This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ranks of RO(G)RO(G)-graded stable homotopy groups of spheres for finite groups GG

J.P.C. Greenlees Mathematics Institute, Zeeman Building, Covengtry CV4, 7AL, UK [email protected]  and  J.D. Quigley Department of Mathematics, Cornell University, Ithaca, NY, USA [email protected]
Abstract.

We describe the distribution of infinite groups within the RO(G)RO(G)-graded stable homotopy groups of spheres for a finite group GG.

1. Introduction

1.1. Overview

In ordinary stable homotopy theory, one of the most basic theorems is Serre’s Finiteness Theorem [Ser53] stating that the nn-th stable homotopy group of the sphere, πn(S0)\pi_{n}(S^{0}), is finite for n>0n>0. Since we understand that π0(S0)\pi_{0}(S^{0})\cong\mathbb{Z}, this means that rationally the structure of stable homotopy is very simple, and attention is quickly focused on torsion. Equivariantly, it is still true that rationalisation is a massive simplification, but the residual structure in the rationalisation is worth some attention.

Let GG be a finite group and consider the RO(G)RO(G)-graded stable homotopy groups of the sphere [May96, Ch. IX]. The purpose of this note is to identify the crudest feature of these groups: their ranks as abelian groups. This is a straightforward deduction from well-known results, but some interesting features emerge by giving a systematic account.

Example.

Let G=C2G=C_{2} be the cyclic group of order two. Then

RO(C2){1,σ},RO(C_{2})\cong\mathbb{Z}\{1,\sigma\},

where 11 is the one-dimensional trivial representation and σ\sigma is the one-dimensional sign representation. Computations of Araki–Iriye [AI82] show that παC2(S0)\pi_{\alpha}^{C_{2}}(S^{0}) is infinite if

α{2(1σ)}{σ}.\alpha\in\mathbb{Z}\{2(1-\sigma)\}\cup\mathbb{Z}\{\sigma\}.

Our results recover this observation, and show that these are the only degrees for which παC2(S0)\pi_{\alpha}^{C_{2}}(S^{0}) is infinite.

Using rational equivariant stable homotopy theory, we prove the following:

Theorem A (2.3).

Let GG be a finite group and αRO(G)\alpha\in RO(G). Then

παG(S0)=[Sα,S0]G=(H)HomWG(H)(π0(SαH),),\pi^{G}_{\alpha}(S^{0})\otimes\mathbb{Q}=[S^{\alpha},S^{0}]^{G}\otimes\mathbb{Q}=\prod_{(H)}\mathrm{Hom}_{W_{G}(H)}(\pi_{0}(S^{\alpha^{H}}),\mathbb{Q}),

where the product is taken over conjugacy classes of subgroups HGH\leq G. Thus παG(S0)\pi^{G}_{\alpha}(S^{0})\otimes\mathbb{Q} is a rational vector space of dimension rαr_{\alpha}, where

rα=|{(H)|αH=0 and WG(H) acts trivially on π0(SαH)}|.r_{\alpha}=|\{(H)\;|\;\alpha^{H}=0\mbox{ and }W_{G}(H)\mbox{ acts trivially on }\pi_{0}(S^{\alpha^{H}})\}|.

We lay the groundwork for applying this theorem in Section 3 and Section 4. We then compute the ranks of the RO(G)RO(G)-graded stable homotopy groups of spheres for various GG in Section 6.

In Section 5, we discuss two natural variations where the same techniques give information. Since the sphere is rationally an Eilenberg-MacLane spectrum for the Burnside Mackey functor, S0H𝔸S^{0}\simeq_{\mathbb{Q}}H\mathbb{A}, we may view our methods as a calculation of the rationalization of HG(S0;𝔸)H^{\star}_{G}(S^{0};\mathbb{A}) (where \star denotes RO(G)RO(G)-grading). The same methods apply to give a calculation of the rationalization of HG(S0;M)H^{\star}_{G}(S^{0};M) for any Mackey functor MM. For the second variation, we may consider the Picard-graded stable homotopy groups of spheres: invertible objects are again characterised in terms of orientations and dimension functions (see [FLM01]).

Finally, we note that our results provide a basis for understanding other large-scale phenomena in the RO(G)RO(G)-graded stable homotopy groups of spheres. For example, Iriye [Iri83] showed that Nishida’s nilpotence theorem [Nis73] holds equivariantly: an element πG(S0)\pi_{\star}^{G}(S^{0}) is torsion if and only if it is nilpotent. A therefore explicitly describes the regions of πG(S0)\pi_{\star}^{G}(S^{0}) in which elements can be nilpotent and non-nilpotent.

1.2. Finite generation

For most of the paper we will work rationally, but we would like to draw conclusions about the integral situation. For completeness we include the proofs of the basic finiteness statements that permit this deduction.

Lemma 1.1.

For any αRO(G)\alpha\in RO(G), the sphere SαS^{\alpha} is a finite GG-cell spectrum.

Proof.

For an actual representation VV, the sphere SVS^{V} is a smooth compact manifold and hence admits the structure of a finite GG-CW-complex. By exactness of Spanier–Whitehead duality, DSVSVDS^{V}\simeq S^{-V} is also a finite GG-CW spectrum (since by the Wirthmüller isomorphism DG/H+G/H+DG/H_{+}\simeq G/H_{+}). Now if α=VW\alpha=V-W, SαSVSWS^{\alpha}\simeq S^{V}\wedge S^{-W}, so the result follows. ∎

The following consequence fails for infinite compact Lie groups.

Lemma 1.2.

For any αRO(G)\alpha\in RO(G) the abelian group παG(S0)\pi^{G}_{\alpha}(S^{0}) is finitely generated. Consequently παG(S0)\pi^{G}_{\alpha}(S^{0}) is finite if and only if παG(S0)=0\pi^{G}_{\alpha}(S^{0})\otimes\mathbb{Q}=0.

Proof.

From the Segal–tom Dieck splitting theorem [tD75], we see that πnG(S0)\pi^{G}_{n}(S^{0}) is a finitely generated abelian group. By 1.1, it follows that παG(S0)\pi^{G}_{\alpha}(S^{0}) is finitely generated. ∎

A describes the RO(G)RO(G)-graded rational homotopy groups of the sphere. By the previous lemma, this determines precisely those degrees αRO(G)\alpha\in RO(G) for which παG(S0)\pi^{G}_{\alpha}(S^{0}) is finite.

1.3. Conventions

Henceforth everything is rational. We write GG for a finite group, HH for a subgroup of GG, and WG(H)=NG(H)/HW_{G}(H)=N_{G}(H)/H for the Weyl group of HH. We use * to denote \mathbb{Z}-graded groups and \star to denote RO(G)RO(G)-graded groups. If VRO(G)V\in RO(G), then |V||V| denotes its (virtual) dimension.

1.4. Acknowledgements

The second author thanks Eva Belmont, Bert Guillou, Dan Isaksen, and Mingcong Zeng for helpful discussions related to this work. The authors also thank William Balderrama for discussions concerning nilpotence, and especially for pointing out [Iri83], which answered a question in a previous version.

2. Rational stable homotopy

For finite groups, it is easy to give a complete model of rational GG-spectra [GM95, App. A]. We do not need the full strength of this description, so we describe what we want in a convenient form.

First, note that for any XX and YY, passage to geometric fixed points gives a map

ΦH:[X,Y]G[ΦHX,ΦHY].\Phi^{H}:[X,Y]^{G}\longrightarrow[\Phi^{H}X,\Phi^{H}Y].

The codomain admits an action of the Weyl group WG(H)W_{G}(H) by conjugation, and ΦH\Phi^{H} takes values in the WG(H)W_{G}(H)-equivariant maps.

Theorem 2.1.

If YY is rational, the maps ΦH\Phi^{H} give an isomorphism

[X,Y]G=(H)H0(WG(H);[ΦHX,ΦHY]),[X,Y]^{G}_{*}=\bigoplus_{(H)}H^{0}(W_{G}(H);[\Phi^{H}X,\Phi^{H}Y]_{*}),

where the sum is taken over conjugacy classes of subgroups HGH\leq G. Furthermore, passage to homotopy groups gives isomorphisms

H0(WG(H);[ΦHX,ΦHY])=HomWG(H)(π(ΦHX),π(ΦHY)).H^{0}(W_{G}(H);[\Phi^{H}X,\Phi^{H}Y]_{*})=\mathrm{Hom}_{W_{G}(H)}(\pi_{*}(\Phi^{H}X),\pi_{*}(\Phi^{H}Y)).
Proof.

Filtering EG+EG_{+} by skeleta gives a spectral sequence

H(G;[X,Y])[EG+X,Y]GH^{*}(G;[X,Y]_{*})\Rightarrow[EG_{+}\wedge X,Y]^{G}_{*}

for (integral) stable maps. When YY is rational, this collapses to an isomorphism

H0(G;[X,Y])=[EG+X,Y]GH^{0}(G;[X,Y]_{*})=[EG_{+}\wedge X,Y]^{G}_{*}

Combining this with the splitting S0(H)eHS0S^{0}\simeq\bigvee_{(H)}e_{H}S^{0} we obtain the first stated isomorphism. The second comes from the classical version of Serre’s Theorem [Ser53]. ∎

Remark 2.2.

There is an alternative approach, via [GM95]. First, we observe that XnΣnHπ¯nG(X)X\simeq\prod_{n}\Sigma^{n}H\underline{\pi}^{G}_{n}(X), and then use the fact that all rational Mackey functors are projective and injective to deduce

[X,Y]GnHom(π¯nG(X),π¯nG(Y)).[X,Y]^{G}\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\prod_{n}\mathrm{Hom}(\underline{\pi}^{G}_{n}(X),\underline{\pi}^{G}_{n}(Y)).

Now we use the structure of Mackey functors to deduce

Hom(π¯nG(X),π¯nG(Y))(H)HomWG(H)(πn(ΦHX),πn(ΦHY)),\mathrm{Hom}(\underline{\pi}^{G}_{n}(X),\underline{\pi}^{G}_{n}(Y))\cong\prod_{(H)}\mathrm{Hom}_{W_{G}(H)}(\pi_{n}(\Phi^{H}X),\pi_{n}(\Phi^{H}Y)),

as claimed.

Since GG acts trivially on S0S^{0}, WG(H)W_{G}(H) acts trvially on π0(S0)=\pi_{0}(S^{0})=\mathbb{Q}. We then have the following consequence of 2.1:

Theorem 2.3.

Let GG be a finite group and αRO(G)\alpha\in RO(G). Then

παG(S0)=[Sα,S0]G=(H)HomWG(H)(π0(SαH),),\pi^{G}_{\alpha}(S^{0})=[S^{\alpha},S^{0}]^{G}=\prod_{(H)}\mathrm{Hom}_{W_{G}(H)}(\pi_{0}(S^{\alpha^{H}}),\mathbb{Q}),

where the product is taken over conjugacy classes of subgroups HGH\leq G. Thus παG(S0)\pi^{G}_{\alpha}(S^{0}) is a rational vector space of dimension rαr_{\alpha}, where

rα=|{(H)|αH=0 and WG(H) acts trivially on π0(SαH)}|.r_{\alpha}=|\{(H)\;|\;\alpha^{H}=0\mbox{ and }W_{G}(H)\mbox{ acts trivially on }\pi_{0}(S^{\alpha^{H}})\}|.

3. The orientation character

For any real representation VV the group GG acts on H|V|(SV)H_{|V|}(S^{V}), giving a homomorphism

oV:GAut()=μ2.o_{V}:G\longrightarrow\mathrm{Aut}(\mathbb{Z})=\mu_{2}.

We view this as an element oVH1(G;μ2)o_{V}\in H^{1}(G;\mu_{2}). In view of the Künneth isomorphism

H|V|(SV)H|W|(SW)H|V+W|(SVW),H_{|V|}(S^{V})\otimes H_{|W|}(S^{W})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}H_{|V+W|}(S^{V\oplus W}),

this gives a homomorphism

o:RO(G)H1(G;μ2).o:RO(G)\longrightarrow H^{1}(G;\mu_{2}).

Elements of the kernel RO+(G)RO^{+}(G) of oo are orientable virtual representations.

Example 3.1.

Clearly 2α2\alpha is orientable for any α\alpha. More generally, the image of any complex representation is orientable, as is any element in the image of RSO(G)RO(G)RSO(G)\longrightarrow RO(G).

Remark 3.2.

It is clear that an orientable representation ρ:GO(n)\rho:G\longrightarrow O(n) is one that takes values in representations of determinant 1, so that it comes from RSO(G)RSO(G). However, this is not true of virtual representations. For example, if G=Σ3G=\Sigma_{3}, then Vσ1V-\sigma-1 is orientable (where VV is the reduced regular representation and σ\sigma is the sign representation). However, only even multiples of σ\sigma or VV come from RSO(Σ3)RSO(\Sigma_{3}).

4. Geometry of the ranks of the RO(G)RO(G)-graded stable stems

To make the answer in 2.3 explicit there are now two ingredients: (a) the dimension of the fixed points and (b) the orientations.

4.1. Virtual representations of fixed point dimension zero

If we list the simple real representations S1,S2,,SrS_{1},S_{2},\ldots,S_{r} of GG, we may identify RO(G)=rRO(G)=\mathbb{Z}^{r}. Now, for each subgroup HGH\leq G we have a dimension vector

dH=(dim(S1H),,dim(SrH)),d_{H}=(\dim(S_{1}^{H}),\ldots,\dim(S_{r}^{H})),

and the space of virtual representations α\alpha with αH=0\alpha^{H}=0 is

NH={x|xdH=0},N_{H}=\{x\;|\;x\cdot d_{H}=0\},

which is isomorphic to r1\mathbb{Z}^{r-1} as an abelian group. The only α\alpha for which παG(S0)\pi^{G}_{\alpha}(S^{0}) can be infinite are those lying in some NHN_{H}, and the maximum rank of παG(S0)\pi^{G}_{\alpha}(S^{0}) is the number of conjugacy classes of HH with αNH\alpha\in N_{H}.

When H=GH=G, the Weyl group WG(H)W_{G}(H) is trivial, and we immediately draw a useful conclusion.

Corollary 4.1.

If VV is a virtual representation with VG=0V^{G}=0 then

rkπVG(S0)1\operatorname{rk}\pi_{V}^{G}(S^{0})\geq 1
Remark 4.2.

One special case is when VV is a multiple of the reduced regular representation ρ¯\bar{\rho}. This was observed to the second author by Bert Guillou, who noted that it follows from the fact that ΦG(S0)S0\Phi^{G}(S^{0})\simeq S^{0} and that geometric fixed points are given by inverting the Euler class of the reduced regular representation.

On this same theme, if VV is a representation with VG=0V^{G}=0, the inclusion of the origin gives a map aV:S0SVa_{V}:S^{0}\longrightarrow S^{V} whose GG-fixed points generates π0(S0)\pi_{0}(S^{0}). The element aVa_{V} is thus of infinite order in πVG(S0)\pi^{G}_{-V}(S^{0}). The GG-component of the map aVa_{V} will not usually be invertible integrally. However, by 2.1, there is a rational map aVπVG(S0)a_{V}^{\prime}\in\pi_{V}^{G}(S^{0}) whose GG-component is the inverse of aVa_{V}. The problem of finding the smallest positive multiple of aVa^{\prime}_{V} that is integral is of considerable interest; the case of the group of order 2 was studied classically by Landweber [Lan69], but is now best treated using motivic homotopy theory [BGI21, GI20]. For the group of odd prime order pp, it was studied by Iriye [Iri89].

4.2. Orientability

If WG(H)W_{G}(H) is of odd order, then all the gradings in NHN_{H} give infinite groups. In general, on each such null space NHN_{H} we have an orientation

oH:NHH1(WG(H);μ2).o_{H}:N_{H}\longrightarrow H^{1}(W_{G}(H);\mu_{2}).

As noted above, the kernel NH+N_{H}^{+} contains all even vectors of NHN_{H} and the image of all complex representations.

The set of α\alpha for which παG(S0)\pi^{G}_{\alpha}(S^{0}) is infinite is HNH+\bigcup_{H}N_{H}^{+}. The rank rαr_{\alpha} of παG(S0)\pi^{G}_{\alpha}(S^{0}) is the number of conjugacy classes HH with αNH+\alpha\in N_{H}^{+}.

4.3. Bases

If we choose a subgroup HH giving an associated fixed point vector dHd_{H}, we note that the component of the trivial representation S1S_{1} is always 1, so that NHN_{H} has basis S2dH(2),S3dH(3),,SrdH(r)S_{2}-d_{H}(2),S_{3}-d_{H}(3),\ldots,S_{r}-d_{H}(r). The orientation oHo_{H} is thus described by the homomorphisms

oH(2),oH(3),,oH(r):WG(H)μ2o_{H}(2),o_{H}(3),\ldots,o_{H}(r):W_{G}(H)\longrightarrow\mu_{2}

where oH(i)=oH(SidH(i))o_{H}(i)=o_{H}(S_{i}-d_{H}(i)). Since WG(H)W_{G}(H) always acts trivially on the trivial representation, the orientation oH(SidH(i))=oH(Si)o_{H}(S_{i}-d_{H}(i))=o_{H}(S_{i}), and oH(i)o_{H}(i) is the determinant of SiHS_{i}^{H}. Since oHo_{H} is a homomorphism, this determines its values throughout. All the homomorphisms factor through the largest elementary abelian 2-quotient E2(H)E_{2}(H) of WG(H)W_{G}(H) (i.e., we factor out commutators and squares).

5. The two variations

In effect, our calculation in 2.3 was of

παG(S0)=[Sα,S0]G=[Sα,H𝔸]G=HG0(Sα;𝔸).\pi^{G}_{\alpha}(S^{0})\otimes\mathbb{Q}=[S^{\alpha},S^{0}]^{G}\otimes\mathbb{Q}=[S^{\alpha},H\mathbb{A}]^{G}\otimes\mathbb{Q}=H^{0}_{G}(S^{\alpha};\mathbb{A})\otimes\mathbb{Q}.

We point out that the same methods allow us to calculate

[Sα,HM]G=HG0(Sα;M)[S^{\alpha},HM]^{G}\otimes\mathbb{Q}=H^{0}_{G}(S^{\alpha};M)\otimes\mathbb{Q}

for any invertible spectrum SαS^{\alpha} and rational GG-Mackey functor MM. Indeed we still have

[Sα,HM]G=(H)HomWG(H)(H0(SαH),MeH),[S^{\alpha},HM]^{G}\otimes\mathbb{Q}=\prod_{(H)}\mathrm{Hom}_{W_{G}(H)}(H_{0}(S^{\alpha^{H}}),M^{eH}),

where MM corresponds to {MeH}H\{M^{eH}\}_{H} under the equivalence

G-MackeyFunctors/(H)WG(H)-modules.\mbox{$G$-MackeyFunctors$/\mathbb{Q}$}\simeq\prod_{(H)}\mbox{$\mathbb{Q}W_{G}(H)$-modules}.

More explicitly, MeH=M(G/H)/(propertransfers)M^{eH}=M(G/H)/(\mathrm{proper\ transfers}). In other words,

rk[Sα,HM]G=(H)zHm(α,H),\operatorname{rk}[S^{\alpha},HM]^{G}\otimes\mathbb{Q}=\sum_{(H)}z_{H}\cdot m(\alpha,H),

where zH=1z_{H}=1 if αH=0\alpha^{H}=0 and zH=0z_{H}=0 otherwise, and where m(α,H)m(\alpha,H) is the multiplicity of the simple WG(H)\mathbb{Q}W_{G}(H)-representation H0(SαH)H_{0}(S^{\alpha^{H}}) in MeHM^{eH}.

The only MeHM^{eH} which can possibly give infinite groups are those with summands coming from a homomorphism WG(H)μ2W_{G}(H)\longrightarrow\mu_{2}. Since the sphere corresponds to the Burnside Mackey functor 𝔸\mathbb{A} with 𝔸eH=\mathbb{A}^{eH}=\mathbb{Q} (with trivial action), it has almost as many RO(G)RO(G)-gradings which are infinite as is possible.

6. Examples

We conclude by explicitly calculating the ranks of the RO(G)RO(G)-graded stable homotopy groups of spheres for groups GG with small subgroup lattices.

6.1. Cyclic group of order two

We have

RO(C2){1,σ}RO(C_{2})\cong\mathbb{Z}\{1,\sigma\}

where 11 is the (11-dimensional) trivial representation and σ\sigma is the sign representation. Then

Ne{1σ},NC2{σ}.N_{e}\cong\mathbb{Z}\{1-\sigma\},\quad N_{C_{2}}\cong\mathbb{Z}\{\sigma\}.

Since WC2(C2)=eW_{C_{2}}(C_{2})=e, we have

NC2+=NC2{σ}.N_{C_{2}}^{+}=N_{C_{2}}\cong\mathbb{Z}\{\sigma\}.

On the other hand, WC2(e)C2/eC2W_{C_{2}}(e)\cong C_{2}/e\cong C_{2} acts by (1)(-1) on 1σ1-\sigma, so

Ne+{2(1σ)}.N_{e}^{+}\cong\mathbb{Z}\{2(1-\sigma)\}.

Each representation VNC2+Ne+V\in N_{C_{2}}^{+}\cup N_{e}^{+} satisfies rkπVC2(S0)1\operatorname{rk}\pi_{V}^{C_{2}}(S^{0})\geq 1. Since NC2+Ne+={0}N_{C_{2}}^{+}\cap N_{e}^{+}=\{0\}, we also have rkπ0C2(S0)=2\operatorname{rk}\pi_{0}^{C_{2}}(S^{0})=2. Altogether, we find:

Proposition 6.1.

We have

rkπVC2(S0)={2 if V=0,1 if V({σ}{2(1σ)}){0},0 otherwise.\operatorname{rk}\pi_{V}^{C_{2}}(S^{0})=\begin{cases}2\quad&\text{ if }V=0,\\ 1\quad&\text{ if }V\in(\mathbb{Z}\{\sigma\}\cup\mathbb{Z}\{2(1-\sigma)\})\setminus\{0\},\\ 0\quad&\text{ otherwise.}\end{cases}
Refer to caption
Figure 1. Degrees in RO(C2)RO(C_{2}) where πVC2(S0)\pi_{V}^{C_{2}}(S^{0}) has infinite rank. A black \bullet indicates a copy of \mathbb{Z} arising from NC2+N_{C_{2}}^{+} and a blue \bullet indicates a copy of \mathbb{Z} arising from Ne+N_{e}^{+}.
Remark 6.2.

The fact that πVC2(S0)\pi_{V}^{C_{2}}(S^{0}) is infinite for V{σ}{2(1σ)}V\in\mathbb{Z}\{\sigma\}\cup\mathbb{Z}\{2(1-\sigma)\} appears in [AI82, Thm. 7.6]. A proof that these are the only degrees for which πVC2(S0)\pi_{V}^{C_{2}}(S^{0}) is infinite using the C2C_{2}-equivariant Adams spectral sequence was communicated to the second author by Bert Guillou and Dan Isaksen.

6.2. Cyclic group of odd prime order

Let q=p12q=\frac{p-1}{2}. We have

RO(Cp){1,ϕ1,,ϕq},RO(C_{p})\cong\mathbb{Z}\{1,\phi_{1},\ldots,\phi_{q}\},

where 11 is the 11-dimensional trivial representation and ϕt:CpAut(2)Aut()\phi_{t}:C_{p}\to\operatorname{Aut}(\mathbb{R}^{2})\cong\operatorname{Aut}(\mathbb{C}) sends the generator of CpC_{p} to e2πit/p\cdot e^{2\pi it/p}. Then

Ne{2ϕ1,,2ϕq},NCp{ϕ1,,ϕq}.N_{e}\cong\mathbb{Z}\{2-\phi_{1},\ldots,2-\phi_{q}\},\quad N_{C_{p}}\cong\mathbb{Z}\{\phi_{1},\ldots,\phi_{q}\}.

Since WCp(e)CpW_{C_{p}}(e)\cong C_{p} and WCp(Cp)=eW_{C_{p}}(C_{p})=e necessarily act trivially on \mathbb{Z}, we have

Ne+=Ne,NCp+NCp.N_{e}^{+}=N_{e},\quad N_{C_{p}}^{+}\cong N_{C_{p}}.

Finally, we have

Ne+NCp+{ϕ1ϕ2,,ϕ1ϕq}.N_{e}^{+}\cap N_{C_{p}}^{+}\cong\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\}.
Proposition 6.3.

We have

rkπVCp(S0)={2 if V{ϕ1ϕ2,,ϕ1ϕq},1 if V({2ϕ1,,2ϕq}{ϕ1,,ϕq}){ϕ1ϕ2,,ϕ1ϕq},0 otherwise.\operatorname{rk}\pi_{V}^{C_{p}}(S^{0})=\begin{cases}2\quad&\text{ if }V\in\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},\\ 1\quad&\text{ if }V\in(\mathbb{Z}\{2-\phi_{1},\ldots,2-\phi_{q}\}\cup\mathbb{Z}\{\phi_{1},\ldots,\phi_{q}\})\setminus\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},\\ 0\quad&\text{ otherwise.}\end{cases}
Refer to caption
Figure 2. Degrees in RO(C3)RO(C_{3}) where πVC3(S0)\pi_{V}^{C_{3}}(S^{0}) has infinite rank. A black \bullet indicates a copy of \mathbb{Z} arising from NC3+N_{C_{3}}^{+} and a blue \bullet indicates a copy of \mathbb{Z} arising from Ne+N_{e}^{+}.
Remark 6.4.

We note that ϕ1,,ϕq\phi_{1},\ldots,\phi_{q} have similar behaviour. Thus we are considering NG\mathbb{Z}\oplus N_{G} and the same picture as for C2C_{2}, but now the vertical line represents NGN_{G} and the antidiagonal represents another subspace isomorphic to NGN_{G}. The origin now consists of {Σiaiϕi|Σiai=0}\{\Sigma_{i}a_{i}\phi_{i}\;|\;\Sigma_{i}a_{i}=0\}, perhaps to be thought of as the kernel of NGN_{G}\longrightarrow\mathbb{Z}, and isomorphic to q1\mathbb{Z}^{q-1}.

6.3. Cyclic groups of odd prime power order

Let q=pn12q=\frac{p^{n}-1}{2}. Then

RO(Cpn){1,ϕ1,,ϕq}q+1.RO(C_{p^{n}})\cong\mathbb{Z}\{1,\phi_{1},\ldots,\phi_{q}\}\cong\mathbb{Z}^{q+1}.

For all 0mn0\leq m\leq n, we have

NCpm+=NCpm{2ϕi:pmi}{ϕj:pmj}.N_{C_{p^{m}}}^{+}=N_{C_{p^{m}}}\cong\mathbb{Z}\{2-\phi_{i}:p^{m}\mid i\}\oplus\mathbb{Z}\{\phi_{j}:p^{m}\nmid j\}.

Indeed, let γ\gamma denote a generator of CpnC_{p^{n}}, so γpnm\gamma^{p^{n-m}} is a generator for CpmC_{p^{m}}. Since λi:γe2πipn\lambda_{i}:\gamma\mapsto\cdot e^{\frac{2\pi i}{p^{n}}},

λi:γpnme2πipnmpn=e2πipm.\lambda_{i}:\gamma^{p^{n-m}}\mapsto\cdot e^{\frac{2\pi ip^{n-m}}{p^{n}}}=\cdot e^{\frac{2\pi i}{p^{m}}}.

Therefore λi\lambda_{i} pulls back to a trivial CpmC_{p^{m}}-representation if and only if pmip^{m}\mid i.

Describing the intersections of these subspaces gets complicated quickly. For example, if 0k<mn0\leq k<m\leq n, then

NCpk+NCpm+{2ϕi:pmi}{ϕj:pki}{ϕpkϕ:>pk,pk,pm}.N_{C_{p^{k}}}^{+}\cap N_{C_{p^{m}}}^{+}\cong\mathbb{Z}\{2-\phi_{i}:p^{m}\mid i\}\oplus\mathbb{Z}\{\phi_{j}:p^{k}\nmid i\}\oplus\mathbb{Z}\{\phi_{p^{k}}-\phi_{\ell}:\ell>p^{k},\ p^{k}\mid\ell,\ p^{m}\nmid\ell\}.

Here, we use that pmip^{m}\mid i implies pkip^{k}\mid i, and similarly, pkjp^{k}\nmid j implies pmjp^{m}\nmid j.

6.4. Klein four group

Let K=C2×C2={e,i,j,k}K=C_{2}\times C_{2}=\{e,i,j,k\}. We have

RO(K){1,σi,σj,σk},RO(K)\cong\mathbb{Z}\{1,\sigma_{i},\sigma_{j},\sigma_{k}\},

where 11 is the 11-dimensional trivial representation, σi\sigma_{i} is the 11-dimensional representation on which ee and ii act trivially and jj and kk act by (1)(-1), and similarly for σj\sigma_{j} and σk\sigma_{k}. Then

Ne\displaystyle N_{e} {1σi,1σj,1σk},\displaystyle\cong\mathbb{Z}\{1-\sigma_{i},1-\sigma_{j},1-\sigma_{k}\},
Ni\displaystyle N_{\langle i\rangle} {1σi,σj,σk},\displaystyle\cong\mathbb{Z}\{1-\sigma_{i},\sigma_{j},\sigma_{k}\},
Nj\displaystyle N_{\langle j\rangle} {σi,1σj,σk},\displaystyle\cong\mathbb{Z}\{\sigma_{i},1-\sigma_{j},\sigma_{k}\},
Nk\displaystyle N_{\langle k\rangle} {σi,σj,1σk},\displaystyle\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},1-\sigma_{k}\},
NK\displaystyle N_{K} {σi,σj,σk}.\displaystyle\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},\sigma_{k}\}.

The Weyl group WK(e)KW_{K}(e)\cong K acts nontrivially on σi\sigma_{i}, σj\sigma_{j}, and σk\sigma_{k}, so we have

Ne+{2(1σi),σiσj,σiσk}.N_{e}^{+}\cong\mathbb{Z}\{2(1-\sigma_{i}),\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k}\}.

The Weyl group WK(i)K/ijkW_{K}(\langle i\rangle)\cong K/\langle i\rangle\cong\langle j\rangle\cong\langle k\rangle acts nontrivially on σi\sigma_{i} but trivially on σj\sigma_{j} and σk\sigma_{k}, so we have

Ni+{2(1σi),σj,σk},N_{\langle i\rangle}^{+}\cong\mathbb{Z}\{2(1-\sigma_{i}),\sigma_{j},\sigma_{k}\},

and similarly,

Nj+{σi,2(1σj),σk},N_{\langle j\rangle}^{+}\cong\mathbb{Z}\{\sigma_{i},2(1-\sigma_{j}),\sigma_{k}\},
Nk+{σi,σj,2(1σk)}.N_{\langle k\rangle}^{+}\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},2(1-\sigma_{k})\}.

Finally, since WK(K)eW_{K}(K)\cong e must act trivially on \mathbb{Z}, we have

NK+NK{σi,σj,σk}.N_{K}^{+}\cong N_{K}\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},\sigma_{k}\}.

To determine the ranks of παG(S0)\pi^{G}_{\alpha}(S^{0}), we now compute intersections. In the following, we let a{i,j,k}a\in\{i,j,k\}, a{i,j,k}{a}a^{\prime}\in\{i,j,k\}\setminus\{a\}, and a′′{i,j,k}{a,a}.a^{\prime\prime}\in\{i,j,k\}\setminus\{a,a^{\prime}\}. Then we have

Ne+Na+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+} {2(1σa),σaσa},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}),\sigma_{a}-\sigma_{a^{\prime}}\},
Ne+NK+\displaystyle N_{e}^{+}\cap N_{K}^{+} {σiσj,σiσk},\displaystyle\cong\mathbb{Z}\{\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k}\},
Na+Na+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {2(1σaσa),σa′′},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}),\sigma_{a^{\prime\prime}}\},
Na+NK+\displaystyle N_{\langle a\rangle}^{+}\cap N_{K}^{+} {σa,σa′′},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}},\sigma_{a^{\prime\prime}}\},
Ne+Na+Na+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {0},\displaystyle\cong\{0\},
Na+Na′′+NK+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+}\cap N_{K}^{+} {σa},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}}\},
Ne+Na+NK+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{K}^{+} {σaσa},\displaystyle\cong\mathbb{Z}\{\sigma_{a}-\sigma_{a^{\prime}}\},
NaNaNa′′\displaystyle N_{\langle a\rangle}\cap N_{\langle a^{\prime}\rangle}\cap N_{\langle a^{\prime\prime}\rangle} {2(1σaσaσa′′)},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\},

and all 44- and 55-fold intersections are {0}\{0\}.

Proposition 6.5.

With a,a,a′′a,a^{\prime},a^{\prime\prime} as above, we have

rkπVK(S0)={5 if V=0,3 if V({σaσa}{σa}{2(1σaσaσa′′)}){0},2 if V(HHNH+NH+)(HHH′′HNH+NH+NH′′+),1 if V(HNH+)(HHNH+NH+),0 otherwise.\operatorname{rk}\pi_{V}^{K}(S^{0})=\begin{cases}5\quad&\text{ if }V=0,\\ 3\quad&\text{ if }V\in(\mathbb{Z}\{\sigma_{a}-\sigma_{a^{\prime}}\}\cup\mathbb{Z}\{\sigma_{a^{\prime}}\}\cup\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\})\setminus\{0\},\\ 2\quad&\text{ if }V\in(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+})\setminus(\bigcup_{H\neq H^{\prime}\neq H^{\prime\prime}\neq H}N_{H}^{+}\cap N_{H^{\prime}}^{+}\cap N_{H^{\prime\prime}}^{+}),\\ 1\quad&\text{ if }V\in(\bigcup_{H}N_{H}^{+})\setminus(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+}),\\ 0\quad&\text{ otherwise.}\end{cases}

6.5. Dihedral groups of order 2p2p, pp odd

We have

RO(D2p){1,σ,ϕ1,,ϕq},RO(D_{2p})\cong\mathbb{Z}\{1,\sigma,\phi_{1},\ldots,\phi_{q}\},

where 11 is the trivial representation, σ\sigma is the sign representation, and ϕt:D2pAut(2)Aut()\phi_{t}:D_{2p}\to\operatorname{Aut}(\mathbb{R}^{2})\cong\operatorname{Aut}(\mathbb{C}) sends the generator of CpD2pC_{p}\subseteq D_{2p} to e2πit/p\cdot e^{2\pi it/p} and the generator of C2D2pC_{2}\subseteq D_{2p} to reflection across the real axis. Then

Ne\displaystyle N_{e} {1σ,2ϕ1,,2ϕq},\displaystyle\cong\mathbb{Z}\{1-\sigma,2-\phi_{1},\ldots,2-\phi_{q}\},
NC2\displaystyle N_{C_{2}} {1σ,1ϕ1,,1ϕq},\displaystyle\cong\mathbb{Z}\{1-\sigma,1-\phi_{1},\ldots,1-\phi_{q}\},
NCp\displaystyle N_{C_{p}} {1σ,ϕ1,,ϕq},\displaystyle\cong\mathbb{Z}\{1-\sigma,\phi_{1},\ldots,\phi_{q}\},
ND2p\displaystyle N_{D_{2p}} {σ,ϕ1,,ϕq}.\displaystyle\cong\mathbb{Z}\{\sigma,\phi_{1},\ldots,\phi_{q}\}.

Since WD2p(C2)eWD2p(D2p)W_{D_{2p}}(C_{2})\cong e\cong W_{D_{2p}}(D_{2p}), we have NC2+=NC2N_{C_{2}}^{+}=N_{C_{2}} and ND2p+=ND2pN_{D_{2p}}^{+}=N_{D_{2p}}. On the other hand, WD2p(e)D2pW_{D_{2p}}(e)\cong D_{2p} and WD2p(Cp)C2W_{D_{2p}}(C_{p})\cong C_{2}, so

Ne+\displaystyle N_{e}^{+} {2(1σ),2(2ϕ1),ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{2(1-\sigma),2(2-\phi_{1}),\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
NCp+\displaystyle N_{C_{p}}^{+} {2(1σ),2ϕ1,ϕ1ϕ2,,ϕ1ϕq}.\displaystyle\cong\mathbb{Z}\{2(1-\sigma),2\phi_{1},\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\}.

We now compute intersections:

Ne+NC2+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+} {2(1σ),ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{2(1-\sigma),\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
Ne+NCp+\displaystyle N_{e}^{+}\cap N_{C_{p}}^{+} {2(1σ),ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{2(1-\sigma),\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
Ne+ND2p+\displaystyle N_{e}^{+}\cap N_{D_{2p}}^{+} {4σ2ϕ1,ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{4\sigma-2\phi_{1},\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
NC2+NCp+\displaystyle N_{C_{2}}^{+}\cap N_{C_{p}}^{+} {2(1σ),ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{2(1-\sigma),\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
NC2+ND2p+\displaystyle N_{C_{2}}^{+}\cap N_{D_{2p}}^{+} {σϕ1,ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{\sigma-\phi_{1},\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
NCp+ND2p+\displaystyle N_{C_{p}}^{+}\cap N_{D_{2p}}^{+} {ϕ1,,ϕq},\displaystyle\cong\mathbb{Z}\{\phi_{1},\dots,\phi_{q}\},
Ne+NC2+NCp+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{C_{p}}^{+} {2(1σ),ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{2(1-\sigma),\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
Ne+NC2+ND2p+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{D_{2p}}^{+} {ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
Ne+NCp+ND2p+\displaystyle N_{e}^{+}\cap N_{C_{p}}^{+}\cap N_{D_{2p}}^{+} {ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
NC2+NCp+ND2p+\displaystyle N_{C_{2}}^{+}\cap N_{C_{p}}^{+}\cap N_{D_{2p}}^{+} {ϕ1ϕ2,,ϕ1ϕq},\displaystyle\cong\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},
Ne+NC2+NCp+ND2p+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{C_{p}}^{+}\cap N_{D_{2p}}^{+} {ϕ1ϕ2,,ϕ1ϕq}.\displaystyle\cong\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\}.
Proposition 6.6.

We have

rkπVD2p(S0)={4 if V{ϕ1ϕ2,,ϕ1ϕq},2 if V(HHNH+NH+)(HHH′′HNH+NH+NH′′+),1 if V(HNH+)(HHNH+NH+),0 otherwise.\operatorname{rk}\pi_{V}^{D_{2p}}(S^{0})=\begin{cases}4\quad&\text{ if }V\in\mathbb{Z}\{\phi_{1}-\phi_{2},\ldots,\phi_{1}-\phi_{q}\},\\ 2\quad&\text{ if }V\in(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+})\setminus(\bigcup_{H\neq H^{\prime}\neq H^{\prime\prime}\neq H}N_{H}^{+}\cap N_{H^{\prime}}^{+}\cap N_{H^{\prime\prime}}^{+}),\\ 1\quad&\text{ if }V\in(\bigcup_{H}N_{H}^{+})\setminus(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+}),\\ 0\quad&\text{ otherwise.}\end{cases}

6.6. Quaternion group

Let Q=Q8Q=Q_{8} denote the quaternion group of order 88. We have

RO(Q)={1,σi,σj,σk,h},RO(Q)=\mathbb{Z}\{1,\sigma_{i},\sigma_{j},\sigma_{k},h\},

where 1,σi,σj,σk1,\sigma_{i},\sigma_{j},\sigma_{k} are the pullbacks of the KK-representations of the same name along the quotient map QQ/C2KQ\to Q/C_{2}\cong K, and hh is the unique irreducible 44-dimensional representation of QQ. Then with aa, aa^{\prime}, and a′′a^{\prime\prime} as in our analysis of KK,

Ne\displaystyle N_{e} {1σi,1σj,1σk,41h},\displaystyle\cong\mathbb{Z}\{1-\sigma_{i},1-\sigma_{j},1-\sigma_{k},41-h\},
NC2\displaystyle N_{C_{2}} {1σi,1σj,1σk,h},\displaystyle\cong\mathbb{Z}\{1-\sigma_{i},1-\sigma_{j},1-\sigma_{k},h\},
Na\displaystyle N_{\langle a\rangle} {1σa,σa,σa′′,h},\displaystyle\cong\mathbb{Z}\{1-\sigma_{a},\sigma_{a^{\prime}},\sigma_{a^{\prime\prime}},h\},
NQ\displaystyle N_{Q} {σi,σj,σk,h},\displaystyle\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},\sigma_{k},h\},

and

Ne+\displaystyle N_{e}^{+} {2(1σi),σiσj,σiσk,41h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{i}),\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k},41-h\},
NC2+\displaystyle N_{C_{2}}^{+} {2(1σi),σiσj,σiσk,h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{i}),\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k},h\},
Na+\displaystyle N_{\langle a\rangle}^{+} {2(1σa),σa,σa′′,h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}),\sigma_{a^{\prime}},\sigma_{a^{\prime\prime}},h\},
NQ+\displaystyle N_{Q}^{+} {σi,σj,σk,h}.\displaystyle\cong\mathbb{Z}\{\sigma_{i},\sigma_{j},\sigma_{k},h\}.

The 22-fold intersections are as follows:

Ne+NC2+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+} {2(1σi),σiσj,σiσk},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{i}),\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k}\},
Ne+Na+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+} {2(1σa),σaσa′′,h4σa},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}),\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}},h-4\sigma_{a^{\prime}}\},
Ne+NQ+\displaystyle N_{e}^{+}\cap N_{Q}^{+} {σiσj,σiσk,4σih},\displaystyle\cong\mathbb{Z}\{\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k},4\sigma_{i}-h\},
NC2+Na+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+} {2(1σa),σaσa′′,h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}),\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}},h\},
NC2+NQ+\displaystyle N_{C_{2}}^{+}\cap N_{Q}^{+} {σiσj,σiσk,h},\displaystyle\cong\mathbb{Z}\{\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k},h\},
Na+Na+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {2(1σaσa),σa′′,h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}),\sigma_{a^{\prime\prime}},h\},
Na+NQ+\displaystyle N_{\langle a\rangle}^{+}\cap N_{Q}^{+} {σa,σa′′,h}.\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}},\sigma_{a^{\prime\prime}},h\}.

The 33-fold intersections are as follows:

Ne+NC2+Na+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+} {2(1σa),σaσa′′},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}),\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}\},
Ne+NC2+NQ+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{Q}^{+} {σiσj,σiσk},\displaystyle\cong\mathbb{Z}\{\sigma_{i}-\sigma_{j},\sigma_{i}-\sigma_{k}\},
Ne+Na+NQ+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{Q}^{+} {σaσa′′,h4σa},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}},h-4\sigma_{a^{\prime}}\},
Ne+Na+Na+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {2(1σaσaσa′′),h4σa′′},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}),h-4\sigma_{a^{\prime\prime}}\},
NC2+Na+NQ+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{Q}^{+} {σaσa′′,h},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}},h\},
NC2+Na+Na+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {2(1σaσaσa′′),h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}),h\},
Na+Na+NQ+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{Q}^{+} {σa′′,h},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime\prime}},h\},
Na+Na+Na′′+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+} {2(1σaσaσa′′),h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}),h\},

The 44-fold intersections are as follows:

Ne+NC2+Na+NQ+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{Q}^{+} {σaσa′′},\displaystyle\cong\mathbb{Z}\{\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}\},
Ne+NC2+Na+Na+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+} {2(1σaσaσa′′},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}\},
Ne+Na+Na+Na′′+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+} {2(1σaσaσa′′)},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\},
NC2+Na+Na+NQ+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{Q}^{+} {h},\displaystyle\cong\mathbb{Z}\{h\},
NC2+Na+Na+Na′′+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+} {2(1σaσaσa′′),h},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}),h\},
Na+Na+Na′′+NQ+\displaystyle N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+}\cap N_{Q}^{+} {h}.\displaystyle\cong\mathbb{Z}\{h\}.

The 55-fold intersections are as follows:

Ne+NC2+Na+Na+NQ+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{Q}^{+} {0},\displaystyle\cong\{0\},
Ne+NC2+Na+Na+Na′′+\displaystyle N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+} {2(1σaσaσa′′)},\displaystyle\cong\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\},
Ne+Na+Na+Na′′+NQ+\displaystyle N_{e}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+}\cap N_{Q}^{+} {0},\displaystyle\cong\{0\},
NC2+Na+Na+Na′′+NQ+\displaystyle N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+}\cap N_{Q}^{+} {h}.\displaystyle\cong\mathbb{Z}\{h\}.

For completeness, the unique 66-fold intersection is

Ne+NC2+Na+Na+Na′′+NQ+{0}.N_{e}^{+}\cap N_{C_{2}}^{+}\cap N_{\langle a\rangle}^{+}\cap N_{\langle a^{\prime}\rangle}^{+}\cap N_{\langle a^{\prime\prime}\rangle}^{+}\cap N_{Q}^{+}\cong\{0\}.
Proposition 6.7.

With aa, aa^{\prime}, a′′a^{\prime\prime} as above, we have

rkπVK(S0)={6 if V=0,5 if V({h}{2(1σaσaσa′′)}){0},4 if V({σaσa′′}{2(1σaσaσa′′),h})({h}{2(1σaσaσa′′)}),3 if V(H,H,H′′NH+NH+NH′′+)(H,H,H′′,H′′′L{H,H,H′′,H′′′}NL+),2 if V(HHNH+NH+)(H,H,H′′NH+NH+NH′′+),1 if V(HNH+)(HHNH+NH+),0 otherwise.\operatorname{rk}\pi_{V}^{K}(S^{0})=\begin{cases}6\quad&\text{ if }V=0,\\ 5\quad&\text{ if }V\in(\mathbb{Z}\{h\}\cup\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\})\setminus\{0\},\\ 4\quad&\text{ if }V\in(\mathbb{Z}\{\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}\}\cup\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}}),h\})\\ &\quad\quad\quad\setminus(\mathbb{Z}\{h\}\cup\mathbb{Z}\{2(1-\sigma_{a}-\sigma_{a^{\prime}}-\sigma_{a^{\prime\prime}})\}),\\ 3\quad&\text{ if }V\in(\bigcup_{H,H^{\prime},H^{\prime\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+}\cap N_{H^{\prime\prime}}^{+})\setminus(\bigcup_{H,H^{\prime},H^{\prime\prime},H^{\prime\prime\prime}}\bigcap_{L\in\{H,H^{\prime},H^{\prime\prime},H^{\prime\prime\prime}\}}N_{L}^{+}),\\ 2\quad&\text{ if }V\in(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+})\setminus(\bigcup_{H,H^{\prime},H^{\prime\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+}\cap N_{H^{\prime\prime}}^{+}),\\ 1\quad&\text{ if }V\in(\bigcup_{H}N_{H}^{+})\setminus(\bigcup_{H\neq H^{\prime}}N_{H}^{+}\cap N_{H^{\prime}}^{+}),\\ 0\quad&\text{ otherwise.}\end{cases}

References

  • [AI82] Shôrô Araki and Kouyemon Iriye. Equivariant stable homotopy groups of spheres with involutions. I. Osaka Math. J., 19(1):1–55, 1982.
  • [BGI21] Eva Belmont, Bertrand J. Guillou, and Daniel C. Isaksen. C2C_{2}-equivariant and \mathbb{R}-motivic stable stems II. Proc. Amer. Math. Soc., 149(1):53–61, 2021.
  • [FLM01] H. Fausk, L. G. Lewis, Jr., and J. P. May. The Picard group of equivariant stable homotopy theory. Adv. Math., 163(1):17–33, 2001.
  • [GI20] Bertrand J. Guillou and Daniel C. Isaksen. The Bredon-Landweber region in C2C_{2}-equivariant stable homotopy groups. Doc. Math., 25:1865–1880, 2020.
  • [GM95] J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Mem. Amer. Math. Soc., 113(543):viii+178, 1995.
  • [Iri89] Kouyemon Iriye. On images of the fixed-point homomorphism in the 𝐙/p{\bf Z}/p-equivariant stable homotopy groups. J. Math. Kyoto Univ., 29(1):159–163, 1989.
  • [Iri83] Kouyemon Iriye. The nilpotency of elements of the equivariant stable homotopy groups of spheres. J. Math. Kyoto Univ., 22(2):257–259, 1982/83.
  • [Lan69] Peter S. Landweber. On equivariant maps between spheres with involutions. Ann. of Math. (2), 89:125–137, 1969.
  • [May96] J. P. May. Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner.
  • [Nis73] Goro Nishida. The nilpotency of elements of the stable homotopy groups of spheres. J. Math. Soc. Japan, 25:707–732, 1973.
  • [Ser53] Jean-Pierre Serre. Groupes d’homotopie et classes de groupes abéliens. Ann. of Math. (2), 58:258–294, 1953.
  • [tD75] Tammo tom Dieck. Orbittypen und äquivariante Homologie. II. Arch. Math. (Basel), 26(6):650–662, 1975.