This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Reducing the H0H_{0} Tension with Exponential Acoustic Dark Energy

Lu Yin [email protected] Center for Quantum Spacetime, Sogang University, Seoul 04107, Korea Department of Physics, Sogang University, Seoul 04107, Korea
Abstract

The Hubble tension arises from different observations between the late-time and early Universe. We explore a new model with dark fluid, called the exponential Acoustic Dark Energy (eADE) model, to relieve the Hubble tension. The eADE model gives an exponential form of the equation of state (EoS) in the acoustic dark energy, which is the first time to explore an exponential form for the EoS. In this model, the gravitational effects from the acoustic oscillations of the model can impact the CMB phenomena at the matter radiation equally epoch. We give the constraints of the eADE model by the current cosmological dataset. The comparison of the phenomena with the standard model can be shown through CMB and matter power spectra. The fitting results of our model have H0=70.061.09+1.13H_{0}=70.06^{+1.13}_{-1.09} in 95%\% C.L. and a smaller best-fit value than Λ\LambdaCDM.

I Introduction

After the accelerated expanding Universe discovered in 1998Riess:1998cb ; Perlmutter:1998np , the Λ\LambdaCDM has been one of the most important models to explain modern cosmology, and that can fit very well with many observations Copeland:2006wr . When considering the question “how fast is this expansion nowadays?” we need to focus on the Hubble parameter. Unfortunately, the debate about the value of the present Hubble constant (H0H_{0}) attracted much attention with the different precise observations in recent years. The standard candle measurements in low redshifts, such as type Ia Supernovae, get an H0H_{0} equal to 74.03±1.4274.03\pm 1.42 [km/s/Mpc] Riess:2019cxk , while the result from high redshift give an H0H_{0} of 67.4±0.567.4\pm 0.5 [km/s/Mpc] in Cosmic Microwave Background’s paper Aghanim:2018eyx . This phenomenon is called the “Hubble tension”, which has beyond 4.4σ\sigma. The precision of these cosmological measurements is about 1%\%, which indicates the discrepancy can not be systematic errors. Moreover, a model-independent technique with strong gravitational lensing experiment – H0LiCOW – gives H0=73.31.8+1.7H_{0}=73.3_{-1.8}^{+1.7} [km/s/Mpc] Wong:2019kwg , that confirms the measurements from Supernovae, but the Baryon Acoustic Oscillations (BAO) result agrees with the CMB from Planck  Gil-Marin:2016wya . From these results, the tension even increased to 5.3σ\sigma by combining all of the H0H_{0} values with different origins.

One popular approach to release the H0H_{0} tension is to add extra dark radiation or another sterile neutrino in the epoch before recombination. These additional components can make the cosmological expanding faster with a lower sound horizon rsr_{s}, which lead to a shorter history of the Universe before recombination and a larger H0H_{0} valueWyman:2013lza ; Dvorkin:2014lea ; Leistedt:2014sia ; Ade:2015rim ; Lesgourgues:2015wza ; Adhikari:2016bei ; DiValentino:2016hlg ; Canac:2016smv ; Feng:2017nss ; Oldengott:2017fhy ; Lancaster:2017ksf ; Kreisch:2019yzn ; Li:2020gtk ; Zhang:2020mox ; Ballardini:2020iws ; Novikov:2016fzd ; Novikov:2016hrc ; Vagnozzi:2019ezj ; Alestas:2020zol ; Yang:2021eud ; DiValentino:2021zxy ; Yang:2021flj ; Yang:2020zuk ; DiValentino:2020zio . However, this approach will change the oscillation of acoustic and damping scale Hu:1996vq , which has been constrained by the precise observation of CMB. So this approach is unable to raise H0H_{0} drasticallyAghanim:2018eyx ; Raveri:2017jto .

In another approach, the model named the “early dark energy (EDE)” provided a dark component only becomes effective around the recombination time. The EDE model can avoid the previous problem and release the Hubble tension manifest Poulin:2018cxd ; Braglia:2020iik ; Braglia:2020bym ; Braglia:2020auw . However, the EDE model will also change the CMB acoustic peaks and amplitudes by its perturbation. The Acoustic Dark Energy (ADE) model can avert this trouble of EDE and increase the value of H0H_{0}Lin:2019qug ; Lin:2020jcb because of the particular Equation of State (EoS) wADEw_{ADE} within its dark fluid component.

In the ADE model, the sound speed varies with the EoS in the background. This energy density becomes important in the matter radiation equally epoch and impacts the CMB through the gravitational effects of its acoustic oscillations ArmendarizPicon:2000ah .

We explore a new exponential form of EoS for the ADE model in this paper. The new model has the same advantages as ADE but has fewer free parameters called the Exponential Acoustic Dark Energy (eADE) model. In this study, we will introduce this eADE model and its fitting results from observational data. In particular, we use the CAMB Lewis:1999bs and CosmoMC Lewis:2002ah packages with the Markov chain Monte Carlo (MCMC) method to give the constraints of the model.

This paper is organized as follows. In Sec. II, we introduce our eADE model, and derive the evolution equations for the dark fluid part in the linear perturbation theory. In Sec. III, we present our numerical calculations. In particular, we show the CMB power spectra, matter power spectra and constrain the model parameters from several cosmological observation datasets. Finally, we will present our conclusion in Sec. IV.

II Exponential Acoustic Dark Energy model

The eADE is defined to be a perfect dark fluid. Its EoS weADEw_{eADE} and the sound speed cs2c^{2}_{s} give the main mark of this model. We can relieve the Hubble tension by acoustic phenomenology of the linear sound waves from the background and the perturbation in the eADE model.

We define the EoS weADEw_{eADE} to be

1+weADE(a)=21ac2a,1+w_{eADE}(a)=2^{1-\frac{a_{c}}{2a}}, (1)

where aca_{c} is the moment for critical redshift zcz_{c} (zc=1/ac1z_{c}=1/a_{c}-1), which epoach make eADE becomes dominant. For the value of weADEw_{eADE} equal to 1-1 when aaca\ll a_{c}, weADEw_{eADE} equal to 21\sqrt{2}-1 when a=aca=a_{c}, and weADEw_{eADE} equal to 11 when a=1a=1. Since the value of aca_{c} is around 𝒪(104)\mathcal{O}(10^{-4}), we regard aca_{c} as ac1a_{c}\ll 1 for the present time. The development of this EoS is the same as that in ADE model Lin:2019qug , which can be seen in the Table 1. Moreover, this EoS in our eADE model has one less free parameter than that in the ADE model (parameter pp at Eq.1 of ref Lin:2019qug ). And our model also has a transiently important contribution to the energy density around aca_{c} then decays quickly. So comparing with the ADE modelLin:2019qug , the eADE model not only has a simpler form but also takes a new exponential term in EoS.

In Tab.1, we also compared the evolution of the EoS in the EDE model Poulin:2018cxd with the parameter n=2n=2 and n=3n=3, which shows the different evolutions of EoS in ADE and EDE.

Table 1: The benchmark point of EoS for eADE, ADE, and EDE model at different cosmic scale factor aa. For the EDE model, we select the parameter nn equal to 2 and 3.
Value of EoS aaca\ll a_{c} a=aca=a_{c} a=1a=1
weADEw_{eADE} 1-1 21\sqrt{2}-1 11
wADEw_{ADE} 1-1 21\sqrt{2}-1 11
wEDEw_{EDE} with n=3n=3 1-1 1/4-1/4 1/21/2
wEDEw_{EDE} with n=2n=2 1-1 1/3-1/3 1/31/3

The eADE density evolves as Poulin:2018dzj ,

ΩeADE(a)=ρeADEρtot=2fc(cs2+1)2(weADE+1)2(cs2+1)2\Omega_{eADE}(a)=\frac{\rho_{eADE}}{\rho_{tot}}=2f_{c}\frac{(c_{s}^{2}+1)^{2}-(w_{eADE}+1)^{2}}{(c_{s}^{2}+1)^{2}} (2)

where fc=ρeADE(ac)ρtot(ac)f_{c}=\frac{\rho_{eADE}(a_{c})}{\rho_{tot}(a_{c})} means the contribution of eADE at aca_{c}.

The pressure of the eADE can be given as PeADE=weADEρeADEP_{eADE}={{w}_{eADE}}{{\rho}_{eADE}}. From Eq. 1 and Eq. 2, the PeADEP_{eADE} can be written naturally as

PeADE=6H2fc8πG(cs2+1)2(weADE+1)2(cs2+1)2weADE,P_{eADE}=\frac{6H^{2}f_{c}}{8\pi G}\frac{(c_{s}^{2}+1)^{2}-(w_{eADE}+1)^{2}}{(c_{s}^{2}+1)^{2}}w_{eADE}, (3)

where the cs2c_{s}^{2} is the sound speed which is defined as

cs2P˙eADEρ˙eADE=w˙eADE.c_{s}^{2}\equiv\frac{\dot{P}_{eADE}}{\dot{\rho}_{eADE}}=\dot{w}_{eADE}. (4)

The parametrization of weADEw_{eADE} can get from the cosmological observation. The value of cs2c_{s}^{2} close to 1, and the parameter was fixed by 1 in many previous workLin:2019qug ; Lin:2020jcb . So we will also consider cs2c_{s}^{2} to be 1 in the following calculation. In this way, the ΩeADE\Omega_{eADE} and PeADEP_{eADE} can be rewritten as,

ΩeADE(a)=cs2=1fc[2(weADE(a)+1)22].\Omega_{eADE}(a)\overset{c_{s}^{2}=1}{=}{f_{c}}[2-\frac{(w_{eADE}(a)+1)^{2}}{2}]. (5)

Since the eADE model has a main effect in the early Universe around aca_{c}, we can consider the ΩeADE\Omega_{eADE} back to zero when aa equals 11 in the present time.

The pressure term can be shown as,

PeADE=cs2=16H2fc8πG(2ξ3+ξ2+2ξ1ξ0),P_{eADE}\overset{c_{s}^{2}=1}{=}\frac{6H^{2}f_{c}}{8\pi G}(-2\xi^{3}+\xi^{2}+2\xi^{1}-\xi^{0}), (6)

where ξ(a)=2ac2a\xi(a)=2^{-\frac{a_{c}}{2a}}. It can give a polynomial of the ξ\xi, which order in pressure can be shown as a group with 3, 2, 1, and 0 naturally. And when aa is 11, the pressure value of the eADE is equal to zero. It shows the effect of the PeADEP_{eADE} is the same as the matter in the late time Universe.

Now we discuss the perturbation part of this model. The ρ˙eADE\dot{\rho}_{eADE} can be calculated as δρeADE=δeADEρeADE\delta{\rho}_{eADE}=\delta_{eADE}\rho_{eADE}, where δeADE\delta_{eADE} is the density contrast. Thus, the δPeADE\delta P_{eADE} can be given by

δPeADE=(weADEδeADE+δweADE)ρeADE.\delta P_{eADE}=(w_{eADE}\delta_{eADE}+\delta w_{eADE})\rho_{eADE}. (7)

We consider

δweADE=(cs2weADE)δeADE.\delta w_{eADE}=(c_{s}^{2}-w_{eADE})\delta_{eADE}. (8)

The quantity δweADE\delta w_{eADE} is the spatial fluctuations in the EoS, so the pressure fluctuation in Eq.7 can be rewritten as

δPeADE=δρeADEcs2.\delta P_{eADE}=\delta\rho_{eADE}c_{s}^{2}. (9)

The EoS fluctuations can arise from temporal variations in the background EoS through a general coordinate.

We are working on the synchronous gauge and consider the corresponding velocities of the dark fluid as θeADE\theta_{eADE}. The conservation equations then become

δ˙eADE=(1+weADE)(θeADE+h˙2)3a˙a(cs2weADE)δeADEkθeADE,\displaystyle\dot{\delta}_{eADE}=-(1+w_{eADE})(\theta_{eADE}+\frac{\dot{h}}{2})-3\frac{\dot{a}}{a}(c_{s}^{2}-w_{eADE})\delta_{eADE}-k\theta_{eADE}\,, (10)
θ˙eADE=a˙a(2weADE1)θeADEw˙eADE1+weADEθeADE+cs2k2a2(1+weADE)δeADE,\displaystyle\dot{\theta}_{eADE}=\frac{\dot{a}}{a}(2w_{eADE}-1)\theta_{eADE}-\frac{\dot{w}_{eADE}}{1+w_{eADE}}\theta_{eADE}+\frac{c_{s}^{2}k^{2}}{a^{2}(1+w_{eADE})}\delta_{eADE}\,, (11)

where kk is the kk-space unit vector, hh is the metric perturbation in the Fourier space Ma:1995ey and θeADE=0\theta_{eADE}=0 in the rest frame of this dark fluid.

III Fitting Result of The Exponential Acoustic Dark Energy

Table 2: Priors for cosmological parameters in the exponential acoustic dark energy model.
Parameter Prior
Model parameter log(ac)\log(a_{c}) 10.0log(ac)3.0-10.0\leq\log(a_{c})\leq-3.0
Model parameter fcf_{c} 0fc10\leq f_{c}\leq 1
Sound speed 0cs21.50\leq c_{s}^{2}\leq 1.5
Baryon density parameter 0.5100Ωbh2100.5\leq 100\Omega_{b}h^{2}\leq 10
CDM density parameter 0.1100Ωch2990.1\leq 100\Omega_{c}h^{2}\leq 99
Optical depth 0.01τ0.80.01\leq\tau\leq 0.8
SoundhorizonAngulardiameterdistance\frac{\mathrm{Sound\ horizon}}{\mathrm{Angular\ diameter\ distance}} 0.5100θMC100.5\leq 100\theta_{MC}\leq 10
Scalar power spectrum amplitude 2ln(1010As)42\leq\ln\left(10^{10}A_{s}\right)\leq 4
Spectral index 0.8ns1.20.8\leq n_{s}\leq 1.2
Refer to caption
Figure 1: One and two-dimensional distributions of cs2c_{s}^{2} and H0H_{0} in Planck dataset, where the contour lines represent 68%\%  and 95%\%  C.L., respectively.
Refer to caption
Figure 2: One and two-dimensional distributions of parameters in eADE model and Λ\LambdaCDM, where the contour lines represent 68%\%  and 95%\%  C.L., respectively.
Table 3: Fitting results for the eADE model, where the limits are given at 95%\% C.L.. We also added the corresponding Λ\LambdaCDM result inside brackets.
Parameter CMB (cs21c_{s}^{2}\neq 1) CMB CMB+BAO+SN CMB+H0H_{0}
𝛀𝒎\Omega_{m} 0.31760.0238+0.02750.3176^{+0.0275}_{-0.0238} 0.31460.0150+0.03120.3146^{+0.0312}_{-0.0150} (0.31530.0140+0.0149)(0.3153^{+0.0149}_{-0.0140}) 0.30900.0114+0.01250.3090^{+0.0125}_{-0.0114} (0.31040.0103+0.0106)(0.3104^{+0.0106}_{-0.0103}) 0.29950.0137+0.01480.2995^{+0.0148}_{-0.0137} (0.30770.0091+0.0133)(0.3077^{+0.0133}_{-0.0091})
𝐥𝐨𝐠(𝒂𝒄)\log(a_{c}) 3.310.17+0.30-3.31^{+0.30}_{-0.17} 3.460.22+0.29-3.46^{+0.29}_{-0.22} 3.460.22+0.28-3.46^{+0.28}_{-0.22} 3.460.22+0.28-3.46^{+0.28}_{-0.22}
𝒇𝒄f_{c} 0.0590.058+0.1100.059^{+0.110}_{-0.058} 0.0620.031+0.0280.062^{+0.028}_{-0.031} 0.0630.030+0.0270.063^{+0.027}_{-0.030} 0.0630.030+0.0270.063^{+0.027}_{-0.030}
cs2c_{s}^{2} 0.9070.024+0.0270.907^{+0.027}_{-0.024} 11 (fixed) 11 (fixed) 11 (fixed)
𝟏𝟎𝟎𝜽𝑴𝑪100\theta_{MC} 1.040600.00058+0.000661.04060^{+0.00066}_{-0.00058} 1.04088±0.000621.04088\pm{0.00062} (1.040920.00064+0.00059)(1.04092^{+0.00059}_{-0.00064}) 1.04093±0.000561.04093\pm{0.00056} (1.041020.00058+0.00055)(1.04102^{+0.00055}_{-0.00058}) 1.04108±0.000591.04108\pm{0.00059} (1.04119±0.00060)(1.04119\pm{0.00060})
rdragr_{drag} 146.860.49+0.50146.86^{+0.50}_{-0.49} 146.980.50+0.49146.98^{+0.49}_{-0.50} (147.090.51+0.53)(147.09^{+0.53}_{-0.51}) 147.120.42+0.47147.12^{+0.47}_{-0.42} (147.230.43+0.46)(147.23^{+0.46}_{-0.43}) 147.41±0.57147.41\pm{0.57} (147.48±0.49)(147.48\pm{0.49})
H0H_{0} 69.622.09+1.0669.62^{+1.06}_{-2.09} 68.212.72+0.9568.21^{+0.95}_{-2.72} (67.361.06+1.05)(67.36^{+1.05}_{-1.06}) 68.730.65+0.6168.73^{+0.61}_{-0.65} (67.720.79+0.77)(67.72^{+0.77}_{-0.79}) 70.061.09+1.1370.06^{+1.13}_{-1.09} (68.581.13+1.10)(68.58^{+1.10}_{-1.13})
R1R-1 0.019570.01957 0.00797(0.0103)0.00797(0.0103) 0.01969(0.01667)0.01969(0.01667) 0.01064(0.03088)0.01064(0.03088)
χ2\chi^{2} 2802.612802.61 2796.53(2800.70)2796.53(2800.70) 3833.05(3841.84)3833.05(3841.84) 2814.97(2817.24)2814.97(2817.24)
Refer to caption
Refer to caption
Figure 3: The ΔCl\Delta C_{l} is the change between the eADE model and the Λ\LambdaCDM for the CMB power spectra in TT and EE mode.
Refer to caption
Figure 4: Matter power spectra for the Λ\LambdaCDM and the eADE model with data points in different scales. The Ly-α\alpha data from eBOSS clustering on the small scales, and SDSS Luminous Red Galaxy(LRG) clustering on the intermediate scales.

In this section, we present our Markov Chain Monte Carlo (MCMC) fitting results by the public code of 𝐂𝐀𝐌𝐁{\bf CAMB}Lewis:1999bs and CosmoMC program Lewis:2002ah . The prior of the free parameters were set in Table 2. Note we limit fcf_{c} in the range from 0 to 1. And for the parameter aca_{c}, we used the form of log(ac)\log(a_{c}) in the global fitting.

For the Cosmic Microwave Mackground (CMB) data, we considered temperature fluctuation from Planck 2018 with Planck_highl_TTTEEE, Planck_lowl_EE, and Planck_lowl_TT, Planck_lensing polarization Aghanim:2019ame ; Akrami:2019izv ; Aghanim:2018eyx ; Akrami:2018odb ; Aghanim:2018oex . The baryon acoustic oscillation (BAO) data in our global fitting included 6dF Galaxy Survey Beutler:2011hx and the Sloan Digital Sky Survey Ross:2014qpa ; Alam:2016hwk . The Hubble Space Telescope (HST) result Riess:2019cxk we used is the single data point of H0=74.03±1.42H_{0}=74.03\pm{1.42}. In addition, the type Ia Supernovae data in the fitting comes from the latest Pantheon result with 1048 data points Scolnic:2017caz . Without proper interdependence consideration, the covariance and light curve parameters in SH0ES and Pantheon observation can not valid the constraints simultaneously and independently. That leads to a sudden or rapid change in H(z)H(z) at z<0.1z<0.1, which would impact both constraints for the Hubble flow and absolute peak magnitude MBM_{B}. One method is to use the SNIa distance ladder to calibrate Hubble flow, that constrains and covariance will be contained in the SNIa sample. This approach will use in SH0ES + Pantheon’s future data release and cosmological models’ constrain DiValentino:2021izs .

First of all, we set the sound speed cs2c_{s}^{2} as a free parameter and fit the eADE model with Planck 2018 data. The result of Ωm\Omega_{m}, log(ac)\log(a_{c}), fcf_{c}, H0H_{0}, and other parameters are shown in Table 3. Especially, we give the contour result of cs2c_{s}^{2} and H0H_{0} in Fig.1, which shows the Hubble parameter equals to 69.622.09+1.0669.62^{+1.06}_{-2.09} in 95%\% C.L. and can release the H0H_{0} tension effectly. The sound speed has the best-fit value of cs2=0.9070.024+0.027c_{s}^{2}=0.907^{+0.027}_{-0.024} and close to 1. So in the next simulation, we set cs2c_{s}^{2} is 11 and focus on the value of log(ac)\log(a_{c}) and fcf_{c}.

To test the effect of the eADE model in different observations, we consider the combination of the dataset as CMB, CMB+BAO+SN, CMB+H0H_{0}, separately. We present the fitting result of marginalized 1D and 2D posterior distributions in Fig. 2 and the limit of 95%\%C.L. in Tab.3.

The gray color of Fig.2 is the result of Λ\LambdaCDM with Planck dataset, and the green, red and blue color correspond to the eADE in the CMB, CMB+BAO+SN, and CMB+H0H_{0} dataset, respectively. If the fcf_{c} equal to zero, the eADE model will back to Λ\LambdaCDM. Lucky, all the fcf_{c} and log(ac)\log(a_{c}) have two bounds at 95%\%C.L.. In different data component, the value of fcf_{c} still has two bounds with center value around 0.07 (cs2c_{s}^{2} fixed to 1), that means our model can be distinguished with the standard cosmological model in 2σ\sigma. From this figure, we can see the values of parameters θMC\theta_{MC}, rdragr_{drag}, and Ωm\Omega_{m} in eADE are smaller than that in Λ\LambdaCDM, and the nsn_{s}, H0H_{0} and zeqz_{eq} are larger than the corresponding result in Λ\LambdaCDM.

The eADE model in different data components can enlarge the H0H_{0} value from Λ\LambdaCDM’s result, and this model will release the Hubble tension to a certain extent. For only Planck data, the eADE has H0=68.212.72+0.95H_{0}=68.21^{+0.95}_{-2.72}, which larger than the Λ\LambdaCDM’s result in same dataset (67.361.06+1.0567.36^{+1.05}_{-1.06}). In the data of CMB+BAO+SN, the eADE gives the constraint of H0=68.730.65+0.61H_{0}=68.73^{+0.61}_{-0.65}, which is also larger than the result of 67.720.79+0.7767.72^{+0.77}_{-0.79} from Λ\LambdaCDM. Especially, the eADE model can release the H0H_{0} tension noteworthy in the data of Planck+Riess Prior, that H0=70.061.09+1.13H_{0}=70.06^{+1.13}_{-1.09} can distinguish with the corresponding result of Λ\LambdaCDM (68.581.13+1.1068.58^{+1.10}_{-1.13}) in 2σ\sigma. This H0H_{0} in eADE is the same as the Freedman’s result of Tip of the Red Giant Branch (TRGB)Freedman:2021ahq ; Cerny:2020inj .

Tab. 3 gives the fitting result of the matter density parameter Ωm\Omega_{m} and the χ2\chi^{2} in the Λ\LambdaCDM and eADE model. In the epoch of acaeqa_{c}\approx a_{eq}, the acoustic peak of CMB is impacted by the eADE. At the background level, because the additional dark energy can enlarge the value of the total energy density before recombination, it will lead to a smaller sound horizon rsr_{s} and a shorter expanding history at this time. In general, the sound horizon can be written as CMB last-scattering as

rs=0tdta(t)cs=zdzH(z)cs,r_{\mathrm{s}}=\int_{0}^{t_{\star}}\frac{dt}{a(t)}c_{s}=\int_{z_{\star}}^{\infty}\frac{dz}{H(z)}c_{s}, (12)

where the tt_{\star} and zz_{\star} correspond to the end of baryon drag epoch, so we has rdragrsr_{drag}\approx r_{s}. In this paper, we can see the difference of sound horizon at the two model in Fig.2 and Tab.3, that shows the rdragr_{drag} in eADE is smaller than the result in Λ\LambdaCDM. In this way, our model has possible to release the H0H_{0} tension. The angular size on the last-scattering surface θMC\theta_{MC} will also have a smaller value in the eADE model. It can give a reduced inverse distance ladder scale, which will lead to the increase of H0H_{0}. This distance measurement calibration modification is not only for CMB observation but also for the BAO and SN through the inverse distance ladder.

Since there are two additional free parameters aca_{c} and fcf_{c} in the eADE model, we consider the Akaike Information Criterion (AIC) Akaike1974 to statistical analysis and comparison of the two models. The AIC estimator can be expressed by

AIC2lnLmax+2kAIC\equiv-2\ln L_{max}+2k (13)

where Lmaxp(d|θmax,M)L_{max}\equiv p(d|\theta_{max},M) is the maximum likelihood value, and kk is the number of free parameters. Since χ2\chi^{2} equal to 2lnLmax-2\ln L_{max}, the χ2\chi^{2} value of the eADE model in CMB+BAO+SN dataset is 3833.05, which is smaller than the result in Λ\LambdaCDM (3841.84). The difference of χ2\chi^{2} between the two models is 8.79, it means we can get AIC=AICΛCDMAICeADE=4.79\triangle AIC=\triangle AIC_{\Lambda CDM}-\triangle AIC_{eADE}=4.79 in the CMB+BAO+SN dataset. Using the same method, we can obtain the AIC=0.17\triangle AIC=0.17 in only CMB observation and AIC=1.73\triangle AIC=-1.73 from CMB+H0H_{0} dataset. The value of AIC\triangle AIC shows a preference of the eADE model in CMB+BAO+SN compared with the Λ\LambdaCDM model Arevalo:2016epc .

In Fig.3, we can see the difference of CMB power spectra between the eADE model and Λ\LambdaCDM in TT mode and EE mode. The data points of CMB in blue color come from Planck 2018Aghanim:2019ame , the theoretical value of Λ\LambdaCDM (orange dash line) and eADE (grey blue line) comes from fitting results in Planck data. In the TT mode, the eADE result is closer to the Planck data points in the first peak, which shows the advantages of the eADE model. Meanwhile, the EE mode resulting from Planck still has too much noise in the high ll, so the eADE model has a smaller error with some data points than the standard model but is hard to distinguish with the Λ\LambdaCDM.

In Fig. 4, we can compare the eADE and Λ\LambdaCDM in matter power spectra with different observations. The Luminous Red Galaxy (LRG) data come from SDSS DR7 Reid:2009xm , which is in the redshift between 0.6 and 1.0. The data points are closer to the eADE model prediction than the Λ\LambdaCDM especially at high wavenumber kk [h/Mpch/Mpc]. On the small scale, we compared the two models with the eBOSS DR14 Ly-α\alpha forest data Abolfathi:2017vfu . The center value of the Ly-α\alpha data points also prefers eADE in high kk [h/Mpch/Mpc]. Since the error bar of the LyαLy-\alpha forest dataset are still too large, we can not distinguish the eADE model and the Λ\LambdaCDM in matter power spectra.

IV Conclusions

In this work, we have introduced a new additional perfect dark fluid, named the eADE model, as a candidate to release the H0H_{0} tension. The eADE model was defined with a special EoS as an exponential function of the sound speed. This model is different from Λ\LambdaCDM at the matter radiation equally time.

We calculated the background evolution and the linear perturbation of the eADE model and have performed the MCMC global fitting with the latest observational data which includes Planck, SDSS, HST, and Pantheon. From this simulation, the eADE model can release the H0H_{0} tension with the result of H0=70.061.09+1.13H_{0}=70.06^{+1.13}_{-1.09} which is contrasted with the H0=68.581.13+1.10H_{0}=68.58^{+1.10}_{-1.13} in Λ\LambdaCDM at 95%\%  C.L. in Planck+H0H_{0}. The fitting result of eADE shows a smaller χ2\chi^{2} than that in Λ\LambdaCDM. The AIC analysis with different datasets also confirms this result. Finally, we compared the eADE model with Λ\LambdaCDM in the CMB and the matter power spectra. The observational data points prefer our eADE model to Λ\LambdaCDM at a small scale structure but are hard to distinguish in present precision.

Acknowledgments

The author thanks Prof. G. Tasinato for the inspirer. We also thank Prof. Xin Zhang and Dr. Shu-Lei Ni for the useful discussion.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education through the Center for Quantum Spacetime (CQUeST) of Sogang University (NRF-2020R1A6A1A03047877).

References

  • (1) A. G. Riess et al. [Supernova Search Team], Astron. J. 116, 1009-1038 (1998) doi:10.1086/300499 [arXiv:astro-ph/9805201 [astro-ph]].
  • (2) S. Perlmutter et al. [Supernova Cosmology Project], Astrophys. J. 517, 565-586 (1999) doi:10.1086/307221 [arXiv:astro-ph/9812133 [astro-ph]].
  • (3) E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753-1936 (2006) doi:10.1142/S021827180600942X [arXiv:hep-th/0603057 [hep-th]].
  • (4) A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Astrophys. J. 876, no.1, 85 (2019) doi:10.3847/1538-4357/ab1422 [arXiv:1903.07603 [astro-ph.CO]].
  • (5) N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].
  • (6) K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rusu, M. Millon, D. Sluse, V. Bonvin, C. D. Fassnacht, S. Taubenberger and M. W. Auger, et al. Mon. Not. Roy. Astron. Soc. 498, no.1, 1420-1439 (2020) doi:10.1093/mnras/stz3094 [arXiv:1907.04869 [astro-ph.CO]].
  • (7) H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein, C. H. Chuang, F. S. Kitaura, S. A. Rodríguez-Torres and M. D. Olmstead, Mon. Not. Roy. Astron. Soc. 465, no.2, 1757-1788 (2017) doi:10.1093/mnras/stw2679 [arXiv:1606.00439 [astro-ph.CO]].
  • (8) M. Wyman, D. H. Rudd, R. A. Vanderveld and W. Hu, Phys. Rev. Lett. 112, no.5, 051302 (2014) doi:10.1103/PhysRevLett.112.051302 [arXiv:1307.7715 [astro-ph.CO]].
  • (9) C. Dvorkin, M. Wyman, D. H. Rudd and W. Hu, Phys. Rev. D 90, no.8, 083503 (2014) doi:10.1103/PhysRevD.90.083503 [arXiv:1403.8049 [astro-ph.CO]].
  • (10) B. Leistedt, H. V. Peiris and L. Verde, Phys. Rev. Lett. 113, 041301 (2014) doi:10.1103/PhysRevLett.113.041301 [arXiv:1404.5950 [astro-ph.CO]].
  • (11) P. A. R. Ade et al. [Planck], Astron. Astrophys. 594, A14 (2016) doi:10.1051/0004-6361/201525814 [arXiv:1502.01590 [astro-ph.CO]].
  • (12) J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, JCAP 02, 037 (2016) doi:10.1088/1475-7516/2016/02/037 [arXiv:1507.04351 [astro-ph.CO]].
  • (13) M. Drewes, T. Lasserre, A. Merle, S. Mertens, R. Adhikari, M. Agostini, N. A. Ky, T. Araki, M. Archidiacono and M. Bahr, et al. JCAP 01, 025 (2017) doi:10.1088/1475-7516/2017/01/025 [arXiv:1602.04816 [hep-ph]].
  • (14) E. Di Valentino, A. Melchiorri and J. Silk, Phys. Lett. B 761, 242-246 (2016) doi:10.1016/j.physletb.2016.08.043 [arXiv:1606.00634 [astro-ph.CO]].
  • (15) N. Canac, G. Aslanyan, K. N. Abazajian, R. Easther and L. C. Price, JCAP 09, 022 (2016) doi:10.1088/1475-7516/2016/09/022 [arXiv:1606.03057 [astro-ph.CO]].
  • (16) L. Feng, J. F. Zhang and X. Zhang, Eur. Phys. J. C 77, no.6, 418 (2017) doi:10.1140/epjc/s10052-017-4986-3 [arXiv:1703.04884 [astro-ph.CO]].
  • (17) I. M. Oldengott, T. Tram, C. Rampf and Y. Y. Y. Wong, JCAP 11, 027 (2017) doi:10.1088/1475-7516/2017/11/027 [arXiv:1706.02123 [astro-ph.CO]].
  • (18) L. Lancaster, F. Y. Cyr-Racine, L. Knox and Z. Pan, JCAP 07, 033 (2017) doi:10.1088/1475-7516/2017/07/033 [arXiv:1704.06657 [astro-ph.CO]].
  • (19) C. D. Kreisch, F. Y. Cyr-Racine and O. Doré, Phys. Rev. D 101, no.12, 123505 (2020) doi:10.1103/PhysRevD.101.123505 [arXiv:1902.00534 [astro-ph.CO]].
  • (20) H. L. Li, J. F. Zhang and X. Zhang, Commun. Theor. Phys. 72, no.12, 125401 (2020) doi:10.1088/1572-9494/abb7c9 [arXiv:2005.12041 [astro-ph.CO]].
  • (21) M. Zhang, J. F. Zhang and X. Zhang, Commun. Theor. Phys. 72, no.12, 125402 (2020) doi:10.1088/1572-9494/abbb84 [arXiv:2005.04647 [astro-ph.CO]].
  • (22) M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky and C. Umiltà, JCAP 10, 044 (2020) doi:10.1088/1475-7516/2020/10/044 [arXiv:2004.14349 [astro-ph.CO]].
  • (23) E. A. Novikov, Electron. J. Theor. Phys. 13, no.35, 79-90 (2016)
  • (24) E. A. Novikov, Mod. Phys. Lett. A 31, no.15, 1650092 (2016) doi:10.1142/S0217732316500929
  • (25) S. Vagnozzi, Phys. Rev. D 102, no.2, 023518 (2020) doi:10.1103/PhysRevD.102.023518 [arXiv:1907.07569 [astro-ph.CO]].
  • (26) G. Alestas, L. Kazantzidis and L. Perivolaropoulos, Phys. Rev. D 103, no.8, 083517 (2021) doi:10.1103/PhysRevD.103.083517 [arXiv:2012.13932 [astro-ph.CO]].
  • (27) W. Yang, E. Di Valentino, S. Pan, A. Shafieloo and X. Li, [arXiv:2103.03815 [astro-ph.CO]].
  • (28) E. Di Valentino, S. Pan, W. Yang and L. A. Anchordoqui, Phys. Rev. D 103, no.12, 123527 (2021) doi:10.1103/PhysRevD.103.123527 [arXiv:2102.05641 [astro-ph.CO]].
  • (29) W. Yang, E. Di Valentino, S. Pan, Y. Wu and J. Lu, Mon. Not. Roy. Astron. Soc. 501, no.4, 5845-5858 (2021) doi:10.1093/mnras/staa3914 [arXiv:2101.02168 [astro-ph.CO]].
  • (30) W. Yang, E. Di Valentino, S. Pan, S. Basilakos and A. Paliathanasis, Phys. Rev. D 102, no.6, 063503 (2020) doi:10.1103/PhysRevD.102.063503 [arXiv:2001.04307 [astro-ph.CO]].
  • (31) E. Di Valentino, L. A. Anchordoqui, O. Akarsu, Y. Ali-Haimoud, L. Amendola, N. Arendse, M. Asgari, M. Ballardini, S. Basilakos and E. Battistelli, et al. Astropart. Phys. 131, 102605 (2021) doi:10.1016/j.astropartphys.2021.102605 [arXiv:2008.11284 [astro-ph.CO]].
  • (32) W. Hu and M. J. White, Astrophys. J. 471, 30-51 (1996) doi:10.1086/177951 [arXiv:astro-ph/9602019 [astro-ph]].
  • (33) M. Raveri, W. Hu, T. Hoffman and L. T. Wang, Phys. Rev. D 96, no.10, 103501 (2017) doi:10.1103/PhysRevD.96.103501 [arXiv:1709.04877 [astro-ph.CO]].
  • (34) V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Phys. Rev. Lett. 122, no.22, 221301 (2019) doi:10.1103/PhysRevLett.122.221301 [arXiv:1811.04083 [astro-ph.CO]].
  • (35) M. Braglia, M. Ballardini, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, K. Koyama and D. Paoletti, Phys. Rev. D 102, no.2, 023529 (2020) doi:10.1103/PhysRevD.102.023529 [arXiv:2004.11161 [astro-ph.CO]].
  • (36) M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu and K. Koyama, Phys. Rev. D 102, no.8, 083513 (2020) doi:10.1103/PhysRevD.102.083513 [arXiv:2005.14053 [astro-ph.CO]].
  • (37) M. Braglia, M. Ballardini, F. Finelli and K. Koyama, Phys. Rev. D 103, no.4, 043528 (2021) doi:10.1103/PhysRevD.103.043528 [arXiv:2011.12934 [astro-ph.CO]].
  • (38) M. X. Lin, G. Benevento, W. Hu and M. Raveri, Phys. Rev. D 100, no.6, 063542 (2019) doi:10.1103/PhysRevD.100.063542 [arXiv:1905.12618 [astro-ph.CO]].
  • (39) M. X. Lin, W. Hu and M. Raveri, Phys. Rev. D 102, 123523 (2020) doi:10.1103/PhysRevD.102.123523 [arXiv:2009.08974 [astro-ph.CO]].
  • (40) C. Armendariz-Picon, V. F. Mukhanov and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001) doi:10.1103/PhysRevD.63.103510 [arXiv:astro-ph/0006373 [astro-ph]].
  • (41) A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538, 473-476 (2000) doi:10.1086/309179 [arXiv:astro-ph/9911177 [astro-ph]].
  • (42) A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002) doi:10.1103/PhysRevD.66.103511 [arXiv:astro-ph/0205436 [astro-ph]].
  • (43) V. Poulin, T. L. Smith, D. Grin, T. Karwal and M. Kamionkowski, Phys. Rev. D 98, no.8, 083525 (2018) doi:10.1103/PhysRevD.98.083525 [arXiv:1806.10608 [astro-ph.CO]].
  • (44) C. P. Ma and E. Bertschinger, Astrophys. J. 455, 7-25 (1995) doi:10.1086/176550 [arXiv:astro-ph/9506072 [astro-ph]].
  • (45) N. Aghanim et al. [Planck], Astron. Astrophys. 641, A5 (2020) doi:10.1051/0004-6361/201936386 [arXiv:1907.12875 [astro-ph.CO]].
  • (46) Y. Akrami et al. [Planck], Astron. Astrophys. 641, A9 (2020) doi:10.1051/0004-6361/201935891 [arXiv:1905.05697 [astro-ph.CO]].
  • (47) Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020) doi:10.1051/0004-6361/201833887 [arXiv:1807.06211 [astro-ph.CO]].
  • (48) N. Aghanim et al. [Planck], Astron. Astrophys. 641, A8 (2020) doi:10.1051/0004-6361/201833886 [arXiv:1807.06210 [astro-ph.CO]].
  • (49) F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders and F. Watson, Mon. Not. Roy. Astron. Soc. 416, 3017-3032 (2011) doi:10.1111/j.1365-2966.2011.19250.x [arXiv:1106.3366 [astro-ph.CO]].
  • (50) A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, Mon. Not. Roy. Astron. Soc. 449, no.1, 835-847 (2015) doi:10.1093/mnras/stv154 [arXiv:1409.3242 [astro-ph.CO]].
  • (51) S. Alam et al. [BOSS], Mon. Not. Roy. Astron. Soc. 470, no.3, 2617-2652 (2017) doi:10.1093/mnras/stx721 [arXiv:1607.03155 [astro-ph.CO]].
  • (52) D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan and A. G. Riess, et al. Astrophys. J. 859, no.2, 101 (2018) doi:10.3847/1538-4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].
  • (53) E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess and J. Silk, doi:10.1088/1361-6382/ac086d [arXiv:2103.01183 [astro-ph.CO]].
  • (54) W. L. Freedman, [arXiv:2106.15656 [astro-ph.CO]].
  • (55) W. Cerny, W. L. Freedman, B. F. Madore, F. Ashmead, T. Hoyt, E. Oakes, N. Q. H. Tran and B. Moss, [arXiv:2012.09701 [astro-ph.GA]].
  • (56) H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom. Control 19, 716 (1974)
  • (57) F. Arevalo, A. Cid and J. Moya, Eur. Phys. J. C 77, no.8, 565 (2017) doi:10.1140/epjc/s10052-017-5128-7 [arXiv:1610.09330 [astro-ph.CO]].
  • (58) B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, D. N. Spergel, R. A. Skibba, N. A. Bahcall, T. Budavari, M. Fukugita and J. R. Gott, et al. Mon. Not. Roy. Astron. Soc. 404, 60-85 (2010) doi:10.1111/j.1365-2966.2010.16276.x [arXiv:0907.1659 [astro-ph.CO]].
  • (59) B. Abolfathi et al. [SDSS], Astrophys. J. Suppl. 235, no.2, 42 (2018) doi:10.3847/1538-4365/aa9e8a [arXiv:1707.09322 [astro-ph.GA]].