This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Reducibility of the dispersive Camassa-Holm equation with unbounded perturbations

Xiaoping Wu Xiaoping Wu
Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi’an 710127, P. R. China
[email protected]
Ying Fu* Ying Fu
Center for Nonlinear Studies and School of Mathematics
Northwest University
Xi’an 710127
P. R. China
[email protected]
 and  Changzheng Qu Changzheng Qu
School of Mathematics and Statistics
Ningbo University
Ningbo 315211
P.R. China
[email protected]
Abstract.

Considered herein is the reducibility of the quasi-periodically time dependent linear dynamical system with a diophantine frequency vector ω𝒪0ν\omega\in\mathcal{O}_{0}\subset\mathbb{R}^{\nu}. This system is derived from linearizing the dispersive Camassa-Holm equation with unbounded perturbations at a small amplitude quasi-periodic function. It is shown that there is a set 𝒪𝒪0\mathcal{O}_{\infty}\subset\mathcal{O}_{0} of asymptotically full Lebesgue measure such that for any ω𝒪\omega\in\mathcal{O}_{\infty}, the system can be reduced to the one with constant coefficients by a quasi-periodic linear transformation. The strategy adopted in this paper consists of two steps: (a) A reduction based on the orders of the pseudo differential operators in the system which conjugates the linearized operator to a one with constant coefficients up to a small remainder; (b) A perturbative reducibility scheme which completely diagonalizes the remainder of the previous step. The main difficulties in the reducibility we need to tackle come from the operator J=(1xx)1xJ=(1-\partial_{xx})^{-1}\partial_{x}, which induces the symplectic structure of the dispersive Camassa-Holm equation.

July 27, 2022

Keywords: Reducibility, the Camassa-Holm equation, integrable system, invariant tori, unbounded perturbation.

Mathematics Subject Classification (2020): 35Q51, 37K55

1. Introduction

In this paper, we are mainly concerned with the reducibility of the quasi-periodically time dependent linear dynamical system

htJ((a0(ωt,x)+m0)+(a2(ωt,x))xx+(a2(ωt,x)+m2)xx)h=0,h_{t}-J\circ\big{(}(a_{0}(\omega t,x)+m_{0})+(a_{2}(\omega t,x))_{x}\partial_{x}+(a_{2}(\omega t,x)+m_{2})\partial_{xx}\big{)}h=0,

where x𝕋=/2π,x\in\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}, m0,m2,m_{0},m_{2}\in\mathbb{R}, a0,a2a_{0},a_{2} are small functions, and ω𝒪0ν\omega\in\mathcal{O}_{0}\subset\mathbb{R}^{\nu} is a diophantine frequency vector. The above system arises from linearizing the dispersive Camassa-Holm (CH) equation with unbounded perturbations on the circle at a small amplitude quasi-periodic function.

There have been a number of literatures to study reducibility of ordinary differential equations (ODEs) and partial differential equations (PDEs). Indeed, the concept of reducibility originates from ODEs (see [11, 26, 38, 40] and the references therein). The problem of reducibility of quasi-periodic linear systems in the PDE’s context has received much attention, mostly in a perturbative regime in these years [5, 6, 27, 37, 49].

A quasi-periodic linear system

th=L(ωt)h\partial_{t}h=L(\omega t)h (1.1)

is said to be reducible, if there exists a bounded invertible change of coordinates depending on time quasi-periodically: h=Υ(ωt)gh=\Upsilon(\omega t)g such that the transformed system is a linear one with constant coefficients, namely,

tg=Dωg,Dω:=diagjdj,dj.\partial_{t}g=D_{\omega}g,\quad D_{\omega}:={\rm diag}_{j\in\mathbb{Z}}{d_{j}},\quad d_{j}\in\mathbb{C}.

Notice that, if djd_{j} (j)(\forall j\in\mathbb{Z}) is purely imaginary, then the system is linear stable.

In the periodic case, i.e. ω\omega\in\mathbb{R}, the classical Floquet theory shows that any time periodic linear system (1.1) is reducible. In the quasi-periodic case, this is not always true, see e.g., [13]. However, if L(ωt)L(\omega t) is a so-called almost-reducible quasi-periodic vector field in the sense that it can be reduced to the one with constant coefficients up to a small remainder, viz., the linear differential equation of the form

tg~=Dωg~+εP(ωt)g~,\partial_{t}\tilde{g}=D_{\omega}\tilde{g}+\varepsilon P(\omega t)\tilde{g},

where P(ωt)P(\omega t) is a linear quasi-periodically forced operator with non-constant coefficients and ε\varepsilon is the size of the perturbation, then the quasi-periodic system is reducible by perturbative reducibility algorithm. In general, it is assumed that ε\varepsilon is small enough, ω\omega and djd_{j} satisfy the second-order Melnikov non-resonance conditions involving the differences of the eigenvalues of the operator DωD_{\omega}.

Among the literatures that related to reducibility, a strong motivation of a vast of them is the reducible KAM theory. As is well known, the KAM theory for PDEs is to find a family of approximately invariant tori of perturbed autonomous integrable equation. It is a natural extension of the classical KAM theory for finite dimensional phase spaces. For PDEs in one spacial dimension with bounded perturbations and Dirichlet boundary conditions, we refer to [43, 45, 51, 53], and for those with periodic boundary conditions, we quote [16, 23] for instance. In higher spacial dimension, we mention [10, 12, 28, 35, 52] among others in which the authors have to overcome the difficulties produced by the multiple eigenvalues. In all these aforementioned results, the perturbations are bounded. In the case of unbounded perturbations, we mention [8, 9, 42, 44, 48, 54] among others for semi-linear PDEs, and [2, 3, 4, 7, 32, 36] for quasi-linear or fully nonlinear PDEs. In particular, these results with regard to the KAM theory involve the quasi-linear perturbations of the Airy, KdV equations, etc.

The CH equation

utuxxt=6uux4uxuxx2uuxxxu_{t}-u_{xxt}=6uu_{x}-4u_{x}u_{xx}-2uu_{xxx} (1.2)

describes the unidirectional propagation of shallow water waves over a flat bottom [14, 22, 34, 41], where u(t,x)u(t,x) is a function of time tt and a single spatial variable xx. Equation (1.2) is proved to be completely integrable since it admits the Lax-pair and bi-Hamiltonian structure [14, 15, 33, 34, 46]. We refer to [21, 47] and references therein for more literature for the study of the well-posedness of the CH-equation. A tremendous amount of work has been done on strong nonlinear effects of the CH-equation, such as peakon, multi-peakons [1, 14] and wave-breaking phenomena [17, 18, 19, 20, 21, 47].

Note that Tu(t,x)dx\int_{{T}}u(t,x){\rm{d}}x is a constant for soluitions of the CH-equation (1.2), the set

𝒢c:={u:Tu(t,x)dx=c}{\mathcal{G}}_{c}:=\{u:\int_{{T}}u(t,x){\rm{d}}x=c\}

is invariant under the flow governed by (1.2). Consequently, the dynamics of equation (1.2) on the invariant subsets 𝒢c{\mathcal{G}}_{c} with c0c\neq 0 are equivalent to the ones of the equation

utuxxt6cux+2cuxxx=6uux4uxuxx2uuxxxu_{t}-u_{xxt}-6cu_{x}+2cu_{xxx}=6uu_{x}-4u_{x}u_{xx}-2uu_{xxx}

on the invariant subset 𝒢0{\mathcal{G}_{0}}. We assume c=1c=1 without loss of generality and impose the unbounded perturbations of the form

N(u,ux,uxx,uxxx)=x[(uf)(u,ux)x((uxf)(u,ux))],N(u,u_{x},u_{xx},u_{xxx})=\partial_{x}[(\partial_{u}f)(u,u_{x})-\partial_{x}((\partial_{u_{x}}f)(u,u_{x}))],

where f(u,ux)=C(×,)f(u,u_{x})=C^{\infty}(\mathbb{R}\times\mathbb{R},\mathbb{R}), and f=f3(u,ux)f=f_{\geq 3}(u,u_{x}) denotes a function with a zero of order at least three at the origin. Then the equation we are concerned with is the perturbed dispersive CH-equation

utuxxt6ux+2uxxx=6uux4uxuxx2uuxxx+N(u,ux,uxx,uxxx),u_{t}-u_{xxt}-6u_{x}+2u_{xxx}=6uu_{x}-4u_{x}u_{xx}-2uu_{xxx}+N(u,u_{x},u_{xx},u_{xxx}), (1.3)

under periodic boundary condition: x𝕋=/2πx\in\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}.

The Degasperis-Procesi equation [24] exhibits several similar properties as the CH equation, for example, wave breaking phenomena, peakon and soliton solutions [22, 25]. However, the Hamiltonians and symplectic structures are intrinsically different. In [31], the authors developed the KAM theory for Hamiltonian perturbations of the Degasperis-Procesi equation.

At the best of our knowledge, up to now there is no work to study the KAM theory and the reducibility of the CH equation with a small perturbation, which was also emphasized in [31]. In fact, the reducibility of the linearized equations at a small quasi-periodic approximate solutions is the fundamental step for the existence and linear stability of quasi-periodic solutions (KAM tori) for nonlinear PDEs via the Nash-Moser iterative algorithm. This motivates us to study the reducibility of the CH-equation.

Let us first introduce the Hamiltonian setting for the CH-equation and its linearized equation at a small quasi-periodic function.

Equation (1.3) can be formulated as a Hamiltonian PDE of the form ut=JH(u)u_{t}=J\nabla H(u), where J:=(1xx)1xJ:=(1-\partial_{xx})^{-1}\partial_{x} and H(u)\nabla H(u) is the L2(T,R)L^{2}({{T}},{{R}}) gradient of the Hamiltonian

H(u)=T(u3+uux2+3u2+ux2+f(u,ux))dx,H(u)=\int_{{T}}\big{(}u^{3}+uu^{2}_{x}+3u^{2}+u^{2}_{x}+f(u,u_{x})\big{)}{\rm{d}}x,

defined on the real phase space H01(𝕋):=H1𝒢0H^{1}_{0}(\mathbb{T}):=H^{1}\cap\mathcal{G}_{0}. The symplectic structure is provided by a non-degenerate 2-form ϱ\varrho defined by

ϱ(u,v):=𝕋(J1u)vdx,u,vH01.\varrho(u,v):=\int_{\mathbb{T}}(J^{-1}u)v{\rm d}x,\quad u,v\in H^{1}_{0}.

Note that JJ can be written as

J=Λx,Λ:=(1xx)1.J=\Lambda\partial_{x},\quad\Lambda:=(1-\partial_{xx})^{-1}.

The functional space be concerned is the Sobolev space Hs(Tν+1;R),H^{s}({{T}}^{\nu+1};{{R}}), ν0,s,\nu\geq 0,s\in\mathbb{R}, equipped with the norm

u(φ,x)s2:=j,lν|ulj|2l,j2s<,{\|u(\varphi,x)\|}^{2}_{s}:=\sum\limits_{j\in\mathbb{Z},l\in\mathbb{Z}^{\nu}}{|u_{lj}|}^{2}{\langle l,j\rangle}^{2s}<\infty,

where l,j:=max{1,|j|,|l|}\langle l,j\rangle:=\max\{1,|j|,|l|\}, |l|:=maxi=1,,ν|li|.|l|:=\max\limits_{i=1,\cdots,\nu}|l_{i}|. If u(φ,x)u(\varphi,x) depends on a parameter ω𝒪\omega\in\mathcal{O}, where 𝒪\mathcal{O} is a compact subset of ν\mathbb{R}^{\nu}, we define the sup-norm and Lipschitz semi-norm of uu respectively as follows:

ussup:=ussup,𝒪:=supω𝒪us,\|u\|_{s}^{sup}:=\|u\|_{s}^{sup,\mathcal{O}}:=\sup\limits_{\omega\in\mathcal{O}}\|u\|_{s},
uslip:=uslip,𝒪:=supω,ω𝒪,ωωΔω,ωus,\|u\|_{s}^{lip}:=\|u\|_{s}^{lip,\mathcal{O}}:=\sup\limits_{\begin{subarray}{c}\omega,\omega^{\prime}\in\mathcal{O},\\ \omega\neq\omega^{\prime}\end{subarray}}\|\Delta_{\omega,\omega^{\prime}}u\|_{s},

where

Δω,ωu:=u(ω)u(ω)ωω.\Delta_{\omega,\omega^{\prime}}u:=\frac{u(\omega)-u(\omega^{\prime})}{\omega-\omega^{\prime}}.

For γ>0\gamma>0, the weighted Lipchitz norm of uu is defined as

usγ,𝒪:=ussup,𝒪+γus1lip,𝒪.\|u\|_{s}^{\gamma,\mathcal{O}}:=\|u\|_{s}^{sup,\mathcal{O}}+\gamma\|u\|_{s-1}^{lip,\mathcal{O}}.

Let m:𝒪m:\mathcal{O}\rightarrow\mathbb{R}, the sup-norm, Lipschitz semi-norm and weighted Lipchitz norm of mm are defined respectively as

|m|sup:=|m|sup,𝒪:=supω𝒪|m|,|m|^{sup}:=|m|^{sup,\mathcal{O}}:=\sup\limits_{\omega\in\mathcal{O}}|m|,
|m|lip:=|m|lip,𝒪:=supω,ω𝒪,ωω|m(ω)m(ω)ωω|,|m|^{lip}:=|m|^{lip,\mathcal{O}}:=\sup\limits_{\begin{subarray}{c}\omega,\omega^{\prime}\in\mathcal{O},\\ \omega\neq\omega^{\prime}\end{subarray}}|\frac{m(\omega)-m(\omega^{\prime})}{\omega-\omega^{\prime}}|,
|m|γ,𝒪:=|m|sup,𝒪+γ|m|lip,𝒪.|m|^{\gamma,\mathcal{O}}:=|m|^{sup,\mathcal{O}}+\gamma|m|^{lip,\mathcal{O}}.

In the sequel, we fix s0:=[(ν+1)/2]+2s_{0}:=[(\nu+1)/2]+2. For all ss0s\geq s_{0}, the Sobolev space HsH^{s} is a Banach algebra.

Notation. Throughout the paper, the notation as,αba\leq_{s,\alpha}b indicates that aC(s,α)ba\leq C(s,\alpha)b for some positive constant C(s,α)C(s,\alpha) depending on the variables s,αs,\alpha. ss will be omitted in the notation s\leq_{s} while ss is a fixed constant. As usual, the positive constants CC’s may be different from line to line.

Fix ν{0}\nu\in\mathbb{N}\setminus\{0\}, L>0L>0, let γ(0,1)\gamma\in(0,1), the frequency vector of oscillations ω=(ω1,,ων)\omega=(\omega_{1},\dots,\omega_{\nu}) satisfies the diophantine condition, i.e., ω𝒪0Ω\omega\in\mathcal{O}_{0}\subset\Omega, where

𝒪0:={ωΩ:|ωl|2γlν,lν{0}},l:=max{|l|,1},\mathcal{O}_{0}:=\big{\{}\omega\in\Omega:|\omega\cdot l|\geq\frac{2\gamma}{\langle l\rangle^{\nu}},l\in\mathbb{Z}^{\nu}\setminus\{0\}\big{\}},\quad\langle l\rangle:=\max\{|l|,1\}, (1.4)
Ω:={ων:ω[L,2L]ν}.\Omega:=\{\omega\in\mathbb{R}^{\nu}:\omega\in[L,2L]^{\nu}\}. (1.5)

A quasi-periodic function with ν\nu frequencies is defined by an embedding

𝕋νφ𝔍(φ,x),φ=ωt\mathbb{T}^{\nu}\ni\varphi\mapsto\mathfrak{J}(\varphi,x),\quad\varphi=\omega t

with the frequency vector ω𝒪0\omega\in\mathcal{O}_{0}. Then a small-amplitude quasi-periodic solution u(t,x)u(t,x) of equation (1.3) can be represented as

u(t,x)=ε𝔍(φ,x),ε1,𝔍(φ,x)C(𝕋ν+1,).u(t,x)=\varepsilon\mathfrak{J}(\varphi,x),\quad\varepsilon\ll 1,\quad\mathfrak{J}(\varphi,x)\in C^{\infty}(\mathbb{T}^{\nu+1},\mathbb{R}).

The linearized equation of (1.3) at the quasi-periodic solution u(t,x)u(t,x) is

ht=J(uH)[h]=J((a0(ωt,x)+6)+a2,x(ωt,x)x+(a2(ωt,x)2)xx)h,\displaystyle\begin{aligned} h_{t}=&\;J(\partial_{u}\nabla H)[h]\\ =&J\circ\big{(}(a_{0}(\omega t,x)+6)+a_{2,x}(\omega t,x)\partial_{x}+(a_{2}(\omega t,x)-2)\partial_{xx}\big{)}h,\end{aligned} (1.6)

where ai(φ,x)C(𝕋ν+1,)a_{i}(\varphi,x)\in C^{\infty}(\mathbb{T}^{\nu+1},\mathbb{R}), i=0,2i=0,2, depend on the the parameter ω𝒪0\omega\in\mathcal{O}_{0} in a Lipschitz way, as well as on the quasi-periodic function 𝔍\mathfrak{J}. The operator associated with the above equation is

=\displaystyle\mathcal{L}^{*}= ωφJ((a0(ωt,x)+6)\displaystyle\omega\cdot\partial_{\varphi}-J\circ\big{(}(a_{0}(\omega t,x)+6) (1.7)
+a2,x(ωt,x)x+(a2(ωt,x)2)xx).\displaystyle\quad+a_{2,x}(\omega t,x)\partial_{x}+(a_{2}(\omega t,x)-2)\partial_{xx}\big{)}.

It is noticed that this operator is a Hamiltonian operator, and exhibits the reversible structure.

One can check that the operator L(ωt)L^{*}(\omega t) has the form L(ωt)=(a22)x+Op(r)L^{*}(\omega t)=-(a_{2}-2)\partial_{x}+{\rm Op}(r) where Op(r){\rm Op}(r) is a pseudo differential operator of order 1-1 (see Definition A.2). Therefore, it is a new type of operator different from the ones for the KdV and Degasperis-Procesi equations, etc.

In the following, we consider a class of generalized linear operators of the form

=ωφJ((a0(φ,x)+m0)+a2,x(φ,x)x+(a2(φ,x)+m2)xx).\mathcal{L}=\omega\cdot\partial_{\varphi}-J\circ\big{(}(a_{0}(\varphi,x)+m_{0})+a_{2,x}(\varphi,x)\partial_{x}+(a_{2}(\varphi,x)+m_{2})\partial_{xx}\big{)}. (1.8)

Now we make the following assumptions for the operators \mathcal{L}:

(A1). ai(φ,x)C(𝕋ν+1,)a_{i}(\varphi,x)\in C^{\infty}(\mathbb{T}^{\nu+1},\mathbb{R}), i=0,2i=0,2, are even functions, m0,m2m_{0},m_{2}\in\mathbb{R}.

(A2). There exists a positive constant μ\mu sufficiently large such that

𝔍s0+μγ,𝒪01.\|\mathfrak{J}\|_{s_{0}+\mu}^{\gamma,\mathcal{O}_{0}}\leq 1. (1.9)

(A3). Assume that aia_{i}, i=0,2i=0,2, depend on ω𝒪0\omega\in\mathcal{O}_{0} in a Lipschitz way, satisfying

aisγ,𝒪0sε𝔍s+η0γ,𝒪0,i=0,2,ss0\|a_{i}\|_{s}^{\gamma,\mathcal{O}_{0}}\leq_{s}\varepsilon\|\mathfrak{J}\|_{s+\eta_{0}}^{\gamma,\mathcal{O}_{0}},\quad i=0,2,\quad\forall s\geq s_{0} (1.10)

for some η0>0\eta_{0}>0.

(A4). Assume that aia_{i}, i=0,2i=0,2, depend on the quasi-periodic function 𝔍\mathfrak{J}. Let 𝔍1,𝔍2C(𝕋ν+1,)\mathfrak{J}_{1},\mathfrak{J}_{2}\in C^{\infty}(\mathbb{T}^{\nu+1},\mathbb{R}) satisfying (1.9) and

Δ12aippε𝔍1𝔍2p+η0,i=0,2,\|\Delta_{12}a_{i}\|_{p}\leq_{p}\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{p+\eta_{0}},\quad i=0,2,

for any s0ps0+μη0(μ>η0)s_{0}\leq p\leq s_{0}+\mu-\eta_{0}(\mu>\eta_{0}), where Δ12v:=v(𝔍1,φ,x)v(𝔍2,φ,x)\Delta_{12}v:=v(\mathfrak{J}_{1},\varphi,x)-v(\mathfrak{J}_{2},\varphi,x) for any v(φ,x)=v(𝔍,φ,x)C(𝕋ν+1,)v(\varphi,x)=v(\mathfrak{J},\varphi,x)\in C^{\infty}(\mathbb{T}^{\nu+1},\mathbb{R}).

The main goal in this paper is to prove that the linear operators (1.8) arising from the linearized CH-equation with unbounded perturbations at a small and sufficiently smooth quasi-periodic function on 𝕋\mathbb{T} are reducible.

It is well known that the most common algebraic structures that ensure the existence of quasi-periodic motions are the Hamiltonian or reversible structures. The system considered here exhibits both of them. From the perspective of the Hamiltonian structure, we have to find symplectic transformations induced by the flow of the vector field generated by a Hamiltonian function. The flow is given by τAτu=BτAτu\partial_{\tau}A^{\tau}u=B^{\tau}A^{\tau}u, where BτB^{\tau} is a pseudo differential operator of order 1\leq-1 (see Definition A.2) so as to guarantee the transformations are bounded. The solution AτuA^{\tau}u of the flow is of the form: C+OPS1C+OPS^{-1} for some CC\in\mathbb{R}, while OPS1OPS^{-1} is a pseudo differential operator of order 1-1. Unfortunately, AτuA^{\tau}u can not change the leading order terms of the operator (1.8). Thus in order to prove the reducibility of the system, we utilize the reversible structure and choose the transformations preserving the reversible structure.

It is remarked that for the Degasperis-Procesi equation, the operator JJ associated with the symplectic structure is a pseudo differential operator of order 1, which is also true for the KdV equation. Nevertheless, for the CH-equation, J=(1xx)1xJ=(1-\partial_{xx})^{-1}\partial_{x} is a pseudo differential operator of order 1-1. Such difference needs us to develop a different strategy to verify the corresponding reducibility.

The existence and stability of the solution for the Cauchy problem of the linearized equation (1.6) are also the direct results of this paper (see Corollary 1.1). The stability entails the purely-imaginary eigenvalues of the diagonal operator. Indeed, the reversible structure ensures that the eigenvalues of the diagonal matrices are all purely-imaginary.

The reducibility result for the linearized CH-equation (1.3) at a small and sufficiently smooth quasi-periodic function is as follows.

Theorem 1.1.

Suppose γ(0,1)\gamma\in(0,1) small enough, 𝔍s0+μ1\|\mathfrak{J}\|_{s_{0}+\mu}\leq 1 with μ>0\mu>0 sufficiently large, and the linear operator (ωt)\mathcal{L}^{*}(\omega t) in (1.7) defined on 𝒪0\mathcal{O}_{0}. Then there exist ε0>0\varepsilon_{0}>0 and a Cantor-like set 𝒪𝒪0\mathcal{O}_{\infty}\subset\mathcal{O}_{0}, for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}) and ω𝒪\omega\in\mathcal{O}_{\infty}, and a real, invertible, bounded and reversibility-preserving transformation Υ(ωt)\Upsilon(\omega t) depending quasi-periodically on time which reduces (ωt)\mathcal{L}^{*}(\omega t) to a diagonal operator with constant coefficients and purely imaginary spectrum. Moreover, as γ0\gamma\rightarrow 0, the Lebesgue measure |𝒪0𝒪||\mathcal{O}_{0}\setminus\mathcal{O}_{\infty}| tends to 0.

The following corollary indicates the dynamical consequence of Theorem 1.1.

Corollary 1.1.

Assume that the hypotheses in Theorem 1.1 are satisfied. Let h(0,x)=h0(x)Hs(𝕋)h(0,x)=h_{0}(x)\in H^{s}(\mathbb{T}), ss0s\geq s_{0}. Then the Cauchy problem of equation (1.6) with the initial value h0(x)h_{0}(x) has a unique solution h(t,x)h(t,x), which satisfies

supth(t,)ssh(0,)s.\sup_{t\in\mathbb{R}}\|h(t,\cdot)\|_{s}\leq_{s}\|h(0,\cdot)\|_{s}.

In the case of m2=2,m0=6m_{2}=-2,m_{0}=6, Theorem 1.1 is a conclusion of the following result.

Theorem 1.2.

(Reducibility) Let ω𝒪0\omega\in\mathcal{O}_{0} (see (1.4)). Suppose that the operator in (1.8) satisfies the assumptions (A1)-(A4) for some constant μ>0\mu>0 sufficiently large. Assume that γ,εγ1κ(κ>1)\gamma,\varepsilon\gamma^{-1-\kappa}(\kappa>1) are small enough, τ2ν+3\tau\geq 2\nu+3, m2<0m_{2}<0, m0+m20m_{0}+m_{2}\geq 0 and m0<5m24δ0m_{0}<-5m_{2}-4\delta_{0}\ for some positive constant δ0\delta_{0}. Then there exists a sequence

dj:=mj(m0+m2)j1+j2+rj,j{0},rj=rjd_{j}^{\infty}:=m_{\infty}j-\frac{(m_{0}+m_{2})j}{1+j^{2}}+r_{j}^{\infty},\quad j\in\mathbb{Z}\setminus\{0\},\quad r_{-j}^{\infty}=-r_{j}^{\infty}

where m,rjm_{\infty},r_{j}^{\infty}\in\mathbb{R} depend on ω\omega in a Lipschitz way satisfying

|mm2|γ,𝒪0Cε,|m_{\infty}-m_{2}|^{\gamma,\mathcal{O}_{0}}\leq C\varepsilon,
supjj|rj|γκ,𝒪0Cεγ1.\sup_{j}\langle j\rangle|r_{j}^{\infty}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq C\varepsilon\gamma^{-1}.

For all ω𝒪:=𝒪1𝒪2\omega\in\mathcal{O}_{\infty}:=\mathcal{O}_{1}\cap\mathcal{O}_{2}, where

𝒪1:={ω𝒪0:|ωl+m(ω)j|2γl,jτ,lν,j{0}},\mathcal{O}_{1}:=\big{\{}\omega\in\mathcal{O}_{0}:|\omega\cdot l+m_{\infty}(\omega)j|\geq\frac{2\gamma}{\langle l,j\rangle^{\tau}},\quad l\in\mathbb{Z}^{\nu},j\in\mathbb{Z}\setminus\{0\}\big{\}},
𝒪2:={ω𝒪0:|ωl+djdj|2γκ|jj|lτ,lν,j,j{0},(j,j,l)(j,j,0)},\begin{split}\mathcal{O}_{2}:=\big{\{}\omega\in\mathcal{O}_{0}:&|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|\geq\frac{2\gamma^{\kappa}|j-j^{\prime}|}{\langle l\rangle^{\tau}},\\ &\forall l\in\mathbb{Z}^{\nu},j,j^{\prime}\in\mathbb{Z}\setminus\{0\},(j,j^{\prime},l)\neq(j,j,0)\big{\}},\\ \end{split}

there exists a real linear, bounded, Töplitz-in-time transformation Υ:𝒪×HsHs\Upsilon:\mathcal{O}_{\infty}\times H^{s}\rightarrow H^{s} with bounded inverse Υ1\Upsilon^{-1} such that for all ω𝒪\omega\in\mathcal{O}_{\infty},

:=Υ1Υ=ωφ+D,D:=diagj{0}(idj).\mathcal{L}_{\infty}:=\Upsilon^{-1}\mathcal{L}\Upsilon=\omega\cdot\partial_{\varphi}+D_{\infty},\quad D_{\infty}:={\rm diag}_{j\in\mathbb{Z}\setminus\{0\}}({\rm i}d_{j}^{\infty}).

\mathcal{L}_{\infty} is real and reversible. The transformations Υ±1\Upsilon^{\pm 1} are reversibility-preserving and satisfy the following tame estimates:

Υ±1usγκ,𝒪sus+εγ1κ𝔍s+μγ,𝒪0us0.\|\Upsilon^{\pm 1}u\|_{s}^{\gamma^{\kappa},\mathcal{O}_{\infty}}\leq_{s}\|u\|_{s}+\varepsilon\gamma^{-1-\kappa}\|\mathfrak{J}\|_{s+\mu}^{\gamma,\mathcal{O}_{0}}\|u\|_{s_{0}}.

In addition, for ω𝒪(𝔍1)𝒪(𝔍2)\omega\in\mathcal{O}_{\infty}(\mathfrak{J}_{1})\cap\mathcal{O}_{\infty}(\mathfrak{J}_{2}),

|Δ12m|ε𝔍1𝔍2s0+μ,supjj|Δ12rj|Cεγ1𝔍1𝔍2s0+μ.|\Delta_{12}m_{\infty}|\leq\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu},\quad\sup_{j}\langle j\rangle|\Delta_{12}r_{j}^{\infty}|\leq C\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu}.

Finally, the following estimate holds for 𝒪:\mathcal{O}_{\infty}:

|𝒪0𝒪|Cγmin{1,κ1}Lν1.|\mathcal{O}_{0}-\mathcal{O}_{\infty}|\leq C\gamma^{\min\{1,\kappa-1\}}L^{\nu-1}.

We explain the key ideas and the outline of this paper as follows.

In Section 2, we introduce some fundamental definitions, notations and lemmas. Particularly, we introduce the classes of Lip-1-1-modulo-tame linear operators (see Definition 2.6) and study their properties which will be used in Section 4. The reduction procedure is split into two sections.

In Section 3, we perform the regularization procedure. This step consists in conjugating (ωt)\mathcal{L}(\omega t) in (1.8) to the linear operator which is a small bounded regularizing perturbation of a constant coefficient. This is achieved by applying a suitable quasi-periodically change of variables depending on time so that the highest order (order 1) term has a constant coefficient. Meanwhile, the term of order 0 is eliminated. Then we extract the terms that is not "small" from the ones of order 1-1, to constitute the diagonal part. This is the content of Theorem 3.1.

In Section 4, the KAM reducibility scheme is proposed. After the preliminary reduction of the order of derivatives, we can perform a KAM reducibility scheme to complete the diagonalization, see Theorem 4.1. We use the Lip-1-1-modulo-tame constants to estimate the size of the remainders along the iteration. This is convenient since the class of Lip-1-1-modulo-tame operators are closed under the composition (Lemma 2.5), the solution map of the homological equation (Lemma 4.1) and the projections (Lemma 2.7). As a matter of fact, the properties mentioned above also hold for Lip-0-modulo-tame operators (see Definition 2.5). The reason to adopt Lip-1-1-modulo-tame operators instead of Lip-0-modulo-tame operators is that we require that jrj\langle j\rangle r_{j}^{\infty} is small enough in order to prove the relations between the bad sets PljjP_{ljj^{\prime}} and Ql,jQ_{l,j} in (5.1).

In Section 5, we give the measure estimate for the set 𝒪0𝒪\mathcal{O}_{0}-\mathcal{O}_{\infty}. Therefore, the operator in (1.8) can be reduced to the one with constant coefficients for almost all ω\omega in the sense of Lebesgue measure. At the same time, Corollary 1.1 is verified.

Finally, in the appendices, we introduce some classes of linear operators which are mentioned in the paper, such as pseudo-differential operators, the classes of operators 𝔏ρ,p\mathfrak{L}_{\rho,p}. The classical results for the change of variable are provided as well.

2. Preliminaries

In this section, we elaborate some conceptions, notations and lemmas, which will be used in the subsequent sections.

Definition 2.1.

(Majorant function) Given a function u(φ,x)u(\varphi,x) of the form

u(φ,x)=lν,jul,jei(lφ+jx)L2(𝕋ν×𝕋,),u(\varphi,x)=\sum_{l\in\mathbb{Z}^{\nu},j\in\mathbb{Z}}u_{l,j}{\rm e}^{{\rm i}(l\cdot\varphi+jx)}\in L^{2}(\mathbb{T}^{\nu}\times\mathbb{T},\mathbb{C}),

the majorant function u¯(φ,x)\underline{u}(\varphi,x) of u(φ,x)u(\varphi,x) is defined as

u¯(φ,x):=lν,j|ul,j|ei(lφ+jx).\underline{u}(\varphi,x):=\sum_{l\in\mathbb{Z}^{\nu},j\in\mathbb{Z}}|u_{l,j}|{\rm e}^{{\rm i}(l\cdot\varphi+jx)}.

It is obvious that the Sobolev norms of uu and u¯\underline{u} are equal, namely,

us=u¯s.\|u\|_{s}=\|\underline{u}\|_{s}.

The following lemma is an important property of s\|\cdot\|_{s} and sγ,𝒪\|\cdot\|_{s}^{\gamma,\mathcal{O}}.

Lemma 2.1.

(Interpolation)[3, 29] For all ss0s\geq s_{0}, there are C(s)C(s0)1C(s)\geq C(s_{0})\geq 1 such that

uvsC(s)usvs0+C(s0)us0vs.\|uv\|_{s}\leq C(s)\|u\|_{s}\|v\|_{s_{0}}+C(s_{0})\|u\|_{s_{0}}\|v\|_{s}.

The above inequality also holds for weighted Lipchitz norm sγ,𝒪\|\cdot\|_{s}^{\gamma,\mathcal{O}}.

In the following, we introduce a class of operators, whose matrix representations are Töplitz in time, and the relevant properties.

Definition 2.2.

(Linear operators) Let A(φ)A(\varphi) be a φ\varphi-dependent family of linear operators acting on L2(𝕋x,)L^{2}(\mathbb{T}_{x},\mathbb{R}). We regard AA as a linear operator acting on Hs(𝕋ν+1,)H^{s}(\mathbb{T}^{\nu+1},\mathbb{R}) defined by

A:u(φ,x)(A(φ)u(φ,))(x).A:u(\varphi,x)\mapsto\big{(}A(\varphi)u(\varphi,\cdot)\big{)}(x).

In Fourier coordinates, the action is represented as

(Au)(φ,x)=j,jAjj(φ)uj(φ)eijx=j,lνj,lνAjj(ll)ujlei(jx+lφ).(Au)(\varphi,x)=\sum_{j,{j^{\prime}}\in\mathbb{Z}}A_{j}^{j^{\prime}}(\varphi)u_{j^{\prime}}(\varphi){\rm e}^{{\rm i}jx}=\sum_{j\in\mathbb{Z},l\in\mathbb{Z}^{\nu}}\sum_{j^{\prime}\in\mathbb{Z},l^{\prime}\in\mathbb{Z}^{\nu}}A_{j}^{j^{\prime}}(l-l^{\prime})u_{j^{\prime}l^{\prime}}{\rm e}^{{\rm i}(jx+l\cdot\varphi)}. (2.1)
Definition 2.3.

Given a linear operator AA as in (2.1), we define the following operators:

(1). A¯\underline{A} , called majorant operator, whose matrix elements are

(A¯)jj(ll):=|Ajj(ll)|,j,j,l,lν.(\underline{A})_{j}^{j^{\prime}}(l-l^{\prime}):=|A_{j}^{j^{\prime}}(l-l^{\prime})|,\quad\forall j,j^{\prime}\in\mathbb{Z},l,l^{\prime}\in\mathbb{Z}^{\nu}.

(2). ΠNA\Pi_{N}A, called smoothed operator, whose matrix elements are

(ΠNA)jj(ll):={Ajj(ll),if|ll|N,0,otherwise.(\Pi_{N}A)_{j}^{j^{\prime}}(l-l^{\prime}):=\left\{\begin{array}[]{ll}A_{j}^{j^{\prime}}(l-l^{\prime}),&{\rm if}\quad|l-l^{\prime}|\leq N,\\ 0,&{\rm otherwise}.\\ \end{array}\right.

We also denote

ΠN:=IdΠN.\Pi_{N}^{\perp}:={\rm{Id}}-\Pi_{N}. (2.2)

(3). φbA\langle\partial_{\varphi}\rangle^{b}A, whose matrix elements are llbAjj(ll),b0.\langle l-l^{\prime}\rangle^{b}A_{j}^{j^{\prime}}(l-l^{\prime}),\quad b\geq 0.

(4). φmA\partial_{\varphi_{m}}A, whose matrix elements are i(lmlm)Ajj(ll),m=1,,ν.i(l_{m}-l^{\prime}_{m})A_{j}^{j^{\prime}}(l-l^{\prime}),\quad m=1,\ldots,\nu.

(5). [x,A]:=xAAx[\partial_{x},A]:=\partial_{x}\circ A-A\circ\partial_{x}, whose matrix elements are i(jj)Ajj(ll).i(j-j^{\prime})A_{j}^{j^{\prime}}(l-l^{\prime}).

Lemma 2.2.

Let M,NM,N be two linear operators as in (2.1).

(1). For any s0s\geq 0, we have MusM¯u¯s\|Mu\|_{s}\leq\|\underline{M}\ \underline{u}\|_{s}.

(2). If for any j,jj,j^{\prime}\in\mathbb{Z} and lνl\in\mathbb{Z}^{\nu}, |Mjj(l)||Njj(l)||M_{j}^{j^{\prime}}(l)|\leq|N_{j}^{j^{\prime}}(l)|, then

M¯𝔏(Hs)N¯𝔏(Hs),M¯u¯sN¯u¯s,s0.\|\underline{M}\|_{\mathfrak{L}(H^{s})}\leq\|\underline{N}\|_{\mathfrak{L}(H^{s})},\quad\|\underline{M}\ \underline{u}\|_{s}\leq\|\underline{N}\ \underline{u}\|_{s},\quad s\geq 0.
Definition 2.4.

Let ZZ, X,YX,Y denote the set of real functions, even functions and odd functions, respectively. An operator AA is called

(1) real, if A:ZZA:Z\rightarrow Z.

(2) reversible, if A:XYA:X\rightarrow Y.

(3) reversibility-preserving, if A:XXA:X\rightarrow X and A:YYA:Y\rightarrow Y.

In terms of matrix coefficients, the above definitions are equivalent to the following:

(1). AA is real Ajj(l)=Ajj(l)¯\Leftrightarrow A_{-j}^{-j^{\prime}}(-l)=\overline{A_{j}^{j^{\prime}}(l)}.

(2). AA is reversible Ajj(l)=Ajj(l)\Leftrightarrow A_{-j}^{-j^{\prime}}(-l)=-A_{j}^{j^{\prime}}(l).

(3). AA is reversibility-preserving Ajj(l)=Ajj(l)\Leftrightarrow A_{-j}^{-j^{\prime}}(-l)=A_{j}^{j^{\prime}}(l).

Notation. If a linear operator AA depends on the variable ii, we denote

Δ12A:=A(i1)A(i2).\Delta_{12}A:=A(i_{1})-A(i_{2}).

If AA depends on the parameter ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu}, we denote

Δω,ωA:=A(ω)A(ω)|ωω|.\Delta_{\omega,\omega^{\prime}}A:=\frac{A(\omega)-A(\omega^{\prime})}{|\omega-\omega^{\prime}|}.
Definition 2.5.

(Lip-σ\sigma-modulo-tame operators) [2, 7, 30, 31] Let the linear operator A(ω)A(\omega) be defined for ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu}. A is Lip-σ\sigma-modulo-tame if there exist σ0\sigma\geq 0 and a non-decreasing sequence {𝔐A,γ(σ,s)}s=s0𝒮\{\mathfrak{M}_{A}^{\sharp,\gamma}(\sigma,s)\}_{s=s_{0}}^{\mathcal{S}} (with possibly 𝒮=+\mathcal{S}=+\infty) such that for all uHs+σ,u\in H^{s+\sigma},

supω𝒪A¯us,supω,ω𝒪,ωωγΔω,ωA¯us𝔐A,γ(σ,s)us0+σ+𝔐A,γ(σ,s0)us+σ.\sup\limits_{\omega\in\mathcal{O}}\|\underline{A}u\|_{s},\sup\limits_{\begin{subarray}{c}\omega,\omega^{\prime}\in\mathcal{O},\\ \omega\neq\omega^{\prime}\end{subarray}}\gamma\|\underline{\Delta_{\omega,\omega^{\prime}}A}u\|_{s}\leq\mathfrak{M}_{A}^{\sharp,\gamma}(\sigma,s)\|u\|_{s_{0}+\sigma}+\mathfrak{M}_{A}^{\sharp,\gamma}(\sigma,s_{0})\|u\|_{s+\sigma}.
Definition 2.6.

(Lip-1-1-modulo-tame operators) [30, 31] If Dx1/2ADx1/2\langle D_{x}\rangle^{1/2}A\langle D_{x}\rangle^{1/2} is Lip-0-modulo-tame, we say AA is Lip-1-1-modulo-tame, where

𝔐A,γ(1,s):=𝔐Dx1/2ADx1/2,γ(0,s)\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s):=\mathfrak{M}_{\langle D_{x}\rangle^{1/2}A\langle D_{x}\rangle^{1/2}}^{\sharp,\gamma}(0,s)

is the Lip-1-1-modulo-tame constant for the operator AA or modulo-tame constant for short.

If φbA\langle\partial_{\varphi}\rangle^{b}A is Lip-1-1-modulo-tame, viz. Dx1/2φbADx1/2\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b}A\langle D_{x}\rangle^{1/2} is Lip-0-modulo-tame, we set

𝔐A,γ(1,s,b):=𝔐φbA,γ(1,s):=𝔐Dx1/2φbADx1/2,γ(0,s).\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s,b):=\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s):=\mathfrak{M}_{\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b}A\langle D_{x}\rangle^{1/2}}^{\sharp,\gamma}(0,s).
Remark 2.1.

In the sequel, we rescale γ\gamma in order to adapt to the non-resonance condition. Precisely, we use 𝔐A,γκ(σ,s)(κ>1)\mathfrak{M}_{A}^{\sharp,\gamma^{\kappa}}(\sigma,s)(\kappa>1) instead of 𝔐A,γ(σ,s)\mathfrak{M}_{A}^{\sharp,\gamma}(\sigma,s) in Section 4. This is a typical trick of solving problems with (asymptotically) linear dispersion, for instance, the Klein-Gordon equation [8, 50] and the Degasperis-Procesi equation [31].

In the following, we collect several properties of the Lip-1-1-modulo-tame operators.

Lemma 2.3.

Let AA be a Lip-1-1-modulo-tame operator with modulo-tame constant:

𝔐A,γ(1,s).\quad\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s).

Then

A𝔏(Hs)A¯𝔏(Hs)Dx1/2A¯Dx1/2𝔏(Hs)2𝔐A,γ(1,s).\|A\|_{\mathfrak{L}(H^{s})}\leq\|\underline{A}\|_{\mathfrak{L}(H^{s})}\leq\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}\leq 2\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s).

Moreover, if uu depends on ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu} in a Lipschitz way, then

Ausγ,𝒪𝔐A,γ(1,s)us0γ,𝒪+𝔐A,γ(1,s0)usγ,𝒪.\|Au\|_{s}^{\gamma,\mathcal{O}}\leq\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|u\|_{s_{0}}^{\gamma,\mathcal{O}}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|u\|_{s}^{\gamma,\mathcal{O}}.
Proof.

Since AusA¯u¯s\|Au\|_{s}\leq\|\underline{A}\ \underline{u}\|_{s} and us=u¯s\|u\|_{s}=\|\underline{u}\|_{s}, we have A𝔏(Hs)A¯𝔏(Hs)\|A\|_{\mathfrak{L}(H^{s})}\leq\|\underline{A}\|_{\mathfrak{L}(H^{s})}. In view of

|A¯jj(l)|=|Ajj(l)|j1/2|Ajj(l)|j1/2,|\underline{A}_{j}^{j^{\prime}}(l)|=|A_{j}^{j^{\prime}}(l)|\leq\langle j\rangle^{1/2}|A_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2},

by Lemma 2.2,

A¯𝔏(Hs)Dx1/2A¯Dx1/2𝔏(Hs).\|\underline{A}\|_{\mathfrak{L}(H^{s})}\leq\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}.

For the inequality

Dx1/2A¯Dx1/2𝔏(Hs)2𝔐A,γ(1,s),\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}\leq 2\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s),

its proof can be found in [30]. According to Definition 2.6, the last inequality follows by

Δω,ω(Au)s(Δω,ωA)u(ω)s+A(ω)Δω,ωus(Δω,ωA¯)u(ω)¯s+A(ω)¯Δω,ωu¯sDx1/2(Δω,ωA¯)Dx1/2u(ω)¯s+Dx1/2A(ω)¯Dx1/2Δω,ωu¯sγ1(𝔐A,γ(1,s0)u¯s+𝔐A,γ(1,s)u¯s0+𝔐A,γ(1,s0)usγ,𝒪+𝔐A,γ(1,s)us0γ,𝒪)γ1(𝔐A,γ(1,s)us0γ,𝒪+𝔐A,γ(1,s0)usγ,𝒪)\begin{split}\|\Delta_{\omega,\omega^{\prime}}(Au)\|_{s}\leq&\|(\Delta_{\omega,\omega^{\prime}}A)u(\omega)\|_{s}+\|A(\omega^{\prime})\Delta_{\omega,\omega^{\prime}}u\|_{s}\\ \leq&\|(\underline{\Delta_{\omega,\omega^{\prime}}A})\underline{u(\omega)}\|_{s}+\|\underline{A(\omega^{\prime})}\ \underline{\Delta_{\omega,\omega^{\prime}}u}\|_{s}\\ \leq&\|\langle D_{x}\rangle^{1/2}(\underline{\Delta_{\omega,\omega^{\prime}}A})\langle D_{x}\rangle^{1/2}\underline{u(\omega)}\|_{s}+\|\langle D_{x}\rangle^{1/2}\underline{A(\omega^{\prime})}\langle D_{x}\rangle^{1/2}\underline{\Delta_{\omega,\omega^{\prime}}u}\|_{s}\\ \leq&\gamma^{-1}(\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|\underline{u}\|_{s}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|\underline{u}\|_{s_{0}}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|u\|^{\gamma,\mathcal{O}}_{s}\\ &+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|u\|^{\gamma,\mathcal{O}}_{s_{0}})\\ \leq&\gamma^{-1}(\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|u\|_{s_{0}}^{\gamma,\mathcal{O}}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|u\|_{s}^{\gamma,\mathcal{O}})\\ \end{split}

and

supω𝒪Aussupω𝒪A¯u¯sDx1/2A¯Dx1/2u¯s𝔐A,γ(1,s)u¯s0+𝔐A,γ(1,s0)u¯s𝔐A,γ(1,s)us0γ,𝒪+𝔐A,γ(1,s0)usγ,𝒪.\begin{split}\sup_{\omega\in\mathcal{O}}\|Au\|_{s}\leq&\sup_{\omega\in\mathcal{O}}\|\underline{A}\ \underline{u}\|_{s}\leq\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}\\ \leq&\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|\underline{u}\|_{s_{0}}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|\underline{u}\|_{s}\\ \leq&\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\|u\|_{s_{0}}^{\gamma,\mathcal{O}}+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\|u\|_{s}^{\gamma,\mathcal{O}}.\\ \end{split}

Lemma 2.4.

Assume |Ajj(l)||Bjj(l)||A_{j}^{j^{\prime}}(l)|\leq|B_{j}^{j^{\prime}}(l)| for any j,j,lνj,j^{\prime}\in\mathbb{Z},l\in\mathbb{Z}^{\nu}.

(1). If BB is a Lip-1-1-modulo-tame operator with modulo-tame constant 𝔐B,γ(1,s)\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s) and there exists C0C\geq 0 such that |Δω,ωAjj(l)||Δω,ωBjj(l)|+C|Bjj(l)||\Delta_{\omega,\omega^{\prime}}A_{j}^{j^{\prime}}(l)|\leq|\Delta_{\omega,\omega^{\prime}}B_{j}^{j^{\prime}}(l)|+C|B_{j}^{j^{\prime}}(l)| for all ωω𝒪\omega\neq\omega^{\prime}\in\mathcal{O}, then AA is a Lip-1-1-modulo-tame operator as well and we can choose the modulo-tame constant of AA such that

𝔐A,γ(1,s)C𝔐B,γ(1,s)\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\leq C^{\prime}\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)

for some constant C>0C^{\prime}>0.

(2). If BB is an operator satisfying Dx1/2B¯Dx1/2𝔏(Hs)<+\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}<+\infty, then

Dx1/2A¯Dx1/2𝔏(Hs)Dx1/2B¯Dx1/2𝔏(Hs).\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}\leq\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s})}.
Proof.

(1). From Lemma 2.2 and Definition 2.6, we derive that

Dx1/2A¯Dx1/2usDx1/2A¯Dx1/2u¯sDx1/2B¯Dx1/2u¯s𝔐B,γ(1,s)u¯s0+𝔐B,γ(1,s0)u¯s=𝔐B,γ(1,s)us0+𝔐B,γ(1,s0)us.\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}u\|_{s}\leq&\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}\leq\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}\\ \leq&\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\|\underline{u}\|_{s_{0}}+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})\|\underline{u}\|_{s}\\ =&\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\|u\|_{s_{0}}+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})\|u\|_{s}.\\ \end{split}

On the other hand,

Dx1/2Δω,ωA¯Dx1/2usDx1/2Δω,ωA¯Dx1/2u¯sDx1/2Δω,ωB¯Dx1/2u¯s+CDx1/2B¯Dx1/2u¯sγ1(𝔐B,γ(1,s)u¯s0+𝔐B,γ(1,s0)u¯s)+C(𝔐B,γ(1,s)u¯s0+𝔐B,γ(1,s0)u¯s)γ1(𝔐B,γ(1,s)us0+𝔐B,γ(1,s0)us).\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{\omega,\omega^{\prime}}A}\langle D_{x}\rangle^{1/2}u\|_{s}\leq&\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{\omega,\omega^{\prime}}A}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}\\ \leq&\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{\omega,\omega^{\prime}}B}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}+C\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\underline{u}\|_{s}\\ \leq&\gamma^{-1}(\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\|\underline{u}\|_{s_{0}}+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})\|\underline{u}\|_{s})\\ &+C(\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\|\underline{u}\|_{s_{0}}+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})\|\underline{u}\|_{s})\\ \leq&\gamma^{-1}(\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\|u\|_{s_{0}}+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})\|u\|_{s}).\\ \end{split}

Hence, according to Definition 2.6, 𝔐A,γ(1,s)C𝔐B,γ(1,s)\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\leq C^{\prime}\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s).

(2). Since |Ajj(l)||Bjj(l)||A_{j}^{j^{\prime}}(l)|\leq|B_{j}^{j^{\prime}}(l)|, one obtains

j1/2|Ajj(l)|j1/2j1/2|Bjj(l)|j1/2.\langle j\rangle^{1/2}|A_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}\leq\langle j\rangle^{1/2}|B_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}.

By Lemma 2.2, the inequality holds. ∎

Lemma 2.5.

(Sum and composition) [30] Let A,BA,B be two Lip-1-1-modulo-tame operators with modulo-tame constants respectively 𝔐A,γ(1,s)\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s) and 𝔐B,γ(1,s)\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s). Then

(1). A+BA+B is Lip-1-1-modulo-tame with modulo-tame constant

𝔐A+B,γ(1,s)𝔐A,γ(1,s)+𝔐B,γ(1,s).\mathfrak{M}_{A+B}^{\sharp,\gamma}(-1,s)\leq\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)+\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s).

(2). The composed operator ABA\circ B is Lip-1-1-modulo-tame with modulo-tame constant

𝔐AB,γ(1,s)s𝔐A,γ(1,s)𝔐B,γ(1,s0)+𝔐A,γ(1,s0)𝔐B,γ(1,s).\mathfrak{M}_{AB}^{\sharp,\gamma}(-1,s)\leq_{s}\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s).

(3). Assume in addition that φbA\langle\partial_{\varphi}\rangle^{b}A and φbB\langle\partial_{\varphi}\rangle^{b}B are Lip-1-1-modulo-tame operators with modulo-tame constants

𝔐φbA,γ(1,s)and𝔐φbB,γ(1,s)\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s)\quad\text{and}\quad\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}B}^{\sharp,\gamma}(-1,s)

respectively, then φb(AB)\langle\partial_{\varphi}\rangle^{b}(AB) is Lip-1-1-modulo-tame with modulo-tame constant

𝔐φb(AB),γ(1,s)s,b𝔐φbA,γ(1,s)𝔐B,γ(1,s0)+𝔐φbA,γ(1,s0)𝔐B,γ(1,s)+𝔐A,γ(1,s0)𝔐φbB,γ(1,s)+𝔐A,γ(1,s)𝔐φbB,γ(1,s0).\begin{split}\mathfrak{M}^{\sharp,\gamma}_{\langle\partial_{\varphi}\rangle^{b}(AB)}(-1,s)\leq_{s,b}&\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s)\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s_{0})+\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s_{0})\mathfrak{M}_{B}^{\sharp,\gamma}(-1,s)\\ &+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0})\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}B}^{\sharp,\gamma}(-1,s)+\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}B}^{\sharp,\gamma}(-1,s_{0}).\\ \end{split}
Lemma 2.6.

(Invertibility) [30] Let Φ:=Id+Ψ\Phi:={\rm{Id}}+\Psi, where Ψ\Psi and φbΨ\langle\partial_{\varphi}\rangle^{b}\Psi are both Lip-1-1-modulo-tame operators. If there exists a constant C(𝒮,b)>0C(\mathcal{S},b)>0 such that the smallness condition

4C(𝒮,b)𝔐Ψ,γ(1,s0)1/24C(\mathcal{S},b)\mathfrak{M}_{\Psi}^{\sharp,\gamma}(-1,s_{0})\leq 1/2

holds, then the operator Φ\Phi is invertible, Ψ˘:=Φ1Id\breve{\Psi}:=\Phi^{-1}-{\rm{Id}} and φbΨ˘\langle\partial_{\varphi}\rangle^{b}\breve{\Psi} are Lip-1-1-modulo-tame operators with modulo-tame constants

𝔐Ψ˘,γ(1,s)2𝔐Ψ,γ(1,s),𝔐φbΨ˘,γ(1,s)2𝔐φbΨ,γ(1,s)+8C(𝒮,b)𝔐φbΨ,γ(1,s0)𝔐Ψ,γ(1,s).\displaystyle\begin{aligned} &\mathfrak{M}_{\breve{\Psi}}^{\sharp,\gamma}(-1,s)\leq 2\mathfrak{M}_{\Psi}^{\sharp,\gamma}(-1,s),\\ &\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}\breve{\Psi}}^{\sharp,\gamma}(-1,s)\leq 2\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}\Psi}^{\sharp,\gamma}(-1,s)+8C(\mathcal{S},b)\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}\Psi}^{\sharp,\gamma}(-1,s_{0})\mathfrak{M}_{\Psi}^{\sharp,\gamma}(-1,s).\end{aligned}
Lemma 2.7.

(Smoothing) [30] Assume that AA and φbA\langle\partial_{\varphi}\rangle^{b}A are two Lip-1-1-modulo-tame operators with modulo-tame constants respectively 𝔐A,γ(1,s),𝔐φbA,γ(1,s).\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s),\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s). Then the operator ΠNA\Pi_{N}^{\perp}A is Lip-1-1-modulo-tame with modulo-tame constant

𝔐ΠNA,γ(1,s)min{Nb𝔐φbA,γ(1,s),𝔐A,γ(1,s)}.\mathfrak{M}_{\Pi_{N}^{\perp}A}^{\sharp,\gamma}(-1,s)\leq\min\{N^{-b}\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b}A}^{\sharp,\gamma}(-1,s),\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\}.
Lemma 2.8.

Let [A]:=diagjAjj(0)[A]:={\rm diag}_{j\in\mathbb{Z}}A_{j}^{j}(0).

(1). Suppose that AA and φbA\langle\partial_{\varphi}\rangle^{b}A are two Lip-1-1-modulo-tame operators. Then

𝔐[A],γ(1,s)𝔐A,γ(1,s),𝔐[A],γ(1,s,b)𝔐A,γ(1,s,b),\mathfrak{M}_{[A]}^{\sharp,\gamma}(-1,s)\leq\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s),\quad\mathfrak{M}_{[A]}^{\sharp,\gamma}(-1,s,b)\leq\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s,b),

and

j|Ajj(0)|γ,𝒪𝔐A,γ(1,s0),j.\langle j\rangle|A_{j}^{j}(0)|^{\gamma,\mathcal{O}}\leq\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s_{0}),\quad\forall j\in\mathbb{Z}.

(2). If AA is a linear operator such that Dx1/2Δ12A¯Dx1/2\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2} (Hs0)\in\mathcal{L}(H^{s_{0}}), then

j|Δ12Ajj(0)|Dx1/2Δ12A¯Dx1/2(Hs0),j,\langle j\rangle|\Delta_{12}A_{j}^{j}(0)|\leq\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})},\quad\forall j\in\mathbb{Z},

and

Dx1/2Δ12[A]¯Dx1/2(Hs0)Dx1/2Δ12A¯Dx1/2(Hs0).\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}[A]}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}.
Proof.

(1). Since

([A])jj(l):={Ajj(l),if(j,j,l)=(j,j,0),0,otherwise,([A])_{j}^{j^{\prime}}(l):=\left\{\begin{array}[]{ll}A_{j}^{j^{\prime}}(l),&{\rm if}\quad(j,j^{\prime},l)=(j,j,0),\\ 0,&{\rm otherwise},\\ \end{array}\right.

then we have

|([A])jj(l)||(A)jj(l)|,|([A])_{j}^{j^{\prime}}(l)|\leq|(A)_{j}^{j^{\prime}}(l)|,

and

|([A])jj(l)(ω)([A])jj(l)(ω)||(A)jj(l)(ω)(A)jj(l)(ω)|.|([A])_{j}^{j^{\prime}}(l)(\omega)-([A])_{j}^{j^{\prime}}(l)(\omega^{\prime})|\leq|(A)_{j}^{j^{\prime}}(l)(\omega)-(A)_{j}^{j^{\prime}}(l)(\omega^{\prime})|.

Thus the first bound is derived from Lemma 2.4. The second one can be proved similarly. The third one has been verified in [30].

(2). For any j0j_{0}, we consider the unit vector

u(j0):=uj0,0eij0x=j0s0eij0xHs0(𝕋ν+1).u^{(j_{0})}:=u_{j_{0},0}{\rm e}^{{\rm i}j_{0}x}=\langle j_{0}\rangle^{-s_{0}}{\rm e}^{{\rm i}j_{0}x}\in H^{s_{0}}(\mathbb{T}^{\nu+1}).

It follows that

Dx1/2Δ12[A]¯Dx1/2u(j0)s0Dx1/2Δ12A¯Dx1/2u(j0)s0Dx1/2Δ12A¯Dx1/2(Hs0).\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}[A]}\langle D_{x}\rangle^{1/2}u^{(j_{0})}\|_{s_{0}}&\leq\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}u^{(j_{0})}\|_{s_{0}}\\ &\leq\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}.\\ \end{split}

Meanwhile,

Dx1/2Δ12[A]¯Dx1/2u(j0)s0=j0|Δ12Aj0j0(0)|.\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}[A]}\langle D_{x}\rangle^{1/2}u^{(j_{0})}\|_{s_{0}}=\langle j_{0}\rangle|\Delta_{12}A_{j_{0}}^{j_{0}}(0)|.

Therefore the first inequality holds. The last one follows by Lemma 2.2. ∎

The next two lemmas will be used in the proof of Proposition 4.1-(3)n(3)_{n}.

Lemma 2.9.

Let A,BA,B be two linear operators such that

Dx1/2A¯Dx1/2,Dx1/2φbA¯Dx1/2,Dx1/2B¯Dx1/2,\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2},\ \langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}A}\langle D_{x}\rangle^{1/2},\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2},

and

Dx1/2φbB¯Dx1/2(Hs0).\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}B}\langle D_{x}\rangle^{1/2}\in\mathcal{L}(H^{s_{0}}).

Then the following estimates hold:

Dx1/2A+B¯Dx1/2(Hs0)Dx1/2A¯Dx1/2(Hs0)+Dx1/2B¯Dx1/2(Hs0),Dx1/2AB¯Dx1/2(Hs0)Dx1/2A¯Dx1/2(Hs0)×Dx1/2B¯Dx1/2(Hs0),Dx1/2φb(AB)¯Dx1/2(Hs0)bDx1/2φbA¯Dx1/2(Hs0)×Dx1/2B¯Dx1/2(Hs0)+Dx1/2φbB¯Dx1/2(Hs0)×Dx1/2A¯Dx1/2(Hs0)\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{A+B}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq&\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})},\\ \|\langle D_{x}\rangle^{1/2}\underline{AB}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq&\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &\times\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})},\\ \|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}(AB)}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq_{b}&\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &\times\|\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}B}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &\times\|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ \end{split}

and

Dx1/2ΠNA¯Dx1/2(Hs0)min{NbDx1/2φbA¯Dx1/2(Hs0),Dx1/2A¯Dx1/2(Hs0)}.\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{\Pi_{N}^{\bot}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq&\min\big{\{}N^{-b}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})},\\ &\quad\quad\ \ \|\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\big{\}}.\\ \end{split}
Proof.

In view of Lemma 2.2, we just need to prove the above inequalities in terms of matrix elements. For the first inequality, one obtains

j1/2|(A+B)jj(l)|j1/2j1/2|Ajj(l)|j1/2+j1/2|Bjj(l)|j1/2.\begin{split}\langle j\rangle^{1/2}|(A+B)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}\leq\langle j\rangle^{1/2}|A_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}+\langle j\rangle^{1/2}|B_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}.\end{split}

Regarding the second bound, one can check that

j1/2|(AB)jj(l)|j1/2j1/2j1,l1+l2=l|Ajj1(l1)||Bj1j(l2)|j1/2j1,l1+l2=lj1/2|Ajj1(l1)|j11/2j11/2|Bj1j(l2)|j1/2=(Dx1/2A¯Dx1/2Dx1/2B¯Dx1/2)jj(l).\begin{split}\langle j\rangle^{1/2}|(AB)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}&\leq\langle j\rangle^{1/2}\sum_{j_{1},l_{1}+l_{2}=l}|A_{j}^{j_{1}}(l_{1})||B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\\ &\leq\sum_{j_{1},l_{1}+l_{2}=l}\langle j\rangle^{1/2}|A_{j}^{j_{1}}(l_{1})|\langle j_{1}\rangle^{1/2}\langle j_{1}\rangle^{1/2}|B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\\ &=\big{(}\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\big{)}_{j}^{j^{\prime}}(l).\\ \end{split}

The third estimate follows by

j1/2lb|(AB)jj(l)|j1/2j1/2lbj1,l1+l2=l|Ajj1(l1)||Bj1j(l2)|j1/2j1,l1+l2=lbj1/2(l1b+l2b)|Ajj1(l1)||Bj1j(l2)|j1/2j1,l1+l2=lb(j1/2l1b|Ajj1(l1)|j11/2j11/2|Bj1j(l2)|j1/2+j1/2|Ajj1(l1)|j11/2j11/2l2b|Bj1j(l2)|j1/2)(Dx1/2φbA¯Dx1/2Dx1/2B¯Dx1/2)jjb(l)+(Dx1/2A¯Dx1/2Dx1/2φbB¯Dx1/2)jj(l).\begin{split}\langle j\rangle^{1/2}\langle l\rangle^{b}|(AB)_{j}^{j^{\prime}}(l)|\langle j^{\prime}&\rangle^{1/2}\leq\langle j\rangle^{1/2}\langle l\rangle^{b}\sum_{j_{1},l_{1}+l_{2}=l}|A_{j}^{j_{1}}(l_{1})||B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\\ \leq&{}_{b}\sum_{j_{1},l_{1}+l_{2}=l}\langle j\rangle^{1/2}\big{(}\langle l_{1}\rangle^{b}+\langle l_{2}\rangle^{b}\big{)}|A_{j}^{j_{1}}(l_{1})||B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\\ \leq&{}_{b}\sum_{j_{1},l_{1}+l_{2}=l}\Big{(}\langle j\rangle^{1/2}\langle l_{1}\rangle^{b}|A_{j}^{j_{1}}(l_{1})|\langle j_{1}\rangle^{1/2}\langle j_{1}\rangle^{1/2}|B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\\ &+\langle j\rangle^{1/2}|A_{j}^{j_{1}}(l_{1})|\langle j_{1}\rangle^{1/2}\langle j_{1}\rangle^{1/2}\langle l_{2}\rangle^{b}|B_{j_{1}}^{j^{\prime}}(l_{2})|\langle j^{\prime}\rangle^{1/2}\Big{)}\\ \leq&{}_{b}\big{(}\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b}\underline{A}\langle D_{x}\rangle^{1/2}\langle D_{x}\rangle^{1/2}\underline{B}\langle D_{x}\rangle^{1/2}\big{)}_{j}^{j^{\prime}}(l)\\ &+\big{(}\langle D_{x}\rangle^{1/2}\underline{A}\langle D_{x}\rangle^{1/2}\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b}\underline{B}\langle D_{x}\rangle^{1/2}\big{)}_{j}^{j^{\prime}}(l).\\ \end{split}

For the last inequality, from (2.2) it follows that

j1/2|(ΠNA)jj(l)|j1/2j1/2|(A)jj(l)|j1/2,\langle j\rangle^{1/2}|(\Pi_{N}^{\bot}A)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}\leq\langle j\rangle^{1/2}|(A)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2},

and for |l|N|l|\geq N,

j1/2|(ΠNA)jj(l)|j1/2j1/2Nblb|(ΠNA)jj(l)|j1/2j1/2Nblb|Ajj(l)|j1/2=Nb(Dx1/2φbA¯Dx1/2)jj(l).\begin{split}\langle j\rangle^{1/2}|(\Pi_{N}^{\bot}A)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}&\leq\langle j\rangle^{1/2}N^{-b}\langle l\rangle^{b}|(\Pi_{N}^{\bot}A)_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}\\ &\leq\langle j\rangle^{1/2}N^{-b}\langle l\rangle^{b}|A_{j}^{j^{\prime}}(l)|\langle j^{\prime}\rangle^{1/2}\\ &=N^{-b}\big{(}\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b}\underline{A}\langle D_{x}\rangle^{1/2}\big{)}_{j}^{j^{\prime}}(l).\\ \end{split}

As a conclusion of this lemma, we have the following result.

Lemma 2.10.

Let Φi:=Id+Ψi\Phi_{i}:={\rm{Id}}+\Psi_{i}, i=1,2i=1,2, such that

Dx1/2Ψi¯Dx1/2(Hs0)1/2,i=1,2.\|\langle D_{x}\rangle^{1/2}\underline{\Psi_{i}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq 1/2,\quad i=1,2.

Then the operators Φi(i=1,2)\Phi_{i}(i=1,2) are invertible, and Ψ˘i=Φi1Id(i=1,2)\breve{\Psi}_{i}=\Phi_{i}^{-1}-{\rm Id}(i=1,2) satisfy

Dx1/2(Ψ˘1Ψ˘2¯)Dx1/2(Hs0)4Dx1/2(Ψ1Ψ2¯)Dx1/2(Hs0),\|\langle D_{x}\rangle^{1/2}(\underline{\breve{\Psi}_{1}-\breve{\Psi}_{2}})\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq 4\|\langle D_{x}\rangle^{1/2}(\underline{\Psi_{1}-\Psi_{2}})\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})},

and

Dx1/2φb(Ψ˘1Ψ˘2)¯Dx1/2(Hs0)bDx1/2φb(Ψ1Ψ2)¯Dx1/2(Hs0)+(1+Dx1/2φbΨ˘1¯Dx1/2(Hs0)+Dx1/2φbΨ˘2¯Dx1/2(Hs0))×Dx1/2(Ψ1Ψ2¯)Dx1/2(Hs0).\begin{split}\|\langle D_{x}\rangle^{1/2}&\underline{\langle\partial_{\varphi}\rangle^{b}(\breve{\Psi}_{1}-\breve{\Psi}_{2})}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq_{b}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}(\Psi_{1}-\Psi_{2})}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &+\big{(}1+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}\breve{\Psi}_{1}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b}\breve{\Psi}_{2}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\big{)}\\ &\times\|\langle D_{x}\rangle^{1/2}(\underline{\Psi_{1}-\Psi_{2}})\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}.\\ \end{split}

3. Regularization

In this section, our goal is to conjugate the linear operator \mathcal{L} in (1.8) to the operator ^\hat{\mathcal{L}} in (3.11) which is a time-dependent diagonal operator up to a remainder whose norm is controlled by εγ1𝔍s+σ\varepsilon{\gamma}^{-1}\|\mathfrak{J}\|_{s+\sigma} for some σ\sigma. Notice that we will discuss this conjugation in the generalized xx-variable phase space H1(𝕋)H^{1}(\mathbb{T}) instead of H01(𝕋)H^{1}_{0}(\mathbb{T}) temporarily in Section 3 and 4, see Remark 4.1.

The change of variable that we construct in this section is of the type:

h=A(φ,x)g.h=A(\varphi,x)g.

It can be viewed as acting on the xx-variable phase spaces HxsH^{s}_{x} that depend quasi-periodically on time.

The operator associated with the system (1.1) acting on quasi-periodic functions is

~:=ωφL(φ).\tilde{\mathcal{L}}:=\omega\cdot\partial_{\varphi}-L(\varphi).

Under the action of transformation h=A(φ,x)gh=A(\varphi,x)g, system (1.1) is transformed into the new one

tg=L+(ωt)g,L+(ωt)=A(ωt)1L(ωt)A(ωt)A(ωt)1{tA(ωt)}.\partial_{t}g=L^{+}(\omega t)g,\quad L^{+}(\omega t)=A(\omega t)^{-1}L(\omega t)A(\omega t)-A(\omega t)^{-1}\{\partial_{t}A(\omega t)\}. (3.1)

Meanwhile, the operator associated with system (3.1) is

A(ωt)1~A(ωt)=ωφL+(φ).A(\omega t)^{-1}\tilde{\mathcal{L}}A(\omega t)=\omega\cdot\partial_{\varphi}-L^{+}(\varphi).

In particular, we consider a φ\varphi-dependent family of diffeomorphisms of the 1-dimensional torus 𝕋\mathbb{T} of the form y=x+β(φ,x)y=x+\beta(\varphi,x) where β(φ,x)\beta(\varphi,x) is a sufficiently smooth function to be determined. The change of the space variable induces the linear operator 𝒜=𝒜β\mathcal{A}=\mathcal{A}_{\beta}:

(𝒜g)(φ,x):=g(φ,x+β(φ,x)).(\mathcal{A}g)(\varphi,x):=g(\varphi,x+\beta(\varphi,x)). (3.2)

Note that the operator 𝒜\mathcal{A} is invertible, with the inverse

(𝒜1h)(φ,y):=h(φ,y+β~(φ,y)),(\mathcal{A}^{-1}h)(\varphi,y):=h(\varphi,y+\mathaccent 869{\beta}(\varphi,y)),

where β~\mathaccent 869{\beta} is such that y=x+β(φ,x)y=x+\beta(\varphi,x) is the inverse of the diffeomorphism of the 1-dimensional torus x=y+β~(φ,y)x=y+\mathaccent 869{\beta}(\varphi,y).

To determine the conjugated operator 𝒜1𝒜\mathcal{A}^{-1}\mathcal{L}\mathcal{A}, we need the following result.

Proposition 3.1.

(Conjugation) Let 𝒪ν\mathcal{O}\subset\mathbb{R}^{\nu} be compact. Given ρ3,α,𝒮>s0,s0s𝒮.\rho\geq 3,\alpha\in\mathbb{N},\mathcal{S}>s_{0},s_{0}\leq s\leq\mathcal{S}. For the linear operators in (1.8), m0,m2m_{0},m_{2} are real constants,

ai(,,ω,𝔍(ω))C(𝕋ν+1),i=0,2a_{i}(\cdot,\cdot,\omega,\mathfrak{J}(\omega))\in C^{\infty}(\mathbb{T}^{\nu+1}),\quad i=0,2

are even and real valued functions depending on ω𝒪\omega\in\mathcal{O} in a Lipschitz way and also on the variable 𝔍\mathfrak{J}. There exist positive constants μ1μ~1>0,δ(0,1)\mu_{1}\geq\tilde{\mu}_{1}>0,\delta\in(0,1) such that if

βs0+μ1γ,𝒪,ais0+μ1γ,𝒪δ,i=0,2,\|\beta\|_{s_{0}+\mu_{1}}^{\gamma,\mathcal{O}},\|a_{i}\|_{s_{0}+\mu_{1}}^{\gamma,\mathcal{O}}\leq\delta,\quad i=0,2, (3.3)

then under the invertible map 𝒜\mathcal{A} in (3.2), \mathcal{L} is conjugated to the real operator

+:=𝒜1𝒜=ωφ+T1(φ,y)y(m0+m2)Λy+R,\mathcal{L}^{+}:=\mathcal{A}^{-1}\mathcal{L}\mathcal{A}=\omega\cdot\partial_{\varphi}+T_{1}(\varphi,y)\partial_{y}-(m_{0}+m_{2})\Lambda\partial_{y}+R, (3.4)

where

T1(φ,y)=\displaystyle T_{1}(\varphi,y)= (ωφβ)(φ,y+β~(φ,y))\displaystyle(\omega\cdot\partial_{\varphi}\beta)(\varphi,y+\tilde{\beta}(\varphi,y))
+(m2+a2(φ,y+β~(φ,y)))(1+βx(φ,y+β~(φ,y))).\displaystyle\qquad+\big{(}m_{2}+a_{2}(\varphi,y+\tilde{\beta}(\varphi,y))\big{)}\big{(}1+\beta_{x}(\varphi,y+\tilde{\beta}(\varphi,y))\big{)}.

For all s0s𝒮s_{0}\leq s\leq\mathcal{S}, the remainder R:=Op(r)+R:={\rm Op}(r)+\mathfrak{R} where rS1r\in S^{-1} (see Definition A.2) and 𝔏ρ,p\mathfrak{R}\in\mathfrak{L}_{\rho,p} (see Definition B.1) satisfies the estimates:

|r|1,s,αγ,𝒪s,α,ρβs+μ1γ,𝒪+i=0,2ais+μ1γ,𝒪,𝕄γ(s,b)s,ρβs+μ1γ,𝒪+i=0,2ais+μ1γ,𝒪,0bρ2.\displaystyle\begin{aligned} &|r|_{-1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\sum_{i=0,2}\|a_{i}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &\mathbb{M}_{\mathfrak{R}}^{\gamma}(s,b)\leq_{s,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\sum_{i=0,2}\|a_{i}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad 0\leq b\leq\rho-2.\end{aligned} (3.5)

Moreover, for s0ps0+μ1μ~1s_{0}\leq p\leq s_{0}+\mu_{1}-\tilde{\mu}_{1}, there hold

|Δ12r|1,p,αp,α,ρΔ12βp+μ1+i=0,2Δ12aip+μ1,𝕄Δ12(p,b)p,ρΔ12βp+μ1+i=0,2Δ12aip+μ1,0bρ3.\displaystyle\begin{aligned} &|\Delta_{12}r|_{-1,p,\alpha}\leq_{p,\alpha,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\sum_{i=0,2}\|\Delta_{12}a_{i}\|_{p+\mu_{1}},\\ &\mathbb{M}_{\Delta_{12}\mathfrak{R}}(p,b)\leq_{p,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\sum_{i=0,2}\|\Delta_{12}a_{i}\|_{p+\mu_{1}},\quad 0\leq b\leq\rho-3.\end{aligned} (3.6)

Finally, if β\beta is an odd function, then 𝒜±1\mathcal{A}^{\pm 1} are reversibility-preserving, R,+R,\mathcal{L}^{+} are reversible.

Proof.

For the multiplication operator f(φ,x):h(φ,x)f(φ,x)h(φ,x)f(\varphi,x):h(\varphi,x)\mapsto f(\varphi,x)h(\varphi,x), the conjugate

𝒜1f(φ,x)𝒜=(𝒜1f)(φ,y)=f(φ,y+β~(φ,y))\mathcal{A}^{-1}f(\varphi,x)\mathcal{A}=(\mathcal{A}^{-1}f)(\varphi,y)=f(\varphi,y+\tilde{\beta}(\varphi,y))

is still a multiplication operator.

For the differential operators, one can directly verify the following results:

𝒜1ωφ𝒜=ωφ+(𝒜1(ωφβ))y,𝒜1x𝒜=(𝒜1(1+βx))y,𝒜1xx𝒜=(𝒜1(1+βx)2)yy+(𝒜1βxx)y,𝒜1Λ𝒜=(IdΛK)1Λ(1+β~y)2,\begin{split}&\mathcal{A}^{-1}\omega\cdot\partial_{\varphi}\mathcal{A}=\omega\cdot\partial_{\varphi}+(\mathcal{A}^{-1}(\omega\cdot\partial_{\varphi}\beta))\partial_{y},\\ &\mathcal{A}^{-1}\partial_{x}\mathcal{A}=(\mathcal{A}^{-1}(1+\beta_{x}))\partial_{y},\\ &\mathcal{A}^{-1}\partial_{xx}\mathcal{A}=(\mathcal{A}^{-1}(1+\beta_{x})^{2})\partial_{yy}+(\mathcal{A}^{-1}\beta_{xx})\partial_{y},\\ &\mathcal{A}^{-1}\Lambda\mathcal{A}=({\rm{Id}}-\Lambda K)^{-1}\Lambda(1+\tilde{\beta}_{y})^{2},\\ \end{split}

where

K:=f0(φ,y)+f1(φ,y)y,K:=f_{0}(\varphi,y)+f_{1}(\varphi,y)\partial_{y},
f0:=(𝒜1βx2+2βx(1+βx)2)=(𝒜1(βx2+2βx))(1+β~y)2,f_{0}:=(\mathcal{A}^{-1}\frac{\beta_{x}^{2}+2\beta_{x}}{(1+\beta_{x})^{2}})=(\mathcal{A}^{-1}(\beta_{x}^{2}+2\beta_{x}))(1+\tilde{\beta}_{y})^{2},
f1:=(𝒜1βxx(1+βx)2)=(𝒜1βxx)(1+β~y)2.f_{1}:=(\mathcal{A}^{-1}\frac{\beta_{xx}}{(1+\beta_{x})^{2}})=(\mathcal{A}^{-1}\beta_{xx})(1+\tilde{\beta}_{y})^{2}.

Note that all the coefficients (𝒜1())(\mathcal{A}^{-1}(\cdots)) are functions of (φ,y)(\varphi,y). A direct computation implies

+:=𝒜1𝒜=ωφ+T1(φ,y)y+T0(φ,y)+,\mathcal{L}^{+}:=\mathcal{A}^{-1}\mathcal{L}\mathcal{A}=\omega\cdot\partial_{\varphi}+T_{1}(\varphi,y)\partial_{y}+T_{0}(\varphi,y)+\mathcal{R},

where

T1(φ,y):=(𝒜1(ωφβ))+(𝒜1((m2+a2)(1+βx))),T_{1}(\varphi,y):=(\mathcal{A}^{-1}(\omega\cdot\partial_{\varphi}\beta))+(\mathcal{A}^{-1}((m_{2}+a_{2})(1+\beta_{x}))),
T0(φ,y):=g0g1f1g0g2g0(g2)y2(g0)yg2+g0g3.T_{0}(\varphi,y):=g_{0}g_{1}-f_{1}g_{0}g_{2}-g_{0}(g_{2})_{y}-2(g_{0})_{y}g_{2}+g_{0}g_{3}.

Here we use the notations for succinct writing:

g0:=1+β~y,g1:=(𝒜1((m2+a2)x(1+βx))),g2:=(𝒜1((m2+a2)(1+βx)2)),g3:=(𝒜1((m2+a2)βxx)).\begin{split}&g_{0}:=1+\tilde{\beta}_{y},\quad g_{1}:=(\mathcal{A}^{-1}((m_{2}+a_{2})_{x}(1+\beta_{x}))),\\ &g_{2}:=(\mathcal{A}^{-1}((m_{2}+a_{2})(1+\beta_{x})^{2})),\quad g_{3}:=(\mathcal{A}^{-1}((m_{2}+a_{2})\beta_{xx})).\\ \end{split}

In fact, T0(φ,y)T_{0}(\varphi,y) can be reduced to 0 by exploiting the following formulas:

(1+β~y)(𝒜1(1+βx))1,β~yy=(𝒜1βxx)(1+β~y)2(𝒜1(1+βx)).(1+\tilde{\beta}_{y})\cdot(\mathcal{A}^{-1}(1+\beta_{x}))\equiv 1,\quad\tilde{\beta}_{yy}=\frac{-(\mathcal{A}^{-1}\beta_{xx})(1+\tilde{\beta}_{y})^{2}}{(\mathcal{A}^{-1}(1+\beta_{x}))}.

Note that \mathcal{R} consists of all the terms of pseudo differentials of order 1\leq-1. Extracting from \mathcal{R} the terms which are not "small", precisely, the terms which are irrelevant to β,β~\beta,\tilde{\beta} or aia_{i} (i=0,2)(i=0,2), we obtain

:=m0Λym2Λy+R,\mathcal{R}:=-m_{0}\Lambda\partial_{y}-m_{2}\Lambda\partial_{y}+R,

where the remainder is given by

R:=r1[(IdΛK)1Id]Λg0y(𝒜1(m0+a0))[(IdΛK)1IdΛK]Λg0yg2yy[(IdΛK)1Id]Λg0y(g1+g3)y,r1:=m0Λβ~yyΛg0y(𝒜1a0)Λ(𝒜1(a2(1+βx)))ym2Λ(𝒜1βx)y+Λ(g0)yyg2y+Λg0y(g1)y+2Λ(g0)yyg1+Λ(g0)yyg1Λg0g1Λf0Λg0yg2yy+Λf1yΛg0y(g2)yy+2Λf1yΛ(g0)yyg2y+Λf1yΛ(g0)yyg2yΛf1y(g0g2)yΛf1yΛg0g2y2Λ(f1)yyg0g2Λ(f1)yyg0g2+Λf1g0g2Λg0y(g2)yy2Λ(g0)yy(g2)y+Λg0(g2)y2Λ(g0)yy(g2)y4Λ(g0)yyyg22Λ(g0)yyyg2Λ(g0)yy(g2)y+2Λ(g0)yg2+Λg0y(g3)y+2Λ(g0)yyg3+Λ(g0)yyg3Λg0g3.\displaystyle\begin{aligned} R:=&r_{1}-[({\rm{Id}}-\Lambda K)^{-1}-{\rm{Id}}]\Lambda g_{0}\partial_{y}\circ(\mathcal{A}^{-1}(m_{0}+a_{0}))\\ &\quad-[({\rm{Id}}-\Lambda K)^{-1}-{\rm{Id}}-\Lambda K]\Lambda g_{0}\partial_{y}g_{2}\partial_{yy}\\ &\quad-[({\rm{Id}}-\Lambda K)^{-1}-{\rm{Id}}]\Lambda g_{0}\partial_{y}(g_{1}+g_{3})\partial_{y},\\ r_{1}:=&-m_{0}\Lambda\tilde{\beta}_{y}\partial_{y}-\Lambda g_{0}\partial_{y}(\mathcal{A}^{-1}a_{0})-\Lambda(\mathcal{A}^{-1}(a_{2}(1+\beta_{x})))\partial_{y}\\ &-m_{2}\Lambda(\mathcal{A}^{-1}\beta_{x})\partial_{y}+\Lambda(g_{0})_{yy}g_{2}\partial_{y}+\Lambda g_{0}\partial_{y}(g_{1})_{y}+2\Lambda(g_{0})_{y}\partial_{y}g_{1}\\ &+\Lambda(g_{0})_{yy}g_{1}-\Lambda g_{0}g_{1}-\Lambda f_{0}\Lambda g_{0}\partial_{y}g_{2}\partial_{yy}+\Lambda f_{1}\partial_{y}\Lambda g_{0}\partial_{y}(g_{2})_{y}\partial_{y}\\ &+2\Lambda f_{1}\partial_{y}\Lambda(g_{0})_{y}\partial_{y}g_{2}\partial_{y}+\Lambda f_{1}\partial_{y}\Lambda(g_{0})_{yy}g_{2}\partial_{y}-\Lambda f_{1}\partial_{y}(g_{0}g_{2})_{y}\\ &-\Lambda f_{1}\partial_{y}\Lambda g_{0}g_{2}\partial_{y}-2\Lambda(f_{1})_{y}\partial_{y}g_{0}g_{2}-\Lambda(f_{1})_{yy}g_{0}g_{2}+\Lambda f_{1}g_{0}g_{2}\\ &-\Lambda g_{0}\partial_{y}(g_{2})_{yy}-2\Lambda(g_{0})_{y}\partial_{y}(g_{2})_{y}+\Lambda g_{0}(g_{2})_{y}-2\Lambda(g_{0})_{y}\partial_{y}(g_{2})_{y}\\ &-4\Lambda(g_{0})_{yy}\partial_{y}g_{2}-2\Lambda(g_{0})_{yyy}g_{2}-\Lambda(g_{0})_{yy}(g_{2})_{y}\\ &+2\Lambda(g_{0})_{y}g_{2}+\Lambda g_{0}\partial_{y}(g_{3})_{y}+2\Lambda(g_{0})_{y}\partial_{y}g_{3}+\Lambda(g_{0})_{yy}g_{3}-\Lambda g_{0}g_{3}.\\ \end{aligned}

In order to get a sharp estimate for RR, its structure should be explored. According to the assumption, there exist μ1μ~1>0,δ>0\mu_{1}\geq\tilde{\mu}_{1}>0,\delta>0 such that if (3.3) is satisfied, then for s0s𝒮s_{0}\geq s\geq\mathcal{S}, s0ps0+μ1μ~1,s_{0}\leq p\leq s_{0}+\mu_{1}-\tilde{\mu}_{1}, the following estimates hold.

From Lemma C.1, we have β~sγ,𝒪βsγ,𝒪\|\tilde{\beta}\|_{s}^{\gamma,\mathcal{O}}\leq\|\beta\|_{s}^{\gamma,\mathcal{O}} by (C.9) and Δ12β~pΔ12βp\|\Delta_{12}\tilde{\beta}\|_{p}\leq\|\Delta_{12}\beta\|_{p} by (C.7), and

g0sγ,𝒪1+βs+μ1γ,𝒪,(g0)ysγ,𝒪=β~yysγ,𝒪βs+μ1γ,𝒪.Δ12g0p=Δ12β~ypΔ12βp+μ1.\begin{split}&\|g_{0}\|_{s}^{\gamma,\mathcal{O}}\leq 1+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad\|(g_{0})_{y}\|_{s}^{\gamma,\mathcal{O}}=\|\tilde{\beta}_{yy}\|_{s}^{\gamma,\mathcal{O}}\leq\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}.\\ &\|\Delta_{12}g_{0}\|_{p}=\|\Delta_{12}\tilde{\beta}_{y}\|_{p}\leq\|\Delta_{12}\beta\|_{p+\mu_{1}}.\end{split}

It follows from (C.10) that

𝒜1βxsγ,𝒪sβs+μ1γ,𝒪,𝒜1a0sγ,𝒪sa0s+μ1γ,𝒪+βs+σ1γ,𝒪,𝒜1a2sγ,𝒪sa2s+μ1γ,𝒪+βs+μ1γ,𝒪,\begin{split}&\|\mathcal{A}^{-1}\beta_{x}\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad\|\mathcal{A}^{-1}a_{0}\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|a_{0}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|\beta\|_{s+\sigma_{1}}^{\gamma,\mathcal{O}},\\ &\|\mathcal{A}^{-1}a_{2}\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ \end{split}

and from (C.8) we derive

Δ12(𝒜1βx)p=Δ12(𝒜1(1+βx))ppΔ12βp+μ1,Δ12(𝒜1a0)ppΔ12βp+μ1+Δ12a0p+μ1,Δ12(𝒜1a2)ppΔ12βp+μ1+Δ12a2p+μ1.\begin{split}&\|\Delta_{12}(\mathcal{A}^{-1}\beta_{x})\|_{p}=\|\Delta_{12}(\mathcal{A}^{-1}(1+\beta_{x}))\|_{p}\leq_{p}\|\Delta_{12}\beta\|_{p+\mu_{1}},\\ &\|\Delta_{12}(\mathcal{A}^{-1}a_{0})\|_{p}\leq_{p}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{0}\|_{p+\mu_{1}},\\ &\|\Delta_{12}(\mathcal{A}^{-1}a_{2})\|_{p}\leq_{p}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}}.\\ \end{split}

By Lemma 2.1, (C.10) and (g2)y=g1+2g3(g_{2})_{y}=g_{1}+2g_{3}, we obtain

g1sγ,𝒪,g3sγ,𝒪,(g2)ysγ,𝒪,𝒜1(a2(1+βx))sγ,𝒪sa2s+μ1γ,𝒪+βs+μ1γ,𝒪,g2sγ,𝒪s1+a2s+μ1γ,𝒪+βs+μ1γ,𝒪,f0sγ,𝒪,f1sγ,𝒪sβs+μ1γ,𝒪.\begin{split}&\|g_{1}\|_{s}^{\gamma,\mathcal{O}},\|g_{3}\|_{s}^{\gamma,\mathcal{O}},\|(g_{2})_{y}\|_{s}^{\gamma,\mathcal{O}},\|\mathcal{A}^{-1}(a_{2}(1+\beta_{x}))\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &\|g_{2}\|_{s}^{\gamma,\mathcal{O}}\leq_{s}1+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad\|f_{0}\|_{s}^{\gamma,\mathcal{O}},\|f_{1}\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}.\\ \end{split}

From Δ12(uv)=u(Δ12v)+(Δ12u)v\Delta_{12}(uv)=u(\Delta_{12}v)+(\Delta_{12}u)v, we deduce that

Δ12gip(i=1,2,3),Δ12(𝒜1(a2(1+βx)))ppΔ12βp+μ1+Δ12a2p+μ1,Δ12fjp(j=0,1)pΔ12βp+μ1.\begin{split}&\|\Delta_{12}g_{i}\|_{p}(i=1,2,3),\|\Delta_{12}(\mathcal{A}^{-1}(a_{2}(1+\beta_{x})))\|_{p}\leq_{p}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}},\\ &\|\Delta_{12}f_{j}\|_{p}(j=0,1)\leq_{p}\|\Delta_{12}\beta\|_{p+\mu_{1}}.\\ \end{split}

In view of (A.4)-(A.5) and Lemma A.2, the following estimates hold:

|K|1,s,αγ,𝒪,|ΛK|1,s,αγ,𝒪s,αβs+μ1γ,𝒪,|r1|1,s,αγ,𝒪s,αβs+μ1γ,𝒪+a0s+μ1γ,𝒪+a2s+μ1γ,𝒪,|Δ12r1|1,p,αp,αΔ12βp+μ1+Δ12a0p+μ1+Δ12a2p+μ1,|Δ12K|1,p,α,|Δ12(ΛK)|1,p,αp,αΔ12βp+μ1.\begin{split}&|K|_{1,s,\alpha}^{\gamma,\mathcal{O}},|\Lambda K|_{-1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|r_{1}|_{-1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{0}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Delta_{12}r_{1}|_{-1,p,\alpha}\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{0}\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}},\\ &|\Delta_{12}K|_{1,p,\alpha},|\Delta_{12}(\Lambda K)|_{-1,p,\alpha}\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}.\\ \end{split}

Similarly, by (A.4), (A.5), (C.10) and Lemma A.2, we have

|Λg0y(𝒜1(m0+a0))|1,s,αγ,𝒪s,α1+βs+μ1γ,𝒪+a0s+μ1γ,𝒪,|Λg0yg2yy|1,s,αγ,𝒪s,α1+βs+μ1γ,𝒪+a2s+μ1γ,𝒪,|Λg0y(g1+g3)y|0,s,αγ,𝒪s,αβs+μ1γ,𝒪+a2s+μ1γ,𝒪,|Δ12(Λg0y(𝒜1(m0+a0)))|1,p,αp,αΔ12βp+μ1+Δ12a0p+μ1,|Δ12(Λg0yg2yy)|1,p,α,|Δ12(Λg0y(g1+g3)y)|0,p,αp,αΔ12βp+μ1+Δ12a2p+μ1.\begin{split}&|\Lambda g_{0}\partial_{y}\circ(\mathcal{A}^{-1}(m_{0}+a_{0}))|_{-1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha}1+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{0}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Lambda g_{0}\partial_{y}g_{2}\partial_{yy}|_{1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha}1+\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Lambda g_{0}\partial_{y}(g_{1}+g_{3})\partial_{y}|_{0,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Delta_{12}\big{(}\Lambda g_{0}\partial_{y}\circ(\mathcal{A}^{-1}(m_{0}+a_{0}))\big{)}|_{-1,p,\alpha}\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{0}\|_{p+\mu_{1}},\\ &|\Delta_{12}(\Lambda g_{0}\partial_{y}g_{2}\partial_{yy})|_{1,p,\alpha},|\Delta_{12}\big{(}\Lambda g_{0}\partial_{y}(g_{1}+g_{3})\partial_{y}\big{)}|_{0,p,\alpha}\\ &\quad\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}}.\\ \end{split}

According to Lemma B.1, the small condition of the operator ΛK\Lambda K is fulfilled. Hence we have

(IdΛK)1=Id+Op(c1)+ρ+1,\displaystyle({\rm{Id}}-\Lambda K)^{-1}={\rm{Id}}+{\rm Op}(c_{1})+\mathfrak{R}_{\rho+1},
(IdΛK)1IdΛK=Op(c2)+ρ+1,\displaystyle({\rm{Id}}-\Lambda K)^{-1}-{\rm{Id}}-\Lambda K={\rm Op}(c_{2})+\mathfrak{R}_{\rho+1},

where c1S1,c2S2,ρ+1𝔏ρ+1,pc_{1}\in S^{-1},c_{2}\in S^{-2},\mathfrak{R}_{\rho+1}\in\mathfrak{L}_{\rho+1,p}. They satisfy the following inequalities:

|c1|1,s,αγ,𝒪,|c2|2,s,αγ,𝒪s,α,ρβs+μ1γ,𝒪,|Δ12c1|1,p,α,|Δ12c2|2,p,αp,α,ρΔ12βp+μ1,𝕄ρ+1γ(s,b)s,ρβs+μ1γ,𝒪,0bρ1,𝕄Δ12ρ+1γ(p,b)p,ρΔ12βp+μ1,0bρ2.\begin{split}&|c_{1}|_{-1,s,\alpha}^{\gamma,\mathcal{O}},|c_{2}|_{-2,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Delta_{12}c_{1}|_{-1,p,\alpha},|\Delta_{12}c_{2}|_{-2,p,\alpha}\leq_{p,\alpha,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}},\\ &\mathbb{M}_{\mathfrak{R}_{\rho+1}}^{\gamma}(s,b)\leq_{s,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad 0\leq b\leq\rho-1,\\ &\mathbb{M}_{\Delta_{12}\mathfrak{R}_{\rho+1}}^{\gamma}(p,b)\leq_{p,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}},\quad 0\leq b\leq\rho-2.\\ \end{split}

Hence RR has the decomposition: R:=r1+r2+r3+r4+1+2+3R:=r_{1}+r_{2}+r_{3}+r_{4}+\mathfrak{R}_{1}+\mathfrak{R}_{2}+\mathfrak{R}_{3}, where

r2:=c1Λg0y(𝒜1(m0+a0)),r3:=c2Λg0yg2yy,r4:=c1Λg0y(g1+g3)y,1:=ρ+1Λg0y(𝒜1(m0+a0)),2:=ρ+1Λg0yg2yy,3:=ρ+1Λg0y(g1+g3)y.\begin{split}&r_{2}:=-c_{1}\Lambda g_{0}\partial_{y}\circ(\mathcal{A}^{-1}(m_{0}+a_{0})),\quad r_{3}:=-c_{2}\Lambda g_{0}\partial_{y}g_{2}\partial_{yy},\\ &r_{4}:=-c_{1}\Lambda g_{0}\partial_{y}(g_{1}+g_{3})\partial_{y},\quad\mathfrak{R}_{1}:=-\mathfrak{R}_{\rho+1}\Lambda g_{0}\partial_{y}\circ(\mathcal{A}^{-1}(m_{0}+a_{0})),\\ &\mathfrak{R}_{2}:=-\mathfrak{R}_{\rho+1}\Lambda g_{0}\partial_{y}g_{2}\partial_{yy},\quad\mathfrak{R}_{3}:=-\mathfrak{R}_{\rho+1}\Lambda g_{0}\partial_{y}(g_{1}+g_{3})\partial_{y}.\\ \end{split}

Then from Lemma A.2, it follows that

|r2|2,s,αγ,𝒪s,α,ρβs+μ1γ,𝒪+a0s+μ1γ,𝒪,|r3|1,s,αγ,𝒪,|r4|1,s,αγ,𝒪s,α,ρβs+μ1γ,𝒪+a2s+μ1γ,𝒪,|Δ12r2|2,p,αp,αΔ12βp+μ1+Δ12a0p+μ1,|Δ12r3|1,p,α,|Δ12r4|1,p,αp,αΔ12βp+μ1+Δ12a2p+μ1.\begin{split}&|r_{2}|_{-2,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{0}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|r_{3}|_{-1,s,\alpha}^{\gamma,\mathcal{O}},|r_{4}|_{-1,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\\ &|\Delta_{12}r_{2}|_{-2,p,\alpha}\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{0}\|_{p+\mu_{1}},\\ &|\Delta_{12}r_{3}|_{-1,p,\alpha},|\Delta_{12}r_{4}|_{-1,p,\alpha}\leq_{p,\alpha}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}}.\\ \end{split}

From Lemma B.2, we also have i𝔏ρ,p,i=1,2,3\mathfrak{R}_{i}\in\mathfrak{L}_{\rho,p},i=1,2,3 and

𝕄1γ(s,b)s,ρβs+μ1γ,𝒪+a0s+μ1γ,𝒪,0bρ2,𝕄2γ(s,b),𝕄3γ(s,b)s,ρβs+μ1γ,𝒪+a2s+μ1γ,𝒪,0bρ2,𝕄Δ121(p,b)p,ρΔ12βp+μ1+Δ12a0p+μ1,0bρ3,𝕄Δ122(p,b),𝕄Δ123(p,b)p,ρΔ12βp+μ1+Δ12a2p+μ1,0bρ3.\begin{split}&\mathbb{M}_{\mathfrak{R}_{1}}^{\gamma}(s,b)\leq_{s,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{0}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad 0\leq b\leq\rho-2,\\ &\mathbb{M}_{\mathfrak{R}_{2}}^{\gamma}(s,b),\mathbb{M}_{\mathfrak{R}_{3}}^{\gamma}(s,b)\leq_{s,\rho}\|\beta\|_{s+\mu_{1}}^{\gamma,\mathcal{O}}+\|a_{2}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}},\quad 0\leq b\leq\rho-2,\\ &\mathbb{M}_{\Delta_{12}\mathfrak{R}_{1}}(p,b)\leq_{p,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{0}\|_{p+\mu_{1}},\quad 0\leq b\leq\rho-3,\\ &\mathbb{M}_{\Delta_{12}\mathfrak{R}_{2}}(p,b),\mathbb{M}_{\Delta_{12}\mathfrak{R}_{3}}(p,b)\leq_{p,\rho}\|\Delta_{12}\beta\|_{p+\mu_{1}}+\|\Delta_{12}a_{2}\|_{p+\mu_{1}},\quad 0\leq b\leq\rho-3.\\ \end{split}

Let r=i=14rir=\sum_{i=1}^{4}r_{i}, =i=13i\mathfrak{R}=\sum_{i=1}^{3}\mathfrak{R}_{i}, then (3.5) and (3.6) hold.

Recall Definition 2.4, let u(φ,y)Xu(\varphi,y)\in X, then 𝒜u=u(φ,x+β(φ,x))X\mathcal{A}u=u(\varphi,x+\beta(\varphi,x))\in X if β\beta is odd. Indeed,

u(φ,x+β(φ,x))=u(φ,xβ(φ,x))=u(φ,x+β(φ,x)).u\big{(}-\varphi,-x+\beta(-\varphi,-x)\big{)}=u\big{(}-\varphi,-x-\beta(\varphi,x)\big{)}=u\big{(}\varphi,x+\beta(\varphi,x)\big{)}.

The proof of the case for u(φ,y)Yu(\varphi,y)\in Y is similar. Therefore, 𝒜\mathcal{A} is reversibility-preserving. Due to the reality of β\beta, 𝒜\mathcal{A} is real. By replacing β\beta with β~\tilde{\beta}, 𝒜1\mathcal{A}^{-1} is also real and reversibility-preserving.

Finally we prove R,+R,\mathcal{L}^{+} is real and reversible. In fact, +\mathcal{L}^{+} is real due to the reality of \mathcal{L} and 𝒜±1\mathcal{A}^{\pm 1}. Meanwhile, it is reversible since \mathcal{L} is reversible and 𝒜±1\mathcal{A}^{\pm 1} are reversibility-preserving. In view of the reality and reversibility of the opearators

ωφ+mx(m0+m2)Λx\omega\cdot\partial_{\varphi}+m_{\infty}\partial_{x}-(m_{0}+m_{2})\Lambda\partial_{x}

and +\mathcal{L}^{+}, RR is real and reversible. Thus we complete the proof. ∎

In [29], the reducibility of a class of linear first-order operators on tori has been proved as shown in the next proposition, i.e. the so-called straightening theorem. Thanks to this theorem, we choose an appropriate function β\beta such that the coefficient of the highest order spatial derivative operator y\partial_{y} of +\mathcal{L}^{+} in (3.4) is a constant.

Proposition 3.2.

(Straightening theorem)[29] Let 𝒪\mathcal{O} be a compact subset of ν\mathbb{R}^{\nu}, and 𝒳\mathcal{X} be a family of vector fields on 𝕋ν+1\mathbb{T}^{\nu+1}

𝒳:=ωφ+(m+a(φ,x,ω))x,ω𝒪,m,\mathcal{X}:=\omega\cdot\frac{\partial}{\partial{\varphi}}+(m+a(\varphi,x,\omega))\cdot\frac{\partial}{\partial{x}},\quad\omega\in\mathcal{O},m\in\mathbb{R},

where a(,,ω,𝔍(ω))Hs(𝕋ν+1,)a(\cdot,\cdot,\omega,\mathfrak{J}(\omega))\in H^{s}(\mathbb{T}^{\nu+1},\mathbb{R}) (ss0)(\forall s\geq s_{0}) is Lipschitz in ω\omega and also depends on the variable 𝔍\mathfrak{J}. There exists δ~>0,s1s0+2τ+4\tilde{\delta}>0,s_{1}\geq s_{0}+2\tau+4 (τν+3),(\tau\geq\nu+3), such that if

γ1as1γ,𝒪δ~,\gamma^{-1}\|a\|_{s_{1}}^{\gamma,\mathcal{O}}\leq\tilde{\delta}, (3.7)

then there exists m+(ω,𝔍(ω))m_{+}(\omega,\mathfrak{J}(\omega))\in\mathbb{R} with

|m+m|γ,𝒪as1γ,𝒪,|m_{+}-m|^{\gamma,\mathcal{O}}\leq\|a\|_{s_{1}}^{\gamma,\mathcal{O}},

such that for all ω𝒪+2γ\omega\in\mathcal{O}_{+}^{2\gamma}, where

𝒪+2γ:={ω𝒪:|ωl+m+(ω)j|2γl,jτ,(l,j)ν+1{0}},\mathcal{O}_{+}^{2\gamma}:=\left\{\omega\in\mathcal{O}:|\omega\cdot l+m_{+}(\omega)j|\geq\frac{2\gamma}{\langle l,j\rangle^{\tau}},\quad\forall(l,j)\in\mathbb{Z}^{\nu+1}\setminus\{0\}\right\}, (3.8)

one has

|Δ12m+|2|Δ12a|,a:=1(2π)ν+1𝕋ν+1adφdx|\Delta_{12}m_{+}|\leq 2|\Delta_{12}\langle a\rangle|,\quad\langle a\rangle:=\frac{1}{(2\pi)^{\nu+1}}\int_{\mathbb{T}^{\nu+1}}a{\rm d}\varphi{\rm d}x

and there exists a real and smooth map β^(φ,x,𝔍)\hat{\beta}(\varphi,x,\mathfrak{J}) and a constant σ>0\sigma_{*}>0 satisfying

β^sγ,𝒪+2γsγ1as+2τ+4γ,𝒪,ss0,Δ12β^pCγ1Δ12ap+σ,s0p+σ<s1,\begin{split}&\|\hat{\beta}\|_{s}^{\gamma,\mathcal{O}_{+}^{2\gamma}}\leq_{s}\gamma^{-1}\|a\|_{s+2\tau+4}^{\gamma,\mathcal{O}},\quad\forall s\geq s_{0},\\ &\|\Delta_{12}\hat{\beta}\|_{p}\leq C\gamma^{-1}\|\Delta_{12}a\|_{p+\sigma_{*}},\quad s_{0}\leq p+\sigma_{*}<s_{1},\\ \end{split}

so that W:(φ,x)(φ,x+β^(φ,x))W:(\varphi,x)\mapsto(\varphi,x+\hat{\beta}(\varphi,x)) is a diffeomorphism of 𝕋ν+1\mathbb{T}^{\nu+1} and for all ω𝒪+2γ\omega\in\mathcal{O}_{+}^{2\gamma},

W𝒳:=ωφ+W1(ωφβ^+(m+a)(1+β^x))x=ωφ+m+x.W_{\ast}\mathcal{X}:=\omega\cdot\frac{\partial}{\partial{\varphi}}+W^{-1}\left(\omega\cdot\partial_{\varphi}\hat{\beta}+(m+a)(1+\hat{\beta}_{x})\right)\frac{\partial}{\partial{x}}=\omega\cdot\frac{\partial}{\partial{\varphi}}+m_{+}\frac{\partial}{\partial{x}}.

Furthermore, if a(φ,x)a(\varphi,x) is even, then β^\hat{\beta} is an odd function.

Remark 3.1.

Actually, the sign of inequality appearing in (3.8) is ">>" in [29]. The thesis also holds if we replace ">>" with "\geq".

Theorem 3.1.

(Regularization) Let ρ3\rho\geq 3 and fix 𝒮>s0,s0p<𝒮\mathcal{S}>s_{0},s_{0}\leq p<\mathcal{S}. Suppose for some μ2μ~2>0\mu_{2}\geq\tilde{\mu}_{2}>0, the conditions (A1)-(A4) are satisfied with μ=μ2\mu=\mu_{2}. Then there exists a constant m(ω,𝔍(ω))m_{\infty}(\omega,\mathfrak{J}(\omega)) which depends on ω𝒪0\omega\in\mathcal{O}_{0} in a Lipschitz way and the variable 𝔍\mathfrak{J} with

|mm2|γ,𝒪0Cε,|m_{\infty}-m_{2}|^{\gamma,\mathcal{O}_{0}}\leq C\varepsilon, (3.9)

such that for all ω\omega in the set

𝒪1:={ω𝒪0:|ωl+m(ω)j|2γl,jτ,(l,j)ν+1{0}},\mathcal{O}_{1}:=\left\{\omega\in\mathcal{O}_{0}:|\omega\cdot l+m_{\infty}(\omega)j|\geq\frac{2\gamma}{\langle l,j\rangle^{\tau}},\quad\forall(l,j)\in\mathbb{Z}^{\nu+1}\setminus\{0\}\right\}, (3.10)

there exists a real bounded linear operator Υ1\Upsilon_{1} such that

^=Υ11Υ1=ωφ+mx(m0+m2)Λx+R^,\hat{\mathcal{L}}=\Upsilon_{1}^{-1}\mathcal{L}\Upsilon_{1}=\omega\cdot\partial_{\varphi}+m_{\infty}\partial_{x}-(m_{0}+m_{2})\Lambda\partial_{x}+\hat{R}, (3.11)

where the remainder R^=Op(r^)+^\hat{R}={\rm Op}(\hat{r})+\hat{\mathfrak{R}} with r^S1,^ρ,p\hat{r}\in S^{-1},\hat{\mathfrak{R}}\in\mathcal{L}_{\rho,p} satisfies

|r^|1,s,αγ,𝒪1,𝕄^γ(s,b)s,α,ρεγ1𝔍s+μ2γ,𝒪0,s0s𝒮,0bρ2.|\hat{r}|_{-1,s,\alpha}^{\gamma,\mathcal{O}_{1}},\mathbb{M}_{\hat{\mathfrak{R}}}^{\gamma}(s,b)\leq_{s,\alpha,\rho}\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{2}}^{\gamma,\mathcal{O}_{0}},\quad s_{0}\leq s\leq\mathcal{S},0\leq b\leq\rho-2. (3.12)

For ω𝒪1(𝔍1)𝒪1(𝔍2)\omega\in\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}), s0ps0+μ2μ~2s_{0}\leq p\leq s_{0}+\mu_{2}-\tilde{\mu}_{2} and 0bρ30\leq b\leq\rho-3, the following estimates hold:

|Δ12m|ε𝔍1𝔍2s0+μ2,|\Delta_{12}m_{\infty}|\leq\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{2}},

and

|Δ12r^|1,p,α,𝕄Δ12^(p,b)p,α,ρεγ1𝔍1𝔍2p+μ2.|\Delta_{12}\hat{r}|_{-1,p,\alpha},\mathbb{M}_{\Delta_{12}\hat{\mathfrak{R}}}(p,b)\leq_{p,\alpha,\rho}\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{p+\mu_{2}}. (3.13)

In addition, if uu depends in a Lipschitz way on ω𝒪1\omega\in\mathcal{O}_{1}, then

Υ1±1usγ,𝒪1susγ,𝒪1+εγ1𝔍s+μ2γ,𝒪0us0γ,𝒪1.\|\Upsilon_{1}^{\pm 1}u\|_{s}^{\gamma,\mathcal{O}_{1}}\leq_{s}\|u\|_{s}^{\gamma,\mathcal{O}_{1}}+\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{2}}^{\gamma,\mathcal{O}_{0}}\|u\|_{s_{0}}^{\gamma,\mathcal{O}_{1}}. (3.14)

Finally, the maps Υ1,Υ11\Upsilon_{1},\Upsilon_{1}^{-1} are real and reversibility-preserving, while R^,^\hat{R},\hat{\mathcal{L}} are real and reversible.

Proof.

Set a=a2a=a_{2}, m=m2m=m_{2}, 𝒪=𝒪0\mathcal{O}=\mathcal{O}_{0} in Proposition 3.2, μ=μ2\mu=\mu_{2} in (1.9) large enough and ε\varepsilon in (1.10) small enough, then the condition (3.7) is satisfied. From Proposition 3.2, we derive that there exists a constant m(ω,𝔍)m_{\infty}(\omega,\mathfrak{J}) defined on 𝒪0\mathcal{O}_{0} and a function β(ω,𝔍)\beta^{\infty}(\omega,\mathfrak{J}) on 𝒪1\mathcal{O}_{1} such that

ωφβ+(m2+a2)(1+βx)=m.\omega\cdot\partial_{\varphi}\beta^{\infty}+(m_{2}+a_{2})(1+\beta^{\infty}_{x})=m_{\infty}.

In addition, they satisfy the following estimates:

|mm2|γ,𝒪0a2s1γ,𝒪0ε𝔍s1+η0γ,𝒪0,ω𝒪0,|m_{\infty}-m_{2}|^{\gamma,\mathcal{O}_{0}}\leq\|a_{2}\|_{s_{1}}^{\gamma,\mathcal{O}_{0}}\leq\varepsilon\|\mathfrak{J}\|_{s_{1}+\eta_{0}}^{\gamma,\mathcal{O}_{0}},\quad\omega\in\mathcal{O}_{0},
|Δ12m|2|Δ12a|2Δ12a2s02ε𝔍1𝔍2s0+η0,ω𝒪1(𝔍1)𝒪1(𝔍2),|\Delta_{12}m_{\infty}|\leq 2|\Delta_{12}\langle a\rangle|\leq 2\|\Delta_{12}a_{2}\|_{s_{0}}\leq 2\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\eta_{0}},\quad\omega\in\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}),
βsγ,𝒪1sγ1a2s+2τ+4γ,𝒪0sεγ1𝔍s+2τ+4+η0γ,𝒪0,ss0,ω𝒪1,\|\beta^{\infty}\|_{s}^{\gamma,\mathcal{O}_{1}}\leq_{s}\gamma^{-1}\|a_{2}\|_{s+2\tau+4}^{\gamma,\mathcal{O}_{0}}\leq_{s}\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+2\tau+4+\eta_{0}}^{\gamma,\mathcal{O}_{0}},\quad\forall s\geq s_{0},\omega\in\mathcal{O}_{1},

and for s0p+σ<s1,ω𝒪1(𝔍1)𝒪1(𝔍2)s_{0}\leq p+\sigma_{*}<s_{1},\omega\in\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}),

Δ12βpCγ1Δ12a2p+σpεγ1𝔍1𝔍2p+σ+η0.\|\Delta_{12}\beta^{\infty}\|_{p}\leq C\gamma^{-1}\|\Delta_{12}a_{2}\|_{p+\sigma_{*}}\leq_{p}\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{p+\sigma_{*}+\eta_{0}}.

From Proposition 3.1, setting β=β\beta=\beta^{\infty}, Υ1=𝒜β\Upsilon_{1}=\mathcal{A}_{\beta^{\infty}}, we deduce that

Υ11Υ1=ωφ+my(m0+m2)Λy+R^.\Upsilon_{1}^{-1}\mathcal{L}\Upsilon_{1}=\omega\cdot\partial_{\varphi}+m_{\infty}\partial_{y}-(m_{0}+m_{2})\Lambda\partial_{y}+\hat{R}.

After renaming the space variable y=xy=x, we obtain (3.11).

According to Proposition 3.1, the remainder R^=Op(r^)+^\hat{R}={\rm Op}(\hat{r})+\hat{\mathfrak{R}}, where r^S1\hat{r}\in S^{-1} and ^𝔏ρ,p\hat{\mathfrak{R}}\in\mathfrak{L}_{\rho,p}\ , satisfies the following inequalities:

|r^|1,s,αγ,𝒪1s,α,ρβs+μ1γ,𝒪1+i=0,2ais+μ1γ,𝒪0s,α,ργ1ε𝔍s+μ1+2τ+4+η0γ,𝒪0|\hat{r}|_{-1,s,\alpha}^{\gamma,\mathcal{O}_{1}}\leq_{s,\alpha,\rho}\|\beta^{\infty}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}_{1}}+\sum_{i=0,2}\|a_{i}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}_{0}}\leq_{s,\alpha,\rho}\gamma^{-1}\varepsilon\|\mathfrak{J}\|_{s+\mu_{1}+2\tau+4+\eta_{0}}^{\gamma,\mathcal{O}_{0}}

for s0s𝒮s_{0}\leq s\leq\mathcal{S},

𝕄^γ(s,b)s,ρβs+μ1γ,𝒪1+i=0,2ais+μ1γ,𝒪0s,ργ1ε𝔍s+μ1+2τ+4+η0γ,𝒪0\mathbb{M}_{\hat{\mathfrak{R}}}^{\gamma}(s,b)\leq_{s,\rho}\|\beta^{\infty}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}_{1}}+\sum_{i=0,2}\|a_{i}\|_{s+\mu_{1}}^{\gamma,\mathcal{O}_{0}}\leq_{s,\rho}\gamma^{-1}\varepsilon\|\mathfrak{J}\|_{s+\mu_{1}+2\tau+4+\eta_{0}}^{\gamma,\mathcal{O}_{0}}

for 0bρ2,s0s𝒮,0\leq b\leq\rho-2,s_{0}\leq s\leq\mathcal{S},

|Δ12r^|1,p,αp,α,ρΔ12βp+μ1+i=0,2Δ12aip+μ1p,α,ργ1ε𝔍1𝔍2p+μ1+σ+η0|\Delta_{12}\hat{r}|_{-1,p,\alpha}\leq_{p,\alpha,\rho}\|\Delta_{12}\beta^{\infty}\|_{p+\mu_{1}}+\sum_{i=0,2}\|\Delta_{12}a_{i}\|_{p+\mu_{1}}\leq_{p,\alpha,\rho}\gamma^{-1}\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{p+\mu_{1}+\sigma_{*}+\eta_{0}}

for s0pmin{s0+μ1μ~1,s1σμ1}s_{0}\leq p\leq\min\{s_{0}+\mu_{1}-\tilde{\mu}_{1},s_{1}-\sigma_{*}-\mu_{1}\}, and

𝕄Δ12^(p,b)p,ρΔ12βp+μ1+i=0,2Δ12aip+μ1p,ργ1ε𝔍1𝔍2p+μ1+σ+η0\mathbb{M}_{\Delta_{12}\hat{\mathfrak{R}}}(p,b)\leq_{p,\rho}\|\Delta_{12}\beta^{\infty}\|_{p+\mu_{1}}+\sum_{i=0,2}\|\Delta_{12}a_{i}\|_{p+\mu_{1}}\leq_{p,\rho}\gamma^{-1}\varepsilon\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{p+\mu_{1}+\sigma_{*}+\eta_{0}}

for s0pmin{s0+μ1μ~1,s1σμ1},0bρ3s_{0}\leq p\leq\min\{s_{0}+\mu_{1}-\tilde{\mu}_{1},s_{1}-\sigma_{*}-\mu_{1}\},0\leq b\leq\rho-3. Hence there exist μ2,μ~2>0,μ~2μ2\mu_{2},\tilde{\mu}_{2}>0,\tilde{\mu}_{2}\leq\mu_{2} such that the inequalities (3.12)-(3.13) hold.

Furthermore, if uu depends on ω𝒪1\omega\in\mathcal{O}_{1} in a Lipschitz way, it follows from (C.10) for ω𝒪1ν\omega\in\mathcal{O}_{1}\subset\mathbb{R}^{\nu} that

Υ1usγ,𝒪1+Υ11usγ,𝒪1susγ,𝒪1+βs0+1γ,𝒪1usγ,𝒪1+βs+s0γ,𝒪1us0γ,𝒪1susγ,𝒪1+εγ1𝔍s+μ2γ,𝒪0us0γ,𝒪1.\begin{split}\|\Upsilon_{1}u\|_{s}^{\gamma,\mathcal{O}_{1}}+\|\Upsilon_{1}^{-1}u\|_{s}^{\gamma,\mathcal{O}_{1}}&\leq_{s}\|u\|_{s}^{\gamma,\mathcal{O}_{1}}+\|\beta^{\infty}\|_{s_{0}+1}^{\gamma,\mathcal{O}_{1}}\|u\|_{s}^{\gamma,\mathcal{O}_{1}}+\|\beta^{\infty}\|_{s+s_{0}}^{\gamma,\mathcal{O}_{1}}\|u\|_{s_{0}}^{\gamma,\mathcal{O}_{1}}\\ &\leq_{s}\|u\|_{s}^{\gamma,\mathcal{O}_{1}}+\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{2}}^{\gamma,\mathcal{O}_{0}}\|u\|_{s_{0}}^{\gamma,\mathcal{O}_{1}}.\\ \end{split}

Finally, since m2m_{2}\in\mathbb{R} and a2a_{2} is a real, even function, β\beta^{\infty} is real and odd due to Proposition 3.2. By Proposition 3.1, the maps Υ1,Υ11\Upsilon_{1},\Upsilon_{1}^{-1} are real and reversibility-preserving, while ^\hat{\mathcal{L}}, R^\hat{R} are real and reversible. ∎

4. Diagonalization

The purpose of this section is to completely diagonalize the linear operator ^\hat{\mathcal{L}} in (3.11). The proof is carried out by exploiting an iterative KAM scheme.

First we assume that

0<k1k2,k2γκ1,κ>1.0<k_{1}\leq k_{2},\quad k_{2}\gamma^{-\kappa}\leq 1,\quad\kappa>1. (4.1)

We now consider a linear operator 0:=ωφ+D0+R0\mathcal{L}_{0}:=\omega\cdot\partial_{\varphi}+D_{0}+R_{0}, where

D0=diagjidj(0),dj(0):=mj(m0+m2)j1+j2,m0,m2,D_{0}={\rm diag}_{j\in\mathbb{Z}}{\rm i}d_{j}^{(0)},\quad d_{j}^{(0)}:=m_{\infty}j-\frac{(m_{0}+m_{2})j}{1+j^{2}},\quad m_{0},m_{2}\in\mathbb{R}, (4.2)

and m:𝒪0m_{\infty}:\mathcal{O}_{0}\rightarrow\mathbb{R} depends on ω\omega in a Lipschitz way satisfying

|mm2|γ,𝒪0Ck1.|m_{\infty}-m_{2}|^{\gamma,\mathcal{O}_{0}}\leq Ck_{1}. (4.3)

In the sequel, we fix

a0=6τ+3,τν+3,b0=a0+1.a_{0}=6\tau+3,\quad\tau\geq\nu+3,\quad b_{0}=a_{0}+1. (4.4)

We assume that R0,φb0R0R_{0},\langle\partial_{\varphi}\rangle^{b_{0}}R_{0} are defined on 𝒪1\mathcal{O}_{1} in (3.10) and they are Lip-1-1-modulo-tame with modulo-tame constants

𝔐R0,γκ(1,s0),𝔐R0,γκ(1,s0,b0)k2.\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0}),\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\leq k_{2}. (4.5)

Additionally, mm_{\infty}, R0R_{0} and φb0R0\langle\partial_{\varphi}\rangle^{b_{0}}R_{0} also depend on the variable 𝔍(ω)\mathfrak{J}(\omega). For ω𝒪1(𝔍1)𝒪1(𝔍2)\omega\in\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) and some constant σ>0\sigma>0, there hold

|Δ12m|k1𝔍1𝔍2s0+σ,|\Delta_{12}m_{\infty}|\leq k_{1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}, (4.6)

and

Dx1/2Δ12R0¯Dx1/2𝔏(Hs0)k2𝔍1𝔍2s0+σ,Dx1/2φb0Δ12R0¯Dx1/2𝔏(Hs0)k2𝔍1𝔍2s0+σ.\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{0}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}&\leq k_{2}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\\ \|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{0}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}&\leq k_{2}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\end{split} (4.7)

Now we introduce some notations: N1=1N_{-1}=1, N0N_{0}\in\mathbb{N} is large enough, Nn=N0(32)nN_{n}=N_{0}^{(\frac{3}{2})^{n}} for nn\in\mathbb{N}. Clearly, Nn+1=Nn32N_{n+1}=N_{n}^{\frac{3}{2}}.

4.1. Iterative reduction

Proposition 4.1.

(Iterative reduction) Assume 𝒮>s0\mathcal{S}>s_{0}, s0s𝒮s_{0}\leq s\leq\mathcal{S}. If there exist τ0>0,N0\tau_{0}>0,N_{0}\in\mathbb{N} large enough such that

N0τ0𝔐R0,γκ(1,s0,b0)γκ1,N_{0}^{\tau_{0}}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}\leq 1, (4.8)

then the following results hold:

(1)n. For all n0n\geq 0, there exists a sequence of operators

n=ωφ+Dn+Rn,Dn=diagjidj(n),dj(n)=dj(0)+rj(n),\mathcal{L}_{n}=\omega\cdot\partial_{\varphi}+D_{n}+R_{n},\quad D_{n}={\rm diag}_{j\in\mathbb{Z}}{\rm i}d_{j}^{(n)},\quad d_{j}^{(n)}=d_{j}^{(0)}+r_{j}^{(n)}, (4.9)

where dj(n),rj(n)d_{j}^{(n)},r_{j}^{(n)} are defined on 𝒪0\mathcal{O}_{0} satisfying

dj(n)=dj(n),rj(n)=rj(n),rj(0)=0,jd_{j}^{(n)}=-d_{-j}^{(n)}\in\mathbb{R},\quad r_{j}^{(n)}=-r_{-j}^{(n)}\in\mathbb{R},\quad r_{j}^{(0)}=0,\quad\forall j\in\mathbb{Z}

and

supjj|rj(n)|γκ,𝒪0Ck2.\sup_{j}\langle j\rangle|r_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq Ck_{2}. (4.10)

The operators RnR_{n} are defined on 𝒪1Ωnγκ\mathcal{O}_{1}\cap\Omega_{n}^{\gamma^{\kappa}}, where Ω0γκ:=𝒪0\Omega_{0}^{\gamma^{\kappa}}:=\mathcal{O}_{0},

Ωnγκ(𝔍):={ωΩn1γκ(𝔍):|ωl+dj(n1)dj(n1)|γκ|jj|lτ,|l|Nn1,j,j,(j,j,l)(j,j,0)},n1\begin{split}\Omega_{n}^{\gamma^{\kappa}}(\mathfrak{J}):=\Big{\{}\omega\in\Omega_{n-1}^{\gamma^{\kappa}}(\mathfrak{J}):&|\omega\cdot l+d_{j}^{(n-1)}-d_{j^{\prime}}^{(n-1)}|\geq\frac{\gamma^{\kappa}|j-j^{\prime}|}{\langle l\rangle^{\tau}},\\ &\forall|l|\leq N_{n-1},j,j^{\prime}\in\mathbb{Z},(j,j^{\prime},l)\neq(j,j,0)\Big{\}},\quad n\geq 1\\ \end{split} (4.11)

and RnR_{n} and φb0Rn\langle\partial_{\varphi}\rangle^{b_{0}}R_{n} are Lip-1-1-modulo-tame satisfying

𝔐Rn,γκ(1,s)𝔐R0,γκ(1,s,b0)Nn1a0,𝔐Rn,γκ(1,s,b0)𝔐R0,γκ(1,s,b0)Nn1.\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})N_{n-1}^{-a_{0}},\quad\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})N_{n-1}. (4.12)

For n1n\geq 1 and jj\in\mathbb{Z}, there holds

j|rj(n)rj(n1)|γκ,𝒪0=j|dj(n)dj(n1)|γκ,𝒪0𝔐R0,γκ(1,s0,b0)Nn2a0.\langle j\rangle|r_{j}^{(n)}-r_{j}^{(n-1)}|^{\gamma^{\kappa},\mathcal{O}_{0}}=\langle j\rangle|d_{j}^{(n)}-d_{j}^{(n-1)}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})N_{n-2}^{-a_{0}}. (4.13)

Meanwhile, Rn,nR_{n},\mathcal{L}_{n} are real and reversible operators.

(2)n. For n1n\geq 1, there exists a real linear bounded invertible Töplitz-in-time map Φn1:=Id+Ψn1\Phi_{n-1}:={\rm{Id}}+\Psi_{n-1} defined on 𝒪1Ωnγκ\mathcal{O}_{1}\cap\Omega_{n}^{\gamma^{\kappa}} such that

n=Φn11n1Φn1.\mathcal{L}_{n}=\Phi_{n-1}^{-1}\mathcal{L}_{n-1}\Phi_{n-1}.

Ψn1\Psi_{n-1} and φb0Ψn1\langle\partial_{\varphi}\rangle^{b_{0}}\Psi_{n-1} are Lip-1-1-modulo-tame satisfying

𝔐Ψn1,γκ(1,s)γκNn12τ+1Nn2a0𝔐R0,γκ(1,s,b0),\mathfrak{M}_{\Psi_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\gamma^{-\kappa}N_{n-1}^{2\tau+1}N_{n-2}^{-a_{0}}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}),
𝔐Ψn1,γκ(1,s,b0)γκNn12τ+1Nn2𝔐R0,γκ(1,s,b0).\mathfrak{M}_{\Psi_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq\gamma^{-\kappa}N_{n-1}^{2\tau+1}N_{n-2}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}).

In addition, for any ωΩnγ1(𝔍1)𝒪1(𝔍1)Ωnγ2(𝔍2)𝒪1(𝔍2)\omega\in\Omega_{n}^{\gamma_{1}}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\Omega_{n}^{\gamma_{2}}(\mathfrak{J}_{2})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) with γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}], it follows that

Dx1/2Δ12Ψn1¯Dx1/2𝔏(Hs0)γκk2Nn12τNn2a0𝔍1𝔍2s0+σ,\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\Psi_{n-1}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq\gamma^{-\kappa}k_{2}N_{n-1}^{2\tau}N_{n-2}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},
Dx1/2φb0Δ12Ψn1¯Dx1/2𝔏(Hs0)γκk2Nn12τNn2𝔍1𝔍2s0+σ.\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}\Psi_{n-1}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq\gamma^{-\kappa}k_{2}N_{n-1}^{2\tau}N_{n-2}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.

Furthermore, Φn1±1\Phi_{n-1}^{\pm 1} and Ψn1\Psi_{n-1} are real and reversibility-preserving.

(3)n. For n0n\geq 0, for any ωΩnγ1(𝔍1)𝒪1(𝔍1)Ωnγ2(𝔍2)𝒪1(𝔍2)\omega\in\Omega_{n}^{\gamma_{1}}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\Omega_{n}^{\gamma_{2}}(\mathfrak{J}_{2})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) with γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}], we have

Dx1/2Δ12Rn¯Dx1/2𝔏(Hs0)k2Nn1a0𝔍1𝔍2s0+σ,Dx1/2φb0Δ12Rn¯Dx1/2𝔏(Hs0)k2Nn1𝔍1𝔍2s0+σ,j|Δ12rj(n)|Ck2𝔍1𝔍2s0+σ,j.\displaystyle\begin{aligned} &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq k_{2}N_{n-1}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\\ &\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq k_{2}N_{n-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\\ &\langle j\rangle|\Delta_{12}r_{j}^{(n)}|\leq Ck_{2}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\quad\forall j\in\mathbb{Z}.\end{aligned} (4.14)

For all n1n\geq 1, jj\in\mathbb{Z}, there holds

j|Δ12rj(n)Δ12rj(n1)|k2Nn2a0𝔍1𝔍2s0+σ.\langle j\rangle|\Delta_{12}r_{j}^{(n)}-\Delta_{12}r_{j}^{(n-1)}|\leq k_{2}N_{n-2}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.

(4)n. Let 0<ρ<γκ/20<\rho<\gamma^{\kappa}/2. For all n0n\geq 0, if k2Nn1τ𝔍1𝔍2s0+σρk_{2}N_{n-1}^{\tau}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\leq\rho, then

Ωnγκ(𝔍1)Ωnγκρ(𝔍2).\Omega_{n}^{\gamma^{\kappa}}(\mathfrak{J}_{1})\subseteq\Omega_{n}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2}).

4.2. Proof of Proposition 4.1

We argue by induction on nn.

Recalling rj(0)=0r_{j}^{(0)}=0, N1:=1N_{-1}:=1 and Ω0γκ=𝒪0\Omega_{0}^{\gamma^{\kappa}}=\mathcal{O}_{0}, the estimates in (1)0 and (3)0 hold. Since m,m0,m2m_{\infty},m_{0},m_{2} are real, it follows from (4.2) that dj(0)d_{j}^{(0)} is real and odd in jj. In (3)0, we note that Ω0γ1(𝔍1)=Ω0γ2(𝔍2)=𝒪0.\Omega_{0}^{\gamma_{1}}(\mathfrak{J}_{1})=\Omega_{0}^{\gamma_{2}}(\mathfrak{J}_{2})=\mathcal{O}_{0}. (4)0 is trivial, because Ω0γκ(𝔍1)=Ω0γκρ(𝔍2)=𝒪0\Omega_{0}^{\gamma^{\kappa}}(\mathfrak{J}_{1})=\Omega_{0}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2})=\mathcal{O}_{0}.

4.2.1. The reducibility step

Now assuming the thesis holds for 0kn0\leq k\leq n, we prove that it holds also for k=n+1k=n+1. First we show how to define Ψn,Φn\Psi_{n},\Phi_{n} and n+1\mathcal{L}_{n+1}. By the assumptions of the induction, we have

nΦn=Φn(ωφ+Dn)\displaystyle\mathcal{L}_{n}\Phi_{n}=\Phi_{n}(\omega\cdot\partial_{\varphi}+D_{n}) +((ωφΨn)+[Dn,Ψn]\displaystyle+\big{(}(\omega\cdot\partial_{\varphi}\Psi_{n})+[D_{n},\Psi_{n}] (4.15)
+ΠNnRn)+ΠNnRn+RnΨn,\displaystyle+\Pi_{N_{n}}R_{n}\big{)}+\Pi_{N_{n}}^{\bot}R_{n}+R_{n}\Psi_{n},

where [Dn,Ψn]=DnΨnΨnDn[D_{n},\Psi_{n}]=D_{n}\Psi_{n}-\Psi_{n}D_{n} and ΠNnRn,ΠNnRn\Pi_{N_{n}}R_{n},\Pi_{N_{n}}^{\bot}R_{n} are defined in Definition 2.3.

Solving the following so-called homological equation

(ωφΨn)+[Dn,Ψn]+ΠNnRn=[Rn],[Rn]:=diagj(Rn)jj(0),(\omega\cdot\partial_{\varphi}\Psi_{n})+[D_{n},\Psi_{n}]+\Pi_{N_{n}}R_{n}=[R_{n}],\quad[R_{n}]:={\rm diag}_{j\in\mathbb{Z}}(R_{n})_{j}^{j}(0), (4.16)

we have

Lemma 4.1.

(Homological equation) For all ωΩn+1γκ𝒪1\omega\in\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1}, there exists a unique solution Ψn\Psi_{n} of the homological equation. Ψn\Psi_{n} and φb0Ψn\langle\partial_{\varphi}\rangle^{b_{0}}\Psi_{n} are Lip-1-1-modulo-tame operators and the modulo-tame constants satisfy

𝔐Ψn,γκ(1,s)CγκNn2τ+1𝔐Rn,γκ(1,s),\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq C\gamma^{-\kappa}N_{n}^{2\tau+1}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s), (4.17)
𝔐φb0Ψn,γκ(1,s)CγκNn2τ+1𝔐Rn,γκ(1,s,b0).\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b_{0}}\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq C\gamma^{-\kappa}N_{n}^{2\tau+1}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}). (4.18)

For any ωΩn+1γ1(𝔍1)𝒪1(𝔍1)Ωn+1γ2(𝔍2)𝒪1(𝔍2)\omega\in\Omega_{n+1}^{\gamma_{1}}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\Omega_{n+1}^{\gamma_{2}}(\mathfrak{J}_{2})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) with γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}], there hold

Dx1/2Δ12Ψn¯Dx1/2𝔏(Hs0)γκNn2τ(Dx1/2Δ12Rn¯Dx1/2𝔏(Hs0)+Dx1/2Rn¯Dx1/2𝔏(Hs0)𝔍1𝔍2s0+σ),\begin{split}\|\langle D_{x}\rangle^{1/2}&\underline{\Delta_{12}\Psi_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ \leq&\gamma^{-\kappa}N_{n}^{2\tau}\big{(}\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\big{)},\\ \end{split} (4.19)
Dx1/2φb0Δ12Ψn¯Dx1/2𝔏(Hs0)γκNn2τ(Dx1/2φb0Δ12Rn¯Dx1/2𝔏(Hs0)+Dx1/2φb0Rn¯Dx1/2𝔏(Hs0)𝔍1𝔍2s0+σ).\begin{split}\|\langle D_{x}\rangle^{1/2}&\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}\Psi_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ \leq&\gamma^{-\kappa}N_{n}^{2\tau}\big{(}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\big{)}.\\ \end{split} (4.20)

Moreover, Φn,Ψn,Φn1\Phi_{n},\Psi_{n},\Phi_{n}^{-1} are real and reversibility-preserving.

Proof.

For ωΩn+1γκ𝒪1\omega\in\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1}, (4.16) is tantamount to the following equation:

iωl(Ψn)jj(l)+idj(n)(Ψn)jj(l)idj(n)(Ψn)jj(l)=([Rn])jj(l)(ΠNnRn)jj(l){\rm i}\omega\cdot l(\Psi_{n})_{j}^{j^{\prime}}(l)+{\rm i}d_{j}^{(n)}(\Psi_{n})_{j}^{j^{\prime}}(l)-{\rm i}d_{j^{\prime}}^{(n)}(\Psi_{n})_{j}^{j^{\prime}}(l)=([R_{n}])_{j}^{j^{\prime}}(l)-(\Pi_{N_{n}}R_{n})_{j}^{j^{\prime}}(l)

whose unique solution is

(Ψn)jj(l):={(Rn)jj(l)i(ωl+dj(n)dj(n)),if|l|Nnand(j,j,l)(j,j,0),0,otherwise.(\Psi_{n})_{j}^{j^{\prime}}(l):=\left\{\begin{array}[]{ll}\frac{-(R_{n})_{j}^{j^{\prime}}(l)}{{\rm i}(\omega\cdot l+d_{j}^{(n)}-d_{j^{\prime}}^{(n)})},&{\rm if}\ |l|\leq N_{n}\ {\rm and}\ (j,j^{\prime},l)\neq(j,j,0),\\ 0,&{\rm otherwise}.\\ \end{array}\right. (4.21)

Note that for all ωΩn+1γκ\omega\in\Omega_{n+1}^{\gamma^{\kappa}}, the divisors are nontrivial, so the above formula is well defined.

In the following, we only prove the case of |l|Nnand(j,j,l)(j,j,0)|l|\leq N_{n}\ {\rm and}\ (j,j^{\prime},l)\neq(j,j,0), the result holds for the other cases obviously.

It follows from (4.21) that

|(Ψn)jj(l)|γκNnτ|(Rn)jj(l)|.|(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq\gamma^{-\kappa}N_{n}^{\tau}|(R_{n})_{j}^{j^{\prime}}(l)|.

For any ω,ωΩn+1γκ𝒪1\omega,\omega^{\prime}\in\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1},

(Ψn)jj(l)(ω)(Ψn)jj(l)(ω)=(Rn)jj(l)(ω)(Rn)jj(l)(ω)i(ωl+dj(n)(ω)dj(n)(ω))+i(Rn)jj(l)(ω)(ωω)l(dj(n)dj(n))(ω)+(dj(n)dj(n))(ω)(ωl+dj(n)(ω)dj(n)(ω))(ωl+dj(n)(ω)dj(n)(ω)).\begin{split}(\Psi_{n})_{j}^{j^{\prime}}(l)(\omega)-&(\Psi_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})=-\frac{(R_{n})_{j}^{j^{\prime}}(l)(\omega)-(R_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})}{{\rm i}(\omega\cdot l+d_{j}^{(n)}(\omega)-d_{j^{\prime}}^{(n)}(\omega))}\\ &+{\rm i}(R_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})\frac{(\omega^{\prime}-\omega)\cdot l-(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\omega)+(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\omega^{\prime})}{(\omega\cdot l+d_{j}^{(n)}(\omega)-d_{j^{\prime}}^{(n)}(\omega))(\omega^{\prime}\cdot l+d_{j}^{(n)}(\omega^{\prime})-d_{j^{\prime}}^{(n)}(\omega^{\prime}))}.\\ \end{split}

Using ||lip,𝒪γ1||γ,𝒪|\cdot|^{lip,\mathcal{O}}\leq\gamma^{-1}|\cdot|^{\gamma,\mathcal{O}}, (4.3) and (4.10), we obtain

|(ωω)l(dj(n)dj(n))(ω)+(dj(n)dj(n))(ω)||ωω||l|+|m(ω)m(ω)||jj|+|rj(n)(ω)rj(n)(ω)|+|rj(n)(ω)rj(n)(ω)||ωω|(|l|+k1γ1|jj|+k2γκ).\begin{split}|(\omega^{\prime}-\omega)\cdot l&-(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\omega)+(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\omega^{\prime})|\\ \leq&|\omega-\omega^{\prime}||l|+|m_{\infty}(\omega)-m_{\infty}(\omega^{\prime})||j-j^{\prime}|+|r_{j}^{(n)}(\omega)-r_{j}^{(n)}(\omega^{\prime})|\\ &\qquad+|r_{j^{\prime}}^{(n)}(\omega)-r_{j^{\prime}}^{(n)}(\omega^{\prime})|\\ \leq&|\omega-\omega^{\prime}|(|l|+k_{1}\gamma^{-1}|j-j^{\prime}|+k_{2}\gamma^{-\kappa}).\\ \end{split}

From (4.1), we derive that

|Δω,ω(Ψn)jj(l)|γκNnτ|Δω,ω(Rn)jj(l)|+(|l|+|jj|)l2τγ2κ|jj|2|(Rn)jj(l)(ω)|γκNnτ|Δω,ω(Rn)jj(l)|+γ2κNn2τ+1|(Rn)jj(l)(ω)|.\begin{split}|\Delta_{\omega,\omega^{\prime}}(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq&\gamma^{-\kappa}N_{n}^{\tau}|\Delta_{\omega,\omega^{\prime}}(R_{n})_{j}^{j^{\prime}}(l)|+(|l|+|j-j^{\prime}|)\frac{\langle l\rangle^{2\tau}}{\gamma^{2\kappa}|j-j^{\prime}|^{2}}|(R_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})|\\ \leq&\gamma^{-\kappa}N_{n}^{\tau}|\Delta_{\omega,\omega^{\prime}}(R_{n})_{j}^{j^{\prime}}(l)|+\gamma^{-2\kappa}N_{n}^{2\tau+1}|(R_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})|.\\ \end{split}

Then we obtain (4.17) after using Lemma 2.4.

Similarly, it follows that

|(φb0Ψn)jj(l)|=|lb0(Ψn)jj(l)|Nnτγκ|jj||lb0(Rn)jj(l)|Nnτγκ|(φb0Rn)jj(l)|\begin{split}|(\langle\partial_{\varphi}\rangle^{b_{0}}\Psi_{n})_{j}^{j^{\prime}}(l)|&=|\langle l\rangle^{b_{0}}(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq\frac{N_{n}^{\tau}\gamma^{-\kappa}}{|j-j^{\prime}|}|\langle l\rangle^{b_{0}}(R_{n})_{j}^{j^{\prime}}(l)|\\ &\leq N_{n}^{\tau}\gamma^{-\kappa}|(\langle\partial_{\varphi}\rangle^{b_{0}}R_{n})_{j}^{j^{\prime}}(l)|\\ \end{split}

and

lb0|Δω,ω(Ψn)jj(l)|γκNnτlb0|Δω,ω(Rn)jj(l)|+γ2κNn2τ+1lb0|(Rn)jj(l)(ω)|.\begin{split}\langle l\rangle^{b_{0}}|\Delta_{\omega,\omega^{\prime}}(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq\gamma^{-\kappa}N_{n}^{\tau}\langle l\rangle^{b_{0}}|\Delta_{\omega,\omega^{\prime}}(R_{n})_{j}^{j^{\prime}}(l)|+\gamma^{-2\kappa}N_{n}^{2\tau+1}\langle l\rangle^{b_{0}}|(R_{n})_{j}^{j^{\prime}}(l)(\omega^{\prime})|.\end{split}

Thus, we derive (4.18) from Lemma 2.4.

In addition, for any ωΩn+1γ1(𝔍1)𝒪1(𝔍1)Ωn+1γ2(𝔍2)𝒪1(𝔍2)\omega\in\Omega_{n+1}^{\gamma_{1}}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\Omega_{n+1}^{\gamma_{2}}(\mathfrak{J}_{2})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) with γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}], we have

Δ12(Ψn)jj(l)=Δ12(Rn)jj(l)i(ωl+dj(n)(𝔍1)dj(n)(𝔍1))+i(Rn)jj(l)(𝔍2)((dj(n)dj(n))(𝔍1))+((dj(n)dj(n))(𝔍2))(ωl+dj(n)(𝔍1)dj(n)(𝔍1))(ωl+dj(n)(𝔍2)dj(n)(𝔍2)).\begin{split}&\Delta_{12}(\Psi_{n})_{j}^{j^{\prime}}(l)\\ &=-\frac{\Delta_{12}(R_{n})_{j}^{j^{\prime}}(l)}{{\rm i}(\omega\cdot l+d_{j}^{(n)}(\mathfrak{J}_{1})-d_{j^{\prime}}^{(n)}(\mathfrak{J}_{1}))}\\ &\quad+{\rm i}(R_{n})_{j}^{j^{\prime}}(l)(\mathfrak{J}_{2})\frac{-\left((d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\mathfrak{J}_{1})\right)+\left((d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\mathfrak{J}_{2})\right)}{(\omega\cdot l+d_{j}^{(n)}(\mathfrak{J}_{1})-d_{j^{\prime}}^{(n)}(\mathfrak{J}_{1}))(\omega\cdot l+d_{j}^{(n)}(\mathfrak{J}_{2})-d_{j^{\prime}}^{(n)}(\mathfrak{J}_{2}))}.\\ \end{split}

In view of (4.1), (4.6) and (4.14), we obtain

|Δ12(dj(n)dj(n))||Δ12(dj(0)dj(0))|+|Δ12rj(n)|+|Δ12rj(n)||Δ12m||jj|+|Δ12rj(n)|+|Δ12rj(n)|(k1|jj|+k2)𝔍1𝔍2s0+σk2|jj|𝔍1𝔍2s0+σ.\begin{split}|\Delta_{12}(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})|\leq&|\Delta_{12}(d_{j}^{(0)}-d_{j^{\prime}}^{(0)})|+|\Delta_{12}r_{j}^{(n)}|+|\Delta_{12}r_{j^{\prime}}^{(n)}|\\ \leq&|\Delta_{12}m_{\infty}||j-j^{\prime}|+|\Delta_{12}r_{j}^{(n)}|+|\Delta_{12}r_{j^{\prime}}^{(n)}|\\ \leq&(k_{1}|j-j^{\prime}|+k_{2})\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\leq k_{2}|j-j^{\prime}|\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\\ \end{split} (4.22)

Therefore

|Δ12(Ψn)jj(l)|γκNnτ|Δ12(Rn)jj(l)|+k2|(Rn)jj(l)|γ2κNn2τ𝔍1𝔍2s0+σ|\Delta_{12}(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq\gamma^{-\kappa}N_{n}^{\tau}|\Delta_{12}(R_{n})_{j}^{j^{\prime}}(l)|+k_{2}|(R_{n})_{j}^{j^{\prime}}(l)|\gamma^{-2\kappa}N_{n}^{2\tau}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}

by noticing that γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}]. As a consequence of Lemma 2.4 and (4.1), (4.19) is satisfied.

In the same manner, we obtain

|lb0Δ12(Ψn)jj(l)|γκNnτ|lb0Δ12(Rn)jj(l)|+k2|lb0(Rn)jj(l)|γ2κNn2τ𝔍1𝔍2s0+σ.\begin{split}|\langle l\rangle^{b_{0}}\Delta_{12}(\Psi_{n})_{j}^{j^{\prime}}(l)|\leq&\gamma^{-\kappa}N_{n}^{\tau}|\langle l\rangle^{b_{0}}\Delta_{12}(R_{n})_{j}^{j^{\prime}}(l)|\\ &+k_{2}|\langle l\rangle^{b_{0}}(R_{n})_{j}^{j^{\prime}}(l)|\gamma^{-2\kappa}N_{n}^{2\tau}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\\ \end{split}

Thus (4.20) holds.

Finally, since dj(n),dj(n)d_{j}^{(n)},d_{j^{\prime}}^{(n)} are real, dj(n)=dj(n)d_{j}^{(n)}=-d_{-j}^{(n)}, dj(n)=dj(n)d_{j^{\prime}}^{(n)}=-d_{-j^{\prime}}^{(n)} and RnR_{n} is real, we have

(Ψn)jj(l)=(Rn)jj(l)i(ω(l)+dj(n)dj(n))=(Rn)jj(l)i(ωl+dj(n)dj(n))¯=(Ψn)jj(l)¯,(\Psi_{n})_{-j}^{-j^{\prime}}(-l)=\frac{-(R_{n})_{-j}^{-j^{\prime}}(-l)}{{\rm i}(\omega\cdot(-l)+d_{-j}^{(n)}-d_{-j^{\prime}}^{(n)})}=\overline{\frac{-(R_{n})_{j}^{j^{\prime}}(l)}{{\rm i}(\omega\cdot l+d_{j}^{(n)}-d_{j^{\prime}}^{(n)})}}=\overline{(\Psi_{n})_{j}^{j^{\prime}}(l)},

which implies that Ψn\Psi_{n} is real.

Since RnR_{n} is reversible,

(Ψn)jj(l)=(Rn)jj(l)i(ω(l)+dj(n)dj(n))=(Rn)jj(l)i(ωl+dj(n)dj(n))=(Ψn)jj(l),(\Psi_{n})_{-j}^{-j^{\prime}}(-l)=\frac{-(R_{n})_{-j}^{-j^{\prime}}(-l)}{{\rm i}(\omega\cdot(-l)+d_{-j}^{(n)}-d_{-j^{\prime}}^{(n)})}=\frac{(R_{n})_{j}^{j^{\prime}}(l)}{-{\rm i}(\omega\cdot l+d_{j}^{(n)}-d_{j^{\prime}}^{(n)})}=(\Psi_{n})_{j}^{j^{\prime}}(l),

Ψn\Psi_{n} is reversibility-preserving. Whence Φn,Φn1\Phi_{n},\Phi_{n}^{-1} are real and reversibility-preserving as well. ∎

4.2.2. The iteration

(2)n+1(2)_{n+1}. From (4.17) and (4.12), we derive that

𝔐Ψn,γκ(1,s)γκNn2τ+1Nn1a0𝔐R0,γκ(1,s,b0),𝔐Ψn,γκ(1,s,b0)γκNn2τ+1Nn1𝔐R0,γκ(1,s,b0).\displaystyle\begin{aligned} &\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}),\\ &\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}).\end{aligned} (4.23)

By Lemma 2.3, (4.5), (4.12), (4.14) and (4.19)-(4.20), we deduce that

Dx1/2Δ12Ψn¯Dx1/2𝔏(Hs0)γκk2Nn2τNn1a0𝔍1𝔍2s0+σ,Dx1/2φb0Δ12Ψn¯Dx1/2𝔏(Hs0)γκk2Nn2τNn1𝔍1𝔍2s0+σ.\displaystyle\begin{aligned} &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\Psi_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq\gamma^{-\kappa}k_{2}N_{n}^{2\tau}N_{n-1}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\\ &\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}\Psi_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq\gamma^{-\kappa}k_{2}N_{n}^{2\tau}N_{n-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\end{aligned} (4.24)

Due to (4.4), (4.8) and (4.23), it follows that

4C(𝒮,b0)𝔐Ψn,γκ(1,s0)1/2.4C(\mathcal{S},b_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\leq 1/2. (4.25)

Appling Lemma 2.6 to Ψn\Psi_{n}, the map Φn=1+Ψn\Phi_{n}=1+\Psi_{n} is invertible and

𝔐Φn1,γκ(1,s0)2,𝔐Φn1,γκ(1,s)1+2𝔐Ψn,γκ(1,s).\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\leq 2,\quad\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq 1+2\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s). (4.26)

In the following, we denote Ψ˘n=Φn1Id\breve{\Psi}_{n}=\Phi_{n}^{-1}-{\rm Id}. According to Lemma 4.1, Ψn\Psi_{n} is real and reversibility-preserving. Therefore, Φn±1\Phi_{n}^{\pm 1} are real and reversibility-preserving as well.

(1)n+1(1)_{n+1}. Recalling (4.15), for ωΩn+1γκ𝒪1\omega\in\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1}, we define that

n+1:=Φn1nΦn=ωφ+Dn+1+Rn+1,\mathcal{L}_{n+1}:=\Phi_{n}^{-1}\mathcal{L}_{n}\Phi_{n}=\omega\cdot\partial_{\varphi}+D_{n+1}+R_{n+1},

where

Dn+1:=Dn+[Rn],Rn+1:=Φn1(ΠNnRn+RnΨnΨn[Rn]).D_{n+1}:=D_{n}+[R_{n}],\quad R_{n+1}:=\Phi_{n}^{-1}(\Pi_{N_{n}}^{\bot}R_{n}+R_{n}\Psi_{n}-\Psi_{n}[R_{n}]). (4.27)

The fact that RnR_{n} is real and reversible implies that

(Rn)jj(0)¯=(Rn)jj(0)=(Rn)jj(0),\overline{(R_{n})_{j}^{j}(0)}=(R_{n})_{-j}^{-j}(0)=-(R_{n})_{j}^{j}(0),

from which we derive that (Rn)jj(0)(R_{n})_{j}^{j}(0) is purely imaginary and odd in jj. By the Kirszbraun theorem, (Rn)jj(0)(R_{n})_{j}^{j}(0) can be extended to the whole 𝒪0\mathcal{O}_{0} preserving Lipschitz weighted norm ||γκ,Ωn+1γκ𝒪1|\cdot|^{\gamma^{\kappa},\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1}}. The extended function will be denoted by (R~n)jj(0)(\tilde{R}_{n})_{j}^{j}(0). (R~n)jj(0)(\tilde{R}_{n})_{j}^{j}(0) is purely imaginary and odd in jj as well. We define

Dn+1:=diagjidj(n+1),dj(n+1):=dj(n)+1i(R~n)jj(0)=dj(0)+rj(n)+1i(R~n)jj(0)=dj(0)+rj(n+1),rj(n+1):=rj(n)+1i(R~n)jj(0).\begin{split}D_{n+1}:=&\;{\rm diag}_{j\in\mathbb{Z}}{\rm i}d_{j}^{(n+1)},\\ d_{j}^{(n+1)}:=&\;d_{j}^{(n)}+\frac{1}{{\rm i}}(\tilde{R}_{n})_{j}^{j}(0)=d_{j}^{(0)}+r_{j}^{(n)}+\frac{1}{{\rm i}}(\tilde{R}_{n})_{j}^{j}(0)=d_{j}^{(0)}+r_{j}^{(n+1)},\\ r_{j}^{(n+1)}:=&\;r_{j}^{(n)}+\frac{1}{{\rm i}}(\tilde{R}_{n})_{j}^{j}(0).\\ \end{split} (4.28)

By inductive hypothesis, rj(n+1),dj(n+1)r_{j}^{(n+1)},d_{j}^{(n+1)} are real and odd in jj.

In view of Lemma 2.8, (4.12) and (4.28), it follows that

j|rj(n+1)rj(n)|γκ,𝒪0=j|dj(n+1)dj(n)|γκ,𝒪0=j|(R~n)jj(0)|γκ,𝒪0=j|(Rn)jj(0)|γκ,Ωn+1γκ𝒪1𝔐Rn,γκ(1,s0)𝔐R0,γκ(1,s0,b0)Nn1a0,j.\begin{split}\langle j\rangle|r_{j}^{(n+1)}-r_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}&=\langle j\rangle|d_{j}^{(n+1)}-d_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}=\langle j\rangle|(\tilde{R}_{n})_{j}^{j}(0)|^{\gamma^{\kappa},\mathcal{O}_{0}}\\ &=\langle j\rangle|(R_{n})_{j}^{j}(0)|^{\gamma^{\kappa},\Omega_{n+1}^{\gamma^{\kappa}}\cap\mathcal{O}_{1}}\leq\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\\ &\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})N_{n-1}^{-a_{0}},\quad\forall j\in\mathbb{Z}.\\ \end{split}

Note that rj(0)=0r_{j}^{(0)}=0. Summing the telescopic series, (4.10) follows by (4.5) for rj(n+1)r_{j}^{(n+1)} instead of rj(n)r_{j}^{(n)}. Moreover, n+1\mathcal{L}_{n+1} is real and reversible since n\mathcal{L}_{n} is real and reversible and Φn±1\Phi_{n}^{\pm 1} are reversibility-preserving. Rn+1R_{n+1} is real because all the components in (4.27) are real. Also it is reversible because Rn,[Rn],ΠNnRnR_{n},[R_{n}],\Pi_{N_{n}}^{\bot}R_{n} are reversible and Φn1,Ψn\Phi_{n}^{-1},\Psi_{n} are reversibility-preserving.

Let us establish the estimates (4.12) for Rn+1R_{n+1}. Owing to (4.17), (4.25)-(4.27), Lemma 2.5 and Lemmas 2.7-2.8, we have

𝔐Rn+1,γκ(1,s)\displaystyle\mathfrak{M}_{R_{n+1}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq 𝔐ΠNnRn,γκ(1,s)+𝔐Rn,γκ(1,s)𝔐Ψn,γκ(1,s0)\displaystyle\mathfrak{M}_{\Pi_{N_{n}}^{\bot}R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})
+𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s)+(1+𝔐Ψn,γκ(1,s))\displaystyle+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)+\left(1+\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\right)
×(𝔐ΠNnRn,γκ(1,s0)+𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s0))\displaystyle\times\left(\mathfrak{M}_{\Pi_{N_{n}}^{\bot}R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\right)
\displaystyle\leq 𝔐ΠNnRn,γκ(1,s)+𝔐Rn,γκ(1,s)𝔐Ψn,γκ(1,s0)\displaystyle\mathfrak{M}_{\Pi_{N_{n}}^{\bot}R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})
+𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s)\displaystyle+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)
\displaystyle\leq Nnb0𝔐Rn,γκ(1,s,b0)+Nn2τ+1γκ𝔐Rn,γκ(1,s)𝔐Rn,γκ(1,s0).\displaystyle N_{n}^{-b_{0}}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})+N_{n}^{2\tau+1}\gamma^{-\kappa}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0}).

Note that the iterative terms are quadratic plus a super-exponentially small term. By (4.4), (4.8) and (4.12), one gets

𝔐Rn+1,γκ(1,s)𝔐R0,γκ(1,s,b0)Nna0.\mathfrak{M}_{R_{n+1}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})N_{n}^{-a_{0}}.

In order to obtain the estimates for 𝔐φb0Rn+1,γκ(1,s)\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b_{0}}R_{n+1}}^{\sharp,\gamma^{\kappa}}(-1,s), we make some preparations at first. Exploiting (4.8), (4.12) and (4.17)-(4.18), we obtain

𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s)𝔐Rn,γκ(1,s),𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s,b0)𝔐Rn,γκ(1,s,b0),𝔐Rn,γκ(1,s0,b0)𝔐Ψn,γκ(1,s)Nn2τ+1γκ𝔐Rn,γκ(1,s0,b0)𝔐Rn,γκ(1,s),𝔐Rn,γκ(1,s)𝔐Ψn,γκ(1,s0,b0)Nn2τ+1γκ𝔐Rn,γκ(1,s0,b0)𝔐Rn,γκ(1,s).\begin{split}&\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s),\\ &\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0}),\\ &\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq N_{n}^{2\tau+1}\gamma^{-\kappa}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s),\\ &\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\leq N_{n}^{2\tau+1}\gamma^{-\kappa}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s).\\ \end{split} (4.29)

Notice that φb0Φn1=1+φb0Ψˇn,\langle\partial_{\varphi}\rangle^{b_{0}}\Phi_{n}^{-1}=1+\langle\partial_{\varphi}\rangle^{b_{0}}\check{\Psi}_{n}, φb0ΠNnRn=ΠNnφb0Rn\langle\partial_{\varphi}\rangle^{b_{0}}\Pi_{N_{n}}^{\bot}R_{n}=\Pi_{N_{n}}^{\bot}\langle\partial_{\varphi}\rangle^{b_{0}}R_{n}. Using Lemmas 2.5-2.7, (4.8), (4.12), (4.25)-(4.26) and (4.29), we have

𝔐φb0Rn+1,γκ(1,s)𝔐φb0Φn1,γκ(1,s)𝔐Rn,γκ(1,s0)+𝔐φb0Φn1,γκ(1,s0)𝔐Rn,γκ(1,s)+𝔐Φn1,γκ(1,s0)(𝔐Rn,γκ(1,s,b0)+Nn2τ+1γκ𝔐Rn,γκ(1,s0,b0)𝔐Rn,γκ(1,s))+𝔐Φn1,γκ(1,s)𝔐Rn,γκ(1,s0,b0)𝔐R0,γκ(1,s,b0)Nn1+𝔐R0,γκ(1,s,b0)𝔐R0,γκ(1,s,b0)Nn.\begin{split}&\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b_{0}}R_{n+1}}^{\sharp,\gamma^{\kappa}}(-1,s)\\ &\leq\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b_{0}}\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})+\mathfrak{M}_{\langle\partial_{\varphi}\rangle^{b_{0}}\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\\ &+\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\left(\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})+N_{n}^{2\tau+1}\gamma^{-\kappa}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\right)\\ &+\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\\ &\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})N_{n-1}+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})N_{n}.\\ \end{split}

(3)n+1(3)_{n+1}. For any ωΩn+1γ1(𝔍1)𝒪1(𝔍1)Ωn+1γ2(𝔍2)𝒪1(𝔍2)\omega\in\Omega_{n+1}^{\gamma_{1}}(\mathfrak{J}_{1})\cap\mathcal{O}_{1}(\mathfrak{J}_{1})\cap\Omega_{n+1}^{\gamma_{2}}(\mathfrak{J}_{2})\cap\mathcal{O}_{1}(\mathfrak{J}_{2}) with γ1,γ2[γκ/2,2γκ]\gamma_{1},\gamma_{2}\in[\gamma^{\kappa}/2,2\gamma^{\kappa}], in view of Lemma 2.8, (4.14) and (4.28), it follows that

j|Δ12rj(n+1)Δ12rj(n)|=j|Δ12(Rn)jj(0)|Dx1/2Δ12Rn¯Dx1/2𝔏(Hs0)k2Nn1a0𝔍1𝔍2s0+σ,j.\begin{split}\langle j\rangle|\Delta_{12}r_{j}^{(n+1)}-\Delta_{12}r_{j}^{(n)}|&=\langle j\rangle|\Delta_{12}(R_{n})_{j}^{j}(0)|\leq\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ &\leq k_{2}N_{n-1}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\quad\forall j\in\mathbb{Z}.\\ \end{split}

Recall that rj(0)=0r_{j}^{(0)}=0. Summing all the terms above, one obtains

j|Δ12rj(n+1)|k=0nj|Δ12rj(k+1)Δ12rj(k)|k2𝔍1𝔍2s0+σ,j.\langle j\rangle|\Delta_{12}r_{j}^{(n+1)}|\leq\sum_{k=0}^{n}\langle j\rangle|\Delta_{12}r_{j}^{(k+1)}-\Delta_{12}r_{j}^{(k)}|\leq k_{2}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\quad\forall j\in\mathbb{Z}.

By Lemma 2.3 and (4.23), provided that N0N_{0} is large enough, the smallness condition in Lemma 2.10 is satisfied. Therefore by Lemmas 2.3, 2.6, 2.10, (4.8) and (4.23)-(4.25), we have

Dx1/2Δ12Ψ˘n¯Dx1/2(Hs0)Nn2τNn1a0k2γκ𝔍1𝔍2s0+σ,Dx1/2φb0Δ12Ψ˘n¯Dx1/2(Hs0)Nn2τNn1k2γκ𝔍1𝔍2s0+σ.\displaystyle\begin{aligned} &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\breve{\Psi}_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq N_{n}^{2\tau}N_{n-1}^{-a_{0}}k_{2}\gamma^{-\kappa}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma},\\ &\|\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b_{0}}\underline{\Delta_{12}\breve{\Psi}_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\leq N_{n}^{2\tau}N_{n-1}k_{2}\gamma^{-\kappa}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\end{aligned} (4.30)

From (4.27), we derive that

Δ12Rn+1=Δ12Ψ˘n(ΠNnRn+RnΨnΨn[Rn])+Φn1(ΠNnΔ12Rn+Δ12RnΨn+RnΔ12ΨnΔ12Ψn[Rn]ΨnΔ12[Rn]).\begin{split}\Delta_{12}R_{n+1}=&\Delta_{12}\breve{\Psi}_{n}(\Pi_{N_{n}}^{\bot}R_{n}+R_{n}\Psi_{n}-\Psi_{n}[R_{n}])+{\Phi}_{n}^{-1}\cdot\bigg{(}\Pi_{N_{n}}^{\bot}\Delta_{12}R_{n}\\ &+\Delta_{12}R_{n}\Psi_{n}+R_{n}\Delta_{12}\Psi_{n}-\Delta_{12}\Psi_{n}[R_{n}]-\Psi_{n}\Delta_{12}[R_{n}]\bigg{)}.\\ \end{split}

By Lemmas 2.3, 2.6-2.9, (4.4), (4.8), (4.12), (4.14), (4.23)-(4.24), (4.26) and (4.30), one gets

Dx1/2Δ12Rn+1¯Dx1/2𝔏(Hs0)Dx1/2Δ12Ψ˘n¯Dx1/2𝔏(Hs0)(Nnb0𝔐Rn,γκ(1,s0,b0)+𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s0))+𝔐Φn1,γκ(1,s0)(Nnb0Dx1/2φb0Δ12Rn¯Dx1/2(Hs0)+Dx1/2Δ12Rn¯Dx1/2(Hs0)𝔐Ψn,γκ(1,s0)+Dx1/2Δ12Ψn¯Dx1/2(Hs0)𝔐Rn,γκ(1,s0))(k2Nn1Nnb0+k2γκNn2τ+1𝔐R0,γκ(1,s0,b0)Nn12a0)𝔍1𝔍2s0+σk2Nna0𝔍1𝔍2s0+σ\begin{split}\|\langle D_{x}\rangle^{1/2}&\underline{\Delta_{12}R_{n+1}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ \leq&\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\breve{\Psi}_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\cdot\Big{(}N_{n}^{-b_{0}}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\\ &+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\Big{)}\\ &+\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\cdot\Big{(}N_{n}^{-b_{0}}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\cdot\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\\ &+\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\Psi_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\cdot\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\Big{)}\\ \leq&\big{(}k_{2}N_{n-1}N_{n}^{-b_{0}}+k_{2}\gamma^{-\kappa}N_{n}^{2\tau+1}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})N_{n-1}^{-2a_{0}}\big{)}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\\ \leq&k_{2}N_{n}^{-a_{0}}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\\ \end{split}

and

Dx1/2φb0Δ12Rn+1¯Dx1/2𝔏(Hs0)Dx1/2φb0Δ12Ψ˘n¯Dx1/2(Hs0)(Nnb0𝔐Rn,γκ(1,s0,b0)+𝔐Rn,γκ(1,s0)𝔐Ψn,γκ(1,s0))+Dx1/2Δ12Ψ˘n¯Dx1/2(Hs0)×(𝔐Rn,γκ(1,s0,b0)+Dx1/2φb0(RnΨn)¯Dx1/2𝔏(Hs0))+𝔐Φn1,γκ(1,s0,b0)(Nnb0Dx1/2φb0Δ12Rn¯Dx1/2(Hs0)+Dx1/2(Δ12RnΨn+Δ12ΨnRn¯)Dx1/2𝔏(Hs0))+𝔐Φn1,γκ(1,s0)(Dx1/2φb0Δ12Rn¯Dx1/2𝔏(Hs0)+Dx1/2φb0(Δ12RnΨn+Δ12ΨnRn)¯Dx1/2𝔏(Hs0))k2b0Nn1(1+𝔐R0,γκ(1,s0,b0)γκNn2τ+1Nn1a0)𝔍1𝔍2s0+σk2Nn𝔍1𝔍2s0+σ.\begin{split}\|\langle D_{x}\rangle^{1/2}&\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n+1}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ \leq&\|\langle D_{x}\rangle^{1/2}\langle\partial_{\varphi}\rangle^{b_{0}}\underline{\Delta_{12}\breve{\Psi}_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\cdot\Big{(}N_{n}^{-b_{0}}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\\ &+\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\Big{)}+\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\breve{\Psi}_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &\times\big{(}\mathfrak{M}_{R_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}(R_{n}\Psi_{n})}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\big{)}\\ &+\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\cdot\big{(}N_{n}^{-b_{0}}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathcal{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}(\underline{\Delta_{12}R_{n}\Psi_{n}+\Delta_{12}\Psi_{n}R_{n}})\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\big{)}\\ &+\mathfrak{M}_{\Phi_{n}^{-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\cdot\big{(}\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{n}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ &+\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}(\Delta_{12}R_{n}\Psi_{n}+\Delta_{12}\Psi_{n}R_{n})}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\big{)}\\ \leq&{}_{b_{0}}k_{2}N_{n-1}\big{(}1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\big{)}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\\ \leq&k_{2}N_{n}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}.\\ \end{split}

(4)n+1(4)_{n+1}. Assume that ωΩn+1γκ(𝔍1)\omega\in\Omega_{n+1}^{\gamma^{\kappa}}(\mathfrak{J}_{1}) and

k2Nnτ𝔍1𝔍2s0+σρ,0<ρ<γκ/2.k_{2}N_{n}^{\tau}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\leq\rho,\quad 0<\rho<\gamma^{\kappa}/2. (4.31)

We claim that ωΩn+1γκρ(𝔍2).\omega\in\Omega_{n+1}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2}). From (4.11) it follows that

Ωn+1γκ(𝔍1)Ωnγκ(𝔍1).\Omega_{n+1}^{\gamma^{\kappa}}(\mathfrak{J}_{1})\subseteq\Omega_{n}^{\gamma^{\kappa}}(\mathfrak{J}_{1}).

By the above inductive hypothesis, we also have

Ωnγκ(𝔍1)Ωnγκρ(𝔍2).\Omega_{n}^{\gamma^{\kappa}}(\mathfrak{J}_{1})\subseteq\Omega_{n}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2}).

Since ρ<γκ/2\rho<\gamma^{\kappa}/2 implies γκρ>γκ/2\gamma^{\kappa}-\rho>\gamma^{\kappa}/2, we have

ωΩnγκρ(𝔍2)Ωnγκ/2(𝔍2).\omega\in\Omega_{n}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2})\subseteq\Omega_{n}^{\gamma^{\kappa}/2}(\mathfrak{J}_{2}).

Altogether,

ωΩnγκ(𝔍1)Ωnγκ/2(𝔍2).\omega\in\Omega_{n}^{\gamma^{\kappa}}(\mathfrak{J}_{1})\cap\Omega_{n}^{\gamma^{\kappa}/2}(\mathfrak{J}_{2}).

For all |l|Nn,jj|l|\leq N_{n},j\neq j^{\prime}, from (4.22) and (4.31), it follows that

|ωl+dj(n)(𝔍2)dj(n)(𝔍2)||ωl+dj(n)(𝔍1)dj(n)(𝔍1)||(dj(n)dj(n))(𝔍2)(dj(n)dj(n))(𝔍1)|γκ|jj|lτk2|jj|𝔍1𝔍2s0+σ(γκρ)|jj|lτ.\begin{split}|\omega\cdot l+d_{j}^{(n)}(\mathfrak{J}_{2})-d_{j^{\prime}}^{(n)}(\mathfrak{J}_{2})|\geq&|\omega\cdot l+d_{j}^{(n)}(\mathfrak{J}_{1})-d_{j^{\prime}}^{(n)}(\mathfrak{J}_{1})|\\ &-|(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\mathfrak{J}_{2})-(d_{j}^{(n)}-d_{j^{\prime}}^{(n)})(\mathfrak{J}_{1})|\\ \geq&\gamma^{\kappa}|j-j^{\prime}|\langle l\rangle^{-\tau}-k_{2}|j-j^{\prime}|\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\sigma}\\ \geq&(\gamma^{\kappa}-\rho)|j-j^{\prime}|\langle l\rangle^{-\tau}.\\ \end{split}

Hence we conclude that ωΩn+1γκρ(𝔍2)\omega\in\Omega_{n+1}^{\gamma^{\kappa}-\rho}(\mathfrak{J}_{2}).

4.3. Diagonalization theorem

Theorem 4.1.

(Diagonalization) Assume 𝒮>s0\mathcal{S}>s_{0}. There exist μ3μ2\mu_{3}\geq\mu_{2} where μ2\mu_{2} is given in Theorem 3.1, N0,τ0>0N_{0}\in\mathbb{N},\tau_{0}>0 such that if 𝔍\mathfrak{J} satisfies the small condition in (1.9) with μ=μ3\mu=\mu_{3} and

N0τ0εγ1κ1,κ>1.N_{0}^{\tau_{0}}\varepsilon\gamma^{-1-\kappa}\leq 1,\quad\kappa>1. (4.32)

Then the following results hold:

(1). For jj\in\mathbb{Z}, there exists a sequence

dj=dj(0)+rj,dj(0):=mj(m0+m2)j1+j2,rj=rjd_{j}^{\infty}=d_{j}^{(0)}+r_{j}^{\infty},\quad d_{j}^{(0)}:=m_{\infty}j-\frac{(m_{0}+m_{2})j}{1+j^{2}},\quad r_{j}^{\infty}=-r_{-j}^{\infty}\in\mathbb{R} (4.33)

where rj=rj(ω,𝔍)r_{j}^{\infty}=r_{j}^{\infty}(\omega,\mathfrak{J}) depends on ω\omega in a Lipschitz way satisfying

supjj|rj|γκ,𝒪0Cεγ1.\sup_{j}\langle j\rangle|r_{j}^{\infty}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq C\varepsilon\gamma^{-1}. (4.34)

(2). For all ω𝒪:=𝒪1𝒪2\omega\in\mathcal{O}_{\infty}:=\mathcal{O}_{1}\cap\mathcal{O}_{2}, where 𝒪1\mathcal{O}_{1} is defined in (3.10) and

𝒪2:={ω𝒪0:|ωl+djdj|2γκ|jj|lτ,lν,j,j,(j,j,l)(j,j,0)},\begin{split}\mathcal{O}_{2}:=\Big{\{}\omega\in\mathcal{O}_{0}:&|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|\geq\frac{2\gamma^{\kappa}|j-j^{\prime}|}{\langle l\rangle^{\tau}},\\ &\quad\forall l\in\mathbb{Z}^{\nu},j,j^{\prime}\in\mathbb{Z},(j,j^{\prime},l)\neq(j,j,0)\Big{\}},\\ \end{split}

there exists a linear bounded Töplitz-in-time transformation Υ2:𝒪×HsHs\Upsilon_{2}:\mathcal{O}_{\infty}\times H^{s}\rightarrow H^{s} with bounded inverse Υ21\Upsilon_{2}^{-1} such that ^\hat{\mathcal{L}} in (3.11) is conjugated to a constant-coefficient operator, viz.

:=Υ21^Υ2=ωφ+D,D:=diagj(idj).\mathcal{L}_{\infty}:=\Upsilon_{2}^{-1}\hat{\mathcal{L}}\Upsilon_{2}=\omega\cdot\partial_{\varphi}+D_{\infty},\quad D_{\infty}:={\rm diag}_{j}({\rm i}d_{j}^{\infty}).

The transformations satisfy the following tame estimates for s0s𝒮s_{0}\leq s\leq\mathcal{S}:

(Υ2±1Id)usγκ,𝒪sεγ1κusγκ,𝒪+εγ1κ𝔍s+μ3γ,𝒪0us0γκ,𝒪.\|(\Upsilon_{2}^{\pm 1}-{\rm Id})u\|_{s}^{\gamma^{\kappa},\mathcal{O}_{\infty}}\leq_{s}\varepsilon\gamma^{-1-\kappa}\|u\|_{s}^{\gamma^{\kappa},\mathcal{O}_{\infty}}+\varepsilon\gamma^{-1-\kappa}\|\mathfrak{J}\|_{s+\mu_{3}}^{\gamma,\mathcal{O}_{0}}\|u\|_{s_{0}}^{\gamma^{\kappa},\mathcal{O}_{\infty}}. (4.35)

Moreover, for ω𝒪(𝔍1)𝒪(𝔍2)\omega\in\mathcal{O}_{\infty}(\mathfrak{J}_{1})\cap\mathcal{O}_{\infty}(\mathfrak{J}_{2}),

supjj|Δ12rj|Cεγ1𝔍1𝔍2s0+μ3.\sup_{j}\langle j\rangle|\Delta_{12}r_{j}^{\infty}|\leq C\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{3}}. (4.36)

Finally, Υ2\Upsilon_{2} and Υ21\Upsilon_{2}^{-1} are real and reversibility-preserving, while \mathcal{L}_{\infty} is real and reversible.

Proof.

Let 0:=^,R0:=R^\mathcal{L}_{0}:=\hat{\mathcal{L}},R_{0}:=\hat{R} in Theorem 3.1 and k1=εk_{1}=\varepsilon, k2=εγ1k_{2}=\varepsilon\gamma^{-1}. It remains to prove that the initial assumptions for iteration: (4.5) and (4.7) hold. Indeed, by Lemmas A.4 and B.3, there exists μ3>μ2\mu_{3}>\mu_{2} such that if (1.9) is satisfied with the choice of μ=μ3\mu=\mu_{3}, we have

𝔐R0,γκ(1,s),𝔐R0,γκ(1,s,b0)max{𝕄^γκ(s,ρ2),|r^|1,s+s0+2+b0,0γκ,𝒪1}max{εγ1𝔍s+μ2γ,𝒪0,εγ1Missing Operatorεγ1𝔍s+μ3γ,𝒪0\begin{split}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s),\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\leq&\max\{\mathbb{M}_{\hat{\mathfrak{R}}}^{\gamma^{\kappa}}(s,\rho-2),|\hat{r}|_{-1,s+s_{0}+2+b_{0},0}^{\gamma^{\kappa},\mathcal{O}_{1}}\}\\ \leq&\max\{\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{2}}^{\gamma,\mathcal{O}_{0}},\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{2}+s_{0}+2+b_{0}}^{\gamma,\mathcal{O}_{0}}\}\\ \leq&\varepsilon\gamma^{-1}\|\mathfrak{J}\|_{s+\mu_{3}}^{\gamma,\mathcal{O}_{0}}\\ \end{split} (4.37)

and

Dx1/2Δ12R0¯Dx1/2𝔏(Hs0),Dx1/2φb0Δ12R0¯Dx1/2𝔏(Hs0)max{𝕄Δ12^(s0,ρ3),|Δ12r^|1,s0+b0+3,0}max{εγ1𝔍1𝔍2s0+μ2γ,𝒪0,εγ1𝔍1𝔍2s0+μ2+b0+3γ,𝒪0}εγ1𝔍1𝔍2s0+μ3γ,𝒪0,\begin{split}\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}R_{0}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})},&\|\langle D_{x}\rangle^{1/2}\underline{\langle\partial_{\varphi}\rangle^{b_{0}}\Delta_{12}R_{0}}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\\ \leq&\max\{\mathbb{M}_{\Delta_{12}\hat{\mathfrak{R}}}(s_{0},\rho-3),|\Delta_{12}\hat{r}|_{-1,s_{0}+b_{0}+3,0}\}\\ \leq&\max\{\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{2}}^{\gamma,\mathcal{O}_{0}},\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{2}+b_{0}+3}^{\gamma,\mathcal{O}_{0}}\}\\ \leq&\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{3}}^{\gamma,\mathcal{O}_{0}},\end{split}

where ρs0+b0+3\rho\geq s_{0}+b_{0}+3. Therefore, R0R_{0} and φb0R0\langle\partial_{\varphi}\rangle^{b_{0}}R_{0} are Lip-1-1-modulo-tame operators satisfying (4.5) and (4.7) for σ=μ3\sigma=\mu_{3}.

The smallness condition (4.8) in Proposition 4.1 follows by the smallness condition on ε\varepsilon in (4.32). From (4.13) in Proposition 4.1, we derive that for all jj\in\mathbb{Z}, the sequences (dj(n))n(d_{j}^{(n)})_{n\in\mathbb{N}}, (rj(n))n(r_{j}^{(n)})_{n\in\mathbb{N}} in (4.9) are Cauchy sequences. Indeed, by (4.5) and (4.13),

j|dj(n+m)dj(n)|γκ,𝒪0=j|rj(n+m)rj(n)|γκ,𝒪0k=n1n+m2Nka0𝔐R0,γκ(1,s0,b0)εγ1Nn1a0.\begin{split}\langle j\rangle|d_{j}^{(n+m)}-d_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}&=\langle j\rangle|r_{j}^{(n+m)}-r_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}\\ &\leq\sum_{k=n-1}^{n+m-2}N_{k}^{-a_{0}}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\leq\varepsilon\gamma^{-1}N_{n-1}^{-a_{0}}.\\ \end{split}

It implies that the sequences dj(n)d_{j}^{(n)} and rj(n)r_{j}^{(n)} have the limits djd_{j}^{\infty} and rjr_{j}^{\infty} respectively. Furthermore, let mm\rightarrow\infty, one obtains

j|djdj(n)|γκ,𝒪0=j|rjrj(n)|γκ,𝒪0εγ1Nn1a0.\langle j\rangle|d_{j}^{\infty}-d_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}=\langle j\rangle|r_{j}^{\infty}-r_{j}^{(n)}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq\varepsilon\gamma^{-1}N_{n-1}^{-a_{0}}. (4.38)

In particular, when n=0n=0, we have

j|rjrj(0)|γκ,𝒪0εγ1N1a0.\langle j\rangle|r_{j}^{\infty}-r_{j}^{(0)}|^{\gamma^{\kappa},\mathcal{O}_{0}}\leq\varepsilon\gamma^{-1}N_{-1}^{-a_{0}}.

Therefore (4.34) holds. By (4.14) and (4.38), let nn\rightarrow\infty, (4.36) follows from the inequalities

j|rj(𝔍1)rj(𝔍2)|j|rj(𝔍1)rj(n)(𝔍1)|+j|rj(n)(𝔍1)rj(n)(𝔍2)|+j|rj(𝔍2)rj(n)(𝔍2)|Cεγ1𝔍1𝔍2s0+μ3+εγ1Nn1a0.\begin{split}\langle j\rangle|r_{j}^{\infty}(\mathfrak{J}_{1})-r_{j}^{\infty}(\mathfrak{J}_{2})|\leq&\langle j\rangle|r_{j}^{\infty}(\mathfrak{J}_{1})-r_{j}^{(n)}(\mathfrak{J}_{1})|+\langle j\rangle|r_{j}^{(n)}(\mathfrak{J}_{1})-r_{j}^{(n)}(\mathfrak{J}_{2})|\\ &+\langle j\rangle|r_{j}^{\infty}(\mathfrak{J}_{2})-r_{j}^{(n)}(\mathfrak{J}_{2})|\\ \leq&C\varepsilon\gamma^{-1}\|\mathfrak{J}_{1}-\mathfrak{J}_{2}\|_{s_{0}+\mu_{3}}+\varepsilon\gamma^{-1}N_{n-1}^{-a_{0}}.\\ \end{split}

Now we need to verify that

𝒪2n0Ωnγκ.\mathcal{O}_{2}\subseteq\cap_{n\geq 0}\Omega_{n}^{\gamma^{\kappa}}.

For |l|Nn|l|\leq N_{n}, lτNnτNn1a0\langle l\rangle^{\tau}\leq N_{n}^{\tau}\leq N_{n-1}^{a_{0}}, in view of (4.38), we obtain

|ωl+dj(n)dj(n)||ωl+djdj||dj(n)dj||dj(n)dj|2γκ|jj|lτ2εγ1Nn1a0γκ|jj|lτ.\begin{split}|\omega\cdot l+d_{j}^{(n)}-d_{j^{\prime}}^{(n)}|\geq&|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|-|d_{j}^{(n)}-d_{j}^{\infty}|-|d_{j^{\prime}}^{(n)}-d_{j^{\prime}}^{\infty}|\\ \geq&\frac{2\gamma^{\kappa}|j-j^{\prime}|}{\langle l\rangle^{\tau}}-\frac{2\varepsilon\gamma^{-1}}{N_{n-1}^{a_{0}}}\geq\frac{\gamma^{\kappa}|j-j^{\prime}|}{\langle l\rangle^{\tau}}.\\ \end{split}

Hence for any nn\in\mathbb{N}, 𝒪2Ωnγκ\mathcal{O}_{2}\subseteq\Omega_{n}^{\gamma^{\kappa}}. Thus the sequence (Ψn)n(\Psi_{n})_{n\in\mathbb{N}} is well defined on 𝒪\mathcal{O}_{\infty}.

We define Γn:=Φ0Φn,n0\Gamma_{n}:=\Phi_{0}\circ\cdots\circ\Phi_{n},n\geq 0. Noting that Γn=Γn1+Γn1Ψn\Gamma_{n}=\Gamma_{n-1}+\Gamma_{n-1}\Psi_{n}, from Lemma 2.5 and (4.23), it follows that

𝔐Γn,γκ(1,s0)𝔐Γn1,γκ(1,s0)+𝔐Γn1,γκ(1,s0)𝔐Ψn,γκ(1,s0)𝔐Γn1,γκ(1,s0)(1+𝔐R0,γκ(1,s0,b0)γκNn2τ+1Nn1a0).\begin{split}\mathfrak{M}_{\Gamma_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\leq&\mathfrak{M}_{\Gamma_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})+\mathfrak{M}_{\Gamma_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\\ \leq&\mathfrak{M}_{\Gamma_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\big{(}1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\big{)}.\\ \end{split}

Iterating the above inequality implies

𝔐Γn,γκ(1,s0)𝔐Γ0,γκ(1,s0)n1(1+𝔐R0,γκ(1,s0,b0)γκNn2τ+1Nn1a0)𝔐Φ0,γκ(1,s0)C,n1.\begin{split}\mathfrak{M}_{\Gamma_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\leq&\mathfrak{M}_{\Gamma_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\prod_{n\geq 1}\left(1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\right)\\ \leq&\mathfrak{M}_{\Phi_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\leq C,\quad n\geq 1.\\ \end{split} (4.39)

For the high norm, from Lemma 2.5, (4.23) and (4.39), we derive

𝔐Γn,γκ(1,s)s𝔐Γn1,γκ(1,s)(1+𝔐Ψn,γκ(1,s0))+𝔐Ψn,γ(1,s)s𝔐Γn1,γκ(1,s)(1+𝔐R0,γκ(1,s0,b0)γκNn2τ+1Nn1a0)+𝔐R0,γκ(1,s,b0)γκNn2τ+1Nn1a0,n1.\begin{split}\mathfrak{M}_{\Gamma_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq_{s}&\mathfrak{M}_{\Gamma_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\left(1+\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma^{\kappa}}(-1,s_{0})\right)+\mathfrak{M}_{\Psi_{n}}^{\sharp,\gamma}(-1,s)\\ \leq_{s}&\mathfrak{M}_{\Gamma_{n-1}}^{\sharp,\gamma^{\kappa}}(-1,s)\left(1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\right)\\ &+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}},\quad n\geq 1.\\ \end{split}

Iterating the above estimates and using (4.8), (4.23) and

n1(1+𝔐R0,γκ(1,s0,b0)γκNn2τ+1Nn1a0)C,\prod_{n\geq 1}\left(1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s_{0},b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}\right)\leq C,

we obtain

𝔐Γn,γκ(1,s)sn=1𝔐R0,γκ(1,s,b0)γκNn2τ+1Nn1a0+𝔐Γ0,γκ(1,s)s1+𝔐R0,γκ(1,s,b0)γκ.\begin{split}\mathfrak{M}_{\Gamma_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)&\leq_{s}\sum_{n=1}^{\infty}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}N_{n}^{2\tau+1}N_{n-1}^{-a_{0}}+\mathfrak{M}_{\Gamma_{0}}^{\sharp,\gamma^{\kappa}}(-1,s)\\ &\leq_{s}1+\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}.\\ \end{split} (4.40)

From Lemma 2.5, (4.8), (4.23), (4.39) and (4.40), it follows that

𝔐Γn+mΓn,γκ(1,s)sj=n+1n+m𝔐ΓjΓj1,γκ(1,s)=j=n+1n+m𝔐Γj1Ψj,γκ(1,s)sj=n+1𝔐R0,γκ(1,s,b0)γκNj1s𝔐R0,γκ(1,s,b0)γκNn+11.\displaystyle\begin{aligned} \mathfrak{M}_{\Gamma_{n+m}-\Gamma_{n}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq_{s}&\sum_{j=n+1}^{n+m}\mathfrak{M}_{\Gamma_{j}-\Gamma_{j-1}}^{\sharp,\gamma^{\kappa}}(-1,s)=\sum_{j=n+1}^{n+m}\mathfrak{M}_{\Gamma_{j-1}\Psi_{j}}^{\sharp,\gamma^{\kappa}}(-1,s)\\ \leq_{s}&\sum_{j=n+1}\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}N_{j}^{-1}\\ \leq_{s}&\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}N_{n+1}^{-1}.\end{aligned} (4.41)

Therefore, in the topology induced by the operator norm, as a result of Lemma 2.3, (Γn)n(\Gamma_{n})_{n\in\mathbb{N}} is a Cauchy sequence and the limit Γ:=limnΓn\Gamma_{\infty}:=\lim_{n\rightarrow\infty}\Gamma_{n} exists. Let n=0,mn=0,m\rightarrow\infty in (4.41), we deduce that

𝔐ΓΓ0,γκ(1,s)𝔐R0,γκ(1,s,b0)γκ.\mathfrak{M}_{\Gamma_{\infty}-\Gamma_{0}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}.

Also we have

𝔐Γ0Id,γκ(1,s)=𝔐Ψ0,γκ(1,s)𝔐R0,γκ(1,s,b0)γκ.\mathfrak{M}_{\Gamma_{0}-{\rm Id}}^{\sharp,\gamma^{\kappa}}(-1,s)=\mathfrak{M}_{\Psi_{0}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}.

Accordingly,

𝔐ΓId,γκ(1,s)𝔐R0,γκ(1,s,b0)γκ.\mathfrak{M}_{\Gamma_{\infty}-{\rm Id}}^{\sharp,\gamma^{\kappa}}(-1,s)\leq\mathfrak{M}_{R_{0}}^{\sharp,\gamma^{\kappa}}(-1,s,b_{0})\gamma^{-\kappa}.

Let Υ2:=Γ\Upsilon_{2}:=\Gamma_{\infty}, then (4.35) follows from (4.5), (4.37), Lemma 2.3 and Lemma 2.6.

Since all the Φn\Phi_{n}’s are real and reversibility-preserving, it is true also for Γn\Gamma_{n} and Γ=Υ2\Gamma_{\infty}=\Upsilon_{2}. From the fact that ^\hat{\mathcal{L}} is real and reversible, we derive that \mathcal{L}_{\infty} is real and reversible too. ∎

Remark 4.1.

The discussion in these two preceding sections is based on the phase space HsH^{s}. In fact, through the almost word-by-word reasoning as in Lemma 4.8 in [3], (Υ1Υ2)±1:(\Upsilon_{1}\Upsilon_{2})^{\pm 1}: H0sH0sH_{0}^{s}\rightarrow H_{0}^{s} isomorphically. Since \mathcal{L} is defined on H0sH_{0}^{s}, we restrict \mathcal{L}^{\infty} to the smaller phase space H0sH_{0}^{s}.

5. Measure estimates

For l,j,j{0}l\in\mathbb{Z},j,j^{\prime}\in\mathbb{Z}\setminus\{0\}, let us define

Pljj(γκ,τ):={ω𝒪0:|ωl+djdj|<2|jj|γκlτ},Ql,j(γ,τ):={ω𝒪0:|ωl+mj|<2γl,jτ}.\begin{split}P_{ljj^{\prime}}(\gamma^{\kappa},\tau):=&\{\omega\in\mathcal{O}_{0}:|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|<2|j-j^{\prime}|\gamma^{\kappa}\langle l\rangle^{-\tau}\},\\ Q_{l,j}(\gamma,\tau):=&\{\omega\in\mathcal{O}_{0}:|\omega\cdot l+m_{\infty}j|<2\gamma\langle l,j\rangle^{-\tau}\}.\\ \end{split} (5.1)

In the following, we assume jj0j-j^{\prime}\neq 0. If not, then Pljj=P_{ljj^{\prime}}=\mathchar 1343\relax and the following results hold trivially.

We need some preliminary results as follows.

Lemma 5.1.

Assume m2<0m_{2}<0 and m0+m20m_{0}+m_{2}\geq 0. If there exists a positive constant δ0\delta_{0} such that m0<5m24δ0,m_{0}<-5m_{2}-4\delta_{0}, then

δ0|jj||dj(0)dj(0)|C|jj|,\delta_{0}|j-j^{\prime}|\leq|d_{j}^{(0)}-d_{j^{\prime}}^{(0)}|\leq C|j-j^{\prime}|,

where C=|m|+54|m0+m2|C=|m_{\infty}|+\frac{5}{4}|m_{0}+m_{2}|.

Proof.

From (4.33), it follows that

dj(0)dj(0)=(jj)(m+(m0+m2)jj1(1+j2)(1+j2)).d_{j}^{(0)}-d_{j^{\prime}}^{(0)}=(j-j^{\prime})\Big{(}m_{\infty}+(m_{0}+m_{2})\frac{j^{\prime}j-1}{(1+{j^{\prime}}^{2})(1+j^{2})}\Big{)}.

First, one can deduce that

|m+(m0+m2)jj1(1+j2)(1+j2)||m|+54|m0+m2|=C.|m_{\infty}+(m_{0}+m_{2})\frac{j^{\prime}j-1}{(1+{j^{\prime}}^{2})(1+j^{2})}|\leq|m_{\infty}|+\frac{5}{4}|m_{0}+m_{2}|=C.

Then from (3.9), we derive that

m(1+j2)(1+j2)+(m0+m2)(1jj)m(1+j2)(1+j2)(m0+m2)(1+j2)(1+j2)4+(m0+m2)δ0(1+j2)(1+j2).\begin{split}-m_{\infty}&(1+{j^{\prime}}^{2})(1+j^{2})+(m_{0}+m_{2})(1-j^{\prime}j)\\ \geq&-m_{\infty}(1+{j^{\prime}}^{2})(1+j^{2})-(m_{0}+m_{2})\frac{(1+{j^{\prime}}^{2})(1+j^{2})}{4}+(m_{0}+m_{2})\\ \geq&\delta_{0}(1+{j^{\prime}}^{2})(1+j^{2}).\\ \end{split}

Hence

|m+(m0+m2)jj1(1+j2)(1+j2)|=|m+(m0+m2)1jj(1+j2)(1+j2)|δ0.\left|m_{\infty}+(m_{0}+m_{2})\frac{j^{\prime}j-1}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|=\left|-m_{\infty}+(m_{0}+m_{2})\frac{1-j^{\prime}j}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|\geq\delta_{0}.

Lemma 5.2.

If Pljj(γκ,τ)P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\neq\emptyset and γκ<δ0/6\gamma^{\kappa}<\delta_{0}/6, then there exists a positive constant C1C_{1} such that |l|C1|jj||l|\geq C_{1}|j-j^{\prime}|. If Ql,j(γ,τ)Q_{l,j}(\gamma,\tau)\neq\emptyset, then |l|C2|j||l|\geq C_{2}|j| for some positive constant C2C_{2}.

Proof.

Recalling that 𝒪0Ω\mathcal{O}_{0}\subset\Omega which is a compact set defined in (1.5), we use the notation ωmax>0\omega_{{\rm max}}>0 to denote the maximum value of |ω||\omega|. If PljjP_{ljj^{\prime}}\neq\emptyset, then there exists ω\omega such that

|djdj|<2γκlτ|jj|+|ωl|.|d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|<2\gamma^{\kappa}\langle l\rangle^{-\tau}|j-j^{\prime}|+|\omega\cdot l|.

By Lemma 5.1, (3.9) and (4.33)-(4.34), one obtains

|djdj||dj(0)dj(0)||rj||rj|δ02|jj|.|d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|\geq|d_{j}^{(0)}-d_{j^{\prime}}^{(0)}|-|r_{j}^{\infty}|-|r_{j^{\prime}}^{\infty}|\geq\frac{\delta_{0}}{2}|j-j^{\prime}|.

Therefore,

|ω||l|δ02|jj|2γκlτ|jj|=|jj|(δ022γκlτ)δ06|jj|.|\omega||l|\geq\frac{\delta_{0}}{2}|j-j^{\prime}|-2\gamma^{\kappa}\langle l\rangle^{-\tau}|j-j^{\prime}|=|j-j^{\prime}|(\frac{\delta_{0}}{2}-\frac{2\gamma^{\kappa}}{\langle l\rangle^{\tau}})\geq\frac{\delta_{0}}{6}|j-j^{\prime}|.

Setting C1:=δ0(6ωmax)1C_{1}:=\delta_{0}(6\omega_{{\rm max}})^{-1}, we have |l|C1|jj||l|\geq C_{1}|j-j^{\prime}|.

We prove the second result of this lemma by contradiction. If Ql,jQ_{l,j}\neq\emptyset, let us assume that |mj|>2|ωl||m_{\infty}j|>2|\omega\cdot l|. Recalling (1.4), one has

2γl,jτ|ωl+mj||ωl|2γlτ.\frac{2\gamma}{\langle l,j\rangle^{\tau}}\geq|\omega\cdot l+m_{\infty}j|\geq|\omega\cdot l|\geq\frac{2\gamma}{\langle l\rangle^{\tau}}.

This leads to a contradiction. Whence |mj|2|ωl||m_{\infty}j|\leq 2|\omega\cdot l|, from which we have |l|C2|j||l|\geq C_{2}|j|, where C2:=|m|(2ωmax)1C_{2}:=|m_{\infty}|(2\omega_{{\rm max}})^{-1}. ∎

Lemma 5.3.

The measures of the sets PljjP_{ljj^{\prime}} and Ql,jQ_{l,j} in (5.1) satisfy

|Pljj(γκ,τ)|CLν1γκlτ|P_{ljj^{\prime}}(\gamma^{\kappa},\tau)|\leq CL^{\nu-1}\gamma^{\kappa}\langle l\rangle^{-\tau} (5.2)

and

|Ql,j(γ,τ)|CLν1γlτ1.|Q_{l,j}(\gamma,\tau)|\leq CL^{\nu-1}\gamma\langle l\rangle^{-\tau-1}. (5.3)
Proof.

We define the following two functions:

ϕP(ω):=ωl+dj(ω)dj(ω)=ωl+(jj)(m(ω)+(m0+m2)jj1(1+j2)(1+j2))+rj(ω)rj(ω),ϕQ(ω):=ωl+m(ω)j.\begin{split}\phi_{P}(\omega):=&\omega\cdot l+d_{j}^{\infty}(\omega)-d_{j^{\prime}}^{\infty}(\omega)\\ =&\omega\cdot l+(j-j^{\prime})\left(m_{\infty}(\omega)+(m_{0}+m_{2})\frac{j^{\prime}j-1}{(1+{j^{\prime}}^{2})(1+j^{2})}\right)+r_{j}^{\infty}(\omega)-r_{j^{\prime}}^{\infty}(\omega),\\ \phi_{Q}(\omega):=&\omega\cdot l+m_{\infty}(\omega)j.\\ \end{split}

For any ωPljj\omega\in P_{ljj^{\prime}}, we split ω=sl^+v\omega=s\hat{l}+v where l^:=l/|l|,s\hat{l}:=l/|l|,s\in\mathbb{R} and lv=0l\cdot v=0. Then by Lemma 5.2 and (4.34), for any s1,s2s_{1},s_{2}\in\mathbb{R}, we deduce that

4γκ|jj|lτ>|ϕP(s1l^+v)ϕP(s2l^+v)|4\gamma^{\kappa}|j-j^{\prime}|\langle l\rangle^{-\tau}>|\phi_{P}(s_{1}\hat{l}+v)-\phi_{P}(s_{2}\hat{l}+v)|

and

|ϕP(s1l^+v)ϕP(s2l^+v)||s1s2|(|l||jj||m|lip,𝒪0|rj|lip,𝒪0|rj|lip,𝒪0)C12|jj||s1s2|.\begin{split}|\phi_{P}(s_{1}\hat{l}+v)-\phi_{P}(s_{2}\hat{l}+v)|\geq&|s_{1}-s_{2}|\Big{(}|l|-|j-j^{\prime}||m_{\infty}|^{lip,\mathcal{O}_{0}}\\ &-|r_{j}^{\infty}|^{lip,\mathcal{O}_{0}}-|r_{j^{\prime}}^{\infty}|^{lip,\mathcal{O}_{0}}\Big{)}\geq\frac{C_{1}}{2}|j-j^{\prime}||s_{1}-s_{2}|.\\ \end{split}

Hence |s1s2|8C11γκlτ|s_{1}-s_{2}|\leq 8C_{1}^{-1}\gamma^{\kappa}\langle l\rangle^{-\tau}. By Fubini’s theorem, |Pljj|CLν1γκlτ|P_{ljj^{\prime}}|\leq CL^{\nu-1}\gamma^{\kappa}\langle l\rangle^{-\tau}.

For any ωQl,j\omega\in Q_{l,j}, similarly, from Lemma 5.2 and (3.9), it follows that

4γlτ4γl,jτ|ϕQ(s1l^+v)ϕQ(s2l^+v)|4\gamma\langle l\rangle^{-\tau}\geq 4\gamma\langle l,j\rangle^{-\tau}\geq|\phi_{Q}(s_{1}\hat{l}+v)-\phi_{Q}(s_{2}\hat{l}+v)|

and

|ϕQ(s1l^+v)ϕQ(s2l^+v)||s1s2|(|l||j||m|lip,𝒪)|l|2|s1s2|.\begin{split}|\phi_{Q}(s_{1}\hat{l}+v)-\phi_{Q}(s_{2}\hat{l}+v)|\geq|s_{1}-s_{2}|\big{(}|l|-|j||m_{\infty}|^{lip,\mathcal{O}}\big{)}\geq\frac{|l|}{2}|s_{1}-s_{2}|.\end{split}

Then |s1s2|8γlτ1|s_{1}-s_{2}|\leq 8\gamma\langle l\rangle^{-\tau-1}. By Fubini’s theorem, |Ql,j|CLν1γlτ1|Q_{l,j}|\leq CL^{\nu-1}\gamma\langle l\rangle^{-\tau-1}. ∎

From now on, we fix τ1ν+1\tau_{1}\geq\nu+1, ττ1+ν+2\tau\geq\tau_{1}+\nu+2.

Lemma 5.4.

There exists γ0>0\gamma_{0}>0 such that for any γ<γ0\gamma<\gamma_{0}, if |j|,|j|lτ1γ1|j|,|j^{\prime}|\geq\langle l\rangle^{\tau_{1}}\gamma^{-1}, then Pljj(γκ,τ)Ql,jj(γ,τ1)P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\subseteq Q_{l,j-j^{\prime}}(\gamma,\tau_{1}).

Proof.

We first claim that |m(jj)(dj(0)dj(0))|2|m0+m2||jj||1jj||m_{\infty}(j-j^{\prime})-(d_{j}^{(0)}-d_{j^{\prime}}^{(0)})|\leq 2|m_{0}+m_{2}||j-j^{\prime}|\left|\frac{1}{{j^{\prime}}j}\right|. In fact,

|m(jj)(dj(0)dj(0))|=|m0+m2||jj||1+jj(1+j2)(1+j2)||m0+m2||jj|(|jj(1+j2)(1+j2)|+|1(1+j2)(1+j2)|)2|m0+m2||jj||jj(1+j2)(1+j2)|2|m0+m2||jj||jjj2j2|2|m0+m2||jj||1jj|.\begin{split}|m_{\infty}(j-j^{\prime})&-(d_{j}^{(0)}-d_{j^{\prime}}^{(0)})|=|m_{0}+m_{2}||j-j^{\prime}|\left|\frac{-1+j^{\prime}j}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|\\ \leq&|m_{0}+m_{2}||j-j^{\prime}|\left(\left|\frac{j^{\prime}j}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|+\left|\frac{1}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|\right)\\ \leq&2|m_{0}+m_{2}||j-j^{\prime}|\left|\frac{j^{\prime}j}{(1+{j^{\prime}}^{2})(1+j^{2})}\right|\leq 2|m_{0}+m_{2}||j-j^{\prime}|\left|\frac{j^{\prime}j}{{j^{\prime}}^{2}j^{2}}\right|\\ \leq&2|m_{0}+m_{2}||j-j^{\prime}|\left|\frac{1}{{j^{\prime}}j}\right|.\\ \end{split}

Suppose that ωPljj(γκ,τ)\omega\in P_{ljj^{\prime}}(\gamma^{\kappa},\tau), by Lemma 5.2 and (4.34), we obtain

|ωl+m(jj)|=|ωl+djdj+m(jj)(djdj)||ωl+djdj|+|m(jj)(dj(0)dj(0))|+|rj|+|rj|<|jj|2γκlτ+|jj|2|m0+m2||j||j|+Cεγ1min{|j|,|j|}2γκC1lτ1+2|m0+m2|γ2C1l2τ11+Cεlτ12γlτ1.\begin{split}|\omega\cdot l+m_{\infty}(j-j^{\prime})|=&|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}+m_{\infty}(j-j^{\prime})-(d_{j}^{\infty}-d_{j^{\prime}}^{\infty})|\\ \leq&|\omega\cdot l+d_{j}^{\infty}-d_{j^{\prime}}^{\infty}|+|m_{\infty}(j-j^{\prime})-(d_{j}^{(0)}-d_{j^{\prime}}^{(0)})|+|r_{j}^{\infty}|+|r_{j^{\prime}}^{\infty}|\\ <&|j-j^{\prime}|\frac{2\gamma^{\kappa}}{\langle l\rangle^{\tau}}+|j-j^{\prime}|\frac{2|m_{0}+m_{2}|}{|j||j^{\prime}|}+\frac{C\varepsilon\gamma^{-1}}{\min\{|j|,|j^{\prime}|\}}\\ \leq&\frac{2\gamma^{\kappa}}{C_{1}\langle l\rangle^{\tau-1}}+\frac{2|m_{0}+m_{2}|\gamma^{2}}{C_{1}\langle l\rangle^{2\tau_{1}-1}}+\frac{C\varepsilon}{\langle l\rangle^{\tau_{1}}}\leq\frac{2\gamma}{\langle l\rangle^{\tau_{1}}}.\\ \end{split}

By Lemma 5.2, we have

|ωl+m(jj)|<2γκC1τ|jj|τ1+2|m0+m2|γ2C12τ1|jj|2τ11+CεC1τ1|jj|τ1<2γjjτ1.\begin{split}|\omega\cdot l+m_{\infty}(j-j^{\prime})|<&\frac{2\gamma^{\kappa}}{C_{1}^{\tau}|j-j^{\prime}|^{\tau-1}}+\frac{2|m_{0}+m_{2}|\gamma^{2}}{C_{1}^{2\tau_{1}}|j-j^{\prime}|^{2\tau_{1}-1}}+\frac{C\varepsilon}{C_{1}^{\tau_{1}}|j-j^{\prime}|^{\tau_{1}}}\\ <&\frac{2\gamma}{\langle j-j^{\prime}\rangle^{\tau_{1}}}.\\ \end{split}

Thus we conclude that ωQl,jj(γ,τ1)\omega\in Q_{l,j-j^{\prime}}(\gamma,\tau_{1}). ∎

Theorem 5.1.

Let 𝒪\mathcal{O}_{\infty} be the set of parameters in Theorem 4.1. Then there exists some constant C>0C>0 such that

|𝒪0𝒪|Cγmin{1,κ1}Lν1.|\mathcal{O}_{0}-\mathcal{O}_{\infty}|\leq C\gamma^{\min\{1,\kappa-1\}}L^{\nu-1}.
Proof.

From (5.1), we derive that

|𝒪0𝒪||lν,j,j{0}Pljj(γκ,τ)|+|lν,j{0}Ql,j(γ,τ)|.|\mathcal{O}_{0}-\mathcal{O}_{\infty}|\leq\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ j,j^{\prime}\in\mathbb{Z}\setminus\{0\}\end{subarray}}P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\right|+\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ j\in\mathbb{Z}\setminus\{0\}\end{subarray}}Q_{l,j}(\gamma,\tau)\right|.

According to Lemma 5.2 and (5.3), the measure of the second summand is estimated by

lν,j0,|j||l|/C2|Ql,j(γ,τ)|lν,j0,|j||l|/C2CLν1γlτ1CC2Lν1γlνlτCLν1γ.\begin{split}\sum_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},j\neq 0,\\ |j|\leq|l|/C_{2}\end{subarray}}|Q_{l,j}(\gamma,\tau)|\leq&\sum_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},j\neq 0,\\ |j|\leq|l|/C_{2}\end{subarray}}CL^{\nu-1}\gamma\langle l\rangle^{-\tau-1}\leq\frac{C}{C_{2}}L^{\nu-1}\gamma\sum_{l\in\mathbb{Z}^{\nu}}\langle l\rangle^{-\tau}\\ \leq&CL^{\nu-1}\gamma.\\ \end{split}

For the first one, we split the union set into two groups:

|lν,j,j{0}Pljj(γκ,τ)|=|lν,|j|,|j|lτ1γ1Pljj(γκ,τ)|+lν,j,j0,|j|lτ1γ1or|j|lτ1γ1|Pljj(γκ,τ)|.\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ j,j^{\prime}\in\mathbb{Z}\setminus\{0\}\end{subarray}}P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\right|=\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ |j|,|j^{\prime}|\geq\langle l\rangle^{\tau_{1}}\gamma^{-1}\end{subarray}}P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\right|+\sum_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},j,j^{\prime}\neq 0,\\ |j|\leq\langle l\rangle^{\tau_{1}}\gamma^{-1}\\ {\rm or}|j^{\prime}|\leq\langle l\rangle^{\tau_{1}}\gamma^{-1}\end{subarray}}|P_{ljj^{\prime}}(\gamma^{\kappa},\tau)|.

From (5.3) and Lemma 5.4 it follows that

|lν,|j|,|j|lτ1γ1Pljj(γκ,τ)||lν,jj=h,0|h||l|/C2Ql,h(γ,τ1)|lν,0|h||l|/C2|Ql,h(γ,τ1)|CLν1γ.\begin{split}\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ |j|,|j^{\prime}|\geq\langle l\rangle^{\tau_{1}}\gamma^{-1}\end{subarray}}P_{ljj^{\prime}}(\gamma^{\kappa},\tau)\right|\leq&\left|\bigcup\limits_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ j-j^{\prime}=h,\\ 0\neq|h|\leq|l|/C_{2}\end{subarray}}Q_{l,h}(\gamma,\tau_{1})\right|\leq\sum_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},\\ 0\neq|h|\leq|l|/C_{2}\end{subarray}}|Q_{l,h}(\gamma,\tau_{1})|\\ \leq&CL^{\nu-1}\gamma.\\ \end{split}

By Lemma 5.2 and (5.2), we deduce that

lν,j,j0,|jj||l|/C1,|j|lτ1γ1or|j|lτ1γ1|Pljj(γκ,τ)|CγκLν1lν|l|lτ1γlτCγκ1Lν1lνl(ττ11)CLν1γκ1.\begin{split}\sum_{\begin{subarray}{c}l\in\mathbb{Z}^{\nu},j,j^{\prime}\neq 0,\\ |j-j^{\prime}|\leq|l|/C_{1},\\ |j|\leq\langle l\rangle^{\tau_{1}}\gamma^{-1}\\ {\rm or}|j^{\prime}|\leq\langle l\rangle^{\tau_{1}}\gamma^{-1}\end{subarray}}|P_{ljj^{\prime}}(\gamma^{\kappa},\tau)|&\leq C\gamma^{\kappa}L^{\nu-1}\sum_{l\in\mathbb{Z}^{\nu}}\frac{|l|\langle l\rangle^{\tau_{1}}}{\gamma\langle l\rangle^{\tau}}\\ &\leq C\gamma^{\kappa-1}L^{\nu-1}\sum_{l\in\mathbb{Z}^{\nu}}\langle l\rangle^{-(\tau-\tau_{1}-1)}\\ &\leq CL^{\nu-1}\gamma^{\kappa-1}.\\ \end{split}

Thus the proof is completed. ∎

Proof.

(Proof of Theorem 1.2) We set Υ=Υ1Υ2\Upsilon=\Upsilon_{1}\circ\Upsilon_{2} (see Υ1\Upsilon_{1} in Theorem 3.1 and Υ2\Upsilon_{2} in Theorem 4.1) and take μ=μ3\mu=\mu_{3} in Theorem 4.1. Then the bound for Υu\Upsilon u follows from (3.14) and (4.35). ∎

Proof.

(Proof of Corollary 1.1) Under the action of the transformation Υ\Upsilon, (1.6) is transformed into gt=Dgg_{t}=-D_{\infty}g which amounts to (gj)t=idjgj,j{0}.(g_{j})_{t}=-{\rm i}d_{j}^{\infty}g_{j},j\in\mathbb{Z}\setminus\{0\}. For each jj, we solve that gj(t)=eidjtgj(0)g_{j}(t)={\rm e}^{-{\rm i}d_{j}^{\infty}t}g_{j}(0). So the unique solution for the transformed system is

g(t)=jgj(t)eijx.g(t)=\sum_{j\in\mathbb{Z}}g_{j}(t){\rm e}^{{\rm i}jx}.

Due to the definition of the norm of HsH^{s}, we have g(t)Hs=g(0)Hs\|g(t)\|_{H^{s}}=\|g(0)\|_{H^{s}}. Then from h=Υ(ωt)gh=\Upsilon(\omega t)g and the bounds for Υ±1\Upsilon^{\pm 1} in Theorem 1.2, we deduce that

supth(t,)s=suptΥg(t,)ssuptΥg(t,)sγκ,𝒪sg(t,)s+εγ1κ𝔍s+μγ,𝒪0g(t,)s0sg(0,)s+εγ1κ𝔍s+μγ,𝒪0g(0,)s0=C~(s)g(0,)s=C~(s)Υ1(0)h(0,)ssh(0,)s+εγ1κ𝔍s+μγ,𝒪0h(0,)s0C(s)h(0,)s,\begin{split}\sup_{t\in\mathbb{R}}\|h(t,\cdot)\|_{s}&=\sup_{t\in\mathbb{R}}\|\Upsilon g(t,\cdot)\|_{s}\leq\sup_{t\in\mathbb{R}}\|\Upsilon g(t,\cdot)\|_{s}^{\gamma^{\kappa},\mathcal{O}_{\infty}}\\ &\leq_{s}\|g(t,\cdot)\|_{s}+\varepsilon\gamma^{-1-\kappa}\|\mathfrak{J}\|_{s+\mu}^{\gamma,\mathcal{O}_{0}}\|g(t,\cdot)\|_{s_{0}}\\ &\leq_{s}\|g(0,\cdot)\|_{s}+\varepsilon\gamma^{-1-\kappa}\|\mathfrak{J}\|_{s+\mu}^{\gamma,\mathcal{O}_{0}}\|g(0,\cdot)\|_{s_{0}}=\tilde{C}(s)\|g(0,\cdot)\|_{s}\\ &=\tilde{C}(s)\|\Upsilon^{-1}(0)h(0,\cdot)\|_{s}\leq_{s}\|h(0,\cdot)\|_{s}+\varepsilon\gamma^{-1-\kappa}\|\mathfrak{J}\|_{s+\mu}^{\gamma,\mathcal{O}_{0}}\|h(0,\cdot)\|_{s_{0}}\\ &\leq C(s)\|h(0,\cdot)\|_{s},\\ \end{split}

where the constants C~(s)\tilde{C}(s) and C(s)C(s) depend on 𝔍s+μγ,𝒪0\|\mathfrak{J}\|_{s+\mu}^{\gamma,\mathcal{O}_{0}}. ∎



Acknowledgments. The work of Wu is supported by the National NSF of China Grant-11631007. The work of Fu is supported by the National NSF of China Grants-11471259 and 11631007 and the National Science Basic Research Program of Shaanxi Province (Program No. 2019JM-007 and 2020JC-37). The work of Qu is supported by the National NSF of China Grants-11631007, 11971251 and 12111530003.

Appendix A Lip-σ\sigma-tame operators and pseudo differential operators

In this appendix, we review the definitions and the basic facts and the properties of the Lip-σ\sigma-tame operators and the pseudo differential operators.

Definition A.1.

(Lip-σ\sigma-tame operators) [2, 7, 30] Let the linear operator A:=A(ω)A:=A(\omega) be defined on 𝒪ν\mathcal{O}\subset\mathbb{R}^{\nu}. A is said to be Lip-σ\sigma-tame if there exist σ0\sigma\geq 0 and a non-decreasing sequence
{𝔐Aγ(σ,s)}s=s0𝒮\{\mathfrak{M}_{A}^{\gamma}(\sigma,s)\}_{s=s_{0}}^{\mathcal{S}} (with possibly 𝒮=+\mathcal{S}=+\infty) such that for any uHs+σu\in H^{s+\sigma},

supω𝒪Aus,supω,ω𝒪,ωωγ(Δω,ωA)us1s𝔐Aγ(σ,s)us0+σ+𝔐Aγ(σ,s0)us+σ.\sup\limits_{\omega\in\mathcal{O}}\|Au\|_{s},\sup\limits_{\begin{subarray}{c}\omega,\omega^{\prime}\in\mathcal{O},\\ \omega\neq\omega^{\prime}\end{subarray}}\gamma\|(\Delta_{\omega,\omega^{\prime}}A)u\|_{s-1}\leq_{s}\mathfrak{M}_{A}^{\gamma}(\sigma,s)\|u\|_{s_{0}+\sigma}+\mathfrak{M}_{A}^{\gamma}(\sigma,s_{0})\|u\|_{s+\sigma}.

We call 𝔐Aγ(σ,s)\mathfrak{M}_{A}^{\gamma}(\sigma,s) a Lip-σ\sigma-tame constant of the operator AA or tame constant for short.

The following lemma is an important property of the Lip-σ\sigma-tame operators.

Lemma A.1.

(Composition) [2, 7, 30] Let A,BA,B be respectively Lip-σA\sigma_{A}-tame and Lip-σB\sigma_{B}-tame operators with tame constants respectively 𝔐Aγ(σA,s)\mathfrak{M}_{A}^{\gamma}(\sigma_{A},s) and 𝔐Bγ(σB,s)\mathfrak{M}_{B}^{\gamma}(\sigma_{B},s). Then the composed operator ABA\circ B is a Lip-(σA+σB)(\sigma_{A}+\sigma_{B})-tame operator with tame constant

𝔐ABγ(σA+σB,s)𝔐Aγ(σA,s)𝔐Bγ(σB,s0+σA)+𝔐Aγ(σA,s0)𝔐Bγ(σB,s+σA).\mathfrak{M}_{AB}^{\gamma}(\sigma_{A}+\sigma_{B},s)\leq\mathfrak{M}_{A}^{\gamma}(\sigma_{A},s)\mathfrak{M}_{B}^{\gamma}(\sigma_{B},s_{0}+\sigma_{A})+\mathfrak{M}_{A}^{\gamma}(\sigma_{A},s_{0})\mathfrak{M}_{B}^{\gamma}(\sigma_{B},s+\sigma_{A}).
Definition A.2.

(Pseudo differential operators) [39] Let u=jujeijxu=\sum_{j\in\mathbb{Z}}u_{j}{\rm e}^{{\rm i}jx}. A linear operator AA is called pseudo differential operator of order m\leq m if its action on any Hs(𝕋,)H^{s}(\mathbb{T},\mathbb{R}) with sms\geq m is given by

(Au)(x)=ja(x,j)ujeijx,(Au)(x)=\sum_{j\in\mathbb{Z}}a(x,j)u_{j}{\rm e}^{{\rm i}jx},

where a(x,j)a(x,j), called the symbol of AA, is the restriction to 𝕋×\mathbb{T}\times\mathbb{Z} of the function a(x,ξ)a(x,\xi) which is CC^{\infty}-smooth on 𝕋×\mathbb{T}\times\mathbb{R} and satisfies

|xαξβa(x,ξ)|Cα,βξmβ,α,β.|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)|\leq C_{\alpha,\beta}\langle\xi\rangle^{m-\beta},\quad\forall\alpha,\beta\in\mathbb{N}. (A.1)

We denote the pseudo differential operator with symbol a(x,j)a(x,j) by Op(a){\rm Op}(a), i.e., A=Op(a)A={\rm Op}(a). We define the class OPSmOPS^{m} as the set of pseudo differential operators of order at most mm and the class SmS^{m} as the set of symbols satisfying (A.1).

In the present paper, we consider the φ\varphi-dependent families of pseudo differential operators

(Au)(φ,x):=ja(φ,x,j)uj(φ)eijx,(Au)(\varphi,x):=\sum_{j\in\mathbb{Z}}a(\varphi,x,j)u_{j}(\varphi){\rm e}^{{\rm i}jx},

where a(φ,x,ξ)a(\varphi,x,\xi) is CC^{\infty}-smooth on 𝕋ν+1×.\mathbb{T}^{\nu+1}\times\mathbb{R}.

Definition A.3.

[39] Let A=Op(a(φ,x,ξ))OPSmA={\rm Op}(a(\varphi,x,\xi))\in OPS^{m}, we define

|A|m,s,α:=|a|m,s,α:=max0βαsupξξβa(,,ξ)sξm+β.|A|_{m,s,\alpha}:=|a|_{m,s,\alpha}:=\max_{0\leq\beta\leq\alpha}\sup\limits_{\xi\in\mathbb{R}}\|\partial_{\xi}^{\beta}a(\cdot,\cdot,\xi)\|_{s}\langle\xi\rangle^{-m+\beta}. (A.2)

The norm defined above controls the regularity in (φ,x)(\varphi,x) in the Sobolev norm s\|\cdot\|_{s} and the decay in ξ\xi of the symbols a(φ,x,ξ)a(\varphi,x,\xi).

If A=Op(a)OPSmA={\rm Op}(a)\in OPS^{m} with symbol a(ω,φ,x,ξ)a(\omega,\varphi,x,\xi) depending on the parameter ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu} in a Lipschitz way, we define the weighted Lipschitz norm

|A|m,s,αγ,𝒪:=|a|m,s,αγ,𝒪:=supω𝒪|A|m,s,α+γsupω,ω𝒪,ωω|Op(a(ω,,,))Op(a(ω,,,))|m,s1,α|ωω|.\begin{split}|A|_{m,s,\alpha}^{\gamma,\mathcal{O}}:=|a|_{m,s,\alpha}^{\gamma,\mathcal{O}}:=&\sup\limits_{\omega\in\mathcal{O}}|A|_{m,s,\alpha}\\ &+\gamma\sup\limits_{\begin{subarray}{c}\omega,\omega^{\prime}\in\mathcal{O},\\ \omega\neq\omega^{\prime}\end{subarray}}\frac{|{\rm Op}(a(\omega,\cdot,\cdot,\cdot))-{\rm Op}(a(\omega^{\prime},\cdot,\cdot,\cdot))|_{m,s-1,\alpha}}{|\omega-\omega^{\prime}|}.\\ \end{split} (A.3)

We point out that the norms defined in (A.2) and (A.3) are both non-decreasing in s,αs,\alpha and non-increasing in mm. Moreover, for a symbol independent of ξ\xi,

|Op(a(φ,x))|0,s,αγ,𝒪=asγ,𝒪,s0.|{\rm Op}(a(\varphi,x))|^{\gamma,\mathcal{O}}_{0,s,\alpha}=\|a\|^{\gamma,\mathcal{O}}_{s},\quad\forall s\geq 0. (A.4)

If the symbol depends only on ξ\xi, we simply have

|a(ξ)|m,s,αγ,𝒪=|a(ξ)|m,s,αC(m,a),s0.|a(\xi)|^{\gamma,\mathcal{O}}_{m,s,\alpha}=|a(\xi)|_{m,s,\alpha}\leq C(m,a),\quad\forall s\geq 0. (A.5)

We present some important properties of the pseudo differential operators.

Lemma A.2.

(Composition) [2, 7, 30] Let A=Op(a)A={\rm Op}(a), B=Op(b)B={\rm Op}(b) be pseudo differential operators with symbols a(ω,φ,x,ξ)Sma(\omega,\varphi,x,\xi)\in S^{m} and b(ω,φ,x,ξ)Smb(\omega,\varphi,x,\xi)\in S^{m^{\prime}} respectively. Then ABOPSm+mA\circ B\in OPS^{m+m^{\prime}} with norm

|AB|m+m,s,αγ,𝒪m,αC(s)|A|m,s,αγ,𝒪|B|m,s0+α+|m|,αγ,𝒪+C(s0)|A|m,s0,αγ,𝒪|B|m,s+α+|m|,αγ,𝒪.|A\circ B|^{\gamma,\mathcal{O}}_{m+m^{\prime},s,\alpha}\leq_{m,\alpha}C(s)|A|^{\gamma,\mathcal{O}}_{m,s,\alpha}|B|^{\gamma,\mathcal{O}}_{m^{\prime},s_{0}+\alpha+|m|,\alpha}+C(s_{0})|A|^{\gamma,\mathcal{O}}_{m,s_{0},\alpha}|B|^{\gamma,\mathcal{O}}_{m^{\prime},s+\alpha+|m|,\alpha}.
Lemma A.3.

[7, 30] Let A=Op(a)OPS0A={\rm Op}(a)\in OPS^{0} be a pseudo differential operator.

(1). If |A|0,s,0<(ss0)|A|_{0,s,0}<\infty(s\geq s_{0}), then there exist C(s0),C(s)>0C(s_{0}),C(s)>0 such that

AusC(s0)|A|0,s0,0us+C(s)|A|0,s,0us0.\|Au\|_{s}\leq C(s_{0})|A|_{0,s_{0},0}\|u\|_{s}+C(s)|A|_{0,s,0}\|u\|_{s_{0}}.

(2). If AA is Lipschitz in the parameter ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu} and |A|0,s,0γ,𝒪<(ss0)|A|_{0,s,0}^{\gamma,\mathcal{O}}<\infty(s\geq s_{0}), then AA is a Lip-0-tame operator with tame constant

𝔐Aγ(0,s)s|A|0,s,0γ,𝒪.\mathfrak{M}_{A}^{\gamma}(0,s)\leq_{s}|A|_{0,s,0}^{\gamma,\mathcal{O}}.

The above lemma implies that the norm ||0,s,0γ,𝒪|\cdot|_{0,s,0}^{\gamma,\mathcal{O}} controls the action of a pseudo differential operator on the Sobolev spaces HsH^{s}.

The next lemma exhibits the connection between the class OPS1OPS^{-1} and the class of Lip-1-1-modulo-tame operators. It is a direct consequence of Lemma C.8 and Lemma C.10 in [31].

Lemma A.4.

Assume bb\in\mathbb{N}, A=Op(a)OPS1A={\rm Op}(a)\in OPS^{-1} with its symbol a(ω,i(ω))a(\omega,i(\omega)) depending on ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu} in a Lipschitz way and on ii as well. Then AA and φbA\langle\partial_{\varphi}\rangle^{b}A are Lip-1-1-modulo-tame operators with modulo-tame constants

𝔐A,γ(1,s)s|a|1,s+s0+2,0γ,𝒪,𝔐A,γ(1,s,b)s|a|1,s+s0+b+2,0γ,𝒪.\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\leq_{s}|a|_{-1,s+s_{0}+2,0}^{\gamma,\mathcal{O}},\quad\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s,b)\leq_{s}|a|_{-1,s+s_{0}+b+2,0}^{\gamma,\mathcal{O}}.

Moreover,

Dx1/2Δ12A¯Dx1/2𝔏(Hs0)|Δ12a|1,s0+b+3,0,Dx1/2Δ12φbA¯Dx1/2𝔏(Hs0)|Δ12a|1,s0+b+3,0.\displaystyle\begin{aligned} &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq|\Delta_{12}a|_{-1,s_{0}+b+3,0},\\ &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\langle\partial_{\varphi}\rangle^{b}A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq|\Delta_{12}a|_{-1,s_{0}+b+3,0}.\end{aligned}

Appendix B The operators 𝔏ρ,p\mathfrak{L}_{\rho,p}

We first introduce the classes of operators 𝔏ρ,p\mathfrak{L}_{\rho,p} which are sufficiently smooth in the xx-variable.

Definition B.1.

[30, 31] Given ρ,p,𝒮\rho,p,\mathcal{S}\in\mathbb{N} with possibly 𝒮=+\mathcal{S}=+\infty, ρ3\rho\geq 3, s0p<𝒮s_{0}\leq p<\mathcal{S}. We denote by 𝔏ρ,p=𝔏ρ,p(𝒪)\mathfrak{L}_{\rho,p}=\mathfrak{L}_{\rho,p}(\mathcal{O}) the set of the linear operators A=A(ω):Hs(𝕋ν+1)Hs(𝕋ν+1)A=A(\omega):H^{s}(\mathbb{T}^{\nu+1})\rightarrow H^{s}(\mathbb{T}^{\nu+1}), ω𝒪ν\omega\in\mathcal{O}\subseteq\mathbb{R}^{\nu} with the following properties:

(1). The operator A is Lipschitz in ω\omega.

(2). For all b=(b1,,bν)ν\vec{b}=(b_{1},\ldots,b_{\nu})\in\mathbb{N}^{\nu} with 0|b|ρ20\leq|\vec{b}|\leq\rho-2 and for any s0s𝒮s_{0}\leq s\leq\mathcal{S},

(i). The operator Dxm1φbADxm2\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}A\langle D_{x}\rangle^{m_{2}} is Lip-0-tame for any m1,m2m_{1},m_{2}\in\mathbb{R}, m1,m20m_{1},m_{2}\geq 0 and m1+m2=ρ|b|m_{1}+m_{2}=\rho-|\vec{b}|. We set

𝔐φbAγ(ρ+|b|,s):=supm1+m2=ρ|b|,m1,m20𝔐Dxm1φbADxm2γ(0,s).\mathfrak{M}_{\partial_{\varphi}^{\vec{b}}A}^{\gamma}(-\rho+|\vec{b}|,s):=\sup_{\begin{subarray}{c}m_{1}+m_{2}=\rho-|\vec{b}|,\\ m_{1},m_{2}\geq 0\end{subarray}}\mathfrak{M}_{\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}A\langle D_{x}\rangle^{m_{2}}}^{\gamma}(0,s).

(ii). The operator Dxm1[φbA,x]Dxm2\langle D_{x}\rangle^{m_{1}}[\partial_{\varphi}^{\vec{b}}A,\partial_{x}]\langle D_{x}\rangle^{m_{2}} is Lip-0-tame for any m1,m2m_{1},m_{2}\in\mathbb{R}, m1,m20m_{1},m_{2}\geq 0 and m1+m2=ρ|b|1m_{1}+m_{2}=\rho-|\vec{b}|-1. We set

𝔐[φbA,x]γ(ρ+|b|+1,s):=supm1+m2=ρ|b|1,m1,m20𝔐Dxm1[φbA,x]Dxm2γ(0,s).\mathfrak{M}_{[\partial_{\varphi}^{\vec{b}}A,\partial_{x}]}^{\gamma}(-\rho+|\vec{b}|+1,s):=\sup_{\begin{subarray}{c}m_{1}+m_{2}=\rho-|\vec{b}|-1,\\ m_{1},m_{2}\geq 0\end{subarray}}\mathfrak{M}_{\langle D_{x}\rangle^{m_{1}}[\partial_{\varphi}^{\vec{b}}A,\partial_{x}]\langle D_{x}\rangle^{m_{2}}}^{\gamma}(0,s).

We denote for 0bρ20\leq b\leq\rho-2

𝕄Aγ(s,b):=max0|b|bmax{𝔐φbAγ(ρ+|b|,s),𝔐[φbA,x]γ(ρ+|b|+1,s)}.\mathbb{M}_{A}^{\gamma}(s,b):=\max_{0\leq|\vec{b}|\leq b}\max\left\{\mathfrak{M}_{\partial_{\varphi}^{\vec{b}}A}^{\gamma}(-\rho+|\vec{b}|,s),\mathfrak{M}_{[\partial_{\varphi}^{\vec{b}}A,\partial_{x}]}^{\gamma}(-\rho+|\vec{b}|+1,s)\right\}.

(3). Suppose that the set 𝒪\mathcal{O} and the operator AA depend on i=i(ω)i=i(\omega), and are well defined for ω𝒪\omega\in\mathcal{O} for all i=i(ω)i=i(\omega) satisfying (1.9). For ω𝒪(i1)𝒪(i2)\omega\in\mathcal{O}(i_{1})\cap\mathcal{O}(i_{2}), and for all b=(b1,,bν)ν\vec{b}=(b_{1},\ldots,b_{\nu})\in\mathbb{N}^{\nu} with 0|b|ρ30\leq|\vec{b}|\leq\rho-3,

(i). Dxm1φbΔ12ADxm2\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}\Delta_{12}A\langle D_{x}\rangle^{m_{2}} is a bounded operator on HpH^{p} in itself for any m1,m2m_{1},m_{2}\in\mathbb{R}, m1,m20m_{1},m_{2}\geq 0 and m1+m2=ρ|b|1m_{1}+m_{2}=\rho-|\vec{b}|-1. More precisely, there is a positive constant 𝔑φbΔ12A(ρ+|b|+1,p)\mathfrak{N}_{\partial_{\varphi}^{\vec{b}}\Delta_{12}A}(-\rho+|\vec{b}|+1,p) such that for any hHph\in H^{p},

supm1+m2=ρ|b|1,m1,m20Dxm1φbΔ12ADxm2hp𝔑φbΔ12A(ρ+|b|+1,p)hp.\sup_{\begin{subarray}{c}m_{1}+m_{2}=\rho-|\vec{b}|-1,\\ m_{1},m_{2}\geq 0\end{subarray}}\|\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}\Delta_{12}A\langle D_{x}\rangle^{m_{2}}h\|_{p}\leq\mathfrak{N}_{\partial_{\varphi}^{\vec{b}}\Delta_{12}A}(-\rho+|\vec{b}|+1,p)\|h\|_{p}.

(ii). Dxm1[φbΔ12A,x]Dxm2\langle D_{x}\rangle^{m_{1}}[\partial_{\varphi}^{\vec{b}}\Delta_{12}A,\partial_{x}]\langle D_{x}\rangle^{m_{2}} is a bounded operator on HpH^{p} in itself for any m1,m2m_{1},m_{2}\in\mathbb{R}, m1,m20m_{1},m_{2}\geq 0 and m1+m2=ρ|b|2m_{1}+m_{2}=\rho-|\vec{b}|-2. More precisely, there is a positive constant 𝔑[φbΔ12A,x](ρ+|b|+2,p)\mathfrak{N}_{[\partial_{\varphi}^{\vec{b}}\Delta_{12}A,\partial_{x}]}(-\rho+|\vec{b}|+2,p) such that for any hHph\in H^{p},

supm1+m2=ρ|b|2,m1,m20Dxm1[φbΔ12A,x]Dxm2hp𝔑[φbΔ12A,x](ρ+|b|+2,p)hp.\sup_{\begin{subarray}{c}m_{1}+m_{2}=\rho-|\vec{b}|-2,\\ m_{1},m_{2}\geq 0\end{subarray}}\|\langle D_{x}\rangle^{m_{1}}[\partial_{\varphi}^{\vec{b}}\Delta_{12}A,\partial_{x}]\langle D_{x}\rangle^{m_{2}}h\|_{p}\leq\mathfrak{N}_{[\partial_{\varphi}^{\vec{b}}\Delta_{12}A,\partial_{x}]}(-\rho+|\vec{b}|+2,p)\|h\|_{p}.

We define for 0bρ30\leq b\leq\rho-3

𝕄Δ12A(p,b)\displaystyle\mathbb{M}_{\Delta_{12}A}(p,b)
:=max0|b|bmax{𝔑φbΔ12A(ρ+|b|+1,p),𝔑[φbΔ12A,x](ρ+|b|+2,p)}.\displaystyle:=\max_{0\leq|\vec{b}|\leq b}\max\left\{\mathfrak{N}_{\partial_{\varphi}^{\vec{b}}\Delta_{12}A}(-\rho+|\vec{b}|+1,p),\mathfrak{N}_{[\partial_{\varphi}^{\vec{b}}\Delta_{12}A,\partial_{x}]}(-\rho+|\vec{b}|+2,p)\right\}.
Lemma B.1.

Let aS1a\in S^{-1}, T𝔏ρ,pT\in\mathfrak{L}_{\rho,p} with ρ3\rho\geq 3 and consider the operator I(Op(a)+T)I-({\rm Op}(a)+T). There exists a constant C(𝒮,α,ρ)C(\mathcal{S},\alpha,\rho) such that if

C(𝒮,α,ρ)(|a|1,p+(ρ1)(ρ2)+3,ρ2γ,𝒪+𝕄Tγ(s0,b))<1,C(\mathcal{S},\alpha,\rho)\big{(}|a|_{-1,p+(\rho-1)(\rho-2)+3,\rho-2}^{\gamma,\mathcal{O}}+\mathbb{M}_{T}^{\gamma}(s_{0},b)\big{)}<1,

where 𝒮\mathcal{S} is the fixed constant in Definition B.1, then Id(Op(a)+T){\rm{Id}}-({\rm Op}(a)+T) is invertible and

(Id(Op(a)+T))1=Id+Op(c1)+ρ,({\rm{Id}}-({\rm Op}(a)+T))^{-1}={\rm{Id}}+{\rm Op}(c_{1})+\mathfrak{R}_{\rho},
(Id(Op(a)+T))1IdOp(a)=Op(c2)+ρ,({\rm{Id}}-({\rm Op}(a)+T))^{-1}-{\rm{Id}}-{\rm Op}(a)={\rm Op}(c_{2})+\mathfrak{R}_{\rho},

where c1S1,c2S2,ρ𝔏ρ,pc_{1}\in S^{-1},c_{2}\in S^{-2},\mathfrak{R}_{\rho}\in\mathfrak{L}_{\rho,p}. Moreover, for all s0s𝒮s_{0}\leq s\leq\mathcal{S}, the following estimates hold:

|c1|1,s,αγ,𝒪,|c2|2,s,αγ,𝒪s,α,ρ|a|1,s+(ρ2)(ρ3),α+ρ3γ,𝒪,|c_{1}|_{-1,s,\alpha}^{\gamma,\mathcal{O}},|c_{2}|_{-2,s,\alpha}^{\gamma,\mathcal{O}}\leq_{s,\alpha,\rho}|a|_{-1,s+(\rho-2)(\rho-3),\alpha+\rho-3}^{\gamma,\mathcal{O}},
|Δ12c1|1,p,α,|Δ12c2|2,p,αp,α,ρ|Δ12a|1,p+(ρ2)(ρ3),α+ρ3,|\Delta_{12}c_{1}|_{-1,p,\alpha},|\Delta_{12}c_{2}|_{-2,p,\alpha}\leq_{p,\alpha,\rho}|\Delta_{12}a|_{-1,p+(\rho-2)(\rho-3),\alpha+\rho-3},
𝕄ργ(s,b)s,ρ|a|1,s+(ρ1)(ρ2)+3,ρ2γ,𝒪+𝕄Tγ(s,b),0bρ2,\mathbb{M}_{\mathfrak{R}_{\rho}}^{\gamma}(s,b)\leq_{s,\rho}|a|_{-1,s+(\rho-1)(\rho-2)+3,\rho-2}^{\gamma,\mathcal{O}}+\mathbb{M}_{T}^{\gamma}(s,b),\quad 0\leq b\leq\rho-2,
𝕄Δ12ρ(p,b)p,ρ|Δ12a|1,p+(ρ1)(ρ2)+3,ρ2+𝕄Δ12T(p,b),0bρ3.\mathbb{M}_{\Delta_{12}\mathfrak{R}_{\rho}}(p,b)\leq_{p,\rho}|\Delta_{12}a|_{-1,p+(\rho-1)(\rho-2)+3,\rho-2}+\mathbb{M}_{\Delta_{12}T}(p,b),\quad 0\leq b\leq\rho-3.
Proof.

Most of the results have been proved in [30]. We only have to prove the formulas involving c2c_{2}. Since

c1=n=1ρ1c(n)=c(1)+n=2ρ1c(n)=a+n=2ρ1c(n),c_{1}=\sum_{n=1}^{\rho-1}c^{(n)}=c^{(1)}+\sum_{n=2}^{\rho-1}c^{(n)}=a+\sum_{n=2}^{\rho-1}c^{(n)},

where c(n):=a<ρ2c(n1)c^{(n)}:=a\sharp_{<\rho-2}c^{(n-1)}, c(1):=ac^{(1)}:=a. We define c2=n=2ρ1c(n)c_{2}=\sum_{n=2}^{\rho-1}c^{(n)}. Then the estimates of c2c_{2} follow from the estimates involving c(n)c^{(n)} in Lemma B.5 of [30]. ∎

Lemma B.2.

Let aS1a\in S^{1} and B𝔏ρ+1,pB\in\mathfrak{L}_{\rho+1,p}. Then Op(a)B,BOp(a)𝔏ρ,p{\rm Op}(a)\circ B,B\circ{\rm Op}(a)\in\mathfrak{L}_{\rho,p}. Moreover, for all s0s𝒮s_{0}\leq s\leq\mathcal{S},

𝕄BOp(a)γ(s,b),𝕄Op(a)Bγ(s,b)s,ρ|a|1,s+ρ,0γ,𝒪𝕄Bγ(s0,b)+|a|1,s0+ρ,0γ,𝒪𝕄Bγ(s,b)\mathbb{M}_{B\circ{\rm Op}(a)}^{\gamma}(s,b),\mathbb{M}_{{\rm Op}(a)\circ B}^{\gamma}(s,b)\leq_{s,\rho}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s_{0},b)+|a|_{1,s_{0}+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s,b)

for 0bρ20\leq b\leq\rho-2, and

𝕄Δ12(BOp(a))(p,b),𝕄Δ12(Op(a)B)(p,b)p,ρ|Δ12a|1,p+ρ,0𝕄Bγ(p,b)+|a|1,p+ρ,0𝕄Δ12B(p,b)\begin{split}\mathbb{M}_{\Delta_{12}(B\circ{\rm Op}(a))}(p,b),\mathbb{M}_{\Delta_{12}({\rm Op}(a)\circ B)}(p,b)\leq_{p,\rho}&|\Delta_{12}a|_{1,p+\rho,0}\mathbb{M}_{B}^{\gamma}(p,b)\\ &+|a|_{1,p+\rho,0}\mathbb{M}_{\Delta_{12}B}(p,b)\\ \end{split}

for 0bρ30\leq b\leq\rho-3.

Proof.

For 0bρ2,0|b|b0\leq b\leq\rho-2,0\leq|\vec{b}|\leq b, let |b1|+|b2|=|b|,m1+m2=ρ|b||\vec{b}_{1}|+|\vec{b}_{2}|=|\vec{b}|,m_{1}+m_{2}=\rho-|\vec{b}|, we have

Dxm1φb1Op(a)φb2BDxm2=Dxm1φb1Op(a)Dxm11Dxm1+1φb2BDxm2.\begin{split}&\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)\circ\partial_{\varphi}^{\vec{b}_{2}}B\langle D_{x}\rangle^{m_{2}}\\ &=\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)\langle D_{x}\rangle^{-m_{1}-1}\circ\langle D_{x}\rangle^{m_{1}+1}\partial_{\varphi}^{\vec{b}_{2}}B\langle D_{x}\rangle^{m_{2}}.\end{split}

Note that Dxm1φb1Op(a)Dxm11\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)\langle D_{x}\rangle^{-m_{1}-1} is a pseudo-differential operator of order 0. By Lemma A.2, Lemma A.3 and (A.4)-(A.5), it follows that

𝔐Dxm1φb1Op(a)Dxm11γ(0,s)s|Dxm1φb1Op(a)Dxm11|0,s,0γ,𝒪s|φb1Op(a)|1,s+m1,0γ,𝒪s|a|1,s+|b1|+m1,0γ,𝒪s|a|1,s+ρ,0γ,𝒪.\begin{split}\mathfrak{M}_{\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)\langle D_{x}\rangle^{-m_{1}-1}}^{\gamma}(0,s)\leq_{s}&|\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)\langle D_{x}\rangle^{-m_{1}-1}|_{0,s,0}^{\gamma,\mathcal{O}}\\ \leq_{s}&|\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)|_{1,s+m_{1},0}^{\gamma,\mathcal{O}}\leq_{s}|a|_{1,s+|\vec{b}_{1}|+m_{1},0}^{\gamma,\mathcal{O}}\leq_{s}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}.\\ \end{split}

Then by Lemma A.1, the Lip-0-tame constant of Dxm1φb(Op(a)B)Dxm2\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}({\rm Op}(a)B)\langle D_{x}\rangle^{m_{2}} satisfies

𝔐φb(Op(a)B)γ(ρ+|b|,s)s,ρ|a|1,s+ρ,0γ,𝒪𝕄Bγ(s0,b)+|a|1,s0+ρ,0γ,𝒪𝕄Bγ(s,b).\begin{split}\mathfrak{M}_{\partial_{\varphi}^{\vec{b}}({\rm Op}(a)B)}^{\gamma}(-\rho+|\vec{b}|,s)\leq_{s,\rho}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s_{0},b)+|a|_{1,s_{0}+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s,b).\end{split}

In addition, let |b1|+|b2|=|b|,m1+m2=ρ|b|1|\vec{b}_{1}|+|\vec{b}_{2}|=|\vec{b}|,m_{1}+m_{2}=\rho-|\vec{b}|-1, we deduce that

Dxm1φb[Op(a)B,x]Dxm2=Dxm1φb([Op(a),x]B)Dxm2+Dxm1φb(Op(a)[B,x])Dxm2.\begin{split}\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}[{\rm Op}(a)B,\partial_{x}]\langle D_{x}\rangle^{m_{2}}=&\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}([{\rm Op}(a),\partial_{x}]B)\langle D_{x}\rangle^{m_{2}}\\ &+\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}}({\rm Op}(a)[B,\partial_{x}])\langle D_{x}\rangle^{m_{2}}.\\ \end{split}

For the second summand, by the similar discussion as above, it implies that

𝔐φb(Op(a)[B,x])γ(ρ+|b|+1,s)s,ρ|a|1,s+ρ,0γ,𝒪𝕄Bγ(s0,b)+|a|1,s0+ρ,0γ,𝒪𝕄Bγ(s,b).\begin{split}\mathfrak{M}_{\partial_{\varphi}^{\vec{b}}({\rm Op}(a)[B,\partial_{x}])}^{\gamma}&(-\rho+|\vec{b}|+1,s)\\ &\leq_{s,\rho}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s_{0},b)+|a|_{1,s_{0}+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s,b).\\ \end{split}

For the first summand,

Dxm1φb1[Op(a),x]φb2BDxm2=Dxm1φb1[Op(a),x]Dxm12Dxm1+2φb2BDxm2.\begin{split}\langle D_{x}\rangle^{m_{1}}&\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]\partial_{\varphi}^{\vec{b}_{2}}B\langle D_{x}\rangle^{m_{2}}\\ &=\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]\langle D_{x}\rangle^{-m_{1}-2}\langle D_{x}\rangle^{m_{1}+2}\partial_{\varphi}^{\vec{b}_{2}}B\langle D_{x}\rangle^{m_{2}}.\\ \end{split}

Note that Dxm1φb1[Op(a),x]Dxm12\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]\langle D_{x}\rangle^{-m_{1}-2} is a pseudo differential operator of order 0, from Lemma A.2, Lemma A.3, and (A.4)-(A.5), we deduce that

𝔐Dxm1φb1[Op(a),x]Dxm12γ(0,s)s|Dxm1φb1[Op(a),x]Dxm12|0,s,0γ,𝒪s|φb1[Op(a),x]|2,s+m1,0γ,𝒪s|φb1Op(a)|1,s+m1+1,0γ,𝒪s|a|1,s+|b1|+m1+1,0γ,𝒪s|a|1,s+ρ,0γ,𝒪.\begin{split}\mathfrak{M}_{\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]\langle D_{x}\rangle^{-m_{1}-2}}^{\gamma}&(0,s)\leq_{s}|\langle D_{x}\rangle^{m_{1}}\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]\langle D_{x}\rangle^{-m_{1}-2}|_{0,s,0}^{\gamma,\mathcal{O}}\\ \leq_{s}&|\partial_{\varphi}^{\vec{b}_{1}}[{\rm Op}(a),\partial_{x}]|_{2,s+m_{1},0}^{\gamma,\mathcal{O}}\leq_{s}|\partial_{\varphi}^{\vec{b}_{1}}{\rm Op}(a)|_{1,s+m_{1}+1,0}^{\gamma,\mathcal{O}}\\ \leq_{s}&|a|_{1,s+|\vec{b}_{1}|+m_{1}+1,0}^{\gamma,\mathcal{O}}\leq_{s}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}.\\ \end{split}

Then by Lemma A.1, we obtain

𝔐φb[Op(a)B,x]γ(ρ+|b|+1,s)s,ρ|a|1,s+ρ,0γ,𝒪𝕄Bγ(s0,b)+|a|1,s0+ρ,0γ,𝒪𝕄Bγ(s,b).\mathfrak{M}_{\partial_{\varphi}^{\vec{b}}[{\rm Op}(a)B,\partial_{x}]}^{\gamma}(-\rho+|\vec{b}|+1,s)\leq_{s,\rho}|a|_{1,s+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s_{0},b)+|a|_{1,s_{0}+\rho,0}^{\gamma,\mathcal{O}}\mathbb{M}_{B}^{\gamma}(s,b).

For the proof of the second result, we only need to notice that

Δ12(Op(a)B)=(Δ12Op(a))B+Op(a)Δ12B,\Delta_{12}({\rm Op}(a)B)=\big{(}\Delta_{12}{\rm Op}(a)\big{)}B+{\rm Op}(a)\Delta_{12}B,

and

φb[Δ12(Op(a)B),x]=φb([Δ12Op(a),x]B)+φb((Δ12Op(a))[B,x])+φb([Op(a),x]Δ12B)+φb(Op(a)[Δ12B,x]).\begin{split}\partial_{\varphi}^{\vec{b}}[\Delta_{12}({\rm Op}(a)B),\partial_{x}]=&\partial_{\varphi}^{\vec{b}}([\Delta_{12}{\rm Op}(a),\partial_{x}]B)+\partial_{\varphi}^{\vec{b}}((\Delta_{12}{\rm Op}(a))[B,\partial_{x}])\\ &+\partial_{\varphi}^{\vec{b}}([{\rm Op}(a),\partial_{x}]\Delta_{12}B)+\partial_{\varphi}^{\vec{b}}({\rm Op}(a)[\Delta_{12}B,\partial_{x}]).\\ \end{split}

The proof for BOp(a)B\circ{\rm Op}(a) is similar. ∎

We now show the connection between the class 𝔏ρ,p\mathfrak{L}_{\rho,p} and the class of Lip-1-1-modulo-tame operators. It can be directly derived from Lemma C.8 and Lemma C.10 in [31].

Lemma B.3.

Assume ρ,b\rho,b\in\mathbb{N} satisfy ρs0+b+3\rho\geq s_{0}+b+3, A𝔏ρ,pA\in\mathfrak{L}_{\rho,p}. Then AA and φbA\langle\partial_{\varphi}\rangle^{b}A are Lip-1-1-modulo-tame operators with modulo-tame constants

𝔐A,γ(1,s)ρ,s𝕄Aγ(s,ρ2),𝔐A,γ(1,s,b)ρ,s𝕄Aγ(s,ρ2).\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s)\leq_{\rho,s}\mathbb{M}_{A}^{\gamma}(s,\rho-2),\quad\mathfrak{M}_{A}^{\sharp,\gamma}(-1,s,b)\leq_{\rho,s}\mathbb{M}_{A}^{\gamma}(s,\rho-2).

Moreover,

Dx1/2Δ12A¯Dx1/2𝔏(Hs0)ρ𝕄Δ12A(s0,ρ3),Dx1/2Δ12φbA¯Dx1/2𝔏(Hs0)ρ𝕄Δ12A(s0,ρ3).\displaystyle\begin{aligned} &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq_{\rho}\mathbb{M}_{\Delta_{12}A}(s_{0},\rho-3),\\ &\|\langle D_{x}\rangle^{1/2}\underline{\Delta_{12}\langle\partial_{\varphi}\rangle^{b}A}\langle D_{x}\rangle^{1/2}\|_{\mathfrak{L}(H^{s_{0}})}\leq_{\rho}\mathbb{M}_{\Delta_{12}A}(s_{0},\rho-3).\end{aligned}

Appendix C Change of variable

The following classical lemma states that the composition operator uu(x+p(x))u\mapsto u(x+p(x)) induced by a diffeomorphism of the torus 𝕋\mathbb{T} is tame.

Lemma C.1.

(Change of variable)[3, 29] suppose pWs,(𝕋;),s1p\in W^{s,\infty}(\mathbb{T};\mathbb{R}),s\geq 1 with |p|1,1/2|p|_{1,\infty}\leq 1/2 and let f(x)=x+p(x)f(x)=x+p(x). Then

(1). f:𝕋𝕋f:\mathbb{T}\rightarrow\mathbb{T} is a diffeomorphism, its inverse is g(y)=y+q(y)g(y)=y+q(y) with qWs,(𝕋;)q\in W^{s,\infty}(\mathbb{T};\mathbb{R}) and

|q|s,s|p|s,.|q|_{s,\infty}\leq_{s}|p|_{s,\infty}. (C.6)

Moreover, suppose that p=p(λ)p=p(\lambda) depends on a parameter λΛ\lambda\in\Lambda\subset\mathbb{R} and |Dxp(λ)|L1/2|D_{x}p(\lambda)|_{L^{\infty}}\leq 1/2 for all λ\lambda. Then the following estimate holds:

|q(λ1)q(λ2)|s,s|p(λ1)p(λ2)|s,+supλΛ|p(λ)|s+1,|p(λ1)p(λ2)|.|q(\lambda_{1})-q(\lambda_{2})|_{s,\infty}\leq_{s}|p(\lambda_{1})-p(\lambda_{2})|_{s,\infty}+\sup_{\lambda\in\Lambda}|p(\lambda)|_{s+1,\infty}|p(\lambda_{1})-p(\lambda_{2})|_{\infty}. (C.7)

(2). If uHs(𝕋;)u\in H^{s}(\mathbb{T};\mathbb{C}), then uf(x)=u(x+p(x))Hs(𝕋,)u\circ f(x)=u(x+p(x))\in H^{s}(\mathbb{T},\mathbb{C}), and

ufssus+|Dxp|s1,u1.\|u\circ f\|_{s}\leq_{s}\|u\|_{s}+|D_{x}p|_{s-1,\infty}\|u\|_{1}.

Moreover, suppose that p=p(λ)p=p(\lambda) depends on a parameter λΛ\lambda\in\Lambda\subset\mathbb{R} and suppose that |Dxu(λ)|L1/2|D_{x}u(\lambda)|_{L^{\infty}}\leq 1/2 for all λ\lambda. Then the following estimate holds:

|(uf)(λ1)(uf)(λ2)|s,s(1+supλΛ|p|s,)|u(λ1)u(λ2)|s,+(supλΛ|p(λ)|s,+supλΛ|u(λ)|s+1,)|p(λ1)p(λ2)|s,.\begin{split}|(u\circ f)(\lambda_{1})-&(u\circ f)(\lambda_{2})|_{s,\infty}\leq_{s}\big{(}1+\sup_{\lambda\in\Lambda}|p|_{s,\infty}\big{)}|u(\lambda_{1})-u(\lambda_{2})|_{s,\infty}\\ &+\left(\sup_{\lambda\in\Lambda}|p(\lambda)|_{s,\infty}+\sup_{\lambda\in\Lambda}|u(\lambda)|_{s+1,\infty}\right)|p(\lambda_{1})-p(\lambda_{2})|_{s,\infty}.\\ \end{split} (C.8)

(3). Suppose that pp depends in a Lipschitz way on a parameter ω𝒪ν\omega\in\mathcal{O}\subset\mathbb{R}^{\nu} and |p(ω)|1,1/2|p(\omega)|_{1,\infty}\leq 1/2. Then q=q(ω)q=q(\omega) is also Lipschitz in ω\omega, and

|q|s,γ,𝒪s|p|s,γ,𝒪,|q|_{s,\infty}^{\gamma,\mathcal{O}}\leq_{s}|p|_{s,\infty}^{\gamma,\mathcal{O}}, (C.9)
ufsγ,𝒪susγ,𝒪+usγ,𝒪|p|1,γ,𝒪+|p|s,γ,𝒪u2γ,𝒪.\|u\circ f\|_{s}^{\gamma,\mathcal{O}}\leq_{s}\|u\|_{s}^{\gamma,\mathcal{O}}+\|u\|_{s}^{\gamma,\mathcal{O}}|p|_{1,\infty}^{\gamma,\mathcal{O}}+|p|_{s,\infty}^{\gamma,\mathcal{O}}\|u\|_{2}^{\gamma,\mathcal{O}}. (C.10)

References

  • [1] M. S. Alber, R. Camassa, D. D. Holm, J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys., 32 (1994), 137-151.
  • [2] P. Baldi, M. Berti, E. Haus, R. Montalto,  Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214 (2018), 739-911.
  • [3] P. Baldi, M. Berti, R. Montalto,  KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536.
  • [4] P. Baldi, M. Berti, R. Montalto,  KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1589-1638.
  • [5] D. Bambusi, S. Graffi,  Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.
  • [6] D. Bambusi, B. Grébert, A. Maspero, D. Robert,  Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Anal. PDE, 11 (2018), 775-799.
  • [7] M. Berti, R. Montalto,  Quasi-periodic standing wave solutions of gravity-capillary water waves, Mem. Amer. Math. Soc., 263 (2020), no. 1273, v+171 pp.
  • [8] M. Berti, L. Biasco, M. Procesi,  KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Éc. Norm. Supér., 46 (2013), 301-373.
  • [9] M. Berti, L. Biasco, M. Procesi,  KAM for reversible derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955.
  • [10] M. Berti, P. Bolle,  Quasi-periodic solutions with Sobolev regularity of NLS on TdT^{d} with a multiplicative potential, J. Eur. Math. Soc., 15 (2013), 229-286.
  • [11] N. N. Bogoljubov, J. A. Mitropoliskii, A. M. Samoǐlenko,  Methods of accelerated convergence in nonlinear mechanics, Springer-Verlag, Berlin-New York, 1976, viii+291 pp.
  • [12] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.
  • [13] H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems, Springer-Verlag, Berlin, 1996, xii+196 pp.
  • [14] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
  • [15] P. Casati, P. Lorenzoni, G. Ortenzi, M. Pedroni, On the local and nonlocal Camassa-Holm hierarchies, J. Math. Phys., 46 (2005), 042704, 8 pp.
  • [16] L. Chierchia, J. G. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys., 211 (2000), 497-525.
  • [17] A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
  • [18] A. Constantin, On the blow-up of solutions of a periodic shallow water equation, J. Nonlinear Sci., 10 (2000), 391-399.
  • [19] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
  • [20] A. Constantin, J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.
  • [21] A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
  • [22] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
  • [23] W. Craig, C. E. Wayne, Newton’s method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.
  • [24] A. Degasperis, D. D. Kholm, A. N. I. Khon,  A new integrable equation with peakon solutions, Theor. Math. Phys., 133 (2002), 1463-1474.
  • [25] A. Degasperis, M. Procesi,  Asymptotic integrability, World Sci. Publ., River Edge, NJ, 1999.
  • [26] L. H. Eliasson,  Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications, (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001.
  • [27] H. L. Eliasson, S. B. Kuksin,  On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys., 286 (2009), 125-135.
  • [28] L. H. Eliasson, S. B. Kuksin,  KAM for the nonlinear Schrödinger equation, Ann. of Math., 172 (2010), 371-435.
  • [29] R. Feola, F. Giuliani, R. Montalto, M. Procesi,  Reducibility of first order linear operators on tori via Moser’s theorem, J. Funct. Anal., 276 (2019), 932-970.
  • [30] R. Feola, F. Giuliani, M. Procesi,  Reducibility for a class of weakly dispersive linear operators arising from the Degasperis Procesi equation, Dyn. Partial Differ. Equ., 16 (2019), 25-94.
  • [31] R. Feola, F. Giuliani, M. Procesi,  Reducible KAM tori for the Degasperis-Procesi equation, Comm. Math. Phys., 377 (2020), 1681-1759.
  • [32] R. Feola, M. Procesi,  Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations, 259 (2015), 3389-3447.
  • [33] M. Fisher, J. Schiff, The Camassa Holm equation: conserved quantities and the initial value problem, Phys. Lett. A, 259 (1999), 371-376.
  • [34] B. Fuchssteiner, A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981/82), 47-66.
  • [35] J. S. Geng, J. G. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343-372.
  • [36] F. Giuliani,  Quasi-periodic solutions for quasi-linear generalized KdV equations, J. Differential Equations, 262 (2017), 5052-5132.
  • [37] B. Grébert, E. Paturel,  KAM for the Klein Gordon equation on SdS^{d}, Boll. Unione Mat. Ital., 9 (2016), 237-288.
  • [38] H. L. Her, J. G. You,  Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dynam. Differential Equations, 20 (2008), 831-866.
  • [39] L. Hömander, The analysis of linear partial differential operators. III. Pseudo-differential operators, Springer, Berlin, 2007, 525 pp.
  • [40] À. Jorba, C. Simó,  On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124.
  • [41] R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.
  • [42] T. Kappeler, J. Pöschel,  KAM & KdV, Springer-Verlag, Berlin, 2003. xiv+279 pp.
  • [43] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen., 21 (1987), 22-37.
  • [44] S. B. Kuksin, A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Math. Phys., 10 (1998), no. 3, ii+64 pp.
  • [45] S. B. Kuksin, J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
  • [46] J. Lenells, Conservation laws of the CH-equation, J. Phys. A, 38 (2005), 869-880.
  • [47] Y. A. Li, P. J. Olver,  Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
  • [48] J. J. Liu, X. P. Yuan,  A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.
  • [49] R. Montalto,  Quasi-periodic solutions of forced Kirchhoff equation, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Paper No. 9, 71 pp.
  • [50] J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.
  • [51] J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119-148.
  • [52] C. Procesi, M. Procesi, A KAM algorithm for the resonant non-linear Schrödinger equation, Adv. Math., 272 (2015), 399-470.
  • [53] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
  • [54] J. Zhang, M. N. Gao, X. P. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228.