This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Realization of a three-dimensional quantum Hall effect in a Zeeman-induced second order topological insulator on a torus

Zhe Hou Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland    Clara S. Weber Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany
and JARA - Fundamentals of Future Information Technology, 52056 Aachen, Germany
   Dante M. Kennes Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany
and JARA - Fundamentals of Future Information Technology, 52056 Aachen, Germany
Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
   Daniel Loss Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland    Herbert Schoeller Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany
and JARA - Fundamentals of Future Information Technology, 52056 Aachen, Germany
   Jelena Klinovaja Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland    Mikhail Pletyukhov [email protected] Institut für Theorie der Statistischen Physik, RWTH Aachen University, 52056 Aachen, Germany
and JARA - Fundamentals of Future Information Technology, 52056 Aachen, Germany
Abstract

We propose a realization of a quantum Hall effect (QHE) in a second-order topological insulator (SOTI) in three dimensions (3D), which is mediated by hinge states on a torus surface. It results from the nontrivial interplay of the material structure, Zeeman effect, and the surface curvature. In contrast to the conventional 2D- and 3D-QHE, we show that the 3D-SOTI QHE is not affected by orbital effects of the applied magnetic field and exists in the presence of a Zeeman term only, induced e.g. by magnetic doping. To explain the 3D-SOTI QHE, we analyze the boundary charge for a 3D-SOTI and establish its universal dependence on the Aharonov-Bohm flux threading through the torus hole. Exploiting the fundamental relation between the boundary charge and the Hall conductance, we demonstrate the universal quantization of the latter, as well as its stability against random disorder potentials and continuous deformations of the torus surface.

Introduction.—The quantum Hall effect (QHE), observed by Klitzing et al. [1] in 1980, is one of the fundamental phenomena in condensed matter physics. It has since been a driving force for the field of topological insulators (TI) with a plethora of new topological materials discovered in the last decades [2, 3, 4, 5, 6, 7]. As a consequence, many intriguing generalizations such as the anomalous QHE (in the absence of an external magnetic field) in 2D [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the 3D-QHE [23, 24, 25, 26, 27] have been studied. Moreover, the concept of TIs has been extended to higher-order TIs, which are governed by a new bulk-boundary correspondence [28, 29, 30, 31, 32, 33, 34, 35]. For example, a second (third) order TI with dimension DD features D2D-2 (D3D-3) dimensional hinge (corner) states. Recently, within 3D second-order TIs (3D-SOTI), an additional class of systems exhibiting the QHE has been proposed [31, 36, 37, 38, 39].

One way to realize a 3D-SOTI is to build on a 3D-TI [40, 6, 7, 12, 41, 42] and introduce anisotropic gaps on different surfaces (boundaries), e.g., with an effective Zeeman term by magnetic doping or using an external magnetic field [43, 38, 39, 44, 45, 46, 47, 48, 49]. At special positions where the effective gap closes and reverses sign, topological hinge or corner states emerge, in analogy to the Jackiw-Rebbi mode [50].

In this Letter, we will consider such a model and discuss a specific realization using a torus geometry (or smooth deformations thereof) as shown in Fig. 1, where the emerging hinge states are shown with blue and red arrows. This geometry allows us to insert a magnetic flux ϕ\phi through the torus hole, and thus we construct a 3D analogy of the Corbino disc which is used in the Laughlin argument for the conventional 2D-QHE [51]. However, in contrast to the Corbino setup, the 3D-SOTI QHE discussed here is not induced by orbital effects but results purely from the Zeeman effect.

While there are several approaches known to deduce the conventional 2D quantized Hall conductance [51, 52, 53, 54], we will present a generalization of a recently developed boundary charge approach to the case of a 3D-SOTI, which, most importantly, is applicable to both clean and disordered systems. It is based on recent detailed studies of the boundary charge in one-dimensional (1D) modulated wires [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65], together with dimensional extensions to 2D-QHE models [56, 57] revealing the fundamental relationship between the linear dependence of the boundary charge on the phase of the potential in 1D models and the quantized Hall conductance in 2D models, a concept which can even be generalized to explain the fractional QHE in the presence of interactions [62].

Most importantly, we demonstrate for the 3D-SOTI model on a torus that the boundary charge, driven by the Aharonov-Bohm flux ϕ=fϕ0\phi=f\phi_{0}, where ϕ0\phi_{0} is the flux quantum, shows a linear relation with respect to ff, with the slope being universal and quantized to integer numbers ±e\pm e, where ee is the electron charge. Examining all states below the chemical potential, we reach a remarkable conclusion: the whole contribution to the boundary charge comes only from the top-most occupied valence band [shown in orange in Fig. 2(a)]. We further include disorder effects by considering a 3D tight-binding (tb) counterpart of our continuum model with broken rotational symmetry and show robustness of the quantized slope. The boundary charge concept, thus, provides a powerful tool in characterizing 3D-SOTIs and universally explains topological effects in condensed matter systems as well as their stability against random potential disorder and continuous surface deformations.

Refer to caption
Figure 1: (a) Torus model and (b) its 2D cross-section in the xzx-z plane. The torus hole is pierced by the Aharonov-Bohm flux ϕ=fϕ0\phi=f\cdot\phi_{0}. In addition, there is a constant uniform magnetic field 𝐁\bf{B} in zz direction. The system hosts the clockwise (red) and counter-clockwise (blue) propagating hinge states at the outer and inner equatorial rings of the torus, respectively. The hinge states are localized within the outer (or right) and the inner (or left) boundary regions [shown in brown color in (b)] of the width dd (as measured in the radial direction). The electric fields EφR,LE^{R,L}_{\varphi} and the Hall currents IρR,LI^{R,L}_{\rho} are generated upon changing ff as shown in (b).

Model.—In this Letter we consider a continuum model in a finite three-dimensional region, which is confined to the interior of a torus [see Fig. 1(a))], to realize a second order TI with a minimal set of ingredients, given by band inversion, spin-orbit coupling, magnetic flux, and Zeeman term. The Hamiltonian (with e==1e=\hbar=1) is given by

H=σz[(p+A)22mδ]+ασx(p+A)s+εZsz,\displaystyle H=\sigma_{z}\left[\frac{(\textbf{p}+\textbf{A})^{2}}{2m^{*}}-\delta\right]+\alpha\,\sigma_{x}(\textbf{p}+\textbf{A})\cdot\textbf{s}+\varepsilon_{Z}s_{z}, (1)

where p and S=12s\textbf{S}=\frac{1}{2}\textbf{s} are 3D vectors of the momentum and the physical spin-12\frac{1}{2} operators, respectively. The parameters mm^{*} and α>0\alpha>0 are the effective mass of the electron and the spin-orbit interaction, respectively, while εZ\varepsilon_{Z} denotes the Zeeman energy. Both the magnetization direction inducing the Zeeman term and the uniform magnetic field B generated by the vector potential A are assumed to point along the zz-axis. We note that εZ\varepsilon_{Z} is an independent parameter, controllable by magnetic doping. The Pauli matrices σi\sigma_{i} span the orbital degrees of freedom. The parameter δ>0\delta>0 is chosen positive in order to realize the band inversion at finite values of α\alpha, εZ\varepsilon_{Z}, and B|B|B\equiv|\textbf{B}|. The vector potential A=AB+Aϕ=Bρ2eφ+ϕ2πρeφBρ2eφ+fρeφ\textbf{A}=\textbf{A}_{B}+\textbf{A}_{\phi}=\frac{B\rho}{2}\textbf{e}_{\varphi}+\frac{\phi}{2\pi\rho}\textbf{e}_{\varphi}\equiv\frac{B\rho}{2}\textbf{e}_{\varphi}+\frac{f}{\rho}\textbf{e}_{\varphi} contains the terms generating both the uniform magnetic field BB and the Aharonov-Bohm (AB) magnetic flux ϕ\phi. Here, we used the cylindrical coordinates (ρ,φ,z)(\rho,\varphi,z) and introduced the number of flux quanta f=ϕϕ0=!ϕ2πf=\frac{\phi}{\phi_{0}}\stackrel{{\scriptstyle!}}{{=}}\frac{\phi}{2\pi}.

Refer to caption
Figure 2: (a) Low-energy spectrum of torus model in units of spin-orbit energy εso=mα22\varepsilon_{so}=\frac{m^{*}\alpha^{2}}{2}. Band indices are λ1\lambda\leq-1 for valence bands, λ1\lambda\geq 1 for conduction bands, and λ=0\lambda=0 for the band hosting Landau surface states in the plateau region together with the right (RR) and left (LL) hinge states in the steep parts of the dispersion. The parameters we use here are: δ=3εso\delta=3\,\varepsilon_{so}, lB=lZ=lsol_{B}=l_{Z}=l_{so}, l0=10lsol_{0}=10\,l_{so}, and r0=5lsor_{0}=5\,l_{so}. The lattice constant was chosen a=lso/5a=l_{so}/5 in the tb model calculation. The black dashed line denotes the chemical potential μ=0\mu=0. Note that the two bands λ=0,1\lambda=0,-1 are almost degenerate along the plateau region but separated by an (invisible) small gap. (b) Probability density of the five states labeled with star symbols in (a) on the surface band λ=0\lambda=0 below the chemical potential, shown in the same sequence as in (a). The red and blue stars denote the RR and LL hinge states, respectively, while the yellow, purple, and green stars denote the Landau surface states with the intermediate angular positions of the density localization. The total angular momentum for the five states are (from left to right): j~z=\tilde{j}_{z}= -98.5, -85.5, -49.5, -25.5, -17.5.

Besides the spin-orbit length lso=1/(αm)l_{so}=1/(\alpha m^{*}), we introduce two further typical scales lBl_{B} and lZl_{Z} associated with the orbital magnetic field and the Zeeman term, respectively, via B=1/lB2B=1/l_{B}^{2} and ϵZ=1/(2mlZ2)\epsilon_{Z}=1/(2m^{*}l_{Z}^{2}). In the main part of this Letter we will discuss the most critical case of strong orbital fields, where lBlZl_{B}\sim l_{Z}, and will see that the orbital effects do not influence the quantization of the Hall conductance. In the Supplemental Material (SM) [66] we will also discuss the case of zero orbital effects with the same conclusion. This shows that our results are expected to be stable for any orbital field.

In the torus geometry and in the absence of disorder the model (1) possesses the axial symmetry generated by the zz-component of the total angular momentum operator Jz=Lz+12sz=iφ+12szJ_{z}=L_{z}+\frac{1}{2}s_{z}=-i\frac{\partial}{\partial\varphi}+\frac{1}{2}s_{z}. Exploiting this symmetry we reduce the 3D model to an effective 2D model. It is described by the Hamiltonian (see SM [66] for details)

h2D\displaystyle h_{2D} =σz2m[2x2+J2(x)x2szJ(x)x22z22mδ]\displaystyle=\frac{\sigma_{z}}{2m^{*}}\left[-\frac{\partial^{2}}{\partial x^{2}}+\frac{J^{2}(x)}{x^{2}}-s_{z}\frac{J(x)}{x^{2}}-\frac{\partial^{2}}{\partial z^{2}}-2m^{*}\delta\right]
+ασx[isxx+syJ(x)xiszz]+εZsz,\displaystyle+\alpha\sigma_{x}\left[-is_{x}\frac{\partial}{\partial x}+s_{y}\frac{J(x)}{x}-is_{z}\frac{\partial}{\partial z}\right]+\varepsilon_{Z}s_{z}, (2)

and defined on the disc of radius r0r_{0} in the (x>0,z)(x>0,z) half-plane, which is displaced away from the zz-axis by l0>r0l_{0}>r_{0} [see Fig. 1(b)]. We introduce the following continuous parameter j~z=jz+f\tilde{j}_{z}=j_{z}+f, where jzj_{z} are half-integer eigenvalues of the operator JzJ_{z}, and ff is restricted to fractional values, f[0,1)f\in[0,1), interpolating between adjacent values of jzj_{z}. The parameter j~z\tilde{j}_{z} appears inside the function J(x)=j~z+Bx22J(x)=\tilde{j}_{z}+\frac{Bx^{2}}{2}, where the last term accounts for the orbital BB-field effect.

Hinge states.—Approximating (2) by its tight-binding (tb) lattice counterpart or by solving it directly in an appropriately chosen basis (see SM [66] for details), we calculate the band structure shown in Fig. 2(a). Among the valence and conduction bands ελ(j~z)\varepsilon_{\lambda}(\tilde{j}_{z}), labeled by the band indices λ1\lambda\leq-1 and λ1\lambda\geq 1 and lying below and above the chemical potential μ=0\mu=0, respectively, there is a distinguished band λ=0\lambda=0 (orange line) which crosses the chemical potential at the two points j~z;R,L\tilde{j}_{z;R,L}^{*} (with ε0(j~z;R,L)0\varepsilon^{\prime}_{0}(\tilde{j}_{z;R,L}^{*})\lessgtr 0), see also in Fig. 4(a).

As shown in Fig. 2(b), the states on the negative linear slope near j~z,R\tilde{j}_{z,R}^{*} (indicated by the red star) form the right (RR) hinge mode, since their density is localized near the disc right side θ=π2\theta=\frac{\pi}{2} (expressed in the polar coordinates x=l0+rsinθx=l_{0}+r\sin\theta, z=rcosθz=r\cos\theta, with θ(π,π]\theta\in(-\pi,\pi] and r<r0r<r_{0}, associated with the disc). They propagate in the clockwise direction along the outer equator of the torus (looking from the top), see the red line in Fig. 1(a). The left (LL) hinge mode with the positive slope resides near j~z,L\tilde{j}^{*}_{z,L} [indicated by the blue star in Fig. 2(a)], its states are localized near θπ2\theta\approx-\frac{\pi}{2} (inner equator of the torus) and propagate in the counter-clockwise direction, see the blue line in Fig. 1(a).

To understand the properties of these hinge modes more deeply we rely on their low-energy description [66] which is valid in the regime l0r0lsol_{0}\gg r_{0}\gg l_{so} and r0lsolso2lZ2lsor0\frac{r_{0}}{l_{so}}\gg\frac{l_{so}^{2}}{l_{Z}^{2}}\gg\frac{l_{so}}{r_{0}}. It allows us to reveal the spinor structure of the hinge modes as well as to provide quantitative estimates of their properties.

In particular, we establish that the RR and LL hinge modes are stabilized by the Zeeman term, staying exponentially localized near the torus surface on the length scale of lsol_{so}. In the angular direction, their localization is gaussian with the variance σθ=lZr0lso/2\sigma_{\theta}=\frac{l_{Z}}{\sqrt{r_{0}l_{so}/2}}. The presence of lZl_{Z} in the variance is indicative of the Zeeman mechanism of their onset. Moreover, we notice that their angular spread exceeds the radial localization length, that is r0σθlsor_{0}\sigma_{\theta}\gg l_{so}. Finally, we approximate the energy dispersion of the RR and LL hinge modes by ε0R,L(j~z)αl0(j~zj~z;R,L)\varepsilon_{0}^{R,L}(\tilde{j}_{z})\approx\mp\frac{\alpha}{l_{0}}(\tilde{j}_{z}-\tilde{j}_{z;R,L}^{*}), where the offsets j~z;R,LBπ(l0±r0)22π\tilde{j}_{z;R,L}^{*}\approx-\frac{B\cdot\pi(l_{0}\pm r_{0})^{2}}{2\pi} account the BB-field flux quanta through the outer and inner equatorial rings of the torus, i.e. are generated by the orbital effects of the BB-field.

Plateau region.—In the broad range j~z,R<j~z<j~z,L\tilde{j}_{z,R}^{*}<\tilde{j}_{z}<\tilde{j}_{z,L}^{*}, there is a nearly degenerate plateau of weakly dispersing Landau surface states [between yellow and green stars in Fig. 2(a)]. Looking first at the states in the plateau’s middle (that is near the purple star in Fig. 2(a) at j~zBπl022π\tilde{j}_{z}\approx-\frac{B\cdot\pi l_{0}^{2}}{2\pi}), we observe that they are the linear combinations of the so called top and bottom Landau surface states that are localized near θ=0\theta=0 and θ=π\theta=\pi, respectively. Due to the finite torus size, the splitting between ε0\varepsilon_{0} and ε1\varepsilon_{-1} bands in the middle of the plateau is estimated by an exponentially small value αBe2Br02\propto\alpha\sqrt{B}e^{-2Br_{0}^{2}} [66]. The density of the state with higher energy, i.e. belonging to the band ε0\varepsilon_{0}, is shown in the central inset of Fig. 2(b). This state is drastically different from the above discussed RR and LL hinge states, since its stabilization occurs due to the orbital BB-field effect, while the Zeeman term produces only a perturbative contribution εZ-\varepsilon_{Z} to its energy. The low-energy analysis also predicts that its angular variance σθ=lBr0\sigma_{\theta}=\frac{l_{B}}{r_{0}} is both independent of εZ\varepsilon_{Z} and smaller than the variance of the RR and LL hinges (while the radial localization length lsol_{so} remains the same).

The other states belonging to ε0\varepsilon_{0} connect the top-bottom Landau surface states in the plateau middle with the RR and LL hinges on the linear branches of the band ε0\varepsilon_{0}. Their density localization evolves along the disc circumference in the angular direction with the changing j~z\tilde{j}_{z} value [see Fig. 2(b)]. These states retain the same radial localization length lsol_{so}, while their angular variances increase from the top-bottom Landau surface states to the RR and LL hinges, with the stabilization mechanism accordingly changing from the orbital to the Zeeman effect.

Refer to caption
Figure 3: Boundary charges as functions of ff feature the unit slopes, which are complemented by the unit jumps at the flux values fR0.72f_{R}^{*}\approx 0.72, and fL0.01f_{L}^{*}\approx 0.01 (parameters as in Fig. 2). At these values an electron enters or leaves the system (see Fig. 4 and the caption therein to check that j~z,RfR=99.5\tilde{j}_{z,R}^{*}-f_{R}^{*}=-99.5 and j~z,LfL=17.5\tilde{j}_{z,L}^{*}-f_{L}^{*}=-17.5 are half-integers). The width of the boundary region is set to d=3lsod=3\,l_{so}. The actual numerical summation runs over the jzj_{z} range from -199.5 to 100.5, which is sufficiently wide to ensure convergence. We use a discrete spacing Δf=0.05\Delta f=0.05 (the slope values and jump positions are calculated from a smaller spacing Δf=0.01\Delta f=0.01). The slope for the right (left) boundary charge is -0.9993 (0.9952) which is obtained by linear fitting of the longer segment of each curve. These values agree with the corresponding jump sizes.

Boundary charge and 3D-SOTI QHE.—A convenient way to introduce the Hall conductance is to define it via the charge localized within an appropriately chosen boundary region [55, 56, 57, 58]. In our model, the outer (RR) and the inner (LL) boundary regions R,L\mathcal{B}_{R,L} [shown in brown in Fig. 1(b)] are bounded by the cylindrical shells of the radii ρR,L=l0±(r0d)\rho_{R,L}=l_{0}\pm(r_{0}-d), respectively. Choosing the width dd such that r0dlso,lZ2lsor_{0}\gg d\gg l_{so},\frac{l_{Z}^{2}}{l_{so}}, we ensure that the RR and LL hinge states are fully confined within R,L\mathcal{B}_{R,L}, respectively. It is natural to define the boundary charges QBR,L(f)=λQB,λR,L(f)Q_{B}^{R,L}(f)=\sum_{\lambda}Q_{B,\lambda}^{R,L}(f), with

QB,λR,L(f)=jz,ελ(j~z)<μQ¯B,λR,L(j~z)jz,ελ(jz)<μQ¯B,λR,L(jz),\displaystyle Q_{B,\lambda}^{R,L}(f)=\sum_{j_{z},\varepsilon_{\lambda}(\tilde{j}_{z})<\mu}\bar{Q}_{B,\lambda}^{R,L}(\tilde{j}_{z})-\sum_{j_{z},\varepsilon_{\lambda}(j_{z})<\mu}\bar{Q}_{B,\lambda}^{R,L}(j_{z}), (3)

where Q¯B,λR,L(j~z)=R,L𝑑x𝑑z|Ψλ(x,z;j~z)|2\bar{Q}_{B,\lambda}^{R,L}(\tilde{j}_{z})=\int_{\mathcal{B}_{R,L}}dxdz|\Psi_{\lambda}(x,z;\tilde{j}_{z})|^{2} is a partial contribution of the state (λ,jz)(\lambda,j_{z}) evaluated at the AB flux fϕ0f\cdot\phi_{0}. To make the definition of QB,λR,L(f)Q_{B,\lambda}^{R,L}(f) for each band insensitive to a specific choice of dd, we subtract a large background contribution at zero flux.

The central result of this Letter, supported by the numerical result shown in Fig. 3, is that the dependence of QBR,L(f)Q_{B}^{R,L}(f) on the flux ff is piece-wise linear,

QBR,L(f)=f±Θ(ffR,L),\displaystyle Q_{B}^{R,L}(f)=\mp f\pm\Theta(f-f_{R,L}^{*}), (4)

with jumps at f=fR,Lf=f_{R,L}^{*}, where j~z;R,Lf\tilde{j}_{z;R,L}^{*}-f is half-integer. The slope value is correlated with the jump size such that the periodicity QBR,L(f)=QBR,L(f+1)Q_{B}^{R,L}(f)=Q_{B}^{R,L}(f+1) is maintained. Changing the flux adiabatically in time, the immediate consequence of (4) is the quantization of the Hall conductance, relating the Hall current to the electric field via IρR,L=σρφR,LEφR,LI_{\rho}^{R,L}=\sigma_{\rho\varphi}^{R,L}E_{\varphi}^{R,L}, see Fig. 1(b) and the discussion in Refs. [56, 57, 62]. Using Faraday’s law and the continuity equation we get EφR,L=ϕ˙/(2πρR,L)E_{\varphi}^{R,L}=-\dot{\phi}/(2\pi\rho_{R,L}) and IρR,L=±Q˙BR,L/(2πρR,L)I_{\rho}^{R,L}=\pm\dot{Q}_{B}^{R,L}/(2\pi\rho_{R,L}). Together with Q˙BR,LQBR,Lff˙\dot{Q}_{B}^{R,L}\approx\frac{\partial Q_{B}^{R,L}}{\partial f}\dot{f} and ϕ˙=2πf˙\dot{\phi}=2\pi\dot{f}, we obtain the quantization of the Hall conductance σρφR,L=12π=!e2h\sigma_{\rho\varphi}^{R,L}=\frac{1}{2\pi}\stackrel{{\scriptstyle!}}{{=}}\frac{e^{2}}{h} away from the jump points fR,Lf^{*}_{R,L}.

Refer to caption
Figure 4: (a) The band ε0(j~z)\varepsilon_{0}(\tilde{j}_{z}) and (b) its partial charge contributions Q¯B,0R,L(j~z)\bar{Q}_{B,0}^{R,L}(\tilde{j}_{z}) to the right (red curve) and left (blue curve) boundary regions (parameters as in Fig. 2). The roots of the equation ε0(j~z)=μ=0\varepsilon_{0}(\tilde{j}_{z})=\mu=0 are j~z,R98.78\tilde{j}_{z,R}^{*}\approx-98.78 and j~z,L17.49\tilde{j}_{z,L}^{*}\approx-17.49.

The second important result is that the contribution QB,λR,LQ_{B,\lambda}^{R,L} from all valence bands with λ1\lambda\leq-1 is negligible (see SM [66] for the numerical verification). This is an intuitively expected result, since the valence band ε1\varepsilon_{-1} is separated from the band ε0\varepsilon_{0} by the topologically trivial, though exponentially small, gap. The only contribution to the boundary charge is thus provided by the mode ε0\varepsilon_{0}, which is shown in Fig. 4.

Let us provide the analytical arguments for the results presented above. Concerning the discrete jumps of QBR,L(f)Q_{B}^{R,L}(f) at f=fR,Lf=f_{R,L}^{*}, it is obvious that they appear at those flux values, where a half-integer jzj_{z} exists with jz+fR,L=j~z;R,Lj_{z}+f_{R,L}^{*}=\tilde{j}_{z;R,L}^{*}. These are the points where the RR/LL hinge modes of the λ=0\lambda=0 band cross the chemical potential, leading to a jump of QB,λ=0R,L(f)Q_{B,\lambda=0}^{R,L}(f) by ±1\pm 1. In contrast, for all fully occupied bands λ<0\lambda<0, there is no jump.

The linear dependence on the flux follows essentially from the smooth behaviour of Q¯B,λR,L(j~z)\bar{Q}_{B,\lambda}^{R,L}(\tilde{j}_{z}) as function of j~z\tilde{j}_{z}, i.e., it varies typically on the scale Δj~zj~z,Lj~z,R\Delta\tilde{j}_{z}\sim\tilde{j}_{z,L}^{*}-\tilde{j}_{z,R}^{*} of the plateau size, see Fig. 4(b) for λ=0\lambda=0 (the same applies for all λ0\lambda\neq 0, except that the asymptotic values are coinciding). The plateau size is roughly related to the number NBr0l0/lB2N_{B}\sim r_{0}l_{0}/l_{B}^{2} of flux quanta threaded through the torus surface from the orbital field (for B=0B=0 another scale l0\sim l_{0} is obtained, see SM [66]). Therefore, the nn-th order derivative of Q¯B,λR,L(j~z)\bar{Q}_{B,\lambda}^{R,L}(\tilde{j}_{z}) will scale with 1/NBn1/N_{B}^{n} in the plateau region (outside this region the derivatives are very small), leading with an additional factor NBN_{B} from the sum over jzj_{z} to the scaling (ddf)nQB,λR,L(f)1/NBn1(\frac{d}{df})^{n}Q_{B,\lambda}^{R,L}(f)\sim 1/N_{B}^{n-1}. Thus, all higher-order derivatives are negligible for n2n\geq 2, provided that NB1N_{B}\gg 1 is fulfilled. This can be achieved to any desired accuracy by increasing the torus radius l0l_{0} (this result holds for any BB, see SM [66]). Therefore, only the linear term in ff contributes significantly to QB,λR,L(f)Q_{B,\lambda}^{R,L}(f) for each band. Since the slope value of the linear term of QB,λR,L(f)Q_{B,\lambda}^{R,L}(f) is correlated with the discrete jumps due to the periodicity property QB,λR,L(f)=QB,λR,L(f+1)Q_{B,\lambda}^{R,L}(f)=Q_{B,\lambda}^{R,L}(f+1), we find that the slope is zero for all bands λ<0\lambda<0 and 1\mp 1 for λ=0\lambda=0. This shows that the contribution of all valence bands λ<0\lambda<0 is negligible and the universal linear slope of the total boundary charge is fully determined by the λ=0\lambda=0 band.

Refer to caption
Figure 5: Boundary charges calculated for the 3D tb model in the presence of disorder potentials uniformly distributed on the interval [W/2,W/2][-W/2,W/2] (we consider one single random disorder configuration; other parameters being as in Fig. 2) as function of the flux ff (with discrete spacing given by Δf=0.01\Delta f=0.01). The different curves with increasing disorder strength WW (in units of εso\varepsilon_{so}) are shifted upwards with a step value 1.5. The slope value for the right (left) boundary charge is calculated to be -0.915 (0.914). Different disorder strengths WW give the same slope value up to the quoted accuracy. Small deviations from the universal values 1\mp 1 are due to the choice of the larger lattice constant a3D=lsoa_{3D}=l_{so} in the 3D calculations (see SM [66] for further computational details).

Disorder effects.—We add random disorder potentials to every site of the 3D tb lattice realization of the Hamiltonian (1). Disorder breaks the rotational symmetry, the quantum number jzj_{z} is no longer conserved, and the band index λ\lambda is not well defined either. Remarkably, the boundary charge QBR,LQ_{B}^{R,L}, in which all the states below μ\mu are included, is still well defined, as well as the relation between the boundary charge and the Hall conductance. In Fig. 5 we show that the linear slopes of QBR,L(f)Q_{B}^{R,L}(f) remain very close to the universal value 1\mp 1, i.e. staying essentially unaffected by disorder. This demonstrates the fundamental significance of the boundary charge concept: It is capable of explaining the Hall conductance quantization even in the disordered case, when the simple clean-case explanation presented above is no longer applicable.

Discussion.— The proposed 3D-SOTI QHE is robust to disorder which is very promising for its experimental realization using standard 3D-TIs with Zeeman fields induced by external magnetic fields, magnetic doping, or nearby ferromagnets. It occurs specifically only in 3D systems (for system sizes exceeding the localization length of hinge states) and is insensitive to orbital effects (see SM [66]), providing various fingerprints for its unique observation. Moreover, it is robust to shape distortions and will even occur in a spherical model with an infinitesimally thin hollow tube along the vertical axis (to allow for the Aharonov-Bohm flux insertion). The obtained results for the boundary charge showcase the same qualitative features as in the torus model (see SM [66]) and its detailed study opens another avenue of future research.

Acknowledgments.—This work was supported by the Deutsche Forschungsgemeinschaft via RTG 1995, the Swiss National Science Foundation (SNSF) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC 2004/1 - 390534769. We acknowledge support from the Max Planck-New York City Center for Non-Equilibrium Quantum Phenomena. Simulations were performed with computing resources granted by RWTH Aachen University under projects rwth0752 and rwth0841, and at sciCORE (http://scicore.unibas.ch/) scientific computing center at University of Basel. Funding was received from the European Union’s Horizon 2020 research and innovation program (ERC Starting Grant, grant agreement No 757725).

Appendix A Effective low-energy theory

A.1 Derivation of the effective two-dimensional model by exploiting the rotational symmetry

In the cylindrical coordinates (ρ,φ,z)(\rho,\varphi,z) the Hamiltonian (1) acquires the form

H\displaystyle H =σz2m[1ρρρρ+1ρ2(iφ+f+Bρ22)22z22mδ]\displaystyle=\frac{\sigma_{z}}{2m^{*}}\left[-\frac{1}{\rho}\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho}+\frac{1}{\rho^{2}}\left(-i\frac{\partial}{\partial\varphi}+f+\frac{B\rho^{2}}{2}\right)^{2}-\frac{\partial^{2}}{\partial z^{2}}-2m^{*}\delta\right] (5)
+ασx[isρρ+sφρ(iφ+f+Bρ22)iszz]+εZsz,\displaystyle+\alpha\sigma_{x}\left[-is_{\rho}\frac{\partial}{\partial\rho}+\frac{s_{\varphi}}{\rho}\left(-i\frac{\partial}{\partial\varphi}+f+\frac{B\rho^{2}}{2}\right)-is_{z}\frac{\partial}{\partial z}\right]+\varepsilon_{Z}s_{z}, (6)

where

sρ\displaystyle s_{\rho} =sxcosφ+sysinφ,\displaystyle=s_{x}\cos\varphi+s_{y}\sin\varphi, (7)
sφ\displaystyle s_{\varphi} =sxsinφ+sycosφ.\displaystyle=-s_{x}\sin\varphi+s_{y}\cos\varphi. (8)

Performing the unitary transformation Uφ=ei2φei2szφU_{\varphi}=e^{-\frac{i}{2}\varphi}e^{\frac{i}{2}s_{z}\varphi}, which transforms

UφsρUφ\displaystyle U_{\varphi}s_{\rho}U_{\varphi}^{\dagger} =sx,\displaystyle=s_{x}, (9)
UφsφUφ\displaystyle U_{\varphi}s_{\varphi}U_{\varphi}^{\dagger} =sy,\displaystyle=s_{y}, (10)
UφJzUφ\displaystyle U_{\varphi}J_{z}U_{\varphi}^{\dagger} =Uφ(iφ+12sz)Uφ=iφ+12J^z,\displaystyle=U_{\varphi}\left(-i\frac{\partial}{\partial\varphi}+\frac{1}{2}s_{z}\right)U_{\varphi}^{\dagger}=-i\frac{\partial}{\partial\varphi}+\frac{1}{2}\equiv\hat{J}_{z}, (11)

supporting the periodic boundary conditions in φ\varphi, we obtain

h3D\displaystyle h_{3D} =UφHUφ\displaystyle=U_{\varphi}HU_{\varphi}^{\dagger} (12)
=σz2m[1ρρρρ+1ρ2(J^z12sz+f+Bρ22)22z22mδ]\displaystyle=\frac{\sigma_{z}}{2m^{*}}\left[-\frac{1}{\rho}\frac{\partial}{\partial\rho}\rho\frac{\partial}{\partial\rho}+\frac{1}{\rho^{2}}\left(\hat{J}_{z}-\frac{1}{2}s_{z}+f+\frac{B\rho^{2}}{2}\right)^{2}-\frac{\partial^{2}}{\partial z^{2}}-2m^{*}\delta\right] (13)
+ασx[iszρ+syρ(J^z12sz+f+Bρ22)iszz]+εZsz.\displaystyle+\alpha\sigma_{x}\left[-is_{z}\frac{\partial}{\partial\rho}+\frac{s_{y}}{\rho}\left(\hat{J}_{z}-\frac{1}{2}s_{z}+f+\frac{B\rho^{2}}{2}\right)-is_{z}\frac{\partial}{\partial z}\right]+\varepsilon_{Z}s_{z}. (14)

By virtue of the UφU_{\varphi} transformation we remove the φ\varphi-dependence from the Hamiltonian and thereby explicitly manifest the rotational symmetry about zz axis, [h3D,J^z]=Uφ[H,Jz]Uφ=0[h_{3D},\hat{J}_{z}]=U_{\varphi}[H,J_{z}]U_{\varphi}^{\dagger}=0.

The total angular momentum operator J^z\hat{J}_{z} can be replaced by its half-integer eigenvalue jzj_{z}. Combining the latter with ff, we obtain the parameter j~z=jz+f\tilde{j}_{z}=j_{z}+f. In addition, we perform the transformation

h2D\displaystyle h_{2D} =ρh3D1ρ\displaystyle=\sqrt{\rho}\,h_{3D}\,\frac{1}{\sqrt{\rho}} (15)

in order to have the euclidean scalar product in the effective two-dimensional model formulated in the half-plane (x>0,z)(x>0,z). Finally, renaming ρx\rho\to x, we obtain the Hamiltonian (2).

A.2 Coordinate transformation

The Hamiltonian (1) for the torus model can be alternatively represented in the new – toroidal-poloidal – coordinate system

x\displaystyle x =l0+rsinθ,\displaystyle=l_{0}+r\sin\theta, (16)
z\displaystyle z =rcosθ,\displaystyle=r\cos\theta, (17)

where r<r0<l0r<r_{0}<l_{0} and θ(π,π]\theta\in(-\pi,\pi]. Transforming the differential operators, we obtain

x\displaystyle\frac{\partial}{\partial x} =sinθr+cosθrθ=12(Λ+Λ),\displaystyle=\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial\theta}=\frac{1}{2}(\Lambda_{+}-\Lambda_{-}), (18)
z\displaystyle\frac{\partial}{\partial z} =cosθrsinθrθ=i2(Λ++Λ),\displaystyle=\cos\theta\frac{\partial}{\partial r}-\frac{\sin\theta}{r}\frac{\partial}{\partial\theta}=\frac{i}{2}(\Lambda_{+}+\Lambda_{-}), (19)

where

Λ±=ie±iθr±e±iθrθ.\displaystyle\Lambda_{\pm}=-ie^{\pm i\theta}\frac{\partial}{\partial r}\pm\frac{e^{\pm i\theta}}{r}\frac{\partial}{\partial\theta}. (20)

In addition, the two-dimensional Laplace operator reads

2D2=2x2+2z2=2r2+1rr+1r22θ2.\displaystyle\nabla_{2D}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\theta^{2}}. (21)

Then, we rewrite (2) as

h2D\displaystyle h_{2D} =σz2m[2D2+(j~zx+Bx2)2sz(j~zx2+B2)2mδ]\displaystyle=\frac{\sigma_{z}}{2m^{*}}\left[-\nabla_{2D}^{2}+\left(\frac{\tilde{j}_{z}}{x}+\frac{Bx}{2}\right)^{2}-s_{z}\left(\frac{\tilde{j}_{z}}{x^{2}}+\frac{B}{2}\right)-2m^{*}\delta\right]
+ασx[szisx2Λ++sz+isx2Λ+sy(j~zx+Bx2)]+εZsz.\displaystyle+\alpha\sigma_{x}\left[\frac{s_{z}-is_{x}}{2}\Lambda_{+}+\frac{s_{z}+is_{x}}{2}\Lambda_{-}+s_{y}\left(\frac{\tilde{j}_{z}}{x}+\frac{Bx}{2}\right)\right]+\varepsilon_{Z}s_{z}. (22)

A.3 Matrix elements of the 2D model in the basis of Bessel functions

To compute matrix elements in the torus model we introduce the eigenbasis of 2D2-\nabla^{2}_{2D} with the open boundary conditions on the disc r<r0r<r_{0}

un,jn(r,θ)=r,θ|n,jn=1Nn,jnJn(ξn,jnrr0)einθ2π,n,jn.\displaystyle u_{n,j_{n}}(r,\theta)=\langle r,\theta|n,j_{n}\rangle=\frac{1}{\sqrt{N_{n,j_{n}}}}J_{n}\left(\xi_{n,j_{n}}\frac{r}{r_{0}}\right)\frac{e^{in\theta}}{\sqrt{2\pi}},\quad n\in\mathbbm{Z},\quad j_{n}\in\mathbbm{N}. (23)

It is expressed in terms of the Bessel function JnJ_{n} and its zeroes ξn,jn\xi_{n,j_{n}} enumerated by jnj_{n} for each nn. Being normalized by

Nn,jn=r022[Jn(ξn,jn)]2,\displaystyle N_{n,j_{n}}=\frac{r_{0}^{2}}{2}[J^{\prime}_{n}(\xi_{n,j_{n}})]^{2}, (24)

the eigenfunctions (23) obey the orthogonality condition

n,jn|n,jn\displaystyle\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|n,j_{n}\rangle =02π𝑑θ0r0𝑑rrun,jn(r,θ)un,jn(r,θ)=δnnδjn,jn.\displaystyle=\int_{0}^{2\pi}d\theta\int_{0}^{r_{0}}dr\,r\,u^{*}_{n^{\prime},{j^{\prime}_{n^{\prime}}}}(r,\theta)\,u_{n,j_{n}}(r,\theta)=\delta_{n^{\prime}n}\delta_{j^{\prime}_{n},j_{n}}. (25)

Focusing on the representation (22), we analytically evaluate the matrix elements

n,jn|2D2|n,jn\displaystyle\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|-\nabla_{2D}^{2}|n,j_{n}\rangle =δnnδjn,jn(ξn,jnr0)2,\displaystyle=\delta_{n^{\prime}n}\delta_{j^{\prime}_{n},j_{n}}\left(\frac{\xi_{n,j_{n}}}{r_{0}}\right)^{2}, (26)
n,jn|Λ±|n,jn\displaystyle\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|\Lambda_{\pm}|n,j_{n}\rangle =δn,n±1r0(1)jn+jn±1sgn(n±0+)2iξn,jnξn±1,jn±1ξn,jn2ξn±1,jn±12,\displaystyle=-\frac{\delta_{n^{\prime},n\pm 1}}{r_{0}}(-1)^{j_{n}+j^{\prime}_{n\pm 1}}\,\text{sgn}\,(n\pm 0^{+})\frac{2i\,\xi_{n,j_{n}}\,\xi_{n\pm 1,j^{\prime}_{n\pm 1}}}{\xi_{n,j_{n}}^{2}-\xi_{n\pm 1,j^{\prime}_{n\pm 1}}^{2}}, (27)

and numerically evaluate the matrix elements n,jn|x|n,jn\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|x|n,j_{n}\rangle, n,jn|x2|n,jn\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|x^{2}|n,j_{n}\rangle, n,jn|1x|n,jn\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|\frac{1}{x}|n,j_{n}\rangle, n,jn|1x2|n,jn\langle n^{\prime},{j^{\prime}_{n^{\prime}}}|\frac{1}{x^{2}}|n,j_{n}\rangle.

Choosing an appropriate high-energy cutoff, we diagonalize the matrix Hamiltonian and compare its spectrum in Fig. 6 with the tb model spectrum presented in the main text.

Refer to caption
Figure 6: Comparison of the low-energy states calculated within the tb model (blue dots) and the continuum model (orange circles) at f=0f=0 (same parameters as in Figs. 2, 3 and 4). Small deviations can be consistently eliminated by reducing the lattice constant value in the tb model and by increasing the high-energy cut-off in the continuum model.

A.4 Effective surface model

To derive an effective surface model, we apply the following unitary transformation to the Hamiltonian (22)

Uθ=ei2θei2syθ,\displaystyle U_{\theta}=e^{-\frac{i}{2}\theta}e^{\frac{i}{2}s_{y}\theta}, (28)

which maintains the periodic boundary conditions in θ\theta variable.

The transformation (28) acts as follows:

UθsxUθ=sxcosθ+szsinθ,\displaystyle U_{\theta}s_{x}U_{\theta}^{\dagger}=s_{x}\cos\theta+s_{z}\sin\theta, (29)
UθszUθ=sxsinθ+szcosθ,\displaystyle U_{\theta}s_{z}U_{\theta}^{\dagger}=-s_{x}\sin\theta+s_{z}\cos\theta, (30)
Uθ(sxsinθ+szcosθ)Uθ=sz,\displaystyle U_{\theta}(s_{x}\sin\theta+s_{z}\cos\theta)U_{\theta}^{\dagger}=s_{z}, (31)
Uθ(sxcosθszsinθ)Uθ=sx,\displaystyle U_{\theta}(s_{x}\cos\theta-s_{z}\sin\theta)U_{\theta}^{\dagger}=s_{x}, (32)

and

UθθUθ=θ+i1sy2.\displaystyle U_{\theta}\frac{\partial}{\partial\theta}U_{\theta}^{\dagger}=\frac{\partial}{\partial\theta}+i\frac{1-s_{y}}{2}. (33)

The listed transformed operators are to replace in (22) their initial counterparts.

In addition to (28), we transform wavefunctions ΨrΨ\Psi\to\sqrt{r}\Psi in order to absorb the functional determinant rr into the wavefunction’s definition. Accordingly we transform all operators, OrO1rO\to\sqrt{r}O\frac{1}{\sqrt{r}}. Thus we get

h~2D=rUθh2DUθ1r\displaystyle\tilde{h}_{2D}=\sqrt{r}U_{\theta}h_{2D}U_{\theta}^{\dagger}\frac{1}{\sqrt{r}}
=σz2m[2r2+1r2(iθ+12)2syr2(iθ+12)+(j~zx+Bx2)2(sxsinθ+szcosθ)(j~zx2+B2)2mδ]\displaystyle=\frac{\sigma_{z}}{2m^{*}}\left[-\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}}\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)^{2}-\frac{s_{y}}{r^{2}}\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)+\left(\frac{\tilde{j}_{z}}{x}+\frac{Bx}{2}\right)^{2}-(-s_{x}\sin\theta+s_{z}\cos\theta)\left(\frac{\tilde{j}_{z}}{x^{2}}+\frac{B}{2}\right)-2m^{*}\delta\right]
+ασx[iszr+sxr(iθ+12)+sy(j~zx+Bx2)]+εZ(sxsinθ+szcosθ).\displaystyle+\alpha\sigma_{x}\left[-is_{z}\frac{\partial}{\partial r}+\frac{s_{x}}{r}\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)+s_{y}\left(\frac{\tilde{j}_{z}}{x}+\frac{Bx}{2}\right)\right]+\varepsilon_{Z}(-s_{x}\sin\theta+s_{z}\cos\theta). (34)

For a sufficiently large radius r0lsor_{0}\gg l_{so}, we can neglect the curvature effects in deriving the low-energy theory for surface states. Considering first the radial part of (34)

h~2D(0)=σz2m[2r22mδ]iασxszr,\displaystyle\tilde{h}^{(0)}_{2D}=\frac{\sigma_{z}}{2m^{*}}\left[-\frac{\partial^{2}}{\partial r^{2}}-2m^{*}\delta\right]-i\alpha\sigma_{x}s_{z}\frac{\partial}{\partial r}, (35)

we establish that surface states are zero-energy states of this Hamiltonian, and their radial dependence is captured by the ansatz

ψsurface(r)e(r0r)/lsosin[kF(r0r)],\displaystyle\psi_{surface}(r)\propto e^{-(r_{0}-r)/l_{so}}\sin[k_{F}(r_{0}-r)], (36)

with kF=2mδ(mα)2k_{F}=\sqrt{2m^{*}\delta-(m^{*}\alpha)^{2}}. Inserting it into (35), we obtain an equation for the spinor structure |χsurface|\chi_{surface}\rangle of the surface states

1σysz2|χsurface=0.\displaystyle\frac{1-\sigma_{y}s_{z}}{2}|\chi_{surface}\rangle=0. (37)

Hence we find the projector onto the surface states subspace

Psurface=1+σysz2.\displaystyle P_{surface}=\frac{1+\sigma_{y}s_{z}}{2}. (38)

Projecting (34) onto the surface states subspace, averaging the radial degree of freedom in the state (36), and additionally approximating g(r)g(r0)\langle g(r)\rangle\approx g(r_{0}), we obtain the effective low-energy theory for the surface states

hsurface=Psurface[σzsy(αr012mr02)(iθ+12)σzsx(αxsinθ2mx2)(j~z+Bx22)+εZszcosθ]Psurface,\displaystyle h_{surface}=P_{surface}\left[\sigma_{z}s_{y}\left(\frac{\alpha}{r_{0}}-\frac{1}{2m^{*}r_{0}^{2}}\right)\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)-\sigma_{z}s_{x}\left(\frac{\alpha}{x}-\frac{\sin\theta}{2m^{*}x^{2}}\right)\left(\tilde{j}_{z}+\frac{Bx^{2}}{2}\right)+\varepsilon_{Z}s_{z}\cos\theta\right]P_{surface}, (39)

with x=l0+r0sinθx=l_{0}+r_{0}\sin\theta.

A.5 Hinge and Landau surface states in the torus model

1) To describe the right and left hinge states, we consider l0r0lsol_{0}\gg r_{0}\gg l_{so} in the effective surface Hamiltonian (39) and derive

hsurfacePsurface[σzsyαr0(iθ+12)σzsxαl0(j~z+Bx22)+εZszcosθ]Psurface.\displaystyle h_{surface}\approx P_{surface}\left[\sigma_{z}s_{y}\frac{\alpha}{r_{0}}\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)-\sigma_{z}s_{x}\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{Bx^{2}}{2}\right)+\varepsilon_{Z}s_{z}\cos\theta\right]P_{surface}. (40)

Near θ=±π2\theta=\pm\frac{\pi}{2} we approximate

hsurfacePsurface[iσzsyαr0θ+σzsyα2r0σzsxαl0(j~z+B(l0±r0)22)+εZszcosθ]Psurface.\displaystyle h_{surface}\approx P_{surface}\left[-i\sigma_{z}s_{y}\frac{\alpha}{r_{0}}\frac{\partial}{\partial\theta}+\sigma_{z}s_{y}\frac{\alpha}{2r_{0}}-\sigma_{z}s_{x}\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{B(l_{0}\pm r_{0})^{2}}{2}\right)+\varepsilon_{Z}s_{z}\cos\theta\right]P_{surface}. (41)

At j~zB(l0±r0)22\tilde{j}_{z}\approx-\frac{B(l_{0}\pm r_{0})^{2}}{2} we solve the eigenvalue problem for a hinge state with nearly zero energy

[iσzsyαr0θ+εZszcosθ]e±εZr0αsinθ|χ~R,L=2εZe±εZr0αsinθszcosθ1σzsx2|χ~R,L=0.\displaystyle\left[-i\sigma_{z}s_{y}\frac{\alpha}{r_{0}}\frac{\partial}{\partial\theta}+\varepsilon_{Z}s_{z}\cos\theta\right]e^{\pm\varepsilon_{Z}\frac{r_{0}}{\alpha}\sin\theta}|\tilde{\chi}_{R,L}\rangle=2\varepsilon_{Z}e^{\pm\varepsilon_{Z}\frac{r_{0}}{\alpha}\sin\theta}s_{z}\cos\theta\frac{1\mp\sigma_{z}s_{x}}{2}|\tilde{\chi}_{R,L}\rangle=0. (42)

Thus |χ~R,L|\tilde{\chi}_{R,L}\rangle is a simultaneous eigenstate (to the eigenvalue +1+1) of the projectors Psurface=1+σysz2P_{surface}=\frac{1+\sigma_{y}s_{z}}{2} and 1±σzsx2\frac{1\pm\sigma_{z}s_{x}}{2}. It reads

|χ~R,L=12[(1i)σz(10)sz±(1i)σz(01)sz].\displaystyle|\tilde{\chi}_{R,L}\rangle=\frac{1}{2}\left[\left(\begin{array}[]{c}1\\ i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}1\\ 0\end{array}\right)_{s_{z}}\pm\left(\begin{array}[]{c}1\\ -i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}0\\ 1\end{array}\right)_{s_{z}}\right]. (51)

Noticing that χ~R,L|σzsy|χ~R,L=0\langle\tilde{\chi}_{R,L}|\sigma_{z}s_{y}|\tilde{\chi}_{R,L}\rangle=0, we perturbatively evaluate the energy dispersion in j~z\tilde{j}_{z}

εR,L(j~z)χ~R,L|σzsx|χ~R,Lαl0(j~z+B(l0±r0)22)=αl0(j~z+B(l0±r0)22).\displaystyle\varepsilon_{R,L}(\tilde{j}_{z})\approx-\langle\tilde{\chi}_{R,L}|\sigma_{z}s_{x}|\tilde{\chi}_{R,L}\rangle\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{B(l_{0}\pm r_{0})^{2}}{2}\right)=\mp\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{B(l_{0}\pm r_{0})^{2}}{2}\right). (52)

Undoing the θ\theta-transformation, we obtain

|χR,L=Uθ|χ~R,L=eiθ22[(1i)σz(cosθ2sinθ2)sz±(1i)σz(sinθ2cosθ2)sz].\displaystyle|\chi_{R,L}\rangle=U_{\theta}^{\dagger}|\tilde{\chi}_{R,L}\rangle=\frac{e^{i\frac{\theta}{2}}}{2}\left[\left(\begin{array}[]{c}1\\ i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}\cos\frac{\theta}{2}\\ \sin\frac{\theta}{2}\end{array}\right)_{s_{z}}\pm\left(\begin{array}[]{c}1\\ -i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}-\sin\frac{\theta}{2}\\ \cos\frac{\theta}{2}\end{array}\right)_{s_{z}}\right]. (61)

Note that σxsy|χR,L=|χR,L\sigma_{x}s_{y}|\chi_{R,L}\rangle=\mp|\chi_{R,L}\rangle.

2) To describe the top and bottom Landau surface states we consider the values j~zBl022\tilde{j}_{z}\approx-\frac{Bl_{0}^{2}}{2}, which correspond to the spatial localization at sinθ0\sin\theta\approx 0, that is θ0\theta\approx 0 or θπ\theta\approx\pi.

Carefully approximating

hsurface\displaystyle h_{surface} Psurface[σxsxαr0(iθ+12)+σxsyαl0(j~z+Bl022)+σxsyαBr0sinθ+εZszcosθ],\displaystyle\approx P_{surface}\left[\sigma_{x}s_{x}\frac{\alpha}{r_{0}}\left(-i\frac{\partial}{\partial\theta}+\frac{1}{2}\right)+\sigma_{x}s_{y}\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{Bl_{0}^{2}}{2}\right)+\sigma_{x}s_{y}\alpha Br_{0}\sin\theta+\varepsilon_{Z}s_{z}\cos\theta\right], (62)

we extract the leading order Hamiltonian

hTB(0)\displaystyle h_{TB}^{(0)} iσxsxPsurfaceαr0[θszBr02sinθ].\displaystyle\approx-i\sigma_{x}s_{x}P_{surface}\frac{\alpha}{r_{0}}\left[\frac{\partial}{\partial\theta}-s_{z}Br_{0}^{2}\sin\theta\right]. (63)

It possesses the two zero-energy solutions: the top and bottom states e±Br02cosθ\propto e^{\pm Br_{0}^{2}\cos\theta} with sz=1s_{z}=\mp 1, which are localized near θ0\theta\approx 0 and θπ\theta\approx\pi, respectively. Their spinor structure is determined by the relations σysz=+1\sigma_{y}s_{z}=+1 and sz=1s_{z}=\mp 1:

|χ~T=12(1i)σz(01)sz,|χ~B=12(1i)σz(10)sz.\displaystyle|\tilde{\chi}_{T}\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}[]{c}1\\ -i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}0\\ 1\end{array}\right)_{s_{z}},\quad|\tilde{\chi}_{B}\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}[]{c}1\\ i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}1\\ 0\end{array}\right)_{s_{z}}. (72)

Undoing the θ\theta-transformation, we obtain

|χT\displaystyle|\chi_{T}\rangle =Uθ|χ~T=ei2θ2(1i)σz(sinθ2cosθ2)sz,\displaystyle=U_{\theta}^{\dagger}|\tilde{\chi}_{T}\rangle=\frac{e^{\frac{i}{2}\theta}}{\sqrt{2}}\left(\begin{array}[]{c}1\\ -i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}-\sin\frac{\theta}{2}\\ \cos\frac{\theta}{2}\end{array}\right)_{s_{z}}, (77)
|χB\displaystyle|\chi_{B}\rangle =Uθ|χ~B=ei2θ2(1i)σz(cosθ2sinθ2)sz.\displaystyle=U_{\theta}^{\dagger}|\tilde{\chi}_{B}\rangle=\frac{e^{\frac{i}{2}\theta}}{\sqrt{2}}\left(\begin{array}[]{c}1\\ i\end{array}\right)_{\sigma_{z}}\left(\begin{array}[]{c}\cos\frac{\theta}{2}\\ \sin\frac{\theta}{2}\end{array}\right)_{s_{z}}. (82)

Energy of these states is obtained from the perturbative j~z\tilde{j}_{z}-independent correction

εT,BεZ.\displaystyle\varepsilon_{T,B}\approx-\varepsilon_{Z}. (83)

The degeneracy is lifted by the exponentially small overlap of the two states, which leads to the symmetric and antisymmetric combinations of the top and bottom states. In particular, projecting the initially neglected small terms

Δhsurface\displaystyle\Delta h_{surface} Psurface[σxsxα2r0+σxsyαl0(j~z+Bl022)+εZszcosθ]\displaystyle\approx P_{surface}\left[\sigma_{x}s_{x}\frac{\alpha}{2r_{0}}+\sigma_{x}s_{y}\frac{\alpha}{l_{0}}\left(\tilde{j}_{z}+\frac{Bl_{0}^{2}}{2}\right)+\varepsilon_{Z}s_{z}\cos\theta\right] (84)

onto the subspace spanned by the top and bottom states found above in the leading approximation, we obtain the following effective 2×22\times 2 Hamiltonian

Δhsurfaceeff=εZ+α2r0𝒩(0i+2r0l0(j~z+Bl022)i+2r0l0(j~z+Bl022)0),\displaystyle\Delta h_{surface}^{eff}=-\varepsilon_{Z}+\frac{\alpha}{2r_{0}\mathcal{N}}\left(\begin{array}[]{cc}0&i+\frac{2r_{0}}{l_{0}}(\tilde{j}_{z}+\frac{Bl_{0}^{2}}{2})\\ -i+\frac{2r_{0}}{l_{0}}(\tilde{j}_{z}+\frac{Bl_{0}^{2}}{2})&0\end{array}\right), (87)

where

𝒩=12πππ𝑑θe±2Br02cosθe2Br022πBr02,Br021.\displaystyle\mathcal{N}=\frac{1}{2\pi}\int_{-\pi}^{\pi}d\theta e^{\pm 2Br_{0}^{2}\cos\theta}\approx\frac{e^{2Br_{0}^{2}}}{2\sqrt{\pi Br_{0}^{2}}},\quad Br_{0}^{2}\gg 1. (88)

Diagonalizing (87), we obtain the energy splitting

Δε(j~z)αr0𝒩1+4r02l02(j~z+Bl022)2.\displaystyle\Delta\varepsilon(\tilde{j}_{z})\approx\frac{\alpha}{r_{0}\mathcal{N}}\sqrt{1+\frac{4r_{0}^{2}}{l_{0}^{2}}\left(\tilde{j}_{z}+\frac{Bl_{0}^{2}}{2}\right)^{2}}. (89)

It is minimal in the plateau’s middle,

Δε(j~zBl022)αr0𝒩2απBeBr02,\displaystyle\Delta\varepsilon(\tilde{j}_{z}\approx-\frac{Bl_{0}^{2}}{2})\approx\frac{\alpha}{r_{0}\mathcal{N}}\approx 2\alpha\sqrt{\pi B}e^{-Br_{0}^{2}}, (90)

giving an estimate of the splitting between ε1\varepsilon_{-1} and ε0\varepsilon_{0} bands.

Refer to caption
Figure 7: (a) j~z\tilde{j}_{z}-resolved boundary charges as defined in Eq. (91). (b) The summed values jzQ~BR,L(jz+f)\sum_{j_{z}}\tilde{Q}_{B}^{R,L}(j_{z}+f) (same parameters as in Figs. 2, 3 and 4). In the numerical summation jzj_{z} ranges from -199.5 to 100.5.

Appendix B Vanishing contribution to the boundary charge from the valence bands ελ1\varepsilon_{\lambda\leq-1}

Studying numerically the quantity

Q~BR,L(j~z)=λ1[Q¯B,λR,L(j~z)Q¯B,λR,L(|j~z|)],\displaystyle\tilde{Q}_{B}^{R,L}(\tilde{j}_{z})=\sum_{\lambda\leq-1}[\bar{Q}^{R,L}_{B,\lambda}(\tilde{j}_{z})-\bar{Q}^{R,L}_{B,\lambda}(|\tilde{j}_{z}|\to\infty)], (91)

we obtain the results shown in Fig. 7(a). Evaluating the sum jzQ~BR,L(jz+f)\sum_{j_{z}}\tilde{Q}_{B}^{R,L}(j_{z}+f) we obtain a small number of O(1)O(1) which is constant for all values of ff (see Fig. 7(b)). Then

λ1jz[Q¯B,λR,L(jz+f)Q¯B,λR,L(jz)]=jz[Q~BR,L(jz+f)Q~BR,L(jz)]=0,\displaystyle\sum_{\lambda\leq-1}\sum_{j_{z}}[\bar{Q}^{R,L}_{B,\lambda}(j_{z}+f)-\bar{Q}^{R,L}_{B,\lambda}(j_{z})]=\sum_{j_{z}}[\tilde{Q}_{B}^{R,L}(j_{z}+f)-\tilde{Q}_{B}^{R,L}(j_{z})]=0, (92)

which proves the vanishing contribution of the bands ελ1\varepsilon_{\lambda\leq-1} to the boundary charge.

Appendix C Details of the tight-binding modelling and calculation of the boundary charge

C.1 2D tight-binding model as a discrete version of the continuum model

To numerically solve the effective 2D continuum model shown in Eq. (2) of the main text, we first replace the continuous coordinates by discrete sites, and substitute the derivatives with finite differences [67]. The site labelled by ii has the position 𝐫i=ma𝐞^x+na𝐞^z{\bf r}_{i}=ma\hat{{\bf e}}_{x}+na\hat{{\bf e}}_{z}, where m,nm,n are integer numbers, aa is a lattice constant chosen to be small as compared to other scales in the model, and 𝐞^ζ\hat{{\bf e}}_{\zeta} with ζ=x,z\zeta=x,z is the unit vector pointing towards the ζ\zeta-direction. In the lattice representation, the differential operators are replaced as: 2ζ2ψ(x,z)|𝐫i=1a2[ψ(𝐫i+a𝐞^ζ)2ψ(𝐫i)+ψ(𝐫ia𝐞^ζ)]\frac{\partial^{2}}{\partial\zeta^{2}}\psi(x,z)|_{{\bf r}_{i}}=\frac{1}{a^{2}}\left[\psi({\bf r}_{i}+a\hat{{\bf e}}_{\zeta})-2\psi({\bf r}_{i})+\psi({\bf r}_{i}-a\hat{{\bf e}}_{\zeta})\right], and ζψ(x,z)|𝐫i=1a[ψ(𝐫i+a𝐞^ζ)ψ(𝐫i)]\frac{\partial}{\partial\zeta}\psi(x,z)|_{{\bf r}_{i}}=\frac{1}{a}\left[\psi({\bf r}_{i}+a\hat{{\bf e}}_{\zeta})-\psi({\bf r}_{i})\right], where ψ(x,z)\psi(x,z) is the 2D wavefunction. With this approximation we get the matrix representation of the Hamiltonian (2) which is in the tb form and only contains the nearest coupling terms between adjacent sites. To get the geometry of a disc as shown in Fig. 1(b) of the main text, we consider a rectangular grid with length and width slightly larger than 2r02r_{0}, and choose the center of the grid to coincide with that of the disc. By applying an infinitely large on-site potential outside the disc boundary, we achieve a realization of the open boundary conditions on the disc boundary. By exact diagonalization of the Hamiltonian matrix, we obtained the band structure, the density of states, and the boundary charge. In Fig. 6 we compare the low-energy states obtained from the 2D tb model by setting a=lso/5a=l_{so}/5, and the one from directly solving the continuum model (2) in the basis introduced in the subsection A.3. The good agreement validates the accuracy of the 2D tb approximation.

C.2 Tight-binding Hamiltonian of the 3D TI under magnetic fields

To calculate the boundary charge in the presence of disorder potential, we use a 3D tb Hamiltonian of a TI [68, 69]. The Hamiltonian defined on a cubic lattice is written as

H3Dtb=it|𝐫ii𝐫i|+iζ=x,y,zt(|𝐫i+a3D𝐞^ζ𝒯ζeiϕ𝐫i,𝐫i+a3D𝐞^ζ𝐫i|+h.c.),\displaystyle H_{3D}^{tb}=\sum_{i}t|{\bf r}_{i}\rangle\mathcal{M}_{i}\langle{\bf r}_{i}|+\sum_{i}\sum_{\zeta=x,y,z}t\left(|{\bf r}_{i}+a_{3D}\hat{{\bf e}}_{\zeta}\rangle\mathcal{T}_{\zeta}e^{i\phi_{{\bf r}_{i},{\bf r}_{i}+a_{3D}\hat{{\bf e}}_{\zeta}}}\langle{\bf r}_{i}|+h.c.\right), (93)

where |𝐫i|{\bf r}_{i}\rangle is the Wannier basis denoting the lattice site with real-space position 𝐫i{\bf r}_{i}, and has both orbital and spin degrees of freedom encoded in the components |𝐫i=(|𝐫i1,|𝐫i1,|𝐫i2,|𝐫i2)T|{\bf r}_{i}\rangle=(|{\bf r}_{i}^{1\uparrow}\rangle,|{\bf r}_{i}^{1\downarrow}\rangle,|{\bf r}_{i}^{2\uparrow}\rangle,|{\bf r}_{i}^{2\downarrow}\rangle)^{T} with σ=1,2\sigma=1,2 and s=,s=\uparrow,\downarrow. Here tt and a3Da_{3D} represent the hopping amplitude and the lattice constant of the 3D tb model, respectively. The onsite matrix elements are given by i=m0σz+Δzsz+Ui0+Ui\mathcal{M}_{i}=m_{0}\sigma_{z}+\Delta_{z}s_{z}+U_{i}\equiv\mathcal{M}_{0}+U_{i}, where Δz\Delta_{z} is the dimensionless Zeeman energy in units of tt, and UiU_{i} is the on-site disorder potential which is uniformly distributed within [W/2,W/2][-W/2,W/2] with WW being the characteristic disorder strength. The hopping matrix elements are given by 𝒯ζ=αtb2iσxsζm12σz\mathcal{T}_{\zeta}=-\frac{\alpha_{tb}}{2i}\sigma_{x}s_{\zeta}-\frac{m_{1}}{2}\sigma_{z}.

The orbital effect of the magnetic field is included by adding a phase factor ϕ𝐫i,𝐫i+a3D𝐞^ζ=2π𝐫i𝐫i+a3D𝐞^ζ𝐀𝑑𝐫/ϕ0\phi_{{\bf r}_{i},{\bf r}_{i}+a_{3D}\hat{{\bf e}}_{\zeta}}=-2\pi\int_{{\bf r}_{i}}^{{\bf r}_{i}+a_{3D}\hat{{\bf e}}_{\zeta}}{\bf A}\cdot d{\bf r}/\phi_{0} to the hopping matrices 𝒯ζ\mathcal{T}_{\zeta}, with the vector potential 𝐀{\bf A} containing contributions which generate both the uniform magnetic field 𝐁{\bf B} and the AB flux. In the real calculations to get the geometry of a torus, we start with a cuboid of the size Nx×Ny×Nza3D3N_{x}\times N_{y}\times N_{z}\cdot a^{3}_{3D}, and restrict the actual volume to the interior of the torus (x2+y2l0)2+z2<r02\left(\sqrt{x^{2}+y^{2}}-l_{0}\right)^{2}+z^{2}<r^{2}_{0} by applying an infinite onsite potential outside it. To simplify the numerical calculation we use the Landau gauge (By,0,0)(-By,0,0) for 𝐀B{\bf A}_{B}, and the discontinuous gauge 2πfδ(φ)φ2\pi f\delta(\varphi)\nabla\varphi for 𝐀ϕ{\bf A}_{\phi}.

Let us now relate the parameters of the above introduced 3D tb model to the parameters of the Hamiltonian (1) in the main text. To this end, we first omit in the 3D tb Hamiltonian the disorder term UiU_{i} and the orbital effects of the magnetic fields, and relax the boundary conditions. This restores the translational invariance and allows us to introduce the Bloch Hamiltonian

H3Dtb=\displaystyle H_{3D}^{tb}= 𝐤|𝐤[t0+ζ=x,y,z(t𝒯ζei𝐤𝐞^ζa3D+t𝒯ζei𝐤𝐞^ζa3D)]𝐤|𝐤|𝐤h3D(𝐤)𝐤|,\displaystyle\sum_{\bf k}|{\bf k}\rangle\left[t\mathcal{M}_{0}+\sum_{\zeta=x,y,z}\left(t\mathcal{T}_{\zeta}e^{-i{\bf k}\cdot\hat{{\bf e}}_{\zeta}\,a_{3D}}+t\mathcal{T}_{\zeta}^{\dagger}e^{i{\bf k}\cdot\hat{{\bf e}}_{\zeta}\,a_{3D}}\right)\right]\langle{\bf k}|\equiv\sum_{\bf k}|{\bf k}\rangle h_{3D}({\bf k})\langle{\bf k}|, (94)

with

h3D(𝐤)=\displaystyle h_{3D}({\bf k})= tαtbσx(sxsinkxa3D+sysinkya3D+szsinkza3D)+tΔzsz\displaystyle t\alpha_{tb}\sigma_{x}(s_{x}\sin{k_{x}a_{3D}}+s_{y}\sin{k_{y}a_{3D}}+s_{z}\sin{k_{z}a_{3D}})+t\Delta_{z}s_{z}
+tσz[m0m1(coskxa3D+coskya3D+coskza3D)].\displaystyle+t\sigma_{z}\left[m_{0}-m_{1}(\cos{k_{x}a_{3D}}+\cos{k_{y}a_{3D}}+\cos{k_{z}a_{3D}})\right]. (95)

Approximating this expression around the 𝚪=(0,0,0){\bf\Gamma}=(0,0,0) point in the Brillouin zone by the virtue of relations sinkζa3Dkζa3D\sin{k_{\zeta}a_{3D}}\approx k_{\zeta}a_{3D} and coskζa3D112kζ2a3D2\cos{k_{\zeta}a_{3D}}\approx 1-\frac{1}{2}k^{2}_{\zeta}a^{2}_{3D}, we get

h3D(𝐤)tσzs0[m1a3D22k2(3m1m0)]+tαtba3Dσx(𝐤𝐬)+tΔzsz.\displaystyle h_{3D}({\bf k})\approx t\sigma_{z}s_{0}\left[\frac{m_{1}a^{2}_{3D}}{2}k^{2}-(3m_{1}-m_{0})\right]+t\alpha_{tb}\cdot a_{3D}\sigma_{x}({\bf k}\cdot{\bf s})+t\Delta_{z}s_{z}. (96)

To achieve the equivalence between (96) and (1), we identify tm1a3D22=12m\frac{tm_{1}a^{2}_{3D}}{2}=\frac{1}{2m^{*}}, t(3m1m0)=δt(3m_{1}-m_{0})=\delta, tαtba3D=αt\alpha_{tb}\cdot a_{3D}=\alpha, and tΔz=εZt\Delta_{z}=\varepsilon_{Z}. By setting the hopping energy t=εsot=\varepsilon_{so} and the lattice constant a3D=lsoa_{3D}=l_{so}, we get the following values of the dimensionless parameters in the 3D tb Hamiltonian: m1=2,m0=3,αtb=2,m_{1}=2,m_{0}=3,\alpha_{tb}=2, and Δz=1\Delta_{z}=1, in accordance with the parameter values of the Hamiltonian (1) specified in the caption of Fig. 2. The orbital effect of the magnetic field is incorporated by substituting 𝐤\bf k with 𝐤+𝐀{\bf k}+{\bf A}. The magnetic flux through each unit cell projected onto the xyx-y plane generated by the uniform magnetic field 𝐁\bf B is calculated to be ϕxy=Ba3D2=1\phi_{xy}=Ba^{2}_{3D}=1. This observation helps us to calculate numerically the phase factor ϕ𝐫i,𝐫i+a3D𝐞^ζ\phi_{{\bf r}_{i},{\bf r}_{i}+a_{3D}\hat{{\bf e}}_{\zeta}} appearing in (93).

Having established the correspondence in the low-energy description between the 3D tb Hamiltonian and its continuum model counterpart, we further use the tb model to evaluate the boundary charge in the presence of on-site disorder breaking the rotational symmetry. The corresponding results are shown in Fig. 5 of the main text.

C.3 Green’s function method in calculating the boundary charge

Since we have used a 3D cuboid to simulate the torus model, the starting lattice has Nx×Ny×NzN_{x}\times N_{y}\times N_{z} sites. Accounting the spin and orbital degrees of freedom, we obtain the Hilbert space dimension of the tb Hamiltonian to be NH=4×Nx×Ny×NzN_{H}=4\times N_{x}\times N_{y}\times N_{z}. For the torus with l0=10lsol_{0}=10\,l_{so} and r0=5lsor_{0}=5\,l_{so}, we need at least Nx=Ny=31N_{x}=N_{y}=31, and Nz=11N_{z}=11. Exactly diagonalizing such a huge matrix of the dimension NH=42284N_{H}=42284 requires a large amount of virtual computer memory rendering the calculation very time-consuming. Instead of this direct approach, we adhere to the recursive Green’s function method [70] to calculate the boundary charge. This method allows us to separate the task into hundreds of jobs which can be computed in parallel on a high-performance computing cluster.

The total charge within the region \mathcal{B} below the chemical potential of the 3D lattice system is defined as: Qtb=𝑑εiΘ(με)ρi(ε)=iQtb(i)Q^{tb}_{\mathcal{B}}=\int_{-\infty}^{\infty}d\varepsilon\sum_{i\in{\mathcal{B}}}\Theta(\mu-\varepsilon)\rho_{i}(\varepsilon)=\sum_{i\in\mathcal{B}}Q^{tb}(i), where Qtb(i)μ𝑑ερi(ε)=ελμρi(ελ)Q^{tb}(i)\equiv\int_{-\infty}^{\mu}d\varepsilon\rho_{i}(\varepsilon)=\sum_{\varepsilon_{\lambda}\leq\mu}\rho_{i}(\varepsilon_{\lambda}) is the total charge at site ii. Here ελ\varepsilon_{\lambda} is the discrete eigenvalues of the isolated system with eigenstate |λ|\lambda\rangle, ρi(ελ)=|𝐫i|λ|2\rho_{i}(\varepsilon_{\lambda})=|\langle{\bf r}_{i}|\lambda\rangle|^{2}, and ρi(ε)=ελρi(ελ)δ(εελ)\rho_{i}(\varepsilon)=\sum_{\varepsilon_{\lambda}}\rho_{i}(\varepsilon_{\lambda})\delta(\varepsilon-\varepsilon_{\lambda}) is the local density of states at site ii. Further, we represent

Qtb(i)=12πi𝒞𝑑zGi(z)\displaystyle Q^{tb}(i)=\frac{1}{2\pi i}\int_{\mathcal{C}}dzG_{i}(z) (97)

in terms of the site-diagonal components Gi(z)=𝐫i|G(z)|𝐫i=ελρi(ελ)zελG_{i}(z)=\langle{\bf r}_{i}|G(z)|{\bf r}_{i}\rangle=\sum_{\varepsilon_{\lambda}}\frac{\rho_{i}(\varepsilon_{\lambda})}{z-\varepsilon_{\lambda}} of the Green’s function G(z)=(zH3Dtb)1G(z)=(z-H_{3D}^{tb})^{-1}. In this expression, a counterclockwise integration path 𝒞\mathcal{C} in the complex-zz plane encompasses the poles of Gi(z)G_{i}(z) at z=ελz=\varepsilon_{\lambda} lying below the chemical potential μ\mu.

To facilitate the integration, we use a rectangular loop 𝒞\mathcal{C} with the four corners in the complex plane: z1(2)=μ+0+bMiz_{1(2)}=\mu+0^{+}\mp b_{M}i, and z3(4)=aM±bMiz_{3(4)}=-a_{M}\pm b_{M}i, where bMb_{M} and aMa_{M} are both large and positive real numbers denoting the absolute maximum values of the imaginary and real part of zz, respectively. This allows us to express

Qtb(i)=12πbMbM𝑑bRe[Gi(μ+0++bi)]+1πaMμ+0+𝑑aIm[Gi(abMi)]12πbMbM𝑑bRe[Gi(aM+bi)].\displaystyle Q^{tb}(i)=\frac{1}{2\pi}\int_{-b_{M}}^{b_{M}}db\,{\rm Re}\left[G_{i}(\mu+0^{+}+bi)\right]+\frac{1}{\pi}\int_{-a_{M}}^{\mu+0^{+}}da\,{\rm Im}\left[G_{i}(a-b_{M}i)\right]-\frac{1}{2\pi}\int_{-b_{M}}^{b_{M}}db\,{\rm Re}\left[G_{i}(-a_{M}+bi)\right]. (98)

The last two integrals are insensitive to the parameter ff (which can be ever numerically tested), because they account contributions from the states |ελ|aM,bM|\varepsilon_{\lambda}|\sim a_{M},b_{M} lying far below the Fermi surface. This observation leads us to the operational formula

Qtb(i)=12πbMbM𝑑bRe[Gi(μ+0++bi)]+const.\displaystyle Q^{tb}(i)=\frac{1}{2\pi}\int^{b_{M}}_{-b_{M}}db\,{\rm Re}\left[G_{i}(\mu+0^{+}+bi)\right]+{\rm const}. (99)

To calculate Gi(z)G_{i}(z), we employ the recursive Green’s function method [70] which avoids a direct calculation of the inverse of the huge Hamiltonian matrix.

Refer to caption
Figure 8: (a) Low-energy spectrum of the torus model (in units of spin-orbit energy εso\varepsilon_{so}) without magnetic orbital effect (B=0B=0). The parameters we use here are: δ=3εso\delta=3\,\varepsilon_{so}, l0=10lsol_{0}=10\,l_{so}, r0=5lsor_{0}=5\,l_{so}, and εZ=εso\varepsilon_{Z}=\varepsilon_{so}. The chemical potential is set to μ=0.15\mu=0.15. (b) Right and left boundary charges as functions of ff feature the linear slopes with the values -0.9859 and 0.9523, respectively, which are complemented by the jumps with the corresponding amplitudes at the flux values fR0.43f_{R}^{*}\approx 0.43, and fL0.92f_{L}^{*}\approx 0.92. The actual numerical summation runs over the jzj_{z} range from -149.5 to 150.5, which is sufficient to ensure convergence. The width of the boundary regions is d=3lsod=3\,l_{so}. It accommodates approximately 98.53 (95.23) percents of the weight of the right (left) hinge state at the energy 0.1508εso\approx 0.1508\,\varepsilon_{so} (0.1490εso\approx 0.1490\,\varepsilon_{so}), see insets in (a), and this explains the deviation of the jump (and the slope) size from the universal unit value.

Appendix D 3D QHE in the absence of the orbital BB-field effect

In Fig. 8(a) we show the band structure of our model in the absence of the orbital BB-field effect. It features the two mid-gap modes of the RR and LL hinge states traversing the surface gap and connecting the hinge modes with bulk surface states. In Fig. 8(b) we show the right and left boundary charges (defined within the same boundary regions as in Fig. 1(b)) which receive contributions from all occupied states below the chemical potential μ\mu. They feature the linear dependencies on ff with the slope values -0.9859 and 0.9523, which are complemented by the jumps of the corresponding sizes.

In the absence of the orbital BB-field effect there is no plateau region of surface states connecting the RR and LL hinges. Therefore for the analytical explanation it is easier to consider the total boundary charge and write it as a sum over all total angular momenta

QBR,L(f)\displaystyle Q_{B}^{R,L}(f) =jz[Q¯BR,L(jz+f)Q¯BR,L(jz)],\displaystyle=\sum_{j_{z}}\left[\bar{Q}_{B}^{R,L}(j_{z}+f)-\bar{Q}_{B}^{R,L}(j_{z})\right], (100)

where Q¯BR,L(jz+f)\bar{Q}_{B}^{R,L}(j_{z}+f) includes the sum over all bands and the condition that the energy must be smaller than μ\mu

Q¯BR,L(jz~)=λΘ(μελ(j~z))Q¯B,λR,L(j~z).\displaystyle\bar{Q}_{B}^{R,L}(\tilde{j_{z}})=\sum_{\lambda}\Theta(\mu-\varepsilon_{\lambda}(\tilde{j}_{z}))\bar{Q}_{B,\lambda}^{R,L}(\tilde{j}_{z}). (101)

To estimate the typical scale Δjz\Delta j_{z} on which Q¯BR,L(jz+f)\bar{Q}_{B}^{R,L}(j_{z}+f) is expected to vary on jzj_{z} (up to jumps occurring when the energy of the highest valence band crosses the chemical potential), we have to compare the scale of the momentum parallel to the surface jz/l0\sim j_{z}/l_{0} with various other inverse length scales appearing in the Hamiltonian (22) (like εZ/αlso/lZ2\varepsilon_{Z}/\alpha\sim l_{so}/l_{Z}^{2}, mα=1/lsom^{*}\alpha=1/l_{so} , or mδ\sqrt{m^{*}\delta}). Since all these inverse length scales are independent of l0l_{0}, the scale Δjz\Delta j_{z} will always increase with the torus radius l0l_{0} and we find, analog to the arguments presented in the main text, that the boundary charge QBR,L(f)Q_{B}^{R,L}(f) is dominated by its linear term to any desired degree of accuracy by increasing the torus radius. The linear behaviour together with the jump properties and the periodicity of QBR,L(f)Q_{B}^{R,L}(f) then proves the universal slopes of QBR,L(f)Q_{B}^{R,L}(f) in the same manner as discussed in the main text.

In the presence of strong orbital fields lBlZl_{B}\sim l_{Z} we note that the typical scale Δjz\Delta j_{z} arises from the combination jz+f+Bx2/2j_{z}+f+Bx^{2}/2 in the Hamiltonian (22). With x=l0+rsinθx=l_{0}+r\sin\theta and B=1/lB2B=1/l_{B}^{2} we get

Bx22=l022lB2+rl0lB2sinθ+r22lB2sin2θ.\displaystyle\frac{Bx^{2}}{2}=\frac{l_{0}^{2}}{2l_{B}^{2}}+\frac{rl_{0}}{l_{B}^{2}}\sin\theta+\frac{r^{2}}{2l_{B}^{2}}\sin^{2}\theta. (102)

The first term leads to an unimportant shift of jzj_{z}. With sinθO(1)\sin\theta\sim O(1) and rr0<l0r\sim r_{0}<l_{0}, the last two terms determine the scale Δjzl0r0/lB2\Delta j_{z}\sim l_{0}r_{0}/l_{B}^{2} which is of the order of the number of fluxes threaded through the torus surface from the orbital field, cf. the main text.

As a result, for any value of the orbital field BB, we obtain that the scale Δjz\Delta j_{z} increases linearly with the torus radius l0l_{0}. Therefore, the universal form of the boundary charge is unaffected by the orbital effects. We note that our estimate of the higher-order derivatives

dndfnQBR,L(f)1(Δjz)n1\displaystyle\frac{d^{n}}{df^{n}}Q_{B}^{R,L}(f)\sim\frac{1}{(\Delta j_{z})^{n-1}} (103)

is quite conservative. The reason is that the sum over jzj_{z} for the higher-order derivatives (ddj~z)nQ¯BR,L(jz~)(\frac{d}{d\tilde{j}_{z}})^{n}\bar{Q}_{B}^{R,L}(\tilde{j_{z}}), with n2n\geq 2, of (100) contains many terms with different signs which partially cancel each other. This can be seen from replacing sums by integrals and noting that the asymptotic values of (ddj~z)n1Q¯BR,L(jz~)(\frac{d}{d\tilde{j}_{z}})^{n-1}\bar{Q}_{B}^{R,L}(\tilde{j_{z}}), with n2n\geq 2, go to zero for j~z±\tilde{j}_{z}\rightarrow\pm\infty. The same holds close to the point where the highest valence band leads to a jump of Q¯BR,L(j~z)\bar{Q}_{B}^{R,L}(\tilde{j}_{z}) when some hinge modes crosses the chemical potential. The variation in jzj_{z} becomes very weak close to the jumping point if the boundary region is chosen much larger than the localization length of all hinge modes. The vanishing integral of all higher-order derivatives with n2n\geq 2 then indicates that also the sum is expected to be very small providing another reason why the linear behaviour is so robust with an error expected to be even much smaller than 1/Δjz1/\Delta j_{z}. This is indeed the case in Fig. 8, where Δjzl0/lso=10\Delta j_{z}\sim l_{0}/l_{so}=10, but the deviation from the linear behaviour is much smaller than 10%10\%.

Refer to caption
Figure 9: (a) Sketch of the half-disc. (b) Low-energy spectrum of the half-disc model at B0B\neq 0 in units of spin-orbit energy εso\varepsilon_{so}. The parameters we use here are: δ=3εso\delta=3\,\varepsilon_{so}, lB=lsol_{B}=l_{so}, l0=0l_{0}=0, r0=8lsor_{0}=8\,l_{so}, and εZ=εso\varepsilon_{Z}=\varepsilon_{so}. The lattice constant is chosen to be a=lso/3a=l_{so}/3. The chemical potential is set to μ=0\mu=0. (c) Right and left boundary charges as functions of ff feature the linear slopes with the values -0.9962 and 0.9993, respectively, which are complemented by the unit jumps at the flux values fR0.2f_{R}^{*}\approx 0.2, and fL0.32f_{L}^{*}\approx 0.32. The width of the boundary regions is d=2.5lsod=2.5\,l_{so}. The actual numerical summation runs over the jzj_{z} range from -59.5 to 30.5, which is sufficient to ensure convergence.

Appendix E 3D QHE in the spherical geometry

In Fig. 9 we show a two-dimensional projection of the sphere in the right half-plane (x>0,z)(x>0,z) appearing in the form of the half-disc. The model (with the magnetic orbital effects) is equipped with the open boundary conditions along its whole circumference including the vertical section. Vanishing of the wavefunction on the vertical section is equivalent to drilling an infinitesimally thin hole in the sphere, which allows for an insertion of the AB flux.

The band structure shown in Fig. 9(b) features a distinguished band (marked in orange) of states residing along the circumference of the half-disc. The states on the negative gentle slope are the hinge states localized near the spherical equator, while the states on the positive steep slope are spatially localized along the vertical axis.

In Fig. 9(c) the right and left boundary charges in the corresponding brown regions of the panel (a) are shown as functions of ff. They receive the whole contribution from the orange band of the panel (b). The calculated slopes are very close to the universal unit values, which is analytically explained by the same arguments as in the torus case.

References

  • Klitzing et al. [1980] K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett. 45, 494 (1980).
  • Kane and Mele [2005a] C. L. Kane and E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005a).
  • Kane and Mele [2005b] C. L. Kane and E. J. Mele, Z2{Z}_{2} topological order and the quantum spin hall effect, Phys. Rev. Lett. 95, 146802 (2005b).
  • Bernevig et al. [2006] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin hall effect and topological phase transition in hgte quantum wells, Science 314, 1757–1761 (2006).
  • König et al. [2007] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin hall insulator state in hgte quantum wells, Science 318, 766 (2007).
  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  • Haldane [1988] F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  • Liu et al. [2008] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Quantum anomalous hall effect in hg1ymnyTe{\mathrm{hg}}_{1-y}{\mathrm{mn}}_{y}\mathrm{Te} quantum wells, Phys. Rev. Lett. 101, 146802 (2008).
  • Bestwick et al. [2015] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D. Goldhaber-Gordon, Precise quantization of the anomalous hall effect near zero magnetic field, Phys. Rev. Lett. 114, 187201 (2015).
  • Yu et al. [2010] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous hall effect in magnetic topological insulators, Science 329, 61 (2010).
  • Chang et al. [2013] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator, Science 340, 167 (2013).
  • Checkelsky et al. [2014] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi, Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Trajectory of the anomalous hall effect towards the quantized state in a ferromagnetic topological insulator, Nature Physics 10, 731 (2014).
  • Feng et al. [2015] Y. Feng, X. Feng, Y. Ou, J. Wang, C. Liu, L. Zhang, D. Zhao, G. Jiang, S.-C. Zhang, K. He, X. Ma, Q.-K. Xue, and Y. Wang, Observation of the zero hall plateau in a quantum anomalous hall insulator, Phys. Rev. Lett. 115, 126801 (2015).
  • Kandala et al. [2015] A. Kandala, A. Richardella, S. Kempinger, C.-X. Liu, and N. Samarth, Giant anisotropic magnetoresistance in a quantum anomalous hall insulator, Nature Communications 6, 7434 (2015).
  • Deng et al. [2020] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Quantum anomalous hall effect in intrinsic magnetic topological insulator mnbi¡sub¿2¡/sub¿te¡sub¿4¡/sub¿, Science 367, 895 (2020).
  • Liu et al. [2020] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang, Robust axion insulator and chern insulator phases in a two-dimensional antiferromagnetic topological insulator, Nature Materials 19, 522 (2020).
  • Ge et al. [2020] J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, High-Chern-number and high-temperature quantum Hall effect without Landau levels, National Science Review 7, 1280 (2020).
  • Riberolles et al. [2021] S. X. M. Riberolles, Q. Zhang, E. Gordon, N. P. Butch, L. Ke, J.-Q. Yan, and R. J. McQueeney, Evolution of magnetic interactions in sb-substituted mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. B 104, 064401 (2021).
  • Yan et al. [2021] C. Yan, S. Fernandez-Mulligan, R. Mei, S. H. Lee, N. Protic, R. Fukumori, B. Yan, C. Liu, Z. Mao, and S. Yang, Origins of electronic bands in the antiferromagnetic topological insulator mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. B 104, L041102 (2021).
  • Fukasawa et al. [2021] T. Fukasawa, S. Kusaka, K. Sumida, M. Hashizume, S. Ichinokura, Y. Takeda, S. Ideta, K. Tanaka, R. Shimizu, T. Hitosugi, and T. Hirahara, Absence of ferromagnetism in mnbi2te4/bi2te3{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}/{\mathrm{bi}}_{2}{\mathrm{te}}_{3} down to 6 k, Phys. Rev. B 103, 205405 (2021).
  • Xu et al. [2021] B. Xu, Y. Zhang, E. H. Alizade, Z. A. Jahangirli, F. Lyzwa, E. Sheveleva, P. Marsik, Y. K. Li, Y. G. Yao, Z. W. Wang, B. Shen, Y. M. Dai, V. Kataev, M. M. Otrokov, E. V. Chulkov, N. T. Mamedov, and C. Bernhard, Infrared study of the multiband low-energy excitations of the topological antiferromagnet mnbi2te4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}Phys. Rev. B 103, L121103 (2021).
  • Sitte et al. [2012] M. Sitte, A. Rosch, E. Altman, and L. Fritz, Topological insulators in magnetic fields: Quantum hall effect and edge channels with a nonquantized θ\theta term, Phys. Rev. Lett. 108, 126807 (2012).
  • Tang et al. [2019] F. Tang, Y. Ren, P. Wang, R. Zhong, J. Schneeloch, S. A. Yang, K. Yang, P. A. Lee, G. Gu, Z. Qiao, and L. Zhang, Three-dimensional quantum hall effect and metal–insulator transition in zrte5, Nature 569, 537 (2019).
  • Xu et al. [2014] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z. Hasan, and Y. P. Chen, Observation of topological surface state quantum hall effect in an intrinsic three-dimensional topological insulator, Nature Physics 10, 956 (2014).
  • Schumann et al. [2018] T. Schumann, L. Galletti, D. A. Kealhofer, H. Kim, M. Goyal, and S. Stemmer, Observation of the quantum hall effect in confined films of the three-dimensional dirac semimetal cd3as2{\mathrm{cd}}_{3}{\mathrm{as}}_{2}Phys. Rev. Lett. 120, 016801 (2018).
  • Zhang et al. [2019] C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H.-Z. Lu, A. C. Potter, and F. Xiu, Quantum hall effect based on weyl orbits in cd3as2, Nature 565, 331 (2019).
  • Benalcazar et al. [2017a] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017a).
  • Benalcazar et al. [2017b] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators, Phys. Rev. B 96, 245115 (2017b).
  • Song et al. [2017] Z. Song, Z. Fang, and C. Fang, (d2)(d-2)-dimensional edge states of rotation symmetry protected topological states, Phys. Rev. Lett. 119, 246402 (2017).
  • Langbehn et al. [2017] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett. 119, 246401 (2017).
  • Geier et al. [2018] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer, Second-order topological insulators and superconductors with an order-two crystalline symmetry, Phys. Rev. B 97, 205135 (2018).
  • Imhof et al. [2018] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nature Physics 14, 925 (2018).
  • Schindler et al. [2018] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Science Advances 4, eaat0346 (2018).
  • Trifunovic and Brouwer [2019] L. Trifunovic and P. W. Brouwer, Higher-order bulk-boundary correspondence for topological crystalline phases, Phys. Rev. X 9, 011012 (2019).
  • Fu et al. [2021] B. Fu, Z.-A. Hu, and S.-Q. Shen, Bulk-hinge correspondence and three-dimensional quantum anomalous hall effect in second-order topological insulators, Phys. Rev. Research 3, 033177 (2021).
  • Petrides and Zilberberg [2020] I. Petrides and O. Zilberberg, Higher-order topological insulators, topological pumps and the quantum hall effect in high dimensions, Phys. Rev. Research 2, 022049 (2020).
  • Volpez et al. [2019] Y. Volpez, D. Loss, and J. Klinovaja, Second-order topological superconductivity in π\pi-junction rashba layers, Phys. Rev. Lett. 122, 126402 (2019).
  • Laubscher et al. [2019] K. Laubscher, D. Loss, and J. Klinovaja, Fractional topological superconductivity and parafermion corner states, Phys. Rev. Research 1, 032017 (2019).
  • Fu et al. [2007] L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98, 106803 (2007).
  • Xu et al. [2012] S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. Andrew Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sánchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. Hugo Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Zahid Hasan, Hedgehog spin texture and berry’s phase tuning in a magnetic topological insulator, Nature Physics 8, 616 (2012).
  • Rienks et al. [2019] E. D. L. Rienks, S. Wimmer, J. Sánchez-Barriga, O. Caha, P. S. Mandal, J. Růžička, A. Ney, H. Steiner, V. V. Volobuev, H. Groiss, M. Albu, G. Kothleitner, J. Michalička, S. A. Khan, J. Minár, H. Ebert, G. Bauer, F. Freyse, A. Varykhalov, O. Rader, and G. Springholz, Large magnetic gap at the dirac point in bi2te3/mnbi2te4 heterostructures, Nature 576, 423 (2019).
  • Khalaf [2018] E. Khalaf, Higher-order topological insulators and superconductors protected by inversion symmetry, Phys. Rev. B 97, 205136 (2018).
  • Plekhanov et al. [2019] K. Plekhanov, M. Thakurathi, D. Loss, and J. Klinovaja, Floquet second-order topological superconductor driven via ferromagnetic resonance, Phys. Rev. Research 1, 032013 (2019).
  • Ren et al. [2020] Y. Ren, Z. Qiao, and Q. Niu, Engineering corner states from two-dimensional topological insulators, Phys. Rev. Lett. 124, 166804 (2020).
  • Laubscher et al. [2020a] K. Laubscher, D. Chughtai, D. Loss, and J. Klinovaja, Kramers pairs of majorana corner states in a topological insulator bilayer, Phys. Rev. B 102, 195401 (2020a).
  • Laubscher et al. [2020b] K. Laubscher, D. Loss, and J. Klinovaja, Majorana and parafermion corner states from two coupled sheets of bilayer graphene, Phys. Rev. Research 2, 013330 (2020b).
  • Plekhanov et al. [2020] K. Plekhanov, F. Ronetti, D. Loss, and J. Klinovaja, Hinge states in a system of coupled rashba layers, Phys. Rev. Research 2, 013083 (2020).
  • Plekhanov et al. [2021] K. Plekhanov, N. Müller, Y. Volpez, D. M. Kennes, H. Schoeller, D. Loss, and J. Klinovaja, Quadrupole spin polarization as signature of second-order topological superconductors, Phys. Rev. B 103, L041401 (2021).
  • Jackiw and Rebbi [1976] R. Jackiw and C. Rebbi, Solitons with fermion number ½, Phys. Rev. D 13, 3398 (1976).
  • Laughlin [1981] R. B. Laughlin, Quantized hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981).
  • Thouless et al. [1982] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982).
  • Avron et al. [1983] J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51, 51 (1983).
  • Kohmoto [1985] M. Kohmoto, Topological invariant and the quantization of the hall conductance, Annals of Physics 160, 343 (1985).
  • Park et al. [2016] J.-H. Park, G. Yang, J. Klinovaja, P. Stano, and D. Loss, Fractional boundary charges in quantum dot arrays with density modulation, Phys. Rev. B 94, 075416 (2016).
  • Thakurathi et al. [2018] M. Thakurathi, J. Klinovaja, and D. Loss, From fractional boundary charges to quantized hall conductance, Phys. Rev. B 98, 245404 (2018).
  • Pletyukhov et al. [2020a] M. Pletyukhov, D. M. Kennes, J. Klinovaja, D. Loss, and H. Schoeller, Surface charge theorem and topological constraints for edge states: Analytical study of one-dimensional nearest-neighbor tight-binding models, Phys. Rev. B 101, 165304 (2020a).
  • Pletyukhov et al. [2020b] M. Pletyukhov, D. M. Kennes, J. Klinovaja, D. Loss, and H. Schoeller, Topological invariants to characterize universality of boundary charge in one-dimensional insulators beyond symmetry constraints, Phys. Rev. B 101, 161106(R) (2020b).
  • Pletyukhov et al. [2020c] M. Pletyukhov, D. M. Kennes, K. Piasotski, J. Klinovaja, D. Loss, and H. Schoeller, Rational boundary charge in one-dimensional systems with interaction and disorder, Phys. Rev. Research 2, 033345 (2020c).
  • Miles et al. [2021] S. Miles, D. M. Kennes, H. Schoeller, and M. Pletyukhov, Universal properties of boundary and interface charges in continuum models of one-dimensional insulators, Phys. Rev. B 104, 155409 (2021).
  • Müller et al. [2021] N. Müller, K. Piasotski, D. M. Kennes, H. Schoeller, and M. Pletyukhov, Universal properties of boundary and interface charges in multichannel one-dimensional models without symmetry constraints, Phys. Rev. B 104, 125447 (2021).
  • Laubscher et al. [2021] K. Laubscher, C. S. Weber, D. M. Kennes, M. Pletyukhov, H. Schoeller, D. Loss, and J. Klinovaja, Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems, Phys. Rev. B 104, 035432 (2021).
  • Weber et al. [2021] C. S. Weber, K. Piasotski, M. Pletyukhov, J. Klinovaja, D. Loss, H. Schoeller, and D. M. Kennes, Universality of boundary charge fluctuations, Phys. Rev. Lett. 126, 016803 (2021).
  • Piasotski et al. [2021] K. Piasotski, M. Pletyukhov, C. S. Weber, J. Klinovaja, D. M. Kennes, and H. Schoeller, Universality of abelian and non-abelian wannier functions in generalized one-dimensional aubry-andré-harper models, Phys. Rev. Research 3, 033167 (2021).
  • Hayward et al. [2021] A. L. C. Hayward, E. Bertok, U. Schneider, and F. Heidrich-Meisner, Effect of disorder on topological charge pumping in the rice-mele model, Phys. Rev. A 103, 043310 (2021).
  • [66]  In the Supplemental Material we discuss the dimensional reduction of the 3D model; check the agreement of the low-energy state values in the effective 2D model between the tb and the continuum model calculations; provide the low-energy description of the hinge states; numerically verify the absent contribution to the linear slope from the bands ελ1\varepsilon_{\lambda\leq-1}, and provide theoretical details of the numerical studies in 3D tb model in the presence of the disorder potential. We also investigate the role of the orbital BB-field effect and deformations of the torus surface, showing the robustness of the discussed 3D QHE.
  • Datta [1995] S. Datta, Electronic transport in mesoscopic systems (Cambridge university press, Cambridge, 1995) pp. 141–145.
  • Shen [2017] S.-Q. Shen, Topological insulators: Dirac equation in condensed matters, second edition (Springer Nature Singapore Pte Ltd, Singapore, 2017).
  • Hosur et al. [2011] P. Hosur, P. Ghaemi, R. S. Mong, and A. Vishwanath, Majorana modes at the ends of superconductor vortices in doped topological insulators, Phys. Rev. Lett. 107, 097001 (2011).
  • Do [2014] V.-N. Do, Non-equilibrium green function method: theory and application in simulation of nanometer electronic devices, Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 033001 (2014).