This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contribute equally to this workthanks: These authors contribute equally to this work

Realization of a crosstalk-avoided quantum network node
using dual-type qubits of the same ion species

L. Feng Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    Y.-Y. Huang Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    Y.-K. Wu Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China Hefei National Laboratory, Hefei 230088, PR China    W.-X. Guo Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China HYQ Co., Ltd., Beijing 100176, PR China    J.-Y. Ma Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China HYQ Co., Ltd., Beijing 100176, PR China    H.-X. Yang HYQ Co., Ltd., Beijing 100176, PR China    L. Zhang Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    Y. Wang Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    C.-X. Huang Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    C. Zhang Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    L. Yao HYQ Co., Ltd., Beijing 100176, PR China    B.-X. Qi Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China    Y.-F. Pu Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China Hefei National Laboratory, Hefei 230088, PR China    Z.-C. Zhou Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China Hefei National Laboratory, Hefei 230088, PR China    L.-M. Duan [email protected] Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China Hefei National Laboratory, Hefei 230088, PR China New Cornerstone Science Laboratory, Beijing 100084, PR China
Abstract

Generating ion-photon entanglement is a crucial step for scalable trapped-ion quantum networks. To avoid the crosstalk on memory qubits carrying quantum information, it is common to use a different ion species for ion-photon entanglement generation such that the scattered photons are far off-resonant for the memory qubits. However, such a dual-species scheme can be subject to inefficient sympathetic cooling due to the mass mismatch of the ions. Here we demonstrate a trapped-ion quantum network node in the dual-type qubit scheme where two types of qubits are encoded in the SS and FF hyperfine structure levels of Yb+171{}^{171}\mathrm{Yb}^{+} ions. We generate ion photon entanglement for the SS-qubit in a typical timescale of hundreds of milliseconds, and verify its small crosstalk on a nearby FF-qubit with coherence time above seconds. Our work demonstrates an enabling function of the dual-type qubit scheme for scalable quantum networks.

I Introduction

As one of the most promising physical systems for quantum computing, trapped ions have demonstrated high-fidelity elementary quantum operations for up to tens of qubits 1; 2; 3; 4. However, it is well-known that the commonly used one-dimensional structure of trapped ions will be restricted to about one hundred qubits in practice 5; 6; 7. To further scale up the qubit number while maintaining the high performance of individual qubits, it is desirable to have a modular design where small-scale quantum computers are assembled together with entanglement efficiently generated between these modules 5; 8; 9.

One plausible modular scheme for ion trap quantum computers is an ion-photon quantum network, in which distant qubits in individual ion traps are entangled together via photonic links 10; 9; 11. In this scheme, one will repetitively generate ion-photon entanglement on a fraction of ions (called “communication qubits”) in each trap. By entanglement swapping of photons from different traps, separated quantum computing modules can thus be connected. Incidentally, this ion-photon quantum network scheme is also compatible with the other schemes like quantum charge-coupled device (QCCD) for their further scaling 5; 8. For high-fidelity quantum computing, during the generation of ion-photon entanglement in one trap, it is necessary that the randomly scattered photons do not damage the quantum states of the other ions (called “memory qubits”) in the same trap. In previous experiments, it is thus common to use two different ion species for the two types of qubits 12; 13; 14, so that the transition frequency of the memory qubits is far off-resonant from that of the photons scattered from the communication qubits and hence the crosstalk error is suppressed.

Currently, such a quantum network is mainly limited by the low entanglement generation rate due to the inefficient collection and detection of the photons 3. Therefore, it is still desirable to increase the qubit number in individual traps as much as possible to minimize the required communication between different traps. However, as the ion number increases, the efficiency of sympathetic cooling will decrease due to the mass mismatch 15. To solve this problem, recently a dual-type qubit scheme was proposed and demonstrated for crosstalk-avoided sympathetic cooling and single-qubit operations using the same ion species 16. Such a scheme using a single ion species for various tasks has now been widely regarded as a promising way for scalable ion trap quantum computing 17. Despite this progress, to demonstrate the compatibility of the dual-type qubit scheme with the ion-photon quantum network is still experimentally challenging because a long storage time comparable to the entanglement generation timescale will be needed. Actually, even for the commonly used dual-species scheme, this goal was just achieved recently 13.

Refer to caption
Figure 1: Experimental scheme. a, Two Yb+171{}^{171}\mathrm{Yb}^{+} ions are separated by 12μ12\,\mum with dual-type qubit encoding. A communication qubit generates ion-photon entanglement in the form of an SS-qubit under focused 370370\,nm pulsed laser. A memory qubit stores quantum information in the form of an FF-qubit, and can be coherently converted to/from an SS-qubit via a focused 411411\,nm laser (and a global 34323432\,nm laser). Both focused laser beams have a beam waist radius of about 4μ4\,\mum. Other operations like state initialization and detection are achieved by global laser or microwave beams. b, Relevant energy levels and c, experimental sequence for the communication qubit. The dashed box indicates the state initialization and ion-photon entanglement generation cycle including Doppler cooling, optical pumping (P), a microwave π\pi pulse (MW1), an ultrafast 370370\,nm laser π\pi pulse and the photon detection by photomultiplier tubes (PMTs). A two-tone microwave (MW2) combines the Zeeman levels of the ion into the ||\downarrow\rangle state, and another microwave pulse (MW3) further rotates the qubit between ||\uparrow\rangle and ||\downarrow\rangle to measure in different basis. d, Radiation pattern for σ±\sigma^{\pm} and π\pi polarizations with respect to the quantization axis set by the static magnetic field 𝑩\bm{\vec{B}}. A 0.230.23-NA objective lens is used to couple the photon into a single-mode fiber, mapping the π\pi photon into vertical polarization |V|V\rangle and the σ±\sigma^{\pm} photon into horizonal polarization |H|H\rangle. A half-wave plate (HWP) and a quarter-wave plate (QWP) rotate the basis of the polarization qubit, which is then measured by a polarization beam splitter (PBS) and two PMTs. e, The memory qubit can be protected in the F7/22{}^{2}F_{7/2} levels as an FF-qubit (|0|0^{\prime}\rangle and |1|1^{\prime}\rangle), and can be coherently converted to/from an SS-qubit (|0|0\rangle and |1|1\rangle) via the intermediate D5/22{}^{2}D_{5/2} levels. Bichromatic 411411\,nm and 34323432\,nm laser are used to transfer the two qubit states simultaneously so that the qubit is not affected by the phase coherence of the laser.

Here, we generate ion-photon entanglement in a typical timescale of hundreds of milliseconds for the communication qubit, with the memory qubit being protected against the crosstalk error by converting to a different qubit type. We realize long-time storage of the memory qubit by combining spin echoes with the coherent conversion of qubit types, and we compare the storage fidelity with/without ion-photon entanglement generation to explicitly show the negligible crosstalk error. Our work shows the compatibility of dual-type qubit scheme with the ion-photon quantum network, thus makes an important step towards its applications in scalable quantum computing and networking.

II Results

II.1 Scheme

Our experimental setup is shown schematically in Fig. 1. Two Yb+171{}^{171}\mathrm{Yb}^{+} ions are trapped with a separation of 12μ12\,\mum and can be individually addressed by focused laser beams with a beam waist radius of about 4μ4\,\mum. The communication qubit is first pumped to |P1/22,F=0,mF=0|{}^{2}P_{1/2},F=0,m_{F}=0\rangle, and then decays to one of the S1/22,F=1{}^{2}S_{1/2},F=1 states through the spontaneous emission of a polarization-entangled photon:

|Ψ=13(|1,1|σ++|1,0|π+|1,1|σ)|\Psi\rangle=\frac{1}{\sqrt{3}}(|1,-1\rangle|\sigma^{+}\rangle+|1,0\rangle|\pi\rangle+|1,1\rangle|\sigma^{-}\rangle) (1)

where we denote the ionic state as |F,mF|F,m_{F}\rangle in the S1/22{}^{2}S_{1/2} levels for simplicity, and |σ±|\sigma^{\pm}\rangle and |π|\pi\rangle represent the polarization of the photon with respect to a magnetic field B5.6B\approx 5.6\,G which sets the quantization axis.

We collect the photon in a direction perpendicular to the magnetic field. From the radiation pattern of the dipole transition, we obtain photon states |πc|V|\pi\rangle\to c|V\rangle and |σ±c|H/2|\sigma^{\pm}\rangle\to c|H\rangle/\sqrt{2} where |H|H\rangle and |V|V\rangle represent horizontal and vertical polarizations, and cc is a small probability amplitude of detecting a photon. After applying a two-tone microwave pulse to turn (|1,1+|1,1)/2(|1,-1\rangle+|1,1\rangle)/\sqrt{2} into ||0,0|\downarrow\rangle\equiv|0,0\rangle, we end up with the desired ion-photon entangled state

|Φ=12(||H+||V)|\Phi\rangle=\frac{1}{\sqrt{2}}(|\downarrow\rangle|H\rangle+|\uparrow\rangle|V\rangle) (2)

where ||1,0|\uparrow\rangle\equiv|1,0\rangle.

The memory qubit can be encoded as an SS-qubit spanned by |0|0,0|0\rangle\equiv|0,0\rangle and |1|1,0|1\rangle\equiv|1,0\rangle. Here we use different notations for the same states to distinguish from those of the communication qubit. In the dual-type qubit scheme, we can also encode as an FF-qubit spanned by |0|F7/22,F=3,mF=0|0^{\prime}\rangle\equiv|{}^{2}F_{7/2},F=3,m_{F}=0\rangle and |1|F7/22,F=4,mF=0|1^{\prime}\rangle\equiv|{}^{2}F_{7/2},F=4,m_{F}=0\rangle. The two qubit types can be coherently converted into each other by focused 411411\,nm laser and global 34323432\,nm laser via the intermediate D5/2D_{5/2} levels 16 as shown in Fig. 1e. We use bichromatic laser to transfer both qubit levels simultaneously so that the qubit state is insensitive to the laser dephasing. Owing to the large frequency detuning, an FF-type memory qubit is well protected from the random scattering of 370370\,nm photons from the communication qubit.

II.2 Ion-photon entanglement

Refer to caption
Figure 2: Fidelity bound of ion-photon entanglement. a, Conditional probabilities P(S|Π)P(S|\Pi) in the diagonal basis with S=|,|S=|\uparrow\rangle,|\downarrow\rangle and Π=|H,|V\Pi=|H\rangle,|V\rangle. b, Conditional probabilities in the off-diagonal basis under optimal phase ϕ\phi. Combining the two basis, we bound the entanglement fidelity by F88.0%F\geq 88.0\%. c, We apply π/2\pi/2 pulses to both the ionic and the photonic qubits with their relative phase ϕ\phi controlled by that of MW3 in Fig. 1. We scan ϕ\phi to obtain the highest conditional probabilities P(~|V~)P(\tilde{\uparrow}|\tilde{V}) and P(~|H~)P(\tilde{\downarrow}|\tilde{H}) as shown in b. All error bars represent 1 s.d.

As shown in Fig. 1b and c, we initialize the communication qubit in ||\downarrow\rangle by 40μ40\,\mus Doppler cooling and 8μ8\,\mus optical pumping, and then convert it to ||\uparrow\rangle by a 12μ12\,\mus microwave π\pi pulse (MW1). Then we excite the ion to |P1/22,F=0,mF=0|{}^{2}P_{1/2},F=0,m_{F}=0\rangle by a focused π\pi-polarized 370370\,nm laser pulse in 22\,ps 18 (see Methods). The ion decays to the S1/22,F=1{}^{2}S_{1/2},F=1 levels in a typical timescale of 1/Γ81/{\mit\Gamma}\approx 8\,ns to produce the entangled state in Eq. (1). We repeat this ion-photon entanglement generation cycle (the dashed box in Fig. 1c) until a photon is detected in a time window of 6060\,ns (although it takes about 1μ1\,\mus to transfer the data).

Conditioned on the collection of the photon perpendicular to the quantization axis in Fig. 1d, we get an entangled state 12[12(|1,1+|1,1)|H+||V]\frac{1}{\sqrt{2}}[\frac{1}{\sqrt{2}}(|1,-1\rangle+|1,1\rangle)|H\rangle+|\uparrow\rangle|V\rangle]. However, note that the time when the spontaneous emission occurs is uncertain in the 6060\,ns time window, which means that the relative phases between these Zeeman levels cannot be determined in advance, and distribute in a range of ΔωZeemanΔT3\Delta\omega_{\mathrm{Zeeman}}\Delta T\approx 3. In the experimental sequence, we compensate this phase by feedforwarding the detection time of the photon into the phase of the two-tone microwave pulse (MW2 in Fig. 1c, 13μ13\,\mus) so that an entangled state in Eq. (2) is obtained independent of the time of the spontaneous emission.

We then bound the entanglement fidelity by rotating the spin and the photon in different bases 19 as shown in Fig. 2. In the diagonal basis, we measure the correlation between the spin and photon as P(|V)=0.964±0.007P(\uparrow|V)=0.964\pm 0.007, P(|V)=0.036±0.007P(\downarrow|V)=0.036\pm 0.007, P(|H)=0.077±0.010P(\uparrow|H)=0.077\pm 0.010 and P(|H)=0.923±0.010P(\downarrow|H)=0.923\pm 0.010 from about 1000 trials with the error bars computed from a binomial distribution. Then we consider the off-diagonal basis where the spin and the photon are both rotated by π/2\pi/2 pulses with a relative phase of ϕ\phi. For the spin, the rotation is achieved by the MW3 pulse in Fig. 1c, and for the photon we rotate the polarization direction by the half-wave plate in Fig. 1d. As shown in Fig. 2c, when we scan the phase of the MW3 pulse, we observe a sinusoidal oscillation in the conditional probabilities P(~|V~)P(\tilde{\uparrow}|\tilde{V}) and P(~|H~)P(\tilde{\uparrow}|\tilde{H}) (and thus P(~|V~)P(\tilde{\downarrow}|\tilde{V}) and P(~|H~)P(\tilde{\downarrow}|\tilde{H}) as well). At the optimal ϕ\phi which gives largest P(~|V~)P(~|H~)P(\tilde{\uparrow}|\tilde{V})-P(\tilde{\uparrow}|\tilde{H}), we obtain P(~|V~)=0.959±0.008P(\tilde{\uparrow}|\tilde{V})=0.959\pm 0.008, P(~|V~)=0.041±0.008P(\tilde{\downarrow}|\tilde{V})=0.041\pm 0.008, P(~|H~)=0.091±0.013P(\tilde{\uparrow}|\tilde{H})=0.091\pm 0.013, P(~|H~)=0.909±0.013P(\tilde{\downarrow}|\tilde{H})=0.909\pm 0.013, as shown in Fig. 2b. From these results, we bound the ion-photon entanglement fidelity 19 as F12[P(,V)+P(,H)2P(,V)P(,H)+P(~,V~)+P(~,H~)P(~,H~)P(~,V~)]=(88.0±1.0)%F\geq\frac{1}{2}[P(\uparrow,V)+P(\downarrow,H)-2\sqrt{P(\downarrow,V)P(\uparrow,H)}+P(\tilde{\uparrow},\tilde{V})+P(\tilde{\downarrow},\tilde{H})-P(\tilde{\uparrow},\tilde{H})-P(\tilde{\downarrow},\tilde{V})]=(88.0\pm 1.0)\%, which is far above the classical threshold of 0.5 and thus verifies the entanglement. We measure an entanglement generation rate r5s1r\approx 5\,\mathrm{s}^{-1}, which is consistent with our repetition rate of 1.6×104s11.6\times 10^{4}\,\mathrm{s}^{-1}, the solid angle ΔΩ/4π1.3%\Delta{\mit\Omega}/4\pi\approx 1.3\% of the 0.23-NA objective, the probability 2/32/3 to project to the maximally entangled state of Eq. (2), the 15%15\% fiber coupling efficiency, the 30%30\% detection efficiency of the photomultiplier tube (PMT) and the 85%85\% transmission efficiency for all the other optical elements.

As for the error budget, we estimate 2%2\% infidelity from optical pumping and state detection of the ion, 3%3\% from imperfect π\pi polarization of the 370370\,nm laser pulse which leads to excitation to |P1/22,F=1,mF=±1|{}^{2}P_{1/2},F=1,m_{F}=\pm 1\rangle states, 2%2\% from the misalignment of the objective to collect the photon, and 2%2\% from the dark count of the PMT. Another 6%6\% infidelity can come from the imperfect conversion from (|1,1+|1,1)/2(|1,-1\rangle+|1,1\rangle)/\sqrt{2} to |0,0|0,0\rangle, whose contributions include 4%4\% from the 22\,ns jitter time of the control system, as well as 2%2\% from the dephasing between the two Zeeman levels during the microwave pulse. More details about the ways we calibrate the experimental system and estimate the error can be found in Supplementary Note 1.

II.3 Long-time quantum memory of dual-type qubit

Refer to caption
Figure 3: Storage fidelity of memory qubit. a, Experimental sequence. The memory qubit is initialized in one of the mutually unbiased bases (MUB) as an SS-qubit by suitable microwave pulses (indicated by the dashed box). Then we convert it to FF-qubit by 411411\,nm (blue bars) and 34323432\,nm (red bars) laser. The total storage time T=4τT=4\tau is divided into three segments separated by two spin echoes. To keep the phase coherence with the initial π/2\pi/2 pulse and to cancel the small frequency mismatch between the bichromatic laser and the qubit, we always bring the qubit back to SS-levels for the spin echo, such that |0|0\rangle and |1|1\rangle accumulate equal phases during the storage. After a final microwave pulse, ideally the memory qubit should be in the bright state |1|1\rangle. b, Storage fidelity for an initial |+|+\rangle state versus storage time TT. The observed curve can be well fitted by a single-frequency noise at (57.3±0.1)(57.3\pm 0.1)\,Hz and a dephasing time T2=(2.8±0.7)T_{2}=(2.8\pm 0.7)\,s. c, We choose T=200T=200\,ms and measure the storage fidelity for the MUBs to obtain an average fidelity of (83.9±0.4)%(83.9\pm 0.4)\% for the total 90009000 trials. All error bars represent 1 s.d.

Given the above entanglement generation rate, we expect a typical timescale of hundreds of milliseconds to obtain an ion-photon entanglement. Therefore, we want to extend the storage lifetime of the dual-type qubit to a similar timescale to demonstrate its compatibility with the ion-photon quantum network. Since our dual-type qubit is encoded in the hyperfine clock states, it is largely insensitive to the fluctuation in the magnetic field or the AC Stark shift of the scattered laser beams. However, since finally we will bring the FF-qubit back to the SS-type for detection, even a small frequency mismatch in the bichromatic laser on Hertz-level from the qubit transition frequency can accumulate into considerable phase shift during the sub-second storage. Therefore, we apply spin echoes by converting the qubit to the SS-type, performing a microwave π\pi pulse, and then converting it to the FF-type again, as shown in the experimental sequence in Fig. 3a. In this way, the phase shift on the two qubit states cancel with each other. We further choose to use two spin echoes for a balance between the imperfect qubit-type conversion and the cancellation of the phase errors.

To benchmark the storage fidelity of the memory qubit, we initialize it as an SS-qubit in one of the six mutually unbiased bases (MUBs) 20 |0|0\rangle, |1|1\rangle, |+|+\rangle, ||-\rangle, |L|L\rangle, |R|R\rangle with equal probability, convert it to the FF-type, store for a total time T=4τT=4\tau separated by two spin echoes, and finally move it back to the SS-type to measure the storage fidelity. For a fair comparison with the later experiment, here we use an EMCCD to measure the memory qubit state instead of the PMT. As shown in Fig. 3b, the fidelity oscillates with the storage time, and can be well fitted by a single-frequency noise at around (57.3±0.1)(57.3\pm 0.1)\,Hz and a dephasing time T2=(2.8±0.7)T_{2}=(2.8\pm 0.7)\,s 21; 22 (see Methods). This frequency varies slightly when we repeat the experiment and its source is still under investigation. For a typical storage time T=200T=200\,ms, the storage fidelity for the 6 basis states are summarized in Fig. 3c, which gives an average fidelity of (83.9±0.4)%(83.9\pm 0.4)\% where the error bar represents one standard error for the average of the total 90009000 trials. The infidelity contains three round-trips of the qubit-type conversion with 3%3\% error each (see Methods), 2.5%2.5\% from state preparation and detection using an EMCCD, and (1eT/T2)/23%(1-e^{-T/T_{2}})/2\approx 3\% from the decoherence during long-time storage.

II.4 Crosstalk-avoided quantum network node

Refer to caption
Figure 4: Demonstration of a crosstalk-avoided quantum network node. a, We follow a similar experimental sequence as Fig. 3a with T=200T=200\,ms, but keep attempting to generate ion-photon entanglement in the middle 100100\,ms on the communication qubit. After the sequence, the states of the two ions are measured by an EMCCD camera. The conditional probabilities for ion-photon entanglement in the diagonal and off-diagonal bases are displayed in b and c, respectively, with an entanglement fidelity F84.8%F\geq 84.8\%, and we obtain an average storage fidelity of (83.6±0.8)%(83.6\pm 0.8)\% for the memory qubit from 1800 trials. All error bars represent 1 s.d.

With the ion-photon entanglement and the long-time storage of the dual-type qubit demonstrated separately, now we can combine them together to establish a crosstalk-avoided quantum network node. The experimental sequence is basically to insert the ion-photon entanglement generation on the communication qubit (Fig. 1c) into the storage time 4τ=2004\tau=200\,ms of the memory qubit (Fig. 3a), as shown in Fig. 4a. We repeat the entanglement generation attempts until a photon is collected or the storage time window is used up. For the simplicity of the control sequence, here we only attempt to generate entanglement in the middle 2τ=1002\tau=100\,ms, which corresponds to a success probability of about 40%40\% for each trial given the generation rate of 5s15\,\mathrm{s}^{-1}. Note that this nonunity success rate does not affect our estimation of the crosstalk error, which is proportional to the number of generated photons, not that of the collected ones.

At the end of the experimental sequence, we use an EMCCD to measure the states of the two qubits simultaneously. Again, we prepare the memory qubit in one of the six MUBs randomly. For 1800 successful trials when the communication qubit and the photon are measured in the diagonal basis (with the conditional probability shown in Fig. 4b), we get about 300 trials for each MUB and an average storage fidelity of (83.6±0.8)%(83.6\pm 0.8)\%. This is consistent with the storage fidelity (83.9±0.4)%(83.9\pm 0.4)\% without ion-photon entanglement generation within the error bars, thus proves a negligible crosstalk error. In comparison, without the dual-type qubit encoding, the memory qubit would have experienced much larger crosstalk error which would have been detected under our experimental precision, and would have even exceeded our overall measured storage infidelity of 16%16\% with the technical errors included (see Supplementary Note 2 for details). We also repeat the measurement for the communication qubit and the photon in the off-diagonal basis in Fig. 4c. This gives us a bound for entanglement fidelity F(84.8±0.9)%F\geq(84.8\pm 0.9)\%. The additional 3.2%3.2\% infidelity compared with the entanglement fidelity in Fig. 2 mainly comes from the state detection error when switching from the PMT to the EMCCD (see Supplementary Note 1 for details).

III Discussion

To sum up, we have demonstrated the long storage lifetime of the dual-type qubit scheme and further show its compatibility with an ion-photon quantum network with negligible crosstalk error, which is an enabling function of the dual-type qubit scheme in large-scale quantum computing. In previous experiments, if the same ion species is used for the communication and the memory qubits (e.g. Ref. 23), one has to first generate ion-photon entanglement and then reset the memory qubit for the following quantum operations, so as to circumvent the problems of storage lifetime and crosstalk error. Here with the dual-type qubit scheme, we are able to protect the stored quantum information while generating ion-photon entanglement, which makes a crucial step toward the future modular quantum computers and networks. On the other hand, compared with the recent demonstration using the dual-species scheme 13, our scheme requires only a single ion species with simpler control techniques, thus can be advantageous when scaling up to larger qubit numbers. Admittedly, this simplification in hardware is achieved at the cost of more complicated software to convert the qubit type back and forth for the storage and readout, whose fidelity still needs to be improved. Also, our scheme needs individual addressing with focused laser beams to convert the desired qubits selectively. This is already available in many current multi-ion quantum computers for individually addressed quantum gates 24; 25; 26.

The current storage infidelity of the memory qubit is about 16% over the 200200\,ms storage time, which must be significantly improved for the future fault-tolerant quantum computing. As mentioned above, among the 16% infidelity, only about 3% comes from the measured coherence time, while the dominant sources are the conversion infidelity between the SS-qubit and the FF-qubit, and the SPAM error using EMCCD. Compared with our previous work, here our round-trip qubit-type conversion fidelity is lowered by about 2%2\% 16. This is because we only perform sympathetic Doppler cooling during the long time storage while in Ref. 16 we further perform sideband cooling. An analysis about the effect of the thermal phonon number on the conversion fidelity can be found in Supplementary Note 3. This can be improved in the future by pausing the entanglement generation sequence once every tens of attempts to provide sideband cooling, or we may add more ions into the system to provide sympathetic sideband cooling continuously. As for the SPAM error from the EMCCD detection, it can be improved by electron shelving 28; 29; 30; 31; 16. To incorporate electron shelving into the dual-type qubit scheme, we may choose to shelve to other Zeeman levels of F7/2F_{7/2} not used for encoding qubits, or we may use the sequence of “global 34323432\,nm π\pi pulse”-“individual 411411\,nm π\pi pulse”-“global 34323432\,nm π\pi pulse” to selectively convert qubit types for the desired ions, given that the conversion fidelity can be improved as mentioned above.

Note that in this work we only verify a vanishing crosstalk error at the precision of about 1%1\% by computing the change in the storage fidelity with/without ion-photon entanglement generation, although theoretically the crosstalk is far below the fault-tolerant threshold (see Supplementary Note 2). To actually confirm a crosstalk below the threshold of, say, 10410^{-4}, a much higher measurement precision of the storage fidelity would be needed. From a scaling of 1/M1/\sqrt{M} for the statistical fluctuation, we estimate a total trial number of M=108M=10^{8} or a total experimental time on the year level, which will be highly demanding for the stability of the system. A more practical scheme would be to have a large ion crystal with smaller ion distances to generate ion-photon entanglement simultaneously, and to measure the total crosstalk error on a memory qubit at the center of the crystal. Also note that this crosstalk error is more like a memory error rather than the gate error or the measurement error in quantum error correction, and is thus less severe for fault-tolerance 27. Nevertheless, it is always desirable to achieve and to verify lower crosstalk errors to save the overhead for large-scale quantum error correction.

As for the entanglement fidelity of the communication qubit, our current scheme to generate entanglement is based on our laser and magnetic field orientations. In the future we may upgrade the laser configuration to allow simpler entanglement generation scheme without the need to combine the amplitude on two Zeeman levels coherently 23, then the jitter time of the control system and the dephasing of the Zeeman levels will have weaker effect (at least in the diagonal basis). Using electron shelving can also help to reduce the state detection error as stated above. To further enhance the entanglement generation rate, we can use a higher NA objective, increase the fiber coupling rate, and use high-efficiency detectors. There is also room to shorten the sequence length for each entanglement generation attempt with careful design.

IV Methods

IV.1 Ultrafast 370370\,nm π\pi pulse

We use a 22\,ps ultrafast 370370\,nm laser pulse to pump the communication qubit from |S1/22,F=1,mF=0|{}^{2}S_{1/2},F=1,m_{F}=0\rangle to |P1/22,F=0,mF=0|{}^{2}P_{1/2},F=0,m_{F}=0\rangle. The pulsed laser comes from a mode-locked Ti:sapphire laser with 739739\,nm central wavelength, and is frequency-doubled to 369.5369.5\,nm by a second harmonic generator system (SHGS). Before the SHGS, an electro-optic modulator is used to pick a single pulse from the 7676\,MHz pulse train, giving an extinction ratio of about 105:110^{5}:1. More details can be found in our previous work 18.

To calibrate the pulse area, we apply a microwave π\pi pulse to the state after spontaneous emission, so as to convert the population from |S1/22,F=1,mF=0|{}^{2}S_{1/2},F=1,m_{F}=0\rangle to |S1/22,F=0,mF=0|{}^{2}S_{1/2},F=0,m_{F}=0\rangle, which appears dark whereas the other states in the S1/22,F=1{}^{2}S_{1/2},F=1 manifold appear bright in our detection scheme. Ideally, if the laser has a pulse area of π\pi, the probability of getting a bright state in the end will be 2/32/3. Otherwise, we expect a bright state probability (2/3)sin2(θ/2)(2/3)\sin^{2}(\theta/2) where θ\theta is the pulse area. As shown in Supplementary Figure 1 in Supplementary Note 4, we fit this curve and obtain a laser π\pi pulse with the excitation probability to the |P1/22,F=0,mF=0|{}^{2}P_{1/2},F=0,m_{F}=0\rangle state reaching Pe99%P_{e}\approx 99\%.

IV.2 Fitting single-frequency noise on memory qubit

Consider a single-frequency noise with amplitude AA, frequency ω\omega and a random phase φ\varphi on the qubit frequency 21; 22, the Hamiltonian can be written as: H=Acos(ωt+φ)σz/2H=A\cos(\omega t+\varphi)\sigma_{z}/2. We start from the superposition state (|0+|1)/2(|0\rangle+|1\rangle)/\sqrt{2}. After the storage time of T=4τT=4\tau separated by two π\pi pulses, we obtain a phase shift between |0|0\rangle and |1|1\rangle as

Δϕ(φ)=\displaystyle\Delta\phi(\varphi)= Aω[sinφ+2sin(ωτ+φ)\displaystyle\frac{A}{\omega}\big{[}-\sin\varphi+2\sin(\omega\tau+\varphi)
2sin(3ωτ+φ)+sin(4ωτ+φ)].\displaystyle\qquad-2\sin(3\omega\tau+\varphi)+\sin(4\omega\tau+\varphi)\big{]}. (3)

Thus the dephasing of the off-diagonal terms of the density matrix is given by

eiΔϕ12π02π𝑑φeiΔϕ(φ)=J0(8Aωsin2ωτ2sinωτ),\left\langle e^{i\Delta\phi}\right\rangle\equiv\frac{1}{2\pi}\int_{0}^{2\pi}d\varphi e^{i\Delta\phi(\varphi)}=J_{0}\left(\frac{8A}{\omega}\sin^{2}\frac{\omega\tau}{2}\sin\omega\tau\right), (4)

and we obtain a fidelity for the stored |+|+\rangle state as (1+eiΔϕ)/2(1+\langle e^{i\Delta\phi}\rangle)/2.

In the experiment, we fit the measured fidelity in Fig. 3b vs. the total storage time T=4τT=4\tau by F(T)={1+J0[(8A/ω)sin2(ωT/8)sin(ωT/4)]eT/T2}/2cF(T)=\{1+J_{0}[(8A/\omega)\sin^{2}(\omega T/8)\sin(\omega T/4)]e^{-T/T_{2}}\}/2-c where an exponential decay term is used to represent the pure dephasing time T2T_{2} and a constant cc is subtracted to account for the state preparation and measurement (SPAM) error.

IV.3 Coherent qubit type conversion

We calibrate the coherent conversion fidelity of the dual-type qubit by repeating the SS-FF-SS round-trip cycles for NN times, and fit the decay of the average state fidelity over an MUBs by F=F0(1ϵ)NF=F_{0}(1-\epsilon)^{N}. As shown in Supplementary Figure 2 in Supplementary Note 5, we extract a SPAM fidelity of F0=97.0%F_{0}=97.0\% and the round-trip conversion error of ϵ=3.1%\epsilon=3.1\%.

Data Availability: The data that support the findings of this study are available from the authors upon request. Source data are provided with this paper.

References

  • (1) Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
  • (2) Knight, P. L. et al. Quantum information processing with trapped ions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, 1349–1361 (2003).
  • (3) Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews 6, 021314 (2019).
  • (4) Moses, S. A. et al. A race track trapped-ion quantum processor. arXiv:2305.03828 (2023).
  • (5) Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. Journal of Research of the National Institute of Standards and Technology 103, 259 (1998).
  • (6) Hughes, R. J., James, D. F. V., Knill, E. H., Laflamme, R. & Petschek, A. G. Decoherence bounds on quantum computation with trapped ions. Phys. Rev. Lett. 77, 3240–3243 (1996).
  • (7) Clark, R. Proceedings of the 1st International Conference on Experimental Implementation of Quantum Computation: Sydney, Australia, 16-19 January 2001 (Rinton Press, 2001).
  • (8) Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
  • (9) Duan, L.-M. & Monroe, C. Colloquium: Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).
  • (10) Duan, L.-M., Blinov, B. B., Moehring, D. L. & Monroe, C. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quantum Info. Comput. 4, 165–173 (2004).
  • (11) Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
  • (12) Inlek, I. V., Crocker, C., Lichtman, M., Sosnova, K. & Monroe, C. Multispecies trapped-ion node for quantum networking. Phys. Rev. Lett. 118, 250502 (2017).
  • (13) Drmota, P. et al. Robust quantum memory in a trapped-ion quantum network node. Phys. Rev. Lett. 130, 090803 (2023).
  • (14) Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).
  • (15) Sosnova, K., Carter, A. & Monroe, C. Character of motional modes for entanglement and sympathetic cooling of mixed-species trapped-ion chains. Phys. Rev. A 103, 012610 (2021).
  • (16) Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. Nature Physics 18, 1058–1061 (2022).
  • (17) Allcock, D. T. C. et al. omg blueprint for trapped ion quantum computing with metastable states. Applied Physics Letters 119, 214002 (2021).
  • (18) Guo, W.-X. et al. Picosecond ion-qubit manipulation and spin-phonon entanglement with resonant laser pulses. Phys. Rev. A 106, 022608 (2022).
  • (19) Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).
  • (20) Wootters, W. K. & Fields, B. D. Optimal state-determination by mutually unbiased measurements. Annals of Physics 191, 363–381 (1989).
  • (21) Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photonics 11, 646–650 (2017).
  • (22) Kotler, S., Akerman, N., Glickman, Y. & Ozeri, R. Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013).
  • (23) Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nature Physics 11, 37–42 (2015).
  • (24) Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020).
  • (25) Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).
  • (26) Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).
  • (27) Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. Journal of Mathematical Physics 43, 4452–4505 (2002).
  • (28) Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
  • (29) Roman, C., Ransford, A., Ip, M. & Campbell, W. C. Coherent control for qubit state readout. New Journal of Physics 22, 073038 (2020).
  • (30) Edmunds, C. L. et al. Scalable hyperfine qubit state detection via electron shelving in the D5/22{}^{2}{D}_{5/2} and F7/22{}^{2}{F}_{7/2} manifolds in Yb+171{}^{171}{\mathrm{Yb}}^{+}. Phys. Rev. A 104, 012606 (2021).
  • (31) Christensen, J. E., Hucul, D., Campbell, W. C. & Hudson, E. R. High-fidelity manipulation of a qubit enabled by a manufactured nucleus. npj Quantum Information 6, 35 (2020).

Acknowledgements: This work was supported by Innovation Program for Quantum Science and Technology (2021ZD0301601), Tsinghua University Initiative Scientific Research Program, and the Ministry of Education of China. L.M.D. acknowledges in addition support from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program. Y.K.W. acknowledges in addition support from Tsinghua University Dushi program and the start-up fund.

Competing interests: W.X.G., J.Y.M., H.X.Y and L.Y. are affiliated with HYQ Co. L.F., Y.Y.H., Y.K.W., Y.W., B.X.Q., Y.F.P., Z.C.Z. and L.M.D. hold shares of HYQ Co. The other authors declare no competing interests.

Author Information: Correspondence and requests for materials should be addressed to L.M.D. ([email protected]).

Author Contributions: L.F., Y.Y.H., Y.K.W., W.X.G., J.Y.M., H.X.Y., L.Z., Y. W., C.X.H., C.Z., L.Y., B.X.Q., Y.F.P, and Z.C.Z. carried out the experiment and analyzed the data. L.M.D. proposed the experiment and supervised the project. Y.K.W., L.F, Y.Y.H., and L.M.D. wrote the manuscript.