This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ratios conjecture for primitive quadratic Hecke LL-functions

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, China [email protected]  and  Liangyi Zhao School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia [email protected]
Abstract.

We develop the ratios conjecture with one shift in the numerator and denominator in certain ranges for families of primitive quadratic Hecke LL-functions of imaginary quadratic number fields with class number one using multiple Dirichlet series under the generalized Riemann hypothesis. We also obtain unconditional asymptotic formulas for the first moments of central values of these families of LL-functions with error terms of size that is the square root of that of the primary main terms.

Mathematics Subject Classification (2010): 11M06, 11M41

Keywords: ratios conjecture, mean values, primitive quadratic Hecke LL-functions

1. Introduction

The LL-functions ratios conjecture is important in number theory, having many important applications. These include it use in developing the density conjecture of N. Katz and P. Sarnak [KS1, K&S] on the distribution of zeros near the central point of a family of LL-functions, the mollified moments of LL-functions, etc. This conjecture makes predictions on the asymptotic behaviors of the sum of ratios of products of shifted LL-functions and has its origin in the work of D. W. Farmer [Farmer93] on the shifted moments of the Riemann zeta function. For general LL-functions, the conjecture is formulated by J. B. Conrey, D. W. Farmer and M. R. Zirnbauer [CFZ, Section 5].

Since the work of H. M. Bui, A. Florea and J. P. Keating [BFK21] on quadratic LL-functions over function fields, there are now several results available in the literature concerning the ratios conjecture, all valid for certain ranges of the relevant parameters. The first such result over number fields was given by M. Čech [Cech1] on families of both general and primitive quadratic Dirichlet LL-functions under the assumption of the generalized Riemann hypothesis (GRH).

The work of Čech makes uses of the powerful tool of multiple Dirichlet series. Due to an extra functional equation for the underlying multiple Dirichlet series, the result for the family of general quadratic Dirichlet LL-functions has a better range of the parameters involved. Following this approach, the authors studied the ratios conjecture for general quadratic Hecke LL-functions over the Gaussian field (i)\mathbb{Q}(i) in [G&Zhao14] as well as for quadratic twists of modular LL-functions in [G&Zhao15].

It is noted in [G&Zhao14] that investigations on ratios conjecture naturally lead to results concerning the first moment of central values of the corresponding family of LL-functions, another important subject in number theory. Among the many families of LL-functions, the primitive ones received much attention. For families of primitive Dirichlet LL-functions, M. Jutila evaluated asymptotically the first moment in [Jutila]. In [DoHo], D. Goldfeld and J. Hoffstein initiated the study on the first moment of the same family using method of double Dirichlet series. It is implicit in their work that an asymptotic formula with an error term of size of the square root of the main term holds for the smoothed first moment and this was later established by M. P. Young [Young1] using a recursive argument. In [Gao20], the first-named author obtained a similar result for the first moment of the family of primitive quadratic Hecke LL-functions over the Gaussian field using Young’s recursive method.

Motivated by studies of the first moment of families of primitive LL-functions, we are interested in this paper to develop the ratios conjecture for primitive quadratic Hecke LL-functions over imaginary quadratic number fields with class number one. We shall show that, as a consequence of the ratios conjecture, asymptotic formulas hold for the first moments of central values of the corresponding families of LL-functions with error terms of size of the square root of that of the main terms.

To state our result, let KK be an imaginary quadratic number field of class number one. We shall assume throughout the paper that K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S}, where

𝒮={1,2,3,7,11,19,43,67,163}.\displaystyle\mathcal{S}=\{-1,-2,-3,-7,-11,-19,-43,-67,-163\}.

In fact, it is well-known (see [iwakow, (22.77)]) that we obtain all imaginary quadratic number fields with class number one in the above way.

We write χ(m)=(m)\chi^{(m)}=\left(\frac{m}{\cdot}\right) and χm=(m)\chi_{m}=\left(\frac{\cdot}{m}\right) for the quadratic residue symbols to be defined Section 2.3. We define cK=(1+i)5c_{K}=(1+i)^{5} when d=1d=-1, cK=42c_{K}=4\sqrt{-2} when d=2d=-2 and cK=8c_{K}=8 for the other dd’s in 𝒮\mathcal{S}. Let 𝒪K,UK\mathcal{O}_{K},U_{K} and DKD_{K} denote the ring of integers, the group of units and the discriminant of KK, respectively. We also write |UK||U_{K}| for the cardinality of UKU_{K}. An element c𝒪Kc\in\mathcal{O}_{K} is said to be square-free if the ideal (c)(c) is not divisible by the square of any prime ideal. It is shown in [G&Zhao4, Section 2.1] and [G&Zhao2022-4, Section 2.2] that χ(cKc)\chi^{(c_{K}c)} is a primitive quadratic character of trivial infinite type for any square-free cc.

Let L(s,χ)L(s,\chi) stand for the LL-function attached to any Hecke character χ\chi and ζK(s)\zeta_{K}(s) for the Dedekind zeta function of KK. We also use the notation L(c)(s,χm)L^{(c)}(s,\chi_{m}) for the Euler product defining L(s,χm)L(s,\chi_{m}) but omitting those primes dividing cc. Moreover, let rKr_{K} denote the residue of ζK(s)\zeta_{K}(s) at s=1s=1. We reserve the letter ϖ\varpi for a prime element in 𝒪K\mathcal{O}_{K}, by which we mean that the ideal (ϖ)(\varpi) generated by ϖ\varpi is a prime ideal. Let also N(n)N(n) stand for the norm of any n𝒪Kn\in\mathcal{O}_{K}. In the sequel, ε\varepsilon always, as is standard, denotes a small positive real number which may not be the same at each occurrence.

Our main result in this paper investigates the ratios conjecture with one shift in the numerator and denominator for the family of primitive quadratic Hecke LL-functions of KK.

Theorem 1.1.

With the notation as above and assuming the truth of GRH, let K=(d)K=\mathbb{Q}(\sqrt{-d}) with d𝒮d\in\mathcal{S}. Suppose that w(t)w(t) is a non-negative Schwartz function and w^(s)\widehat{w}(s) its Mellin transform. We set

(1.1) E(α,β)=max{12,1(α)(β),1(α)2(β)2,12(α)2,12(α)}.E(\alpha,\beta)=\max\left\{\frac{1}{2},1-\Re(\alpha)-\Re(\beta),1-\frac{\Re(\alpha)}{2}-\frac{\Re(\beta)}{2},\frac{1}{2}-\frac{\Re(\alpha)}{2},\frac{1}{2}-\Re(\alpha)\right\}.

and, for any n𝒪Kn\in\mathcal{O}_{K},

(1.2) a(n)=ϖ|n(1+1N(ϖ))1.\displaystyle a(n)=\prod_{\varpi|n}\Big{(}1+\frac{1}{N(\varpi)}\Big{)}^{-1}.

Then we have for 0<|(α)|<1/20<|\Re(\alpha)|<1/2 and (β)>0\Re(\beta)>0,

(1.3) (c,2)=1L(12+α,χ(cKc))L(12+β,χ(cKc))w(N(c)X)=Xw^(1)rK|UK|2a(2)ζK(2)ζK(2)(1+2α)ζK(2)(1+α+β)P(12+α,12+β)+X1αw^(1α)(2π)2α(|DK|N(cK))αΓ(12α)Γ(12+α)rK|UK|2a(2)ζK(2)ζK(2)(12α)ζK(2)(1α+β)P(12α,12+β)+O((1+|α|)5/2+ε(1+|β|)εXE(α,β)+ε),\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{(c,2)=1}&\frac{L(\frac{1}{2}+\alpha,\chi^{(c_{K}c)})}{L(\frac{1}{2}+\beta,\chi^{(c_{K}c)})}w\left(\frac{N(c)}{X}\right)\\ &=X\widehat{w}(1)\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(1+2\alpha)}{\zeta_{K}^{(2)}(1+\alpha+\beta)}P(\tfrac{1}{2}+\alpha,\tfrac{1}{2}+\beta)\\ &\hskip 28.45274pt+X^{1-\alpha}\widehat{w}(1-\alpha)\frac{(2\pi)^{2\alpha}}{(|D_{K}|N(c_{K}))^{\alpha}}\frac{\Gamma(\tfrac{1}{2}-\alpha)}{\Gamma(\tfrac{1}{2}+\alpha)}\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(1-2\alpha)}{\zeta_{K}^{(2)}(1-\alpha+\beta)}P(\tfrac{1}{2}-\alpha,\tfrac{1}{2}+\beta)\\ &\hskip 28.45274pt+O\left((1+|\alpha|)^{5/2+\varepsilon}(1+|\beta|)^{\varepsilon}X^{E(\alpha,\beta)+\varepsilon}\right),\end{split}

where \sum^{*} means that the sum is restricted to square-free elements cc of 𝒪K\mathcal{O}_{K} and

(1.4) P(w,z)=(ϖ,2)=1(1+1N(ϖ)zw(N(ϖ)+1)(N(ϖ)z+w1)).P(w,z)=\prod_{(\varpi,2)=1}\left(1+\frac{1-N(\varpi)^{z-w}}{(N(\varpi)+1)(N(\varpi)^{z+w}-1)}\right).

An evaluation from the ratios conjecture on the left-hand side of (1.3) can be derived following the treatments given in [G&Zhao2022-2, Section 5]. One sees that our result above is consistent with the result therefrom, except that this approach predicts that (1.3) holds uniformly for |(α)|<1/4|\Re(\alpha)|<1/4, (logX)1(β)<1/4(\log X)^{-1}\ll\Re(\beta)<1/4 and (α)\Im(\alpha), (β)X1ε\Im(\beta)\ll X^{1-\varepsilon} with an error term O(X1/2+ε)O(X^{1/2+\varepsilon}). The advantage of (1.3) here chiefly lies in the absence of any constraint on imaginary parts of α\alpha and β\beta. Moreover, we do obtain an error term of size O(X1/2+ε)O(X^{1/2+\varepsilon}) unconditionally when β\beta is large enough. In fact, one checks by going through our proof of Theorem 1.1 in Section 3 that the only place we need to assume GRH is (3.10), to estimate the size of 1/L(z,χ(cKc))1/L(z,\chi^{(c_{K}c)}). However, when (z)\Re(z) is larger than one, then 1/L(z,χ(cKc))1/L(z,\chi^{(c_{K}c)}) is O(1)O(1) unconditionally. Replacing this estimation everywhere in the rest of the proof of Theorem 1.1, and then consider the case β\beta\rightarrow\infty, we immediately deduce from (1.3) the following unconditional result on the smoothed first moment of values of quadratic Hecke LL-functions.

Theorem 1.2.

Using the notation as above and assuming the truth of GRH, let K=(d)K=\mathbb{Q}(\sqrt{-d}) with d𝒮d\in\mathcal{S}. We have for 0<|(α)|<1/20<|\Re(\alpha)|<1/2,

(1.5) (c,2)=1L(12+α,χ(cKc))w(N(c)X)=Xw^(1)rK|UK|2a(2)ζK(2)ζK(2)(1+2α)P(12+α)+X1αw^(1α)(|DK|N(cK))α(2π)2αΓ(12α)Γ(12+α)rK|UK|2a(2)ζK(2)ζK(2)(12α)P(12α)+O((1+|α|)5/2+εXE(α)+ε),\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{(c,2)=1}&L(\tfrac{1}{2}+\alpha,\chi^{(c_{K}c)})w\left(\frac{N(c)}{X}\right)\\ =&X\widehat{w}(1)\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\zeta_{K}^{(2)}(1+2\alpha)P(\tfrac{1}{2}+\alpha)\\ &\hskip 28.45274pt+X^{1-\alpha}\widehat{w}(1-\alpha)(|D_{K}|N(c_{K}))^{-\alpha}(2\pi)^{2\alpha}\frac{\Gamma(\tfrac{1}{2}-\alpha)}{\Gamma(\tfrac{1}{2}+\alpha)}\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\zeta_{K}^{(2)}(1-2\alpha)P(\tfrac{1}{2}-\alpha)\\ &\hskip 28.45274pt+O\left((1+|\alpha|)^{5/2+\varepsilon}X^{E(\alpha)+\varepsilon}\right),\end{split}

where

E(α)=limβE(α,β)=max{12,12(α)2,12(α)},P(w)=limzP(w,z)=(ϖ,2)=1(11(N(ϖ)+1)N(ϖ)2w).\displaystyle E(\alpha)=\lim_{\beta\rightarrow\infty}E(\alpha,\beta)=\max\left\{\frac{1}{2},\frac{1}{2}-\frac{\Re(\alpha)}{2},\frac{1}{2}-\Re(\alpha)\right\},\;P(w)=\lim_{z\rightarrow\infty}P(w,z)=\prod_{(\varpi,2)=1}\left(1-\frac{1}{(N(\varpi)+1)N(\varpi)^{2w}}\right).

Note that the OO-term in (1.5) is uniform in α\alpha, we can further take the limit α0+\alpha\rightarrow 0^{+} and deduce the following asymptotic formula for the smoothed first moment of central values of quadratic Hecke LL-functions.

Corollary 1.3.

With the notation as above, let K=(d)K=\mathbb{Q}(\sqrt{-d}) for d𝒮d\in\mathcal{S}. We have,

(c,2)=1L(12+α,χ(cKc))w(N(c)X)=XQK(logX)+O(X1/2+ε).\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{(c,2)=1}L(\tfrac{1}{2}+\alpha,\chi^{(c_{K}c)})w\left(\frac{N(c)}{X}\right)=XQ_{K}(\log X)+O\left(X^{1/2+\varepsilon}\right).\end{split}

where QKQ_{K} is a linear polynomial whose coefficients depend only KK, w^(1)\widehat{w}(1) and w^(1)\widehat{w}^{\prime}(1).

As another application of Theorem 1.1, we differentiate with respect to α\alpha in (1.3) and then set α=β=r\alpha=\beta=r to obtain an asymptotic formula concerning the smoothed first moment of L(12+r,χ(cKc))/L(12+r,χ(cKc))L^{\prime}(\frac{1}{2}+r,\chi^{(c_{K}c)})/L(\frac{1}{2}+r,\chi^{(c_{K}c)}) averaged over odd, square-free cc.

Theorem 1.4.

With the notation as above and assuming the truth of GRH. Let K=(d)K=\mathbb{Q}(\sqrt{-d}) with d𝒮d\in\mathcal{S}. We have for 0<ε<(r)<1/20<\varepsilon<\Re(r)<1/2,

(1.6) (c,2)=1L(12+r,χ(cKc))L(12+r,χ(cKc))w(N(c)X)=Xw^(1)rK|UK|2a(2)ζK(2)((ζK(2)(1+2r))ζK(2)(1+2r)+(ϖ,2)=1logN(ϖ)N(ϖ)(N(ϖ)1+2r1))X1rw^(1r)(|DK|N(cK))r(2π)2rΓ(1/2r)Γ(1/2+r)|UK|2a(2)ζK(2)(22r)+O((1+|r|)5/2+εX12r+ε).\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{(c,2)=1}&\frac{L^{\prime}(\frac{1}{2}+r,\chi^{(c_{K}c)})}{L(\frac{1}{2}+r,\chi^{(c_{K}c)})}w\left(\frac{N(c)}{X}\right)\\ &=X\widehat{w}(1)\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\left(\frac{(\zeta^{(2)}_{K}(1+2r))^{\prime}}{\zeta^{(2)}_{K}(1+2r)}+\sum_{(\varpi,2)=1}\frac{\log N(\varpi)}{N(\varpi)(N(\varpi)^{1+2r}-1)}\right)\\ &\hskip 28.45274pt-X^{1-r}\widehat{w}(1-r)(|D_{K}|N(c_{K}))^{-r}(2\pi)^{2r}\frac{\Gamma(1/2-r)}{\Gamma(1/2+r)}\frac{|U_{K}|^{2}a(2)}{\zeta^{(2)}_{K}(2-2r)}+O((1+|r|)^{5/2+\varepsilon}X^{1-2r+\varepsilon}).\end{split}

Theorem 1.1 will be established using the approach in the proof of [Cech1, Theorem 1.1] with a refinement on the arguments there. More precisely, we note that the reciprocal of ζK(2s)\zeta_{K}(2s) appears in the expression for AK(s,w,z)A_{K}(s,w,z) in (3.5). A similar expression involving (ζ(2s))1(\zeta(2s))^{-1} also emerges in the proof of [Cech1, Theorem 1.1], where ζ(s)\zeta(s) is the Riemann zeta function. In the proof of [Cech1, Theorem 1.1], the factor (ζ(2s))1(\zeta(2s))^{-1} is treated directly so that one needs to restrict ss to the region (s)>1/2\Re(s)>1/2. Our idea here is to estimate the product of ζK(2s)\zeta_{K}(2s) and AK(s,w,z)A_{K}(s,w,z) instead (see (3.6) below), this allows us to obtain the analytic property of AK(s,w,z)A_{K}(s,w,z) in a larger region of ss, which leads to improvements on the error term in (1.3) over [Cech1, Theorem 1.1].

We may also apply Theorem 1.4 to compute the one-level density of low-lying zeros of the corresponding families of quadratic Hecke LL-functions, as in [Cech1, Corollary 1.5] for the family of quadratic Dirichlet LL-functions using [Cech1, Theorem 1.4]. However, one checks that in this case we may only do so for test functions whose Fourier transform being supported in (1,1)(-1,1), which is inferior to what may be obtained using other methods. Thus we shall not go in this direction here.

2. Preliminaries

2.1. Imaginary quadratic number fields

Recall that for an arbitrary number field KK, 𝒪K,UK\mathcal{O}_{K},U_{K} and DKD_{K} stand for the ring of integers, the group of units and the discriminant of KK, respectively. We say an element c𝒪Kc\in\mathcal{O}_{K} is odd if (c,2)=1(c,2)=1.

In the rest of this section, let KK be an imaginary quadratic number field. The following facts concerning an imaginary quadratic number field KK can be found in [iwakow, Section 3.8].

The ring of integers 𝒪K\mathcal{O}_{K} is a free \mathbb{Z} module (see [iwakow, Section 3.8]) such that 𝒪K=+ωK\mathcal{O}_{K}=\mathbb{Z}+\omega_{K}\mathbb{Z}, where

ωK\displaystyle\omega_{K} ={1+d2d1(mod4),dd2,3(mod4).\displaystyle=\begin{cases}\displaystyle\frac{1+\sqrt{d}}{2}\qquad&d\equiv 1\pmod{4},\\ \\ \sqrt{d}\qquad&d\equiv 2,3\pmod{4}.\end{cases}

Note that when K=(3)K=\mathbb{Q}(\sqrt{-3}), we also have 𝒪K=+ωK2\mathcal{O}_{K}=\mathbb{Z}+\omega^{2}_{K}\mathbb{Z}. The group of units are given by

(2.1) UK\displaystyle U_{K} ={{±1,±i}d=1,{±1,±ωK,±ωK2}d=3,{±1}other d.\displaystyle=\begin{cases}\{\pm 1,\pm i\}\qquad&d=-1,\\ \{\pm 1,\pm\omega_{K},\pm\omega_{K}^{2}\}\qquad&d=-3,\\ \{\pm 1\}\qquad&\text{other $d$}.\end{cases}

Moreover, the discriminants are given by

DK\displaystyle D_{K} ={dif d1(mod4),4dif d2,3(mod4).\displaystyle=\begin{cases}d\qquad&\text{if $d\equiv 1\pmod{4}$},\\ 4d\qquad&\text{if $d\equiv 2,3\pmod{4}$}.\end{cases}

If we write n=a+bωKn=a+b\omega_{K} with a,ba,b\in\mathbb{Z}, then

(2.2) N(n)={a2+ab+b21d4d1(mod4),a2db2d2,3(mod4).\displaystyle N(n)=\begin{cases}\displaystyle a^{2}+ab+b^{2}\frac{1-d}{4}\qquad&d\equiv 1\pmod{4},\\ \displaystyle a^{2}-db^{2}\qquad&d\equiv 2,3\pmod{4}.\end{cases}

Denote the Kronecker symbol in \mathbb{Z} by ()\left(\frac{\cdot}{\cdot}\right)_{\mathbb{Z}}. A rational prime ideal (p)(p)\in\mathbb{Z} in 𝒪K\mathcal{O}_{K} factors in the following way:

(DKp)=0,then p ramifies,(p)=𝔭2withN(𝔭)=p,\displaystyle\left(\frac{D_{K}}{p}\right)_{\mathbb{Z}}=0,\text{then $p$ ramifies},\ (p)=\mathfrak{p}^{2}\quad\text{with}\quad N(\mathfrak{p})=p,
(DKp)=1,then p splits,(p)=𝔭𝔭¯with𝔭𝔭¯andN(𝔭)=p,\displaystyle\left(\frac{D_{K}}{p}\right)_{\mathbb{Z}}=1,\text{then $p$ splits},\ (p)=\mathfrak{p}\overline{\mathfrak{p}}\quad\text{with}\quad\mathfrak{p}\neq\overline{\mathfrak{p}}\quad\text{and}\quad N(\mathfrak{p})=p,
(DKp)=1,then p is inert,(p)=𝔭withN(𝔭)=p2.\displaystyle\left(\frac{D_{K}}{p}\right)_{\mathbb{Z}}=-1,\text{then $p$ is inert},\ (p)=\mathfrak{p}\quad\text{with}\quad N(\mathfrak{p})=p^{2}.

In particular, the rational prime ideal (2)(2)\in\mathbb{Q} splits if d1(mod8)d\equiv 1\pmod{8}, is inert if d5(mod8)d\equiv 5\pmod{8} and ramifies for d=1d=-1, 2-2.

2.2. Primary Elements

It is well-known that when a number field KK is of class number one, every ideal of 𝒪K\mathcal{O}_{K} is principal, so that one may fix a unique generator for each non-zero ideal. In this paper, we are interested in ideals that are co-prime to (2)(2) and in this section, we determine for each such ideal a unique generator which we call primary elements. Our choice for these primary elements is based on a result of F. Lemmermeyer [Lemmermeyer05, Theorem 12.17], in order to ensure the validity of a proper form of the quadratic reciprocity law, Lemma 2.4, for these elements.

For K=(i)K=\mathbb{Q}(i), (1+i)(1+i) is the only ideal above the rational ideal (2)(2)\in\mathbb{Z}. We define for any n𝒪Kn\in\mathcal{O}_{K} with (n,2)=1(n,2)=1 to be primary if and only if n1(mod(1+i)3)n\equiv 1\pmod{(1+i)^{3}} by observing that the group (𝒪K/((1+i)3))×\left(\mathcal{O}_{K}/((1+i)^{3})\right)^{\times} is isomorphic to UKU_{K}. Here and in what follows, for any q𝒪Kq\in\mathcal{O}_{K}, let Gq:=(𝒪K/(q))×G_{q}:=\left(\mathcal{O}_{K}/(q)\right)^{\times} be the group of reduced residue classes modulo qq, i.e. the multiplicative group of invertible elements in 𝒪K/(q)\mathcal{O}_{K}/(q). For any group GG, let G2G^{2} be the subgroup of GG consisting of square elements of GG.

In what follows we consider the case for K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S} and d1d\neq-1. Note that we have either d=4k+1d=4k+1 for some kk\in\mathbb{Z} or d=2d=-2. Recall that our choice for the primary elements is based on [Lemmermeyer05, Theorem 12.17], which requires the determination of the quotient group G4/G42G_{4}/G^{2}_{4}. We therefore begin by examining the structure of G4G_{4}.

We first consider the case d=4k+1d=4k+1. Note that by our discussions in Section 2.1, the rational ideal (2)(2) splits in 𝒪K\mathcal{O}_{K} when 2|k2|k and is inert otherwise. It follows that

(2.3) G2={{1,ωK,1ωK},2k,{1},2|k.\displaystyle\begin{split}G_{2}=\begin{cases}\{1,-\omega_{K},1-\omega_{K}\},&2\nmid k,\\ \{1\},&2|k.\end{cases}\end{split}

As |G2||G_{2}| is odd in either case above, the natural homomorphism

G2G22:gg2,\displaystyle\begin{split}G_{2}\rightarrow G^{2}_{2}:g\mapsto g^{2},\end{split}

is injective and hence an isomorphism. Now observe that

G4=G2+2l,l{0,1,ωK,1+ωK}.\displaystyle\begin{split}G_{4}=G_{2}+2l,\quad l\in\{0,1,\omega_{K},1+\omega_{K}\}.\end{split}

As (a+2l)2a2(mod4)(a+2l)^{2}\equiv a^{2}\pmod{4}, we see that G42=G22G2G^{2}_{4}=G^{2}_{2}\cong G_{2}.

Direct computation shows that

(2.4) G42=G22={{1,ωK2=k+ωK,(1+ωK)2=k+1ωK},2k,{1},2|k.\displaystyle\begin{split}G^{2}_{4}=G^{2}_{2}=\begin{cases}\{1,\omega^{2}_{K}=k+\omega_{K},(1+\omega_{K})^{2}=k+1-\omega_{K}\},&2\nmid k,\\ \{1\},&2|k.\end{cases}\end{split}

Here we remark that the reason we choose ωK-\omega_{K} instead of ωK\omega_{K} in the set (2.3) defining G2G_{2} is to ensure that when d=3d=-3, we have G22=UK2G^{2}_{2}=U^{2}_{K}.

Consider the exact sequence

(2.5) 0kerσG4𝜎G20,\displaystyle\begin{split}0\rightarrow\ker{\sigma}\rightarrow G_{4}\xrightarrow{\sigma}G_{2}\rightarrow 0,\end{split}

where σ(g)=g(mod2)\sigma(g)=g\pmod{2} for any gG4g\in G_{4}. It follows that G4kerσ×G2kerσ×G42G_{4}\cong\ker{\sigma}\times G_{2}\cong\ker{\sigma}\times G^{2}_{4}. As kerσ\ker{\sigma} contains four elements that form a representation of all the residue classes modulo 44 that are congruent to 11 modulo 22, we see that

(2.6) kerσ={±1,±(1+2ωK)}(mod4)<1>×<1+2ωK>(mod4),\displaystyle\begin{split}\ker{\sigma}=\{\pm 1,\pm(1+2\omega_{K})\}\pmod{4}\cong<-1>\times<1+2\omega_{K}>\pmod{4},\end{split}

where <a><a> denotes the cyclic group generated by aa.

We then conclude that when d=4k+1d=4k+1, we have

(2.7) G4G42×<1>×<1+2ωK>(mod4).\displaystyle\begin{split}G_{4}\cong G^{2}_{4}\times<-1>\times<1+2\omega_{K}>\pmod{4}.\end{split}

When d=2(mod4)d=-2\pmod{4}, the rational ideal (2)(2) ramifies in 𝒪K\mathcal{O}_{K} and we have

G2={1,1+ωK}.\displaystyle\begin{split}G_{2}=\{1,1+\omega_{K}\}.\end{split}

Note that in this case G22={1}G^{2}_{2}=\{1\}, but our discussions above imply that

G42={1,(1+ωK)2}={1,1+2ωK}(mod4).\displaystyle\begin{split}G^{2}_{4}=\{1,(1+\omega_{K})^{2}\}=\{1,-1+2\omega_{K}\}\pmod{4}.\end{split}

One verifies directly that when d=2d=-2,

(2.8) G4/G42={±1,±(1+ωK)}={±1}×{1,(1+ωK)}(mod4).\displaystyle\begin{split}G_{4}/G^{2}_{4}=\{\pm 1,\pm(1+\omega_{K})\}=\{\pm 1\}\times\{1,-(1+\omega_{K})\}\pmod{4}.\end{split}

We further note that if d3d\neq-3, we have UK<1>U_{K}\cong<-1> by (2.1) and we have G42UK2G^{2}_{4}\cong U^{2}_{K} for d=3d=-3. Moreover, note that we have UKUK2×<1>U_{K}\cong U^{2}_{K}\times<-1>. It follows from these observations that we can apply the isomorphism in (2.7) and the quotient group given in (2.8) to write G4G_{4} as a set by

G4={UK×G42×<1+2ωK>(mod4),d2,3,UK×G42×{1,(1+ωK)}(mod4),d=2,UK×<1+2ωK>(mod4),d=3.\displaystyle\begin{split}G_{4}=\begin{cases}U_{K}\times G^{2}_{4}\times<1+2\omega_{K}>\pmod{4},&d\neq-2,-3,\\ U_{K}\times G^{2}_{4}\times\{1,-(1+\omega_{K})\}\pmod{4},&d=-2,\\ U_{K}\times<1+2\omega_{K}>\pmod{4},&d=-3.\end{cases}\end{split}

We then define the primary elements to be the ones that are congruent to the group G4/UKG_{4}/U_{K} modulo 44 using the above representation. More precisely, the primary elements are the ones

(2.9) {G42×<1+2ωK>(mod4),d2,3,G42×{1,(1+ωK)}(mod4),d=2,<1+2ωK>(mod4),d=3.\displaystyle\begin{split}\equiv\begin{cases}G^{2}_{4}\times<1+2\omega_{K}>\pmod{4},&d\neq-2,-3,\\ G^{2}_{4}\times\{1,-(1+\omega_{K})\}\pmod{4},&d=-2,\\ <1+2\omega_{K}>\pmod{4},&d=-3.\end{cases}\end{split}

It is then easy to see that each ideal co-prime to 22 has a unique primary generator. Moreover, as G4/UKG_{4}/U_{K} is a group, we see that primary elements are closed under multiplication.

We close this section by pointing out a relationship between the notion of primary elements for d=3d=-3 with that of EE-primary introduced in [Lemmermeyer, Section 7.3]. Recall that any n=a+bωK2𝒪Kn=a+b\omega^{2}_{K}\in\mathcal{O}_{K} with a,ba,b\in\mathbb{Z} and (n,6)=1(n,6)=1 is defined to be EE-primary if n±1(mod3)n\equiv\pm 1\pmod{3} and satisfies

(2.10) a+b1(mod4),if2|b,b1(mod4),if2|a,a3(mod4),if2ab.\displaystyle\begin{split}&a+b\equiv 1\pmod{4},\quad\text{if}\quad 2|b,\\ &b\equiv 1\pmod{4},\quad\text{if}\quad 2|a,\\ &a\equiv 3\pmod{4},\quad\text{if}\quad 2\nmid ab.\end{split}

Now, for any primary n=a+bωK𝒪Kn=a+b\omega_{K}\in\mathcal{O}_{K} with a,ba,b\in\mathbb{Z} such that (n,6)=1(n,6)=1, there is a unique uUK2={1,ωK,ωK2}u\in U^{2}_{K}=\{1,\omega_{K},\omega^{2}_{K}\} such that un±1(mod3)un\equiv\pm 1\pmod{3}. Writing unun in the form c+dωK2c+d\omega^{2}_{K} using the observation that ωK=1ωK2\omega_{K}=-1-\omega^{2}_{K}, one checks using (2.10) directly that unun is EE-primary.

2.3. Quadratic Hecke characters and quadratic Gauss sums

Let KK be any imaginary quadratic number field. We say an element n𝒪Kn\in\mathcal{O}_{K} is odd if (n,2)=1(n,2)=1. For an odd prime ϖ𝒪K\varpi\in\mathcal{O}_{K}, the quadratic symbol (ϖ)\left(\frac{\cdot}{\varpi}\right) is defined for a𝒪Ka\in\mathcal{O}_{K}, (a,ϖ)=1(a,\varpi)=1 by (aϖ)a(N(ϖ)1)/2(modϖ)\left(\frac{a}{\varpi}\right)\equiv a^{(N(\varpi)-1)/2}\pmod{\varpi}, with (aϖ){±1}\left(\frac{a}{\varpi}\right)\in\{\pm 1\}. If ϖ|a\varpi|a, we define (aϖ)=0\left(\frac{a}{\varpi}\right)=0. We then extend the quadratic symbol to (n)\left(\frac{\cdot}{n}\right) for any odd nn multiplicatively. We further define (c)=1\left(\frac{\cdot}{c}\right)=1 for cUKc\in U_{K}.

We note the following quadratic reciprocity law concerning primary elements.

Lemma 2.4.

Let K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S}. For any co-prime primary elements n,mn,m with (nm,2)=1(nm,2)=1, we have

(2.11) (nm)(mn)=(1)(N(n)1)/2(N(m)1)/2.\displaystyle\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=(-1)^{(N(n)-1)/2\cdot(N(m)-1)/2}.
Proof.

The assertion of the lemma is in [G&Zhao16, Lemma 2.4] for dS{1,3}d\in S\setminus\{-1,-3\} and one checks the arguments there also gives that (2.11) holds for d=3d=-3. If d=1d=-1, upon noting that N(n)1(mod4)N(n)\equiv 1\pmod{4} for any odd nn, we see that (2.11) follows from [G&Zhao4, (2.1)]. This completes the proof. ∎

We also note that it follows from the definition that for any odd n𝒪Kn\in\mathcal{O}_{K},

(2.12) (1n)=(1)(N(n)1)/2.\displaystyle\left(\frac{-1}{n}\right)=(-1)^{(N(n)-1)/2}.

Moreover, the following supplementary laws hold for primary odd n=a+bi𝒪Kn=a+bi\in\mathcal{O}_{K} with a,ba,b\in\mathbb{Z},

(2.13) (in)=(1)(1a)/2,n=a+bi𝒪K,a,b,K=(i),(1ωKn)=1,K=(3).\displaystyle\begin{split}&\left(\frac{i}{n}\right)=(-1)^{(1-a)/2},\quad n=a+bi\in\mathcal{O}_{K},a,b\in\mathbb{Z},K=\mathbb{Q}(i),\\ &\left(\frac{1-\omega_{K}}{n}\right)=1,\quad K=\mathbb{Q}(\sqrt{-3}).\end{split}

The first identity above follows from [BEW, Lemma 8.2.1] and the second follows by noting that (1ωK)3=1(1-\omega_{K})^{3}=1.

We follow the nomenclature of [iwakow, Section 3.8] to define a Dirichlet character χ\chi modulo (q)(0)(q)\neq(0) to be a homomorphism

χ:(𝒪K/(q))×S1:={z:|z|=1}.\displaystyle\chi:\left(\mathcal{O}_{K}/(q)\right)^{\times}\rightarrow S^{1}:=\{z\in\mathbb{C}:|z|=1\}.

We say that χ\chi is primitive modulo (q)(q) if it does not factor through (𝒪K/(q))×\left(\mathcal{O}_{K}/(q^{\prime})\right)^{\times} for any divisor qq^{\prime} of qq with N(q)<N(q)N(q^{\prime})<N(q).

Suppose that χ(u)=1\chi(u)=1 for any uUKu\in U_{K}. Then χ\chi may be regarded as defined on ideals of 𝒪K\mathcal{O}_{K} since every ideal is principal. In this case, we say that such a character χ\chi is a Hecke character modulo (q)(q) of trivial infinite type. We also say such a Hecke character is primitive if it is primitive as a Dirichlet character. We say that χ\chi is a Hecke character modulo qq instead of modulo (q)(q) if there is ambiguity.

For any Hecke character χ\chi modulo qq of trivial infinite type and any k𝒪Kk\in\mathcal{O}_{K}, we define the associated Gauss sum gK(k,χ)g_{K}(k,\chi) by

gK(k,χ)=x(modq)χ(x)e~K(kxq),wheree~K(z)=exp(2πi(zDKz¯DK)).\displaystyle g_{K}(k,\chi)=\sum_{x\negthickspace\negthickspace\negthickspace\pmod{q}}\chi(x)\widetilde{e}_{K}\left(\frac{kx}{q}\right),\quad\mbox{where}\quad\widetilde{e}_{K}(z)=\exp\left(2\pi i\left(\frac{z}{\sqrt{D_{K}}}-\frac{\overline{z}}{\sqrt{D_{K}}}\right)\right).

We write gK(χ)g_{K}(\chi) for gK(1,χ)g_{K}(1,\chi) and note that our definition above for gK(k,χ)g_{K}(k,\chi) is independent of the choice of a generator for (q)(q). We define similarly gK(k,χn)g_{K}(k,\chi_{n}), gK(χn)g_{K}(\chi_{n}). The following result evaluates gK(χn)g_{K}(\chi_{n}) for any primary nn.

Lemma 2.5.

Let K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S} and nn a primary element in 𝒪K\mathcal{O}_{K}. Then

(2.14) gK(χn)={N(n)for alld,N(n)1(mod4),iN(n)ford2,7,N(n)1(mod4),iN(n)ford=2,7,N(n)1(mod4).\displaystyle g_{K}(\chi_{n})=\begin{cases}\sqrt{N(n)}\qquad&\text{for all}\;d,\;N(n)\equiv 1\pmod{4},\\ -i\sqrt{N(n)}\qquad&\text{for}\;d\neq-2,-7,\;N(n)\equiv-1\pmod{4},\\ i\sqrt{N(n)}\qquad&\text{for}\;d=-2,-7,\;N(n)\equiv-1\pmod{4}.\end{cases}
Proof.

We consider (2.14) for the case of nn being a primary prime first. Note that this has been established for the case d=1d=-1 in [G&Zhao4, Lemma 2.2] for primary primes. In the rest of the proof, we assume that d1d\neq-1. We note that it is shown in [G&Zhao16, Lemma 2.6] that for any PP-primary prime ϖ\varpi that is co-prime to 2DK2D_{K} and also to (1d)/4(1-d)/4 when d1(mod4)d\equiv 1\pmod{4},

(2.15) gK(χϖ)={N(ϖ)for alld,N(ϖ)1(mod4),iN(ϖ)ford2,7,N(ϖ)1(mod4).\displaystyle g_{K}(\chi_{\varpi})=\begin{cases}\sqrt{N(\varpi)}\qquad&\text{for all}\;d,\;N(\varpi)\equiv 1\pmod{4},\\ -i\sqrt{N(\varpi)}\qquad&\text{for}\;d\neq-2,-7,\;N(\varpi)\equiv-1\pmod{4}.\end{cases}

Here we recall that when d2d\neq-2, an odd element n=a+bωKn=a+b\omega_{K} with a,ba,b\in\mathbb{Z} is called PP-primary if b1(mod4)b\equiv 1\pmod{4} or a+b(1d)/41(mod4)a+b(1-d)/4\equiv-1\pmod{4} when (b,2)1(b,2)\neq 1. When d=2d=-2, an odd element n=a+bωKn=a+b\omega_{K} with a,b,b0a,b\in\mathbb{Z},b\neq 0 is called PP-primary when b=2kbb=2^{k}b^{\prime} with k,b,k0,b1(mod4)k,b^{\prime}\in\mathbb{Z},k\geq 0,b^{\prime}\equiv 1\pmod{4}. The arguments in the proof of [G&Zhao16, Lemma 2.6] in fact imply that this is indeed true for any PP-primary prime. To see this, first note that when a prime ϖ\varpi satisfies N(ϖ)=pN(\varpi)=p with pp a rational prime. Then we write ϖ=a+bωK\varpi=a+b\omega_{K} to see via (2.2) that

p\displaystyle p ={a2+ab+b21d4,ifd1(mod4),a2db2,ifd2,3(mod4).\displaystyle=\begin{cases}\displaystyle a^{2}+ab+b^{2}\frac{1-d}{4},\qquad&\text{if}\;d\equiv 1\pmod{4},\\ \displaystyle a^{2}-db^{2},\qquad&\text{if}\;d\equiv 2,3\pmod{4}.\end{cases}

The above then implies that (ab,p)=1(ab,p)=1. This is clear for the case d2,3(mod4)d\equiv 2,3\pmod{4} since the above expression implies that a2db2>pa^{2}-db^{2}>p when (p,ab)>1(p,ab)>1. On the other hand, when d1(mod4)d\equiv 1\pmod{4}, we have (1d)/41(1-d)/4\geq 1 so that a2+ab+b21d4a2+ab+b2>pa^{2}+ab+b^{2}\frac{1-d}{4}\geq a^{2}+ab+b^{2}>p when (p,ab)>1(p,ab)>1 and a,ba,b are both non-negative or non-positive. When ab<0ab<0, we note that a2+ab+b2=(a+b)2ab>pa^{2}+ab+b^{2}=(a+b)^{2}-ab>p when (p,ab)>1(p,ab)>1. So in either case this we must have (ab,p)=1(ab,p)=1.

For any fixed prime ϖ\varpi, we define

EK:=xmodϖe~K(xϖ).\displaystyle E_{K}:=\sum_{x\bmod\varpi}\tilde{e}_{K}\left(\frac{x}{\varpi}\right).

Let c(modϖ)c\pmod{\varpi} be such that e~K(cϖ)1\tilde{e}_{K}\left(\frac{c}{\varpi}\right)\neq 1. We note that such cc must exist, for otherwise gK(χϖ)=x(modq)χ(x)=0g_{K}(\chi_{\varpi})=\sum_{x\pmod{q}}\chi(x)=0, contradicting the well-known fact that |gK(χϖ)|=N(ϖ)1/2|g_{K}(\chi_{\varpi})|=N(\varpi)^{1/2}. Then

e~K(cϖ)EK=xmodϖe~K(x+cϖ)=EK.\displaystyle\tilde{e}_{K}\left(\frac{c}{\varpi}\right)E_{K}=\sum_{x\bmod\varpi}\tilde{e}_{K}\left(\frac{x+c}{\varpi}\right)=E_{K}.

The above then implies that EK=0E_{K}=0. Now the arguments given in the proof of [G&Zhao16, Lemma 2.6] carry through with the above observations to show that the assertion of the lemma is valid for any PP-primary prime ϖ\varpi in [G&Zhao16, Lemma 2.6].

Now, note that we have the easily verified relation that for any odd n𝒪Kn\in\mathcal{O}_{K} and any uUKu\in U_{K},

gK(χun)=(un)gK(χn).\displaystyle g_{K}(\chi_{un})=\left(\frac{u}{n}\right)g_{K}(\chi_{n}).

As (un)=1\left(\frac{u}{n}\right)=1 for any uUKu\in U_{K} and any odd nn with N(n)1(mod4)N(n)\equiv 1\pmod{4} by (2.12) and (2.13), we see that in order to establish (2.14) for the case N(n)1(mod4)N(n)\equiv 1\pmod{4}, it suffices to show that this is so for any generator of the ideal (n)(n). In particular, the validity of (2.15) implies that (2.14) is true for any primary prime ω\omega when N(ϖ)1(mod4)N(\varpi)\equiv 1\pmod{4}.

Next, one checks via (2.9) that when a primary prime ϖ\varpi has norm congrudent to 1-1 modulo 44, then it is also PP-primary when d2,7d\neq-2,-7, while ϖ-\varpi is PP-primary when d=2,7d=-2,-7. In fact, as N(c)1(mod4)N(c)\equiv 1\pmod{4} for any cG42c\in G^{2}_{4}, it suffices to check this for elements c<1+2ωK>c\in<1+2\omega_{K}> for d2d\neq-2 and for elements c{1,(1+ωK)}c\in\{1,-(1+\omega_{K})\} when d=2d=-2, which in turn can be easily verified. It follows from this and (2.15) that (2.14) holds for all primary primes.

Lastly, to establish the general case, we note that it follows from the definition of gKg_{K} that for primary n1,n2n_{1},n_{2} with (n1,n2)=1(n_{1},n_{2})=1, we have

gK(χn1n2)=\displaystyle g_{K}(\chi_{n_{1}n_{2}})= (n2n1)(n1n2)gK(χn1)gK(χn1).\displaystyle\left(\frac{n_{2}}{n_{1}}\right)\left(\frac{n_{1}}{n_{2}}\right)g_{K}(\chi_{n_{1}})g_{K}(\chi_{n_{1}}).

The general case of the assertion of the lemma now follows from the above, the case when nn is primary prime and Lemma 2.4 by induction on the number of primary primes dividing nn. ∎

Recall that χ(cKc)\chi^{(c_{K}c)} is a primitive quadratic character of trivial infinite type for any square-free cc. The associated Hecke LL-function satisfies then functional equation given in (2.25) below. It is expected that the root number W(χ)W(\chi) there is 11 for primitive quadratic Hecke characters. Our next lemma confirms this.

Lemma 2.6.

Let K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S}. For any odd, square-free c𝒪Kc\in\mathcal{O}_{K}, we have

(2.16) gK(χ(cKc))=N(cKc).\displaystyle g_{K}(\chi^{(c_{K}c)})=\sqrt{N(c_{K}c)}.
Proof.

Note first that (2.16) is established in [Gao2, Lemma 2.2] for d=1d=-1. So we may assume that d1d\neq-1 in the rest of the proof. It follows from the Chinese remainder theorem that x=cKy+czx=c_{K}y+cz varies over the residue class modulo cKcc_{K}c as yy and zz vary over the residue class modulo cc and cKc_{K}, respectively. Thus

gK(χ(cKc))=\displaystyle g_{K}(\chi^{(c_{K}c)})= zmodcKymodc(cKcKy+cz)(ccKy+cz)e~K(yc)e~K(zcK).\displaystyle\sum_{z\bmod{c_{K}}}\sum_{y\bmod{c}}\left(\frac{c_{K}}{c_{K}y+cz}\right)\left(\frac{c}{c_{K}y+cz}\right)\widetilde{e}_{K}\left(\frac{y}{c}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right).

As χ(cK)\chi^{(c_{K})} is a Hecke character of trivial infinite type modulo cKc_{K}, we get that

(2.17) (cKcKy+cz)=χ(cK)(cKy+cz)=χ(cK)(cz).\displaystyle\left(\frac{c_{K}}{c_{K}y+cz}\right)=\chi^{(c_{K})}(c_{K}y+cz)=\chi^{(c_{K})}(cz).

On the other hand, let s(z)s(z) denote the unique element in UKU_{K} such that s(z)zs(z)z is primary for any (z,2)=1(z,2)=1. It follows from the quadratic reciprocity law (2.11) and the observation that N(cz)N(cKy+cz)(mod4)N(cz)\equiv N(c_{K}y+cz)\pmod{4} that

(2.18) (ccKy+cz)=(s(z)ckyc)(1)((N(c)1)/2)((N(s(z)cz)1)/2).\displaystyle\left(\frac{c}{c_{K}y+cz}\right)=\left(\frac{s(z)c_{k}y}{c}\right)(-1)^{((N(c)-1)/2)((N(s(z)cz)-1)/2)}.

We then conclude from (2.17) and (2.18) that

gK(χ(cKc))=zmodcKymodc(cKcz)(s(z)cKyc)(1)((N(c)1)/2)((N(s(z)cz)1)/2)e~K(yc)e~K(zcK)=zmodcK(cKz)(s(z)c)(1)((N(c)1)/2)((N(s(z)cz)1)/2)e~K(zcK)ymodc(yc)e~K(yc).\displaystyle\begin{split}g_{K}(\chi^{(c_{K}c)})=&\sum_{z\bmod{c_{K}}}\sum_{y\bmod{c}}\left(\frac{c_{K}}{cz}\right)\left(\frac{s(z)c_{K}y}{c}\right)(-1)^{((N(c)-1)/2)((N(s(z)cz)-1)/2)}\widetilde{e}_{K}\left(\frac{y}{c}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\\ =&\sum_{z\bmod{c_{K}}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{((N(c)-1)/2)((N(s(z)cz)-1)/2)}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\sum_{y\bmod{c}}\left(\frac{y}{c}\right)\widetilde{e}_{K}\left(\frac{y}{c}\right).\end{split}

Observe that when N(c)1(mod4)N(c)\equiv 1\pmod{4}, we have (s(z)cKyc)=1\left(\frac{s(z)c_{K}y}{c}\right)=1 and that ((N(c)1)/2)((N(s(z)cz)1)/2)0(mod2)((N(c)-1)/2)((N(s(z)cz)-1)/2)\equiv 0\pmod{2}. While when N(c)1(mod4)N(c)\equiv-1\pmod{4},

N(c)12N(s(z)cz)12N(s(z)cz)12N(c)12+N(s(z))12+N(z)121+N(z)12(mod2).\displaystyle\frac{N(c)-1}{2}\frac{N(s(z)cz)-1}{2}\equiv\frac{N(s(z)cz)-1}{2}\equiv\frac{N(c)-1}{2}+\frac{N(s(z))-1}{2}+\frac{N(z)-1}{2}\equiv 1+\frac{N(z)-1}{2}\pmod{2}.

We conclude from the above and Lemma 2.5 that

(2.19) gK(χ(cKc))={N(c)zmodcK(cKz)e~K(zcK)for alld,N(c)1(mod4),iN(c)zmodcK(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)ford2,7,N(c)1(mod4),iN(c)zmodcK(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)ford=2,7,N(c)1(mod4).\displaystyle\begin{split}g_{K}(\chi^{(c_{K}c)})=&\begin{cases}\sqrt{N(c)}\displaystyle\sum_{z\bmod{c_{K}}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\qquad&\text{for all}\;d,\;N(c)\equiv 1\pmod{4},\\ i\sqrt{N(c)}\displaystyle\sum_{z\bmod{c_{K}}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\qquad&\text{for}\;d\neq-2,-7,\;N(c)\equiv-1\pmod{4},\\ -i\sqrt{N(c)}\displaystyle\sum_{z\bmod{c_{K}}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\qquad&\text{for}\;d=-2,-7,\;N(c)\equiv-1\pmod{4}.\end{cases}\end{split}

Recall that cK=8c_{K}=8 if d2d\neq-2. Similar to (2.5), we see that as sets,

G8=G4×{1,5,1+4ωK,5+4ωK}(mod8),\displaystyle\begin{split}G_{8}=G_{4}\times\{1,5,1+4\omega_{K},5+4\omega_{K}\}\pmod{8},\end{split}

We further note that for a,ba,b\in\mathbb{Z},

e~K(a+bωKcK)=e(bcK).\displaystyle\widetilde{e}_{K}\left(\frac{a+b\omega_{K}}{c_{K}}\right)=e\left(\frac{b}{c_{K}}\right).

Note also the following supplementary law (see [Lemmermeyer, Propostion 4.2(iii)]) that asserts for (m,2)=1,m𝒪K(m,2)=1,m\in\mathcal{O}_{K},

(2.20) (2m)=(2N(m)).\displaystyle\left(\frac{2}{m}\right)=\left(\frac{2}{N(m)}\right)_{\mathbb{Z}}.

As we have N(m)N(5m)(mod8)N(m)\equiv N(5m)\pmod{8} for every mG4m\in G_{4}, we deduce from (2.20) that (cKm)=(cK5m)\left(\frac{c_{K}}{m}\right)=\left(\frac{c_{K}}{5m}\right) for these mm. On the other hand, we have e(b/8)=e(5b/8)e(b/8)=-e(5b/8) for any odd bb\in\mathbb{Z}. It follows that

z=m,5m,mG4m=a+bωK,a,b(cKz)e~K(zcK)=z=m,5m,mG4m=a+bωK,a,b2|b(cKz)e~K(zcK).\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=m,5m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=\sum_{\begin{subarray}{c}z=m,5m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right).\end{split}

We observe from (2.4) and (2.7) that there are only four elements in G4G_{4} that can be written as a+bωKa+b\omega_{K} with a,ba,b\in\mathbb{Z}, 2|b2|b. These elements are precisely those in the set given in (2.6). Note that the norms of these elements are all ±1(mod8)\equiv\pm 1\pmod{8}. Using again (cKm)=(cK5m)\left(\frac{c_{K}}{m}\right)=\left(\frac{c_{K}}{5m}\right) for any mG4m\in G_{4}, we see that

z=m,5m,mG4m=a+bωK,a,b2|b(cKz)e~K(zcK)=2z=mG4m=a+bωK,a,b2|b(cKz)e~K(zcK).\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=m,5m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=2\sum_{\begin{subarray}{c}z=m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right).\end{split}

Using (2.20), a direct computation leads to

(2.21) z=m,5m,mG4m=a+bωK,a,b2|b(cKz)e~K(zcK)=4.\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=m,5m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=4.\end{split}

Similarly, we have N((1+4ωK)m)N((5+4ωK)m)(mod8)N((1+4\omega_{K})m)\equiv N((5+4\omega_{K})m)\pmod{8} for every mG4m\in G_{4}, so that (cK(1+4ωK)m)=(cK(5+4ωK)m)\left(\frac{c_{K}}{(1+4\omega_{K})m}\right)=\left(\frac{c_{K}}{(5+4\omega_{K})m}\right) for these cc. Moreover, if we write m=a+bωK,(1+4ωK)m=a+bωKm=a+b\omega_{K},(1+4\omega_{K})m=a^{\prime}+b^{\prime}\omega_{K} with a,b,a,ba,b,a^{\prime},b^{\prime}\in\mathbb{Z}, then it is easy to see that bb(mod4)b^{\prime}\equiv b\pmod{4}. It follows that

z=(1+4ωK)m,(5+4ωK)m,mG4m=a+bωK,a,b(cKz)e~K(zcK)=z=(1+4ωK)m,(5+4ωK)m,mG4m=a+bωK,a,b2|b(cKz)e~K(zcK)=2z=(1+4ωK)m,mG4m=a+bωK,a,b2|b(cKz)e~K(zcK).\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,(5+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=&\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,(5+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\\ =&2\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right).\end{split}

A direct computation renders

(2.22) z=(1+4ωK)m,(5+4ωK)m,mG4m=a+bωK,a,b(cKz)e~K(zcK)=4.\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,(5+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\end{subarray}}\left(\frac{c_{K}}{z}\right)\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=4.\end{split}

Our discussions above apply similarly to the sum

zmodcK(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK).\displaystyle\begin{split}\sum_{z\bmod{c_{K}}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right).\end{split}

As s(z)=s(5z)s(z)=s(5z) and that (N(5z)1)/2(N(5)1)/2+(N(z)1)/2(N(z)1)/2(mod2)(N(5z)-1)/2\equiv(N(5)-1)/2+(N(z)-1)/2\equiv(N(z)-1)/2\pmod{2}, we see that

(2.23) z=m,5m,mG4m=a+bωK,a,b(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)=2z=m,mG4m=a+bωK,a,b2|b(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)={4i,d7,4i,d=7.\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=m,5m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\end{subarray}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=&2\sum_{\begin{subarray}{c}z=m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\\ =&\begin{cases}-4i,&d\neq-7,\\ 4i,&d=-7.\end{cases}\end{split}

Here we have N(1+2ωK)1(mod8)N(1+2\omega_{K})\equiv-1\pmod{8} when d7d\neq-7 and N(1+2ωK)3(mod8)N(1+2\omega_{K})\equiv 3\pmod{8} when d=7d=-7.

Similarly, we have s((1+4ωK)z)=s((5+4ωK)z)s((1+4\omega_{K})z)=s((5+4\omega_{K})z) and that (N((1+4ωK)z)1)/2(N(1+4ωK)1)/2+(N(z)1)/2(N(z)1)/2(N((5+4ωK)z)1)/2(mod2)(N((1+4\omega_{K})z)-1)/2\equiv(N(1+4\omega_{K})-1)/2+(N(z)-1)/2\equiv(N(z)-1)/2\equiv(N((5+4\omega_{K})z)-1)/2\pmod{2}, so that we have

(2.24) z=(1+4ωK)m,(5+4ωK)m,mG4m=a+bωK,a,b(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)=2z=(1+4ωK)m,mG4m=a+bωK,a,b2|b(cKz)(s(z)c)(1)(N(z)1)/2e~K(zcK)={4i,d7,4i,d=7.\displaystyle\begin{split}\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,(5+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\end{subarray}}&\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)\\ =&2\sum_{\begin{subarray}{c}z=(1+4\omega_{K})m,m\in G_{4}\\ m=a+b\omega_{K},a,b\in\mathbb{Z}\\ 2|b\end{subarray}}\left(\frac{c_{K}}{z}\right)\left(\frac{s(z)}{c}\right)(-1)^{(N(z)-1)/2}\widetilde{e}_{K}\left(\frac{z}{c_{K}}\right)=\begin{cases}-4i,&d\neq-7,\\ 4i,&d=-7.\end{cases}\end{split}

Here N(1+4ωK)5(mod8)N(1+4\omega_{K})\equiv 5\pmod{8}. We conclude from (2.19), (2.21), (2.22), (2.23) and (2.24) that the assertion of the lemma holds for d2d\neq-2.

Lastly, for the case d=2d=-2, we have cK=4ωKc_{K}=4\omega_{K} in this case. Observe that the residue classes modulo (ωK)(\omega_{K}) consists of {0,1}\{0,1\} and that 1+4{0,1}1+4\{0,1\} are two distinct elements modulo 4ωK4\omega_{K} but both congruent to 11 modulo 44. Thus, we have similar to (2.5) that as sets,

GcK=G4×{1,5}(modcK).\displaystyle\begin{split}G_{c_{K}}=G_{4}\times\{1,5\}\pmod{c_{K}}.\end{split}

Note that this time we have e~K(m/cK)=e(a/8)\widetilde{e}_{K}(m/c_{K})=e(-a/8) for any m=a+bωKm=a+b\omega_{K} with aa, bb\in\mathbb{Z}. Moreover, we have by [Lemmermeyer, Propostion 4.2(iii)],

(ωK1+ωK)=(ωk(1+ωK)1+ωK)=(11+ωK)=(1)(N(1+ωK)1)/2=1,(ωK5)=(N(ωK)5)=(25)=1.\displaystyle\begin{split}&\left(\frac{\omega_{K}}{1+\omega_{K}}\right)=\left(\frac{\omega_{k}-(1+\omega_{K})}{1+\omega_{K}}\right)=\left(\frac{-1}{1+\omega_{K}}\right)=(-1)^{(N(1+\omega_{K})-1)/2}=-1,\\ &\left(\frac{\omega_{K}}{5}\right)=\left(\frac{N(\omega_{K})}{5}\right)_{\mathbb{Z}}=\left(\frac{2}{5}\right)_{\mathbb{Z}}=-1.\end{split}

One checks directly that the sums given in (2.21) and (2.23) this time equal 424\sqrt{2}, 42i4\sqrt{2}i, respectively. We conclude from this and (2.19) that the assertion of the lemma holds for d=2d=-2 as well. This completes the proof of the lemma. ∎

2.7. Functional equations for Hecke LL-functions

Let K=(d)K=\mathbb{Q}(\sqrt{d}) with d𝒮d\in\mathcal{S} and let χ\chi be a primitive quadratic Hecke character of trivial infinite type modulo qq. A well-known result of E. Hecke asserts that L(s,χ)L(s,\chi) has an analytic continuation to the whole complex plane and satisfies the functional equation (see [iwakow, Theorem 3.8])

(2.25) Λ(s,χ)=W(χ)Λ(1s,χ),whereW(χ)=gK(χ)(N(q))1/2\displaystyle\Lambda(s,\chi)=W(\chi)\Lambda(1-s,\chi),\;\mbox{where}\;W(\chi)=g_{K}(\chi)(N(q))^{-1/2}

and

(2.26) Λ(s,χ)=(|DK|N(q))s/2(2π)sΓ(s)L(s,χ).\displaystyle\Lambda(s,\chi)=(|D_{K}|N(q))^{s/2}(2\pi)^{-s}\Gamma(s)L(s,\chi).

We apply the above to the case when χ=χ(cKc)\chi=\chi^{(c_{K}c)} for odd, square-free c𝒪Kc\in\mathcal{O}_{K} and deduce from Lemma 2.6 that W(χ(cKc))=1W(\chi^{(c_{K}c)})=1 in our situation. It then follows from (2.25) and (2.26) that

(2.27) L(s,χ(cKc))=(|DK|N(cKc))1/2s(2π)2s1Γ(1s)Γ(s)L(1s,χ(cKc)).\displaystyle L(s,\chi^{(c_{K}c)})=(|D_{K}|N(c_{K}c))^{1/2-s}(2\pi)^{2s-1}\frac{\Gamma(1-s)}{\Gamma(s)}L(1-s,\chi^{(c_{K}c)}).

2.8. A mean value estimate for quadratic Hecke LL-functions

In the proof of Theorem 1.1, we need the following lemma, which gives an upper bound for the second moment of quadratic Hecke LL-functions.

Lemma 2.9.

With the notation as above, let S(X)S(X) denote the set of Hecke characters χ(m)\chi^{(m)} with N(m)N(m) not exceeding XX. Then we have, for any complex number ss and any ε>0\varepsilon>0 with (s)1/2\Re(s)\geq 1/2, |s1|>ε|s-1|>\varepsilon,

(2.28) χS(X)|L(s,χ)|\displaystyle\sum_{\begin{subarray}{c}\chi\in S(X)\end{subarray}}|L(s,\chi)|\ll X1+ε|s|1/2+ε.\displaystyle X^{1+\varepsilon}|s|^{1/2+\varepsilon}.
Proof.

Let S(X)S^{\prime}(X) stand for the set of χ(m)\chi^{(m)} with mm being square-free and N(m)XN(m)\leq X. It follows from the arguments in the proof of [BGL, Corollary 1.4], upon using the quadratic large sieve for number fields [G&L, Theorem 1.1] that we have

χS(X)|L(s,χ)|2\displaystyle\sum_{\begin{subarray}{c}\chi\in S^{\prime}(X)\end{subarray}}|L(s,\chi)|^{2}\ll X1+ε|s|1+ε.\displaystyle X^{1+\varepsilon}|s|^{1+\varepsilon}.

It follows from the above and the Cauchy-Schwarz inequality that the estimation given in (2.28) is valid with S(X)S(X) replaced by S(X)S^{\prime}(X). Now, we write m=m1m22m=m_{1}m^{2}_{2} with m1m_{1} being square-free to see that

χS(X)|L(s,χ)|N(m2)1χS(X/N(m22))|L(s,χ)|\displaystyle\sum_{\begin{subarray}{c}\chi\in S(X)\end{subarray}}|L(s,\chi)|\ll\sum_{N(m_{2})\geq 1}\sum_{\begin{subarray}{c}\chi\in S^{\prime}(X/N(m^{2}_{2}))\end{subarray}}|L(s,\chi)|\ll X1+ε|s|1/2+ε.\displaystyle X^{1+\varepsilon}|s|^{1/2+\varepsilon}.

This completes the proof of the lemma. ∎

2.10. Some results on multivariable complex functions

We include in this section some results from multivariable complex analysis. First we need the concept of a tube domain.

Definition 2.11.

An open set TnT\subset\mathbb{C}^{n} is a tube if there is an open set UnU\subset\mathbb{R}^{n} such that T={zn:(z)U}.T=\{z\in\mathbb{C}^{n}:\ \Re(z)\in U\}.

For a set UnU\subset\mathbb{R}^{n}, we define T(U)=U+innT(U)=U+i\mathbb{R}^{n}\subset\mathbb{C}^{n}. We have the following Bochner’s Tube Theorem [Boc].

Theorem 2.12.

Let UnU\subset\mathbb{R}^{n} be a connected open set and f(z)f(z) be a function holomorphic on T(U)T(U). Then f(z)f(z) has a holomorphic continuation to the convex hull of T(U)T(U).

The convex hull of an open set TnT\subset\mathbb{C}^{n} is denoted by T^\widehat{T}. Then we quote the result from [Cech1, Proposition C.5] on the modulus of holomorphic continuations of functions in multiple variables.

Proposition 2.13.

Assume that TnT\subset\mathbb{C}^{n} is a tube domain, g,h:Tg,h:T\rightarrow\mathbb{C} are holomorphic functions, and let g~,h~\tilde{g},\tilde{h} be their holomorphic continuations to T^\widehat{T}. If |g(z)||h(z)||g(z)|\leq|h(z)| for all zTz\in T, and h(z)h(z) is nonzero in TT, then also |g~(z)||h~(z)||\tilde{g}(z)|\leq|\tilde{h}(z)| for all zT^z\in\widehat{T}.

3. Proof of Theorem 1.1

The Mellin inversion renders

(3.1) (c,2)=1L(12+α,χ(cKc))L(12+β,χ(cKc))w(N(c)X)=12πi(2)AK(s,12+α,12+β)Xsw^(s)ds,\displaystyle\sideset{}{{}^{*}}{\sum}_{(c,2)=1}\frac{L(\frac{1}{2}+\alpha,\chi^{(c_{K}c)})}{L(\frac{1}{2}+\beta,\chi^{(c_{K}c)})}w\left(\frac{N(c)}{X}\right)=\frac{1}{2\pi i}\int\limits_{(2)}A_{K}\left(s,\tfrac{1}{2}+\alpha,\tfrac{1}{2}+\beta\right)X^{s}\widehat{w}(s)\mathrm{d}s,

where

AK(s,w,z):=cprimaryL(w,χ(ckc))L(z,χ(cKc))N(c)s,\displaystyle\begin{split}A_{K}(s,w,z):=\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}c\mathrm{\ primary}\end{subarray}}\frac{L(w,\chi^{(c_{k}c)})}{L(z,\chi^{(c_{K}c)})N(c)^{s}},\end{split}

and w^\widehat{w} is the Mellin transform of ww defined by

w^(s)=0w(t)tsdtt.\displaystyle\widehat{w}(s)=\int\limits^{\infty}_{0}w(t)t^{s}\frac{\mathrm{d}t}{t}.

It follows from (3.1) that in order to prove Theorem 1.1, it suffices to understand the analytical properties of AK(s,w,z)A_{K}(s,w,z). To that end, we write μK\mu_{K} for the Möbius function on 𝒪K\mathcal{O}_{K}. For (s),(w),(z)\Re(s),\Re(w),\Re(z) large enough,

(3.2) AK(s,w,z)=cprimarym,kμK(k)χ(cKc)(k)χ(cKc)(m)N(k)zN(m)wN(c)s=m,kμK(k)χ(cK)(mk)N(m)wN(k)zcprimaryχmk(c)N(c)s.\displaystyle\begin{split}A_{K}(s,w,z)=\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}c\mathrm{\ primary}\end{subarray}}\sum_{\begin{subarray}{c}m,k\end{subarray}}\frac{\mu_{K}(k)\chi^{(c_{K}c)}(k)\chi^{(c_{K}c)}(m)}{N(k)^{z}N(m)^{w}N(c)^{s}}=\sum_{\begin{subarray}{c}m,k\end{subarray}}\frac{\mu_{K}(k)\chi^{(c_{K})}(mk)}{N(m)^{w}N(k)^{z}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}c\mathrm{\ primary}\end{subarray}}\frac{\chi_{mk}(c)}{N(c)^{s}}.\end{split}

Moreover, we apply the functional equation (2.27) to L(w,χ(cKc))L(w,\chi^{(c_{K}c)}) and derive from (3.2) that

(3.3) AK(s,w,z)=(|DK|N(cK))1/2w(2π)2w1Γ(1w)Γ(w)cprimaryL(1w,χ(cKc))L(z,χ(cKc))N(c)s+w1/2=(|DK|N(cK))1/2w(2π)2w1Γ(1w)Γ(w)AK(s+w12,1w,z).\displaystyle\begin{split}A_{K}(s,w,z)=&(|D_{K}|N(c_{K}))^{1/2-w}(2\pi)^{2w-1}\frac{\Gamma(1-w)}{\Gamma(w)}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}c\mathrm{\ primary}\end{subarray}}\frac{L(1-w,\chi^{(c_{K}c)})}{L(z,\chi^{(c_{K}c)})N(c)^{s+w-1/2}}\\ =&(|D_{K}|N(c_{K}))^{1/2-w}(2\pi)^{2w-1}\frac{\Gamma(1-w)}{\Gamma(w)}A_{K}(s+w-\tfrac{1}{2},1-w,z).\end{split}

The above can be regarded as a functional equation for AK(s,w,z)A_{K}(s,w,z).

3.1. Regions of absolute convergence of AK(s,w,z)A_{K}(s,w,z)

Note that when cc is primary, we have by Lemma 2.4 that for odd m,km,k,

χmk(c)=χs(mk)(mk)(c)(1)(N(mk)1)/2(N(c)1)/2=(16s(mk)(mk)(1)(N(mk)1)/2c):=χmk(c),\displaystyle\begin{split}\chi_{mk}(c)=\chi^{s(mk)(mk)}(c)(-1)^{(N(mk)-1)/2\cdot(N(c)-1)/2}=\left(\frac{16s(mk)(mk)(-1)^{(N(mk)-1)/2}}{c}\right):=\chi^{*}_{mk}(c),\end{split}

where we recall that s(z)s(z) denotes the unique element in UKU_{K} such that s(z)zs(z)z is primary for any (z,2)=1(z,2)=1 and the second equality above follows from (2.12). Here χmk\chi^{*}_{mk} is a real Hecke character of trivial infinite type whose conductor divides 16mk16mk.

The presence of χ(cK)(mk)\chi^{(c_{K})}(mk) in (3.2) restricts the sums there to over odd mm, kk. This allows us to write the inner sum in the last expression of (3.2) as a Euler product, getting

(3.4) cprimaryχmk(c)N(c)s=(ϖ,2)=1(1+χmk(ϖ)N(ϖ)s)=L(s,χmk)ζK(2mk)(2s)=L(s,χmk)ζK(2s)ϖ|2mk(1N(ϖ)2s)1.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}c\mathrm{\ primary}\end{subarray}}\frac{\chi_{mk}(c)}{N(c)^{s}}=\prod_{(\varpi,2)=1}(1+\chi^{*}_{mk}(\varpi)N(\varpi)^{-s})=\frac{L(s,\chi^{*}_{mk})}{\zeta^{(2mk)}_{K}(2s)}=\frac{L(s,\chi^{*}_{mk})}{\zeta_{K}(2s)}\prod_{\varpi|2mk}(1-N(\varpi)^{-2s})^{-1}.\end{split}

Thus (3.2) and (3.4) yield

(3.5) AK(s,w,z)=m,kμK(k)χ(cK)(mk)N(m)wN(k)zL(s,χmk)ζK(2s)ϖ|2mk(1N(ϖ)2s)1.\displaystyle\begin{split}A_{K}(s,w,z)=\sum_{\begin{subarray}{c}m,k\end{subarray}}\frac{\mu_{K}(k)\chi^{(c_{K})}(mk)}{N(m)^{w}N(k)^{z}}\frac{L(s,\chi^{*}_{mk})}{\zeta_{K}(2s)}\prod_{\varpi|2mk}(1-N(\varpi)^{-2s})^{-1}.\end{split}

Observe that when (s)>0\Re(s)>0,

ϖ|2mk(1N(ϖ)2s)1ϖ|2mk|(122(s))1|((122(s))1)𝒲K(2mk)N(mk)ε,\displaystyle\prod_{\varpi|2mk}(1-N(\varpi)^{-2s})^{-1}\leq\prod_{\varpi|2mk}\Big{|}(1-2^{-2\Re(s)})^{-1}\Big{|}\leq((1-2^{-2\Re(s)})^{-1})^{\mathcal{W}_{K}(2mk)}\ll N(mk)^{\varepsilon},

where 𝒲K\mathcal{W}_{K} denotes the number of distinct prime factors of nn and the last estimation above follows from the well-known bound (which can be derived in a manner similar to the proof of the classical case over \mathbb{Q} given in[MVa1, Theorem 2.10])

𝒲K(h)logN(h)loglogN(h),forN(h)3.\displaystyle\mathcal{W}_{K}(h)\ll\frac{\log N(h)}{\log\log N(h)},\quad\mbox{for}\quad N(h)\geq 3.

From (3.5) and the above, we infer that for (s)>0\Re(s)>0,

(3.6) ζK(2s)AK(s,w,z)m,k|L(s,χmk)|N(m)(w)εN(k)(z)ε.\displaystyle\begin{split}\zeta_{K}(2s)A_{K}(s,w,z)\ll&\sum_{\begin{subarray}{c}m,k\end{subarray}}\frac{|L(s,\chi^{*}_{mk})|}{N(m)^{\Re(w)-\varepsilon}N(k)^{\Re(z)-\varepsilon}}.\end{split}

Now by Lemma 2.9,

(3.7) N(mk)X|L(s,χmk)|N(c)XdK(c)|L(s,χc)|XεN(c)X|L(s,χc)|X1+ε|s|1/2+ε,\displaystyle\begin{split}\sum_{N(mk)\leq X}|L(s,\chi^{*}_{mk})|\ll\sum_{N(c)\leq X}d_{K}(c)|L(s,\chi^{*}_{c})|\ll X^{\varepsilon}\sum_{N(c)\leq X}|L(s,\chi^{*}_{c})|\ll X^{1+\varepsilon}|s|^{1/2+\varepsilon},\end{split}

where dK(n)d_{K}(n) is the divisor function on 𝒪K\mathcal{O}_{K} and we have, similar to the classical bound for the divisor function on \mathbb{Z} given in [MVa1, Theorem 2.11], that

dK(n)N(n)ε.\displaystyle\begin{split}d_{K}(n)\ll N(n)^{\varepsilon}.\end{split}

We thus conclude from (3.6), (3.7) and partial summation that the function AK(s,w,z)A_{K}(s,w,z) converges absolutely in the region

S1,1={(s,w,z):(s)>0,(w)>1,(z)>1,(s+w)>3/2,(s+z)>3/2}.S_{1,1}=\{(s,w,z):\Re(s)>0,\ \Re(w)>1,\ \Re(z)>1,\ \Re(s+w)>3/2,\ \Re(s+z)>3/2\}.

In what follows, we shall define similar regions Si,jS_{i,j} and SjS_{j} and adopt the convention that for any real number δ\delta,

Si,j,δ:={(s,w)+δ(1,1):(s,w)Si,j}andSj,δ:={(s,w)+δ(1,1):(s,w)Sj}.\displaystyle\begin{split}S_{i,j,\delta}:=\{(s,w)+\delta(1,1):(s,w)\in S_{i,j}\}\quad\mbox{and}\quad S_{j,\delta}:=\{(s,w)+\delta(1,1):(s,w)\in S_{j}\}.\end{split}

Using this notation, we see that in the region S1,1,εS_{1,1,\varepsilon},

(3.8) |(s1)ζK(2s)AK(s,w,z)|(1+|s|)3/2+ε.\displaystyle\begin{split}|(s-1)\zeta_{K}(2s)A_{K}(s,w,z)|\ll&(1+|s|)^{3/2+\varepsilon}.\end{split}

We note also from (3.2) that

(3.9) AK(s,w,z)cprimary|L(w,χ(cKc))||L(z,χ(cKc))|N(c)(s).\displaystyle\begin{split}A_{K}(s,w,z)\ll&\sideset{}{{}^{*}}{\sum}_{c\mathrm{\ primary}}\frac{|L(w,\chi^{(c_{K}c)})|}{|L(z,\chi^{(c_{K}c)})|N(c)^{\Re(s)}}.\end{split}

When (w)1/2\Re(w)\geq 1/2, we apply from (2.28) and partial summation to infer that the sum above is convergent in the region

S1,2={(s,w):(s)>1,(w)1/2,(z)>1/2}.S_{1,2}=\{(s,w):\ \Re(s)>1,\ \Re(w)\geq 1/2,\ \Re(z)>1/2\}.

Recall from [iwakow, Theorem 5.19] that, on GRH,

(3.10) 1|L(z,χ(cKc))|(|z|N(cKc))ε,(z)1/2+ε.\displaystyle\begin{split}\frac{1}{|L(z,\chi^{(c_{K}c)})|}\ll&(|z|N(c_{K}c))^{\varepsilon},\quad\Re(z)\geq 1/2+\varepsilon.\end{split}

Thus in the region S1,2,εS_{1,2,\varepsilon},

(3.11) |AK(s,w,z)||z|ε(1+|w|)1/2+ε.\displaystyle\begin{split}|A_{K}(s,w,z)|\ll&|z|^{\varepsilon}(1+|w|)^{1/2+\varepsilon}.\end{split}

If (w)<1/2\Re(w)<1/2, we apply first the functional equation (2.27) and then deduce from (2.28) via partial summation that the sum in (3.9) is also convergent in the region

S1,3={(s,w):(s)>1,(w)<1/2,(s+w)>3/2,(z)>1/2}.S_{1,3}=\{(s,w):\ \Re(s)>1,\ \Re(w)<1/2,\ \Re(s+w)>3/2,\ \Re(z)>1/2\}.

now Stirling’s formula (see [iwakow, (5.113)]) implies that

(3.12) Γ(1s)Γ(s)(1+|s|)12(s).\displaystyle\frac{\Gamma(1-s)}{\Gamma(s)}\ll(1+|s|)^{1-2\Re(s)}.

This estimate, together with our discussions above, implies that in the region S1,3,εS_{1,3,\varepsilon},

(3.13) |AK(s,w,z)||z|ε(1+|w|)1/2+12(w)+ε.\displaystyle\begin{split}|A_{K}(s,w,z)|\ll&|z|^{\varepsilon}(1+|w|)^{1/2+1-2\Re(w)+\varepsilon}.\end{split}

We denote S1,4S_{1,4} for the union of S1,2S_{1,2} and S1,3S_{1,3} so that

S1,4={(s,w):(s)>1,(s+w)>3/2,(z)>1/2}.S_{1,4}=\{(s,w):\ \Re(s)>1,\ \Re(s+w)>3/2,\ \Re(z)>1/2\}.

We then deduce from (3.11) and (3.13) that in the region S1,4,εS_{1,4,\varepsilon}, under GRH,

(3.14) |AK(s,w,z)||z|ε(1+|w|)1/2+max{12(w),0}+ε.\displaystyle\begin{split}|A_{K}(s,w,z)|\ll&|z|^{\varepsilon}(1+|w|)^{1/2+\max\{1-2\Re(w),0\}+\varepsilon}.\end{split}

The point (1/2,1,1)(1/2,1,1) is in S1,1S_{1,1} while (1,1/2,1/2)(1,1/2,1/2), (1,1/2,1)(1,1/2,1) are in S1,2S_{1,2} and the three points determine a plane whose equation is given by (s+w)=3/2\Re(s+w)=3/2. Similarly, the point (1/2,1,1)(1/2,1,1) is in S1,1S_{1,1} and (1,1/2,1/2)(1,1/2,1/2), (1,1,1/2)(1,1,1/2) are in S1,2)S_{1,2}) and the three points determine a plane whose equation is (s+z)=3/2\Re(s+z)=3/2. It follows that the convex hull of S1,1S_{1,1} and S1,4S_{1,4} equals

S1={(s,w,z):(s)>0,(z)>1/2,(s+w)>3/2,(s+z)>3/2}.S_{1}=\{(s,w,z):\ \Re(s)>0,\ \Re(z)>1/2,\ \Re(s+w)>3/2,\ \Re(s+z)>3/2\}.

Moreover, Proposition 2.13, (3.8), (3.14) and the bound ζK(2s)1\zeta_{K}(2s)\ll 1 for (s)>1\Re(s)>1 yeild that in the region S1,εS_{1,\varepsilon}, on GRH,

(3.15) |(s1)ζK(2s)AK(s,w,z)|(1+|s|)3/2+ε|z|ε(1+|w|)1/2+max{12(w),0}+ε.\displaystyle\begin{split}|(s-1)\zeta_{K}(2s)A_{K}(s,w,z)|\ll&(1+|s|)^{3/2+\varepsilon}|z|^{\varepsilon}(1+|w|)^{1/2+\max\{1-2\Re(w),0\}+\varepsilon}.\end{split}

We now apply the functional equation for AK(s,w,z)A_{K}(s,w,z) given in (3.3) and follow our discussions above to see that AK(s,w,z)A_{K}(s,w,z) is also holomorphic in the region

S2={(s,w,z):(s+w)>1/2,(z)>1/2,(s)>1,(s+w+z)>2}.S_{2}=\{(s,w,z):\ \Re(s+w)>1/2,\ \Re(z)>1/2,\ \Re(s)>1,\ \Re(s+w+z)>2\}.

We also deduce from (3.3), (3.12) and (3.15) that in the region S2,εS_{2,\varepsilon} for any ε>0\varepsilon>0, we have on GRH,

(3.16) |(s+w3/2)ζK(2s+2w1)AK(s,w,z)|(1+|s+w1/2|)3/2+ε|z|ε(1+|1w|)1/2+max{12(w),0}+ε(1+|w|)12(w)(1+|s|)3/2+ε|z|ε(1+|w|)32(w)+max{12(w),0}+ε.\displaystyle\begin{split}|(s+w-3/2)&\zeta_{K}(2s+2w-1)A_{K}(s,w,z)|\\ \ll&(1+|s+w-1/2|)^{3/2+\varepsilon}|z|^{\varepsilon}(1+|1-w|)^{1/2+\max\{1-2\Re(w),0\}+\varepsilon}(1+|w|)^{1-2\Re(w)}\\ \ll&(1+|s|)^{3/2+\varepsilon}|z|^{\varepsilon}(1+|w|)^{3-2\Re(w)+\max\{1-2\Re(w),0\}+\varepsilon}.\end{split}

The union of S1S_{1} and S2S_{2} is connected and the convex hull of S1,S2S_{1},S_{2} equals

(3.17) S3={(s,w,z):(s)>0,(z)>1/2,(s+w+z)>2,(2s+w+z)>3,(2s+w)>3/2,(s+w)>1/2,(s+z)>3/2}.\displaystyle\begin{split}&S_{3}=\{(s,w,z):\ \Re(s)>0,\ \Re(z)>1/2,\ \Re(s+w+z)>2,\\ &\hskip 36.135pt\ \Re(2s+w+z)>3,\ \Re(2s+w)>3/2,\ \Re(s+w)>1/2,\ \Re(s+z)>3/2\}.\end{split}

To see this, note that the two planes (s+w)=3/2\Re(s+w)=3/2 and (s+z)=3/2\Re(s+z)=3/2 intersect when z=1/2z=1/2 at the line given by the intersection of (s+w)=3/2\Re(s+w)=3/2 and (s)=1\Re(s)=1. Note further that the plane (s+w+z)=2\Re(s+w+z)=2 can be written as (s+w)=2z\Re(s+w)=2-z and 2z=3/22-z=3/2 for z=1/2z=1/2. Note also that 2z=1/22-z=1/2 when z=3/2z=3/2. It follows that the convex hull of S1S_{1} and S2S_{2} contains the plane determined by the two lines: (s+w)=3/2\Re(s+w)=3/2, (s+z)=3/2\Re(s+z)=3/2 on S1S_{1} and (s+w+z)=2,(s)=1\ \Re(s+w+z)=2,\ \Re(s)=1 on S2S_{2}, intersecting with the two planes: z=1/2z=1/2 and z=3/2z=3/2. Note that the two lines both intersect the plane z=1/2z=1/2 at the point (1,1/2,1/2)(1,1/2,1/2). The first line intersects the plane z=3/2z=3/2 at (0,3/2,3/2)(0,3/2,3/2), the second at (1,1/2,3/2)(1,-1/2,3/2). These three points then determine a plane with the equation (2s+w+z)=3\Re(2s+w+z)=3. Moreover, when z>3/2z>3/2, the convex hull continues with the plane that is determined by the lines: (s)=0,(s+w)=3/2\Re(s)=0,\ \Re(s+w)=3/2 in S1S_{1} and (s)=1,(s+w)=1/2\Re(s)=1,\ \Re(s+w)=1/2 in S2S_{2}. As the point (0,3/2,3/2)(0,3/2,3/2) is on the first line and the point (1,1/2,3/2)(1,-1/2,3/2) is on the second line, we see easily that the plane has the equation: (2s+w)=3/2\Re(2s+w)=3/2.

Consequently, Theorem 2.12 gives that (s1)(s+w1)ζK(2s)ζK(2w+2s1)AK(s,w,z)(s-1)(s+w-1)\zeta_{K}(2s)\zeta_{K}(2w+2s-1)A_{K}(s,w,z) converges absolutely in the region S3S_{3}. Moreover, Proposition 2.13 supplies us with the bound, inherited from (3.15) and (3.16), that in the region

Sε:=S3,ε{(s,w,z):(s)1/2+ε,(s+w)1+ε,(z)1/2+ε},S_{\varepsilon}:=S_{3,\varepsilon}\cap\{(s,w,z):\ \Re(s)\geq 1/2+\varepsilon,\ \Re(s+w)\geq 1+\varepsilon,\ \Re(z)\geq 1/2+\varepsilon\},

for any 0<ε<1/1000<\varepsilon<1/100,

|(s1)(s+w1)ζK(2s)ζK(2w+2s1)A(s,w)||ζK(2s)ζK(2w+2s1)|(1+|s|)5/2+ε|z|ε(1+|w|)5/2+ε.\displaystyle\begin{split}|(s-1)(s+w-1)\zeta_{K}(2s)\zeta_{K}(2w+2s-1)A(s,w)|\ll&|\zeta_{K}(2s)\zeta_{K}(2w+2s-1)|(1+|s|)^{5/2+\varepsilon}|z|^{\varepsilon}(1+|w|)^{5/2+\varepsilon}.\end{split}

Furthermore, when (s)1/2+ε\Re(s)\geq 1/2+\varepsilon and (s+w)1+ε\Re(s+w)\geq 1+\varepsilon, we have 1ζ(2s)1\ll\zeta(2s) and ζ(2w+2s1)1\zeta(2w+2s-1)\ll 1. So from (3.13), in the region SεS_{\varepsilon},

(3.18) |(s1)(s+w1)AK(s,w,z)|(1+|s|)5/2+ε|z|ε(1+|w|)5/2+ε.\displaystyle\begin{split}|(s-1)(s+w-1)A_{K}(s,w,z)|\ll&(1+|s|)^{5/2+\varepsilon}|z|^{\varepsilon}(1+|w|)^{5/2+\varepsilon}.\end{split}

3.2. Residues of AK(s,w,z)A_{K}(s,w,z) at s=1s=1 and s+w=3/2s+w=3/2

It follows from (3.4) that AK(s,w,z)A_{K}(s,w,z) has a pole at s=1s=1 arising from the terms with mk=umk=u\square with uUKu\in U_{K}, where \square denotes a perfect square. In this case,

L(s,χmk)=ζK(s)ϖ|2mk(11N(ϖ)s).L\left(s,\chi^{*}_{mk}\right)=\zeta_{K}(s)\prod_{\varpi|2mk}\left(1-\frac{1}{N(\varpi)^{s}}\right).

Recall that we denote the residue of ζK(s)\zeta_{K}(s) at s=1s=1 by rKr_{K} and for any n𝒪Kn\in\mathcal{O}_{K}. We then deduce from (3.5) that

(3.19) Ress=1AK(s,w,z)=rK|UK|2ζK(2)mk=m,kprimaryμK(k)a(2mk)N(m)wN(k)z=rK|UK|2a(2)ζK(2)mk=m,kprimaryμK(k)a(mk)N(m)wN(k)z,\displaystyle\mathrm{Res}_{s=1}A_{K}(s,w,z)=\frac{r_{K}|U_{K}|^{2}}{\zeta_{K}(2)}\sum_{\begin{subarray}{c}mk=\square\\ m,k\mathrm{\ primary}\end{subarray}}\frac{\mu_{K}(k)a(2mk)}{N(m)^{w}N(k)^{z}}=\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\sum_{\begin{subarray}{c}mk=\square\\ m,k\mathrm{\ primary}\end{subarray}}\frac{\mu_{K}(k)a(mk)}{N(m)^{w}N(k)^{z}},

where a(n)a(n) is defined in (1.2).

We now express the last sum in (3.19) as an Euler product via a direct computation similar to that done in [Cech1, (4.11)] to obtain that

(3.20) Ress=1AK(s,w,z)=rK|UK|2a(2)ζK(2)ζK(2)(2w)ζK(2)(w+z)P(w,z),\displaystyle\mathrm{Res}_{s=1}A_{K}(s,w,z)=\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(2w)}{\zeta_{K}^{(2)}(w+z)}P(w,z),

where P(w,z)P(w,z) is given in (1.4).

Similarly, we deduce from (3.3) that

(3.21) Ress=3/2wAK(s,w,z)=(|DK|N(cK))1/2w(2π)2w1Γ(1w)Γ(w)rK|UK|2a(2)ζK(2)ζK(2)(22w)ζK(2)(1w+z)P(1w,z).\displaystyle\begin{split}\mathrm{Res}_{s=3/2-w}A_{K}(s,w,z)=&(|D_{K}|N(c_{K}))^{1/2-w}(2\pi)^{2w-1}\frac{\Gamma(1-w)}{\Gamma(w)}\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(2-2w)}{\zeta_{K}^{(2)}(1-w+z)}P(1-w,z).\end{split}

3.3. Completion of proof

Now repeated integration by parts gives that for any integer A0A\geq 0,

(3.22) w^(s)1(1+|s|)A.\displaystyle\widehat{w}(s)\ll\frac{1}{(1+|s|)^{A}}.

We evaluate the integral in (3.1) by shifting the line of integration to (s)=E(α,β)+ε\Re(s)=E(\alpha,\beta)+\varepsilon, where E(α,β)E(\alpha,\beta) is given in (1.1). Applying (3.18) and (3.22) gives that the integral on the new line can be absorbed into the OO-term in (1.3). We encounter simple poles at s=1s=1 and s=1αs=1-\alpha in the process whose residues are given in (3.20) and (3.21), respectively. This yields the main terms in (1.3) and completes the proof of Theorem 1.1.

4. Proof of Theorem 1.4

We first recast the expression in (1.3) as

(4.1) (c,2)=1L(12+α,χ(cKc))L(12+β,χ(cKc))w(N(c)X)=XM1(α,β)+X1αM2(α,β)+R(X,α,β),\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{(c,2)=1}\frac{L(\frac{1}{2}+\alpha,\chi^{(c_{K}c)})}{L(\frac{1}{2}+\beta,\chi^{(c_{K}c)})}w\left(\frac{N(c)}{X}\right)=XM_{1}(\alpha,\beta)+X^{1-\alpha}M_{2}(\alpha,\beta)+R(X,\alpha,\beta),\end{split}

where R(X,α,β)R(X,\alpha,\beta) is the error term in (1.3) and we define

M1(α,β)=Xw^(1)rK|UK|2a(2)ζK(2)ζK(2)(1+2α)ζK(2)(1+α+β)P(12+α,12+β),M2(α,β)=X1αw^(1α)(|DK|N(cK))α(2π)2αΓ(12α)Γ(12+α)rK|UK|2a(2)ζK(2)ζK(2)(12α)ζK(2)(1α+β)P(12α,12+β).\displaystyle\begin{split}M_{1}(\alpha,\beta)=&X\widehat{w}(1)\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(1+2\alpha)}{\zeta_{K}^{(2)}(1+\alpha+\beta)}P(\tfrac{1}{2}+\alpha,\tfrac{1}{2}+\beta),\\ M_{2}(\alpha,\beta)=&X^{1-\alpha}\widehat{w}(1-\alpha)(|D_{K}|N(c_{K}))^{-\alpha}(2\pi)^{2\alpha}\frac{\Gamma(\tfrac{1}{2}-\alpha)}{\Gamma(\tfrac{1}{2}+\alpha)}\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\frac{\zeta_{K}^{(2)}(1-2\alpha)}{\zeta_{K}^{(2)}(1-\alpha+\beta)}P(\tfrac{1}{2}-\alpha,\tfrac{1}{2}+\beta).\end{split}

Note that the expression on the left-hand side of (4.1) and both M1(α,β)M_{1}(\alpha,\beta) and M2(α,β)M_{2}(\alpha,\beta) are analytic functions of α,β\alpha,\beta, so is E(X,α,β)E(X,\alpha,\beta).

We now differentiate the above terms with respect to α\alpha for a fixed β=r\beta=r with (β)>ε\Re(\beta)>\varepsilon, and then set α=β=r\alpha=\beta=r to see that

(4.2) ddαXM1(α,β)|α=β=r=Xw^(1)rK|UK|2a(2)ζK(2)((ζK(2)(1+2r))ζK(2)(1+2r)+(ϖ,2)=1logN(ϖ)N(ϖ)(N(ϖ)1+2r1)).\displaystyle\begin{split}\frac{\mathrm{d}}{\mathrm{d}\alpha}XM_{1}(\alpha,\beta)\Big{|}_{\alpha=\beta=r}&=X\widehat{w}(1)\frac{r_{K}|U_{K}|^{2}a(2)}{\zeta_{K}(2)}\left(\frac{(\zeta^{(2)}_{K}(1+2r))^{\prime}}{\zeta^{(2)}_{K}(1+2r)}+\sum_{(\varpi,2)=1}\frac{\log N(\varpi)}{N(\varpi)(N(\varpi)^{1+2r}-1)}\right).\end{split}

For the second term, we notice that due to the factor 1/ζK(1α+β)1/\zeta_{K}(1-\alpha+\beta), only one term remains. Moreover, 1/ζK(s)=rK1(s1)+O((s1)2)1/\zeta_{K}(s)=r^{-1}_{K}(s-1)+O((s-1)^{2}) and P(1α,1+β)=ζK(2)(2)/ζK(2)(22r)P(1-\alpha,1+\beta)=\zeta^{(2)}_{K}(2)/\zeta^{(2)}_{K}(2-2r). It follows that

(4.3) ddαX1αM2(α,β)|α=β=r=X1rw^(1r)(|DK|N(cK))r(2π)2rΓ(12r)Γ(12+r)|UK|2a(2)ζK(2)(22r).\displaystyle\begin{split}\frac{\mathrm{d}}{\mathrm{d}\alpha}&X^{1-\alpha}M_{2}(\alpha,\beta)\Big{|}_{\alpha=\beta=r}=-X^{1-r}\widehat{w}(1-r)(|D_{K}|N(c_{K}))^{-r}(2\pi)^{2r}\frac{\Gamma(\tfrac{1}{2}-r)}{\Gamma(\tfrac{1}{2}+r)}\frac{|U_{K}|^{2}a(2)}{\zeta^{(2)}_{K}(2-2r)}.\end{split}

Next, as R(X,α,β)R(X,\alpha,\beta) is analytic in α\alpha, Cauchy’s integral formula yields

ddαR(X,α,β)=12πiCαR(X,z,β)(zα)2dz,\displaystyle\begin{split}\frac{\mathrm{d}}{\mathrm{d}\alpha}R(X,\alpha,\beta)=\frac{1}{2\pi i}\int\limits_{C_{\alpha}}\frac{R(X,z,\beta)}{(z-\alpha)^{2}}\mathrm{d}z,\end{split}

where CαC_{\alpha} is a circle centered at α\alpha of radius ρ\rho with ε/2<ρ<ε\varepsilon/2<\rho<\varepsilon. It follows that

|ddαR(X,α,β)|1ρmaxzCα|R(X,z,β)|(1+|α|)5/2+ε(1+|β|)εXE(α,β)+ε.\displaystyle\begin{split}\left|\frac{\mathrm{d}}{\mathrm{d}\alpha}R(X,\alpha,\beta)\right|\ll\frac{1}{\rho}\cdot\max_{z\in C_{\alpha}}|R(X,z,\beta)|\ll(1+|\alpha|)^{5/2+\varepsilon}(1+|\beta|)^{\varepsilon}X^{E(\alpha,\beta)+\varepsilon}.\end{split}

We now set α=β=r\alpha=\beta=r to deduce from (1.1) and the above that

(4.4) |ddαR(X,α,β)|(1+|r|)5/2+εX12r+ε.\displaystyle\begin{split}\left|\frac{\mathrm{d}}{\mathrm{d}\alpha}R(X,\alpha,\beta)\right|\ll(1+|r|)^{5/2+\varepsilon}X^{1-2r+\varepsilon}.\end{split}

We conclude from (4.1)–(4.4) that (1.6) holds, completing the proof of Theorem 1.4.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG Grant PS43707 at the University of New South Wales.

References