This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Reconciling the HESS J1731-347 constraints with
Parity doublet model

Bikai Gao [email protected] Department of Physics, Nagoya University, Nagoya 464-8602, Japan    Yan Yan [email protected] School of Microelectronics and Control Engineering, Changzhou University, Jiangsu 213164, China    Masayasu Harada [email protected] Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya, 464-8602, Japan Department of Physics, Nagoya University, Nagoya 464-8602, Japan Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
Abstract

The recent discovery of a central compact object (CCO) within the supernova remnant HESS J1731-347, characterized by a mass of approximately 0.770.17+0.20M0.77^{+0.20}_{-0.17}M_{\odot} and a radius of about 10.40.78+0.8610.4^{+0.86}_{-0.78} km, has opened up a new window for the study of compact objects. This CCO is particularly intriguing because it is the lightest and smallest compact object ever observed, raising questions and challenging the existing theories. To account for this light compact star, a mean-field model within the framework of parity doublet structure is applied to describe the hadron matter. Inside the model, part of the nucleon mass is associated with the chiral symmetry breaking while the other part is from the chiral invariant mass m0m_{0} which is insensitive to the temperature/density. The value of m0m_{0} affects the nuclear equation of state for uniform nuclear matter at low density and exhibits strong correlations with the radii of neutron stars. We point out that HESS J1731-347 can be explained as the lightest neutron star for m0850m_{0}\simeq 850\,MeV.

I Introduction

Neutron star (NS) is one of the most compact objects in the universe with a mass of 11-2M2M_{\odot} and a radius of 10\sim 10 km. The NSs with extreme conditions provide us unique natural laboratory for investigating the phases of cold, dense matter, including the possibility of exotic states such as hyperons and even quarks appearing within these astrophysical objects. Understanding the properties of NSs requires the information about its equation of state (EOS) which characterizes how pressure PP varies as a function of energy density ϵ\epsilon. This EOS cannot be directly predicted by the quantum chromodynamics (QCD) and also the lattice QCD simulations due to the sign problem. Thanks to the advancements of recent multi-messenger astronomy on different sources, especially those made by gravitational wave laser interferometers from the LIGO-VIRGO[1, 2, 3] and X-ray emissions observations conducted by the Neutron Star Interior Composition Explorer (NICER), we made remarkable improvements to constrain the EOS of cold, dense and strongly interacting nuclear matter. For instance, the NS merger event GW170817 provided insights into the mass and radius of NSs, with an estimation of approximately 1.4MM_{\odot} and a radius of R=11.91.4+1.4R=11.9^{+1.4}_{-1.4} km. This observation suggested that the EOS should be relatively soft for uniform nuclear matter existing in the low-density region. Additionally, NICER has played a crucial role in advancing our understandings of NSs. The analyses[4, 5] have focused on NSs with masses around 1.4M1.4M_{\odot} and 2.1M\sim 2.1M_{\odot}. Interestingly, the results indicated that the radii of these NSs are rather similar for different masses, with a radius of approximately 12.45±0.6512.45\pm 0.65 kilometers for a 1.4 MM_{\odot} NS and 12.35±0.7512.35\pm 0.75 kilometers for a 2.08 MM_{\odot} NS. These findings suggest that the EOS stiffens rapidly, meaning that the pressure increases quickly as a function of energy density, as one moves from low baryon density (2n0\lesssim 2n_{0}; n0n_{0}: nuclear saturation density ) to high density (44-7n07n_{0}). This stiffening of the EOS is necessary to support the existence of massive NSs, such as those with masses around 2MM_{\odot}.

The recent report on the central compact object (CCO) HESS J1731-347[6] with an estimated mass and radius of the object are M=0.770.17+0.20MM=0.77^{+0.20}_{-0.17}M_{\odot} and R=10.40.78+0.86R=10.4^{+0.86}_{-0.78} km, have raised many questions and put more constraints into the EOS. This measurements suggest that this CCO may correspond to a neutron star with an even softer equation of state in the low-density region than previously observed. Some studies considered the possibility that HESS J1731-347 may be a quark star[7, 8, 9, 10, 11], an exotic theoretical object composed of deconfined quarks rather than the usual hadronic matter suggested in neutron stars.

In this research, we will explore the possibility that HESS J1731-347 may be the neutron star within the framework of a quark-hadron crossover model constructed in [12, 13, 14, 15], in which a unified EOS is constructed by interpolating the hadronic EOS from a hadronic model based on the parity doublet structure[16, 17]. and the quark EOS from an NJL-type quark model.

Hadronic models based on the parity doublet structure, which we call parity doublet models(PDMs), offer a unique perspective on the structure of hadrons by considering the existence of chiral invariant mass, denoted by m0m_{0}, in addition to the conventional chiral variant mass generated by the spontaneous chiral symmetry breaking. The existence of the chiral invariant mass is consistent with the lattice QCD simulation done at non-zero temperature [18, 19, 20]. The framework of PDMs has been widely used to study the hadron structure[21, 22, 23, 24, 25, 26] and construct the EOS for nuclear /NS matter[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 15, 47, 48, 12, 13, 14, 15, 48, 49, 50]. We note that the constructed EOS is softer for larger chiral invariant mass, and the resultant EOSs are combined with the EOS constructed from an NJL-type quark model by assuming quark-hadron crossover, which allows for a smooth transition from hadronic matter to quark matter[12, 13, 14, 15, 48, 49]. This hybrid approach, where the PDM EOS is employed up to densities around 22-3n03n_{0} and interpolate with the quark EOS at 5n0\geq 5n_{0} via polynomial interpolation to obtain the unified EOS. In this case, the unified EOS can be constructed with soft EOS in the low density part and sufficiently stiff EOS in the high density part to support the 2M2M_{\odot} constraint.

In this work, we consider a hadronic EOS constructed from a PDM in the low density region and interpolate with quark EOS using an NJL-type quark model in the high density region. Inside the PDM, we included the ρ2ω2\rho^{2}\omega^{2} interaction term with λωρ\lambda_{\omega\rho} to be its coupling constant, which is assumed to make the EOS softer. By adjusting the two parameters λωρ\lambda_{\omega\rho} and m0m_{0}, we can adjust the stiffness of EOS in the hadronic model. The constructed unified EOS is shown to satisfty the constraints from HESS J1731-347, makes it possible to be the lightest neutron star ever observed.

This paper is organized as follows. In Sec. II, we explain the formulation of present model. The main results of the analysis of properties of NS are shown in Sec. III. Finally, we show the summary and discussions in Sec. IV.

II EQUATION OF STATE

In this section, we briefly review how to construct neutron star matter EOS from a PDM in the low-density region, and from a NJL-type quark model in the high-density region.

II.1 NUCLEAR MATTER EOS

In Ref. [15], a hadronic parity doublet model (PDM) is constructed to describe the NS properties in the low density region (2n0\leq 2n_{0}). The model includes the effects of strange quark chiral condensate through the KMT-type interaction in the mesonic sector. The density dependence of the strange quark chiral condensate s¯s\langle\bar{s}s\rangle is calculated and the results show the impacts of strange quark chiral condensate is very limited in the low density region. Then, in the current study, we neglect the effect of strange quark in the low density domain. In addition, we ignore the influence of the isovector scalar meson a0(980)a_{0}(980) in the current model, which believed to appear in asymmetric matter like neutron stars. As investigated in Ref. [50], the effect of the a0(980)a_{0}(980) has a negligible impact on the properties of neutron stars. Specifically, the inclusion of the a0(980)a_{0}(980) only results in a slight increase in the radius by less than a kilometer. We would like also to note that, in these analyses, a term of vector meson mixing, i.e. ω2ρ2\omega^{2}\rho^{2} term, is introduced to make the slope parameter to be consistent with the recent constraint shown in Ref. [51]. In the present analysis, we also include the mixing contribution.

The thermodynamic potential is obtained as [42, 44]

ΩPDM=\displaystyle\Omega_{\mathrm{PDM}}= V(σ)V(σ0)12mω2ω212mρ2ρ2\displaystyle V\left(\sigma\right)-V\left(\sigma_{0}\right)-\frac{1}{2}m_{\omega}^{2}\omega^{2}-\frac{1}{2}m_{\rho}^{2}\rho^{2} (1)
λωρ(gωω)2(gρρ)2\displaystyle-\lambda_{\omega\rho}\left(g_{\omega}\omega\right)^{2}\left(g_{\rho}\rho\right)^{2}
2i=+,α=p,nkfd3𝐩(2π)3(μαEpi),\displaystyle-2\sum_{i=+,-}\sum_{\alpha=p,n}\int^{k_{f}}\frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}}\left(\mu_{\alpha}^{*}-E_{\mathrm{p}}^{i}\right)\ ,

where i=+,i=+,- denote the parity of nucleons and E𝐩i=𝐩2+mi2E_{{\bf p}}^{i}=\sqrt{{\bf p}^{2}+m_{i}^{2}} is the energy of nucleons with mass mim_{i} and momentum 𝐩{\bf p}. In Eq (1), the potential V(σ)V(\sigma) is given by

V(σ)=12μ¯2σ2+14λ4σ416λ6σ6mπ2fπσ,\displaystyle V(\sigma)=-\frac{1}{2}\bar{\mu}^{2}\sigma^{2}+\frac{1}{4}\lambda_{4}\sigma^{4}-\frac{1}{6}\lambda_{6}\sigma^{6}-m_{\pi}^{2}f_{\pi}\sigma\ , (2)

and σ0\sigma_{0} is the mean field at vacuum.

We note that the sign of λ\lambda is restricted to be positive due to the stability of the vacuum at zero density[50]. The total thermodynamic potential for the NS is obtained by including the effects of leptons as

ΩH=ΩPDM+l=e,μΩl,\displaystyle\Omega_{{\rm H}}=\Omega_{{\rm PDM}}+\sum_{l=e,\mu}\Omega_{l}\ , (3)

where Ωl(l=e,μ)\Omega_{l}(l=e,\mu) are the thermodynamic potentials for leptons given by

Ωl=2kFd3𝐩(2π)3(μlE𝐩l).\Omega_{l}=-2\int^{k_{F}}\frac{d^{3}\mathbf{p}}{(2\pi)^{3}}\left(\mu_{l}-E_{\mathbf{p}}^{l}\right). (4)

The mean fields here are determined by following stationary conditions:

0=ΩHσ,0=ΩHω,0=ΩHρ.0=\frac{\partial\Omega_{\mathrm{H}}}{\partial\sigma},\quad 0=\frac{\partial\Omega_{\mathrm{H}}}{\partial\omega},\quad 0=\frac{\partial\Omega_{\mathrm{H}}}{\partial\rho}. (5)

We also need to consider the β\beta equilibrium and the charge neutrality conditions,

μe=μμ=μQ,\displaystyle\mu_{e}=\mu_{\mu}=-\mu_{Q}, (6)
ΩHμQ=npnl=0,\displaystyle\frac{\partial\Omega_{\mathrm{H}}}{\partial\mu_{Q}}=n_{p}-n_{l}=0\,, (7)

where μQ\mu_{Q} is the charge chemical potential. We then have the pressure in hadronic matter as

PH=ΩH.P_{\mathrm{H}}=-\Omega_{\mathrm{H}}. (8)

We then determine the parameters in the PDM by fitting them to the pion decay constant and hadron masses given in Table. 1 and the normal nuclear matter properties summarized in Table. 2 for fixed value of m0m_{0}.

Table 1: Physical inputs in vacuum in unit of MeV.
 mπm_{\pi}   fπf_{\pi}   mωm_{\omega}   mρm_{\rho}   m+m_{+}   mm_{-}
 140   92.4   783   776   939   1535
Table 2: Saturation properties used to determine the model parameters: the saturation density n0n_{0}, the binding energy B0B_{0}, the incompressibility K0K_{0}, symmetry energy S0S_{0}.
 n0n_{0} [fm-3] EBindE_{\rm Bind} [MeV] K0K_{0} [MeV] S0S_{0} [MeV]
0.16 16 240 31

In addition, we use the slope parameter as an input to determine the coefficient λωρ\lambda_{\omega\rho} of the ω\omega-ρ\rho mixing term. In the present analysis, we need to use the slope parameter as an input to determine the strength of the vector meson mixing (namely the parameter λρω\lambda_{\rho\omega}). The estimation in Ref. [51] provide the best value is L=57.7±19L=57.7\pm 19 MeV.

For studying this sensitivity, we first study the EOSs for L=40,57.7,70,80L=40,57.7,70,80 MeV with m0=800m_{0}=800 MeV fixed.

In Table. 3, we summarize the values of the parameters gρNNg_{\rho NN} and λωρ\lambda_{\omega\rho} for several choices of the chiral invariant mass and the slope parameter.

Table 3: Determined values of λωρ\lambda_{\omega\rho} and gρNNg_{\rho NN} with different choices of the chiral invariant mass m0m_{0} and the slope parameter LL.
L=40L=40 MeV
m0[MeV]m_{0}[\mathrm{MeV}] 500 600 700 800 900
λωρ\lambda_{\omega\rho} 0.045 0.087 0.192 0.504 3.243
gρNNg_{\rho NN} 7.31 7.85 8.13 8.30 8.43
L=57.7L=57.7 MeV
m0[MeV]m_{0}[\mathrm{MeV}] 500 600 700 800 900
λωρ\lambda_{\omega\rho} 0.037 0.066 0.141 0.362 2.28
gρNNg_{\rho NN} 7.31 7.85 8.13 8.30 8.43
L=70L=70 MeV
m0[MeV]m_{0}[\mathrm{MeV}] 500 600 700 800 900
λωρ\lambda_{\omega\rho} 0.028 0.045 0.088 0.211 1.252
gρNNg_{\rho NN} 7.31 7.85 8.13 8.30 8.43
L=80L=80 MeV
m0[MeV]m_{0}[\mathrm{MeV}] 500 600 700 800 900
λωρ\lambda_{\omega\rho} 0.020 0.021 0.025 0.030 0.013
gρNNg_{\rho NN} 7.31 7.85 8.13 8.30 8.43

Since the introduction of ω\omega-ρ\rho mixing does not have impacts on the normal nuclear matter construction, the coupling constants of scalar mesons, μ¯2\bar{\mu}^{2}, λ4\lambda_{4} and λ6\lambda_{6} are exactly same as those determined in Ref. [44], we only list the values for the λωρ,gρNN\lambda_{\omega\rho},g_{\rho NN}.

The dependence on the slope parameter LL for m0=800m_{0}=800 MeV is plotted in Fig. 1.

Refer to caption
Figure 1: EOS for different values of the slope parameter LL for m0=800m_{0}=800 MeV.

This shows that the smaller LL leads to softer EOS as expected. As we will show later, we need vert soft EOS in the low density region to reproduce the HESS data. Then, we will take L=40L=40 MeV as a typical choice in the preceding analysis.

We can then calculate the EOS in the hadronic model and the corresponding EOS for PDM with fixing slope parameter L=40L=40 MeV is shown in Fig. 2.

Refer to caption
Figure 2: EOS for different values of m0m_{0} for L=40L=40 MeV.

From this figure, we easily find that larger values of m0m_{0} lead to softer EOSs. This is understood as follows: a greater m0m_{0} leads to a weaker σ\sigma coupling to nucleons, because a nucleon does not have to acquire its mass entirely from the σ\sigma fields. The couplings to ω\omega fields are also smaller because the repulsive contributions from ω\omega fields must be balanced with attractive σ\sigma contributions at the saturation density n0n_{0}. At densities larger than n0n_{0}, however, the σ\sigma field reduces but the ω\omega field increases, and these contributions are no longer balanced, affecting the stiffness of the EOS.

II.2 QUARK MATTER EOS

Following Refs.[12, 52], we use an NJL-type quark model to describe the quark matter. The model includes three-flavors and U(1)A anomaly effects through the quark version of the KMT interaction. The coupling constants are chosen to be the Hatsuda-Kunihiro parameters which successfully reproduce the hadron phenomenology at low energy [12, 53]: GΛ2=1.835,KΛ5=9.29G\Lambda^{2}=1.835,K\Lambda^{5}=9.29 with Λ=631.4MeV\Lambda=631.4\,\rm{MeV}, see the definition below. The couplings gVg_{V} and HH characterize the strength of the vector repulsion and attractive diquark correlations whose range will be examined later when we discuss the NS constraints.

We can then write down the thermodynamic potential as

ΩCSC=\displaystyle\Omega_{\mathrm{CSC}}= ΩsΩs[σf=σf0,dj=0,μq=0]\displaystyle\,\Omega_{s}-\Omega_{s}\left[\sigma_{f}=\sigma_{f}^{0},d_{j}=0,\mu_{q}=0\right] (9)
+ΩcΩc[σf=σf0,dj=0],\displaystyle+\Omega_{c}-\Omega_{c}\left[\sigma_{f}=\sigma_{f}^{0},d_{j}=0\right],

where the subscript 0 is attached for the vacuum values, and

Ωs=2i=118Λd3𝐩(2π)3ϵi2,\displaystyle\Omega_{s}=-2\sum_{i=1}^{18}\int^{\Lambda}\frac{d^{3}\mathbf{p}}{(2\pi)^{3}}\frac{\epsilon_{i}}{2}, (10)
Ωc=i(2Gσi2+Hdi2)4KσuσdσsgVnq2,\displaystyle\Omega_{c}=\sum_{i}\left(2G\sigma_{i}^{2}+Hd_{i}^{2}\right)-4K\sigma_{u}\sigma_{d}\sigma_{s}-g_{V}n_{q}^{2}, (11)

with σf\sigma_{f} being the chiral condensates, djd_{j} denotes for diquark condensates, and nqn_{q} denotes for the quark density. In Eq.(10), ϵi\epsilon_{i} are energy eigenvalues obtained from inverse propagator in Nambu-Gorkov bases

S1(k)=(γμkμM^+γ0μ^γ5iΔiRiγ5iΔiRiγμkμM^γ0μ^),S^{-1}(k)=\left(\begin{array}[]{lc}\gamma_{\mu}k^{\mu}-\hat{M}+\gamma^{0}\hat{\mu}&\gamma_{5}\sum_{i}\Delta_{i}R_{i}\\ -\gamma_{5}\sum_{i}\Delta_{i}^{*}R_{i}&\gamma_{\mu}k^{\mu}-\hat{M}-\gamma^{0}\hat{\mu}\end{array}\right), (12)

where

Mi=mi4Gσi+K|ϵijk|σjσk,\displaystyle M_{i}=m_{i}-4G\sigma_{i}+K\left|\epsilon_{ijk}\right|\sigma_{j}\sigma_{k}, (13)
Δi=2Hdi,\displaystyle\Delta_{i}=-2Hd_{i},
μ^=μq2gVnq+μ3λ3+μ8λ8+μQQ,\displaystyle\hat{\mu}=\mu_{q}-2g_{V}n_{q}+\mu_{3}\lambda_{3}+\mu_{8}\lambda_{8}+\mu_{Q}Q,
(R1,R2,R3)=(τ7λ7,τ5λ5,τ2λ2).\displaystyle(R_{1},R_{2},R_{3})=(\tau_{7}\lambda_{7},\tau_{5}\lambda_{5},\tau_{2}\lambda_{2}).

S1(k)S^{-1}(k) is 72×7272\times 72 matrix in terms of the color, flavor, spin, and Nambu-Gorkov basis, which has 72 eigenvalues. Mu,d,sM_{u,d,s} are the constituent masses of u,d,su,d,s quarks and Δ1,2,3\Delta_{1,2,3} are the gap energies. The μ3,8\mu_{3,8} are the color chemical potentials which will be tuned to achieve the color neutrality. The total thermodynamic potential including the effect of leptons is

ΩQ=ΩCSC+l=e,μΩl.\Omega_{\mathrm{Q}}=\Omega_{\mathrm{CSC}}+\sum_{l=e,\mu}\Omega_{l}. (14)

The mean fields are determined from the gap equations,

0=ΩQσi=ΩQdi,0=\frac{\partial\Omega_{\mathrm{Q}}}{\partial\sigma_{i}}=\frac{\partial\Omega_{\mathrm{Q}}}{\partial d_{i}}, (15)

From the conditions for electromagnetic charge neutrality and color charge neutrality, we have

nj=ΩQμj=0,n_{j}=-\frac{\partial\Omega_{\mathrm{Q}}}{\partial\mu_{j}}=0, (16)

where j=3,8,Qj=3,8,Q. The baryon number density nBn_{B} is determined as

nq=ΩQμq,n_{q}=-\frac{\partial\Omega_{\mathrm{Q}}}{\partial\mu_{q}}, (17)

where μq\mu_{q} is 1/31/3 of the baryon number chemical potential. After determined all the values, we obtain the pressure as

PQ=ΩQ.P_{\mathrm{Q}}=-\Omega_{\mathrm{Q}}. (18)

III STUDY OF PROPERTIES OF NS

In this section, following Ref. [44] we construct a unified EOS by connecting the EOS obtained in the PDM introduced in Sec. II.1 and the EOS of NJL-type quark model given in Sec. II.2, and solve the TOV equation [54, 55] to obtain the NS mass-radius (MM-RR) relation. As for the interplay between nuclear and quark matter EOS, see, e.g., Ref. [56] for a quick review that classifies types of the interplay.

III.1 Construction of unified EOS

0nB<0.5n00\leq n_{B}<0.5n_{0} 0.5n0nB2n00.5n_{0}\leq n_{B}\leq 2n_{0} 2n0<nB<5n02n_{0}<n_{B}<5n_{0} nB5n0n_{B}\geq 5n_{0}
Crust PDM Interpolation NJL
Table 4: Unified EOS composed of four part.

In our unified equations of state as in Table.4, we use the BPS (Baym-Pethick-Sutherland) EOS [57] as a crust EOS for nB0.5n0n_{B}\lesssim 0.5n_{0}. From nB0.5n0n_{B}\simeq 0.5n_{0} to 2n02n_{0} we use our PDM model to describe a nuclear matter. We limit the use of our PDM up to 2n02n_{0} so that baryons other than ground state nucleons, such as the negative parity nucleons or hyperons, do not show up in matter. Beyond 2n02n_{0} nuclear regime, we assume a crossover from the nuclear matter to quark matter, and use a smooth interpolation to construct the unified EOS. We expand the pressure as a fifth order polynomial of μB\mu_{B} as

PI(μB)=i=05CiμBi,P_{\mathrm{I}}\left(\mu_{B}\right)=\sum_{i=0}^{5}C_{i}\mu_{B}^{i}, (19)

where CiC_{i} (i=0,,5i=0,\cdots,5) are parameters to be determined from boundary conditions given by

dnPI(dμB)n|μBL=dnPH(dμB)n|μBL,\displaystyle\left.\frac{\mathrm{d}^{n}P_{\mathrm{I}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BL}}=\left.\frac{\mathrm{d}^{n}P_{\mathrm{H}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BL}}, (20)
dnPI(dμB)n|μBU=dnPQ(dμB)n|μBU,(n=0,1,2),\displaystyle\left.\frac{\mathrm{d}^{n}P_{\mathrm{I}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BU}}=\left.\frac{\mathrm{d}^{n}P_{\mathrm{Q}}}{\left(\mathrm{d}\mu_{B}\right)^{n}}\right|_{\mu_{BU}},\quad(n=0,1,2),

with μBL\mu_{BL} being the chemical potential corresponding to nB=2n0n_{B}=2n_{0} and μBU\mu_{BU} to nB=5n0n_{B}=5n_{0}. We demand the matching up to the second order derivatives of pressure at each boundary. The resultant interpolated EOS must satisfy the thermodynamic stability condition,

χB=2P(μB)20,\displaystyle\chi_{B}=\frac{\,\partial^{2}P\,}{\,(\partial\mu_{B})^{2}\,}\geq 0\,, (21)

and the causality condition,

cs2=dPdε=nBμBχB1,c_{s}^{2}=\frac{\,\mathrm{d}P\,}{\mathrm{d}\varepsilon}=\frac{n_{B}}{\mu_{B}\chi_{B}}\leq 1\,, (22)

which means that the sound velocity is smaller than the light velocity. These conditions restrict the range of quark model parameters (gV,H)(g_{V},H) for a given nuclear EOS and a choice of (nL,nU)(n_{L},n_{U}). We exclude interpolated EOSs which do not satisfy the above-mentioned constraints.

III.2 Mass-Radius relation

In this section, we calculate mass-radius relation of NSs by using the unified EOS constructed in the previous section for the PDM with different parameter choices of chiral invariant mass m0m_{0} and slope parameter LL.

First, we study whether the smooth connection is realized depending on the parameters HH and gVg_{V} in the NJL-type quark model as shown in Fig. 3 for PDM with L=40L=40 MeV.

Refer to caption
(a) m0m_{0}=500 MeV
Refer to caption
(b) m0m_{0}=600 MeV
Refer to caption
(c) m0m_{0}=700 MeV
Refer to caption
(d) m0m_{0}=800 MeV
Refer to caption
(e) m0m_{0}=900 MeV
Figure 3: Allowed combination of (H,gVH,g_{V}) values for m0=500,600,700,800,900m_{0}=500,600,700,800,900 MeV when L=40L=40 MeV. Cross mark indicates that the combination of (H,gVH,g_{V}) is excluded by the causality constraints. Circle indicates that the combination is allowed. The color shows the maximum mass of NS obtained from the corresponding parameters, as indicated by a vertical bar at the right side of each figure.

For each combination of (H,gV)(H,g_{V}), the cross mark are the parameter choices forbidden by the causality and thermodynamic stability conditions. For possible choices of (H,gV)(H,g_{V}), we determine the maximum mass of a NS, which is indicated by the color in Fig. 3. This shows that a larger gVg_{V} or/and a smaller HH leads to a larger maximum mass. For m0=900m_{0}=900 MeV, the maximum mass for all the choices of (H,gV)(H,g_{V}) are below 2MM_{\odot}, leading to the conclusion that m0=900m_{0}=900 should be excluded when slope parameter is chosen to be L=40L=40 MeV.

Refer to caption
Figure 4: Mass-radius relations for same m0=800m_{0}=800 MeV in different PDM sets. Black curve is connected to the NJL parameters (H, gVg_{V})/G = (1.5, 1); green curve to (H, gVg_{V})/G = (1.55, 1); red curve to (H, gVg_{V})/G = (1.55, 1); blue curve to (H, gVg_{V})/G = (1.55, 1).

In Fig. 4, we fix the value of m0m_{0} with different choice of LL and calculate the corresponding mass-radius curves, where the values of (H,gVH,g_{V}) are chosen to have the stiffest EOS. In this figure, the thick part indicates that the density region is smaller than 2n02n_{0} or larger than 5n0n_{0} and the thin line indicates the interpolated region. From the figure, for m0=800m_{0}=800 MeV, the radius for L=40L=40 MeV, M1.4MM\simeq 1.4M_{\odot} is about 11.511.5 km while the result of L=80L=80 MeV about 12.612.6 km. This result indicates that EOSs are softened by the effect of the ωρ\omega\rho interaction. One can see that the MM-RR curve for L=40L=40 MeV satisfies the constraint from the HESS J1731-347 observation. We note that L=40L=40 MeV is consistent with the one obtained in Ref. [51], due to a large ambiguity. Precise determination of slope parameter in future will help us to further constrain the NS properties.

To achieve a NS with small radius, the outer core EOS (Density around 1n01n_{0}-2n02n_{0}) is extremely important, since it directly connects to the radius of a neutron star. In our model, the chiral invariant mass m0m_{0} and the slope parameter LL are two factors which have impacts on the outer core EOS. We then treat them as free parameters and compare the corresponding MM-RR curves with NS constraints from NICER, gravitational wave detection and HESS. We show the allowed region of m0m_{0} and LL satisfying all the observational constraints in 1σ1\sigma and 2σ2\sigma range as in Fig. 5. Under this parameter space favoring large m0m_{0} and small LL, HESS J1731-347 can be considered as the lightest NS.

Refer to caption
Figure 5: Allowed region for m0m_{0} and LL. Within the shadowed region, the M-R curve satisfy all the constraint from the NS observation within the error of 1σ1\sigma or 2σ2\sigma.

IV SUMMARY AND DISCUSSIONS

In this study, we use parity doublet model together with NJL-type model within the framework of relativistic mean-field model to describe low-mass neutron stars. We construct EOS for NS matter by interpolating the EOS obtained in the PDM and the one in the NJL-type model with assuming the crossover from hadronic matter to quark matter. In the calculation of the NS mass-radius relation, we find outer core EOS is crucial to determine the radius of a NS. Consequently, the choices of chiral invariant mass m0m_{0} and slope parameter LL which describe the properties of the uniform nuclear matter are essential. We treat m0m_{0} and LL as two free parameters and find the parameter space enable us to explain the HESS J1731-347 as a neutron star as in Fig. 5.

We note here that the typical estimate of LL falls within the range of 4040-8080 MeV, as indicated by various studies[51, 58, 59]. However, there are also other estimates such as L=(109±36.41)L=(109\pm 36.41) MeV derived from the analyses of neutron skin thickness from PREX-2 experiment. There is still large ambiguities about the value of slope parameter. In the present research, we follow Ref. [51] as the baseline to set L=57.7±19L=57.7\pm 19 MeV and study the corresponding mass-radius relation. If future experiment show the value of slope parameter is large, we can come to the conclusion that HESS J1731-347 cannot be explained as a NS within the present model.

As studied in Refs.[60, 61, 62], the validity of pure hadronic descriptions at nB2n0n_{B}\geq 2n_{0} are questionable as nuclear many-body forces are very important, implying that quark descriptions are required even before the quark matter formation. In this study, we choose the interpolation point to be 2n02n_{0} and the ambuguity from the interpolation point is disscussed in Fig. 6. In this figure, we show the MM-RR curves for m0=850m_{0}=850\,MeV and L=40L=40\,MeV with changing the interpolation range from 2n02n_{0}-5n05n_{0} to 1.5n01.5n_{0}-5n05n_{0} and 2.5n02.5n_{0}-5n05n_{0}.

Refer to caption
Figure 6: Mass-radius relations for m0=850m_{0}=850 MeV, L=40L=40 MeV and corresponding curves for central density. Different colors indicate different interpolation range.

We can easily see that the ambiguity from the interpolation point is very limited: at the mass about 1M1M_{\odot}, the radius shifts are only about 0.10.1 km.

In Fig. 7, we fix the value of slope parameter as L=40L=40 MeV and vary the value of m0m_{0} as m0=600,700,800m_{0}=600,700,800 MeV.

Refer to caption
Figure 7: Mass-Radius relations for m0=600m_{0}=600, 700700, 800800 MeV with L=40L=40\,MeV. Orange curves are for (H,gV)/G=(1.55,1.3)(H,g_{V})/G=(1.55,1.3) and (1.45,0.8)(1.45,0.8); green curves for (H,gV)/G=(1.6,1.3)(H,g_{V})/G=(1.6,1.3) and (1.5,0.8)(1.5,0.8); red curves for (H,gV)/G=(1.55,1)(H,g_{V})/G=(1.55,1), (1.5,0.8)(1.5,0.8).

We choose the values of (H,gV)(H,g_{V}) parameters to produce the most stiff and the most soft EOSs satisfying 2M2M_{\odot} constraint. For m0=700,800m_{0}=700,800 MeV, the rather soft hadronic EOSs are connected with rather stiff quark EOSs satisfying 2M2M_{\odot} constraint, resulting a peak of the density dependence of sound velocity, as shown in Fig. 8. However, for m0=600m_{0}=600 MeV, the rather stiff hadronic EOS is used to connect with stiff quark EOSs, resulting just a bump-like structure. Besides, we find that the onset density of the sound velocity peak is larger for larger m0m_{0}. Reference [63] pointed out that the appearance of the maximum in the speed of sound in the interior of NSs might indicate the change of medium composition, from hadronic to quark or quarkyonic matter. They estimate the critical density where baryons begin to overlap as ncper=1.22/V0,V0=(4/3)πR03n_{c}^{per}=1.22/V_{0},V_{0}=(4/3)\pi R^{3}_{0}[64]. After using experimental value of the proton radius R0=0.9±0.05R_{0}=0.9\pm 0.05 fm[65, 66], the critical density is calculated as ncper=0.570.09+0.12n_{c}^{per}=0.57^{+0.12}_{-0.09} fm-3. When we require that the peak density of the sound velocity in the present analysis should satisfy 0.48nBpeak0.690.48\leq n_{B}^{\rm peak}\leq 0.69, i.e. 3nBpeak/n04.33\leq n_{B}^{\rm peak}/n_{0}\leq 4.3, we obtain the constraint to the chiral invariant mass as 600m0800600\lesssim m_{0}\lesssim 800 MeV for L=40L=40 MeV.

Refer to caption
Figure 8: Sound velocity for m0=600m_{0}=600, 700700 and 800800  MeV. The NJL parameters are the same as Fig. 7.

Acknowledgement

The work of B.G., and M.H. are supported in part by JSPS KAKENHI Grant Nos. 20K03927, 23H05439 and 24K07045. B.G. is also supported by JST SPRING, Grant No. JPMJSP2125. B.G. would like to take this opportunity to thank the “Interdisciplinary Frontier Next-Generation Researcher Program of the Tokai Higher Education and Research System.”

References

  • Abbott [2017] B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017).
  • Abbott et al. [2017] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT), Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys. J. Lett. 848, L12 (2017)arXiv:1710.05833 [astro-ph.HE] .
  • Abbott et al. [2018] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018)arXiv:1805.11581 [gr-qc] .
  • Miller et al. [2021] M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021)arXiv:2105.06979 [astro-ph.HE] .
  • Riley et al. [2021] T. E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918, L27 (2021)arXiv:2105.06980 [astro-ph.HE] .
  • Doroshenko et al. [2022] V. Doroshenko, V. Suleimanov, G. Pühlhofer, and A. Santangelo, A strangely light neutron star within a supernova remnant, Nature Astronomy 6 (2022).
  • Chu et al. [2023] P.-C. Chu, X.-H. Li, H. Liu, M. Ju, and Y. Zhou, Properties of isospin asymmetric quark matter in quark stars, Phys. Rev. C 108, 025808 (2023).
  • Oikonomou and Moustakidis [2023] P. T. Oikonomou and C. C. Moustakidis, Color-flavor locked quark stars in light of the compact object in the HESS J1731-347 and the GW190814 event, Phys. Rev. D 108, 063010 (2023)arXiv:2304.12209 [astro-ph.HE] .
  • Restrepo et al. [2023] T. E. Restrepo, C. Providência, and M. B. Pinto, Nonstrange quark stars within resummed QCD, Phys. Rev. D 107, 114015 (2023)arXiv:2212.11184 [hep-ph] .
  • Yang et al. [2023] S.-H. Yang, C.-M. Pi, X.-P. Zheng, and F. Weber, Confronting Strange Stars with Compact-Star Observations and New Physics, Universe 9, 202 (2023)arXiv:2304.09614 [astro-ph.HE] .
  • Rather et al. [2023] I. A. Rather, G. Panotopoulos, and I. Lopes, Quark models and radial oscillations: decoding the HESS J1731-347 compact object’s equation of state, Eur. Phys. J. C 83, 1065 (2023)arXiv:2307.03703 [astro-ph.HE] .
  • Baym et al. [2018a] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, From hadrons to quarks in neutron stars: a review, Rept. Prog. Phys. 81, 056902 (2018a)arXiv:1707.04966 [astro-ph.HE] .
  • Minamikawa et al. [2021a] T. Minamikawa, T. Kojo, and M. Harada, Quark-hadron crossover equations of state for neutron stars: constraining the chiral invariant mass in a parity doublet model, Phys. Rev. C 103, 045205 (2021a)arXiv:2011.13684 [nucl-th] .
  • Minamikawa et al. [2021b] T. Minamikawa, T. Kojo, and M. Harada, Chiral condensates for neutron stars in hadron-quark crossover: From a parity doublet nucleon model to a Nambu–Jona-Lasinio quark model, Phys. Rev. C 104, 065201 (2021b)arXiv:2107.14545 [nucl-th] .
  • Gao et al. [2022] B. Gao, T. Minamikawa, T. Kojo, and M. Harada, Impacts of the U(1)A anomaly on nuclear and neutron star equation of state based on a parity doublet model, Phys. Rev. C 106, 065205 (2022)arXiv:2207.05970 [nucl-th] .
  • DeTar and Kunihiro [1989] C. DeTar and T. Kunihiro, Linear sigma model with parity doubling, Phys. Rev. D 39, 2805 (1989).
  • Jido et al. [2001] D. Jido, M. Oka, and A. Hosaka, Chiral Symmetry of Baryons, Progress of Theoretical Physics 106, 873 (2001)https://academic.oup.com/ptp/article-pdf/106/5/873/5373808/106-5-873.pdf .
  • Aarts et al. [2015] G. Aarts, C. Allton, S. Hands, B. Jäger, C. Praki, and J.-I. Skullerud, Nucleons and parity doubling across the deconfinement transition, Phys. Rev. D 92, 014503 (2015)arXiv:1502.03603 [hep-lat] .
  • Aarts et al. [2017] G. Aarts, C. Allton, D. De Boni, S. Hands, B. Jäger, C. Praki, and J.-I. Skullerud, Light baryons below and above the deconfinement transition: medium effects and parity doubling, JHEP 06, 034arXiv:1703.09246 [hep-lat] .
  • Aarts et al. [2019] G. Aarts, C. Allton, D. De Boni, and B. Jäger, Hyperons in thermal QCD: A lattice view, Phys. Rev. D 99, 074503 (2019)arXiv:1812.07393 [hep-lat] .
  • Nishihara and Harada [2015] H. Nishihara and M. Harada, Extended Goldberger-Treiman relation in a three-flavor parity doublet model, Phys. Rev. D 92, 054022 (2015)arXiv:1506.07956 [hep-ph] .
  • Chen et al. [2010] H.-X. Chen, V. Dmitrasinovic, and A. Hosaka, Baryon fields with U(L)(3) X U(R)(3) chiral symmetry II: Axial currents of nucleons and hyperons, Phys. Rev. D 81, 054002 (2010)arXiv:0912.4338 [hep-ph] .
  • Chen et al. [2011] H.-X. Chen, V. Dmitrasinovic, and A. Hosaka, Baryon Fields with UL(3)timesUR(3)U_{L}(3)timesU_{R}(3) Chiral Symmetry III: Interactions with Chiral (3,3¯)+(3¯,3)(3,\bar{3})+(\bar{3},3) Spinless Mesons, Phys. Rev. D 83, 014015 (2011)arXiv:1009.2422 [hep-ph] .
  • Chen et al. [2012] H.-X. Chen, V. Dmitrasinovic, and A. Hosaka, mathrmBaryonswithmathrm{Baryonswith} UL(3)×UR(3)U_{L}(3)\times U_{R}(3) Chiral Symmetry IV: Interactions with Chiral (8,1) \oplus (1,8) Vector and Axial-vector Mesons and Anomalous Magnetic Moments, Phys. Rev. C 85, 055205 (2012)arXiv:1109.3130 [hep-ph] .
  • Minamikawa et al. [2023a] T. Minamikawa, B. Gao, T. Kojo, and M. Harada, Parity doublet model for baryon octets: diquark classifications and mass hierarchy based on the quark-line diagram,   (2023a), arXiv:2306.15564 [hep-ph] .
  • Gao et al. [2024] B. Gao, T. Kojo, and M. Harada, Parity doublet model for baryon octets: ground states saturated by good diquarks and the role of bad diquarks for excited states,   (2024), arXiv:2403.18214 [hep-ph] .
  • Hatsuda and Prakash [1989] T. Hatsuda and M. Prakash, Parity doubling of the nucleon and first-order chiral transition in dense matter, Physics Letters B 224, 11 (1989).
  • Zschiesche et al. [2007] D. Zschiesche, L. Tolos, J. Schaffner-Bielich, and R. D. Pisarski, Cold, dense nuclear matter in a su(2) parity doublet model, Phys. Rev. C 75, 055202 (2007).
  • Dexheimer et al. [2008] V. Dexheimer, S. Schramm, and D. Zschiesche, Nuclear matter and neutron stars in a parity doublet model, Phys. Rev. C 77, 025803 (2008).
  • Sasaki and Mishustin [2010] C. Sasaki and I. Mishustin, Thermodynamics of dense hadronic matter in a parity doublet model, Phys. Rev. C 82, 035204 (2010).
  • Sasaki et al. [2011] C. Sasaki, H. K. Lee, W.-G. Paeng, and M. Rho, Conformal anomaly and the vector coupling in dense matter, Phys. Rev. D 84, 034011 (2011).
  • Gallas et al. [2011] S. Gallas, F. Giacosa, and G. Pagliara, Nuclear matter within a dilatation-invariant parity doublet model: The role of the tetraquark at nonzero density, Nuclear Physics A 872, 13 (2011).
  • Steinheimer et al. [2011] J. Steinheimer, S. Schramm, and H. Stöcker, Hadronic su(3) parity doublet model for dense matter and its extension to quarks and the strange equation of state, Phys. Rev. C 84, 045208 (2011).
  • Paeng et al. [2012] W.-G. Paeng, H. K. Lee, M. Rho, and C. Sasaki, Dilaton-limit fixed point in hidden local symmetric parity doublet model, Phys. Rev. D 85, 054022 (2012).
  • Dexheimer et al. [2013] V. Dexheimer, J. Steinheimer, R. Negreiros, and S. Schramm, Hybrid stars in an su(3) parity doublet model, Phys. Rev. C 87, 015804 (2013).
  • Paeng et al. [2013] W.-G. Paeng, H. K. Lee, M. Rho, and C. Sasaki, Interplay between ω\omega-nucleon interaction and nucleon mass in dense baryonic matter, Phys. Rev. D 88, 105019 (2013).
  • Mukherjee et al. [2017a] A. Mukherjee, J. Steinheimer, and S. Schramm, Higher-order baryon number susceptibilities: Interplay between the chiral and the nuclear liquid-gas transitions, Phys. Rev. C 96, 025205 (2017a).
  • Suenaga [2018] D. Suenaga, Examination of N(1535){N}^{*}(1535) as a probe to observe the partial restoration of chiral symmetry in nuclear matter, Phys. Rev. C 97, 045203 (2018).
  • Takeda et al. [2018] Y. Takeda, Y. Kim, and M. Harada, Catalysis of partial chiral symmetry restoration by Δ\mathrm{\Delta} matter, Phys. Rev. C 97, 065202 (2018).
  • Abuki et al. [2018] H. Abuki, Y. Takeda, and M. Harada, Dual chiral density waves in nuclear matter, EPJ Web Conf. 192, 00020 (2018).
  • Marczenko et al. [2019a] M. Marczenko, D. Blaschke, K. Redlich, and C. Sasaki, Parity doubling and the dense-matter phase diagram under constraints from multi-messenger astronomy, Universe 510.3390/universe5080180 (2019a).
  • Motohiro et al. [2015] Y. Motohiro, Y. Kim, and M. Harada, Asymmetric nuclear matter in a parity doublet model with hidden local symmetry, Phys. Rev. C 92, 025201 (2015).
  • Yamazaki and Harada [2019] T. Yamazaki and M. Harada, Constraint to chiral invariant masses of nucleons from gw170817 in an extended parity doublet model, Phys. Rev. C 100, 025205 (2019).
  • Minamikawa et al. [2021c] T. Minamikawa, T. Kojo, and M. Harada, Quark-hadron crossover equations of state for neutron stars: Constraining the chiral invariant mass in a parity doublet model, Phys. Rev. C 103, 045205 (2021c).
  • Mukherjee et al. [2017b] A. Mukherjee, S. Schramm, J. Steinheimer, and V. Dexheimer, The application of the Quark-Hadron Chiral Parity-Doublet Model to neutron star matter, Astron. Astrophys. 608, A110 (2017b)arXiv:1706.09191 [nucl-th] .
  • [46] M. Harada and T. Yamazaki, Charmed mesons in nuclear matter based on chiral effective models, proceedings of the 8th international conference on quarks and nuclear physics (qnp2018).
  • Marczenko et al. [2022] M. Marczenko, K. Redlich, and C. Sasaki, Chiral symmetry restoration and Δ\Delta matter formation in neutron stars, Phys. Rev. D 105, 103009 (2022)arXiv:2203.00269 [nucl-th] .
  • Minamikawa et al. [2023b] T. Minamikawa, B. Gao, T. Kojo, and M. Harada, Chiral Restoration of Nucleons in Neutron Star Matter: Studies Based on a Parity Doublet Model, Symmetry 15, 745 (2023b)arXiv:2302.00825 [nucl-th] .
  • Marczenko et al. [2019b] M. Marczenko, D. Blaschke, K. Redlich, and C. Sasaki, Parity Doubling and the Dense Matter Phase Diagram under Constraints from Multi-Messenger Astronomy, Universe 5, 180 (2019b)arXiv:1905.04974 [nucl-th] .
  • Kong et al. [2023] Y. K. Kong, T. Minamikawa, and M. Harada, Neutron star matter based on a parity doublet model including the a0(980) meson, Phys. Rev. C 108, 055206 (2023)arXiv:2306.08140 [nucl-th] .
  • Li et al. [2021] B.-A. Li, B.-J. Cai, W.-J. Xie, and N.-B. Zhang, Progress in constraining nuclear symmetry energy using neutron star observables since gw170817, Universe 710.3390/universe7060182 (2021).
  • Baym et al. [2019] G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi, New Neutron Star Equation of State with Quark-Hadron Crossover, Astrophys. J. 885, 42 (2019)arXiv:1903.08963 [astro-ph.HE] .
  • Hatsuda and Kunihiro [1994] T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian, Phys. Rept. 247, 221 (1994)arXiv:hep-ph/9401310 .
  • Tolman [1939] R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55, 364 (1939).
  • Oppenheimer and Volkoff [1939] J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55, 374 (1939).
  • Kojo [2021] T. Kojo, QCD equations of state and speed of sound in neutron stars, AAPPS Bull. 31, 11 (2021)arXiv:2011.10940 [nucl-th] .
  • Baym et al. [1971] G. Baym, C. Pethick, and P. Sutherland, The Ground state of matter at high densities: Equation of state and stellar models, Astrophys. J. 170, 299 (1971).
  • Drischler et al. [2020] C. Drischler, R. J. Furnstahl, J. A. Melendez, and D. R. Phillips, How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties, Phys. Rev. Lett. 125, 202702 (2020)arXiv:2004.07232 [nucl-th] .
  • Tews et al. [2017] I. Tews, J. M. Lattimer, A. Ohnishi, and E. E. Kolomeitsev, Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy, Astrophys. J. 848, 105 (2017)arXiv:1611.07133 [nucl-th] .
  • Masuda et al. [2013a] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron-Quark Crossover and Massive Hybrid Stars with Strangeness, Astrophys. J. 764, 12 (2013a)arXiv:1205.3621 [nucl-th] .
  • Masuda et al. [2013b] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron–quark crossover and massive hybrid stars, PTEP 2013, 073D01 (2013b)arXiv:1212.6803 [nucl-th] .
  • Baym et al. [2018b] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, From hadrons to quarks in neutron stars: a review, Reports on Progress in Physics 81, 056902 (2018b).
  • Marczenko et al. [2023] M. Marczenko, L. McLerran, K. Redlich, and C. Sasaki, Reaching percolation and conformal limits in neutron stars, Phys. Rev. C 107, 025802 (2023)arXiv:2207.13059 [nucl-th] .
  • Braun-Munzinger et al. [2015] P. Braun-Munzinger, A. Kalweit, K. Redlich, and J. Stachel, Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from Lattice QCD, Phys. Lett. B 747, 292 (2015)arXiv:1412.8614 [hep-ph] .
  • Dey et al. [2014] B. Dey, C. A. Meyer, M. Bellis, and M. Williams (CLAS), Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γpϕp\gamma p\rightarrow\phi pPhys. Rev. C 89, 055208 (2014), [Addendum: Phys.Rev.C 90, 019901 (2014)], arXiv:1403.2110 [nucl-ex] .
  • Mibe et al. [2005] T. Mibe, W. C. Chang, T. Nakano, D. S. Ahn, J. K. Ahn, H. Akimune, Y. Asano, S. Daté, H. Ejiri, H. Fujimura, M. Fujiwara, K. Hicks, T. Hotta, K. Imai, T. Ishikawa, T. Iwata, H. Kawai, Z. Y. Kim, K. Kino, H. Kohri, N. Kumagai, S. Makino, T. Matsuda, T. Matsumura, N. Matsuoka, K. Miwa, M. Miyabe, Y. Miyachi, M. Morita, N. Muramatsu, M. Niiyama, M. Nomachi, Y. Ohashi, T. Ooba, H. Ohkuma, D. S. Oshuev, C. Rangacharyulu, A. Sakaguchi, T. Sasaki, P. M. Shagin, Y. Shiino, H. Shimizu, Y. Sugaya, M. Sumihama, A. I. Titov, Y. Toi, H. Toyokawa, A. Wakai, C. W. Wang, S. C. Wang, K. Yonehara, T. Yorita, M. Yoshimura, M. Yosoi, and R. G. T. Zegers (LEPS Collaboration), Near-threshold diffractive ϕ\phi-meson photoproduction from the proton, Phys. Rev. Lett. 95, 182001 (2005).