This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Recent Belle II Results on Hadronic 𝑩\boldsymbol{B} Decays

Shu-Ping Lin    on behalf of the Belle II Collaboration Department of Physics, National Taiwan University,
No. 1, Sec. 4, Roosevelt Rd., Taipei 106216, Taiwan
Abstract

The investigation of BB meson decays to charmed and charmless hadronic final states is a keystone of the Belle II program. Analyses of such decays provide reliable and experimentally precise constraints on the weak interactions of quarks. They are sensitive to effects from non-SM physics, and further our knowledge about uncharted bβ†’cb\rightarrow c hadronic transitions. We present new results from combined analyses of Belle and Belle II data to determine the quark-mixing parameter Ο•3\phi_{3} (or Ξ³\gamma), and from the Belle II analyses of two-body decays that are related to the determination of Ο•2\phi_{2} (or Ξ±\alpha). We also present recent Belle II results on branching ratios and direct CP-violating asymmetries of several BB decays, which result in a competitive standard-model test based on the K​πK\pi isospin sum rule and first observations of three new Bβ†’D(βˆ—)​K​KS0B\rightarrow D^{(*)}KK_{S}^{0} decays.

1 Introduction

Hadronic BB decays provide precise constraints on the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix and are sensitive probes of physics beyond the standard model (SM). Measurement of new decay channels expands our knowledge of the flavour sector. Belle IIΒ [1], located at the SuperKEKBΒ [2] asymmetric collider at KEK, is a hermetic solenoidal magnetic spectrometer surrounded by particle-identification detectors, an electromagnetic calorimeter, and muon detectors. Optimised for the reconstruction of bottom-antibottom pairs produced at the threshold in Ξ₯​(4​S)\Upsilon(4S) decays, Belle II has competitive, unique, or world-leading reach in many key quantities associated with hadronic BB decays. The CKM angle Ο•3/Ξ³=arg⁑(βˆ’Vu​d​Vu​bβˆ—Vc​d​Vc​bβˆ—)\phi_{3}/\gamma=\arg\left(-\frac{V_{ud}V^{*}_{ub}}{V_{cd}V_{cb}^{*}}\right) is a fundamental constraint for charge-parity (CP) violation in the SM and can be reliably determined in tree-level processes, with negligible loop-amplitude contributions. The angle Ο•2/Ξ±=arg⁑(βˆ’Vt​d​Vt​bβˆ—Vu​d​Vu​bβˆ—)\phi_{2}/\alpha=\arg\left(-\frac{V_{td}V^{*}_{tb}}{V_{ud}V_{ub}^{*}}\right) is currently limiting the precision of non-SM tests based on global fits of the quark-mixing matrix unitarity and is best determined through measurement of B→ρ​ρB\rightarrow\rho\rho and B→π​πB\rightarrow\pi\pi decays. For Bβ†’K​πB\rightarrow K\pi decays, an isospin sum ruleΒ [3] combines the branching fractions and CP asymmetries of the decays, providing a null test of the SM. The capability of investigating all the related final states jointly, under consistent experimental settings, is unique to Belle II.

The challenge in analysing these channels lies in the large amount of e+​eβˆ’β†’q​qΒ―e^{+}e^{-}\rightarrow q\bar{q} continuum background. Binary-decision-tree classifiers CC are used to discriminate between signal and continuum events using event topology, kinematic, and decay-length information.Β [4] The determination of the signal yields is mainly based on observables that exploit the specific properties of at-threshold production: the energy difference between the BB candidate and the beam energy, Δ​E=EBβˆ—βˆ’Ebeamβˆ—\Delta E=E_{B}^{*}-E_{\text{beam}}^{*}, and the beam-constrained mass Mbc=Ebeamβˆ—/c2βˆ’(π’‘π‘©βˆ—/c)2M_{\text{bc}}=\sqrt{E_{\text{beam}}^{*}/c^{2}-(\boldsymbol{p_{B}^{*}}/c)^{2}}, where EBβˆ—E_{B}^{*} and π’‘π‘©βˆ—\boldsymbol{p_{B}^{*}} are the energy and momentum of the BB candidate, respectively, and Ebeamβˆ—E_{\text{beam}}^{*} is the beam energy, all in the center-of-mass frame.

2 𝑩→𝑫(βˆ—)β€‹π‘²β€‹π‘²π‘ΊπŸŽ\boldsymbol{B\rightarrow D^{(*)}KK_{S}^{0}} Decays

The composition of a large fraction of the BB hadronic width is unknown, which limits significantly our capability to model BB decays in simulation, impacting the precision of many measurements. Belle II is pursuing a systematic program of exploration of hadronic BB decays. We report a preliminary measurement of the branching fraction of Bβˆ’β†’D0​Kβˆ’β€‹KS0B^{-}\rightarrow D^{0}K^{-}K_{S}^{0} decayΒ [5], with a precision that is three times better than the previous best resultsΒ [6], and first observation of three new decay channels (BΒ―0β†’D+​Kβˆ’β€‹KS0\bar{B}^{0}\rightarrow D^{+}K^{-}K_{S}^{0}, Bβˆ’β†’Dβˆ—0​Kβˆ’β€‹KS0B^{-}\rightarrow D^{*0}K^{-}K_{S}^{0}, BΒ―0β†’Dβˆ—+​Kβˆ’β€‹KS0\bar{B}^{0}\rightarrow D^{*+}K^{-}K_{S}^{0})Β [5]. The branching fractions

ℬ​(Bβˆ’β†’D0​Kβˆ’β€‹KS0)\displaystyle\mathcal{B}(B^{-}\rightarrow D^{0}K^{-}K_{S}^{0}) =(1.89Β±0.16Β±0.10)Γ—10βˆ’4,\displaystyle=(1.89\pm 0.16\pm 0.10)\times 10^{-4},
ℬ​(BΒ―0β†’D+​Kβˆ’β€‹KS0)\displaystyle\mathcal{B}(\bar{B}^{0}\rightarrow D^{+}K^{-}K_{S}^{0}) =(0.85Β±0.11Β±0.05)Γ—10βˆ’4,\displaystyle=(0.85\pm 0.11\pm 0.05)\times 10^{-4},
ℬ​(Bβˆ’β†’Dβˆ—0​Kβˆ’β€‹KS0)\displaystyle\mathcal{B}(B^{-}\rightarrow D^{*0}K^{-}K_{S}^{0}) =(1.57Β±0.27Β±0.12)Γ—10βˆ’4,\displaystyle=(1.57\pm 0.27\pm 0.12)\times 10^{-4},
ℬ​(BΒ―0β†’Dβˆ—+​Kβˆ’β€‹KS0)\displaystyle\mathcal{B}(\bar{B}^{0}\rightarrow D^{*+}K^{-}K_{S}^{0}) =(0.96Β±0.18Β±0.06)Γ—10βˆ’4,\displaystyle=(0.96\pm 0.18\pm 0.06)\times 10^{-4},

are extracted from a 362​ fbβˆ’1362\text{ fb}^{-1} Belle II sample using likelihood fits to the unbinned distributions of the energy difference Δ​E\Delta E, where the first uncertainties are statistical and the second are systematic. The invariant mass m​(K​KS0)m(KK_{S}^{0}) of the two kaons is investigated. For all four channels, the m​(K​KS0)m(KK_{S}^{0}) distribution exhibits a peaking structure in the low-mass region, which departs from the expected three-body phase space distribution. Structures are also observed in the Dalitz distributions (FigureΒ 1).

Refer to caption
Figure 1: Δ​E\Delta E (left), m​(K​KS0)m(KK_{S}^{0}) (middle), and Dalitz (right) distributions of of Bβˆ’β†’D0​Kβˆ’β€‹KS0B^{-}\rightarrow D^{0}K^{-}K_{S}^{0} decay.

3 Determination of CKM Angle Ο•πŸ‘/𝜸\boldsymbol{\phi_{3}/\gamma}

The angle Ο•3\phi_{3} is studied through the interference of bβ†’c​u¯​sb\rightarrow c\bar{u}s and bβ†’u​c¯​sb\rightarrow u\bar{c}s transition amplitudes in tree-level BB hadron decays. The current world average Ο•3=(65.9βˆ’3.5+3.3)∘\phi_{3}=\left(65.9^{+3.3}_{-3.5}\right)^{\circ} is dominated by LHCb measurementsΒ [7, 8]. Ο•3\phi_{3} can be determined through different approaches featuring different DD final states from BB decays into charmed BB final states. The most precise Belle II result is obtained with self-conjugate DD final states (Dβ†’KS0​h+​hβˆ’D\rightarrow K_{S}^{0}h^{+}h^{-}, h=K,Ο€h=K,\pi)Β [9], where several intermediate resonances are involved in DD decays, resulting in variation of the CP asymmetry over the phase space. Two other approaches have also been pursued: one with Cabibbo-suppressed DD decays, and the other with the DD meson decaying to two-body CP eigenstates. In both analyses it is required that Mbc>5.27​ GeV/c2M_{\text{bc}}>5.27\text{ GeV}/c^{2}, |Δ​E|<0.15​ GeV|\Delta E|<0.15\text{ GeV} (Δ​E>βˆ’0.13​ GeV\Delta E>-0.13\text{ GeV} for the latter), and a loose requirement on CC removes about 60% of the continuum background. The signal yields are extracted with fits of Δ​E\Delta E and the continuum suppression classifier.

3.1 Cabibbo-suppressed channels

Grossman, Ligeti, and Soffer (GLS)Β [10] proposed a method to measure Ο•3\phi_{3} with singly Cabibbo-suppressed decays of DD mesons, BΒ±β†’D(β†’KS0KΒ±Ο€βˆ“)hΒ±B^{\pm}\rightarrow D(\rightarrow K_{S}^{0}K^{\pm}\pi^{\mp})h^{\pm}, where DD is the superposition of D0D^{0} and DΒ―0\bar{D}^{0} mesons. The BΒ±B^{\pm} meson can have the same sign (SS) or opposite sign (OS) with respect to the KΒ±K^{\pm} from the DD decay. In this analysisΒ [11], the information about the dynamics of the DD decays is integrated with external inputs from CLEOΒ [12].

The fitting is performed in both the full DD phase space and in the Kβˆ—K^{*} region, where the invariant mass m​(K​KS0)m(KK_{S}^{0}) is close to that of Kβˆ—β€‹(892)0K^{*}(892)^{0}, thus enhancing the interference and the precision on Ο•3\phi_{3}, due to the large strong-phase difference in Dβ†’KS0​KΒ±β€‹Ο€βˆ“D\rightarrow K_{S}^{0}K^{\pm}\pi^{\mp} decays. Combining Belle (711​ fbβˆ’1711\text{ fb}^{-1}) and Belle II (362​ fbβˆ’1362\text{ fb}^{-1}) data, the result is consistent, though not yet competitive to the result from LHCbΒ [13]. It can provide a constraint on Ο•3\phi_{3} when combined with results from other measurements.

Table 1: Results of BΒ±β†’D(β†’KS0KΒ±Ο€βˆ“)hΒ±B^{\pm}\rightarrow D(\rightarrow K_{S}^{0}K^{\pm}\pi^{\mp})h^{\pm} decay combining Belle (711​ fbβˆ’1711\text{ fb}^{-1}) and Belle II (362​ fbβˆ’1362\text{ fb}^{-1}) data for the full DD phase space and the Kβˆ—K^{*} region. The first uncertainties are statistical and the second are systematic.
Full DD phase space Kβˆ—K^{*} region
π’œS​SD​K\mathcal{A}^{DK}_{SS} βˆ’0.089Β±0.091Β±0.011-0.089\pm 0.091\pm 0.011 0.055Β±0.119Β±0.0200.055\pm 0.119\pm 0.020
π’œO​SD​K\mathcal{A}^{DK}_{OS} 0.109Β±0.133Β±0.0130.109\pm 0.133\pm 0.013 0.231Β±0.184Β±0.0140.231\pm 0.184\pm 0.014
π’œS​SD​π\mathcal{A}^{D\pi}_{SS} 0.018Β±0.026Β±0.0090.018\pm 0.026\pm 0.009 0.046Β±0.029Β±0.0160.046\pm 0.029\pm 0.016
π’œO​SD​π\mathcal{A}^{D\pi}_{OS} βˆ’0.028Β±0.031Β±0.009-0.028\pm 0.031\pm 0.009 0.009Β±0.046Β±0.0090.009\pm 0.046\pm 0.009
β„›S​SD​K/D​π\mathcal{R}_{SS}^{DK/D\pi} 0.122Β±0.012Β±0.0040.122\pm 0.012\pm 0.004 0.093Β±0.012Β±0.0050.093\pm 0.012\pm 0.005
β„›O​SD​K/D​π\mathcal{R}_{OS}^{DK/D\pi} 0.093Β±0.013Β±0.0030.093\pm 0.013\pm 0.003 0.103Β±0.020Β±0.0060.103\pm 0.020\pm 0.006
β„›S​S/O​SD​π\mathcal{R}_{SS/OS}^{D\pi} 1.428Β±0.057Β±0.0021.428\pm 0.057\pm 0.002 2.412Β±0.132Β±0.0192.412\pm 0.132\pm 0.019

3.2 CP eigenstates

Gronau, London, and Wyler (GLW)Β [14, 15] proposed a method where the DD meson decays to K+​Kβˆ’K^{+}K^{-} (CP-even) or KS0​π0K_{S}^{0}\pi^{0} (CP-odd) eigenstates. The KS0​π0K_{S}^{0}\pi^{0} eigenstate has been accessible to BB-factories only. Belle (711​ fbβˆ’1711\text{ fb}^{-1}) and Belle II (189​ fbβˆ’1189\text{ fb}^{-1}) data are combined to give the final result, which is consistent but not competitive with results from BaBarΒ [16] and LHCbΒ [17]. The branching fraction ratios (ℛ𝐢𝑃±\mathcal{R}_{{\it CP}\pm}) and CP asymmetries (π’œπΆπ‘ƒΒ±\mathcal{A}_{{\it CP}\pm}) are

β„›C​P+=1.164Β±0.081Β±0.036,\displaystyle\mathcal{R}_{CP+}=1.164\pm 0.081\pm 0.036,
β„›C​Pβˆ’=1.151Β±0.074Β±0.019,\displaystyle\mathcal{R}_{CP-}=1.151\pm 0.074\pm 0.019,
π’œC​P+=0.125Β±0.058Β±0.014,\displaystyle\mathcal{A}_{CP+}=0.125\pm 0.058\pm 0.014,
π’œC​Pβˆ’=βˆ’0.167Β±0.057Β±0.060,\displaystyle\mathcal{A}_{CP-}=-0.167\pm 0.057\pm 0.060,

where the first uncertainties are statistical and the second are systematic. The statistical and systematic precisions are significantly better than the previous Belle measurementΒ [18], and the result could constrain Ο•3\phi_{3} in combination with other measurements. In particular, the first evidence for π’œπΆπ‘ƒ+\mathcal{A}_{{\it CP}+} and π’œπΆπ‘ƒβˆ’\mathcal{A}_{{\it CP}-} having opposite signs is observed, showing clearly the effect of CP violation.

4 Toward CKM Angle Ο•πŸ/𝜢\boldsymbol{\phi_{2}/\alpha}

The least precisely known CKM angle Ο•2/Ξ±\phi_{2}/\alpha is starting to limit the testing power of the CKM model. Belle II has the unique capability of measuring all B→ρ​ρB\rightarrow\rho\rho and B→π​πB\rightarrow\pi\pi decays, from which Ο•2\phi_{2} can be determined. The combined information from these decays exploits isospin symmetry, reducing the effect of hadronic uncertainties. The BB candidates are required to have Mbc>5.27​ GeV/c2M_{\text{bc}}>5.27\text{ GeV}/c^{2} and |Δ​E|<0.15​ GeV|\Delta E|<0.15\text{ GeV} (<0.30​ GeV<0.30\text{ GeV} for final states involving neutral pions), followed by continuum suppression that removes 90-99% of continuum background.

4.1 B→ρ​ρB\rightarrow\rho\rho decays

The measurement of B→ρ​ρB\rightarrow\rho\rho decays require a complex angular analysis. The fit is based on MbcM_{\text{bc}}, Δ​E\Delta E, the dipion masses, and the helicity angle of the ρ\rho candidates. The preliminary Belle II results of B0→ρ+β€‹Οβˆ’B^{0}\rightarrow\rho^{+}\rho^{-} and B+→ρ+​ρ0B^{+}\rightarrow\rho^{+}\rho^{0} decays using 189​ fbβˆ’1189\text{ fb}^{-1} of dataΒ [19, 20] are on par with the best performances from BelleΒ [21, 22] and BaBarΒ [23, 24]. Results are listed in TableΒ 2.

4.2 B→π​πB\rightarrow\pi\pi decays

Measurements of B0β†’Ο€+β€‹Ο€βˆ’B^{0}\rightarrow\pi^{+}\pi^{-} and B+β†’Ο€+​π0B^{+}\rightarrow\pi^{+}\pi^{0} decays are based on 362​ fbβˆ’1362\text{ fb}^{-1} of Belle II data. The fit is performed over Δ​E\Delta E and Cβ€²C^{\prime}, and the dominant systematic uncertainty arises from the Ο€0\pi^{0} efficiency. The first measurement of B0β†’Ο€0​π0B^{0}\rightarrow\pi^{0}\pi^{0} at Belle II is also reportedΒ [25], using 189​ fbβˆ’1189\text{ fb}^{-1} of data. This decay is both CKM- and colour-suppressed, and has only photons in the final state, making it experimentally challenging to measure. The result obtained from a fit to MbcM_{\text{bc}}, Δ​E\Delta E, and Cβ€²C^{\prime}, however, achieves Belle’s precision despite using a dataset that is only one third of the size. This is due to the dedicated Ο€0\pi^{0} selection and continuum suppression studies that yield a much higher Ο€0\pi^{0} efficiency. Results are listed in TableΒ 2.

Table 2: B→ρ​ρB\rightarrow\rho\rho and B→π​πB\rightarrow\pi\pi results. The first uncertainties are statistical and the second are systematic.
ℬ​[10βˆ’6]\mathcal{B}\ [10^{-6}] π’œπΆπ‘ƒ\mathcal{A}_{{\it CP}} fLf_{L}
B0→ρ+β€‹Οβˆ’B^{0}\rightarrow\rho^{+}\rho^{-} 26.7Β±2.8Β±2.826.7\pm 2.8\pm 2.8 – 0.956Β±0.035Β±0.0330.956\pm 0.035\pm 0.033
B+→ρ+​ρ0B^{+}\rightarrow\rho^{+}\rho^{0} 23.2βˆ’2.1+2.2Β±2.723.2^{+2.2}_{-2.1}\pm 2.7 βˆ’0.069Β±0.068Β±0.060-0.069\pm 0.068\pm 0.060 0.943βˆ’0.033+0.035Β±0.0270.943^{+0.035}_{-0.033}\pm 0.027
B0β†’Ο€+β€‹Ο€βˆ’B^{0}\rightarrow\pi^{+}\pi^{-} 5.83Β±0.22Β±0.175.83\pm 0.22\pm 0.17 – –
B+β†’Ο€+​π0B^{+}\rightarrow\pi^{+}\pi^{0} 5.02Β±0.28Β±0.315.02\pm 0.28\pm 0.31 βˆ’0.082Β±0.054Β±0.008-0.082\pm 0.054\pm 0.008 –
B0β†’Ο€0​π0B^{0}\rightarrow\pi^{0}\pi^{0} 1.38Β±0.27Β±0.221.38\pm 0.27\pm 0.22 0.14Β±0.46Β±0.070.14\pm 0.46\pm 0.07 –

5 𝑲​𝝅\boldsymbol{K\pi} Isospin Sum Rule

The isospin sum rule IK​πI_{K\pi} is defined by

IK​π=π’œK+β€‹Ο€βˆ’+π’œK0​π+⋅ℬK0​π+ℬK+β€‹Ο€βˆ’β€‹Ο„B0Ο„B+βˆ’2β€‹π’œK+​π0⋅ℬK+​π0ℬK+β€‹Ο€βˆ’β€‹Ο„B0Ο„B+βˆ’2β€‹π’œK0​π0⋅ℬK0​π0ℬK+β€‹Ο€βˆ’,I_{K\pi}=\mathcal{A}_{K^{+}\pi^{-}}+\mathcal{A}_{K^{0}\pi^{+}}\cdot\frac{\mathcal{B}_{K^{0}\pi^{+}}}{\mathcal{B}_{K^{+}\pi^{-}}}\frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2\mathcal{A}_{K^{+}\pi^{0}}\cdot\frac{\mathcal{B}_{K^{+}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}}\frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2\mathcal{A}_{K^{0}\pi^{0}}\cdot\frac{\mathcal{B}_{K^{0}\pi^{0}}}{\mathcal{B}_{K^{+}\pi^{-}}}, (1)

where ℬK​π\mathcal{B}_{K\pi} and π’œK​π\mathcal{A}_{K\pi} are the branching fractions and the CP asymmetries, and Ο„B0/Ο„B+=0.9273Β±0.0033\tau_{B^{0}}/\tau_{B^{+}}=0.9273\pm 0.0033Β [7] is the ratio of B0B^{0} and B+B^{+} lifetimes. The SM prediction of the sum rule is zero, with a precision of better than 1%, in the limit of isospin symmetry and no electroweak penguins contributions. Any large deviation from the SM prediction is an indication of non-SM physics. The experimental precision of the sum rule is limited by π’œK0​π0\mathcal{A}_{K^{0}\pi^{0}}Β [7].

We studied all the final states associated with the sum rule: B0β†’K+β€‹Ο€βˆ’B^{0}\rightarrow K^{+}\pi^{-}, B+β†’KS0​π+B^{+}\rightarrow K_{S}^{0}\pi^{+}, B+β†’K+​π0B^{+}\rightarrow K^{+}\pi^{0}, and B0β†’KS0​π0B^{0}\rightarrow K_{S}^{0}\pi^{0} using 362​ fbβˆ’1362\text{ fb}^{-1} of Belle II data. The analyses of the various decays follow a similar strategy, with common selections applied to the final states particles. BB candidates are required to satisfy 5.272<Mbc<5.288​ GeV/c25.272<M_{\text{bc}}<5.288\text{ GeV}/c^{2}, |Δ​E|<0.3​ GeV|\Delta E|<0.3\text{ GeV}, and a loose requirement of CC that suppresses 90-99% of continuum background. A fit is performed on the Δ​E\Delta E-Cβ€²C^{\prime} distribution, where the flavour tagging algorithmΒ [26] is employed to determine the flavour of the BB candidate in B0β†’KS0​π0B^{0}\rightarrow K_{S}^{0}\pi^{0} decay due to absence of primary charged particles. The Δ​E\Delta E distributions are shown in FigureΒ 2. The measured branching fractions and CP asymmetries, as well as the sum rule calculated using these measurements, are listed in TableΒ 3. They agree with the world averagesΒ [7] and have competitive precisions. In particular, the time-integrated and time-dependent results of B0β†’KS0​π0B^{0}\rightarrow K_{S}^{0}\pi^{0} are combined to achieve the world’s best result for π’œK0​π0\mathcal{A}_{K^{0}\pi^{0}}, and consequentially for IK​πI_{K\pi} a competitive precision that is limited by the statistical uncertainty.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Δ​E\Delta E distributions of B0β†’K+β€‹Ο€βˆ’B^{0}\rightarrow K^{+}\pi^{-} (upper left), B+β†’K+​π0B^{+}\rightarrow K^{+}\pi^{0} (upper right), B+β†’KS0​π+B^{+}\rightarrow K_{S}^{0}\pi^{+} (lower left) and B0β†’KS0​π0B^{0}\rightarrow K_{S}^{0}\pi^{0} (lower right) decays.
Table 3: Bβ†’K​πB\rightarrow K\pi results using 362​ fbβˆ’1362\text{ fb}^{-1} Belle II data. The first uncertainties are statistical and the second are systematic.
ℬ​[10βˆ’6]\mathcal{B}\ [10^{-6}] π’œπΆπ‘ƒ\mathcal{A}_{{\it CP}}
B0β†’K+β€‹Ο€βˆ’B^{0}\rightarrow K^{+}\pi^{-} 20.67Β±0.37Β±0.6220.67\pm 0.37\pm 0.62 βˆ’0.072Β±0.019Β±0.007-0.072\pm 0.019\pm 0.007
B+β†’K+​π0B^{+}\rightarrow K^{+}\pi^{0} 14.21Β±0.38Β±0.8414.21\pm 0.38\pm 0.84 0.013Β±0.027Β±0.0050.013\pm 0.027\pm 0.005
B+β†’K0​π+B^{+}\rightarrow K^{0}\pi^{+} 24.39Β±0.71Β±0.8624.39\pm 0.71\pm 0.86 0.046Β±0.029Β±0.0070.046\pm 0.029\pm 0.007
B0β†’K0​π0B^{0}\rightarrow K^{0}\pi^{0} 10.50Β±0.62Β±0.6510.50\pm 0.62\pm 0.65 βˆ’0.01Β±0.12Β±0.05-0.01\pm 0.12\pm 0.05
IK​πI_{K\pi} βˆ’0.03Β±0.13Β±0.05-0.03\pm 0.13\pm 0.05

6 Summary

In summary, we present five new results from Belle II: measurement of Bβ†’D(βˆ—)​K​KS0B\rightarrow D^{(*)}KK_{S}^{0} decays, analyses of Ο•3/Ξ³\phi_{3}/\gamma with the GLS and GLW methods, precise measurements of two-body decays that contribute to the determination of Ο•2/Ξ±\phi_{2}/\alpha, and the K​πK\pi isospin sum rule with a competitive precision to the world’s best result.

References

References

  • [1] T. Abe. et al. (Belle II Collaboration) (2010), arXiv:1011.0352.
  • [2] Kazunori Akai et al. Nucl. Instrum. Meth. A 907, 188 (2018).
  • [3] M. Gronau, Phys. Lett. B 627, 82 (2005).
  • [4] F. AbudinΓ©n et al. (Belle II Collaboration) (2023), arXiv:2303.08354.
  • [5] Belle II Collaboration et al. (2023), arXiv:2305.01321.
  • [6] A. Drutskoy et al. (Belle Collaboration), Phys. Lett. B 542, 171 (2002)
  • [7] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
  • [8] LHCb collaboration et al., J. High Energy Phys. 2021, 141 (2021)
  • [9] Belle and Belle II collaborations et al., J. High Energy Phys. 2022, 63 (2022)
  • [10] Y. Grossman, Z. Ligeti, and A. Soffer, Phys. Rev. D 67, 071301 (2003)
  • [11] Belle and Belle II collaborations et al. (2023), arXiv:2306.02940.
  • [12] J. Insler et al. (CLEO Collaboration), Phys. Rev. D 94, 099905 (2016)
  • [13] LHCb collaboration et al. J. High Energy Phys. 2020, 58 (2020)
  • [14] M. Gronau and D. London, Phys. Lett. B 253, 483 (1991)
  • [15] M. Gronau and D. Wyler, Phys. Lett. B 265, 172 (1991)
  • [16] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 82, 072004 (2010)
  • [17] R. Aaji et al. (LHCb Collaboration), J. High Energy Phys. 2021, 81 (2021).
  • [18] K. Abe et al., Phys. Rev. D 73, 051106 (2006).
  • [19] Belle II Collaboration et al. (2022), arXiv:2208.03554.
  • [20] Belle II Collaboration et al. (2022), arXiv:2206.12362.
  • [21] P. Vanhoefer et al. (Belle Collaboration), Phys. Rev. D 94, 099903 (2016)
  • [22] J. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 91, 221801 (2003)
  • [23] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 76, 052007 (2007)
  • [24] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 102, 141802 (2009)
  • [25] Belle II Collaboration et al. (2023), arXiv:2303.08354.
  • [26] F. AbudinΓ©n et al. (Belle II Collaboration), Eur. Phys. J. C 82, 283 (2022).