This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Refinements and corrections to the deflection angle of light in Kerr-de Sitter spacetime

Yang Huang [email protected] School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411021, China Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411021, China    Xiangyun Fu [email protected] School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411021, China Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411021, China
Abstract

The deflection angle of equatorial light (the light in the equatorial plane) in Kerr-de Sitter (KdS) spacetime was previously calculated by Sultana [Phys. Rev. D 88, 042003 (2013)]. However, we have identified three problems with his result: (a) Orbit problem, the orbit solution used for computing the deflection angle is inaccurate as it does not stem from the original equation of motion (EOM). (b) Position problem, assuming the source and observer are at infinity is physically unrealistic given the presence of the cosmological horizon. (c) Static problem, assuming the observer remains at rest in a static slice of spacetime ignores the expansion of the de Sitter space. In this paper, we address and correct these issues respectively by (a) deriving the orbit solution through solving the original EOM directly, (b) employing a widely accepted definition of the finite-distance deflection, and (c) adopting the Randers optical space for the spatial projection of null geodesics. Based on these corrections, we obtain a more precise and applicable result for the deflection angle of equatorial light in KdS spacetime.

I Introduction

The accelerated expansion of the Universe has been substantiated through the observation of Type Ia supernovae Caldwell et al. (1998); Perlmutter et al. (1999); Astier et al. (2005), large-scale cosmic structures Abazajian et al. (2004, 2005), and anisotropies in the cosmic microwave background Spergel et al. (2003). To account for this phenomenon, various dark energy models have been proposed by modifying the matter term of Einstein’s field equations Sahni and Starobinsky (2000); Zlatev et al. (1999); Caldwell (2002); Feng et al. (2005); Cai and Wang (2016); Mazumdar et al. (2001); Arkani-Hamed et al. (2004); Deffayet et al. (2002); Bento et al. (2004), with the simplest among them being the cosmological constant (Λ\Lambda) model Sahni and Starobinsky (2000).

The gravitational deflection of light stands out as a powerful tool in astrophysics and cosmology, prompting researchers to delve into its application for exploring dark energy. In 1983, Islam asserted that the deflection of light remains unaffected by Λ\Lambda in the context of the Schwarzschild-de Sitter (SdS) spacetime, since Λ\Lambda is absent from the orbit of light Islam (1983). Islam’s methodology and findings are also documented in Refs. Freire et al. (2001); Lake (2002); Kagramanova et al. (2006); Finelli et al. (2007).

Islam’s conclusion is not changed until the influence of the metric itself (which determines the actual observations) is taken into account by Rindler and Ishak (RI method) Rindler and Ishak (2007). For the SdS spacetime whose metric states

ds2=w(r)dt2+1w(r)dr2+r2dθ2+r2sin2θdϕ2,\mathrm{d}s^{2}=-w(r)\mathrm{d}t^{2}+\frac{1}{w(r)}\mathrm{d}r^{2}+r^{2}\mathrm{d}\theta^{2}+r^{2}\sin^{2}\theta\mathrm{d}\phi^{2}, (1)

where w(r)=12M/rΛr2/3w(r)=1-2M/r-\Lambda r^{2}/3, Rindler and Ishak considered the equatorial light (θ=π/2,dθ=0\theta=\pi/2,\mathrm{d}\theta=0) and constructed a two-dimensional space by setting dt=0\mathrm{d}t=0,

dl2=hijdxidxj=1w(r)dr2+r2dϕ2.\mathrm{d}l^{2}=h_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}=\frac{1}{w(r)}\mathrm{d}r^{2}+r^{2}\mathrm{d}\phi^{2}. (2)

As shown in Fig. 1,

Refer to caption
Figure 1: The schematic for the deflection angle in RI method. γ\gamma is the trajectory of the equatorial light, the one-sided deflection angle is ψϕ\psi-\phi.

in the space determined by Eq. (2), γ\gamma is the trajectory of light, 𝒏γ\boldsymbol{n}_{\gamma} is the tangent vector along γ\gamma, 𝒏r\boldsymbol{n}_{r} is the outward radial vector. ϕ\phi is the azimuthal coordinate, ψ\psi is the angle between 𝒏r\boldsymbol{n}_{r} and 𝒏γ\boldsymbol{n}_{\gamma}. The ψ\psi is expressed in terms of rr and ϕ\phi through cosψ=(𝒏r𝒏γ)/(|𝒏r||𝒏γ|)=(hijnrinγj)/(hijnrinrjhijnγinγj)\cos\psi=\left(\boldsymbol{n}_{r}\boldsymbol{\cdot}\boldsymbol{n}_{\gamma}\right)/\left(|\boldsymbol{n}_{r}||\boldsymbol{n}_{\gamma}|\right)=\left(h_{ij}n_{r}^{i}n_{\gamma}^{j}\right)/\left(\sqrt{h_{ij}n_{r}^{i}n_{r}^{j}}\sqrt{h_{ij}n_{\gamma}^{i}n_{\gamma}^{j}}\right). By solving the EOM, Rindler and Ishak derived the orbit solution, i.e., the radial coordinate of γ\gamma is expressed in term of the azimuthal coordinate

usinϕb+Mcos(2ϕ)+32b2,u\approx\frac{\sin\phi}{b}+M\cdot\frac{\cos(2\phi)+3}{2b^{2}}, (3)

where bb is the impact parameter, and the variable replacement u=1/ru=1/r is adopted throughout this paper. Then for the source and observer ”far” from the lens, the deflection angle is calculated by

δ=2(ψϕ)|ϕ=0.\delta=\left.2(\psi-\phi)\right|_{\phi=0}. (4)

Specifically, when ϕ=0\phi=0, one has r=r0r(ϕ=0)r=r_{0}\equiv r(\phi=0), accordingly, ψ=ψ(r=r0,ϕ=0)\psi=\psi(r=r_{0},\phi=0), thus the deflection angle of equatorial light in SdS spacetime is obtained as

δM4bM38b3ΛMb36,\delta\approx M\cdot\frac{4}{b}-M^{3}\cdot\frac{8}{b^{3}}-\frac{\Lambda}{M}\cdot\frac{b^{3}}{6}, (5)

which contains the Λ\Lambda.

On one hand, certain researchers have embraced the RI method as an alternative approach to investigating the deflection of light Bhattacharya et al. (2010, 2011); Sultana and Kazanas (2012); Sultana (2013); Farrugia et al. (2016); Ali and Bhattacharya (2018); Mishra and Chakraborty (2018); Seçuk and Delice (2020); He et al. (2020). On the other hand, this method has some problems and encounters some criticisms from scholars Park (2008); Simpson et al. (2010); Ishihara et al. (2016); Lake (2002); Bhadra et al. (2010); Arakida and Kasai (2012). By using the RI method, Sultana calculated the deflection angle of the equatorial light in KdS spacetime whose metric reads Bardeen (1973)

ds2=\displaystyle\mathrm{d}s^{2}= a2Δθsin2θΔrQ2Σdt2+ΣΔrdr2+ΣΔθdθ2\displaystyle\frac{a^{2}\Delta_{\theta}\sin^{2}\theta-\Delta_{r}}{Q^{2}\Sigma}\mathrm{d}t^{2}+\frac{\Sigma}{\Delta_{r}}\mathrm{d}r^{2}+\frac{\Sigma}{\Delta_{\theta}}\mathrm{d}\theta^{2} (6)
+sin2θQ2Σ[Δθ(a2+r2)2a2Δrsin2θ]dϕ2\displaystyle+\frac{\sin^{2}\theta}{Q^{2}\Sigma}\left[\Delta_{\theta}\left(a^{2}+r^{2}\right)^{2}-a^{2}\Delta_{r}\sin^{2}\theta\right]\mathrm{d}\phi^{2}
2asin2θQ2Σ[Δθ(a2+r2)Δr]dtdϕ,\displaystyle-\frac{2a\sin^{2}\theta}{Q^{2}\Sigma}\left[\Delta_{\theta}\left(a^{2}+r^{2}\right)-\Delta_{r}\right]\mathrm{d}t\mathrm{d}\phi,

where

Q=\displaystyle Q= 1+Λa23,Δr=(1Λr23)(r2+a2)2Mr,\displaystyle 1+\frac{\Lambda a^{2}}{3},\ \ \ \Delta_{r}=\left(1-\frac{\Lambda r^{2}}{3}\right)\left(r^{2}+a^{2}\right)-2Mr, (7)
Σ=\displaystyle\Sigma= r2+a2cos2θ,Δθ=1+Λa2cos2θ3.\displaystyle r^{2}+a^{2}\cos^{2}\theta,\ \ \ \Delta_{\theta}=1+\frac{\Lambda a^{2}\cos^{2}\theta}{3}.

The outcome of his calculations is expressed as Sultana (2013),

δ=\displaystyle\delta= M4b+Λ5πb232+M215π4b2Ma4b2\displaystyle M\cdot\frac{4}{b}+\Lambda\cdot\frac{5\pi b^{2}}{32}+M^{2}\cdot\frac{15\pi}{4b^{2}}-Ma\cdot\frac{4}{b^{2}} (8)
MΛb(75π2512+10196)+aΛ5πb16\displaystyle-M\Lambda\cdot b\left(\frac{75\pi^{2}}{512}+\frac{101}{96}\right)+a\Lambda\cdot\frac{5\pi b}{16}
aΛMb26ΛMb36+𝒪(Λ2),\displaystyle-\frac{a\Lambda}{M}\cdot\frac{b^{2}}{6}-\frac{\Lambda}{M}\cdot\frac{b^{3}}{6}+\mathcal{O}\left(\Lambda^{2}\right),

which keeps only second order terms in parameters M/bM/b, a/ba/b, Λb2\Lambda b^{2}, and ϕ0\phi_{0}. ϕ01\phi_{0}\ll 1 is the approximate azimuthal coordinate of the source or observer. Sultana’s result naturally carries the intrinsic limitations of the RI method. What’s more, when a=0a=0, unexpectedly, Eq. (8) (the deflection angle in KdS spacetime) fails to reduce to Eq. (5) (the deflection angle in SdS spacetime), despite both results are computed using the RI method, and Eq. (6) (the metric of KdS spacetime) can be simplified to Eq. (1) (the metric of SdS spacetime).

In this paper, we identify and correct the deflection angle of the equatorial light in KdS spacetime computed by Sultana from three aspects: orbit problem, position problem, and static problem. In addition, our calculation process is based on the Gauss-Bonnet theorem and is commonly referred to as the Gibbons-Werner (GW) method—a widely employed approach for computing the deflection angle of particles in recent years Gibbons and Werner (2008).

This paper is structured as follows: In Sec. II, we elaborate the orbit problem, position problem, and static problem associated with the existing result for the deflection angle of the equatorial light in KdS spacetime obtained using the RI method Sultana (2013), and present corresponding coping strategies. Moving on to Sec. III, building upon the framework established in the previous section, we calculate the deflection angle of the equatorial light in KdS spacetime using the GW method. Sec. IV offers a thorough summary. Throughout this paper, we adopt the geometric unit (G=c=1G=c=1), and the spacetime signature is designated as (,+,+,+-,+,+,+).

II three problems

II.1 Orbit problem

The original EOM of the equatorial light in KdS spacetime is a first-order differential equation. However, in Ref. Sultana (2013), the orbit solution is obtained by solving a second-order differential equation derived from the original EOM, instead of directly solving the original EOM. This concern is also raised in Refs. Lake (2002); Bhadra et al. (2010); Arakida and Kasai (2012). To solve the orbit problem, we employ an iterative perturbation method proposed by Crisnejo etal.et\ al. Crisnejo et al. (2019a) to directly solve the original EOM.

II.1.1 Original EOM

For the equatorial light in KdS spacetime Eq. (6), with two conserved quantities (energy EE and angular momentum LL), one can obtain the original EOM Sultana (2013)

(dudϕ)2=\displaystyle\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}= 1b2u2b2+M2u3+Λ13Ma4ub3\displaystyle\frac{1-b^{2}u^{2}}{b^{2}}+M\cdot 2u^{3}+\Lambda\cdot\frac{1}{3}-Ma\cdot\frac{4u}{b^{3}} (9)
+a23u22b2u4b2aΛ23b3u2+𝒪(ϵ3),\displaystyle+a^{2}\cdot\frac{3u^{2}-2b^{2}u^{4}}{b^{2}}-a\Lambda\cdot\frac{2}{3b^{3}u^{2}}+\mathcal{O}\left(\epsilon^{3}\right),

in which b=L/Eb=L/E is the impact parameter, and ϵ\epsilon denotes the terms arising from any combination of M/bM/b, a/ba/b and Λb2\Lambda b^{2}.

II.1.2 Sultana’s orbit solution

A second-order differential equation can be obtained by differentiating Eq. (9) with respect to ϕ\phi

d2udϕ2=\displaystyle\frac{\mathrm{d}^{2}u}{\mathrm{d}\phi^{2}}= u+M3u2Ma2b3+a23u4u3b2b2\displaystyle-u+M\cdot 3u^{2}-Ma\cdot\frac{2}{b^{3}}+a^{2}\cdot\frac{3u-4u^{3}b^{2}}{b^{2}} (10)
+Λa23b3u3+𝒪(ϵ3).\displaystyle+\Lambda a\cdot\frac{2}{3b^{3}u^{3}}+\mathcal{O}\left(\epsilon^{3}\right).

By solving Eq. (10), Sultana got the so-called orbit solution

u=\displaystyle u= sinϕb+Mcos(2ϕ)+32b2\displaystyle\frac{\sin\phi}{b}+M\cdot\frac{\cos(2\phi)+3}{2b^{2}} (11)
M23[sin(3ϕ)+20ϕcosϕ10πcosϕ]16b3\displaystyle-M^{2}\cdot\frac{3[\sin(3\phi)+20\phi\cos\phi-10\pi\cos\phi]}{16b^{3}}
Ma2b3a2sin(3ϕ)8b3\displaystyle-Ma\cdot\frac{2}{b^{3}}-a^{2}\cdot\frac{\sin(3\phi)}{8b^{3}}
+aΛcos(2ϕ)cscϕ3+𝒪(ϵ3),\displaystyle+a\Lambda\cdot\frac{\cos(2\phi)\csc\phi}{3}+\mathcal{O}\left(\epsilon^{3}\right),

which is used to extract information about the deflection angle, as detailed in Ref. Sultana (2013). Although Eq. (11) satisfies the second-order differential equation (10), it is not the solution to the original EOM (9). Let’s demonstrate this discrepancy. Firstly, by differentiating Eq. (11) with respect to ϕ\phi and squaring the result, we get

(dudϕ)2=\displaystyle\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}= cos2ϕb2M2sin(2ϕ)cosϕb3\displaystyle\frac{\cos^{2}\phi}{b^{2}}-M\cdot\frac{2\sin(2\phi)\cos\phi}{b^{3}} (12)
M2cosϕ8b4[30(π2ϕ)sinϕ+52cosϕ\displaystyle-M^{2}\cdot\frac{\cos\phi}{8b^{4}}\Big{[}30(\pi-2\phi)\sin\phi+52\cos\phi
+17cos(3ϕ)]a23cos(3ϕ)cosϕ4b4\displaystyle+17\cos(3\phi)\Big{]}-a^{2}\cdot\frac{3\cos(3\phi)\cos\phi}{4b^{4}}
+aΛ2[cos(2ϕ)2]cot2ϕ3b+𝒪(ϵ3).\displaystyle+a\Lambda\cdot\frac{2[\cos(2\phi)-2]\cot^{2}\phi}{3b}+\mathcal{O}\left(\epsilon^{3}\right).

Secondly, we derive the inverse solution of Eq. (11)

ϕ=\displaystyle\phi= arcsin(bu)+Mb2u22b1b2u2\displaystyle\arcsin(bu)+M\cdot\frac{b^{2}u^{2}-2}{b\sqrt{1-b^{2}u^{2}}} (13)
+M2[bu32(1b2u2)3/2+3bu341b2u2\displaystyle+M^{2}\cdot\left[\frac{bu^{3}}{2\left(1-b^{2}u^{2}\right)^{3/2}}+\frac{3bu^{3}}{4\sqrt{1-b^{2}u^{2}}}\right.
23u16b1b2u215arccos(bu)4b2]\displaystyle\left.-\frac{23u}{16b\sqrt{1-b^{2}u^{2}}}-\frac{15\arccos(bu)}{4b^{2}}\right]
+Ma2b21b2u2a2u(4b2u23)8b1b2u2\displaystyle+Ma\cdot\frac{2}{b^{2}\sqrt{1-b^{2}u^{2}}}-a^{2}\cdot\frac{u\left(4b^{2}u^{2}-3\right)}{8b\sqrt{1-b^{2}u^{2}}}
+aΛ2b2u213u1b2u2+𝒪(ϵ3),(|ϕ|<π2).\displaystyle+a\Lambda\cdot\frac{2b^{2}u^{2}-1}{3u\sqrt{1-b^{2}u^{2}}}+\mathcal{O}\left(\epsilon^{3}\right),\quad\left(\left|\phi\right|<\frac{\pi}{2}\right).

Finally, substituting Eq. (13) into Eq. (12) leads to

(dudϕ)2=\displaystyle\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}= 1b2u2b2+M2u3M2378b4\displaystyle\frac{1-b^{2}u^{2}}{b^{2}}+M\cdot 2u^{3}-M^{2}\cdot\frac{37}{8b^{4}} (14)
Ma4ub3+a2(3u22b2u4b234b4)\displaystyle-Ma\cdot\frac{4u}{b^{3}}+a^{2}\left(\frac{3u^{2}-2b^{2}u^{4}}{b^{2}}-\frac{3}{4b^{4}}\right)
aΛ23b3u2+𝒪(ϵ3),\displaystyle-a\Lambda\cdot\frac{2}{3b^{3}u^{2}}+\mathcal{O}\left(\epsilon^{3}\right),

in which (du/dϕ)2\left(\mathrm{d}u/\mathrm{d}\phi\right)^{2} is expressed in terms of rr (or uu) with the form like Eq. (9). Obviously, the above formula is not consistent with the original EOM (9). Hence the orbit solution Eq. (11), obtained and utilized by Sultana, does not adhere to the original EOM and is inaccurate for the equatorial light in KdS spacetime. Moreover, as anticipated, the second-order derivative of Eq. (11) with respect to ϕ\phi aligns entirely with Eq. (10).

II.1.3 The revised orbit solution

By directly solving the original EOM (9), we obtain the orbit solution with the method adopted in Sec. VI.A of Ref. Crisnejo et al. (2019a). We assume the form of u(ϕ)u(\phi) as

u(ϕ)=\displaystyle u(\phi)= u0(ϕ)+Mu1(ϕ)+au2(ϕ)+Λu3(ϕ)\displaystyle u_{0}(\phi)+M\cdot u_{1}(\phi)+a\cdot u_{2}(\phi)+\Lambda\cdot u_{3}(\phi) (15)
+M2u4(ϕ)+Mau5(ϕ)+MΛu6(ϕ)\displaystyle+M^{2}\cdot u_{4}(\phi)+Ma\cdot u_{5}(\phi)+M\Lambda\cdot u_{6}(\phi)
+a2u7(ϕ)+aΛu8(ϕ)+Λ2u9(ϕ)+𝒪(ϵ3).\displaystyle+a^{2}\cdot u_{7}(\phi)+a\Lambda\cdot u_{8}(\phi)+\Lambda^{2}\cdot u_{9}(\phi)+\mathcal{O}\left(\epsilon^{3}\right).

Then squaring the first-order derivative of Eq. (15) with respect to ϕ\phi, and comparing the result with Eq. (9) term by term, we obtain

u0=\displaystyle u_{0}= sinϕb,\displaystyle\frac{\sin\phi}{b}, u1=\displaystyle u_{1}= cos2ϕ+1b2,u2=0,\displaystyle\frac{\cos^{2}\phi+1}{b^{2}},\qquad u_{2}=0, (16)
u3=\displaystyle u_{3}= bsinϕ6,\displaystyle\frac{b\sin\phi}{6}, u4=\displaystyle u_{4}= 20sinϕ[30ϕ+3sin(2ϕ)]cosϕ8b3,\displaystyle\frac{20\sin\phi-[30\phi+3\sin(2\phi)]\cos\phi}{8b^{3}},
u5=\displaystyle u_{5}= 2b3,\displaystyle-\frac{2}{b^{3}}, u6=\displaystyle u_{6}= [8cosϕ+8(secϕ1)]cosϕ24,\displaystyle\frac{[8\cos\phi+8(\sec\phi-1)]\cos\phi}{24},
u7=\displaystyle u_{7}= sin3ϕ2b3,\displaystyle\frac{\sin^{3}\phi}{2b^{3}}, u8=\displaystyle u_{8}= cos(2ϕ)cscϕ3,u9=b3sinϕ72.\displaystyle\frac{\cos(2\phi)\csc\phi}{3},\quad u_{9}=-\frac{b^{3}\sin\phi}{72}.

Consequently, the orbit solution for the equatorial light in KdS spacetime is presented with Eqs. (15) and (16). In the subsequent portions of this paper, any reference to Eq. (15) denotes the amalgamation of both Eqs. (15) and (16).

To verify our orbit solution and support the related calculations in Sec. III, we additionally derive the inverse solution of Eq. (15)

ϕ(u)={Φ(u),if |ϕ|<π2,πΦ(u),if |ϕ|>π2,\phi(u)=\begin{cases}\Phi(u),&\text{if }\left|\phi\right|<\frac{\pi}{2},\\ \pi-\Phi(u),&\text{if }\left|\phi\right|>\frac{\pi}{2},\end{cases} (17)

where

Φ(u)=\displaystyle\Phi(u)= arcsin(bu)+Mb2u22b1b2u2Λb3u61b2u2\displaystyle\arcsin(bu)+M\cdot\frac{b^{2}u^{2}-2}{b\sqrt{1-b^{2}u^{2}}}-\Lambda\cdot\frac{b^{3}u}{6\sqrt{1-b^{2}u^{2}}} (18)
+M2[u(20b2u23b4u415)4b(1b2u2)3/2\displaystyle+M^{2}\cdot\left[\frac{u\left(20b^{2}u^{2}-3b^{4}u^{4}-15\right)}{4b\left(1-b^{2}u^{2}\right)^{3/2}}\right.
+15arcsin(bu)4b2]+Ma2b21b2u2\displaystyle\left.+\frac{15\arcsin(bu)}{4b^{2}}\right]+Ma\cdot\frac{2}{b^{2}\sqrt{1-b^{2}u^{2}}}
+MΛb6(b2u21)2[2b4u421b2u2+2\displaystyle+M\Lambda\cdot\frac{b}{6\left(b^{2}u^{2}-1\right)^{2}}\bigg{[}2b^{4}u^{4}-2\sqrt{1-b^{2}u^{2}}+2
+b2u2(31b2u24)]a2bu321b2u2\displaystyle+b^{2}u^{2}\left(3\sqrt{1-b^{2}u^{2}}-4\right)\bigg{]}-a^{2}\cdot\frac{bu^{3}}{2\sqrt{1-b^{2}u^{2}}}
+aΛ(2b2u21)3u1b2u2+Λ2b5u(32b2u2)72(1b2u2)3/2\displaystyle+a\Lambda\cdot\frac{\left(2b^{2}u^{2}-1\right)}{3u\sqrt{1-b^{2}u^{2}}}+\Lambda^{2}\cdot\frac{b^{5}u\left(3-2b^{2}u^{2}\right)}{72\left(1-b^{2}u^{2}\right)^{3/2}}
+𝒪(ϵ3).\displaystyle+\mathcal{O}\left(\epsilon^{3}\right).

For the first-order derivative of Eq. (15) with respect to ϕ\phi, substituting Eq. (17) into it and then squaring the result yields a formula that is entirely congruent with the original EOM (9), which validates the correctness of our orbit solution.

II.2 Position problem

As depicted in Eq. (4), the original RI method calculates the deflection angle by setting the azimuthal coordinate to zero, implying the source and observer are located at infinity. Similarly, in Ref. Sultana (2013), the positions of the source and observer are determined under the approximation that the azimuthal coordinate is ”sufficiently small”. However, in both SdS and KdS spacetimes, the source and observer cannot reach infinity due to the existence of the cosmological horizon (or de Sitter horizon). Criticisms of the position problem in the RI method are also articulated in Refs. Bhadra et al. (2010); Ishihara et al. (2016). To solve the position problem, we adopt a definition of finite-distance deflection angle proposed by Ishihara etal.et\ al. Ishihara et al. (2016).

II.2.1 The position problem in SdS and KdS spacetimes

Considering the SdS spacetime Eq. (1), for 0<9ΛM2<10<9\Lambda M^{2}<1, there exist two positive roots r+r_{+} and r++r_{++} of w(r)w(r) such that 0<2M<r+<3M<r++0<2M<r_{+}<3M<r_{++}. The root r+=(2/Λ)cos(ϵ/3+4π/3)r_{+}=(2/\sqrt{\Lambda})\cos(\epsilon/3+4\pi/3), with cosϵ=3MΛ\cos\epsilon=-3M\sqrt{\Lambda}, describes the event horizon, and the root r++=(2/Λ)cos(ϵ/3)3/Λr_{++}=(2/\sqrt{\Lambda})\cos(\epsilon/3)\approx\sqrt{3/\Lambda} localizes the cosmological horizon Podolsky (1999). As a consequence, the source and observer cannot exceed the cosmological horizon. When ϕ=0\phi=0, the assumption of the infinite-distance source and observer is physically unrealistic, although the orbit solution Eq. (3) is mathematically reasonable.

Considering the KdS spacetime Eq. (6), it also has a cosmological horizon at r3/Λr\approx\sqrt{3/\Lambda}. When ϕ=0\phi=0, not only is the assumption of the infinite-distance source and observer physically unrealistic, but also the orbit solution given by Eq. (11) becomes mathematically singular (divergent). Therefore, in Sultana (2013), Sultana slightly modified the procedure of the RI method—the positions of the source and observer are determined by employing the approximation ϕ1\phi\ll 1. This approximation is unclear and cannot guarantee that the source and observer are located within the cosmological horizon.

As mentioned previously, despite the same method is utilized, the result for the KdS case (Eq. (5)) does not reduce to that for the SdS case (Eq. (8)) when a=0a=0. We speculate that it is the different schemes for determining the source and observer’s location, i.e., ϕ=0\phi=0 for SdS spacetime and ϕ1\phi\ll 1 for KdS spacetime, that results in the incompatibility between the results of two cases. Additionally, the position problem is indeed noticed in Refs. Rindler and Ishak (2007); Sultana (2013), but the accompanying explanations are somewhat ambiguous.

II.2.2 Finite-distance deflection angle

Now that the assumption of the infinite-distance source and observer is inappropriate for calculating the deflection angle of light in KdS spacetime, a logical alternative is to contemplate a finite-distance deflection angle. In 2017, Ishihara etal.et\ al. introduced a finite-distance deflection angle for the light in curved spacetimes Ishihara et al. (2016) and demonstrated it is geometric invariant, i.e. well-defined, by using the Gauss-Bonnet theorem.

As shown in Fig. 2,

Refer to caption
Figure 2: The schematic for the finite-distance deflection angle. LL is the lens, γ\gamma is the trajectory of the light from the source SS to the observer OO. ΨS\Psi_{S} and ΨO\Psi_{O} represent the angles between the outward radial direction and the tangent along γ\gamma at SS and OO, respectively.

LL is the lens, γ\gamma is the trajectory of the equatorial light from the source SS to the observer OO. ΨS\Psi_{S} and ΨO\Psi_{O} represent the angles between the outward radial direction and the tangent along γ\gamma at SS and OO, respectively. Then the finite-distance deflection angle is defined as Ishihara et al. (2016)

δ=ΨOΨS+ϕOS,\delta=\Psi_{O}-\Psi_{S}+\phi_{OS}, (19)

where ϕOS=ϕOϕS\phi_{OS}=\phi_{O}-\phi_{S} is the increment of the azimuthal coordinate. ϕS\phi_{S} and ϕO\phi_{O} are the azimuthal coordinate of SS and OO, respectively, and ϕS<π/2<ϕO\phi_{S}<\pi/2<\phi_{O} is assumed without losing generality. When the SS and OO approach the infinity, ΨS=π\Psi_{S}=\pi and ψO=0\psi_{O}=0, accordingly Eq. (19) reduce to the conventional infinite-distance deflection angle. The definition given by Eq. (19) has been extensively utilized in studying the deflection of massless and massive particles Ishihara et al. (2017); Ono et al. (2017, 2018, 2019); Haroon et al. (2019); Kumar et al. (2019); Crisnejo et al. (2019b); Ono and Asada (2019); Li and Övgün (2020); Li and Jia (2020); Takizawa et al. (2020); Li et al. (2020); Li and Zhou (2021); Li et al. (2021); Huang and Cao (2022); Belhaj et al. (2022); Li and Jia (2021); Li et al. (2022); Pantig et al. (2022); Huang and Cao (2023a); Huang et al. (2023). In this paper, it will be used to calculate the deflection angle of equatorial light in KdS spacetime to address the position problem.

II.3 Static problem

In Ref. Sultana (2013), like the original RI method, the reduced space constructed for discussing the light deflection is derived with dt=0\mathrm{d}t=0, indicating that the observer is assumed to be at rest in a static slice of spacetime. However, in reality, the observer co-moves with the expanding de Sitter space. Further discussion about this issue can be found in Refs. Park (2008); Simpson et al. (2010); Ishihara et al. (2016). To solve the static problem, we discuss the light deflection in the Randers optical space, since the geodesic of such space can be used to describe the spatial projection of null geodesics in stationary axially symmetric (SAS) spacetimes, which is guaranteed by Fermat’s principle.

II.3.1 Randers optical space

The metric of the SAS spacetimes can be expressed as

ds2=\displaystyle\mathrm{d}s^{2}= gμν(r,θ)dxμdxν\displaystyle g_{\mu\nu}(r,\theta)\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} (20)
=\displaystyle= gttdt2+2gtϕdtdϕ+grrdr2+gθθdθ2+gϕϕdϕ2.\displaystyle g_{tt}\mathrm{d}t^{2}+2g_{t\phi}\mathrm{d}t\mathrm{d}\phi+g_{rr}\mathrm{d}r^{2}+g_{\theta\theta}\mathrm{d}\theta^{2}+g_{\phi\phi}\mathrm{d}\phi^{2}.

The Randers optical space (M(RO)M^{(RO)}) for an SAS spacetime is defined by the following metric 111Different from the Riemannian metric, which is a quadratic form, Eq. (21) belongs to the category of Randers metric—a specific type of Finsler metric that includes an extra one-form Randers (1941). Werner (2012); Ono et al. (2017)

dl~=αijdxidxj+βidxi,\mathrm{d}\tilde{l}=\sqrt{\alpha_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}}+\beta_{i}\mathrm{d}x^{i}, (21)

where

αijdxidxj=\displaystyle\alpha_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j}= αrrdr2+αθθdθ2+αϕϕdϕ2\displaystyle\alpha_{rr}\mathrm{d}r^{2}+\alpha_{\theta\theta}\mathrm{d}\theta^{2}+\alpha_{\phi\phi}\mathrm{d}\phi^{2} (22)
=\displaystyle= grrgttdr2+gθθgttdθ2+gtϕ2gttgϕϕgtt2dϕ2,\displaystyle\frac{g_{rr}}{-g_{tt}}\mathrm{d}r^{2}+\frac{g_{\theta\theta}}{-g_{tt}}\mathrm{d}\theta^{2}+\frac{g_{t\phi}^{2}-g_{tt}g_{\phi\phi}}{g_{tt}^{2}}\mathrm{d}\phi^{2},
βidxi=\displaystyle\beta_{i}\mathrm{d}x^{i}= gtϕgttdϕ.\displaystyle\frac{g_{t\phi}}{-g_{tt}}\mathrm{d}\phi. (23)

The spatial projection of a null geodesic in the four-dimensional spacetime Eq. (20) encodes the information about the light orbit, including the co-movement of the observer; and such projection can be described as the geodesic in M(RO)M^{(RO)} Werner (2012). Thus the light deflection can be studied with the help of M(RO)M^{(RO)}.

Eq. (22) is the Riemannian part of the Randers optical metric Eq. (21), and we designate the three-dimensional space determined by it as M(α3)M^{(\alpha 3)}. One can deduce that a geodesic in M(OP)M^{(OP)} can be put in one-to-one correspondence with a curve, denoted by γ\gamma, in M(α3)M^{(\alpha 3)} Ono et al. (2017). The deviation between γ\gamma and the geodesic in M(α3)M^{(\alpha 3)} can be described by the one-form βi\beta_{i}. Therefore, the light deflection can also be studied within M(α3)M^{(\alpha 3)}.

II.3.2 Randers optical metric of KdS spacetime

Given the complexity of the Randers optical metric, our practical calculations are carried out within a Riemannian space, i.e. M(α3)M^{(\alpha 3)}. Specifically, for the light confined to the equatorial plane of KdS spacetime, the corresponding M(α3)M^{(\alpha 3)} reduces to a two dimensional space (denoted by Mkds(α2)M^{(\alpha 2)}_{kds}). Substituting θ=π/2\theta=\pi/2, dθ=0\mathrm{d}\theta=0 and Eq.(6) into Eq. (21) yields the metric of Mkds(α2)M^{(\alpha 2)}_{kds}

dl2=αrrdr2+αϕϕdϕ2,\mathrm{d}l^{2}=\alpha_{rr}\mathrm{d}r^{2}+\alpha_{\phi\phi}\mathrm{d}\phi^{2}, (24)

in which

αrr=\displaystyle\alpha_{rr}= r3(a2Λ+3)2𝒵(r𝒵3a2),αϕϕ=3r2(3a2r𝒵)𝒵2,\displaystyle\frac{r^{3}\left(a^{2}\Lambda+3\right)^{2}}{\mathcal{Z}\left(r\mathcal{Z}-3a^{2}\right)},\quad\alpha_{\phi\phi}=\frac{3r^{2}\left(3a^{2}-r\mathcal{Z}\right)}{\mathcal{Z}^{2}}, (25)

and the corresponding one-form

βϕ=a(𝒵+3r)𝒵.\beta_{\phi}=\frac{a(\mathcal{Z}+3r)}{\mathcal{Z}}. (26)

Here 𝒵=Λr3+(Λa23)r+6M\mathcal{Z}=\Lambda r^{3}+\left(\Lambda a^{2}-3\right)r+6M. In the next section, we will calculate the deflection angle for equatorial light in KdS spacetime within Mkds(α2)M^{(\alpha 2)}_{kds}.

III the corrected deflection angle

In this section, we calculate the deflection angle based on the revised orbit solution Eq. (15), the definition of the finite-distance deflection angle Eq. (19), and the two-dimensional space Mkds(α2)M^{(\alpha 2)}_{kds} Eq. (24). The approach we employ is the generalized GW method for stationary spacetime proposed by Huang and Cao Huang and Cao (2023b), which is more powerful than the original GW method Gibbons and Werner (2008).

As shown in Fig. 3,

Refer to caption
Figure 3: The quadrilateral region D=OOSSD=^{O^{\prime}}_{O}\square^{S^{\prime}}_{S} in Mkds(α2)M^{(\alpha 2)}_{kds}.

in Mkds(α2)M^{(\alpha 2)}_{kds}, γ\gamma, SS, OO, LL, ΨS\Psi_{S} and ΨO\Psi_{O} carry the same meaning as those illustrated in Fig. 2. C=SOC=\overset{\curvearrowright}{S^{\prime}O^{\prime}} is an auxiliary circular arc with r=rc(rγmax,rΛ)r=r_{c}\in(r_{\gamma}^{max},r_{\Lambda}), where rγmaxr_{\gamma}^{max} represents the maximal radial coordinate of γ\gamma and rΛr_{\Lambda} denotes the cosmological horizon of KdS spacetime. CC intersects with the outward radial curves LS\overrightarrow{LS} and LO\overrightarrow{LO} at SS^{\prime} and OO^{\prime}, respectively. ηS\eta_{S}, ηS\eta_{S^{\prime}}, ηO\eta_{O^{\prime}} and ηO\eta_{O} indicate the jump angles at SS, SS^{\prime}, OO^{\prime} and OO, in that order. Then we get a quadrilateral region D=OOSSD=^{O^{\prime}}_{O}\square^{S^{\prime}}_{S}.

Applying the Gauss-Bonnet theorem (pp. 272 and 277 in Ref. do Carmo (1976)) to DD brings about

DKdS+SSκdl+Cκdl+OOκdl\displaystyle\iint_{D}K\mathrm{d}S+\int_{\overrightarrow{SS}^{\prime}}\kappa\mathrm{d}l+\int_{C}\kappa\mathrm{d}l+\int_{\overrightarrow{O^{\prime}O}}\kappa\mathrm{d}l (27)
+OSκdl+ηS+ηS+ηO+ηO=2πχ(D).\displaystyle+\int_{\overset{\curvearrowright}{OS}}\kappa\mathrm{d}l+\eta_{S}+\eta_{S^{\prime}}+\eta_{O^{\prime}}+\eta_{O}=2\pi\chi(D).

where KK, dS\mathrm{d}S and χ(D)\chi\left(D\right) stand for the Gaussian curvature, area element and Euler characteristic number of DD, respectively; κ\kappa and dl\mathrm{d}l denote the geodesic curvature and line element of curves, respectively. Substituting κ(SS)=κ(OO)=0\kappa(\overrightarrow{SS^{\prime}})=\kappa(\overrightarrow{O^{\prime}O})=0 (refer to Appendix A of Ref. Huang and Cao (2023a) for the proof), OSκdl=γκdl\int_{\overset{\curvearrowright}{OS}}\kappa\mathrm{d}l=-\int_{\gamma}\kappa\mathrm{d}l, ηS=πΨS\eta_{S}=\pi-\Psi_{S}, ηS=ηO=π/2\eta_{S^{\prime}}=\eta_{O^{\prime}}=\pi/2, ηO=ΨO\eta_{O}=\Psi_{O}, and χ(D)=1\chi\left(D\right)=1 (DD is simply connected) into Eq. (27) and combining the result with the definition Eq. (19), the finite-distance deflection angle can be expressed as

δ=DKdSCκdl+ϕOS+γκdl.\delta=-\iint_{D}K\mathrm{d}S-\int_{C}\kappa\mathrm{d}l+\phi_{OS}+\int_{\gamma}\kappa\mathrm{d}l. (28)

According to the derivation in Secs. 4.1 and 4.4 of Ref. Huang and Cao (2023b), the above formula becomes

δ=ϕSϕOf(rγ)dϕ,\delta=\int_{\phi_{S}}^{\phi_{O}}f(r_{\gamma})\mathrm{d}\phi, (29)

where rγr_{\gamma} represents the radial coordinate of γ\gamma and is expressed in terms of the azimuthal coordinate ϕ\phi in calculation, ϕS\phi_{S} and ϕO\phi_{O} are the azimuthal coordinate of the source and observer, respectively, ff is defined by

f(r)=1αϕϕ,r2αrrαϕϕβϕ,rr4αϕϕ(dudϕ)2+1αrr.f(r)=1-\frac{\alpha_{\phi\phi,r}}{2\sqrt{\alpha_{rr}\alpha_{\phi\phi}}}-\beta_{\phi,r}\sqrt{\frac{r^{4}}{\alpha_{\phi\phi}}\left(\frac{\mathrm{d}u}{\mathrm{d}\phi}\right)^{2}+\frac{1}{\alpha_{rr}}}. (30)

Substituting the metric of Mkds(α2)M^{(\alpha 2)}_{kds} Eq. (25), the corresponding one-form Eq. (26) and the corresponding (du/dϕ)2\left(\mathrm{d}u/\mathrm{d}\phi\right)^{2} Eq. (9) into Eq. (30), then combing the result with the revised orbit solution of equatorial light in KdS spacetime, rγr_{\gamma} (the reciprocal of Eq. (15)), we have

f(rγ)=\displaystyle f(r_{\gamma})= M2sinϕbΛb2csc2ϕ6+M214b2[15\displaystyle M\cdot\frac{2\sin\phi}{b}-\Lambda\cdot\frac{b^{2}\csc^{2}\phi}{6}+M^{2}\cdot\frac{1}{4b^{2}}\Bigl{[}15 (31)
+cos(2ϕ)]Ma2sinϕb2+MΛbsinϕ3\displaystyle+\cos(2\phi)\Bigr{]}-Ma\cdot\frac{2\sin\phi}{b^{2}}+M\Lambda\cdot\frac{b\sin\phi}{3}
(1+2csc4ϕcsc2ϕ)+aΛ2bcsc2ϕ3\displaystyle\cdot\Bigl{(}1+2\csc^{4}\phi-\csc^{2}\phi\Bigr{)}+a\Lambda\cdot\frac{2b\csc^{2}\phi}{3}
Λ2b4csc4ϕ72[2cos(2ϕ)+1]+𝒪(ϵ3).\displaystyle-\Lambda^{2}\cdot\frac{b^{4}\csc^{4}\phi}{72}\Bigl{[}2\cos(2\phi)+1\Bigr{]}+\mathcal{O}\left(\epsilon^{3}\right).

Denoting the indefinite integral of f(rγ)f(r_{\gamma}) as F(ϕ)F(\phi), Eq. (29) can be recast as δ=F(ϕO)F(ϕS)\delta=F\left(\phi_{O}\right)-F\left(\phi_{S}\right), namely

δ=F[πΦ(uO)]F[Φ(uS)],\delta=F\left[\pi-\Phi\left(u_{O}\right)\right]-F\left[\Phi\left(u_{S}\right)\right], (32)

where Eq. (17) is used and ϕS<π/2<ϕO\phi_{S}<\pi/2<\phi_{O} is assumed. Finally, with the expression of Φ(u)\Phi(u) Eq. (18), we obtain the finite-distance deflection angle of equatorial light in KdS spacetime in terms of the radial coordinate of the source and observer

δ=\displaystyle\delta= M2b(1b2uO2+1b2uS2)\displaystyle M\cdot\frac{2}{b}\left(\sqrt{1-b^{2}u_{O}^{2}}+\sqrt{1-b^{2}u_{S}^{2}}\right) (33)
Λb6(1b2uO2uO+1b2uS2uS)\displaystyle-\Lambda\cdot\frac{b}{6}\left(\frac{\sqrt{1-b^{2}u_{O}^{2}}}{u_{O}}+\frac{\sqrt{1-b^{2}u_{S}^{2}}}{u_{S}}\right)
+M214b2{15[arccos(buO)+arccos(buS)]\displaystyle+M^{2}\cdot\frac{1}{4b^{2}}\Biggl{\{}15\bigl{[}\arccos(bu_{O})+\arccos(bu_{S})\bigr{]}
+15buO7b3uO31b2uO2+15buS7b3uS31b2uS2}\displaystyle+\frac{15bu_{O}-7b^{3}u_{O}^{3}}{\sqrt{1-b^{2}u_{O}^{2}}}+\frac{15bu_{S}-7b^{3}u_{S}^{3}}{\sqrt{1-b^{2}u_{S}^{2}}}\Biggr{\}}
Ma2b2(1b2uO2+1b2uS2)\displaystyle-Ma\cdot\frac{2}{b^{2}}\left(\sqrt{1-b^{2}u_{O}^{2}}+\sqrt{1-b^{2}u_{S}^{2}}\right)
+MΛb6(11b2uO2+11b2uS2)\displaystyle+M\Lambda\cdot\frac{b}{6}\left(\frac{1}{\sqrt{1-b^{2}u_{O}^{2}}}+\frac{1}{\sqrt{1-b^{2}u_{S}^{2}}}\right)
+aΛ23(1b2uO2uO+1b2uS2uS)\displaystyle+a\Lambda\cdot\frac{2}{3}\left(\frac{\sqrt{1-b^{2}u_{O}^{2}}}{u_{O}}+\frac{\sqrt{1-b^{2}u_{S}^{2}}}{u_{S}}\right)
Λ2b72(1b2uO22b4uO4uO31b2uO2+1b2uS22b4uS4uS31b2uS2)\displaystyle-\Lambda^{2}\cdot\frac{b}{72}\left(\frac{1-b^{2}u_{O}^{2}-2b^{4}u_{O}^{4}}{u_{O}^{3}\sqrt{1-b^{2}u_{O}^{2}}}+\frac{1-b^{2}u_{S}^{2}-2b^{4}u_{S}^{4}}{u_{S}^{3}\sqrt{1-b^{2}u_{S}^{2}}}\right)
+𝒪(ϵ3).\displaystyle+\mathcal{O}\left(\epsilon^{3}\right).

We provide a brief discussion of Eq. (33). For terms do not involving Λ\Lambda, i.e., those corresponding to MM, M2M^{2} and MaMa, they can be simplified under the infinite-distance limit of the source and observer, although it is unphysical for KdS spacetime. Specifically, when uS=uO=0u_{S}=u_{O}=0, the first, third, and fourth term of Eq. (33) becomes 4M/b4M/b, 15πM2/(4b2)15\pi M^{2}/(4b^{2}) and 4Ma/b2-4Ma/b^{2}, respectively. These three results are respectively consistent with the first, third, and fourth term of Eq. (8), which is obtained by Sultana assuming the source and observer are positioned very far from the lens. While for terms involving Λ\Lambda, namely those corresponding to Λ\Lambda, MΛM\Lambda, aΛa\Lambda, and Λ2\Lambda^{2}, they will diverge under the infinite-distance limit, except for the MΛM\Lambda term.

IV Conclusion

The introduction of the RI method aims to explore the influence of the cosmological constant on the light deflection. Using this approach, Sultana studied the deflection angle of equatorial light in KdS spacetime. However, in light of researchers’ criticisms of the RI method, Sultana’s finding inherently bears the limitations associated with this methodology.

In the context of KdS spacetime, we systematically address and rectify the orbit problem, position problem, and static problem identified in Sultana’s work. This is achieved by directly solving the original EOM, utilizing a finite-distance deflection angle, and adopting the Randers optical space, respectively. Building upon these rectification, we derive the finite-distance deflection angle of equatorial light in KdS spacetime with the generalized GW method. Our result is accurate up to second order with respect to the mass of the black hole MM, the spin parameter of the black hole aa and the cosmological constant Λ\Lambda.

As observing technologies advance for various celestial systems, the subtle differences between values given by different theoretical results are expected to be detected. The result presented in this paper, considering more detailed aspects and greater realism, undoubtedly provide a more accurate foundation for investigating the influence of the cosmological constant on light deflection.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China Grant No. 12375045 and in part by the Science Research Fund of Hunan Provincial Education Department No. 21A0297.

References

  • Caldwell et al. (1998) R. R. Caldwell, R. Dave, and P. J. Steinhardt, Physical Review Letters 80, 1582 (1998).
  • Perlmutter et al. (1999) S. Perlmutter, G. Aldering, G. Goldhaber, R. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, et al., The Astrophysical Journal 517, 565 (1999).
  • Astier et al. (2005) P. Astier, J. Guy, N. Regnault, R. Pain, E. Aubourg, D. Balam, S. Basa, R. Carlberg, S. Fabbro, D. Fouchez, et al., arXiv preprint astro-ph/0510447 (2005).
  • Abazajian et al. (2004) K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, K. S. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, I. K. Baldry, S. Bastian, et al., The Astronomical Journal 128, 502 (2004).
  • Abazajian et al. (2005) K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, S. S. Allam, K. S. Anderson, S. F. Anderson, J. Annis, N. A. Bahcall, I. K. Baldry, S. Bastian, et al., The Astronomical Journal 129, 1755 (2005).
  • Spergel et al. (2003) D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, et al., The Astrophysical Journal Supplement Series 148, 175 (2003).
  • Sahni and Starobinsky (2000) V. Sahni and A. Starobinsky, International Journal of Modern Physics D 9, 373 (2000).
  • Zlatev et al. (1999) I. Zlatev, L. Wang, and P. J. Steinhardt, Physical Review Letters 82, 896 (1999).
  • Caldwell (2002) R. R. Caldwell, Physics Letters B 545, 23 (2002).
  • Feng et al. (2005) B. Feng, X. Wang, and X. Zhang, Physics Letters B 607, 35 (2005).
  • Cai and Wang (2016) R.-G. Cai and S.-J. Wang, Physical Review D 93, 023515 (2016).
  • Mazumdar et al. (2001) A. Mazumdar, S. Panda, and A. Perez-Lorenzana, Nuclear Physics B 614, 101 (2001).
  • Arkani-Hamed et al. (2004) N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama, Journal of High Energy Physics 2004, 074 (2004).
  • Deffayet et al. (2002) C. Deffayet, G. Dvali, and G. Gabadadze, Physical Review D 65, 044023 (2002).
  • Bento et al. (2004) M. d. C. Bento, O. Bertolami, and A. A. Sen, Physical Review D 70, 083519 (2004).
  • Islam (1983) J. Islam, Physics Letters A 97, 239 (1983).
  • Freire et al. (2001) W. H. Freire, V. Bezerra, and J. Lima, General Relativity and Gravitation 33, 1407 (2001).
  • Lake (2002) K. Lake, Physical Review D 65, 087301 (2002).
  • Kagramanova et al. (2006) V. Kagramanova, J. Kunz, and C. Lämmerzahl, Physics Letters B 634, 465 (2006).
  • Finelli et al. (2007) F. Finelli, M. Galaverni, and A. Gruppuso, Physical Review D 75, 043003 (2007).
  • Rindler and Ishak (2007) W. Rindler and M. Ishak, Physical Review D 76, 043006 (2007).
  • Bhattacharya et al. (2010) A. Bhattacharya, R. Isaev, M. Scalia, C. Cattani, and K. K. Nandi, Journal of Cosmology and Astroparticle Physics 2010, 004 (2010).
  • Bhattacharya et al. (2011) A. Bhattacharya, G. M. Garipova, E. Laserra, A. Bhadra, and K. K. Nandi, Journal of Cosmology and Astroparticle Physics 2011, 028 (2011).
  • Sultana and Kazanas (2012) J. Sultana and D. Kazanas, Physical Review D 85, 081502 (2012).
  • Sultana (2013) J. Sultana, Physical Review D 88, 042003 (2013).
  • Farrugia et al. (2016) G. Farrugia, J. L. Said, and M. L. Ruggiero, Physical Review D 93, 104034 (2016).
  • Ali and Bhattacharya (2018) M. S. Ali and S. Bhattacharya, Physical Review D 97, 024029 (2018).
  • Mishra and Chakraborty (2018) A. Mishra and S. Chakraborty, The European Physical Journal C 78, 1 (2018).
  • Seçuk and Delice (2020) M. H. Seçuk and Ö. Delice, The European Physical Journal Plus 135, 1 (2020).
  • He et al. (2020) G. He, X. Zhou, Z. Feng, X. Mu, H. Wang, W. Li, C. Pan, and W. Lin, The European Physical Journal C 80, 1 (2020).
  • Park (2008) M. Park, Physical Review D 78, 023014 (2008).
  • Simpson et al. (2010) F. Simpson, J. A. Peacock, and A. F. Heavens, Monthly Notices of the Royal Astronomical Society 402, 2009 (2010).
  • Ishihara et al. (2016) A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura, and H. Asada, Physical Review D 94, 084015 (2016).
  • Bhadra et al. (2010) A. Bhadra, S. Biswas, and K. Sarkar, Physical Review D 82, 063003 (2010).
  • Arakida and Kasai (2012) H. Arakida and M. Kasai, Physical Review D 85, 023006 (2012).
  • Bardeen (1973) J. Bardeen, Les houches summer school of theoretical physics: Black holes (1973).
  • Gibbons and Werner (2008) G. Gibbons and M. Werner, Classical and Quantum Gravity 25, 235009 (2008).
  • Crisnejo et al. (2019a) G. Crisnejo, E. Gallo, and K. Jusufi, Physical Review D 100, 104045 (2019a).
  • Podolsky (1999) J. Podolsky, General Relativity and Gravitation 31, 1703 (1999).
  • Ishihara et al. (2017) A. Ishihara, Y. Suzuki, T. Ono, and H. Asada, Physical Review D 95, 044017 (2017).
  • Ono et al. (2017) T. Ono, A. Ishihara, and H. Asada, Physical Review D 96, 104037 (2017).
  • Ono et al. (2018) T. Ono, A. Ishihara, and H. Asada, Physical Review D 98, 044047 (2018).
  • Ono et al. (2019) T. Ono, A. Ishihara, and H. Asada, Physical Review D 99, 124030 (2019).
  • Haroon et al. (2019) S. Haroon, M. Jamil, K. Jusufi, K. Lin, and R. B. Mann, Physical Review D 99, 044015 (2019).
  • Kumar et al. (2019) R. Kumar, S. G. Ghosh, and A. Wang, Physical Review D 100, 124024 (2019).
  • Crisnejo et al. (2019b) G. Crisnejo, E. Gallo, and A. Rogers, Physical Review D 99, 124001 (2019b).
  • Ono and Asada (2019) T. Ono and H. Asada, Universe 5, 218 (2019).
  • Li and Övgün (2020) Z. Li and A. Övgün, Physical Review D 101, 024040 (2020).
  • Li and Jia (2020) Z. Li and J. Jia, The European Physical Journal C 80, 1 (2020).
  • Takizawa et al. (2020) K. Takizawa, T. Ono, and H. Asada, Physical Review D 101, 104032 (2020).
  • Li et al. (2020) Z. Li, G. Zhang, and A. Övgün, Physical Review D 101, 124058 (2020).
  • Li and Zhou (2021) Z. Li and T. Zhou, Physical Review D 104, 104044 (2021).
  • Li et al. (2021) Z. Li, Y. Duan, and J. Jia, Classical and Quantum Gravity 39, 015002 (2021).
  • Huang and Cao (2022) Y. Huang and Z. Cao, Physical Review D 106, 104043 (2022).
  • Belhaj et al. (2022) A. Belhaj, H. Belmahi, M. Benali, and H. El Moumni, Chinese Journal of Physics (2022).
  • Li and Jia (2021) Z. Li and J. Jia, Physical Review D 104, 044061 (2021).
  • Li et al. (2022) Z. Li, W. Wang, and J. Jia, arXiv preprint arXiv:2208.11458 (2022).
  • Pantig et al. (2022) R. C. Pantig, A. Övgün, and D. Demir, arXiv preprint arXiv:2208.02969 (2022).
  • Huang and Cao (2023a) Y. Huang and Z. Cao, The European Physical Journal C 83, 80 (2023a).
  • Huang et al. (2023) Y. Huang, B. Sun, and Z. Cao, Physical Review D 107, 104046 (2023).
  • Randers (1941) G. Randers, Physical Review 59, 195 (1941).
  • Werner (2012) M. Werner, General Relativity and Gravitation 44, 3047 (2012).
  • Huang and Cao (2023b) Y. Huang and Z. Cao, arXiv preprint gr-qc/2306.04145 (accepted for publication in JCAP on December 11th, 2023) (2023b).
  • do Carmo (1976) M. P. do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Upper Saddle River, NJ, 1976).