-Vessiot extension L/KL/K, or of the family \mathcal{F}, is the functor TAut(RT/KT)T\rightsquigarrow\operatorname{Aut}(R\otimes_{\mathbb{C}}T/K\otimes_{\mathbb{C}}T), from the category of \mathbb{C}-algebras to the category groups, where TT is considered as a constant differential ring and the automorphisms are required to commute with the derivation. The functor G(L/K)G(L/K) can be represented by a \mathbb{C}-algebra, i.e., G(L/K)G(L/K) is a proalgebraic group.

A Picard-Vessiot extension L/KL/K is of finite type if it is the Picard-Vessiot extension for a single differential equation. This is the case if and only of G(L/K)G(L/K) is algebraic.

Since LL is the field of fractions of RR, any gG(L/K)()g\in G(L/K)(\mathbb{C}) extends uniquely to a KK-δ\delta-automorphism of LL. For a closed subgroup HH of G=G(L/K)G=G(L/K) we set

LH={aL|h(a)=ahH()}.L^{H}=\{a\in L|\ h(a)=a\ \forall\ h\in H(\mathbb{C})\}.
Theorem 2.6 (The differential Galois correspondence).

Let L/KL/K be a Picard-Vessiot extension. The assignment MG(L/M)M\mapsto G(L/M) defines an inclusion reversing bijection between the set of intermediate differential fields of L/KL/K and the set of closed subgroups of G(L/K)G(L/K). The inverse is given by HLHH\mapsto L^{H}.

If MM corresponds to HH under this bijection, then M/KM/K is Picard-Vessiot if and only if HH is normal in G(L/K)G(L/K). Moreover, if this is the case, the restriction morphism G(L/K)G(M/K)G(L/K)\to G(M/K) is a quotient map with kernel G(L/M)G(L/M). In particular, G(M/K)G(L/K)/G(L/M)G(M/K)\simeq G(L/K)/G(L/M).

An alternative definition of the differential Galois group of a family of linear differential equations can be given via the tannakian formalism ([DM82, Del90]). As a first step, one has to define the “category of differential equations”. This is formalized through the notion of a differential module. A differential module over KK is a finite dimensional KK-vector space MM equipped with an additive map :MM\partial\colon M\to M such that (am)=δ(a)m+a(m)\partial(am)=\delta(a)m+a\partial(m) for all aKa\in K and mMm\in M. A morphism of differential modules over KK is a KK-linear map that commutes with \partial.

To a linear differential equation δ(y)=Ay\delta(y)=Ay with AKn×nA\in K^{n\times n}, one associates the differential module MAM_{A} by setting MA=KnM_{A}=K^{n} and (ξ)=δ(ξ)Aξ\partial(\xi)=\delta(\xi)-A\xi for all ξKn\xi\in K^{n}. Conversely, if (M,)(M,\partial) is a differential module with basis e¯=(e1,,en)\underline{e}=(e_{1},\ldots,e_{n}), we can write (e¯)=e¯(A)\partial(\underline{e})=\underline{e}(-A) for a unique matrix A=AM,e¯Kn×nA=A_{M,\underline{e}}\in K^{n\times n}. Then (e¯ξ)=e¯δ(ξ)+(e¯)ξ=e¯(δ(ξ)Aξ)\partial(\underline{e}\xi)=\underline{e}\delta(\xi)+\partial(\underline{e})\xi=\underline{e}(\delta(\xi)-A\xi) so that MM is isomorphic to MAM_{A}. Via the choice of the basis e¯\underline{e}, we can thus associate to MM the differential equation δ(y)=Ay\delta(y)=Ay. A different choice of basis leads to a Gauge equivalent differential equation.

For a differential module (M,)(M,\partial) over KK one sets M={mM|(m)=0}M^{\partial}=\{m\in M|\ \partial(m)=0\}. This is a \mathbb{C}/̄subspace of MM. If e¯\underline{e} is a KK-basis of MM and AKn×nA\in K^{n\times n} is such that (e¯ξ)=e¯(δ(ξ)Aξ)\partial(\underline{e}\xi)=\underline{e}(\delta(\xi)-A\xi) for all ξKn\xi\in K^{n}, then MM^{\partial} can be identified with the \mathbb{C}-space of all solutions of δ(y)=Ay\delta(y)=Ay in KnK^{n}. More generally, if LL is a differential field extension of KK, then MKLM\otimes_{K}L is a differential module over LL and MKLM\otimes_{K}L identifies with the space of all solutions of δ(y)=Ay\delta(y)=Ay in LnL^{n}.

The category of all differential modules over KK is a neutral Tannakian category over \mathbb{C}. If =(δ(y)=Aiy)iI\mathcal{F}=(\delta(y)=A_{i}y)_{i\in I} is a family of differential equations over KK and =(MAi)iI\mathcal{M}=(M_{A_{i}})_{i\in I} is the corresponding family of differential modules, then the differential Galois group of \mathcal{F} is isomorphic to the fundamental group of the neutral Tannakian category \langle\langle\mathcal{M}\rangle\rangle generated by \mathcal{M}.

2.3. Regular singular differential equations

For background on regular singular differential equations and the Riemann-Hilbert correspondence see [Sau16, Part 3], [vdPS03, Chapters 5 and  6], [MS16, Part I] and [ABC20, Part III].

We first treat the local definitions. Consider a differential module (M,)(M,\partial) over the field ((t))\mathbb{C}((t)) of formal Laurent series in tt equipped with the usual derivation δ=ddt\delta=\frac{d}{dt}. Let [[t]]((t))\mathbb{C}[[t]]\subseteq\mathbb{C}((t)) be the differential subring of formal power series. A [[t]]\mathbb{C}[[t]]/̄lattice in MM is a [[t]]\mathbb{C}[[t]]/̄submodule NN of MM such that there exists a [[t]]\mathbb{C}[[t]]-basis of NN that is also a ((t))\mathbb{C}((t))-basis of MM.

The differential module MM is called regular if there exists a [[t]]\mathbb{C}[[t]]/̄lattice NN in MM such that (N)N\partial(N)\subseteq N. The differential module MM is called regular singular if there exists a [[t]]\mathbb{C}[[t]]/̄lattice NN in MM such that t(N)Nt\partial(N)\subseteq N. So a regular differential module is regular singular.

We now consider the global picture. Let (M,)(M,\partial) be differential module over (x)\mathbb{C}(x). Here, as throughout the paper, the rational function field (x)\mathbb{C}(x) is considered as a differential field via the derivation δ=ddx\delta=\frac{d}{dx}.

Let 1()={}\mathbb{P}^{1}(\mathbb{C})=\mathbb{C}\cup\{\infty\} denote the Riemann sphere. For every point p1()p\in\mathbb{P}^{1}(\mathbb{C}) we have a “local” differential field (x)p=((t))\mathbb{C}(x)_{p}=\mathbb{C}((t)). For pp\in\mathbb{C} this is (x)p=((xp))=((t))\mathbb{C}(x)_{p}=\mathbb{C}((x-p))=\mathbb{C}((t)), the field of formal Laurent series in t=xpt=x-p with derivation ddt=dd(xp)\frac{d}{dt}=\frac{d}{d(x-p)}. For p=p=\infty this is (x)p=((x1))=((t))\mathbb{C}(x)_{p}=\mathbb{C}((x^{-1}))=\mathbb{C}((t)), the field of formal Laurent series in t=x1t=x^{-1} with derivation ddt=ddx1\frac{d}{dt}=\frac{d}{dx^{-1}}.

Note that ((x),ddx)(\mathbb{C}(x),\frac{d}{dx}) is a differential subfield of (((xp)),dd(xp))(\mathbb{C}((x-p)),\frac{d}{d(x-p)}) for pp\in\mathbb{C}. Thus, we obtain a differential module Mp=M(x)(x)pM_{p}=M\otimes_{\mathbb{C}(x)}\mathbb{C}(x)_{p} over (x)p\mathbb{C}(x)_{p} for every pp\in\mathbb{C}. For p=p=\infty it is not true that ((x),ddx)(\mathbb{C}(x),\frac{d}{dx}) is a differential subfield of (((x1)),ddx1)(\mathbb{C}((x^{-1})),\frac{d}{dx^{-1}}). However, ((x),x2ddx)(\mathbb{C}(x),-x^{2}\frac{d}{dx}) is a differential subfield of (((x1)),ddx1)(\mathbb{C}((x^{-1})),\frac{d}{dx^{-1}}). So we can base change the differential module (M,x2)(M,{-x^{2}}\partial) over ((x),x2ddx)(\mathbb{C}(x),-x^{2}\frac{d}{dx}) to a differential module MM_{\infty} over (x)\mathbb{C}(x)_{\infty}. This awkwardness at infinity is one of the reasons why some authors prefer to work with connections, rather than differential modules. This way one can avoid the a priori choice of a derivation on (x)\mathbb{C}(x). However, since the module Ω(x)/\Omega_{\mathbb{C}(x)/\mathbb{C}} of differentials of (x)\mathbb{C}(x) over \mathbb{C} is one dimensional, these two approaches are equivalent.

A point p1()p\in\mathbb{P}^{1}(\mathbb{C}) is a singularity of MM if the differential module MpM_{p} over ((t))\mathbb{C}((t)) is not regular. A point p1()p\in\mathbb{P}^{1}(\mathbb{C}) is regular singular for MM if the differential module MpM_{p} over ((t))\mathbb{C}((t)) is regular singular. Finally, MM is called regular singular if every point p1()p\in\mathbb{P}^{1}(\mathbb{C}) is regular singular for MM.

Consider a differential equation δ(y)=Ay\delta(y)=Ay with A(x)n×nA\in\mathbb{C}(x)^{n\times n}. A point p1()p\in\mathbb{P}^{1}(\mathbb{C}) is a singularity of δ(y)=Ay\delta(y)=Ay if it is a singularity of the associated differential module MAM_{A}. Note that this definition is at odds with the common terminology, referring to the poles of AA as the singularities of δ(y)=Ay\delta(y)=Ay. If pp\in\mathbb{C} is a singularity of δ(y)=Ay\delta(y)=Ay, then pp must be a pole of AA. However, the converse is not true. A pole of AA that is not a singularity of δ(y)=Ay\delta(y)=Ay is sometimes called an apparent singularity. The differential equation δ(y)=Ay\delta(y)=Ay is called regular singular if the associated differential module MAM_{A} is regular singular.

Fix a proper subset XX of 1()\mathbb{C}\subseteq\mathbb{P}^{1}(\mathbb{C}). As XX is assumed to be a proper subset of \mathbb{C}, we can choose a “base point” x0x_{0}\in\mathbb{C} with x0Xx_{0}\notin X. Let RegSing((x),X)\operatorname{RegSing}(\mathbb{C}(x),X) denote the category of all regular singular differential modules over (x)\mathbb{C}(x) with singularities contained in X{}X\cup\{\infty\}. This is a Tannakian category over \mathbb{C}. A fibre functor ωX,x0:RegSing((x),X)Vec\omega_{X,x_{0}}\colon\operatorname{RegSing}(\mathbb{C}(x),X)\to\operatorname{Vec}_{\mathbb{C}}, with values in the category Vec\operatorname{Vec}_{\mathbb{C}} of finite dimensional \mathbb{C}-vector spaces, is given by

ωX,x0((M,))=(M(x)x0),\omega_{X,x_{0}}((M,\partial))=(M\otimes_{\mathbb{C}(x)}\mathcal{M}_{x_{0}})^{\partial},

where x0\mathcal{M}_{x_{0}} is the differential field of germs of meromorphic functions at x0x_{0}. We denote with Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}) the proalgebraic group of tensor automorphisms of ωX,x0\omega_{X,x_{0}}.

Now assume that XX is finite. Let π1(X,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0}) be the topological fundamental group of the Riemann sphere with the points X{}X\cup\{\infty\} removed, with base point x0x_{0}. Then the local solution space (M(x)x0)(M\otimes_{\mathbb{C}(x)}\mathcal{M}_{x_{0}})^{\partial} is naturally equipped with the monodromy action of π1(X,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0}). We denote with Rep(π1(X,x0))\operatorname{Rep}(\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})) the category of finite dimensional \mathbb{C}-linear representations of π1(X,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0}). The following theorem is sometimes referred to as the (global) Riemann-Hilbert correspondence. The essential surjectivity of the functor in the theorem is also known as the solution of the (weak form of the) Riemann-Hilbert problem.

Theorem 2.7 (Riemann-Hilbert correspondence).

Let XX\subseteq\mathbb{C} be finite. Then the functor

RegSing((x),X)Rep(π1(X,x0)),(M,)(M(x)x0)\operatorname{RegSing}(\mathbb{C}(x),X)\to\operatorname{Rep}(\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})),\quad(M,\partial)\rightsquigarrow(M\otimes_{\mathbb{C}(x)}\mathcal{M}_{x_{0}})^{\partial}

is an equivalence of Tannakian categories.

From Theorem 2.7 we immediately obtain:

Corollary 2.8.

For XX\subseteq\mathbb{C} finite we have Aut¯(ωX,x0)π1(X,x0)alg\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})\simeq\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}}. In particular, the differential Galois group of the family of all regular singular differential equations over (x)\mathbb{C}(x) with singularities in X{}X\cup\{\infty\} is isomorphic to the free proalgebraic group on XX.

Proof.

As π1(X,x0)alg\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}} is the proalgebraic group of tensor automorphisms of the forgetful functor Rep(π1(X,x0))Vec\operatorname{Rep}(\pi_{1}(\mathbb{C}\smallsetminus X,x_{0}))\to\operatorname{Vec}_{\mathbb{C}}, Theorem 2.7 yields an isomorphism π1(X,x0)algAut¯(ωX,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}}\to\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}). The last statement follows because the differential Galois group of the family of all regular singular differential equations with singularities in X{}X\cup\{\infty\} is isomorphic to Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}) and the group π1(X,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0}) is free on |X||X| generators. ∎

We stress the fact that the morphism of groups π1(X,x0)Aut¯(ωX,x0)()\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})\to\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})(\mathbb{C}) is canonical. If XX^{\prime} is a subset of the finite set XX\subseteq\mathbb{C}, then RegSing((x),X)\operatorname{RegSing}(\mathbb{C}(x),X^{\prime}) is a subcategory of RegSing((x),X)\operatorname{RegSing}(\mathbb{C}(x),X) and ωX,x0\omega_{X^{\prime},x_{0}} is the restriction of ωX,x0\omega_{X,x_{0}} to RegSing((x),X)\operatorname{RegSing}(\mathbb{C}(x),X^{\prime}). We thus have a morphism Aut¯(ωX,x0)Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})\to\underline{\operatorname{Aut}}^{\otimes}(\omega_{X^{\prime},x_{0}}) of proalgebraic groups. As XX\mathbb{C}\smallsetminus X\subseteq\mathbb{C}\smallsetminus X^{\prime}, we also have a morphism π1(X,x0)π1(X,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})\to\pi_{1}(\mathbb{C}\smallsetminus X^{\prime},x_{0}) of groups. The diagram

π1(X,x0)\textstyle{\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Aut¯(ωX,x0)()\textstyle{\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})(\mathbb{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(X,x0)\textstyle{\pi_{1}(\mathbb{C}\smallsetminus X^{\prime},x_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Aut¯(ωX,x0)()\textstyle{\underline{\operatorname{Aut}}^{\otimes}(\omega_{X^{\prime},x_{0}})(\mathbb{C})}

commutes and so also the diagram

π1(X,x0)alg\textstyle{\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}Aut¯(ωX,x0)\textstyle{\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1(X,x0)alg\textstyle{\pi_{1}(\mathbb{C}\smallsetminus X^{\prime},x_{0})^{\operatorname{alg}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}Aut¯(ωX,x0)\textstyle{\underline{\operatorname{Aut}}^{\otimes}(\omega_{X^{\prime},x_{0}})} (1)

commutes.

The family of isomorphisms π1(X,x0)algAut¯(ωX,x0)\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}}\simeq\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}), one for every finite subset XX of \mathbb{C} not containing x0x_{0}, can thus be seen as defining an isomorphism between two projective systems of proalgebraic groups. The projective limit on the right hand side is limXAut¯(ωX,x0)=Aut¯(ω{x0},x0)\varprojlim_{X}\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})=\underline{\operatorname{Aut}}^{\otimes}(\omega_{\mathbb{C}\smallsetminus\{x_{0}\},x_{0}}), whereas the projective limit limXπ1(X,x0)alg\varprojlim_{X}\pi_{1}(\mathbb{C}\smallsetminus X,x_{0})^{\operatorname{alg}} on the left hand side is a projective limit of free proalgebraic groups. The following section provides the necessary tools to show that this limit itself is free.

3. Projective systems of free groups

Let XX be a set and consider the directed set 𝒴\mathcal{Y} of all finite subsets of XX ordered by inclusion. For Y𝒴Y\in\mathcal{Y} let F(Y)F(Y) denote the (abstract) free group on YY and for YYY\subseteq Y^{\prime}, define a map φY,Y:F(Y)F(Y)\varphi_{Y,Y^{\prime}}\colon F(Y^{\prime})\to F(Y) by

φY,Y(y)={y if yY,1 if yY.\varphi_{Y,Y^{\prime}}(y^{\prime})=\begin{cases}y^{\prime}&\text{ if }y^{\prime}\in Y,\\ 1&\text{ if }y^{\prime}\notin Y.\end{cases}

The projective limit limY𝒴F(Y)\varprojlim_{Y\in\mathcal{Y}}F(Y) (in the category of groups) of the projective system (F(Y)Y𝒴,(φY,Y)YY)(F(Y)_{Y\in\mathcal{Y}},(\varphi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}) is in general not a free group: We have a map φ:XlimY𝒴F(Y),x(φ(x)Y)Y𝒴\varphi\colon X\to\varprojlim_{Y\in\mathcal{Y}}F(Y),\ x\mapsto(\varphi(x)_{Y})_{Y\in\mathcal{Y}} given by

φ(x)Y={x if xY,1 if xY\varphi(x)_{Y}=\begin{cases}x&\text{ if }x\in Y,\\ 1&\text{ if }x\notin Y\end{cases}

and the induced map F(X)limY𝒴F(Y)F(X)\to\varprojlim_{Y\in\mathcal{Y}}F(Y) is injective. However, this map need not be surjective. Intuitively, surjectivity fails because F(X)F(X) only contains words of finite length, while limY𝒴F(Y)\varprojlim_{Y\in\mathcal{Y}}F(Y) may contain words of infinite length. For example, if X={x1,x2,}X=\{x_{1},x_{2},\ldots\} is countably infinite, write Y={xiY,1,xiY,2,,xiY,|Y|}Y=\{x_{i_{Y,1}},x_{i_{Y,2}},\ldots,x_{i_{Y,|Y|}}\} with iY,1<iY,2,<iY,|Y|i_{Y,1}<i_{Y,2},\ldots<i_{Y,|Y|}. Then (xiY,1xiY,2xiY,|Y|)Y𝒴(x_{i_{Y,1}}x_{i_{Y,2}}\ldots x_{i_{Y,|Y|}})_{Y\in\mathcal{Y}} lies in limY𝒴F(Y)\varprojlim_{Y\in\mathcal{Y}}F(Y) but not in the image of F(X)F(X). In the nomenclature of [Hig52] this limit is an unrestricted free product. For more on projective limits of abstracts free groups see [CK12] and [EN13].

However, when working with free profinite groups instead of abstract free groups, the above construction leads to a free profinite group. See [RZ10, Cor. 3.3.10 b)] or [Sza09, Lem. 3.4.10]. As we shall now explain, also in the case of free proalgebraic groups, the above construction leads to a free proalgebraic group.

As above, let XX be a set and let 𝒴\mathcal{Y} be the directed set of all finite subsets of XX. For YYY\subseteq Y^{\prime}, by the universal property of Γ(Y)\Gamma(Y^{\prime}) (Definition 2.1), the map φY,Y:YΓ(Y)()\varphi_{Y,Y^{\prime}}\colon Y^{\prime}\to\Gamma(Y)(\mathbb{C}) defined by

φY,Y(y)={y if yY,1 if yY,\varphi_{Y,Y^{\prime}}(y^{\prime})=\begin{cases}y^{\prime}&\text{ if }y^{\prime}\in Y,\\ 1&\text{ if }y^{\prime}\notin Y,\end{cases}

extends to a morphism φY,Y:Γ(Y)Γ(Y)\varphi_{Y,Y^{\prime}}\colon\Gamma(Y^{\prime})\to\Gamma(Y). Then ((Γ(Y))Y𝒴,(φY,Y)YY)((\Gamma(Y))_{Y\in\mathcal{Y}},(\varphi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}) is a projective system of free proalgebraic groups on finite sets. The projective limit is Γ(X)\Gamma(X).

Lemma 3.1.

limY𝒴Γ(Y)=Γ(X)\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)=\Gamma(X).

Proof.

For Y𝒴Y\in\mathcal{Y} we define ιY:XΓ(Y)()\iota_{Y}\colon X\to\Gamma(Y)(\mathbb{C}) by ιY(x)={x if xY,1 if xY.\iota_{Y}(x)=\begin{cases}x\text{ if }x\in Y,\\ 1\text{ if }x\notin Y.\end{cases} Then

ι:XlimY𝒴Γ(Y)()=(limY𝒴Γ(Y))(),x(ιY(x))Y𝒴\iota\colon X\to\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)(\mathbb{C})=\Big{(}\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)\Big{)}(\mathbb{C}),\quad x\mapsto(\iota_{Y}(x))_{Y\in\mathcal{Y}}

converges to 11 because every quotient map limY𝒴Γ(Y)G\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)\twoheadrightarrow G to an algebraic group GG factors through some Γ(Y)\Gamma(Y).

To verify the universal property of ι\iota, according to Remark 2.2, it suffices to consider a map φ:XG()\varphi\colon X\to G(\mathbb{C}) converging to 11, with GG an algebraic group. Then Y0={xX|φ(x)1}Y_{0}=\{x\in X|\ \varphi(x)\neq 1\} is finite. Define a morphism ψ:Γ(Y0)G\psi\colon\Gamma(Y_{0})\to G by ψ(y)=φ(y)\psi(y)=\varphi(y) for yY0y\in Y_{0} and let ϕ\phi be the composition ϕ:limY𝒴Γ(Y)Γ(Y0)𝜓G\phi\colon\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)\to\Gamma(Y_{0})\xrightarrow{\psi}G. Then ϕ(ι(x))=φ(x)\phi(\iota(x))=\varphi(x) for every xXx\in X.

If ϕ:limY𝒴Γ(Y)G\phi^{\prime}\colon\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)\to G is another morphism such that ϕ(ι(x))=φ(x)\phi^{\prime}(\iota(x))=\varphi(x) for all xXx\in X, then T{g(limY𝒴Γ(Y))(T)|ϕ(g)=ϕ(g)}T\rightsquigarrow\{g\in(\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y))(T)|\ \phi(g)=\phi^{\prime}(g)\} is a closed subgroup of limY𝒴Γ(Y)\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y). It thus suffices to show that ι(X)=limY𝒴Γ(Y)\langle\iota(X)\rangle=\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y). The projections ι(X)Γ(Y)\langle\iota(X)\rangle\to\Gamma(Y) are quotient maps because Γ(Y)=Y\Gamma(Y)=\langle Y\rangle. But then also ι(X)limY𝒴Γ(Y)\langle\iota(X)\rangle\to\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y) is a quotient map. Therefore ι(X)=limY𝒴Γ(Y)\langle\iota(X)\rangle=\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y). ∎

We now specialize to the case that XX is a proper subset of \mathbb{C}. In this case, besides the projective system ((F(Y))Y𝒴,(φY,Y)YY)((F(Y))_{Y\in\mathcal{Y}},(\varphi_{Y^{\prime},Y})_{Y^{\prime}\supseteq Y}) from the beginning of this section, we can associate another projective system of finite rank (abstract) free groups to XX as follows. Fix x0x_{0}\in\mathbb{C} with x0Xx_{0}\notin X. For Y={y1,,yn}𝒴Y=\{y_{1},\ldots,y_{n}\}\in\mathcal{Y}, it is well known (and follows from Van Kampen’s theorem) that the fundamental group π1(Y,x0)\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) of Y\mathbb{C}\smallsetminus Y with base point x0x_{0} is isomorphic to the free group on nn generators. A free set of generators is given by choosing, for each i=1,,ni=1,\ldots,n, a loop based at x0x_{0} that passes once around yiy_{i} counterclockwise and does not enclose any other points of YY.

For Y,Y𝒴Y,Y^{\prime}\in\mathcal{Y} with YYY\subseteq Y^{\prime}, the inclusion YY\mathbb{C}\smallsetminus Y^{\prime}\subseteq\mathbb{C}\smallsetminus Y gives rise to a morphism

ψY,Y:π1(Y,x0)π1(Y,x0)\psi_{Y,Y^{\prime}}\colon\pi_{1}(\mathbb{C}\smallsetminus Y^{\prime},x_{0})\to\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})

of groups. In fact, ((π1(Y,x0))Y𝒴,(ψY,Y)YY)((\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}))_{Y\in\mathcal{Y}},(\psi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}) is a projective system of groups.

Lemma 3.2.

The projective systems ((π1(Y,x0))Y𝒴,(ψY,Y)YY)\big{(}(\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}))_{Y\in\mathcal{Y}},(\psi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}\big{)} and ((F(Y))Y𝒴,(φY,Y)YY)\big{(}(F(Y))_{Y\in\mathcal{Y}},(\varphi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}\big{)} are isomorphic, i.e., there exists a family (αY)Y𝒴(\alpha_{Y})_{Y\in\mathcal{Y}} of isomorphisms αY:F(Y)π1(Y,x0)\alpha_{Y}\colon F(Y)\to\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) such that

F(Y)\textstyle{F(Y^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αY\scriptstyle{\alpha_{Y^{\prime}}}φY,Y\scriptstyle{\varphi_{Y^{\prime},Y}}π1(Y,x0)\textstyle{\pi_{1}(\mathbb{C}\smallsetminus Y^{\prime},x_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψY,Y\scriptstyle{\psi_{Y,Y^{\prime}}}F(Y)\textstyle{F(Y)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αY\scriptstyle{\alpha_{Y}}π1(Y,x0)\textstyle{\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})} (2)

commutes for every YYY^{\prime}\supseteq Y.

Proof.

For Y𝒴Y\in\mathcal{Y} and yYy\in Y, we define a canonical generator at yy to be an element of π1(Y,x0)\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) that is the homotopy class of a loop based at x0x_{0} that passes once counterclockwise around yy, not enclosing any other points of YY. The following graphics depict two canonical generators at y1y_{1}.

[Uncaptioned image]
[Uncaptioned image]

Note that π1(Y,x0)\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) contains only finitely many canonical generators at yy. Thus the set

BY={(gy)yY|gyπ1(Y,x0) is a canonical generator at y for every yY}B_{Y}=\{(g_{y})_{y\in Y}|\ g_{y}\in\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})\text{ is a canonical generator at }y\text{ for every }y\in Y\}

is finite. The map ψY,Y:π1(Y,x0)π1(Y,x0)\psi_{Y,Y^{\prime}}\colon\pi_{1}(\mathbb{C}\smallsetminus Y^{\prime},x_{0})\to\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) maps a canonical generator at yYYy^{\prime}\in Y^{\prime}\supseteq Y either to a canonical generator at yy (if yYy^{\prime}\in Y) or to 11 if yYy^{\prime}\notin Y.

For Y,Y𝒴Y,Y^{\prime}\in\mathcal{Y} with YYY\subseteq Y^{\prime}, we can define a map ΨY,Y:BYBY\Psi_{Y,Y^{\prime}}\colon B_{Y^{\prime}}\to B_{Y}, by ΨY,Y((gy)yY)=(ψY,Y(gy))yY\Psi_{Y,Y^{\prime}}((g_{y^{\prime}})_{y^{\prime}\in Y^{\prime}})=(\psi_{Y,Y^{\prime}}(g_{y}))_{y\in Y}.

Then ((BY)Y𝒴,(ΨY,Y)YY)\big{(}(B_{Y})_{Y\in\mathcal{Y}},(\Psi_{Y,Y^{\prime}})_{Y^{\prime}\supseteq Y}\big{)} is a projective system of finite sets. Thus the corresponding projective limit is non-empty ([RZ10, Prop. 1.1.4]). Let ((gy)yY)Y𝒴((g_{y})_{y\in Y})_{Y\in\mathcal{Y}} be an element of limY𝒴BY\varprojlim_{Y\in\mathcal{Y}}B_{Y}. For Y𝒴Y\in\mathcal{Y} define αY:F(Y)π1(Y,x0)\alpha_{Y}\colon F(Y)\to\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}) by αY(y)=gy\alpha_{Y}(y)=g_{y} for yYy\in Y. Then αY\alpha_{Y} is an isomorphism and by construction diagram (2) commutes. ∎

4. Main result

Throughout Section 4 we will use the following notation. We fix a Picard-Vessiot extension L/(x)L/\mathbb{C}(x) for the family all regular singular differential equations over (x)\mathbb{C}(x). For a subset XX of \mathbb{C} we denote with LXLL_{X}\subseteq L the Picard-Vessiot extension of (x)\mathbb{C}(x) for the family of all regular singular differential equations over (x)\mathbb{C}(x) with singularities in X{}X\cup\{\infty\}. So L=LL=L_{\mathbb{C}}. We also set ΓX=G(LX/(x))\Gamma_{X}=G(L_{X}/\mathbb{C}(x)). With this notation, our goal is to show that ΓXΓ(X)\Gamma_{X}\cong\Gamma(X) for every subset XX of \mathbb{C}.

We first tackle the case of proper subsets of \mathbb{C}. The following proposition generalizes Corollary 2.8 from finite subsets of \mathbb{C} to arbitrary proper subsets of \mathbb{C}.

Proposition 4.1.

Let XX be a proper subset of \mathbb{C}. Then the differential Galois group ΓX\Gamma_{X} of the family of all regular singular differential equations over (x)\mathbb{C}(x) with singularities contained in X{}X\cup\{\infty\}, is isomorphic to the free proalgebraic group Γ(X)\Gamma(X) on XX.

Proof.

Fix a base point x0x_{0}\in\mathbb{C} with x0Xx_{0}\notin X. As ΓX\Gamma_{X} is isomorphic to Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}), it suffices to show that Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}) is isomorphic to Γ(X)\Gamma(X). (Note that the isomorphism between ΓX\Gamma_{X} and Aut¯(ωX,x0)\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}) is arguably not canonical. It depends on an isomorphism between the fibre functor ωX,x0\omega_{X,x_{0}} and the fibre functor defined by LXL_{X}.)

As in Section 3, we consider the directed set 𝒴\mathcal{Y} of all finite subsets of XX. Because the category RegSing((x),X)\operatorname{RegSing}(\mathbb{C}(x),X) is the union of the subcategories RegSing((x),Y)\operatorname{RegSing}(\mathbb{C}(x),Y), where YY runs through all elements of 𝒴\mathcal{Y}, it is clear that limY𝒴Aut¯(ωY,x0)Aut¯(ωX,x0)\varprojlim_{Y\in\mathcal{Y}}\underline{\operatorname{Aut}}^{\otimes}(\omega_{Y,x_{0}})\simeq\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}}). The projective systems (Aut¯(ωY,x0))Y𝒴(\underline{\operatorname{Aut}}^{\otimes}(\omega_{Y,x_{0}}))_{Y\in\mathcal{Y}} and (π1(Y,x0)alg)Y𝒴(\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})^{\operatorname{alg}})_{Y\in\mathcal{Y}} are canonically isomorphic by (1). So also limY𝒴Aut¯(ωY,x0)limY𝒴π1(Y,x0)alg\varprojlim_{Y\in\mathcal{Y}}\underline{\operatorname{Aut}}^{\otimes}(\omega_{Y,x_{0}})\simeq\varprojlim_{Y\in\mathcal{Y}}\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})^{\operatorname{alg}}.

By Lemma 3.2, there exists an isomorphism between the projective systems (of abstract groups) ((π1(Y,x0))Y𝒴,(φY,Y)YY)\big{(}(\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0}))_{Y\in\mathcal{Y}},(\varphi_{Y^{\prime},Y})_{Y\subseteq Y^{\prime}}\big{)} and ((F(Y))Y𝒴,(ψY,Y)YY)\big{(}(F(Y))_{Y\in\mathcal{Y}},(\psi_{Y,Y^{\prime}})_{Y\subseteq Y^{\prime}}\big{)}. As the proalgebraic completion defines a functor from the category of groups to the category of proalgebraic groups, we obtain an isomorphism between the projective systems (of proalgebraic groups) ((π1(Y,x0)alg)Y𝒴,(φY,Yalg)YY)\big{(}(\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})^{\operatorname{alg}})_{Y\in\mathcal{Y}},(\varphi_{Y^{\prime},Y}^{\operatorname{alg}})_{Y\subseteq Y^{\prime}}\big{)} and ((F(Y)alg)Y𝒴,(ψY,Yalg)YY)\big{(}(F(Y)^{\operatorname{alg}})_{Y\in\mathcal{Y}},(\psi^{\operatorname{alg}}_{Y,Y^{\prime}})_{Y\subseteq Y^{\prime}}\big{)}. This isomorphism in turn yields an isomorphism limY𝒴π1(Y,x0)alglimY𝒴F(Y)alg\varprojlim_{Y\in\mathcal{Y}}\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})^{\operatorname{alg}}\cong\varprojlim_{Y\in\mathcal{Y}}F(Y)^{\operatorname{alg}} between the corresponding projective limits. The latter limit is, by Lemma 3.1, isomorphic to Γ(X)\Gamma(X).

In summary, we have

ΓXAut¯(ωX,x0)limY𝒴Aut¯(ωY,x0)limY𝒴π1(Y,x0)alglimY𝒴F(Y)alglimY𝒴Γ(Y)Γ(X).\Gamma_{X}\cong\underline{\operatorname{Aut}}^{\otimes}(\omega_{X,x_{0}})\simeq\varprojlim_{Y\in\mathcal{Y}}\underline{\operatorname{Aut}}^{\otimes}(\omega_{Y,x_{0}})\simeq\varprojlim_{Y\in\mathcal{Y}}\pi_{1}(\mathbb{C}\smallsetminus Y,x_{0})^{\operatorname{alg}}\cong\varprojlim_{Y\in\mathcal{Y}}F(Y)^{\operatorname{alg}}\simeq\varprojlim_{Y\in\mathcal{Y}}\Gamma(Y)\simeq\Gamma(X).

Note that Proposition 4.1 and its proof does not apply to the case X=X=\mathbb{C} of prime interest, because for X=X=\mathbb{C} we cannot choose a base point x0Xx_{0}\notin\mathbb{C}\smallsetminus X. To accomplish the case X=X=\mathbb{C}, we will use a characterization of free proalgebraic groups in terms embedding problems.

To this end, we need to recall some definitions from [Wib20]. Let Γ\Gamma be a proalgebraic group. An embedding problem for Γ\Gamma consists of two quotient maps α:GH\alpha\colon G\twoheadrightarrow H and β:ΓH\beta\colon\Gamma\twoheadrightarrow H of proalgebraic groups. The embedding problem is algebraic if GG (and therefore also HH) is an algebraic group. The embedding problem is trivial if α\alpha is an isomorphism. A solution of the embedding problem is a quotient map ϕ:ΓG\phi\colon\Gamma\twoheadrightarrow G such that

Γ\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}ϕ\scriptstyle{\phi}G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}H\textstyle{H}

commutes. A family (ϕi)iI(\phi_{i})_{i\in I} of solutions is independent if the induced map

iIϕi:ΓiI(GH)\prod_{i\in I}\phi_{i}\colon\Gamma\to\prod_{i\in I}(G\twoheadrightarrow H)

is a quotient map. Here iI(GH)\prod_{i\in I}(G\twoheadrightarrow H) denotes the fibre product of |I||I|-copies of GG over HH.

The rank rank(Γ)\operatorname{rank}(\Gamma) of a proalgebraic group Γ\Gamma is defined as the smallest cardinal κ\kappa such that Γ\Gamma can be written as a projective limit of algebraic groups over an directed set of cardinality κ\kappa. See [Wib20, Prop. 3.1] for other characterizations of the rank.

The following theorem provides a characterization of free proalgebraic groups in terms of algebraic embedding problems.

Theorem 4.2.

Let Γ\Gamma be a proalgebraic group with rank(Γ)||\operatorname{rank}(\Gamma)\leq|\mathbb{C}|. Then Γ\Gamma is isomorphic to the free proalgebraic group on a set of cardinality |||\mathbb{C}| if and only if every non-trivial algebraic embedding problem for Γ\Gamma has |||\mathbb{C}| independent solutions.

Proof.

First assume that Γ\Gamma is isomorphic to Γ(X)\Gamma(X), where XX is a set of cardinality |||\mathbb{C}|. Since rank(Γ(X))=|X|=||\operatorname{rank}(\Gamma(X))=|X|=|\mathbb{C}| by [Wib20, Cor. 3.12], we find rank(Γ)=||\operatorname{rank}(\Gamma)=|\mathbb{C}|. Thus the claim follows from Theorem 3.42 (applied with 𝒞\mathcal{C} the formation of all algebraic groups) paired with Definition 3.25 of [Wib20].

Conversely, assume that every non-trivial algebraic embedding problem for Γ\Gamma has |||\mathbb{C}| independent solutions. We claim that rank(Γ)=||\operatorname{rank}(\Gamma)=|\mathbb{C}|. Consider the embedding problem α:𝔾a1\alpha\colon\mathbb{G}_{a}\to 1, β:Γ1\beta\colon\Gamma\to 1 for Γ\Gamma, where 𝔾a\mathbb{G}_{a} is the additive group. By assumption, there exist solutions (ϕx)x(\phi_{x})_{x\in\mathbb{C}} such that the induced morphism Γ𝔾a||\Gamma\to\mathbb{G}_{a}^{|\mathbb{C}|} is a quotient map. The rank of 𝔾a||\mathbb{G}_{a}^{|\mathbb{C}|} is |||\mathbb{C}| ([Wib20, Ex. 3.3]) and the rank can only decrease when passing to a quotient ([Wib20, Lem. 3.5]). So rank(Γ)||\operatorname{rank}(\Gamma)\geq|\mathbb{C}| and consequently rank(Γ)=||\operatorname{rank}(\Gamma)=|\mathbb{C}|. Our assumption on Γ\Gamma therefore implies that Γ\Gamma satisfies condition (vii) of [Wib20, Thm. 3.24]. Thus the claim follows again from [Wib20, Thm. 3.42]. ∎

The following lemma is our crutch to go from proper subsets of \mathbb{C} to all of \mathbb{C}.

Lemma 4.3.

Let Γ\Gamma be a proalgebraic group with rank(Γ)||\operatorname{rank}(\Gamma)\leq|\mathbb{C}| and let XX be a set of cardinality |||\mathbb{C}|. Assume that every quotient map ΓH\Gamma\twoheadrightarrow H to an algebraic group HH can be factored as ΓΓ(X)H\Gamma\twoheadrightarrow\Gamma(X)\twoheadrightarrow H. Then Γ\Gamma is isomorphic to Γ(X)\Gamma(X).

Proof.

Let

Γ\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta}G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}H\textstyle{H} (3)

be an non-trivial algebraic embedding problem for Γ\Gamma. By assumption, β:ΓH\beta\colon\Gamma\twoheadrightarrow H factors as β:Γβ0Γ(X)βH\beta\colon\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.125pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-6.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.14531pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\beta_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 62.19948pt\raise 6.66666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.30556pt\hbox{$\scriptstyle{\beta^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{H}$}}}}}}}\ignorespaces}}}}\ignorespaces. The embedding problem

Γ(X)\textstyle{\Gamma(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta^{\prime}}G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}H\textstyle{H}

has |||\mathbb{C}| independent solutions (ϕx)xX(\phi^{\prime}_{x})_{x\in X} (Theorem 4.2). Then ϕx:Γβ0Γ(X)ϕxG\phi_{x}\colon\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.125pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-6.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.14531pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\beta_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 61.18507pt\raise 6.66666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.30556pt\hbox{$\scriptstyle{\phi_{x}^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{G}$}}}}}}}\ignorespaces}}}}\ignorespaces is a solution of (3). Moreover, as xXϕx:Γβ0Γ(X)ϕxxX(GH)\prod_{x\in X}\phi_{x}\colon\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 6.125pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-6.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.14531pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\beta_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 30.125pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\Gamma(X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.85489pt\raise 9.48616pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.51393pt\hbox{$\scriptstyle{\prod\phi_{x}^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern-3.0pt\lower 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 83.22223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\prod_{x\in X}(G\twoheadrightarrow H)}$}}}}}}}\ignorespaces}}}}\ignorespaces is a quotient map, the family (ϕx)xX(\phi_{x})_{x\in X} is independent. Thus Γ\Gamma is isomorphic to Γ(X)\Gamma(X) by Theorem 4.2. ∎

We are now prepared to prove our main result.

Theorem 4.4.

The differential Galois group of the family of all regular singular differential equations over (x)\mathbb{C}(x) is isomorphic to the free proalgebraic group on a set of cardinality |||\mathbb{C}|.

Proof.

Let Γ=Γ=G(L/(x))\Gamma=\Gamma_{\mathbb{C}}=G(L/\mathbb{C}(x)) be the differential Galois group of the family of all regular singular differential equations. By [BHHW21b, Lem. 3.3], the rank of Γ\Gamma is the smallest cardinal number κ\kappa such that L/(x)L/\mathbb{C}(x) is a Picard-Vessiot extension for a family of differential equations of cardinality κ\kappa. Since the family of all differential equations over (x)\mathbb{C}(x) has cardinality |||\mathbb{C}|, we have rank(Γ)||\operatorname{rank}(\Gamma)\leq|\mathbb{C}|.

Let HH be an algebraic group and β:ΓH\beta\colon\Gamma\twoheadrightarrow H a quotient map. By the differential Galois correspondence (Theorem 2.6) the extension Lker(β)/(x)L^{\ker(\beta)}/\mathbb{C}(x) is a Picard-Vessiot extensions with differential Galois group HH. Since HH is algebraic, Lker(β)/(x)L^{\ker(\beta)}/\mathbb{C}(x) is a Picard-Vessiot extension of finite type. Therefore, there exists a finite family \mathcal{F} of regular singular differential equations over (x)\mathbb{C}(x) such that the Picard-Vessiot extension LL_{\mathcal{F}} of (x)\mathbb{C}(x) for \mathcal{F} (inside LL) contains Lker(β)L^{\ker(\beta)}. Let YY\subseteq\mathbb{C} be the finite set of (finite) singularities of the differential equations contained in \mathcal{F}. Let XX be a proper subset of \mathbb{C} with |X|=|X|=\mathbb{C} and YXY\subseteq X (e.g., X={x0}X=\mathbb{C}\smallsetminus\{x_{0}\} with x0Yx_{0}\notin Y). Then

(x)Lker(β)LLYLX\mathbb{C}(x)\subseteq L^{\ker(\beta)}\subseteq L_{\mathcal{F}}\subseteq L_{Y}\subseteq L_{X}

and so, the quotient map β:ΓH\beta\colon\Gamma\twoheadrightarrow H factors as β:ΓΓXH\beta\colon\Gamma\twoheadrightarrow\Gamma_{X}\twoheadrightarrow H. As ΓXΓ(X)\Gamma_{X}\cong\Gamma(X) by Proposition 4.1, we see that the condition of Lemma 4.3 is satisfied. ∎

Combining Proposition 4.1 and Theorem 4.4 we obtain:

Corollary 4.5.

Let XX be a subset of \mathbb{C}. Then the differential Galois group of the family of all regular singular differential equations with singularities in X{}X\cup\{\infty\} is isomorphic to the free proalgebraic group on XX.

4.1. Open Questions

It seems natural to wonder if Corollary 4.5 remains valid when \mathbb{C} is replaced with an algebraically closed field of characteristic zero. Our proof uses transcendental tools, such as the fundamental group, and therefore does not generalize. Even when XX is finite, it seems to be unknown if Corollary 4.5 is true for an algebraically closed field of characteristic zero in place of \mathbb{C}.

References

  • [ABC20] Yves André, Francesco Baldassarri, and Maurizio Cailotto. De Rham cohomology of differential modules on algebraic varieties, volume 189 of Progress in Mathematics. Birkhäuser/Springer, Cham, 2020. Second edition.
  • [BHHW21a] Annette Bachmayr, David Harbater, Julia Hartmann, and Michael Wibmer. The differential Galois group of the rational function field. Adv. Math., 381:Paper No. 107605, 27 pp, 2021.
  • [BHHW21b] Annette Bachmayr, David Harbater, Julia Hartmann, and Michael Wibmer. Free differential Galois groups. Trans. Amer. Math. Soc., 374(6):4293–4308, 2021.
  • [BLMM02] Hyman Bass, Alexander Lubotzky, Andy R. Magid, and Shahar Mozes. The proalgebraic completion of rigid groups. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), volume 95, pages 19–58, 2002.
  • [CH11] Teresa Crespo and Zbigniew Hajto. Algebraic groups and differential Galois theory, volume 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
  • [CK12] Gregory R. Conner and Curtis Kent. Inverse limits of finite rank free groups. J. Group Theory, 15(6):823–829, 2012.
  • [Del90] Pierre Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser Boston, Boston, MA, 1990.
  • [DG70] Michel Demazure and Pierre Gabriel. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970. Avec un appendice Corps de classes local par Michiel Hazewinkel.
  • [DM82] Pierre Deligne and James S. Milne. Tannakian categories. In Hodge cycles, motives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics, pages 101–228. Springer-Verlag, Berlin, 1982.
  • [Dou64] Adrien Douady. Détermination d’un groupe de Galois. C. R. Acad. Sci. Paris, 258:5305–5308, 1964.
  • [EN13] Katsuya Eda and Jun Nakamura. The classification of the inverse limits of sequences of free groups of finite rank. Bull. Lond. Math. Soc., 45(4):671–676, 2013.
  • [Hig52] Graham Higman. Unrestricted free products, and varieties of topological groups. J. London Math. Soc., 27:73–81, 1952.
  • [HM57] G. Hochschild and G. D. Mostow. Representations and representative functions of Lie groups. Ann. of Math. (2), 66:495–542, 1957.
  • [Mag94] Andy R. Magid. Lectures on differential Galois theory, volume 7 of University Lecture Series. American Mathematical Society, Providence, RI, 1994.
  • [Mil17] J. S. Milne. Algebraic groups, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. The theory of group schemes of finite type over a field.
  • [MS16] Claude Mitschi and David Sauzin. Divergent series, summability and resurgence. I, volume 2153 of Lecture Notes in Mathematics. Springer, 2016. Monodromy and resurgence.
  • [RZ10] Luis Ribes and Pavel Zalesskii. Profinite groups, volume 40 of Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, second edition, 2010.
  • [Sau16] Jacques Sauloy. Differential Galois theory through Riemann-Hilbert correspondence, volume 177 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2016. An elementary introduction, With a foreword by Jean-Pierre Ramis.
  • [Sza09] Tamás Szamuely. Galois groups and fundamental groups, volume 117 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2009.
  • [vdPS03] Marius van der Put and Michael F. Singer. Galois theory of linear differential equations, volume 328 of Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin, 2003.
  • [Wib20] Michael Wibmer. Free proalgebraic groups. Épijournal Géom. Algébrique, 4:Art. 1, 36, 2020.
  • [Wib21] Michael Wibmer. Subgroups of free proalgebraic groups and Matzat’s conjecture for function fields. 2021. To appear in Israel J. Math., arXiv:2102.02553.