This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Rate Maximizations for Reconfigurable Intelligent Surface-Aided Wireless Networks: A Unified Framework via Block Minorization-Maximization

Zepeng Zhang, , and Ziping Zhao This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 62001295 and in part by the Shanghai Sailing Program under Grant 20YF1430800. Part of the paper was preliminary presented at the 22nd IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, September 2021 and was selected as a Finalist for the Best Student Paper Award [1]. (Corresponding author: Ziping Zhao.)The authors are with the School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China. (e-mail: [email protected]; [email protected]).
Abstract

The reconfigurable intelligent surface (RIS) has arose an upsurging research interest recently due to its promising outlook in 5G-and-beyond wireless networks. With the assistance of RIS, the wireless propagation environment is no longer static and could be customized to support diverse service requirements. In this paper, we will approach the rate maximization problems in RIS-aided wireless networks by considering the beamforming and reflecting design jointly. Three representative design problems from different system settings are investigated based on a proposed unified algorithmic framework via the block minorization-maximization (BMM) method. Extensions and generalizations of the proposed framework in dealing with some other related problems are further presented. Merits of the proposed algorithms are demonstrated through numerical simulations in comparison with the state-of-the-art methods.

Index Terms:
Rate maximization, reconfigurable intelligent surface (RIS), power allocation, beamforming, reflecting design, minorization-maximization (MM), block successive upperbound minimization (BSUM) algorithm.

I Introduction

Along with the worldwide deployment of 5G wireless networks, more stringent requirements (e.g., ultra-high reliability, capacity, and efficiency, as well as low latency) are anticipated to be fulfilled in a holistic fashion in the next-generation wireless networks [2, 3]. The existing technology trends in 5G networks (e.g., massive multiple-input multiple-output (MIMO) and millimeter wave communications) [4, 5], unfortunately, may be insufficient to meet such daunting demands since they will generally involve increased hardware costs and power consumptions. With the theoretical and experimental breakthroughs in micro electromechanical systems and metamaterials, reconfigurable intelligent surface (RIS), a.k.a. software-controlled metasurfaces [6] and intelligent reflecting surfaces [7], has recently been advocated as a powerful solution to enhance the spectrum efficiency and energy efficiency of wireless networks in a cost-effective way [7, 8, 9].

With the assistance of RIS, whose properties (e.g., scattering, absorption, reflection, and diffraction) are reconfigurable rather than static, the wireless environment is no longer an uncontrollable element, but can be customized to support diverse service requirements [10]. Considering an interference channel in the multi-user communication systems, where independent data streams are sent to some target receivers simultaneously, one classical goal for the system design is to suppress the inter-user interference and thus achieve a high system rate [11, 12]. As a crucial aspect of the RIS-aided wireless networks, rate maximization problems have received significant attention in different systems with interference channels, leading to the problems of designing the beamformers and configuring the elements of RISs simultaneously [13, 14, 15, 1].

In this paper, we focus on the rate maximization problems in RIS-aided wireless networks, and a unified algorithmic framework based on the block minorization-maximization (BMM) method [16, 17] is proposed. This framework is broadly applicable to diverse RIS-aided systems, where the specific minorization-maximization (MM) techniques are problem-tailored. Merits of the BMM algorithms are illustrated via three different representative system design problems with different design criteria, namely, weighted sum-rate (WSR) maximization for multi-hop RIS-aided multi-user multi-input single-output (MISO) cellular networks, minimum rate (MR) maximization for RIS-aided multi-user MISO cellular networks, and sum-rate (SR) (i.e., the system capacity) maximization for RIS-aided MIMO device-to-device (D2D) networks.

WSR maximization for RIS-aided multi-user MISO cellular networks. Noticing that if no RIS is deployed in the network, this problem reduces to the classical WSR maximization, for which many algorithms have been proposed, two approaches were brought up in [14] based on the block coordinate descent (BCD) method (a.k.a. alternating minimization or Gauss-Seidel method) [18], where the design variables are partitioned into different blocks and are updated cyclically with the remaining blocks fixed. The first approach is to solve the beamforming block via the weighted minimum mean square error (WMMSE) method [19, 20] and the reflecting block via the Riemannian conjugate gradient (RCG) method [21]. Inheriting a double-loop nature, this approach may invoke many iterations to converge and result in high computational complexity. The other approach is through transforming the problem by the fractional programming (FP) [22] where the reflecting block is solved by MM with a carefully chosen stepsize for line search. This approach, however, relies on the manifold structure of the continuous phase constraint on RISs, making it lame in dealing with other system design problems like the case with RISs of discrete phase [23].

MR maximization for RIS-aided multi-user MISO cellular networks. Besides WSR, the MR metric, which is able to provide fairness among the multiple users in the network, is also worth considering. Generally, the MR objective in this case becomes nonsmooth. In [13], a similar problem under a multi-group multi-cast system setting was considered, where the authors aimed at solving two approximation problems. By convexifying the nonconvex unimodulus phase constraint on RISs, the first problem was tackled with a BMM algorithm where a second-order cone programming (SOCP) is invoked in each iteration. Besides, another approximation problem is obtained by smoothing the MR objective, based on which the per-iteration SOCP could be removed.

SR maximization for RIS-aided MIMO D2D networks. Apart from the MISO systems, the joint beamforming and reflecting design for SR maximization in MIMO systems is further investigated. We consider a MIMO D2D network, where a RIS is deployed to alleviate the co-channel interference among D2D pairs caused by the full frequency reuse [24].

To make it clear, main contributions of this paper are summarized in the following.

  • A unified algorithmic framework via BMM for rate maximizations in RIS-aided networks by joint beamforming and reflecting design is presented. The proposed algorithms are of low signal processing complexity and are broadly applicable for a class of system design problems.

  • To showcase the flexibility of the algorithm, three specific design cases are investigated covering various rate-related design criteria like WSR, MR, and SR, and diverse wireless system settings including MISO and MIMO.

  • Merits of the proposed algorithmic framework are demonstrated both theoretically and empirically, while extensions and generalizations of the framework, e.g., in handling more general constraints and dealing with more general system configurations, are also demonstrated.

The rest of this paper is organized as follows. In Section II, we present the BMM method. Three system design problems, namely, WSR maximization for RIS-aided multi-user MISO networks, MR maximization for RIS-aided multi-user MISO networks, and SR maximization for RIS-aided MIMO D2D networks, are illustrated in Section III, Section IV, and Section V, respectively, with their convergence and complexity analyses given in Section VI. In Section VII, we further discuss several extensions and generalizations on RIS-aided system designs under the proposed algorithm. Section VIII provides simulation results, followed by conclusions in Section IX.

Notations: Boldface upper-case letters denote matrices, boldface lower-case letters denote column vectors, and italics stand for scalars. We denote by 𝟏\mathbf{1} the all-one vectors and by 𝐈\mathbf{I} the identity matrices respectively. We denote the all-zero vectors and all-zero matrices uniformly by 𝟎\mathbf{0}. The real (complex) numbers are denoted by \mathbb{R} (\mathbb{C}), the NN-dimensional real (complex) vectors are denoted by N\mathbb{R}^{N} (N\mathbb{C}^{N}), and the N×NN\times N-dimensional complex matrices (Hermitian matrices) are denoted by N×N\mathbb{C}^{N\times N} (N)(\mathbb{H}^{N}). Superscripts ()(\cdot)^{*}, ()T(\cdot)^{\mathrm{T}}, ()H(\cdot)^{\mathrm{H}}, and ()1(\cdot)^{-1} denote the matrix conjugate, transpose, Hermitian, and inverse operations, respectively. [𝐱]i[\mathbf{x}]_{i} denotes the ii-th element of vector 𝐱\mathbf{x}, and [𝐱]i[\mathbf{x}]_{-i} denotes 𝐱\mathbf{x} with its ii-th element replaced by zero. [𝐗]ij[\mathbf{X}]_{ij} denotes the (ii-th, jj-th) element of matrix 𝐗\mathbf{X}, and [𝐗]:,i[\mathbf{X}]_{:,i} denotes the ii-th column of matrix 𝐗\mathbf{X}. Given 𝐀\mathbf{A}, 𝐁N\mathbf{B}\in\mathbb{H}^{N}, 𝐀𝐁\mathbf{A}\succeq\mathbf{B} (𝐀𝐁\mathbf{A}\succ\mathbf{B}) means 𝐀𝐁\mathbf{A}-\mathbf{B} is a positive semidefinite (definite) matrix. 𝔧\mathfrak{j} denotes the imaginary unit satisfying 𝔧2=1\mathfrak{j}^{2}=-1. Re()\mathrm{Re}(\cdot), Im()\mathrm{Im}(\cdot), ||\bigl{|}\cdot\bigr{|}, and ang()\mathrm{ang}(\cdot) denote the real part, the imaginary part, the modulus, and the angle of a complex number, respectively. \otimes and \odot denote the Kronecker product and the Hadamard product of two matrices respectively. tr()\mathrm{tr}(\cdot) and F\left\|\cdot\right\|_{\mathrm{F}} denote the trace and the Frobenius norm of a matrix respectively. diag(𝐱)\mathrm{diag}(\mathbf{x}) denote a diagonal matrix with entries of 𝐱\mathbf{x} being on the diagonal.

II Block Minorization-Maximization Method

In this section, we present the general scheme of the BMM method [16, 17], which can be regarded as a combination of the BCD method [18] and the MM method [17]. BCD is an optimization method aiming at finding a local optimum of the problem by optimizing along one variable block at a time while the other blocks are held fixed. Instead of solving for an exact variable update as in BCD, BMM solves a series of simpler surrogate problems w.r.t. one variable block each time via carrying out an inexact variable update. Specifically, consider the following maximization problem:

maximize𝐱1,,𝐱m\displaystyle\underset{\mathbf{x}_{1},\ldots,\mathbf{x}_{m}}{\mathrm{maximize}} f(𝐱1,,𝐱m)\displaystyle f(\mathbf{x}_{1},\ldots,\mathbf{x}_{m}) (1)
subjectto\displaystyle\mathrm{subject}\ \mathrm{to} 𝐱i𝒳i,i=1,,m,\displaystyle\mathbf{x}_{i}\in\mathcal{X}_{i},\ i=1,\ldots,m,

where f:i=1m𝒳if:\prod_{i=1}^{m}{\cal X}_{i}\rightarrow\mathbb{R}. To make the problem well-defined, we assume ff is regular at every point in i=1m𝒳i\prod_{i=1}^{m}{\cal X}_{i} and the level set {𝐱1,,𝐱mf(𝐱1,,𝐱m)f(𝐱1(t),,𝐱m(t))}\bigl{\{}\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\mid f(\mathbf{x}_{1},\ldots,\mathbf{x}_{m})\geq f(\mathbf{x}_{1}^{(t)},\ldots,\mathbf{x}_{m}^{(t)})\bigr{\}} is compact [25], where 𝐱i(t)\mathbf{x}_{i}^{(t)}’s denote some given values. In the BMM method, different variable blocks are updated in a cyclic order. At the tt-th iteration, the ii-th variable block is updated by solving a maximization subproblem as follows:

maximize𝐱i\displaystyle\underset{\mathbf{x}_{i}}{\mathrm{maximize}} fi(𝐱i,𝐱i(t))\displaystyle f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)})
subjectto\displaystyle\mathrm{subject}\ \mathrm{to} 𝐱i𝒳i,\displaystyle\mathbf{x}_{i}\in\mathcal{X}_{i},

where fi(𝐱i,𝐱i(t))f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)}) is defined as a minorizing function of ff w.r.t. 𝐱i\mathbf{x}_{i} at iterate 𝐱i(t)=(𝐱1(t),,𝐱i1(t),𝐱i(t1),,𝐱m(t1))\mathbf{x}_{-i}^{(t)}\negthinspace=\negthinspace(\mathbf{x}_{1}^{(t)}\negthinspace,\negthinspace\ldots,\mathbf{x}_{i-1}^{(t)},\mathbf{x}_{i}^{(t-1)}\negthinspace,\negthinspace\ldots,\mathbf{x}_{m}^{(t-1)}). Suppose 𝒳1,,𝒳m\mathcal{X}_{1},\negthinspace\ldots,\mathcal{X}_{m} are convex, the generated sequence {𝐱1(t),,𝐱m(t)}\{\mathbf{x}_{1}^{(t)},\ldots,\mathbf{x}_{m}^{(t)}\} can be proved to converge to a stationary point of Problem (1) if the following mild assumptions hold for fi(𝐱i,𝐱i(t))f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)}), i=1,,mi=1,\ldots,m [16]:

fi(𝐱i,𝐱i(t))is continuous in (𝐱i,𝐱i(t))\displaystyle f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)})\ \text{is continuous in }(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)}) (2a)
fi(𝐱i(t1),𝐱i(t))=f(𝐱i(t)),𝐱i(t)𝒳\displaystyle f_{i}^{\prime}(\mathbf{x}_{i}^{(t-1)},\mathbf{x}_{-i}^{(t)})=f(\mathbf{x}_{-i}^{(t)}),\ \forall\mathbf{x}_{-i}^{(t)}\in\mathcal{X} (2b)
fi(𝐱i,𝐱i(t))f(𝐱i,𝐱i(t)),𝐱i𝒳i,𝐱i(t)𝒳\displaystyle f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)})\leq f(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)}),\ \forall\mathbf{x}_{i}\in\mathcal{X}_{i},\>\forall\mathbf{x}_{-i}^{(t)}\in\mathcal{X} (2c)
fi(𝐱i,𝐱i(t);𝐝)|𝐱i=𝐱i(t1)=f(𝐱i(t);𝐝)|𝐱i=𝐱i(t1)𝐝=(𝟎,,𝐝i,,𝟎) s.t. 𝐱i(t1)+𝐝i𝒳i,\displaystyle\begin{aligned} &\nabla f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i}^{(t)};\mathbf{d})\big{|}_{\mathbf{x}_{i}=\mathbf{x}_{i}^{(t-1)}}=\nabla f(\mathbf{x}_{-i}^{(t)};\mathbf{d})\big{|}_{\mathbf{x}_{i}=\mathbf{x}_{i}^{(t-1)}}\\ &\hskip 34.14322pt\forall\mathbf{d}=(\mathbf{0},\ldots,\mathbf{d}_{i},\ldots,\mathbf{0})\text{ s.t. }\mathbf{x}_{i}^{(t-1)}+\mathbf{d}_{i}\in\mathcal{X}_{i},\end{aligned} (2d)

where f(𝐱;𝐝)\nabla f(\mathbf{x};\mathbf{d}) denotes the directional derivative at 𝐱\mathbf{x} along 𝐝\mathbf{d}. If 𝒳i\mathcal{X}_{i} is nonconvex, assumption (2d) should be changed to

fi(𝐱i,𝐱i;𝐝)|𝐱i=𝐱i(t1)=f(𝐱i;𝐝)|𝐱i=𝐱i(t1)\displaystyle\nabla f_{i}^{\prime}(\mathbf{x}_{i},\mathbf{x}_{-i};\mathbf{d})\big{|}_{\mathbf{x}_{i}=\mathbf{x}_{i}^{(t-1)}}=\nabla f(\mathbf{x}_{-i};\mathbf{d})\big{|}_{\mathbf{x}_{i}=\mathbf{x}_{i}^{(t-1)}}
𝐝=(𝟎,,𝐝i,,𝟎) s.t. 𝐝i𝒯𝒳i(𝐱i(t1)),\displaystyle\hskip 31.2982pt\forall\mathbf{d}=(\mathbf{0},\ldots,\mathbf{d}_{i},\ldots,\mathbf{0})\text{ s.t. }\mathbf{d}_{i}\in\mathcal{T}_{\mathcal{X}_{i}}(\mathbf{x}_{i}^{(t-1)}),

where 𝒯𝒳i(𝐱i(t1))\mathcal{T}_{\mathcal{X}_{i}}(\mathbf{x}_{i}^{(t-1)}) denotes the Boulingand tangent cone of 𝒳i\mathcal{X}_{i} at 𝐱i(t1)\mathbf{x}_{i}^{(t-1)} [26]. For minimization problems, a counterpart called block majorization-minimization (BMM), a.k.a. block successive upperbound minimization (BSUM) [16], can be applied where the maximization step of a minorizing function is replaced by a minimization step of a majorizing function. Minorizing and majorizing functions in BMM can be chosen in a flexible way [17] while a properly chosen one can make the updates easy and may lead to a faster convergence over iterations. In practice, the subproblems in BMM are applaudable if they are convex or have closed-form solutions.

III Weighted Sum-Rate Maximization for
RIS-Aided Multi-User MISO Cellular Networks

III-A System Model and Problem Formulation

We consider a multi-hop RIS-aided multi-user MISO downlink communication system, where the base station (BS) equipped with MM antennas communicates with KK users with single antenna in a circular region. We assume there are LL cascaded RISs deployed in the system and the transmitted signal experiences IkI_{k} (IkL)(I_{k}\leq L) hops on the RISs to arrive the kk-th user. Denote 𝐖=[𝐰1,,𝐰K]M×K\mathbf{W}=[\mathbf{w}_{1},\ldots,\mathbf{w}_{K}]\in\mathbb{C}^{M\times K} as the beamforming matrix with 𝐰k\mathbf{w}_{k}, k=1,,Kk=1,\ldots,K being the beamforming vector for the kk-th user. Denote 𝐆0,1N1×M\mathbf{G}_{0,1}\in\mathbb{C}^{N_{1}\times M}, 𝐆i1,iNi×Ni1\mathbf{G}_{i-1,i}\in\mathbb{C}^{N_{i}\times N_{i-1}}, and 𝚯idiag(𝜽i)Ni×Ni\boldsymbol{\Theta}_{i}\triangleq\mathrm{diag}(\boldsymbol{\theta}_{i})\in\mathbb{C}^{N_{i}\times N_{i}}, i=1,,Li=1,\ldots,L as the channel matrix from the BS to the first RIS, the channel matrix from the (i1)(i-1)-th RIS to the ii-th RIS, and the phase shift matrix of the ii-th RIS, respectively. Denote 𝐡k𝗋NIk\mathbf{h}_{k}^{\mathsf{r}}\in\mathbb{C}^{N_{I_{k}}} and 𝐡k𝖽M\mathbf{h}_{k}^{\mathsf{d}}\in\mathbb{C}^{M} as the channel from the last RIS in the reflection channel to the kk-th user and the direct channel from the BS to the kk-th user, respectively. Then the received signal at the kk-th user is given by

yk=\displaystyle y_{k}= 𝐰kH(i=1Ik(𝐆i1,i𝚯i)𝐡k𝗋+𝐡k𝖽)skdesired signal\displaystyle\underbrace{\mathbf{w}_{k}^{\mathrm{H}}\Bigl{(}\prod_{i=1}^{I_{k}}\bigl{(}\mathbf{G}_{i-1,i}\boldsymbol{\Theta}_{i}\bigr{)}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\Bigr{)}s_{k}}_{\text{desired signal}}
+𝐰kHj,jkK(i=1Ik(𝐆i1,i𝚯i)𝐡k𝗋+𝐡k𝖽)sj+ekinterference plus noise,\displaystyle\hskip 34.14322pt+\underbrace{\mathbf{w}_{k}^{\mathrm{H}}\sum_{j,j\neq k}^{K}\Bigl{(}\prod_{i=1}^{I_{k}}\bigl{(}\mathbf{G}_{i-1,i}\boldsymbol{\Theta}_{i}\bigr{)}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\Bigr{)}s_{j}+e_{k}}_{\text{interference plus noise}},

where s1,,sKs_{1},\ldots,s_{K} are the KK independent user symbols with zero mean and unit variance, and ek𝒞𝒩(0,σ2)e_{k}\in\mathcal{CN}(0,\sigma^{2}) represents the additive white Gaussian noise for the kk-th user. In this section, for the illustration simplicity, the system model is set up into a cascaded multi-hop signal transmission scenario, where only the direct transmission paths and the transmission paths through IkI_{k} RISs from the BS to the users have been considered. We will show in Section VII-E such a setup can be easily extended to a more general signal transmission scenario. This multi-hop relaying system model is classical [27, 28] and can be deployed to combat the propagation distance problem and to improve the coverage range. Specially, when I1==Ik=0I_{1}=\cdots=I_{k}=0, there only exists direct transmission paths, which reduces to the traditional system with no RIS deployed. Recently, a deep reinforcement learning approach was proposed for a similar multi-hop system design problem [29], whose performance highly relies on the carefully chosen initializations from some preliminary iterative algorithms.

Given the signal model, the signal-to-interference-plus-noise ratio (SINR) at the kk-th user is computed as follows:111Acknowledging that channel estimation is a nontrivial and crucial problem in RIS-aided system design, while we will assume perfect channel state information to be available through all this paper.

𝖲𝖨𝖭𝖱k=|𝐰kH(i=1Ik(𝐆i1,i𝚯i)𝐡k𝗋+𝐡k𝖽)|2j,jkK|𝐰jH(i=1Ik(𝐆i1,i𝚯i)𝐡k𝗋+𝐡k𝖽)|2+σ2.\mathsf{SINR}_{k}=\frac{\Big{|}\mathbf{w}_{k}^{\mathrm{H}}\Bigl{(}\prod_{i=1}^{I_{k}}\bigl{(}\mathbf{G}_{i-1,i}\boldsymbol{\Theta}_{i}\bigr{)}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\Bigr{)}\Big{|}^{2}}{\sum_{j,j\neq k}^{K}\Big{|}\mathbf{w}_{j}^{\mathrm{H}}\Bigl{(}\prod_{i=1}^{I_{k}}\bigl{(}\mathbf{G}_{i-1,i}\boldsymbol{\Theta}_{i}\bigr{)}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\Bigr{)}\Big{|}^{2}+\sigma^{2}}.

Our interest is to maximize the WSR of the system by jointly designing the beamforming matrix 𝐖\mathbf{W} and the phase shift matrices {𝚯i}\{\boldsymbol{\Theta}_{i}\}. With the data rate (in nats per second per Hertz (nps/Hz)) at the kk-th user defined by 𝖱k=log(1+𝖲𝖨𝖭𝖱k)\mathsf{R}_{k}=\log(1+\mathsf{SINR}_{k}),222The natural logarithm is chosen since optimal solutions of all the rate maximization problems given later are irrelevant to bases of the log-functions. the WSR maximization problem is defined as follows:

maximize𝐖,{𝚯i}\displaystyle\underset{\mathbf{W},\{\boldsymbol{\Theta}_{i}\}}{\mathrm{maximize}} f𝖶𝖲𝖱(𝐖,{𝚯i})=k=1Kωk𝖱k\displaystyle\negthinspace f_{\mathsf{WSR}}(\mathbf{W},\{\boldsymbol{\Theta}_{i}\})=\sum_{k=1}^{K}\omega_{k}\mathsf{R}_{k} (WSRMax)
subjectto\displaystyle\mathrm{subject}\ \mathrm{to} 𝐖𝒲,𝚯i𝒞i,i=1,,L,\displaystyle\negthinspace\mathbf{W}\in\mathcal{W},\ \boldsymbol{\Theta}_{i}\in\mathcal{C}_{i},\ \forall i=1,\ldots,L,

where ω1,,ωK\omega_{1},\ldots,\omega_{K} are the predefined nonnegative weights,

𝒲={𝐖𝐖F2P}\mathcal{W}=\left\{\mathbf{W}\mid\bigl{\|}\mathbf{W}\bigr{\|}_{\mathrm{F}}^{2}\leq P\right\}

denotes the transmit power limit constraint of the BS, and

𝒞i={𝚯i𝚯i=diag(𝜽i),𝜽iNi,|[𝜽i]j|=1,j=1,,Ni}\mathcal{C}_{i}=\negthinspace\left\{\boldsymbol{\Theta}_{i}\negthinspace\mid\boldsymbol{\Theta}_{i}\negthinspace=\negthinspace\mathrm{diag}(\boldsymbol{\theta}_{i}),\,\boldsymbol{\theta}_{i}\negthinspace\in\negthinspace\mathbb{C}^{N_{i}}\negthinspace,\,\bigl{|}[\boldsymbol{\theta}_{i}]_{j}\bigr{|}\negthinspace=\negthinspace 1,\,j\negthinspace=\negthinspace 1,\negthinspace\ldots,N_{i}\right\}

represents the constant modulus constraint for the ii-th RIS indicating that there is no energy loss for the signal when going through the RISs. Problem (WSRMax) is nonconvex and NP-hard [30]. In the following, we will develop a globally convergent algorithm via BMM for problem resolution.

III-B The Update Step of 𝐖\mathbf{W}

We take beamforming variables {𝐰i}\{\mathbf{w}_{i}\} as one block. Given iterate {𝐖¯,{𝚯i¯}}\{\underline{\mathbf{W}},\{\underline{\boldsymbol{\Theta}_{i}}\}\}333In this paper, underlined variables denote those whose values are given., the objective function f𝖶𝖲𝖱f_{\mathsf{WSR}} w.r.t. 𝐖\mathbf{W} is444f𝖶𝖲𝖱,𝐖(𝐖)f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W}) has been used to represent f𝖶𝖲𝖱,𝐖(𝐖,𝐖¯,{𝚯i¯})f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W},\underline{\mathbf{W}},\{\underline{\boldsymbol{\Theta}_{i}}\}) for notational simplicity. Similar simplifications will be adopted along this paper.

f𝖶𝖲𝖱,𝐖(𝐖)=k=1Kωklog(1+|𝐰kH𝐡k|2j,jkK|𝐰jH𝐡k|2+σ2),f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W})=\sum_{k=1}^{K}\omega_{k}\log\bigl{(}1+\frac{\bigl{|}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2}}\bigr{)}, (3)

where 𝐡k=i=1Ik(𝐆i1,i𝚯i¯)𝐡k𝗋+𝐡k𝖽\mathbf{h}_{k}=\prod_{i=1}^{I_{k}}\bigl{(}\mathbf{G}_{i-1,i}\underline{\boldsymbol{\Theta}_{i}}\bigr{)}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}.

Optimization with f𝖶𝖲𝖱,𝐖(𝐖)f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W}) reduces to the classic WSR maximization problem, which is still nonconvex and NP-hard. We first introduce the following result, with which a quadratic minorizing function for f𝖶𝖲𝖱,𝐖(𝐖)f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W}) can be constructed.

Proposition 1.

The log(1+|x|2y)\log(1+\frac{|x|^{2}}{y}) with xx\in\mathbb{C} and y>0y>0 is minorized at (x¯,y¯)(\underline{x},\underline{y}) as follows:

log(1+|x|2y)\displaystyle\log(1+\frac{|x|^{2}}{y})\geq |x¯|2y¯(y¯+|x¯|2)(y+|x|2)+2y¯Re(x¯x)\displaystyle-\frac{|\underline{x}|^{2}}{\underline{y}(\underline{y}+|\underline{x}|^{2})}(y+|x|^{2})+\frac{2}{\underline{y}}\mathrm{Re}(\underline{x}^{*}x)
+log(1+|x¯|2y¯)|x¯|2y¯.\displaystyle\hskip 85.35826pt+\log(1+\frac{|\underline{x}|^{2}}{\underline{y}})-\frac{|\underline{x}|^{2}}{\underline{y}}.
Proof:

The proof is deferred to Appendix -A. ∎

A pictorial illustration of the minorization procedure in Lemma 1 is demonstrated in Fig. 1.

Refer to caption
Figure 1: A pictorial demonstration of the minorization procedure for log(1+x2y)\log(1+\frac{x^{2}}{y}) (xx\in\mathbb{R} and y>0y>0) at (x,y)=(2,2)(x_{\triangle},y_{\triangle})=(2,2).

Based on Lemma 1, taking 𝐰kH𝐡k\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k} as xx and j,jkK|𝐰jH𝐡k|2+σ2\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2} as yy, a minorizing function for f𝖶𝖲𝖱,𝐖f_{\mathsf{WSR},\mathbf{W}} is constructed as follows:

f𝖶𝖲𝖱,𝐖(𝐖)\displaystyle f_{\mathsf{WSR},\mathbf{W}}^{\prime}(\mathbf{W}) (4)
=\displaystyle= k=1Kωk(αkj=1K|𝐰jH𝐡k|2+2Re(βk𝐰kH𝐡k))+𝖼𝗈𝗇𝗌𝗍w,\displaystyle\sum_{k=1}^{K}\omega_{k}\bigl{(}-\alpha_{k}\sum_{j=1}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}\negthinspace+\negthinspace 2\mathrm{Re}(\beta_{k}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k})\bigr{)}\negthinspace+\negthinspace\mathsf{const}_{w},

where

αk=𝖲𝖨𝖭𝖱k¯j=1K|𝐰jH¯𝐡k|2+σ2,βk=𝖲𝖨𝖭𝖱k¯𝐰kH¯𝐡k,\alpha_{k}=\frac{\underline{\mathsf{SINR}_{k}}}{\sum_{j=1}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2}},\hskip 28.45274pt\beta_{k}=\frac{\underline{\mathsf{SINR}_{k}}}{\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}},

and 𝖼𝗈𝗇𝗌𝗍w,k=k=1Kωk(𝖱k¯𝖲𝖨𝖭𝖱k¯αkσ2)\mathsf{const}_{w,k}=\sum_{k=1}^{K}\omega_{k}\left(\underline{\mathsf{R}_{k}}-\underline{\mathsf{SINR}_{k}}-\alpha_{k}\sigma^{2}\right), in which 𝖱k¯\underline{\mathsf{R}_{k}} and 𝖲𝖨𝖭𝖱k¯\underline{\mathsf{SINR}_{k}} are calculated with the given {𝐖¯,{𝚯i¯}}\{\underline{\mathbf{W}},\{\underline{\boldsymbol{\Theta}_{i}}\}\}. By rearranging the terms and ignoring the constant terms, we obtain the resultant convex subproblem for 𝐖\mathbf{W} given by

minimize𝐖𝒲\displaystyle\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{minimize}} k=1K(𝐰kH𝐑𝐰k2Re(𝐰kH[𝐐]:,k)),\displaystyle\sum_{k=1}^{K}\bigl{(}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{R}\mathbf{w}_{k}-2\mathrm{Re}(\mathbf{w}_{k}^{\mathrm{H}}\bigl{[}\mathbf{Q}\bigr{]}_{:,k})\bigr{)}, (5)

where 𝐑=k=1Kωkαk𝐡k𝐡kH\mathbf{R}\negthinspace=\negthinspace\sum_{k=1}^{K}\omega_{k}\alpha_{k}\mathbf{h}_{k}\mathbf{h}_{k}^{\mathrm{H}} and [𝐐]:,k=ωkβk𝐡k\bigl{[}\mathbf{Q}\bigr{]}_{:,k}\negthinspace\negthinspace=\negthinspace\omega_{k}\beta_{k}\mathbf{h}_{k}. Note that Problem (5) can be cast as a constrained weighted sum mean square error minimization problem and can be rewritten as

minimize𝐖𝒲\displaystyle\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{minimize}} tr(𝐖H𝐑𝐖)2Re(tr(𝐖H𝐐)).\displaystyle\mathrm{tr}\left(\mathbf{W}^{\mathrm{H}}\mathbf{RW}\right)-2\mathrm{Re}\left(\mathrm{tr}(\mathbf{W}^{\mathrm{H}}\mathbf{Q})\right). (6)
Lemma 2.

By solving the Karush-Kuhn-Tucker (KKT) system, the optimal solution to Problem (6) is given by

𝐖={𝐑1𝐐if 𝐑1𝐐F2P(𝐑+γ𝐈)1𝐐otherwise, \mathbf{W}^{\star}=\left\{\begin{array}[]{ll}\mathbf{R}^{-1}\mathbf{Q}&\hskip 8.5359pt\text{if }\bigl{\|}\mathbf{R}^{-1}\mathbf{Q}\bigr{\|}_{\mathrm{F}}^{2}\leq P\\ \left(\mathbf{R}+\gamma\mathbf{I}\right)^{-1}\mathbf{Q}&\hskip 8.5359pt\text{otherwise, }\end{array}\right.

where the variable γ\gamma satisfies

(𝐑+γ𝐈)1𝐐F2=P,\bigl{\|}(\mathbf{R}+\gamma\mathbf{I})^{-1}\mathbf{Q}\bigr{\|}_{\mathrm{F}}^{2}=P,

and can be readily found via one-dimensional line search methods to meet

n=1N[𝐕H𝐐𝐐H𝐕]nn([𝚲]nn+γ)2=P,\sum_{n=1}^{N}\frac{\bigl{[}\mathbf{V}^{\mathrm{H}}\mathbf{Q}\mathbf{Q}^{\mathrm{H}}\mathbf{V}\bigr{]}_{nn}}{\bigl{(}\bigl{[}\bm{\Lambda}\bigr{]}_{nn}+\gamma\bigr{)}^{2}}=P,

where 𝐕\mathbf{V} and 𝚲\boldsymbol{\Lambda} are obtained from the eigendecomposition 𝐑=𝐕𝚲𝐕H\mathbf{R}=\mathbf{V}\bm{\Lambda}\mathbf{V}^{\mathrm{H}}.

III-C The Update Step of {𝚯i}\{\boldsymbol{\Theta}_{i}\}

In this section, we choose to update the LL phase shift matrices {𝚯i}\{\boldsymbol{\Theta}_{i}\} successively. Given iterate {𝐖¯,{𝚯i¯}}\{\underline{\mathbf{W}},\{\underline{\boldsymbol{\Theta}_{i}}\}\}, f𝖶𝖲𝖱f_{\mathsf{WSR}} w.r.t. 𝚯l\boldsymbol{\Theta}_{l} for l=1,,Ll=1,\ldots,L,555Note that w.l.o.g. we have assumed IklI_{k}\geq l holds for k=1,,Kk=1,\ldots,K. is given by

f𝖶𝖲𝖱,𝚯l(𝚯l)=k=1Kωklog(1+|𝐰kH¯𝐅k,l𝜽l+𝐰kH¯𝐡k𝖽|2j,jkK|𝐰jH¯𝐅k,l𝜽l+𝐰jH¯𝐡k𝖽|2+σ2),\displaystyle\begin{aligned} &f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}\left(\boldsymbol{\Theta}_{l}\right)\\ =&\sum_{k=1}^{K}\omega_{k}\log\bigl{(}1+\frac{\bigl{|}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k,l}\boldsymbol{\theta}_{l}+\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\boldsymbol{\theta}_{l}+\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}+\sigma^{2}}\bigr{)},\end{aligned} (7)

with 𝐅k,l=i=1l1(𝐆i1,i𝚯¯i)𝐆l1,ldiag(i=l+1Ik𝐆i1,i𝚯¯i𝐡k𝗋)\mathbf{F}_{k,l}\negthinspace=\negthinspace\negthinspace\prod_{i=1}^{l-1}(\mathbf{G}_{i\negthinspace-\negthinspace 1,i}\,\underline{\boldsymbol{\Theta}}_{i})\mathbf{G}_{l-1,l}\mathrm{diag}\bigl{(}\prod_{i=l+1}^{I_{k}}\negthinspace\negthinspace\mathbf{G}_{i\negthinspace-\negthinspace 1,i}\,\underline{\boldsymbol{\Theta}}_{i}\mathbf{h}_{k}^{\mathsf{r}}\bigr{)}. Based on Lemma 1, a minorizing function for f𝖶𝖲𝖱,𝚯lf_{\mathsf{WSR},\boldsymbol{\Theta}_{l}} is constructed in the following way666Note that αk\alpha_{k} and βk\beta_{k} have the same expressions as given in Section III-B, while the iterate value {𝐖¯,{𝚯i¯}}\{\underline{\mathbf{W}},\{\underline{\boldsymbol{\Theta}_{i}}\}\} may be different.

f𝖶𝖲𝖱,𝚯l(𝚯l)\displaystyle f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime}(\boldsymbol{\Theta}_{l}) =k=1Kωk(αkj=1K|𝐰jH¯𝐅k,l𝜽l+𝐰jH¯𝐡k𝖽|2\displaystyle=\sum_{k=1}^{K}\omega_{k}\Bigl{(}-\alpha_{k}\sum_{j=1}^{K}\Bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\boldsymbol{\theta}_{l}+\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\Bigr{|}^{2} (8)
+2Re(βk𝐰kH¯𝐅k,l𝜽l+βk𝐰kH¯𝐡k𝖽))+𝖼𝗈𝗇𝗌𝗍w,\displaystyle+2\mathrm{Re}\bigl{(}\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k,l}\boldsymbol{\theta}_{l}+\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\Bigr{)}+\mathsf{const}_{w},

which can be further compactly rewritten as

f𝖶𝖲𝖱,𝚯l(𝚯l)=𝜽lH𝐋l𝜽l+k=1K2ωkRe(𝜽lH𝐅k,lH(βk𝐰k¯αkj=1K𝐰j¯𝐰jH¯𝐡k𝖽))+𝖼𝗈𝗇𝗌𝗍θ,l,\displaystyle\begin{aligned} f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime}(\boldsymbol{\Theta}_{l})&=-\boldsymbol{\theta}_{l}^{\mathrm{H}}\mathbf{L}_{l}\boldsymbol{\theta}_{l}+\sum_{k=1}^{K}2\omega_{k}\mathrm{Re}\Bigl{(}\boldsymbol{\theta}_{l}^{\mathrm{H}}\mathbf{F}_{k,l}^{\mathrm{H}}\bigl{(}\beta_{k}^{*}\underline{\mathbf{w}_{k}}\\ &\hskip 42.67912pt-\alpha_{k}\sum_{j=1}^{K}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\Bigr{)}+\mathsf{const}_{\theta,l},\end{aligned} (9)

where 𝐋l=k=1Kωkαkj=1K𝐅k,lH𝐰j¯𝐰jH¯𝐅k,l\mathbf{L}_{l}=\sum_{k=1}^{K}\omega_{k}\alpha_{k}\sum_{j=1}^{K}\mathbf{F}_{k,l}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l} and 𝖼𝗈𝗇𝗌𝗍θ,l=k=1Kωk(αkj=1K|𝐰jH¯𝐡k𝖽|2+2Re(βk𝐰kH¯𝐡k𝖽))+𝖼𝗈𝗇𝗌𝗍w\mathsf{const}_{\theta,l}=\sum_{k=1}^{K}\omega_{k}\bigl{(}-\alpha_{k}\sum_{j=1}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}+2\mathrm{Re}(\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}})\bigr{)}+\mathsf{const}_{w}. Optimizing f𝖶𝖲𝖱,𝚯l(𝚯l)f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime}(\boldsymbol{\Theta}_{l}) under 𝒞l\mathcal{C}_{l} is intricate, hence we further introduce the following two results to linearize f𝖶𝖲𝖱,𝚯lf_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime}.

Lemma 3 ([31] ).

Let 𝐋\mathbf{L}, 𝐌N\mathbf{M}\in\mathbb{H}^{N} such that 𝐌𝐋\mathbf{M}\succeq\mathbf{L}. Then the function 𝐱H𝐋𝐱\mathbf{x}^{\mathrm{H}}\mathbf{L}\mathbf{x} with 𝐱N\mathbf{x}\in\mathbb{C}^{N} is majorized at 𝐱¯\underline{\mathbf{x}} as follows:

𝐱H𝐋𝐱𝐱H𝐌𝐱+2Re(𝐱H(𝐋𝐌)𝐱¯)+𝐱¯H(𝐌𝐋)𝐱¯.\mathbf{x}^{\mathrm{H}}\mathbf{L}\mathbf{x}\leq\mathbf{x}^{\mathrm{H}}\mathbf{M}\mathbf{x}+2\mathrm{Re}(\mathbf{x}^{\mathrm{H}}(\mathbf{L}-\mathbf{M})\text{$\underline{\mathbf{x}}$})+\underline{\mathbf{x}}^{\mathrm{H}}(\mathbf{M}-\mathbf{L})\underline{\mathbf{x}}.
Lemma 4.

Given 𝐌=𝐱22𝐈\mathbf{M}=\left\|\mathbf{x}\right\|_{2}^{2}\mathbf{I} and 𝐋=𝐱𝐱H\mathbf{L}=\mathbf{x}\mathbf{x}^{\mathrm{H}} with 𝐱n\mathbf{x}\in\mathbb{C}^{n}, it follows that 𝐌𝐋𝟎\mathbf{M}-\mathbf{L}\succeq\mathbf{0}.

Proof:

For any 𝐲N\mathbf{y}\in\mathbb{C}^{N}, we can obtain 𝐲H(𝐌𝐋)𝐲=𝐱22𝐲22|𝐱H𝐲|20\mathbf{y}^{\mathrm{H}}(\mathbf{M}-\mathbf{L})\mathbf{y}=\left\|\mathbf{x}\right\|_{2}^{2}\left\|\mathbf{y}\right\|_{2}^{2}-|\mathbf{x}^{\mathrm{H}}\mathbf{y}|^{2}\geq 0, which completes the proof. ∎

Applying Lemma 3 and Lemma 4 to the first term in (9), a linear minorizing function for f𝖶𝖲𝖱,𝚯lf_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime} can be obtained as

f𝖶𝖲𝖱,𝚯l′′(𝚯l)=2Re(𝜽lH𝐛l)Nlλl𝜽lH¯(λl𝐈𝐋l)𝜽l¯+𝖼𝗈𝗇𝗌𝗍θ,l,\!f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime}(\boldsymbol{\Theta}_{l})\!\!=\!-2\mathrm{Re}\bigl{(}\boldsymbol{\theta}_{l}^{\mathrm{H}}\mathbf{b}_{l}\bigr{)}-N_{l}\lambda_{l}-\underline{\boldsymbol{\theta}_{l}^{\mathrm{H}}}\bigl{(}\lambda_{l}\mathbf{I}-\mathbf{L}_{l}\bigr{)}\underline{\boldsymbol{\theta}_{l}}+\mathsf{const}_{\theta,l}, (10)

where

𝐛l=k=1Kωk𝐅k,lH(αkj=1K𝐰j¯𝐰jH¯𝐡k𝖽βk𝐰k¯)+(𝐋lλl𝐈)𝜽l¯\mathbf{b}_{l}=\sum_{k=1}^{K}\omega_{k}\mathbf{F}_{k,l}^{\mathrm{H}}\bigl{(}\alpha_{k}\sum_{j=1}^{K}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}-\beta_{k}^{*}\underline{\mathbf{w}_{k}}\bigr{)}+(\mathbf{L}_{l}-\lambda_{l}\mathbf{I})\underline{\boldsymbol{\theta}_{l}}

with λl=k=1Kωkαkj=1K𝐰jH¯𝐅l,k22\lambda_{l}=\sum_{k=1}^{K}\omega_{k}\alpha_{k}\sum_{j=1}^{K}\bigl{\|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{l,k}\bigr{\|}_{2}^{2}. Finally, noticing the second term in f𝖶𝖲𝖱,𝚯l′′f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime} is constant over 𝒞l\mathcal{C}_{l} and discarding the constants, the subproblem for 𝚯l\boldsymbol{\Theta}_{l} is given by

minimize𝚯l𝒞l\displaystyle\underset{\boldsymbol{\Theta}_{l}\in\mathcal{C}_{l}}{\mathrm{minimize}} Re(𝜽lH𝐛l).\displaystyle\mathrm{Re}\bigl{(}\boldsymbol{\theta}_{l}^{\mathrm{H}}\mathbf{b}_{l}\bigr{)}. (11)
Lemma 5 ([31] ).

Optimal solutions to Problem (11) can be obtained in closed-forms as 𝛉l=e𝔧ang(𝐛l)\boldsymbol{\theta}_{l}^{\star}=e^{\mathfrak{j}\mathrm{ang}(-\mathbf{b}_{l})}.

In Problem (11), elements of 𝜽l\boldsymbol{\theta}_{l} are separable in the objective and the constraint, and hence can be updated in parallel.

In summary, based on BMM the variable blocks 𝐖\mathbf{W} and {𝚯i}\{\boldsymbol{\Theta}_{i}\} will be updated cyclically in closed-forms until some convergence criterion is met.777It is sometimes called “semi-closed” as line search methods are invovled. The overall BMM algorithm is summarized in Algorithm 1 with its convergence and complexity analyses deferred to Section VI.

Algorithm 1 The BMM Algorithm for Problem (WSRMax).

Input: {𝐡i𝗋}\{\mathbf{h}_{i}^{\mathsf{r}}\}, {𝐡i𝖽}\{\mathbf{h}_{i}^{\mathsf{d}}\}, {𝐆i1,i}\{\mathbf{G}_{i-1,i}\}, PP, {ωk}\{\omega_{k}\}, σ2\sigma^{2}, initial feasible values of 𝐖\mathbf{W} and {𝚯i}\{\boldsymbol{\Theta}_{i}\}.

Repeat

1. Update 𝐖\mathbf{W} by solving Prob. (5) via Lemma 2;

2. Update {𝚯i}\negthinspace\{\boldsymbol{\Theta}_{i}\}\negthinspace successively by solving Prob. (11) via Lemma 5;

Until the value of the objective function converges.

IV Minimum Rate Maximization for
RIS-Aided Multi-User MISO Cellular Networks

IV-A System Model and Problem Formulation

The system model considered in this section is quite similar to the one discussed in Section III, except that there is only a single RIS with NN reflecting elements. We denote 𝐆N×M\mathbf{G}\in\mathbb{C}^{N\times M} and 𝚯diag(𝜽)N×N\boldsymbol{\Theta}\triangleq\mathrm{diag}\left(\boldsymbol{\theta}\right)\in\mathbb{C}^{N\times N} as the channel matrix from the BS to the RIS and the phase shift matrix of the RIS, respectively. The received signal at the kk-th user is given by

yk\displaystyle y_{k} =𝐰kH(𝐆𝚯𝐡k𝗋+𝐡k𝖽)skdesired signal+j,jkK𝐰jH(𝐆𝚯𝐡k𝗋+𝐡k𝖽)sj+ekinterference plus noise,\displaystyle=\underset{\text{desired signal}}{\underbrace{\mathbf{w}_{k}^{\mathrm{H}}\bigl{(}\mathbf{G}\boldsymbol{\Theta}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}s_{k}}}+\negthinspace\underset{\text{interference plus noise}}{\underbrace{\sum_{j,j\neq k}^{K}\mathbf{w}_{j}^{\mathrm{H}}\bigl{(}\mathbf{G}\boldsymbol{\Theta}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}s_{j}+e_{k}}},

and the SINR at the kk-th user is accordingly computed as

𝖲𝖨𝖭𝖱k=|𝐰kH(𝐆𝚯𝐡k𝗋+𝐡k𝖽)|2j,jkK|𝐰jH(𝐆𝚯𝐡k𝗋+𝐡k𝖽)|2+σ2.\mathsf{SINR}_{k}=\frac{\bigl{|}\mathbf{w}_{k}^{\mathrm{H}}\bigl{(}\mathbf{G}\boldsymbol{\Theta}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\bigl{(}\mathbf{G}\boldsymbol{\Theta}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\bigr{|}^{2}+\sigma^{2}}.

Our design target is to maximize the MR of the system by jointly designing the beamforming matrix 𝐖\mathbf{W} and the phase shift matrix 𝚯\boldsymbol{\Theta}. With the data rate at the kk-th user defined by 𝖱k=𝗅𝗈𝗀(1+𝖲𝖨𝖭𝖱k)\mathsf{R}_{k}=\mathsf{log}(1+\mathsf{SINR}_{k}), the MR maximization problem is

maximize𝐖,𝚯\displaystyle\underset{\mathbf{W},\boldsymbol{\Theta}}{\mathrm{maximize}} f𝖬𝖱(𝐖,𝚯)=mink=1,,K𝖱k\displaystyle f_{\mathsf{MR}}\left(\mathbf{W},\boldsymbol{\Theta}\right)=\underset{k=1,\ldots,K}{\text{$\min$}}\ \mathsf{R}_{k} (MRMax)
subjectto\displaystyle\mathrm{subject}\ \mathrm{to} 𝐖𝒲,𝚯𝒞,\displaystyle\mathbf{W}\in\mathcal{W},\ \boldsymbol{\Theta}\in\mathcal{C},

where 𝒲\mathcal{W} is defined as before and

𝒞={𝚯𝚯=diag(𝜽),𝜽N,|[𝜽]j|=1,j=1,,N}.\mathcal{C}=\bigl{\{}\boldsymbol{\Theta}\negthinspace\mid\negthinspace\boldsymbol{\Theta}=\mathrm{diag}(\boldsymbol{\theta}),\>\boldsymbol{\theta}\in\mathbb{C}^{N}\negthinspace,\>\bigl{|}[\boldsymbol{\theta}]_{j}\bigr{|}=1,\>\forall j=1,\ldots,N\bigr{\}}.

Problem (MRMax) is nonconvex and NP-hard. Like in the last section, a low-complexity and globally convergent BMM-based algorithm will be developed for problem resolution.

IV-B The Update Step of 𝐖\mathbf{W}

Given the iterate {𝐖¯,𝚯¯}\left\{\underline{\mathbf{W}},\underline{\boldsymbol{\Theta}}\right\}, the objective f𝖬𝖱f_{\mathsf{MR}} w.r.t. 𝐖\mathbf{W} is

f𝖬𝖱,𝐖(𝐖)=min𝑘log(1+|𝐰kH𝐡k|2j,jkK|𝐰jH𝐡k|2+σ2),f_{\mathsf{MR},\mathbf{W}}(\mathbf{W})=\underset{k}{\text{$\min$}}\,\log\Bigl{(}1+\frac{\bigl{|}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2}}\Bigr{)},

where 𝐡k=𝐆𝚯¯𝐡k𝗋+𝐡k𝖽\mathbf{h}_{k}=\mathbf{G}\underline{\boldsymbol{\Theta}}\mathbf{h}_{k}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}. For the pointwise minimum function f𝖬𝖱,𝐖f_{\mathsf{MR},\mathbf{W}}, a minorizing function of it can be obtained based on the minorizing functions of 𝖱1,,𝖱k\mathsf{R}_{1},\ldots,\mathsf{R}_{k} (see a proof given in [32]). With Lemma 1, a minorizing function for f𝖬𝖱,𝐖f_{\mathsf{MR},\mathbf{W}} can be constructed as follows:

f𝖬𝖱,𝐖(𝐖)\displaystyle\hskip 13.04874ptf_{\mathsf{MR},\mathbf{W}}^{\prime}(\mathbf{W})
=min𝑘αkj=1K|𝐰jH𝐡k|2+2Re(βk𝐰kH𝐡k)+𝖼𝗈𝗇𝗌𝗍w,k,\displaystyle=\underset{k}{\text{$\min$}}-\alpha_{k}\sum_{j=1}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+2\mathrm{Re}\left(\beta_{k}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k}\right)+\mathsf{const}_{w,k},

where 𝖼𝗈𝗇𝗌𝗍w,k=𝖱k¯𝖲𝖨𝖭𝖱k¯αkσ2\mathsf{const}_{w,k}=\underline{\mathsf{R}_{k}}-\underline{\mathsf{SINR}_{k}}-\alpha_{k}\sigma^{2}. Then the subproblem for 𝐖\mathbf{W} becomes a minimax problem given by

minimize𝐖𝒲max𝑘tr(𝐖H𝐑k𝐖)2Re(𝐰kH𝐪k)𝖼𝗈𝗇𝗌𝗍w,k,\begin{aligned} &\underset{\mathbf{W}\in\mathcal{W}}{\negthickspace\negthickspace\mathrm{minimize}}&&\negthickspace\negthickspace\underset{k}{\max}\;\mathrm{tr}\bigl{(}\mathbf{W}^{\mathrm{H}}\mathbf{R}_{k}\mathbf{W}\bigr{)}\negthinspace-\negthinspace 2\mathrm{Re}(\mathbf{w}_{k}^{\mathrm{H}}\mathbf{q}_{k})\negthinspace-\negthinspace\mathsf{const}_{w,k},\end{aligned}\negthickspace\negthickspace\negthickspace\negthickspace\negthickspace (12)

where 𝐑k=αk𝐡k𝐡kH\mathbf{R}_{k}=\alpha_{k}\mathbf{h}_{k}\mathbf{h}_{k}^{\mathrm{H}} and 𝐪k=βk𝐡k\mathbf{q}_{k}=\beta_{k}\mathbf{h}_{k}. The discrete maximum of the objective can be easily transformed to be a continuous maximum over a simplex, and we have the following problem

minimize𝐖𝒲max𝐬𝒮k=1Ksk(tr(𝐖H𝐑k𝐖)2Re(𝐰kH𝐪k)𝖼𝗈𝗇𝗌𝗍w,k),\negthinspace\begin{aligned} &\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{minimize}}&&\negthickspace\negthickspace\negthickspace\underset{\mathbf{s}\in\mathcal{S}}{\max}\negthinspace\sum_{k=1}^{K}\negthinspace s_{k}\negthinspace\bigl{(}\mathrm{tr}(\mathbf{W}^{\mathrm{H}}\mathbf{R}_{k}\negthinspace\mathbf{W})\negmedspace-\negmedspace 2\mathrm{Re}(\mathbf{w}_{k}^{\mathrm{H}}\mathbf{q}_{k})\negmedspace-\negmedspace\mathsf{const}_{w,k}\bigr{)},\end{aligned} (13)

where 𝒮={𝐬K𝟏T𝐬=c,𝐬𝟎}\mathcal{S}=\left\{\mathbf{s}\in\mathbb{R}^{K}\mid\mathbf{1}^{\mathrm{T}}\mathbf{s}=c,\mathbf{s}\geq\mathbf{0}\right\} with constant c>0c>0. Then solutions to Problem (12) can be obtained by solving Problem (13). The objective of Problem (13) is convex-concave in 𝐖\mathbf{W} and 𝐬\mathbf{s}, and the constraint sets 𝒲\mathcal{W} and 𝒮\mathcal{S} are both nonempty compact and convex. Hence, a saddle point always exists for Problem (13) and then it can be swapped to be a maximin problem without affecting its solutions [33] as

maximize𝐬𝒮min𝐖𝒲k=1Ksk(tr(𝐖H𝐑k𝐖)2Re(𝐰kH𝐪k)𝖼𝗈𝗇𝗌𝗍w,k).\negthinspace\begin{aligned} &\underset{\mathbf{s}\in\mathcal{S}}{\mathrm{maximize}}&&\negthickspace\negthickspace\negthickspace\negthinspace\underset{\mathbf{W}\in\mathcal{W}}{\min}\negthinspace\sum_{k=1}^{K}\negthinspace s_{k}\negthinspace\bigl{(}\mathrm{tr}(\mathbf{W}^{\mathrm{H}}\mathbf{R}_{k}\negthinspace\mathbf{W})\negthickspace-\negthickspace 2\mathrm{Re}(\mathbf{w}_{k}^{\mathrm{H}}\mathbf{q}_{k}\negthinspace)\negthickspace-\negthickspace\mathsf{const}_{w,k}\negthinspace\bigr{)}.\end{aligned} (14)

Problem (14) is a convex problem in variable 𝐬\mathbf{s} with a simplex constraint 𝒮{\cal S}, which can be efficiently solved via many iterative algorithms. In this paper, we adopt the mirror ascent algorithm (MAA) [34, 35] outlined in the following.

Mirror Ascent Algorithm (MAA) Input: function h(𝐬)h(\mathbf{s}), initial feasible value of 𝐬\mathbf{s}. Repeat 1. Calculate a subgradient 𝐠h(𝐬¯)\mathbf{g}\in\partial h(\underline{\mathbf{s}}) (the subdifferential of hh at 𝐬¯\underline{\mathbf{s}}); 2. Update 𝐬=argmax𝐬𝒮{𝐠T𝐬1γDφ(𝐬,𝐬¯)},\mathbf{s}=\underset{}{\mathrm{arg}}\>\underset{\mathbf{s}\in\mathcal{S}}{\max}\bigl{\{}\mathbf{g}^{\mathrm{T}}\mathbf{s}-\frac{1}{\gamma}D_{\varphi}(\mathbf{s},\underline{\mathbf{s}})\bigr{\}},     with Dφ(𝐬,𝐬¯)=φ(𝐬)φ(𝐬¯)(φ(𝐬¯))T(𝐬𝐬¯);D_{\varphi}(\mathbf{s},\underline{\mathbf{s}})=\varphi(\mathbf{s})-\varphi(\underline{\mathbf{s}})-(\nabla\varphi(\underline{\mathbf{s}}))^{\mathrm{T}}(\mathbf{s}-\underline{\mathbf{s}}); Until the value of the objective function h(𝐬)h(\mathbf{s}) converges.

To solve Problem (14) via MAA, we define input function

h(𝐬)=min𝐖𝒲k=1Ksk(tr(𝐖H𝐑k𝐖)2Re(𝐰kH𝐪k)𝖼𝗈𝗇𝗌𝗍w,k),h(\mathbf{s})\negthinspace=\negthickspace\underset{\mathbf{W}\in\mathcal{W}}{\min}\sum_{k=1}^{K}\negthinspace s_{k}\negmedspace\left(\mathrm{tr}\negthinspace\left(\mathbf{W}^{\mathrm{H}}\mathbf{R}_{k}\negthinspace\mathbf{W}\right)\negthickspace-\negmedspace 2\mathrm{Re}\left(\mathbf{w}_{k}^{\mathrm{H}}\mathbf{q}_{k}\right)\negthickspace-\negmedspace\mathsf{const}_{w,k}\right)\negthinspace,

the subgradient 𝐠w\mathbf{g}_{w} can be computed as

[𝐠w]k=tr(𝐗H𝐑k𝐗)2Re([𝐗]:,kH𝐪k)𝖼𝗈𝗇𝗌𝗍w,k[\mathbf{g}_{w}]_{k}=\mathrm{tr}\bigl{(}\mathbf{X}^{\mathrm{H}}\mathbf{R}_{k}\mathbf{X}\bigr{)}-2\mathrm{Re}\bigl{(}\bigl{[}\mathbf{X}\bigr{]}_{:,k}^{\mathrm{H}}\mathbf{q}_{k}\bigr{)}-\mathsf{const}_{w,k}

with 𝐗=argmin𝐖𝒲k=1Ksk(tr(𝐖H𝐑k𝐖)2Re(𝐰kH𝐪k))\mathbf{X}\!=\underset{}{\mathrm{arg}}\underset{\mathbf{W}\in\mathcal{W}}{\min}\sum_{k=1}^{K}s_{k}\bigl{(}\mathrm{tr}(\mathbf{W}^{\mathrm{H}}\mathbf{R}_{k}\mathbf{W})-2\mathrm{Re}(\mathbf{w}_{k}^{\mathrm{H}}\mathbf{q}_{k})\bigr{)}, which is readily solved based on Lemma 2. With the simplex space 𝒮\mathcal{S}, we can choose

φ(𝐬)={k=1Ksklogsk𝐬𝒮+otherwise, \varphi(\mathbf{s})=\left\{\begin{array}[]{ll}\sum_{k=1}^{K}s_{k}\log s_{k}&\mathbf{s}\in\mathcal{S}\\ +\infty&\text{otherwise, }\end{array}\right.

and set stepsize γ=r1t\gamma=r\frac{1}{\sqrt{t}} with constant r>0r>0 at the tt-th iteration, which leads to the following closed-form update rule:

𝐬=c𝐬¯eγ𝐠w𝟏T(𝐬¯eγ𝐠w).\mathbf{s}=c\frac{\underline{\mathbf{s}}\odot e^{-\gamma\mathbf{g}_{w}}}{\mathbf{1}^{\mathrm{T}}\left(\underline{\mathbf{s}}\odot e^{-\gamma\mathbf{g}_{w}}\right)}. (15)

IV-C The Update Step of 𝚯\boldsymbol{\Theta}

Given the iterate {𝐖¯,𝚯¯}\{\underline{\mathbf{W}},\underline{\boldsymbol{\Theta}}\}, the objective f𝖬𝖱f_{\mathsf{MR}} w.r.t. 𝚯\boldsymbol{\Theta} is

f𝖬𝖱,𝚯(𝚯)=min𝑘log(1+|𝐰kH¯𝐅k𝜽+𝐰kH¯𝐡k𝖽|2j,jkK|𝐰jH¯𝐅k𝜽+𝐰jH¯𝐡k𝖽|2+σ2),f_{\mathsf{MR},\boldsymbol{\Theta}}(\boldsymbol{\Theta})=\underset{k}{\text{$\min$}}\,\log\bigl{(}1+\frac{\bigl{|}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k}\boldsymbol{\theta}+\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k}\boldsymbol{\theta}+\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}+\sigma^{2}}\bigr{)},

where 𝐅k=𝐆diag(𝐡kr)\mathbf{F}_{k}=\mathbf{G}\mathrm{diag}\bigl{(}\mathbf{h}_{k}^{\mathrm{r}}\bigr{)}. Then based on Lemma 1, a minorizing function for f𝖬𝖱,𝚯f_{\mathsf{MR},\boldsymbol{\Theta}} can be constructed as follows:

f𝖬𝖱,𝚯(𝚯)\displaystyle f_{\mathsf{MR},\boldsymbol{\Theta}}^{\prime}(\boldsymbol{\Theta}) =min𝑘αkj=1K|𝐰jH¯𝐅k𝜽+𝐰jH¯𝐡k𝖽|2\displaystyle=\underset{k}{\text{$\min$}}-\alpha_{k}\sum_{j=1}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k}\boldsymbol{\theta}+\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{|}^{2}
+2Re(βk𝐰kH¯𝐅k𝜽+βk𝐰kH¯𝐡k𝖽)+𝖼𝗈𝗇𝗌𝗍w,k,\displaystyle\hskip 28.45274pt+2\mathrm{Re}(\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k}\boldsymbol{\theta}+\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}})+\mathsf{const}_{w,k},

which can be further rewritten as

f𝖬𝖱,𝚯(𝚯)=min𝑘𝜽H𝐋k𝜽αkj=1K(2Re(𝜽H𝐅kH𝐰j¯𝐰jH¯𝐡k𝖽)\displaystyle f_{\mathsf{MR},\boldsymbol{\Theta}}^{\prime}(\boldsymbol{\Theta})=\underset{k}{\text{$\min$}}-\boldsymbol{\theta}^{\mathrm{H}}\mathbf{L}_{k}\boldsymbol{\mathbf{\theta}}-\alpha_{k}\sum_{j=1}^{K}\Bigl{(}2\mathrm{Re}\bigl{(}\boldsymbol{\theta}^{\mathrm{H}}\mathbf{F}_{k}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}
+|𝐡𝖽,kH𝐰j¯|2)+2Re(βk𝐰kH¯𝐅k𝜽+βk𝐰kH¯𝐡k𝖽)+𝖼𝗈𝗇𝗌𝗍w,k\displaystyle\hskip 15.6491pt+\bigl{|}\mathbf{h}_{\mathsf{d},k}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\bigr{|}^{2}\Bigr{)}+2\mathrm{Re}(\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k}\boldsymbol{\theta}+\beta_{k}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}})+\mathsf{const}_{w,k}

with 𝐋k=αkj=1K𝐅kH𝐰j¯𝐰jH¯𝐅k.\mathbf{L}_{k}\negthinspace=\negthinspace\alpha_{k}\sum_{j=1}^{K}\mathbf{F}_{k}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k}. According to Lemma 3 and Lemma 4, a piecewise linear minorizing function for f𝖬𝖱,𝚯f_{\mathsf{MR},\boldsymbol{\Theta}}^{\prime} is further obtained as follows:

f𝖬𝖱,𝚯′′(𝚯)=min𝑘2Re(𝜽¯H𝐛k)𝖼𝗈𝗇𝗌𝗍θ,k,f_{\mathsf{MR},\boldsymbol{\Theta}}^{\prime\prime}(\boldsymbol{\Theta})=\underset{k}{\text{$\min$}}\>-2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})-\mathsf{const}_{\theta,k},

where

𝐛k=αkj=1K𝐅kH𝐰j¯𝐰jH¯𝐡k𝖽βk𝐅kH𝐰k¯+(𝐋λ𝐈)𝜽¯\mathbf{b}_{k}=\alpha_{k}\sum_{j=1}^{K}\mathbf{F}_{k}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}-\beta_{k}^{*}\mathbf{F}_{k}^{\mathrm{H}}\underline{\mathbf{w}_{k}}+(\mathbf{L}-\lambda\mathbf{I})\underline{\boldsymbol{\mathbf{\theta}}}

and 𝖼𝗈𝗇𝗌𝗍θ,k=Nλ+𝜽¯H(λ𝐈𝐋)𝜽¯+αkj=1K|𝐡𝖽,kH𝐰j¯|22Re(βk𝐡𝖽,kH𝐰k¯)𝖼𝗈𝗇𝗌𝗍w,k\mathsf{const}_{\theta,k}=N\lambda+\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}(\lambda\mathbf{I}-\mathbf{L})\underline{\boldsymbol{\mathbf{\theta}}}+\alpha_{k}\sum_{j=1}^{K}\bigl{|}\mathbf{h}_{\mathsf{d},k}^{\mathrm{H}}\underline{\mathbf{w}_{j}}\bigr{|}^{2}-2\mathrm{Re}(\beta_{k}\mathbf{h}_{\mathsf{d},k}^{\mathrm{H}}\underline{\mathbf{w}_{k}})-\mathsf{const}_{w,k} with λ=αkj=1K𝐰jH¯𝐅k22\lambda=\alpha_{k}\sum_{j=1}^{K}\bigl{\|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k}\bigr{\|}_{2}^{2}. Then the subproblem for 𝜽\boldsymbol{\theta} is given by

minimize𝚯𝒞\displaystyle\underset{\boldsymbol{\Theta}\in\mathcal{C}}{\mathrm{minimize}} max𝑘 2Re(𝜽¯H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k.\displaystyle\underset{k}{\max}\ 2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k}.

As in the previous section, the discrete maximum form of the objective can be transformed into a continuous maximum:

minimize𝚯𝒞\displaystyle\underset{\boldsymbol{\Theta}\in\mathcal{C}}{\mathrm{minimize}} max𝐬𝒮k=1Ksk(2Re(𝜽¯H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k).\displaystyle\negthinspace\negthinspace\underset{\mathbf{s}\in\mathcal{S}}{\max}\ \sum_{k=1}^{K}s_{k}\bigl{(}2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k}\bigr{)}. (16)
Proposition 6.

A saddle point exists for Problem (16) and can be obtained by solving the following relaxed problem

minimize𝚯𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽\displaystyle\underset{\boldsymbol{\Theta}\in\mathcal{C}_{\mathsf{relaxed}}}{\mathrm{minimize}} max𝐬𝒮k=1Ksk(2Re(𝜽¯H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k),\displaystyle\negthinspace\negthinspace\underset{\mathbf{s}\in\mathcal{S}}{\max}\ \sum_{k=1}^{K}s_{k}\bigl{(}2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k}\bigr{)}, (17)

where 𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽={𝛉𝛉N,|[𝛉]j|1,j=1,,N}.\mathcal{C}_{\mathsf{relaxed}}\negmedspace=\negmedspace\bigl{\{}\boldsymbol{\theta}\mid\negmedspace\boldsymbol{\theta}\in\mathbb{C}^{N},\bigl{|}[\boldsymbol{\theta}]_{j}\bigr{|}\leq 1,\forall j=1,\ldots,N\bigr{\}}.

Proof:

The detailed proof is given in Appendix -B. ∎

We can swap the order of minimization and maximization as before, and Problem (17) is equivalently transformed to

maximize𝐬𝒮min𝚯𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽k=1Ksk(2Re(𝜽¯H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k),\underset{\mathbf{s}\in\mathcal{S}}{\mathrm{maximize}}\ \underset{\boldsymbol{\Theta}\in\mathcal{C}_{\mathsf{relaxed}}}{\min}\ \sum_{k=1}^{K}s_{k}\bigl{(}2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k}\bigr{)},

which can be solved via MAA with the input function

h(𝐬)=min𝚯𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽k=1Ksk(2Re(𝜽¯H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k).h(\mathbf{s})=\underset{\boldsymbol{\Theta}\in\mathcal{C}_{\mathsf{relaxed}}}{\min}\ \sum_{k=1}^{K}s_{k}\bigl{(}2\mathrm{Re}(\underline{\boldsymbol{\mathbf{\theta}}}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k}\bigr{)}.

Then the corresponding subgradient 𝐠θ\mathbf{g}_{\theta} can be calculated as

[𝐠θ]k=2Re(𝐱H𝐛k)+𝖼𝗈𝗇𝗌𝗍θ,k,[\mathbf{g}_{\theta}]_{k}=2\mathrm{Re}(\mathbf{x}^{\mathrm{H}}\mathbf{b}_{k})+\mathsf{const}_{\theta,k},

where 𝐱\mathbf{x} is computed from the following equation

𝐱\displaystyle\mathbf{x} =diag(argmin𝚯𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽k=1K2skRe(𝜽¯H𝐛k))\displaystyle=\mathrm{diag}\Bigl{(}\mathrm{arg}\underset{\boldsymbol{\Theta}\in\mathcal{C}_{\mathsf{relaxed}}}{\min}\ \sum_{k=1}^{K}2s_{k}\mathrm{Re}(\underline{\boldsymbol{\theta}}^{\mathrm{H}}\mathbf{b}_{k})\Bigr{)}
=e𝔧ang(k=1Ksk𝐛k),\displaystyle=e^{\mathfrak{j}\mathrm{ang}\left(-\sum_{k=1}^{K}s_{k}\mathbf{b}_{k}\right)},

where the last line can be proved in a similar way as Lemma 5. The update rules in MAA are chosen the same as (15).

In summary, to solve the MR maximization problem via BMM, the two variable blocks, i.e., 𝐖\mathbf{W} and 𝚯\boldsymbol{\Theta}, will be updated cyclically until some convergence criterion is met. The overall algorithm is summarized in Algorithm 2 with its convergence and complexity analyses given in Section VI.

Algorithm 2 The BMM Algorithm for Problem (MRMax).

Input: {𝐡i𝗋}\{\mathbf{h}_{i}^{\mathsf{r}}\}, {𝐡i𝖽}\{\mathbf{h}_{i}^{\mathsf{d}}\}, 𝐆\mathbf{G}, PP, σ2\sigma^{2}, initial feasible values of 𝐖\mathbf{W} and 𝚯\boldsymbol{\Theta}.

Repeat

1. Update 𝐖\mathbf{W} by solving Prob. (14) via MAA;

2. Update 𝚯\boldsymbol{\Theta} by solving Prob. (16) via MAA;

Until the value of the objective function converges.

V Sum-Rate Maximization for
RIS-Aided MIMO Device-to-Device Networks

V-A System Model and Problem Formulation

In this section, the RIS-aided MIMO D2D system is considered, where KK transceiver pairs transmit multiple data streams. We assume the kk-th (k=1,,Kk=1,\ldots,K) transmitter and receiver are equipped with Mk𝗍M_{k}^{\mathsf{t}} and Mk𝗋M_{k}^{\mathsf{r}} antennas. Let 𝐇i,j𝖽Mi𝗋×Mj𝗍\mathbf{H}_{i,j}^{\mathsf{d}}\in\mathbb{C}^{M_{i}^{\mathsf{r}}\times M_{j}^{\mathsf{t}}}, 𝐇i𝗋Mi𝗋×N\mathbf{H}_{i}^{\mathsf{r}}\in\mathbb{C}^{M_{i}^{\mathsf{r}}\times N}, and 𝐆jN×Mj𝗍\mathbf{G}_{j}\in\mathbb{C}^{N\times M_{j}^{\mathsf{t}}} be the direct channel between the ii-th receiver and the jj-th transmitter, the channel in the reflection link between the RIS and the ii-th receiver, and the channel between the jj-th transmitter and the RIS, respectively. Other notations are defined the same as in previous sections. Then the received signal at the kk-th receiver is given by

𝐲k\displaystyle\mathbf{y}_{k} =(𝐇k𝗋𝚯𝐆k+𝐇k,k𝖽)𝐖k𝐬kdesired signal\displaystyle=\underset{\text{desired signal}}{\underbrace{\left(\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{k}+\mathbf{H}_{k,k}^{\mathsf{d}}\right)\mathbf{W}_{k}\mathbf{s}_{k}}}
+j,jk(𝐇k𝗋𝚯𝐆j+𝐇k,j𝖽)𝐖j𝐬j+𝐞kinterference plus noise,\displaystyle\hskip 76.82234pt+\underset{\text{interference plus noise}}{\underbrace{\sum_{j,j\neq k}\left(\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{j}+\mathbf{H}_{k,j}^{\mathsf{d}}\right)\mathbf{W}_{j}\mathbf{s}_{j}+\mathbf{e}_{k}}},

where 𝐖kMk𝗍×dk\mathbf{W}_{k}\in\mathbb{C}^{M_{k}^{\mathsf{t}}\times d_{k}} denotes the beamforming matrix, 𝐬kdk\mathbf{\bm{s}}_{k}\in\mathbb{C}^{d_{k}} is the symbol vector for the kk-th transceiver pair, and 𝐞k𝒞𝒩(𝟎,σ2𝐈)\mathbf{e}_{k}\sim\mathcal{CN}(\bm{0},\sigma^{2}\mathbf{I}) represents the noise.

The target is to maximize the SR of the system by jointly designing the beamforming matrices {𝐖i}\left\{\mathbf{W}_{i}\right\} and the phase shift matrix 𝚯\boldsymbol{\Theta}. The data rate at the kk-th receiver is defined as

𝖱k\displaystyle\mathsf{R}_{k} =logdet(𝐈+𝐖kH(𝐇k𝗋𝚯𝐆k+𝐇k,k𝖽)H𝐓k1\displaystyle=\log\det\bigl{(}\mathbf{I}+\mathbf{W}_{k}^{\mathrm{H}}(\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{k}+\mathbf{H}_{k,k}^{\mathsf{d}})^{\mathrm{H}}\mathbf{T}_{k}^{-1}
×(𝐇k𝗋𝚯𝐆k+𝐇k,k𝖽)𝐖k),\displaystyle\hskip 125.19194pt\times(\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{k}+\mathbf{H}_{k,k}^{\mathsf{d}})\mathbf{W}_{k}\bigr{)},

where the interference-plus-noise term is

𝐓k=j,jk(𝐇k𝗋𝚯𝐆j+𝐇k,j𝖽)𝐖j𝐖jH(𝐇k𝗋𝚯𝐆j+𝐇k,j𝖽)H+σ2𝐈.\mathbf{T}_{k}\negthinspace=\negthinspace\negthinspace\sum_{j,j\neq k}\negthinspace\bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{j}\negthinspace+\negthinspace\mathbf{H}_{k,j}^{\mathsf{d}}\bigr{)}\mathbf{W}_{j}\mathbf{W}_{j}^{\mathrm{H}}\bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\bm{\Theta}\mathbf{G}_{j}\negthinspace+\negthinspace\mathbf{H}_{k,j}^{\mathsf{d}}\bigr{)}^{\mathrm{H}}\negthinspace+\negthinspace\sigma^{2}\mathbf{I}.

Then the SR maximization problem is formulated as follows:

maximize{𝐖i},𝚯\displaystyle\underset{\{\mathbf{W}_{i}\},\bm{\Theta}}{\mathrm{maximize}} f𝖲𝖱({𝐖i},𝚯)=k=1K𝖱k\displaystyle f_{\mathsf{SR}}\left(\{\mathbf{W}_{i}\},\bm{\Theta}\right)=\sum_{k=1}^{K}\mathsf{R}_{k} (SRMax)
subjectto\displaystyle\mathrm{subject\ to} 𝐖i𝒲i,i=1,,K,𝚯𝒞,\displaystyle\mathbf{W}_{i}\in\mathcal{W}_{i},\forall i=1,\ldots,K,\ \bm{\Theta}\in\mathcal{C},

where the transmit power constraint for the ii-th transmitter is

𝒲i={𝐖i𝐖iF2Pi}.\mathcal{W}_{i}=\left\{\mathbf{W}_{i}\mid\bigl{\|}\mathbf{W}_{i}\bigr{\|}_{\mathrm{F}}^{2}\leq P_{i}\right\}.

Problem (SRMax) is nonconvex and NP-hard. In the following, a BMM-based algorithm is developed for problem resolution.

V-B The Update Step of {𝐖i}\left\{\mathbf{W}_{i}\right\}

Given the iterate {{𝐖i¯},𝚯¯}\{\{\underline{\mathbf{W}_{i}}\},\underline{\boldsymbol{\Theta}}\}, the f𝖲𝖱f_{\mathsf{SR}} w.r.t. {𝐖i}\left\{\mathbf{W}_{i}\right\} is

f𝖲𝖱,{𝐖i}({𝐖i})\displaystyle f_{\mathsf{SR},\left\{\mathbf{W}_{i}\right\}}(\left\{\mathbf{W}_{i}\right\}) =k=1Klogdet(𝐈+𝐖kH𝐇k,kH𝐓k1𝐇k,k𝐖k),\displaystyle=\negthinspace\sum_{k=1}^{K}\log\det\left(\mathbf{I}+\mathbf{W}_{k}^{\mathrm{H}}\mathbf{H}_{k,k}^{\mathrm{H}}\mathbf{T}_{k}^{-1}\mathbf{H}_{k,k}\mathbf{W}_{k}\right),

where 𝐇k,j=𝐇k𝗋𝚯¯𝐆j+𝐇k,j𝖽\mathbf{H}_{k,j}=\mathbf{H}_{k}^{\mathsf{r}}\underline{\bm{\Theta}}\mathbf{G}_{j}+\mathbf{H}_{k,j}^{\mathsf{d}}.

Proposition 7.

Function logdet(𝐈+𝐗H𝐘1𝐗)\log\det\left(\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\right) with 𝐗M×N\mathbf{X}\in\mathbb{C}^{M\times N} and 𝐘𝟎\mathbf{Y}\succ\mathbf{0} is minorized at (𝐗¯,𝐘¯)\left(\underline{\mathbf{X}},\underline{\mathbf{Y}}\right) as follows:

logdet(𝐈+𝐗H𝐘1𝐗)tr((𝐘¯+𝐗¯𝐗¯H)1𝐗¯\displaystyle\log\det(\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X})\geq-\mathrm{tr}\bigl{(}(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}\underline{\mathbf{X}}
×(𝐈+𝐗¯H𝐘¯1𝐗¯)𝐗¯H(𝐘¯+𝐗¯𝐗¯H)1(𝐘+𝐗𝐗H))\displaystyle\times(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})\underline{\mathbf{X}}^{\mathrm{H}}(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}(\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}})\bigr{)}
+2Re(tr((𝐈+𝐗¯H𝐘¯1𝐗¯)𝐗¯H(𝐘¯+𝐗¯𝐗¯H)1𝐗))\displaystyle+2{\rm{\rm Re}}\bigl{(}{\rm tr}\bigl{(}(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})\underline{\mathbf{X}}^{\mathrm{H}}(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}\mathbf{X}\bigr{)}\bigr{)}
+logdet(𝐈+𝐗¯H𝐘¯1𝐗¯)tr(𝐗¯H𝐘¯1𝐗¯).\displaystyle+\log\det(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})-{\rm tr}(\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}).
Proof:

The proof is given in Appendix -C. ∎

Based on Lemma 7, taking 𝐇k,k𝐖k\mathbf{H}_{k,k}\mathbf{W}_{k} as 𝐗\mathbf{X} and 𝐓k\mathbf{T}_{k} as 𝐘\mathbf{Y}, a minorizing function for f𝖲𝖱,{𝐖i}f_{\mathsf{SR},\left\{\mathbf{W}_{i}\right\}} is computed as follows:

f𝖲𝖱,{𝐖i}({𝐖i})=\displaystyle f_{\mathsf{SR},\{\mathbf{W}_{i}\}}^{\prime}\bigl{(}\{\mathbf{W}_{i}\}\bigr{)}= k=1K(tr(𝐀kj=1K𝐇k,j𝐖j𝐖jH𝐇k,jH)\displaystyle\sum_{k=1}^{K}\Bigl{(}-\mathrm{tr}\bigl{(}\mathbf{A}_{k}\sum_{j=1}^{K}\mathbf{H}_{k,j}\mathbf{W}_{j}\mathbf{W}_{j}^{\mathrm{H}}\mathbf{H}_{k,j}^{\mathrm{H}}\bigr{)}
+2Re(tr(𝐁k𝐇k,k𝐖k)))+𝖼𝗈𝗇𝗌𝗍w,\displaystyle\hskip 15.05624pt+2{\rm\mathrm{Re}}\bigl{(}{\rm tr}(\mathbf{B}_{k}\mathbf{H}_{k,k}\mathbf{W}_{k})\bigr{)}\Bigr{)}+\mathsf{const}_{w},

where 𝐀k=(𝐓k+𝐇k,k𝐖k¯𝐖kH¯𝐇k,kH)1𝐇k,k𝐖k¯𝐁k\mathbf{A}_{k}=(\mathbf{T}_{k}+\mathbf{H}_{k,k}\underline{\mathbf{W}_{k}}\underline{\mathbf{W}_{k}^{\mathrm{H}}}\mathbf{H}_{k,k}^{\mathrm{H}})^{-1}\mathbf{H}_{k,k}\underline{\mathbf{W}_{k}}\mathbf{B}_{k} with 𝐁k=(𝐈+𝐖kH¯𝐇k,kH𝐓k1𝐇k,k𝐖k¯)𝐖kH¯𝐇k,kH(𝐓k+𝐇k,k𝐖k¯×\mathbf{B}_{k}=(\mathbf{I}+\underline{\mathbf{W}_{k}^{\mathrm{H}}}\mathbf{H}_{k,k}^{\mathrm{H}}\mathbf{T}_{k}^{-1}\mathbf{H}_{k,k}\underline{\mathbf{W}_{k}})\underline{\mathbf{W}_{k}^{\mathrm{H}}}\mathbf{H}_{k,k}^{\mathrm{H}}(\mathbf{T}_{k}+\mathbf{H}_{k,k}\underline{\mathbf{W}_{k}}\times 𝐖kH¯𝐇k,kH)1\underline{\mathbf{W}_{k}^{\mathrm{H}}}\mathbf{H}_{k,k}^{\mathrm{H}}){}^{-1}, and 𝖼𝗈𝗇𝗌𝗍w=k=1K(𝖱k¯tr(𝐖kH¯𝐇k,kH𝐓k1×\mathsf{const}_{w}=\sum_{k=1}^{K}\bigl{(}\underline{\mathsf{R}_{k}}-\mathrm{tr}(\underline{\mathbf{W}_{k}^{\mathrm{H}}}\mathbf{H}_{k,k}^{\mathrm{H}}\mathbf{T}_{k}^{-1}\times 𝐇k,k𝐖k¯)\mathbf{H}_{k,k}\underline{\mathbf{W}_{k}}) σ2tr(𝐀k))-\sigma^{2}\mathrm{tr}(\mathbf{A}_{k})\bigr{)}. Ignoring the constant terms, we obtain the resultant subproblem for 𝐖k\mathbf{W}_{k} as follows:

minimize𝐖k𝒲k\displaystyle\underset{\mathbf{W}_{k}\in\mathcal{W}_{k}}{\mathrm{minimize}} tr(𝐖kH𝐑k𝐖k)2Re(tr(𝐖kH𝐐k)),\displaystyle\mathrm{tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{R}_{k}\mathbf{W}_{k})-2\mathrm{Re}\bigl{(}\mathrm{tr}(\mathbf{W}_{k}^{\mathrm{H}}\mathbf{Q}_{k})\bigr{)}, (18)

where 𝐑k=j=1K𝐇j,kH𝐀k𝐇j,k\mathbf{R}_{k}=\sum_{j=1}^{K}\mathbf{H}_{j,k}^{\mathrm{H}}\mathbf{A}_{k}\mathbf{H}_{j,k} and 𝐐k=𝐇k,kH𝐁kH\mathbf{Q}_{k}=\mathbf{H}_{k,k}^{\mathrm{H}}\mathbf{B}_{k}^{\mathrm{H}}. In Problem (18), 𝐖k\mathbf{W}_{k} becomes separable. Then {𝐖i}\left\{\mathbf{W}_{i}\right\} can be updated separately in parallel by solving (18) via Lemma 2.

V-C The Update Step of 𝚯\boldsymbol{\Theta}

f𝖲𝖱,𝚯(𝚯)\displaystyle f_{\mathsf{SR},\boldsymbol{\Theta}}(\boldsymbol{\Theta}) =k=1Klogdet(𝐈+𝐖kH¯(𝐇k𝗋(𝜽T𝟏)𝐆k+𝐇k,k𝖽)H(j,jk(𝐇k𝗋(𝜽T𝟏)𝐆j+𝐇k,j𝖽)𝐖j¯\displaystyle=\sum_{k=1}^{K}\log\det\Biggl{(}\mathbf{I}+\underline{\mathbf{W}_{k}^{\mathrm{H}}}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{k}+\mathbf{H}_{k,k}^{\mathsf{d}}\Bigr{)}^{\mathrm{H}}\biggl{(}\sum_{j,j\neq k}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{j}+\mathbf{H}_{k,j}^{\mathsf{d}}\Bigr{)}\underline{\mathbf{W}_{j}} (19)
×𝐖jH¯(𝐇k𝗋(𝜽T𝟏)𝐆k+𝐇k,k𝖽)H+σ2𝐈)1(𝐇k𝗋(𝜽T𝟏)𝐆j+𝐇k,j𝖽)𝐖k¯)).\displaystyle\hskip 82.51282pt\times\underline{\mathbf{W}_{j}^{\mathrm{H}}}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{k}+\mathbf{H}_{k,k}^{\mathsf{d}}\Bigr{)}^{\mathrm{H}}+\sigma^{2}\mathbf{I}\biggr{)}^{-1}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{j}+\mathbf{H}_{k,j}^{\mathsf{d}}\Bigr{)}\underline{\mathbf{W}_{k}}\biggr{)}\Biggr{)}.

 

f𝖲𝖱,𝚯(𝚯)\displaystyle f_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime}(\boldsymbol{\Theta}) =k=1K(tr(𝐀kj=1K(𝐇k𝗋(𝜽T𝟏)𝐆j+𝐇kj𝖽)𝐖k¯𝐖kH¯(𝐇k𝗋(𝜽T𝟏)𝐆j+𝐇kj𝖽)H)\displaystyle=\sum_{k=1}^{K}\Biggl{(}-\mathrm{tr}\biggl{(}\mathbf{A}_{k}\sum_{j=1}^{K}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{j}+\mathbf{H}_{kj}^{\mathsf{d}}\Bigr{)}\underline{\mathbf{W}_{k}}\underline{\mathbf{W}_{k}^{\mathrm{H}}}\Bigl{(}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\mathbf{G}_{j}+\mathbf{H}_{kj}^{\mathsf{d}}\Bigr{)}^{\mathrm{H}}\biggr{)} (20)
+2Re(tr(𝐆k𝐖k¯𝐁k𝐇k𝗋(𝜽T𝟏)))+2Re(tr(𝐁k𝐇kk𝖽𝐖k¯)))+𝖼𝗈𝗇𝗌𝗍w.\displaystyle\hskip 116.65646pt+2{\rm\mathrm{Re}}\biggl{(}\mathrm{tr}\Bigl{(}\mathbf{G}_{k}\underline{\mathbf{W}_{k}}\mathbf{B}_{k}\mathbf{H}_{k}^{\mathsf{r}}\odot\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1}\bigr{)}\Bigr{)}\biggr{)}+2{\rm\mathrm{Re}}\Bigl{(}\mathrm{tr}\bigl{(}\mathbf{B}_{k}\mathbf{H}_{kk}^{\mathsf{d}}\underline{\mathbf{W}_{k}}\bigr{)}\Bigr{)}\Biggr{)}+\mathsf{const}_{w}.

 

Given iterate {{𝐖i¯},𝚯¯}\{\{\underline{\mathbf{W}_{i}}\},\underline{\bm{\Theta}}\}, f𝖲𝖱f_{\mathsf{SR}} w.r.t. 𝚯\bm{\Theta} is given in Eq. (19). Then a minorizing function for f𝖲𝖱,𝚯f_{\mathsf{SR},\boldsymbol{\Theta}} can be constructed based on Lemma 7 as in Eq. (20), which is written compactly as

f𝖲𝖱,𝚯(𝚯)=\displaystyle f_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime}(\bm{\Theta})= k=1Ktr(𝐊1(𝜽T𝟏)𝐊2(𝜽T𝟏)H)\displaystyle-\sum_{k=1}^{K}\mathrm{tr}\bigl{(}\mathbf{K}_{1}\odot(\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1})\mathbf{K}_{2}\odot(\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1})^{\mathrm{H}}\bigr{)}
+2Re(tr(𝐍(𝜽T𝟏)))+𝖼𝗈𝗇𝗌𝗍θ,\displaystyle\hskip 40.15pt+2{\rm\mathrm{Re}}\Bigl{(}\mathrm{tr}\bigl{(}\mathbf{N}\odot(\boldsymbol{\theta}^{\mathrm{T}}\otimes\mathbf{1})\bigr{)}\Bigr{)}+\mathsf{const}_{\theta},

where

𝐊1=𝐇𝗋,kH𝐀k𝐇𝗋,k,𝐊2=j=1K𝐆j𝐖j¯𝐖jH¯𝐆jH,\displaystyle\mathbf{K}_{1}=\mathbf{H}_{\mathsf{r},k}^{\mathrm{H}}\mathbf{A}_{k}\mathbf{H}_{\mathsf{r},k},\hskip 42.67912pt\mathbf{K}_{2}=\sum_{j=1}^{K}\mathbf{G}_{j}\underline{\mathbf{W}_{j}}\underline{\mathbf{W}_{j}^{\mathrm{H}}}\mathbf{G}_{j}^{\mathrm{H}},
𝐍=k=1K𝐆k𝐖k¯𝐁k𝐇𝗋,kk=1Kj=1K𝐆j𝐖j¯𝐖jH¯𝐇𝖽,kjH𝐀k𝐇𝗋,k,\displaystyle\mathbf{N}\negthinspace=\negthinspace\sum_{k=1}^{K}\mathbf{G}_{k}\underline{\mathbf{W}_{k}}\mathbf{B}_{k}\mathbf{H}_{\mathsf{r},k}\negthinspace-\negthinspace\sum_{k=1}^{K}\sum_{j=1}^{K}\mathbf{G}_{j}\underline{\mathbf{W}_{j}}\underline{\mathbf{W}_{j}^{\mathrm{H}}}\mathbf{H}_{\mathsf{d},kj}^{\mathrm{H}}\mathbf{A}_{k}\mathbf{H}_{\mathsf{r},k},

and 𝖼𝗈𝗇𝗌𝗍θ=k=1K(j=1Ktr(𝐀k(𝐇𝖽,kj𝐖j¯𝐖jH¯𝐇𝖽,kjH))+2Re(tr(𝐁k𝐇𝖽,kk𝐖k¯)))+𝖼𝗈𝗇𝗌𝗍w\mathsf{const}_{\theta}=\negthinspace\sum_{k=1}^{K}\Bigl{(}-\sum_{j=1}^{K}\mathrm{tr}\bigl{(}\mathbf{A}_{k}(\mathbf{H}_{\mathsf{d},kj}\underline{\mathbf{W}_{j}}\underline{\mathbf{W}_{j}^{\mathrm{H}}}\mathbf{H}_{\mathsf{d},kj}^{\mathrm{H}})\bigr{)}+2{\rm\mathrm{Re}}\bigl{(}\mathrm{tr}(\mathbf{B}_{k}\mathbf{H}_{\mathsf{d},kk}\underline{\mathbf{W}_{k}})\bigr{)}\Bigr{)}+\mathsf{const}_{w}. After some mathematical manipulation, the f𝖲𝖱,𝚯(𝚯)f_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime}(\bm{\Theta}) can be further rewritten as

f𝖲𝖱,𝚯(𝚯)=𝜽H𝐋𝜽+2Re(diag(𝐍)T𝜽)+𝖼𝗈𝗇𝗌𝗍θf_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime}(\bm{\Theta})=-\boldsymbol{\theta}^{\mathrm{H}}\mathbf{L}\boldsymbol{\theta}+2{\rm\mathrm{Re}}\bigl{(}{\rm diag}\left(\mathbf{N}\right)^{\mathrm{T}}\boldsymbol{\theta}^{*}\bigr{)}+\mathsf{const}_{\theta}

with 𝐋=(k=1K𝐊1)𝐊2T\mathbf{L}=\bigl{(}\sum_{k=1}^{K}\mathbf{K}_{1}\bigr{)}\odot\mathbf{K}_{2}^{\mathrm{T}}.

Based on Lemma 3, a linear minorizing function for f𝖲𝖱,𝚯f_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime} can be further obtained as follows:

f𝖲𝖱,𝚯′′(𝚯)\displaystyle f_{\mathsf{SR},\boldsymbol{\Theta}}^{\prime\prime}(\bm{\Theta}) =2Re(𝜽T𝐛)Nλ𝜽¯H(λ𝐈𝐋)𝜽¯+𝖼𝗈𝗇𝗌𝗍θ,\displaystyle=-2\mathrm{Re}\left(\boldsymbol{\theta}^{\mathrm{T}}\mathbf{b}\right)-N\lambda-\underline{\boldsymbol{\theta}}^{\mathrm{H}}(\lambda\mathbf{I}-\mathbf{L})\underline{\boldsymbol{\theta}}+\mathsf{const}_{\theta},

where 𝐛=diag(𝜽¯H(𝐋λ𝐈)H𝐍)\mathbf{b}=\mathrm{diag}\bigl{(}\underline{\boldsymbol{\theta}}^{\mathrm{H}}(\mathbf{L}-\lambda\mathbf{I})^{\mathrm{H}}-\mathbf{N}\bigr{)} with λ\lambda being the largest eigenvalue of 𝐋\mathbf{L}. Then the subproblem for 𝚯\boldsymbol{\Theta} is given by

minimize𝚯𝒞\displaystyle\underset{\boldsymbol{\Theta}\in\mathcal{C}}{\mathrm{minimize}} Re(𝜽T𝐛).\displaystyle\mathrm{Re}\bigl{(}\boldsymbol{\theta}^{\mathrm{T}}\mathbf{b}\bigr{)}. (21)

Problem (21) is separable over different elements in 𝜽\boldsymbol{\theta} and can be solved in parallel via Lemma 5.

In summary, based on BMM the variable blocks {𝐖i},𝚯\{\mathbf{W}_{i}\},\boldsymbol{\Theta} will be updated cyclically until some convergence criterion is met. The overall algorithm is summarized in Algorithm 3 with its convergence and complexity analyses given in Section VI.

Algorithm 3 The BMM Algorithm for Problem (SRMax).

Input: {𝐇i𝗋}\{\mathbf{H}_{i}^{\mathsf{r}}\}, {𝐇ij𝖽}\{\mathbf{H}_{ij}^{\mathsf{d}}\}, {𝐆j}\{\mathbf{G}_{j}\}, {Pi}\{P_{i}\}, σ2\sigma^{2}, initial feasible values of {𝐖i}\{\mathbf{W}_{i}\} and 𝚯\boldsymbol{\Theta}.

Repeat

1. Update {𝐖i}\negthinspace\{\mathbf{W}_{i}\}\negthinspace successively by solving Prob. (18) via Lemma 2;

2. Update 𝚯\boldsymbol{\Theta} by solving Prob. (21) via Lemma 5;

Until the value of the objective function converges.

VI Convergence and Complexity Analysis

VI-A Convergence Analysis

Theorem 8.

Every limit point generated by Algorithm 1, Algorithm 2, or Algorithm 3 is a stationary/KKT point of Prob. (WSRMax), Prob. (MRMax), or Prob. (SRMax), respectively.

Proof:

The detailed proof is given in Appendix -D. ∎

VI-B Complexity Analysis

For simplicity, we assume MM, {Mi𝗋}\{M_{i}^{\mathsf{r}}\}, {Mi𝗍}\{M_{i}^{\mathsf{t}}\}, {Ni}\{N_{i}\}, and {di}\{d_{i}\} are of the same order, uniformly denoted as MM, and LL and {Ii}\{I_{i}\} are of the same order, uniformly denoted as LL. In the following, we analyze the per-iteration computational complexities of the proposed BMM algorithms, where “one iteration” is defined when all variable blocks are updated once.

VI-B1 Complexity of the BMM algorithm for Prob. (WSRMax)

The complexity mainly comes from the calculation of matrices 𝐑\mathbf{R}, 𝐋i\mathbf{L}_{i}, as well as the inverse and eigendecomposition operations of matrix 𝐑\mathbf{R}, whose complexities are of orders 𝒪(LKM2)\mathcal{O}(LKM^{2}), 𝒪(LK2M2+L2KM2+L2M3)\mathcal{O}(LK^{2}M^{2}+L^{2}KM^{2}+L^{2}M^{3}), and 𝒪(M3)\mathcal{O}(M^{3}), respectively. Therefore, the total complexity of the BMM algorithm is 𝒪(LK2M2+L2KM2+L2M3)\mathcal{O}(LK^{2}M^{2}+L^{2}KM^{2}+L^{2}M^{3}). Particularly, for the single-hop case, i.e., L=1L=1, the complexity reduces to 𝒪(K2M2+M3)\mathcal{O}(K^{2}M^{2}+M^{3}).

VI-B2 Complexity of the BMM algorithm for Prob. (MRMax)

The complexity mainly comes from the calculation of matrices 𝐑\mathbf{R}, 𝐋\mathbf{L}, as well as the inverse and eigendecomposition operations of matrix 𝐑\mathbf{R}, whose complexities are 𝒪(KM2)\mathcal{O}(KM^{2}), 𝒪(K2M2)\mathcal{O}(K^{2}M^{2}), and 𝒪(M3)\mathcal{O}(M^{3}), respectively. Therefore, the total complexity of the BMM algorithm is 𝒪(𝕀wKM2+𝕀θK2M2+𝕀wM3)\mathcal{O}(\mathbb{I}_{w}KM^{2}+\mathbb{I}_{\theta}K^{2}M^{2}+\mathbb{I}_{w}M^{3}), where 𝕀w\mathbb{I}_{w} and 𝕀θ\mathbb{I}_{\theta} are the iteration times of the MAA algorithms for 𝐖\mathbf{W}-block and 𝚯\boldsymbol{\Theta}-block respectively.

VI-B3 Complexity of the BMM algorithm for Prob. (SRMax)

The complexity mainly comes from the calculation of matrices 𝐑\mathbf{R} and 𝐋\mathbf{L}, whose complexity are 𝒪(KM3)\mathcal{O}(KM^{3}) and 𝒪(K2M3)\mathcal{O}(K^{2}M^{3}). Therefore, the total complexity is 𝒪(K2M3)\mathcal{O}(K^{2}M^{3}).

VII Extensions and Generalizations

VII-A A Further Majorization Step for The 𝐖\mathbf{W}-Block

In previous sections, solving the minimization problem for 𝐖\mathbf{W}-block relies on a one-dimensional line search method as given in Lemma 2. Leveraging on the MM method, a closed-form solution free of line search can also be obtained. In the following, we show this result by taking the WSR maximization problem in Section III as an example, while similar results hold for Problem (MRMax) and Problem (SRMax) as well.

Further majorizing the objective in (5) based on Lemma 3 and Lemma 4, then the 𝐖\mathbf{W}-block subproblem in WSR maximization becomes

minimize𝐖𝒲\displaystyle\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{minimize}} 𝐖𝚷F2,\displaystyle\bigl{\|}\mathbf{W}-\boldsymbol{\Pi}\bigr{\|}_{\mathrm{F}}^{2}, (22)

where

[𝚷]:,k=[𝐐]:,k(𝐑k=1Kωkαk𝐡k22𝐈)𝐰k¯k=1Kωkαk𝐡k22.\left[\boldsymbol{\Pi}\right]_{:,k}=\frac{[\mathbf{Q}]_{:,k}-(\mathbf{R}-\sum_{k=1}^{K}\omega_{k}\alpha_{k}\left\|\mathbf{h}_{k}\right\|_{2}^{2}\mathbf{I})\underline{\mathbf{w}_{k}}}{\sum_{k=1}^{K}\omega_{k}\alpha_{k}\left\|\mathbf{h}_{k}\right\|_{2}^{2}}.

By solving the KKT system of Problem (22), the optimal solution can be obtained in closed-form as follows:

𝐖={𝚷if 𝚷F2PP𝚷F2𝐊otherwise.\mathbf{W}^{\star}=\begin{cases}\boldsymbol{\Pi}&\text{if }\bigl{\|}\boldsymbol{\Pi}\bigr{\|}_{\mathrm{F}}^{2}\leq P\\ \sqrt{\frac{P}{||\boldsymbol{\Pi}||_{\mathrm{F}}^{2}}}\mathbf{K}&\mathrm{\text{otherwise}}.\end{cases}

Therefore, with an additional majorization step, a cheaper result is obtained leading to a lower per-iteration computational complexity. When we apply the closed-form updating rule of 𝐖\mathbf{W}, the inverse and eigendecomposition operations of 𝐑\mathbf{R} are avoided and the per-iteration complexity becomes 𝒪(K2M2)\mathcal{O}(K^{2}M^{2}). However, in practice, whether a further majorization step like this brings better convergence property or not depends on the specific problem and the characterization of the inner-loop residual error, in that it solves a looser surrogate problem to trade for a closed-form solution and, hence, it may requires more iterations for convergence compared with its counterpart.

VII-B General Power Constraint for The 𝐖\mathbf{W}-Block

Beyond the total power constraint, the proposed algorithm can also handle more general power constraints [36] like

tr(𝛀j𝐖𝐖H)Pj,j=1,,J,\mathrm{tr}(\boldsymbol{\Omega}_{j}\mathbf{W}\mathbf{W}^{\mathrm{H}})\leq P_{j},\ \forall j=1,\ldots,J, (23)

where 𝛀1,,𝛀J𝟎\boldsymbol{\Omega}_{1},\ldots,\boldsymbol{\Omega}_{J}\succeq\mathbf{0} are application-oriented. This general power constraint reduces to the total power limit considered considered in the previous sections when J=1J=1 and 𝛀1=𝐈\boldsymbol{\Omega}_{1}=\mathbf{I}. It is also commonly used to model a more realistic case that each antenna is equipped with an independent power amplifier, where we can limit the per-antenna power by setting J=MJ=M and 𝛀j\boldsymbol{\Omega}_{j} to be a diagonal matrix with the jj-th diagonal element being one while the other elements being zeros.

Proposition 9.

By solving the KKT system, the optimal solution to Problem (6) with the general power constraints in (23) can be obtained in the following way

𝐖={𝐑1𝐐if 𝐑1𝐐𝛀j12F2Pjj=1,,J(𝐑+i=1Jγi𝛀i)1𝐐otherwise,\displaystyle\mathbf{W}^{\star}=\left\{\begin{array}[]{ll}\negthinspace\mathbf{R}^{-1}\mathbf{Q}&\text{if }\bigl{\|}\mathbf{R}^{-1}\mathbf{Q}\boldsymbol{\Omega}_{j}^{\frac{1}{2}}\bigr{\|}_{\mathrm{F}}^{2}\leq P_{j}\\ &\hskip 48.36958pt\forall j=1,\ldots,J\\ \negthinspace(\mathbf{R}+\sum_{i=1}^{J}\gamma_{i}\boldsymbol{\Omega}_{i})^{-1}\mathbf{Q}&\text{otherwise},\end{array}\right.

where the variables γ1,,γJ\gamma_{1},\ldots,\gamma_{J} satisfies

(𝐑+i=1Jγi𝛀i)1𝐐𝛀j12F2=Pj,j=1,,J.\Bigl{\|}(\mathbf{R}+\sum_{i=1}^{J}\gamma_{i}\boldsymbol{\Omega}_{i})^{-1}\mathbf{Q}\boldsymbol{\Omega}_{j}^{\frac{1}{2}}\Bigl{\|}_{\mathrm{F}}^{2}=P_{j},\ \forall j=1,\ldots,J.
Proof:

It can be proved similarly as in Proposition 2. ∎

VII-C A Serial Update Scheme for The 𝚯\boldsymbol{\Theta}-Block

Besides updating the elements in each phase shift matrix in parallel, a serial update can also be conducted. Consider Problem (WSRMax), we can rewrite f𝖶𝖲𝖱,𝚯lf_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime} w.r.t. [𝜽l]j[\boldsymbol{\theta}_{l}]_{j} as

f𝖶𝖲𝖱,[𝜽l]j([𝜽l]j)=2Re([𝜽l]j[𝐛l𝗌]j)[𝐋l]jj[𝜽l]jH¯𝐋l[𝜽l]j¯\displaystyle f_{\mathsf{WSR},[\boldsymbol{\theta}_{l}]_{j}}^{\prime}([\boldsymbol{\theta}_{l}]_{j})=\negthinspace-2\mathrm{Re}\bigl{(}[\boldsymbol{\theta}_{l}]_{j}^{*}[\mathbf{b}_{l}^{\mathsf{s}}]_{j}\bigr{)}\negthinspace-\negthinspace[\mathbf{L}_{l}]_{jj}\negthinspace-\negthinspace\underline{[\boldsymbol{\theta}_{l}]_{-j}^{\mathrm{H}}}\mathbf{L}_{l}\underline{[\boldsymbol{\theta}_{l}]_{-j}}
+k=1K2ωkRe([𝜽l]jH¯𝐅k,lH(βk𝐰k¯αkj=1K𝐰j¯𝐰jH¯𝐡k𝖽))+𝖼𝗈𝗇𝗌𝗍θ,l,\displaystyle\negthinspace+\negthinspace\sum_{k=1}^{K}\negthinspace 2\omega_{k}\mathrm{Re}\Bigl{(}\underline{[\boldsymbol{\theta}_{l}]_{-j}^{\mathrm{H}}}\mathbf{F}_{k,l}^{\mathrm{H}}\bigl{(}\beta_{k}^{*}\underline{\mathbf{w}_{k}}\negthinspace-\negthinspace\alpha_{k}\negthinspace\sum_{j=1}^{K}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\negthinspace\Bigr{)}\negthinspace\negthinspace+\negthinspace\mathsf{const}_{\theta,l},

where

𝐛l𝗌=k=1Kωk𝐅k,lH(αkj=1K𝐰j¯𝐰jH¯𝐡k𝖽βk𝐰k¯)+𝐋l[𝜽l]j¯.\mathbf{b}_{l}^{\mathsf{s}}=\sum_{k=1}^{K}\omega_{k}\mathbf{F}_{k,l}^{\mathrm{H}}\bigl{(}\alpha_{k}\sum_{j=1}^{K}\underline{\mathbf{w}_{j}}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}-\beta_{k}^{*}\underline{\mathbf{w}_{k}}\bigr{)}+\mathbf{L}_{l}\underline{[\boldsymbol{\theta}_{l}]_{-j}}.

Then the subproblem w.r.t. [𝜽l]j[\boldsymbol{\theta}_{l}]_{j} is given by

minimize|[𝜽l]j|=1\displaystyle\underset{\left|[\boldsymbol{\theta}_{l}]_{j}\right|=1}{\mathrm{minimize}} Re([𝜽l]j[𝐛l𝗌]j),\displaystyle\mathrm{Re}\bigl{(}[\boldsymbol{\theta}_{l}]_{j}^{*}[\mathbf{b}_{l}^{\mathsf{s}}]_{j}\bigr{)},

which can be readily solved via Lemma 5.

Based on the above formulation, the phase shift matrices {𝚯i}\{\boldsymbol{\Theta}_{i}\} will be updated in series with the elements in each phase shift matrix updated also in series. Such update rule can also be applied to Problem (MRMax) and Problem (SRMax).

VII-D Discrete Phase for The 𝚯\boldsymbol{\Theta}-Block

Along the paper, we have taken a continuous-phase scheme for the phase shift matrices, while for Problem (WSRMax) and Problem (SRMax), a discrete-phase scheme [23], which is more practical for hardware implementation, can also be considered which is defined as follows:

𝒟i=\displaystyle\mathcal{D}_{i}= {𝚯i𝚯i=diag(𝜽i),𝜽iNi,|[𝜽i]j|=1,\displaystyle\bigl{\{}\boldsymbol{\Theta}_{i}\mid\boldsymbol{\Theta}_{i}=\mathrm{diag}(\boldsymbol{\theta}_{i}),\ \boldsymbol{\theta}_{i}\in\mathbb{C}^{N_{i}},\ \bigl{|}[\boldsymbol{\theta}_{i}]_{j}\bigr{|}=1,
ang([𝜽i]j)Φi,j=1,,Ni},\displaystyle\hskip 85.35826pt\mathrm{ang}([\boldsymbol{\theta}_{i}]_{j})\in\Phi_{i},\ \forall j=1,\ldots,N_{i}\bigr{\}},

where Φi\Phi_{i} denotes the set of fixed angles that is achievable for the ii-th RIS. Under the discrete-phase scheme, the closed-form solutions given in Lemma 5 should be modified to be

[𝜽i]j=e𝔧argminϕiΦiϕi+ang([𝐛i]j)2,j=1,,Ni,[\boldsymbol{\theta}_{i}^{\star}]_{j}=e^{\mathfrak{j}\mathrm{arg\,min}_{\boldsymbol{\phi}_{i}\in\Phi_{i}}||\boldsymbol{\phi}_{i}+\mathrm{ang}([\mathbf{b}_{i}]_{j})||_{2}},\ \forall j=1,\ldots,N_{i},

which can be efficiently implemented on hardwares leveraging on a look-up table.

VII-E WSR Maximization for General-Topology Multi-Hop RIS-Aided Multi-User MISO Cellular Networks

In Section III, a simplified model where only the direct transmission paths from the BS to the users and the reflection transmission paths through cascaded I1,,IKI_{1},\ldots,I_{K} RISs to the users have been considered. However, the developed BMM algorithm can be easily extended for system designs with general-topology [37]. To get a taste of it, let us first consider a feed-forward “fully connected” double-RIS system (we neglect any feed-backward signals which are in general much weaker when received). We adopt a similar system setting as used in Section III and denote the channel between the BS and the first RIS, the channel between the BS and the second RIS, and the channel between the first RIS and the second RIS as 𝐆0,1\mathbf{G}_{0,1}, 𝐆0,2\mathbf{G}_{0,2}, and 𝐆1,2\mathbf{G}_{1,2}, respectively. Besides, we denote the channel between the first RIS and the kk-the user, the channel between the second RIS and the kk-the user, and the direct channel from the BS to the kk-th user as 𝐡k,1𝗋\mathbf{h}_{k,1}^{\mathsf{r}}, 𝐡k,2𝗋\mathbf{h}_{k,2}^{\mathsf{r}}, and 𝐡k𝖽\mathbf{h}_{k}^{\mathsf{d}}, respectively. Then the SINR at the kk-th user is given by

𝖲𝖨𝖭𝖱k=|𝐰kH𝐡k|2j,jkK|𝐰jH𝐡k|2+σ2,\mathsf{SINR}_{k}=\frac{\bigl{|}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2}},

where

𝐡k=\displaystyle\mathbf{h}_{k}= 𝐆0,1𝚯1𝐆1,2𝚯2𝐡k,2𝗋double-reflection channel\displaystyle\underset{\text{double-reflection channel}}{\underbrace{\mathbf{G}_{0,1}\boldsymbol{\Theta}_{1}\mathbf{G}_{1,2}\boldsymbol{\Theta}_{2}\mathbf{h}_{k,2}^{\mathsf{r}}}}
+𝐆0,1𝚯1𝐡k,1𝗋+𝐆0,2𝚯2𝐡k,2𝗋single-reflection channels+𝐡k𝖽direct channel.\displaystyle\hskip 48.36958pt+\underset{\text{single-reflection channels}}{\underbrace{\mathbf{G}_{0,1}\boldsymbol{\Theta}_{1}\mathbf{h}_{k,1}^{\mathsf{r}}+\mathbf{G}_{0,2}\boldsymbol{\Theta}_{2}\mathbf{h}_{k,2}^{\mathsf{r}}}}+\underset{\text{direct channel}}{\underbrace{\mathbf{h}_{k}^{\mathsf{d}}}}.

Following the general idea of the proposed BMM algorithms, given the iterate {𝐖¯,𝚯1¯,𝚯2¯}\{\underline{\mathbf{W}},\underline{\boldsymbol{\Theta}_{1}},\underline{\boldsymbol{\Theta}_{2}}\}, we optimize 𝐖\mathbf{W}, 𝚯1\boldsymbol{\Theta}_{1}, and 𝚯2\boldsymbol{\Theta}_{2} cyclically. It is easy to verify that f𝖶𝖲𝖱,𝐖(𝐖)f_{\mathsf{WSR},\mathbf{W}}(\mathbf{W}) takes exactly the same mathematical form as Eq. (3) and hence is omitted. By defining 𝐅k,1=𝐆0,1diag(𝐆1,2𝚯2¯𝐡k,2𝗋+𝐡k,1𝗋)\mathbf{F}_{k,1}=\mathbf{G}_{0,1}\mathrm{diag}\bigl{(}\mathbf{G}_{1,2}\underline{\boldsymbol{\Theta}_{2}}\mathbf{h}_{k,2}^{\mathsf{r}}+\mathbf{h}_{k,1}^{\mathsf{r}}\bigr{)} and 𝐡k,1𝖽=𝐆0,2𝚯2¯𝐡k,2𝗋+𝐡k𝖽\mathbf{h}_{k,1}^{\mathsf{d}}=\mathbf{G}_{0,2}\underline{\boldsymbol{\Theta}_{2}}\mathbf{h}_{k,2}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}, we obtain the objective f𝖶𝖲𝖱f_{\mathsf{WSR}} w.r.t. 𝚯1\boldsymbol{\Theta}_{1} given in the following way

f𝖶𝖲𝖱,𝚯1(𝚯1)\displaystyle f_{\mathsf{WSR},\boldsymbol{\Theta}_{1}}\left(\boldsymbol{\Theta}_{1}\right)
=\displaystyle= k=1Kωklog(1+|𝐰kH¯𝐅k,1𝜽1+𝐰kH𝐡k,1𝖽|2j,jkK|𝐰jH¯𝐅k,1𝜽1+𝐰jH¯𝐡k,1𝖽|2+σ2),\displaystyle\sum_{k=1}^{K}\omega_{k}\log\bigl{(}1+\frac{\bigl{|}\underline{\mathbf{w}_{k}^{\mathrm{H}}}\mathbf{F}_{k,1}\boldsymbol{\theta}_{1}+\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k,1}^{\mathsf{d}}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,1}\boldsymbol{\theta}_{1}+\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k,1}^{\mathsf{d}}\bigr{|}^{2}+\sigma^{2}}\bigr{)},

which shares the same form of expression as Eq. (7). Similar result applies to the objective f𝖶𝖲𝖱f_{\mathsf{WSR}} w.r.t. 𝚯2\boldsymbol{\Theta}_{2}. Therefore, the problem of the feed-forward “fully connected” double-RIS system design can be addressed readily following the same algorithmic procedure as introduced in Section III.

Furthermore, we can extend our algorithm to the case of solving general-topology multi-hop RIS-aided, a.k.a. multi-RIS, system designs equipped with finite LL RISs. Assume there are Pk,nP_{k,n} reflection paths from the BS to the kk-th user that go through nn (n=1,,Ln=1,\ldots,L) RISs, within which we denote by k,np={pk,1,,pk,n}\mathcal{R}_{k,n}^{p}=\{p_{k,1},\ldots,p_{k,n}\} with p=1,,Pk,np=1,\ldots,P_{k,n} the pp-th path, where the index of the ii-th intermediate RIS is denoted by pk,ip_{k,i}. (We also define pk,0=0p_{k,0}=0 for any kk and pp, which refers to the BS.) Note that there is a chance that Pk,n=0P_{k,n}=0 for some nn in practice. The system model considered in Section III can be seen as a special case of this general-topology system where Pk,Ik=1P_{k,I_{k}}=1 with k,Ik1={1,,Ik}\mathcal{R}_{k,I_{k}}^{1}=\{1,\ldots,I_{k}\} and Pk,n=0P_{k,n}=0 for nIkn\neq I_{k}, n=1,,Ln=1,\ldots,L. We denote by 𝐆0,i\mathbf{G}_{0,i} the channel between the BS and the ii-th RIS (i=1,,L)(i=1,\ldots,L), by 𝐆i,j\mathbf{G}_{i,j} the channel between the ii-th RIS and the jj-th RIS (j=1,,L)(j=1,\ldots,L), by 𝐡k,i𝗋\mathbf{h}_{k,i}^{\mathsf{r}} the channel in the reflection link between the ii-th RIS and the kk-th user, respectively. Direct channels 𝐡k𝖽\mathbf{h}_{k}^{\mathsf{d}} are defined as before. Then the SINR at the kk-th user is computed as

𝖲𝖨𝖭𝖱k=|𝐰kH𝐡k|2j,jkK|𝐰jH𝐡k|2+σ2,\mathsf{SINR}_{k}=\frac{\bigl{|}\mathbf{w}_{k}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}}{\sum_{j,j\neq k}^{K}\bigl{|}\mathbf{w}_{j}^{\mathrm{H}}\mathbf{h}_{k}\bigr{|}^{2}+\sigma^{2}},

with

𝐡k=\displaystyle\mathbf{h}_{k}= n=1Lp=1Pn(i=1n𝐆pi1,pi𝚯pi)𝐡k,pn𝗋+𝐡k𝖽.\displaystyle\sum_{n=1}^{L}\sum_{p=1}^{P_{n}}\biggl{(}\prod_{i=1}^{n}\mathbf{G}_{p_{i-1},p_{i}}\boldsymbol{\Theta}_{p_{i}}\biggr{)}\mathbf{h}_{k,p_{n}}^{\mathsf{r}}+\mathbf{h}_{k}^{\mathsf{d}}.

Already given the mathematical form above which resembles the aforementioned double-RIS system, such a general-topology multi-hop RIS-aided system designs can be addressed readily via the algorithm proposed in Section III-C.

VII-F SINR Maximizations for RIS-Aided Wireless Networks

Beyond the rate maximization problems, another commonly used system performance metric is SINR [38]. The proposed BMM method is also applicable in solving many SINR maximization problems in RIS-aided wireless network designs, e.g., weighted sum-SINR maximizations, minimum SINR maximizations, and sum-SINR maximizations. As for the rate maximizations where the minorizing functions for the objectives are constructed by minorizing individual rate functions for different users, the construction of minorizing functions for the SINR-based objectives can be done in a similar way. Taking the system considered in Section III and Section IV as an example, the minorizing functions for individual SINRs can be obtained based on Lemma 10 (given in Appendix -A). And then the SINR maximization problems can be addressed by optimizing the resultant surrogate problems following similar procedures as for rate maximizations under the proposed BMM algorithmic framework.

VII-G Acceleration Scheme for the BMM-Based Algorithms

The BMM method may suffer from a slow convergence, in that its convergence speed is dictated by the tightness of the minorizing function [39]. To accelerate the algorithms, the SQUAREM method [40] can be applied as an off-the-shelf accelerator, which was originally proposed to accelerate the expectation-maximization algorithms and later widely used for MM algorithm accelerations [41]. It accelerates the convergence of a monotonic algorithm by squaring the one-step update to be twice within each cycle of an extrapolation scheme. Interested readers are referred to [40] for details.

VIII Numerical Simulations

In this section, we provide numerical experiments to corroborate our theoretical results with the codes available at

https://github.com/zepengzhang/RateMaxRIS-BMM.\textsf{https://github.com/zepengzhang/RateMaxRIS-BMM}.

The simulations are performed in MATLAB on a personal computer with a 3.3 GHz Intel Xeon W CPU.

VIII-A Simulations for RIS-Aided MISO Cellular Networks

VIII-A1 System Settings

Under a three-dimensional Cartesian coordinate system, we consider a multi-user MISO system where the BS located at (0,0,10)𝗆(0,0,10)\mathsf{m} communicates with KK users assisted by a RIS at (d,0,10)𝗆(d,0,10)\mathsf{m}. The KK users are randomly distributed in a circle centered at (d,30,0)𝗆(d,30,0)\mathsf{m} with radius of 10𝗆10\mathsf{m}. The antennas at the BS is arranged as a uniform linear array with spacing of λ2\frac{\lambda}{2} and the passive reflecting elements at the RIS is arranged as a uniform planar array with spacing of λ8\frac{\lambda}{8}, where λ\lambda is the wavelength. We assume that the channel fading is frequency flat and adopt the Rician fading model for all channels. To make an example, the channel from the BS to the RIS is modeled as

𝐆0,1=κ𝖦(d)K𝖦+1(K𝖦𝐆0,1𝖫𝗈𝖲+𝐆0,1𝖭𝖫𝗈𝖲),\mathbf{G}_{0,1}=\sqrt{\frac{\kappa_{\mathsf{G}}(d)}{K_{\mathsf{G}}+1}}(\sqrt{K_{\mathsf{G}}}\mathbf{G}_{0,1}^{\mathsf{LoS}}+\mathbf{G}_{0,1}^{\mathsf{NLoS}}),

where κ𝖦(d)\kappa_{\mathsf{G}}(d) is the distance-dependent path loss, K𝖦[0,)K_{\mathsf{G}}\in[0,\infty) is the Rician factor, 𝐆0,1𝖫𝗈𝖲\mathbf{G}_{0,1}^{\mathsf{LoS}} is the line-of-sight (LoS) component, and 𝐆0,1𝖭𝖫𝗈𝖲\mathbf{G}_{0,1}^{\mathsf{NLoS}} is the non-line-of-sight (NLoS) components. Specifically, the distance-dependent path loss is computed as κ𝖦(d)=T0(dd0)ϱ𝖦\kappa_{\mathsf{G}}(d)=T_{0}(\frac{d}{d_{0}})^{-\varrho_{\mathsf{G}}} with the path-loss at the reference distance d0=1𝗆d_{0}=1\mathsf{m} being T0=30𝖽𝖡T_{0}=-30\mathsf{dB} and ϱ𝖦\varrho_{\mathsf{G}} denoting the path loss exponent, the LoS component is computed as the product of the array responses at the two sides, and the NLoS component is modeled by Rayleigh fading, with [𝐆0,1𝖭𝖫𝗈𝖲]ij𝒞𝒩(0,1)[\mathbf{G}_{0,1}^{\mathsf{NLoS}}]_{ij}\sim\mathcal{CN}(0,1), i=1,,N1i=1,\ldots,N_{1}, j=1,,Mj=1,\ldots,M. The other channels are modeled similarly as for 𝐆0,1\mathbf{G}_{0,1}. The path loss exponents and the Rician factors for channels {𝐆i1,i}\{\mathbf{G}_{i-1,i}\}, {𝐡i𝖽}\{\mathbf{h}_{i}^{\mathsf{d}}\}, and {𝐡i𝗋}\{\mathbf{h}_{i}^{\mathsf{r}}\} are set as ϱ𝖦=2.2\varrho_{\mathsf{G}}=2.2, K𝖦=3K_{\mathsf{G}}=3, ϱ𝖽=3.5\varrho_{\mathsf{d}}=3.5, K𝖽=0K_{\mathsf{d}}=0, and ϱ𝗋=2.8\varrho_{\mathsf{r}}=2.8, K𝗋=3K_{\mathsf{r}}=3, respectively. Besides, we have considered the noise power spectrum density of 169𝖽𝖡𝗆/𝖧𝗓-169\mathsf{dBm/Hz} and the transmission bandwidth of 240𝗄𝖧𝗓\mathsf{kHz}. In the following, if not specified, we will assume P=0𝖽𝖡𝗆P=0\mathsf{dBm}, σ2=1\sigma^{2}=1, K=4K=4, M=4M=4, N=100N=100, and d=200𝗆d=200\mathsf{m}. Moreover, all the simulation curves are averaged over 100 independent channel realizations.

VIII-A2 Performance Evaluations

Four benchmarks are considered for the WSR maximization as introduced in Section III: i) WMMSE-based BCD method [14] in which case the 𝐖\mathbf{W}-block is tackled by WMMSE [20] and the 𝚯\boldsymbol{\mathbf{\Theta}}-block is tackled via RCG; ii) FP-based BCD method [14] in which case the problem is tackled via FP aided by the prox-linear update for the 𝐖\mathbf{W}-block and an MM step for the 𝚯\boldsymbol{\Theta}-block; iii) Random Phase in which case the phase shift matrix 𝚯\boldsymbol{\mathbf{\Theta}} is randomly initialized and 𝐖\mathbf{W} is optimized via MM; iv) Without RIS, i.e., no RIS is used and 𝐖\mathbf{W} is optimized via MM.

The convergence behaviors of the proposed BMM algorithm and the above benchmarks are investigated under the single-hop scenario. The comparisons in terms of the outer iteration numbers are depicted in Fig. 2, while the convergence times of different approaches with different number of elements at RIS and those with different number of antennas at BS are showcased in Fig. 3 and Fig. 4, respectively. It can be observed that the serial BMM and the parallel BMM acquire similar outer iteration numbers to converge, which is better or comparable w.r.t. the benchmark methods. Moreover, the parallel BMM method consistently acquires the lowest CPU computation times to converge in all the simulations cases.

Refer to caption
Figure 2: WSR versus outer iteration numbers.
Refer to caption
Figure 3: Convergence times versus number of elements at RIS.
Refer to caption
Figure 4: Convergence times versus number of antennas at BS.

We further investigate the benefits of introducing multiple RISs, especially in combating the large path loss in long-distance propagations. As for the system setting, the second RIS at (d2,0,10)𝗆(\frac{d}{2},0,10)\mathsf{m} is deployed in the two-hop system and an another RIS at (d4,0,10)𝗆(\frac{d}{4},0,10)\mathsf{m} is included for the three-hop system. Besides, we assume the additional RISs are also equipped with NN elements. The achievable WSRs for different systems as distance increases are showcased in Fig. 5, in which the BMM approach (parallel BMM is used hereafter) and the benchmarks converge to numerically similar WSR for the single-hop scenario, and the benefits of introducing multiple RISs to improve WSR is obvious.

Refer to caption
Figure 5: Achievable WSR versus distance.

For the MR maximization problems, two benchmarks are considered: i) SOCP-based BMM method [13] where the BMM method is applied with the resultant SOCP subproblems solved via off-the-shelf scripting language CVX [42]; ii) Approximation-based BMM method [13] where the pointwise minimum function is first smoothened with the log-sum-exp function and the approximation problem is tackled via BMM. The convergence behaviors of the proposed BMM algorithm along with these two benchmarks are demonstrated in terms of outer iteration numbers in Fig. 6, where the proposed BMM algorithm enjoys the fastest convergence speed with the highest achievable MR among these three methods. Moreover, the convergence time of different approaches with different number of users is depicted in Fig. 7. We can easily observe that the proposed BMM algorithm acquires the lowest CPU times for convergence in all cases.

Refer to caption
Figure 6: MR versus outer iteration numbers.
Refer to caption
Figure 7: Convergence time versus number of users.

VIII-B Simulations for RIS-Aided MIMO D2D Networks

VIII-B1 System Settings

We consider a MIMO D2D system where KK transceiver pairs transmit multiple data streams with the assistance of a RIS located at (d,30,0)𝗆(d,30,0)\mathsf{m}. The transmitters and the receivers are randomly distributed in two circles with radius of 10𝗆10\mathsf{m} that are centered at (0,0,10)𝗆(0,0,10)\mathsf{m} and (d,30,0)𝗆(d,30,0)\mathsf{m}, respectively. The antennas at the transmitters and the receivers are arranged as uniform linear arrays with spacing of λ2\frac{\lambda}{2}. The number of antennas of each transmitter and receiver is set uniformly to be MM, and the dimension of symbol vectors is set as KK. The channels are modeled in a fashion similar to that for the MISO system in Section VIII-A1, and hence we omit the details here.

VIII-B2 Performance Evaluations

In this section, we will investigate the performance loss of considering more practical constraints in joint beamforming and reflecting design for SR maximization in the specified MIMO D2D system. Particularly, we consider the per-antenna power constraint introduced in Section VII-B, which is more realistic due to the fact that each antenna is usually equipped with an independent power amplifier. Besides, considering hardware limitation, instead of the continuous-phase shift, we further impose a 2-bit discrete-phase constraint. Therefore, four variants of the proposed BMM algorithms are implemented: i) BMM with total power limit and the continuous-phase constraint; ii) BMM (2-bit) with total power limit and the 2-bit discrete-phase constraint; iii) BMM (per-antenna) with per-antenna power limit and the continuous-phase constraint; iv) BMM (2-bit & per-antenna) with per-antenna power limit and the 2-bit discrete-phase constraint. Convergence behaviors of these four variants of BMM are demonstrated in Fig. 8 and performance comparisons by considering more practical constraints is depicted in Fig. 9.

Refer to caption
Figure 8: SR versus outer iteration numbers.
Refer to caption
Figure 9: Achievable SR versus number of elements at RIS.

IX Conclusions

In this paper, we have considered the joint beamforming and reflecting design problem for rate maximization problems in RIS-aided wireless networks. A unified algorithmic framework based on the block minorization-maximization (BMM) method has been developed. Merits of the algorithm have been showcased via three system design problems, where problem-tailored low-complexity and globally convergent algorithms are proposed. Benefits of the BMM algorithms in comparison with existing algorithms have been demonstrated numerically. We have also shown that many more RIS-aided system design aspects can be addressed by the unified BMM method, leaving much space to explore for future research.

Refer to the attached Supplementary Materials.

References

  • [1] Z. Zhang and Z. Zhao, “Weighted sum-rate maximization for multi-hop RIS-aided multi-user communications: A minorization-maximization approach,” in IEEE 22th Int. Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC), 2021, pp. 106–110.
  • [2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, 2020.
  • [3] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, “6G wireless systems: Vision, requirements, challenges, insights, and opportunities,” Proc. of the IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.
  • [4] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, 2014.
  • [5] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas in Commun., vol. 35, no. 6, pp. 1201–1221, 2017.
  • [6] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, 2018.
  • [7] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, 2019.
  • [8] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, 2020.
  • [9] X. Yuan, Y.-J. A. Zhang, Y. Shi, W. Yan, and H. Liu, “Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities,” IEEE Trans. Wireless Commun., vol. 28, no. 2, pp. 136–143, 2021.
  • [10] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas in Commun., vol. 38, no. 11, pp. 2450–2525, 2020.
  • [11] C. W. Tan, M. Chiang, and R. Srikant, “Maximizing sum rate and minimizing MSE on multiuser downlink: Optimality, fast algorithms and equivalence via max-min SINR,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 6127–6143, 2011.
  • [12] P. C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides, C. Fischione et al., “Weighted sum-rate maximization in wireless networks: A review,” Found. and Trends® in Netw., vol. 6, no. 1–2, pp. 1–163, 2012.
  • [13] G. Zhou, C. Pan, H. Ren, K. Wang, and A. Nallanathan, “Intelligent reflecting surface aided multigroup multicast MISO communication systems,” IEEE Trans. Signal Process., vol. 68, pp. 3236–3251, 2020.
  • [14] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076, 2020.
  • [15] C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5218–5233, 2020.
  • [16] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
  • [17] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2016.
  • [18] D. P. Bertsekas, Nonlinear programming.   Belmont, MA, USA: Athena Sci., 1999.
  • [19] S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, 2008.
  • [20] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted mmse approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, 2011.
  • [21] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds.   Princeton Univ. Press, 2009.
  • [22] K. Shen and W. Yu, “Fractional programming for communication system–Part I: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, 2018.
  • [23] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts,” IEEE J. Sel. Areas in Commun., vol. 38, no. 8, pp. 1809–1822, 2020.
  • [24] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. & Tut., vol. 16, no. 4, pp. 1801–1819, 2014.
  • [25] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 57–77, 2015.
  • [26] R. T. Rockafellar and R. J.-B. Wets, Variational analysis.   New York, NY, USA: Springer, 2009, vol. 317.
  • [27] G. Shen, J. Liu, D. Wang, J. Wang, and S. Jin, “Multi-hop relay for next-generation wireless access networks,” Bell Labs Tech. J., vol. 13, no. 4, pp. 175–193, 2009.
  • [28] D. Günduz, M. A. Khojastepour, A. Goldsmith, and H. V. Poor, “Multi-hop MIMO relay networks: diversity-multiplexing trade-off analysis,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 1738–1747, 2010.
  • [29] C. Huang, Z. Yang, G. C. Alexandropoulos, K. Xiong, L. Wei, C. Yuen, Z. Zhang, and M. Debbah, “Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design,” IEEE J. Sel. Areas in Commun., vol. 39, no. 6, pp. 1663–1677, 2021.
  • [30] Z.-Q. Luo and S. Zhang, “Dynamic spectrum management: Complexity and duality,” IEEE J. Sel. Topics in Signal Process., vol. 2, no. 1, pp. 57–73, 2008.
  • [31] Z. Zhao and D. P. Palomar, “MIMO transmit beampattern matching under waveform constraints,” in 2018 IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP).   IEEE, 2018, pp. 3281–3285.
  • [32] L. Zhao and D. P. Palomar, “Maximin joint optimization of transmitting code and receiving filter in radar and communications,” IEEE Trans. Signal Process., vol. 65, no. 4, pp. 850–863, 2016.
  • [33] R. T. Rockafellar, Convex Analysis.   Princeton Univ. Press, 1970, vol. 36.
  • [34] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications.   MPS-SIAM, 2001.
  • [35] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient methods for convex optimization,” Oper. Res. Lett., vol. 31, no. 3, pp. 167–175, 2003.
  • [36] S. Wang, S. Ma, C. Xing, S. Gong, J. An, and H. V. Poor, “Optimal training design for MIMO systems with general power constraints,” IEEE Trans. Signal Process., vol. 66, no. 14, pp. 3649–3664, 2018.
  • [37] W. Mei, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface aided wireless networks: From single-reflection to multi-reflection design and optimization,” arXiv preprint arXiv:2109.13641, 2021.
  • [38] B. Zheng, C. You, and R. Zhang, “Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4513–4526, 2021.
  • [39] T. T. Wu and K. Lange, “The MM alternative to EM,” Stat. Sci., vol. 25, no. 4, pp. 492–505, 2010.
  • [40] R. Varadhan and C. Roland, “Simple and globally convergent methods for accelerating the convergence of any EM algorithm,” Scand. J. of Statist., vol. 35, no. 2, pp. 335–353, 2008.
  • [41] J. Song, P. Babu, and D. P. Palomar, “Optimization methods for designing sequences with low autocorrelation sidelobes,” IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3998–4009, 2015.
  • [42] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, Version 2.1,” 2014.
  • [43] R. A. Horn and C. R. Johnson, Matrix analysis.   Cambridge Univ. Press, 2012.
  • [44] D. W. Peterson, “A review of constraint qualifications in finite-dimensional spaces,” SIAM Rev., vol. 15, no. 3, pp. 639–654, 1973.
  • [45] A. Hjørungnes, Complex-valued matrix derivatives: with applications in signal processing and communications.   Cambridge Univ. Press, 2011.

Supplementary Materials for “Rate Maximizations for Reconfigurable Intelligent Surface-Aided Wireless Networks: A Unified Framework via Block Minorization-Maximization”

Zepeng Zhang and Ziping Zhao

-A Proof for Proposition 1

Proof:

The function log(z)\log(z) with z>0z>0 is concave and hence can be majorized by its linear expansion around z¯\underline{z} as follows:

log(z)log(z¯)+1z¯(zz¯).\log(z)\leq\log(\underline{z})+\frac{1}{\underline{z}}(z-\underline{z}).

By substituting zz with yy+|x|2\frac{y}{y+|x|^{2}}, we get

log(1+|x|2y)\displaystyle\log\bigl{(}1+\frac{|x|^{2}}{y}\bigr{)} log(1+|x¯|2y¯)y¯+|x¯|2y¯(yy+|x|2y¯y¯+|x¯|2)\displaystyle\geq\log\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}-\frac{\underline{y}+|\underline{x}|^{2}}{\underline{y}}\bigl{(}\frac{y}{y+|x|^{2}}-\frac{\underline{y}}{\underline{y}+|\underline{x}|^{2}}\bigr{)} (24)
=log(1+|x¯|2y¯)y¯+|x¯|2y¯(|x¯|2y¯+|x¯|2|x|2y+|x|2)\displaystyle=\log\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}-\frac{\underline{y}+|\underline{x}|^{2}}{\underline{y}}\bigl{(}\frac{|\underline{x}|^{2}}{\underline{y}+|\underline{x}|^{2}}-\frac{|x|^{2}}{y+|x|^{2}}\bigr{)}
=log(1+|x¯|2y¯)|x¯|2y¯+(1+|x¯|2y¯)|x|2y+|x|2,\displaystyle=\log\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}-\frac{|\underline{x}|^{2}}{\underline{y}}+\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}\frac{|x|^{2}}{y+|x|^{2}},

where the equality is attained at (x,y)=(x¯,y¯)\left(x,y\right)=\left(\underline{x},\underline{y}\right).

Lemma 10.

The function |z1|2z2\frac{\left|z_{1}\right|^{2}}{z_{2}} with z1z_{1}\in\mathbb{C} and z2>0z_{2}>0 is minorized at (z1¯,z2¯)(\underline{z_{1}},\underline{z_{2}}) as follows:

|z1|2z22z2¯Re(z1¯z1)|z1¯|2z22¯z2.\frac{|z_{1}|^{2}}{z_{2}}\geq\frac{2}{\underline{z_{2}}}\mathrm{Re}\bigl{(}\underline{z_{1}^{*}}z_{1}\bigr{)}-\frac{|\underline{z_{1}}|^{2}}{\underline{z_{2}^{2}}}z_{2}.
Proof:

For z1z_{1}\in\mathbb{C} and z2>0z_{2}>0, we have

(z1z2z1¯z2z2¯)(z1z2z1¯z2z2¯)0.\bigl{(}\frac{z_{1}}{\sqrt{z_{2}}}-\frac{\underline{z_{1}}\sqrt{z_{2}}}{\underline{z_{2}}}\bigr{)}^{*}\bigl{(}\frac{z_{1}}{\sqrt{z_{2}}}-\frac{\underline{z_{1}}\sqrt{z_{2}}}{\underline{z_{2}}}\bigr{)}\geq 0.

Expanding the above formula and rearranging the terms lead to the above result. ∎

Remark 11.

Lemma 10 reduces to the case of minorizing the convex “quadratic-over-linear” function by the first order Taylor expansion when z1z_{1}\in\mathbb{R} and z2>0z_{2}>0 [17].

Applying the results in Lemma 10 to the last line of Eq. (24) with z1=xz_{1}=x and z2=y+|x|2z_{2}=y+\left|x\right|^{2}, we can conclude that

log(1+|x|2y)\displaystyle\log\bigl{(}1+\frac{|x|^{2}}{y}\bigr{)} log(1+|x¯|2y¯)|x¯|2y¯+(1+|x¯|2y¯)(2y¯+|x¯|2Re(x¯x)|x|2(y¯+|x¯|2)2(y+|x|2))\displaystyle\geq\log\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}-\frac{|\underline{x}|^{2}}{\underline{y}}+\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}\Bigl{(}\frac{2}{\underline{y}+|\underline{x}|^{2}}\mathrm{Re}\bigl{(}\underline{x}^{*}x\bigr{)}-\frac{|x|^{2}}{\bigl{(}\underline{y}+|\underline{x}|^{2}\bigr{)}^{2}}\bigl{(}y+|x|^{2}\bigr{)}\Bigr{)}
=|x¯|2y¯(y¯+|x¯|2)(y+|x|2)+2y¯Re(x¯x)+log(1+|x¯|2y¯)|x¯|2y¯,\displaystyle=-\frac{|\underline{x}|^{2}}{\underline{y}\bigl{(}\underline{y}+|\underline{x}|^{2}\bigr{)}}\bigl{(}y+|x|^{2}\bigr{)}+\frac{2}{\underline{y}}\mathrm{Re}\bigl{(}\underline{x}^{*}x\bigr{)}+\log\bigl{(}1+\frac{|\underline{x}|^{2}}{\underline{y}}\bigr{)}-\frac{|\underline{x}|^{2}}{\underline{y}},

where the equality is attained when (x,y)=(x¯,y¯)\left(x,y\right)=\left(\underline{x},\underline{y}\right). ∎

-B Proof for Proposition 6

Proof:

The objective of Problem (17) is concave-convex in 𝚯\boldsymbol{\Theta} and 𝐬\mathbf{s}, and constraint sets 𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽\mathcal{C}_{\mathsf{relaxed}} and 𝒮\mathcal{S} are both nonempty compact and convex. Therefore, a saddle point (𝚯,𝐬)(\boldsymbol{\Theta}^{\star},\mathbf{s}^{\star}) exists for Problem (17) [33, Corollary 37.6.2]. In the following, we will verify that 𝚯𝒞\boldsymbol{\Theta}^{\star}\in\mathcal{C} always hold by contradiction, with which the proof is completed.

Suppose 𝚯𝒞\boldsymbol{\Theta}^{\star}\notin\mathcal{C}, i.e., in the interior of 𝒞𝗋𝖾𝗅𝖺𝗑𝖾𝖽\mathcal{C}_{\mathsf{relaxed}}, then there must exist some element of 𝚯=diag(𝜽)\boldsymbol{\Theta}^{\star}=\mathrm{diag}(\boldsymbol{\theta}^{\star}), say [𝜽]j\left[\boldsymbol{\theta}^{\star}\right]_{j}, such that |[𝜽]j|<1|[\boldsymbol{\theta}^{\star}]_{j}|<1. If the jj-th element of 𝐛k\mathbf{b}_{k} is nonzero, we can always reset the phase of [𝜽]j\left[\boldsymbol{\theta}\right]_{j} to be aligned with the jj-th element of 𝐛k-\mathbf{b}_{k} and increase its modulus by a small amount without violating feasibility. Then the objective of Problem (17) will be pulled down from the side of 𝜽\boldsymbol{\theta}, which contradicts with the saddle point nature of (𝚯,𝐬)(\boldsymbol{\Theta}^{\star},\mathbf{s}^{\star}). In case the jj-th element of 𝐛k\mathbf{b}_{k} is zero, the optimal [𝜽]j\left[\boldsymbol{\theta}^{\star}\right]_{j} may be non-unique (and thus the saddle point is non-unique), but we can always modulate the modulus of [𝜽]j\left[\boldsymbol{\theta}\right]_{j} to find an optimal [𝜽]j\left[\boldsymbol{\theta}^{\star}\right]_{j} on the boundary. Therefore, we can conclude that the saddle point (or at least one saddle point) of Problem (17) naturally satisfies 𝚯𝒞\boldsymbol{\Theta}^{\star}\in\mathcal{C}, which means there must exist a saddle point for Problem (16) that can be obtained by solving Problem (17). ∎

-C Proof for Proposition 7

Proof:

This proof is intrinsically parallel to that of Proposition 1, based on which the result is extended to the matrix domain. The concave function logdet(𝐙)\log\det\left(\mathbf{Z}\right) with 𝐙𝟎\mathbf{Z}\succ\mathbf{0} can be majorized by its linear expansion around 𝐙¯\underline{\mathbf{Z}} as follows:

logdet(𝐙)logdet(𝐙¯)+tr(𝐙¯1(𝐙𝐙¯)).\log\det(\mathbf{Z})\leq\log\det(\underline{\mathbf{Z}})+{\rm tr}\bigl{(}\underline{\mathbf{Z}}^{-1}(\mathbf{Z}-\underline{\mathbf{Z}})\bigr{)}.

By substituting 𝐙\mathbf{Z} with (𝐈+𝐗H𝐘1𝐗)1\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)}^{-1}, we get

logdet(𝐈+𝐗H𝐘1𝐗)\displaystyle\log\det\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)} logdet(𝐈+𝐗¯H𝐘¯1𝐗¯)tr((𝐈+𝐗¯H𝐘¯1𝐗¯)(𝐈+𝐗H𝐘1𝐗)1𝐈),\displaystyle\geq\log\det\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}-\mathrm{tr}\Bigl{(}\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)}^{-1}-\mathbf{I}\Bigr{)},

where the equality is attained at (𝐗,𝐘)=(𝐗¯,𝐘¯)\left(\mathbf{X},\mathbf{Y}\right)=\left(\underline{\mathbf{X}},\underline{\mathbf{Y}}\right). The Woodbury matrix identity gives

(𝐈+𝐗H𝐘1𝐗)1\displaystyle\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)}^{-1} =𝐈1𝐈1𝐗H(𝐘+𝐗𝐈𝐗H)1𝐗𝐈1\displaystyle=\mathbf{I}^{-1}-\mathbf{I}^{-1}\mathbf{X}^{\mathrm{H}}\bigl{(}\mathbf{Y}+\mathbf{XI}\mathbf{X}^{\mathrm{H}}\bigr{)}^{-1}\mathbf{XI}^{-1}
=𝐈𝐗H(𝐘+𝐗𝐗H)1𝐗,\displaystyle=\mathbf{I}-\mathbf{X}^{\mathrm{H}}\bigl{(}\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}}\bigr{)}^{-1}\mathbf{X},

and hence

logdet(𝐈+𝐗H𝐘1𝐗)\displaystyle\log\det\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)} logdet(𝐈+𝐗¯H𝐘¯1𝐗¯)tr((𝐈+𝐗¯H𝐘¯1𝐗¯)(𝐈𝐗H(𝐘+𝐗𝐗H)1𝐗)𝐈)\displaystyle\geq\log\det\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}-\mathrm{tr}\Bigl{(}\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}\bigl{(}\mathbf{I}-\mathbf{X}^{\mathrm{H}}\bigl{(}\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}}\bigr{)}^{-1}\mathbf{X}\bigr{)}-\mathbf{I}\Bigr{)}
=logdet(𝐈+𝐗¯H𝐘¯1𝐗¯)tr(𝐗¯H𝐘¯1𝐗¯)+tr((𝐈+𝐗¯H𝐘¯1𝐗¯)𝐗H(𝐘+𝐗𝐗H)1𝐗).\displaystyle=\log\det\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}-\mathrm{tr}\bigl{(}\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}+\mathrm{tr}\Bigl{(}\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}\mathbf{X}^{\mathrm{H}}\bigl{(}\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}}\bigr{)}^{-1}\mathbf{X}\Bigr{)}.

Since 𝐈+𝐗¯H𝐘¯1𝐗¯𝟎\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\succ\mathbf{0}, it admits a unique positive semidefinite square root (𝐈+𝐗¯H𝐘¯1𝐗¯)12(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})^{\frac{1}{2}} [43, Theorem 7.2.6]. Let 𝐙1=𝐗(𝐈+𝐗¯H𝐘¯1𝐗¯)12\mathbf{Z}_{1}=\mathbf{X}(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})^{\frac{1}{2}} and 𝐙2=𝐘+𝐗𝐗H\mathbf{Z}_{2}=\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}}, we have

(𝐙212𝐙1𝐙212𝐙21¯𝐙1¯)H(𝐙212𝐙1𝐙212𝐙21¯𝐙1¯)𝟎,(\mathbf{Z}_{2}^{-\frac{1}{2}}\mathbf{Z}_{1}-\mathbf{Z}_{2}^{\frac{1}{2}}\underline{\mathbf{Z}_{2}^{-1}}\underline{\mathbf{Z}_{1}})^{\mathrm{H}}(\mathbf{Z}_{2}^{-\frac{1}{2}}\mathbf{Z}_{1}-\mathbf{Z}_{2}^{\frac{1}{2}}\underline{\mathbf{Z}_{2}^{-1}}\underline{\mathbf{Z}_{1}})\succeq\mathbf{0},

which means

𝐙1H𝐙21𝐙1𝐙1H¯𝐙21¯𝐙1+𝐙1H𝐙21¯𝐙1¯𝐙1H¯𝐙21¯𝐙2𝐙21¯𝐙1¯.\mathbf{Z}_{1}^{\mathrm{H}}\mathbf{Z}_{2}^{-1}\mathbf{Z}_{1}\succeq\underline{\mathbf{Z}_{1}^{\mathrm{H}}}\underline{\mathbf{Z}_{2}^{-1}}\mathbf{Z}_{1}+\mathbf{Z}_{1}^{\mathrm{H}}\underline{\mathbf{Z}_{2}^{-1}}\underline{\mathbf{Z}_{1}}-\underline{\mathbf{Z}_{1}^{\mathrm{H}}}\underline{\mathbf{Z}_{2}^{-1}}\mathbf{Z}_{2}\underline{\mathbf{Z}_{2}^{-1}}\underline{\mathbf{Z}_{1}}.

Then we can conclude that

logdet(𝐈+𝐗H𝐘1𝐗)\displaystyle\log\det\bigl{(}\mathbf{I}+\mathbf{X}^{\mathrm{H}}\mathbf{Y}^{-1}\mathbf{X}\bigr{)} logdet(𝐈+𝐗¯H𝐘¯1𝐗¯)tr(𝐗¯H𝐘¯1𝐗¯)+2Re(tr((𝐈+𝐗¯H𝐘¯1𝐗¯)𝐗¯H(𝐘¯+𝐗¯𝐗¯H)1𝐗))\displaystyle\geq\log\det\bigl{(}\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}-\mathrm{tr}\bigl{(}\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}}\bigr{)}+2\mathrm{Re}\Bigl{(}\mathrm{tr}\bigl{(}(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})\underline{\mathbf{X}}^{\mathrm{H}}(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}\mathbf{X}\bigr{)}\Bigr{)}
tr((𝐈+𝐗¯H𝐘¯1𝐗¯)𝐗¯H(𝐘¯+𝐗¯𝐗¯H)1(𝐘+𝐗𝐗H)(𝐘¯+𝐗¯𝐗¯H)1𝐗¯),\displaystyle\ \ -\mathrm{tr}\Bigl{(}(\mathbf{I}+\underline{\mathbf{X}}^{\mathrm{H}}\underline{\mathbf{Y}}^{-1}\underline{\mathbf{X}})\underline{\mathbf{X}}^{\mathrm{H}}(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}(\mathbf{Y}+\mathbf{X}\mathbf{X}^{\mathrm{H}})(\underline{\mathbf{Y}}+\underline{\mathbf{X}}\underline{\mathbf{X}}^{\mathrm{H}})^{-1}\underline{\mathbf{X}}\Bigr{)},

where the equality is attained when (𝐗,𝐘)=(𝐗¯,𝐘¯)\left(\mathbf{X},\mathbf{Y}\right)=\left(\underline{\mathbf{X}},\underline{\mathbf{Y}}\right), and the proof is completed by rearranging the terms. ∎

-D Proof for Theorem 8

Proof:

In the following, we will give the convergence proof for Algorithm 1 which is designed for Problem (WSRMax), and the convergence properties for Algorithm 2 and Algorithm 3 can be proved similarly. Besides, it can be verified that the convergence properties also hold for other cases that BMM has been applied to in Section VII.

The convergence proof partly hinges on the proof for BSUM in [16]. The sequence {𝐖(t),{𝚯i(t)}}t\{\mathbf{W}^{(t)},\{\boldsymbol{\Theta}_{i}^{(t)}\}\}_{t\in\mathbb{N}} generated by Algorithm 1 lies in a compact set and, hence, it has a limit point {𝐖(),{𝚯i()}}\{\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\}. Then we can get

f𝖶𝖲𝖱,𝐖(𝐖(),𝐖(),{𝚯i()})f𝖶𝖲𝖱,𝐖(𝐖,𝐖(),{𝚯i()}),𝐖𝒲,f_{\mathsf{WSR},\mathbf{W}}^{\prime}\bigl{(}\mathbf{W}^{(\infty)},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}\geq f_{\mathsf{WSR},\mathbf{W}}^{\prime}\bigl{(}\mathbf{W},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)},\ \ \forall\,\mathbf{W}\in\mathcal{W}, (25)

and

f𝖶𝖲𝖱,𝚯l′′(𝚯l(),𝐖(),{𝚯i()})f𝖶𝖲𝖱,𝚯l′′(𝚯l,𝐖(),{𝚯i()}),𝚯l𝒞l,l=1,,L.f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime}\bigl{(}\boldsymbol{\Theta}_{l}^{(\infty)},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}\geq f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime}\bigl{(}\boldsymbol{\Theta}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)},\ \ \forall\,\boldsymbol{\Theta}_{l}\in\mathcal{C}_{l},\ \ l=1,\ldots,L. (26)

We first define the real counterparts of 𝐖\mathbf{W} and 𝐡k\mathbf{h}_{k} in (3) as follows:

𝐖~=[𝐰~k,,𝐰~K]=[Re(𝐖)Im(𝐖)],𝐡~k=[Re(𝐡k)Im(𝐡k)Im(𝐡k)Re(𝐡k)],k=1,,K,\tilde{\mathbf{W}}=\left[\tilde{\mathbf{w}}_{k},\ldots,\tilde{\mathbf{w}}_{K}\right]=\left[\begin{array}[]{c}\mathrm{Re}\left(\mathbf{W}\right)\\ \mathrm{Im}\left(\mathbf{W}\right)\end{array}\right],\ \ \ \ \tilde{\mathbf{h}}_{k}=\left[\begin{array}[]{cc}\mathrm{Re}\left(\mathbf{h}_{k}\right)&\mathrm{Im}\left(\mathbf{h}_{k}\right)\\ \mathrm{Im}\left(\mathbf{h}_{k}\right)&-\mathrm{Re}\left(\mathbf{h}_{k}\right)\end{array}\right],\ \ k=1,\ldots,K,

and then the constraint set for 𝐖~\tilde{\mathbf{W}} derived from 𝒲{\cal W} is

𝒲~={𝐖~𝐖~F2P}.\tilde{\mathcal{W}}=\left\{\tilde{\mathbf{W}}\mid\bigl{\|}\tilde{\mathbf{W}}\bigr{\|}_{\mathrm{F}}^{2}\leq P\right\}.

With the above definitions, the counterpart functions of f𝖶𝖲𝖱,𝐖f_{\mathsf{WSR},\mathbf{W}} and f𝖶𝖲𝖱,𝐖f_{\mathsf{WSR},\mathbf{W}}^{\prime} with real variables can be constructed as follows:

g𝐖~(𝐖~)=k=1Kωklog(1+𝐰~kT𝐡~k22j,jkK𝐰~jT𝐡~k22+σ2),\displaystyle g_{\tilde{\mathbf{W}}}\bigl{(}\tilde{\mathbf{W}}\bigr{)}=\sum_{k=1}^{K}\omega_{k}\log\bigl{(}1+\frac{\bigl{\|}\tilde{\mathbf{w}}_{k}^{\mathrm{T}}\tilde{\mathbf{h}}_{k}\bigr{\|}_{2}^{2}}{\sum_{j,j\neq k}^{K}\bigl{\|}\tilde{\mathbf{w}}_{j}^{\mathrm{T}}\tilde{\mathbf{h}}_{k}\bigr{\|}_{2}^{2}+\sigma^{2}}\bigr{)},
g𝐖~(𝐖~)=k=1Kωk(αkj=1K𝐰~jT𝐡~k22+2βk𝐰~kT𝐡~k2)+𝖼𝗈𝗇𝗌𝗍w,\displaystyle g_{\tilde{\mathbf{W}}}^{\prime}\bigl{(}\tilde{\mathbf{W}}\bigr{)}=\sum_{k=1}^{K}\omega_{k}\bigl{(}-\alpha_{k}\sum_{j=1}^{K}\bigl{\|}\tilde{\mathbf{w}}_{j}^{\mathrm{T}}\tilde{\mathbf{h}}_{k}\bigr{\|}_{2}^{2}+2\beta_{k}\bigl{\|}\tilde{\mathbf{w}}_{k}^{\mathrm{T}}\tilde{\mathbf{h}}_{k}\bigr{\|}_{2}\bigr{)}+\mathsf{const}_{w},

where αk\alpha_{k} and 𝖼𝗈𝗇𝗌𝗍w\mathsf{const}_{w} are defined as in (4) while βk=𝖲𝖨𝖭𝖱¯𝐰~kT¯𝐡~k2\beta_{k}=\frac{\underline{\mathsf{SINR}}}{||\underline{\tilde{\mathbf{w}}_{k}^{\mathrm{T}}}\tilde{\mathbf{h}}_{k}||_{2}}. Given (𝐖(),{𝚯i()})(\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}), it is straightforward that the Problem (WSRMax) w.r.t. 𝐖\mathbf{W} given by

maximize𝐖𝒲\displaystyle\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{maximize}} f𝖶𝖲𝖱,𝐖(𝐖,𝐖(),{𝚯i()})\displaystyle f_{\mathsf{WSR},\mathbf{W}}\bigl{(}\mathbf{W},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)} (27)

is equivalent to the following problem with real variable 𝐖~\tilde{\mathbf{W}}:

maximize𝐖~𝒲~\displaystyle\underset{\tilde{\mathbf{W}}\in\tilde{\mathcal{W}}}{\mathrm{maximize}} g𝐖~(𝐖~,𝐖(),{𝚯i()}),\displaystyle g_{\tilde{\mathbf{W}}}\bigl{(}\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}, (28)

and the corresponding surrogate problem for 𝐖\mathbf{W} given by

maximize𝐖𝒲\displaystyle\underset{\mathbf{W}\in\mathcal{W}}{\mathrm{maximize}} f𝖶𝖲𝖱,𝐖(𝐖,𝐖(),{𝚯i()})\displaystyle f_{\mathsf{WSR},\mathbf{W}}^{\prime}(\mathbf{W},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}) (29)

is equivalent to the following problem with real variable 𝐖~\tilde{\mathbf{W}}:

maximize𝐖~𝒲~\displaystyle\underset{\tilde{\mathbf{W}}\in\tilde{\mathcal{W}}}{\mathrm{maximize}} g𝐖~(𝐖~,𝐖(),{𝚯i()}).\displaystyle g_{\tilde{\mathbf{W}}}^{\prime}\bigl{(}\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}. (30)

From Eq. (25), we know that 𝐖()\mathbf{W}^{(\infty)} is a global maximizer of Problem (29), then 𝐖~()\tilde{\mathbf{W}}^{(\infty)} is a global maximizer of Problem (30) as well due to the equivalence between Problem (30) and Problem (29), indicating that

g𝐖~(𝐖~,𝐖(),{𝚯i()};𝐝w)𝐖~=𝐖~()0,𝐝w s.t. 𝐖~()+𝐝w𝒲~.\nabla g_{\tilde{\mathbf{W}}}^{\prime}(\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\};\mathbf{d}_{w})\mid_{\tilde{\mathbf{W}}=\tilde{\mathbf{W}}^{(\infty)}}\leq 0,\ \ \ \forall\mathbf{d}_{w}\ \text{ s.t. }\ \tilde{\mathbf{W}}^{(\infty)}+\mathbf{d}_{w}\in\tilde{\mathcal{W}}.

It can be verified that g𝐖~(𝐖~,𝐖(),{𝚯i()})=g𝐖~(𝐖~,𝐖(),{𝚯i()})\nabla g_{\tilde{\mathbf{W}}}^{\prime}\bigl{(}\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}=\nabla g_{\tilde{\mathbf{W}}}\bigl{(}\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}, in that g𝐖~(𝐖~)g_{\tilde{\mathbf{W}}}^{\prime}\bigl{(}\tilde{\mathbf{W}}\bigr{)} is a minorizing function of g𝐖~(𝐖~)g_{\tilde{\mathbf{W}}}\bigl{(}\tilde{\mathbf{W}}\bigr{)} according to Proposition 1. Therefore, we have

g𝐖~(𝐖~,𝐖(),{𝚯i()};𝐝w)𝐖~=𝐖~()0,𝐝w s.t. 𝐖~()+𝐝w𝒲~,\nabla g_{\tilde{\mathbf{W}}}(\tilde{\mathbf{W}},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\};\mathbf{d}_{w})\mid_{\tilde{\mathbf{W}}=\tilde{\mathbf{W}}^{(\infty)}}\leq 0,\ \ \ \forall\mathbf{d}_{w}\ \text{ s.t. }\ \tilde{\mathbf{W}}^{(\infty)}+\mathbf{d}_{w}\in\tilde{\mathcal{W}},

which means 𝐖~()\tilde{\mathbf{W}}^{(\infty)} is a stationary point of Problem (28). Then 𝐖()\mathbf{W}^{(\infty)} is also a stationary point of Problem (27) because of the equivalence between Problem (27) and Problem (28).

We further define the real counterparts of 𝜽~l\tilde{\boldsymbol{\theta}}_{l}, 𝐰jH¯𝐡k𝖽\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}, 𝐰jH¯𝐅k,l\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l} in (7), and 𝐛l\mathbf{b}_{l} in (10) as follows:

𝜽~l=[Re(𝜽l)Im(𝜽l)],𝐡~j𝖽=[Re(𝐰jH¯𝐡k𝖽)Im(𝐰jH¯𝐡k𝖽)],𝐟~j=[Re(𝐰jH¯𝐅k,l)Im(𝐰jH¯𝐅k,l)Im(𝐰jH¯𝐅k,l)Re(𝐰jH¯𝐅k,l)],𝐛~l=[Re(𝐛l)Im(𝐛l)],j=1,,K,\tilde{\boldsymbol{\theta}}_{l}\negthinspace=\negthinspace\left[\negthinspace\begin{array}[]{c}\mathrm{Re}\left(\boldsymbol{\theta}_{l}\right)\\ \mathrm{Im}\left(\boldsymbol{\theta}_{l}\right)\end{array}\negthinspace\right],\ \ \ \tilde{\mathbf{h}}_{j}^{\mathsf{d}}\negthinspace=\negthinspace\left[\negthinspace\begin{array}[]{c}\mathrm{Re}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\\ \mathrm{Im}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{h}_{k}^{\mathsf{d}}\bigr{)}\end{array}\negthinspace\right],\ \ \ \tilde{\mathbf{f}}_{j}\negthinspace=\negthinspace\left[\negthinspace\begin{array}[]{cc}\mathrm{Re}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\bigr{)}&\mathrm{Im}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\bigr{)}\\ -\mathrm{Im}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\bigr{)}&\mathrm{Re}\bigl{(}\underline{\mathbf{w}_{j}^{\mathrm{H}}}\mathbf{F}_{k,l}\bigr{)}\end{array}\negthinspace\right],\ \ \ \tilde{\mathbf{b}}_{l}\negthinspace=\negthinspace\left[\negthinspace\begin{array}[]{c}\mathrm{Re}\bigl{(}\mathbf{b}_{l}\bigr{)}\\ \mathrm{Im}\bigl{(}\mathbf{b}_{l}\bigr{)}\end{array}\negthinspace\right],\ \ \ j\negthinspace=\negthinspace 1,\ldots,K,

and then the constraint set for 𝜽~l\tilde{\boldsymbol{\theta}}_{l} is

𝒞~l={𝜽~l𝜽~l2Nl,[𝜽l]j2+[𝜽l]j+Nl2=1,j=1,,Ni}.\tilde{\mathcal{C}}_{l}=\left\{\tilde{\boldsymbol{\theta}}_{l}\mid\tilde{\boldsymbol{\theta}}_{l}\in\mathbb{R}^{2N_{l}},\ [\boldsymbol{\theta}_{l}]_{j}^{2}+[\boldsymbol{\theta}_{l}]_{j+N_{l}}^{2}=1,\ j=1,\ldots,N_{i}\right\}.

With the above definitions, the counterpart functions of f𝖶𝖲𝖱,𝚯lf_{\mathsf{WSR},\boldsymbol{\Theta}_{l}} and f𝖶𝖲𝖱,𝚯l′′f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime} with real variable can be constructed as follows:

g𝜽~l(𝜽~l)=k=1Kωklog(1+𝐟~k𝜽~l+𝐡~k𝖽22j,jkK𝐟~j𝜽~l+𝐡~j𝖽22+σ2)\displaystyle g_{\tilde{\boldsymbol{\theta}}_{l}}\bigl{(}\tilde{\boldsymbol{\theta}}_{l}\bigr{)}=\sum_{k=1}^{K}\omega_{k}\log\bigl{(}1+\frac{\bigl{\|}\tilde{\mathbf{f}}_{k}\tilde{\boldsymbol{\theta}}_{l}+\tilde{\mathbf{h}}_{k}^{\mathsf{d}}\bigr{\|}_{2}^{2}}{\sum_{j,j\neq k}^{K}\bigl{\|}\tilde{\mathbf{f}}_{j}\tilde{\boldsymbol{\theta}}_{l}+\tilde{\mathbf{h}}_{j}^{\mathsf{d}}\bigr{\|}_{2}^{2}+\sigma^{2}}\bigr{)}
g𝜽~l(𝜽~l)=2𝜽~lT𝐛~l+𝖼𝗈𝗇𝗌𝗍θ,l,\displaystyle g_{\tilde{\boldsymbol{\theta}}_{l}}^{\prime}\bigl{(}\tilde{\boldsymbol{\theta}}_{l}\bigr{)}=-2\tilde{\boldsymbol{\theta}}_{l}^{\mathrm{T}}\tilde{\mathbf{b}}_{l}+\mathsf{const}_{\theta,l}^{\prime},

where 𝖼𝗈𝗇𝗌𝗍θ,l=𝖼𝗈𝗇𝗌𝗍θ,lNlλl𝜽lH¯(λl𝐈𝐋l)𝜽l¯\mathsf{const}_{\theta,l}^{\prime}=\mathsf{const}_{\theta,l}-N_{l}\lambda_{l}-\underline{\boldsymbol{\theta}_{l}^{\mathrm{H}}}\bigl{(}\lambda_{l}\mathbf{I}-\mathbf{L}_{l}\bigr{)}\underline{\boldsymbol{\theta}_{l}} represents the constant parts in (10). Given (𝐖(),{𝚯i()})(\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}), it is straightforward that the Problem (WSRMax) w.r.t. 𝚯l\boldsymbol{\Theta}_{l} given by

maximize𝚯l𝒞l\displaystyle\underset{\boldsymbol{\Theta}_{l}\in\mathcal{C}_{l}}{\mathrm{maximize}} f𝖶𝖲𝖱,𝚯l(𝚯l,𝐖(),{𝚯i()})\displaystyle f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}\bigl{(}\boldsymbol{\Theta}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)} (31)

is equivalent to the following problem with real variable 𝜽~l\tilde{\boldsymbol{\theta}}_{l}

maximize𝜽~l𝒞~l\displaystyle\underset{\tilde{\boldsymbol{\theta}}_{l}\in\tilde{\mathcal{C}}_{l}}{\mathrm{maximize}} g𝜽~l(𝜽~l,𝐖(),{𝚯i()}),\displaystyle g_{\tilde{\boldsymbol{\theta}}_{l}}\bigl{(}\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}, (32)

and the corresponding surrogate problem for 𝚯l\boldsymbol{\Theta}_{l} given by

maximize𝚯l𝒞l\displaystyle\underset{\boldsymbol{\Theta}_{l}\in\mathcal{C}_{l}}{\mathrm{maximize}} f𝖶𝖲𝖱,𝚯l′′(𝚯l,𝐖(),{𝚯i()})\displaystyle f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime}(\boldsymbol{\Theta}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}) (33)

is equivalent to the following problem with real variable 𝜽~l\tilde{\boldsymbol{\theta}}_{l}

maximize𝜽~l𝒞~l\displaystyle\underset{\tilde{\boldsymbol{\theta}}_{l}\in\tilde{\mathcal{C}}_{l}}{\mathrm{maximize}} g𝜽~l(𝜽~l,𝐖(),{𝚯i()}).\displaystyle g_{\tilde{\boldsymbol{\theta}}_{l}}^{\prime}(\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}). (34)

From Eq. (26), we know that 𝚯l()\boldsymbol{\Theta}_{l}^{(\infty)} is a global maximizer of Problem (33), then 𝜽~()\tilde{\boldsymbol{\theta}}^{(\infty)} is a global maximizer of Problem (34) as well due to the equivalence between Problem (34) and Problem (33), indicating that

g𝜽~l(𝜽~l,𝐖(),{𝚯i()};𝐝θ,l)𝜽~l=𝜽~l()0,𝐝θ,l𝒯𝒞~l(𝜽~l()).\nabla g_{\tilde{\boldsymbol{\theta}}_{l}}^{\prime}(\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\};\mathbf{d}_{\theta,l})\mid_{\tilde{\boldsymbol{\theta}}_{l}=\tilde{\boldsymbol{\theta}}_{l}^{(\infty)}}\leq 0,\ \ \ \forall\mathbf{d}_{\theta,l}\in\mathcal{T}_{\tilde{\mathcal{C}}_{l}}(\tilde{\boldsymbol{\theta}}_{l}^{(\infty)}).

It can be verified that g𝜽~l(𝜽~l,𝐖(),{𝚯i()})=g𝜽~l(𝜽~l,𝐖(),{𝚯i()})\nabla g_{\tilde{\boldsymbol{\theta}}_{l}}^{\prime}(\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\})=\nabla g_{\tilde{\boldsymbol{\theta}}_{l}}(\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}), in that g𝜽~l(𝜽~l)g_{\tilde{\boldsymbol{\theta}}_{l}}^{\prime}\bigl{(}\tilde{\boldsymbol{\theta}}_{l}\bigr{)} is a minorizing function of g𝜽~l(𝜽~l)g_{\tilde{\boldsymbol{\theta}}_{l}}\bigl{(}\tilde{\boldsymbol{\theta}}_{l}\bigr{)} according to Proposition 1, Lemma 3, and Lemma 4. Therefore, we have

g𝜽~l(𝜽~l,𝐖(),{𝚯i()};𝐝θ,l)𝜽~l=𝜽~l()0,𝐝θ,l𝒯𝒞~l(𝜽~l()),\nabla g_{\tilde{\boldsymbol{\theta}}_{l}}(\tilde{\boldsymbol{\theta}}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\};\mathbf{d}_{\theta,l})\mid_{\tilde{\boldsymbol{\theta}}_{l}=\tilde{\boldsymbol{\theta}}_{l}^{(\infty)}}\leq 0,\ \ \ \forall\mathbf{d}_{\theta,l}\in\mathcal{T}_{\tilde{\mathcal{C}}_{l}}(\tilde{\boldsymbol{\theta}}_{l}^{(\infty)}),

which means 𝜽~l()\tilde{\boldsymbol{\theta}}_{l}^{(\infty)} is a stationary point of Problem (32). Then 𝚯l()\boldsymbol{\Theta}_{l}^{(\infty)} is also a stationary point of Problem (31) because of the equivalence between Problem (31) and Problem (32).

Similarly, by repeating the above argument for the other {𝚯i}\{\boldsymbol{\Theta}_{i}\} blocks, we can conclude that (𝐖(),{𝚯i()})(\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}) is a coordinate-wise maximum of Problem (WSRMax). Therefore, (𝐖(),{𝚯i()})(\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}) is a stationary point of Problem (WSRMax) as well since the objective function of Problem (WSRMax) is regular at the limit point.

Considering that the power limit constraint set 𝒲\mathcal{W} is convex, Eq. (25) implies that 𝐖()\mathbf{W}^{(\infty)} satisfies

0γ𝐖()F2P0,\displaystyle 0\leq\gamma\>\bot\>\|\mathbf{W}^{(\infty)}\|_{F}^{2}-P\leq 0, (35)
f𝖶𝖲𝖱,𝐖(𝐖,{𝚯i()})𝐖=𝐖()+γ(𝐖()F2P)=0,\displaystyle\nabla f_{\mathsf{WSR},\mathbf{W}}^{\prime}\bigl{(}\mathbf{W},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}\bigr{)}\mid_{\mathbf{W}=\mathbf{W}^{(\infty)}}+\gamma\bigl{(}\|\mathbf{W}^{(\infty)}\|_{F}^{2}-P\bigr{)}=0,

where γ\gamma is the Lagrange multiplier.

Lemma 12.

Liner independence constraint qualification (LICQ) [44] holds everywhere on set

𝒞i={𝚯i=diag(𝜽i)𝜽iNi,|[𝜽i]j|=1,j=1,,N},i=1,,L\mathcal{C}_{i}=\bigl{\{}\boldsymbol{\Theta}_{i}=\mathrm{diag}\left(\boldsymbol{\theta}_{i}\right)\mid\boldsymbol{\theta}_{i}\in\mathbb{C}^{N_{i}},\bigl{|}[\boldsymbol{\theta}_{i}]_{j}\bigr{|}=1,\forall j=1,\ldots,N\bigr{\}},\ \ \ \forall i=1,\ldots,L

and set

𝒟i={𝚯i=diag(𝜽i)𝜽iNi,|[𝜽i]j|=1,ang([𝜽i]j)Φi,j=1,,Ni},i=1,,L.\mathcal{D}_{i}=\bigl{\{}\boldsymbol{\Theta}_{i}=\mathrm{diag}\left(\boldsymbol{\theta}_{i}\right)\mid\boldsymbol{\theta}_{i}\in\mathbb{C}^{N_{i}},\bigl{|}[\boldsymbol{\theta}_{i}]_{j}\bigr{|}=1,\mathrm{ang}([\boldsymbol{\theta}_{i}]_{j})\in\Phi_{i},\forall j=1,\ldots,N_{i}\bigr{\}},\ \ \ \forall i=1,\ldots,L.
Proof:

The constraint 𝚯i𝒞i\boldsymbol{\Theta}_{i}\in\mathcal{C}_{i} can be rewritten as

[𝐜i(𝜽i)]j=|[𝜽i]j|1=0,j=1,,Ni,[\mathbf{c}_{i}(\boldsymbol{\theta}_{i})]_{j}=\left|[\boldsymbol{\theta}_{i}]_{j}\right|-1=0,\ j=1,\ldots,N_{i},

while the constraint 𝚯i𝒟i\boldsymbol{\Theta}_{i}\in\mathcal{D}_{i} can be rewritten as

[𝐝i(𝜽i)]j=ϕΦi([𝜽i]jejϕ)=0,j=1,,Ni.[\mathbf{d}_{i}(\boldsymbol{\theta}_{i})]_{j}=\prod_{\phi\in\Phi_{i}}\bigl{(}[\boldsymbol{\theta}_{i}]_{j}-e^{j\phi}\bigr{)}=0,\ j=1,\ldots,N_{i}.

The gradients [𝐜i(𝜽i)]1,,[𝐜i(𝜽i)]Ni\nabla[\mathbf{c}_{i}(\boldsymbol{\theta}_{i})]_{1},\ldots,\nabla[\mathbf{c}_{i}(\boldsymbol{\theta}_{i})]_{N_{i}} meet the LICQ evidently since [𝜽i]j[\boldsymbol{\theta}_{i}]_{j} appears only at the jj-th entry of [𝐜i(𝜽i)]j\nabla[\mathbf{c}_{i}(\boldsymbol{\theta}_{i})]_{j},888The Wirtinger derivative is adopted for differentials of complex variables [45]. while the same goes for [𝐝i(𝜽i)]1,,[𝐝i(𝜽i)]Ni\nabla[\mathbf{d}_{i}(\boldsymbol{\theta}_{i})]_{1},\ldots,\nabla[\mathbf{d}_{i}(\boldsymbol{\theta}_{i})]_{N_{i}}, through which the proof is completed. ∎

The constraint set 𝒞l\mathcal{C}_{l} meet the LICQ according to Lemma 12, then Eq. (26) implies that 𝚯l\boldsymbol{\Theta}_{l} satisfies

[𝚯l]ij=0,[𝚯l]ii=1,ij,i,j=1,,Nl,\displaystyle\left[\boldsymbol{\Theta}_{l}\right]_{ij}=0,\ \ \left[\boldsymbol{\Theta}_{l}\right]_{ii}=1,\ \ \forall i\neq j,\ i,j=1,\ldots,N_{l}, (36)
f𝖶𝖲𝖱,𝚯l′′(𝚯l,𝐖(),{𝚯i()})𝚯l=𝚯l()+i=1Nlj=1,jiNl[𝚪]ij[𝚯l]ij+i=1Nl[𝚪]ii([𝚯l]ii1)=0,\displaystyle\nabla f_{\mathsf{WSR},\boldsymbol{\Theta}_{l}}^{\prime\prime}(\boldsymbol{\Theta}_{l},\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\})\mid_{\boldsymbol{\Theta}_{l}=\boldsymbol{\Theta}_{l}^{(\infty)}}+\sum_{i=1}^{N_{l}}\sum_{j=1,j\neq i}^{N_{l}}[\boldsymbol{\Gamma}]_{ij}\left[\boldsymbol{\Theta}_{l}\right]_{ij}+\sum_{i=1}^{N_{l}}[\boldsymbol{\Gamma}]_{ii}\left(\left[\boldsymbol{\Theta}_{l}\right]_{ii}-1\right)=0,

where 𝚪\boldsymbol{\Gamma} is the Lagrange multiplier. Similarly, by repeating the above argument for the other {𝚯i}\{\boldsymbol{\Theta}_{i}\} blocks and putting them together with (35) and (36), we can conclude that (𝐖(),{𝚯i()})(\mathbf{W}^{(\infty)},\{\boldsymbol{\Theta}_{i}^{(\infty)}\}) is a KKT point of Problem (WSRMax). ∎