This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Random Nilpotent Groups of Maximal Step

Phillip Harris
Abstract

Let GG be a random torsion-free nilpotent group generated by two random words of length \ell in Un()U_{n}(\mathbb{Z}). Letting \ell grow as a function of nn, we analyze the step of GG, which is bounded by the step of Un()U_{n}(\mathbb{Z}). We prove a conjecture of Delp, Dymarz, and Schafer-Cohen, that the threshold function for full step is =n2\ell=n^{2}.

A group GG is nilpotent if its lower central series

G=G0G1Gr={0}G=G_{0}\geq G_{1}\geq\dots\geq G_{r}=\{0\}

defined by Gi+1=[G,Gi]G_{i+1}=[G,G_{i}], eventually terminates. The first index rr for which Gr=0G_{r}=0 is called the step of GG. One may ask what a generic nilpotent group looks like, including its step. Questions about generic properties of groups can be answered with random groups, first introduced by Gromov [4]. Since Gromov’s original few relators and density models are nilpotent with probability 0, they cannot tell us about generic properties of nilpotent groups. Thus there is a need for new random group models that are nilpotent by construction.

Delp et al [1] introduced a model for random nilpotent groups, motivated by the observation that any finitely generated torsion-free nilpotent group can be embedded in the group Un()U_{n}(\mathbb{Z}) of n×nn\times n upper triangular integer matrices with ones on the diagonal [3]. Note that, since any finitely generated nilpotent group contains a torsion-free subgroup of finite index, we are not losing much by restricting our attention to torsion-free groups. (Another model is considered in [2]).

We construct a random subgroup of Un()U_{n}(\mathbb{Z}) as follows. Let Ei,jE_{i,j} be the elementary matrix with 1’s on the diagonal, a 1 at position (i,j)(i,j) and 0’s elsewhere. Then S={Ei,i+1±1:1i<n}S=\{E^{\pm 1}_{i,i+1}:1\leq i<n\} forms the standard generating set for Un()U_{n}(\mathbb{Z}). We call the entries at positions (i,i+1)(i,i+1) the superdiagonal entries. Define a random walk of length \ell to be a product

V=V1V2VV=V_{1}V_{2}\dots V_{\ell}

where each ViV_{i} is chosen independently and uniformly from SS. Let VV and WW be two independent random walks of length \ell. Then G=V,WG=\langle V,W\rangle is a random subgroup of Un()U_{n}(\mathbb{Z}). We have step(G)step(Un())\textrm{step}(G)\leq\textrm{step}(U_{n}(\mathbb{Z})), and it is not hard to check that step(Un())=n1\textrm{step}(U_{n}(\mathbb{Z}))=n-1. If step(G)=n1\textrm{step}(G)=n-1 we say GG has full step.

Now let nn\to\infty and =(n)\ell=\ell(n) grow as a function of nn. We say a proposition PP holds asymptotically almost surely (a.a.s.) if [P]1\operatorname{\mathbb{P}}[P]\to 1 as nn\to\infty. Delp et al. gave results on the step of GG, depending on the growth rate of \ell with respect to nn.

Theorem 1 (Delp-Dymarz-Schafer-Cohen)

Let n,(n)n,\ell(n)\to\infty and G=V,WG=\langle V,W\rangle where V,WV,W are independent random walks of length \ell. Then:

  1. 1.

    If o(n)\ell\in o(\sqrt{n}) then a.a.s. step(G)=1\textrm{step}(G)=1, i.e. GG is abelian.

  2. 2.

    If o(n2)\ell\in o(n^{2}) then a.a.s. step(G)<n1\textrm{step}(G)<n-1.

  3. 3.

    If ω(n3)\ell\in\omega(n^{3}) then a.a.s. step(G)=n1\textrm{step}(G)=n-1, i.e. GG has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 2

Let n,(n)n,\ell(n)\to\infty and G=V,WG=\langle V,W\rangle. If ω(n2)\ell\in\omega(n^{2}) then a.a.s. GG has full step.

To prove this requires a careful analysis of the nested commutators that generate Gn1G_{n-1}. In Section 1, we give a combinatorial criterion for a nested commutator of VV’s and WW’s to be nontrivial. In Section 2, we show this criterion is satisfied asymptotically almost surely when V,WV,W are random walks.

1 Nested Commutators

Let G=G0G1G=G_{0}\geq G_{1}\geq\dots be the lower central series of GG. We have

Gi=[G,Gi1]=[G,[G,,[G,G]]]G_{i}=[G,G_{i-1}]=[G,[G,\dots,[G,G]\dots]]

In particular, GiG_{i} includes all i+1i+1-fold nested commutators of elements of GG. We restrict our attention to commutators where each factor is VV or WW.

Let {0,1}d\{0,1\}^{d} be the dd-dimensional cube, or the set of all length dd binary vectors. For x{0,1}d,y{0,1}ex\in\{0,1\}^{d},y\in\{0,1\}^{e} we define the norm |x|=1idxi\left|x\right|=\sum_{1\leq i\leq d}x_{i} and the concatenation xy{0,1}d+exy\in\{0,1\}^{d+e}. For example if x=(1,0,0)x=(1,0,0) and y=(0,1)y=(0,1) then xy=(1,0,0,0,1)=1031xy=(1,0,0,0,1)=10^{3}1.

We define a family of maps Cd:{0,1}dGdC_{d}:\{0,1\}^{d}\to G_{d} as follows.

C1(1)\displaystyle C_{1}(1) =V\displaystyle=V (1)
C1(0)\displaystyle C_{1}(0) =W\displaystyle=W (2)
Cd(1x)\displaystyle C_{d}(1x) =[V,Cd1(x)]\displaystyle=[V,C_{d-1}(x)] (3)
Cd(0x)\displaystyle C_{d}(0x) =[W,Cd1(x)]\displaystyle=[W,C_{d-1}(x)] (4)

Thus for example C5(1031)=C5(10001)=[V,[W,[W,[W,V]]]]C_{5}(10^{3}1)=C_{5}(10001)=[V,[W,[W,[W,V]]]]. We omit the subscript dd when it is obvious. To prove GG has full step it suffices to find an x{0,1}n1x\in\{0,1\}^{n-1} such that C(x)C(x) is nontrivial. We begin with Lemma 2.3 from [1], which gives a recursive formula for the entries of a nested commutator.

Lemma 1

Let a{0,1},x{0,1}d1a\in\{0,1\},x\in\{0,1\}^{d-1}. Then C(ax)GdC(ax)\in G_{d} and we have

C(ax)i,i+d\displaystyle C(ax)_{i,i+d} =C(a)i,i+1C(x)i+1,i+dC(a)i+d1,i+dC(x)i,i+d1\displaystyle=C(a)_{i,i+1}C(x)_{i+1,i+d}-C(a)_{i+d-1,i+d}C(x)_{i,i+d-1} (5)

and furthermore C(ax)i,j=0C(ax)_{i,j}=0 for j<i+dj<i+d.

In particular, for d=n1d=n-1 only the upper rightmost entry C(ax)1,nC(ax)_{1,n} can be nonzero. From the formula it is clear that C(ax)i,i+dC(ax)_{i,i+d} is a degree-dd polynomial in the superdiagonal entries of VV and WW. Let us state this more precisely and analyze the coefficients of the polynomial.

Lemma 2

Let d1d\geq 1. There exists a function Kd:{0,1}d×{0,1}dK_{d}:\{0,1\}^{d}\times\{0,1\}^{d}\to\mathbb{Z} such that for 1ind1\leq i\leq n-d we have

C(x)i,i+d\displaystyle C(x)_{i,i+d} =y{0,1}d|y|=|x|Kd(x,y)ij<i+dVj,j+1yjWj,j+11yj\displaystyle=\sum_{\begin{subarray}{c}y\in\{0,1\}^{d}\\ \left|y\right|=\left|x\right|\end{subarray}}K_{d}(x,y)\prod_{i\leq j<i+d}V_{j,j+1}^{y_{j}}W_{j,j+1}^{1-y_{j}} (6)

Furthermore, setting Kd(x,y)=0K_{d}(x,y)=0 for |x||y|\left|x\right|\neq\left|y\right| we have a recursion

Kd(ax,byc)=K1(a,b)Kd1(x,yc)K1(a,c)Kd1(x,by)\displaystyle K_{d}(ax,byc)=K_{1}(a,b)K_{d-1}(x,yc)-K_{1}(a,c)K_{d-1}(x,by) (7)

with base cases

K1(0,0)\displaystyle K_{1}(0,0) =K1(1,1)=1\displaystyle=K_{1}(1,1)=1
K1(0,1)\displaystyle K_{1}(0,1) =K1(1,0)=0\displaystyle=K_{1}(1,0)=0

Note that Kd(x,y)K_{d}(x,y) does not depend on ii. We also drop the subscript dd since it can be inferred from xx and yy.

Proof 1.3.

Abbreviate

U(i,d,y):=ij<i+dVj,j+1yjWj,j+11yj\displaystyle U(i,d,y):=\prod_{i\leq j<i+d}V_{j,j+1}^{y_{j}}W_{j,j+1}^{1-y_{j}}

We first prove inductively that there exist coefficients Kd:{0,1}d×{0,1}dK_{d}:\{0,1\}^{d}\times\{0,1\}^{d}\to\mathbb{Z} such that

C(x)i,i+d\displaystyle C(x)_{i,i+d} =y{0,1}dKd(x,y)U(i,d,y)\displaystyle=\sum_{y\in\{0,1\}^{d}}K_{d}(x,y)U(i,d,y)

The case d=1d=1 is trivial. Assume it holds for d1d-1. Let a{0,1},x{0,1}d1a\in\{0,1\},x\in\{0,1\}^{d-1}, then we have

C(ax)i,i+d\displaystyle C(ax)_{i,i+d} =C(a)i,i+1C(x)i+1,i+dC(a)i+d1,i+dC(x)i,i+d1\displaystyle=C(a)_{i,i+1}C(x)_{i+1,i+d}-C(a)_{i+d-1,i+d}C(x)_{i,i+d-1}\textbf{}

Expanding C(a)i,i+1C(a)_{i,i+1} and C(x)i+1,i+dC(x)_{i+1,i+d}, the first term is

=[K1(a,1)Vi,i+1+K1(a,0)Wi,i+1][y{0,1}d1Kd1(x,y)U(i+1,d1,y)]\displaystyle=\left[K_{1}(a,1)V_{i,i+1}+K_{1}(a,0)W_{i,i+1}\right]\left[\sum_{y\in\{0,1\}^{d-1}}K_{d-1}(x,y)U(i+1,d-1,y)\right]
=y{0,1}d1K1(a,1)Kd1(x,y)U(i,d,1y)+K1(a,0)Kd1(x,y)U(i,d,0y)\displaystyle=\sum_{y\in\{0,1\}^{d-1}}K_{1}(a,1)K_{d-1}(x,y)U(i,d,1y)+K_{1}(a,0)K_{d-1}(x,y)U(i,d,0y)
=b,c{0,1}y{0,1}d2K1(a,b)Kd1(x,yc)U(i,d,byc)\displaystyle=\sum_{\begin{subarray}{c}b,c\in\{0,1\}\\ y^{\prime}\in\{0,1\}^{d-2}\end{subarray}}K_{1}(a,b)K_{d-1}(x,y^{\prime}c)U(i,d,by^{\prime}c)

Similarly the second term is

=b,c{0,1}y{0,1}d2K1(a,c)Kd1(x,by)U(i,d,byc)\displaystyle=\sum_{\begin{subarray}{c}b,c\in\{0,1\}\\ y^{\prime}\in\{0,1\}^{d-2}\end{subarray}}K_{1}(a,c)K_{d-1}(x,by^{\prime})U(i,d,by^{\prime}c)

Combining we get

C(ax)i,i+d\displaystyle C(ax)_{i,i+d} =b,c{0,1}y{0,1}d2[K1(a,b)Kd1(x,yc)K1(a,c)Kd1(x,by)]U(i,d,byc)\displaystyle=\sum_{\begin{subarray}{c}b,c\in\{0,1\}\\ y\in\{0,1\}^{d-2}\end{subarray}}\left[K_{1}(a,b)K_{d-1}(x,yc)-K_{1}(a,c)K_{d-1}(x,by)\right]U(i,d,byc)

And setting Kd(ax,byc)=K1(a,b)Kd1(x,yc)K1(a,c)Kd1(x,by)K_{d}(ax,byc)=K_{1}(a,b)K_{d-1}(x,yc)-K_{1}(a,c)K_{d-1}(x,by) the lemma is proved for dd. It is also easy to see inductively that Kd(x,y)=0K_{d}(x,y)=0 for |x||y|\left|x\right|\neq\left|y\right|, so we may add the condition |x|=|y|\left|x\right|=\left|y\right| under the sum to get Equation 6.

We now have a strategy for choosing x{0,1}n1x\in\{0,1\}^{n-1} such that C(x)C(x) is nontrivial. In the random model, it may happen that Vi,i+1=0V_{i,i+1}=0 for some ii. Define the vector v{0,1}n1v\in\{0,1\}^{n-1} by vi=1v_{i}=1 if Vi,i+10V_{i,i+1}\neq 0 and vi=0v_{i}=0 otherwise. For now assume 0<|v|<n10<\left|v\right|<n-1. If we choose xx such that |x|=|v|\left|x\right|=\left|v\right|, then Equation 6 simplifies to

Cn1(x)1,n=Kd(x,v)1i<nVi,i+1viWi,i+11viC_{n-1}(x)_{1,n}=K_{d}(x,v)\prod_{1\leq i<n}V_{i,i+1}^{v_{i}}W_{i,i+1}^{1-v_{i}} (8)

If we assume there is no ii such that Vi,i+1=Wi,i+1=0V_{i,i+1}=W_{i,i+1}=0, the product of matrix entries is nonzero. So we just need to choose xx such that Kd(x,v)0K_{d}(x,v)\neq 0. We can do this with some additional conditions on vv.

Lemma 1.4.

Let v{0,1}n1v\in\{0,1\}^{n-1} with 0<|v|<n10<\left|v\right|<n-1. Write v=1a101a21ak101akv=1^{a_{1}}01^{a_{2}}\dots 1^{a_{k}-1}01^{a_{k}}. Assume that ai1a_{i}\geq 1 for all ii, i.e., there are no adjacent 0’s, and that a1aka_{1}\neq a_{k}. Then there exists x{0,1}n1x\in\{0,1\}^{n-1} such that K(x,v)0K(x,v)\neq 0.

We will prove in section 2 that all assumptions used hold asymptotically almost surely.

Proof 1.5.

Using Equation 7, the following identities are easily verified by induction:

  1. 1.

    If a,b0a,b\geq 0, then

    K(1a+b0,1a01b)=(a+ba)(1)bK(1^{a+b}0,1^{a}01^{b})={a+b\choose a}(-1)^{b}
  2. 2.

    If a,b1,c0a,b\geq 1,c\geq 0 with c<min(a,b)c<\min(a,b), then

    K(1c0x,1ay1b)=0K(1^{c}0x,1^{a}y1^{b})=0
  3. 3.

    Let a,b0a,b\geq 0. If a<ba<b then

    K(1a0x,1a0y1b)=K(x,y1b)K(1^{a}0x,1^{a}0y1^{b})=K(x,y1^{b})

    If b<ab<a then

    K(1a0x,1ay01b)=K(x,1ay)K(1^{a}0x,1^{a}y01^{b})=K(x,1^{a}y)
  4. 4.

    If a,b0a,b\geq 0 then

    K(1a+b02x,1a01y101b)=2(a+ba)(1)bK(x,1y1)K(1^{a+b}0^{2}x,1^{a}01y101^{b})=2{a+b\choose a}(-1)^{b}K(x,1y1)

Let v=1a101a201akv=1^{a_{1}}01^{a_{2}}\dots 01^{a_{k}}. First assume k=2k=2\ell is even. Applying identity 4 repeatedly we reduce to the case v=1a01a+1v=1^{a_{\ell}}01^{a_{\ell+1}}, then apply identity 1. Explicitly we have

x\displaystyle x =1a1+a2021a2+a21021a+a+10\displaystyle=1^{a_{1}+a_{2\ell}}0^{2}1^{a_{2}+a_{2\ell-1}}0^{2}\dots 1^{a_{\ell}+a_{\ell+1}}0 (9)
K(x,v)\displaystyle K(x,v) =2(1)a2+a21++a+1(a1+a2+1a1)(a2+a2a2)(a+a+1a)\displaystyle=2^{\ell}(-1)^{a_{2\ell}+a_{2\ell-1}+\dots+a_{\ell+1}}{a_{1}+a_{2\ell+1}\choose a_{1}}{a_{2}+a_{2\ell}\choose a_{2}}\dots a_{\ell}+a_{\ell+1}\choose a_{\ell} (10)

If kk is odd, apply identity 3 once and proceed as before.

2 Asymptotics

In Section 1 we derived a combinatorial condition on the superdiagonal entries of VV and WW sufficient for GG to have full step. Define

𝒱\displaystyle\mathcal{V} ={i:1i<n,Vi,i+1=0}\displaystyle=\{i:1\leq i<n,V_{i,i+1}=0\}
𝒲\displaystyle\mathcal{W} ={i:1i<n,Wi,i+1=0}\displaystyle=\{i:1\leq i<n,W_{i,i+1}=0\}

Then to apply Lemma 1.4 we need that

  1. 1.

    𝒱\mathcal{V} and 𝒲\mathcal{W} are nonempty.

  2. 2.

    𝒱𝒲=\mathcal{V}\cap\mathcal{W}=\emptyset.

  3. 3.

    𝒱\mathcal{V} has no adjacent elements.

  4. 4.

    min𝒱nmax𝒱\min\mathcal{V}\neq n-\max\mathcal{V}.

If condition (1) does not hold, then Theorem 2 follows by a modification of Lemma 5.4 in [1]. We now show that in the random model, the superdiagonal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that VV and WW are random walks

V\displaystyle V =V1V2V\displaystyle=V_{1}V_{2}\dots V_{\ell}
W\displaystyle W =W1W2W\displaystyle=W_{1}W_{2}\dots W_{\ell}

where each Vi,WiV_{i},W_{i} is chosen independently and uniformly from the generating set S={Ei,i+1±1:1i<n}S=\{E^{\pm 1}_{i,i+1}:1\leq i<n\} . Define

σj(Z)={1 if Z=Ej,j+11 if Z=Ej,j+110 otherwise\displaystyle\sigma_{j}(Z)=\begin{cases}1&\text{ if $Z=E_{j,j+1}$}\\ -1&\text{ if $Z=E_{j,j+1}^{-1}$}\\ 0&\text{ otherwise}\end{cases} (11)

Then we have

Vi,i+1=j=1σi(Vj)V_{i,i+1}=\sum_{j=1}^{\ell}\sigma_{i}(V_{j}) (12)

When n\ell\gg n, the superdiagonal entries Vi,i+1V_{i,i+1} behave roughly like independent random walks on \mathbb{Z}. We restate Corollary 3.2 from [1].

Lemma 2.6.

Suppose =ω(n)\ell=\omega(n). Then uniformly for (k1,,kd)d(k_{1},\dots,k_{d})\in\mathbb{Z}^{d} we have

[ki𝒱 for all i](n2π)d/2\operatorname{\mathbb{P}}[k_{i}\in\mathcal{V}\text{ for all $i$}]\sim\left(\frac{n}{2\pi\ell}\right)^{d/2}

Since 𝒱\mathcal{V} and 𝒲\mathcal{W} are i.d.d, we have [i𝒱𝒲]n/\operatorname{\mathbb{P}}[i\in\mathcal{V}\cap\mathcal{W}]\ll n/\ell, so by the union bound we have [𝒱𝒲]n2/0\operatorname{\mathbb{P}}[\mathcal{V}\cap\mathcal{W}\neq\emptyset]\ll n^{2}/\ell\to 0. Thus condition (2) holds a.a.s. For conditions (3) and (4) we will need a bound on the size of 𝒱\mathcal{V}.

Lemma 2.7.

Fix ϵ>0\epsilon>0. Then [|𝒱|>ϵn]0\operatorname{\mathbb{P}}[\left|\mathcal{V}\right|>\epsilon\sqrt{n}]\to 0 as nn\to\infty.

Proof 2.8.

Define random variables

Xi\displaystyle X_{i} ={1V(i,i+1)=00V(i,i+1)0\displaystyle=\begin{cases}1&V(i,i+1)=0\\ 0&V(i,i+1)\neq 0\end{cases}

So |𝒱|=iXi\left|\mathcal{V}\right|=\sum_{i}X_{i}. From Lemma 2.6 we have 𝔼[Xi]n/\operatorname{\mathbb{E}}[X_{i}]\ll\sqrt{n/\ell} and 𝔼[XiXj]n/\operatorname{\mathbb{E}}[X_{i}X_{j}]\ll n/\ell for 1i<j<n1\leq i<j<n. Hence 𝔼[|𝒱|]n3/\operatorname{\mathbb{E}}[\left|\mathcal{V}\right|]\ll\sqrt{n^{3}/\ell} and Var[|𝒱|]n3/\operatorname{Var}[\left|\mathcal{V}\right|]\ll n^{3}/\ell. By Chebyshev’s inequality

[|𝒱|ϵn]\displaystyle\operatorname{\mathbb{P}}[\left|\mathcal{V}\right|\geq\epsilon\sqrt{n}] [|𝒱|n3/n(ϵn2/)]\displaystyle\leq\operatorname{\mathbb{P}}\left[\left|\mathcal{V}\right|-\sqrt{n^{3}/\ell}\geq\sqrt{n}(\epsilon-\sqrt{n^{2}/\ell})\right]
1(ϵn2/)2(/n2)0\displaystyle\leq\frac{1}{(\epsilon-\sqrt{n^{2}/\ell})^{2}(\ell/n^{2})}\to 0

Observe that the distribution of 𝒱\mathcal{V} is invariant under permutation. In other words, for a fixed set 𝒮{1,,n1}\mathcal{S}\subset\{1,\dots,n-1\} and a permutation π\pi on {1,,n1}\{1,\dots,n-1\} we have

[𝒱=𝒮]=[𝒱=π𝒮]\displaystyle\operatorname{\mathbb{P}}[\mathcal{V}=\mathcal{S}]=\operatorname{\mathbb{P}}[\mathcal{V}=\pi\mathcal{S}]

and hence

[𝒱=𝒮]=1(n1|𝒮|)[|V|=|𝒮|]\displaystyle\operatorname{\mathbb{P}}[\mathcal{V}=\mathcal{S}]=\frac{1}{{n-1\choose\left|\mathcal{S}\right|}}\operatorname{\mathbb{P}}[\left|V\right|=\left|\mathcal{S}\right|]

Let A(k)A(k) be the number of sets 𝒮{1,,n1}\mathcal{S}\subset\{1,\dots,n-1\} of size kk with at least one pair of adjacent elements. We have

A(k)(n2)(n3k2)A(k)\leq(n-2){n-3\choose k-2}

Let B(k)B(k) be the number of sets 𝒮\mathcal{S} for which min𝒮=nmax𝒮\min\mathcal{S}=n-\max\mathcal{S}. Summing over the possible values of min𝒮\min\mathcal{S} we have

B(k)1an/2(n12ak2)B(k)\leq\sum_{1\leq a\leq n/2}{n-1-2a\choose k-2}

One easily checks

A(k)+B(k)(n1k)2k2n\frac{A(k)+B(k)}{{n-1\choose k}}\leq\frac{2k^{2}}{n}

For kϵnk\leq\epsilon\sqrt{n} this is 2ϵ2\leq 2\epsilon^{2}. On the other hand [|V|>ϵn]0\operatorname{\mathbb{P}}[\left|V\right|>\epsilon\sqrt{n}]\to 0, so we are done.

Acknowledgements. We thank Tullia Dymarz for suggesting this problem and for many helpful discussions.

References

  • [1] Delp, Kelly ; Dymarz, Tullia; Schaffer-Cohen, Anschel. A matrix model for random nilpotent groups. International Mathematics Research Notices. 1 (2019) 201–230. https://doi.org/10.1093/imrn/rnx128
  • [2] Cordes, Matthew, Duchin, Moon, Duong, Yen, and Sánchez, Andrew P. Random nilpotent groups 1. To appear in International Mathematics Research Notices (2016).
  • [3] Hall, Philip. The Edmonton notes on nilpotent groups. Queen Mary College Mathematics Notes, Mathematics Department, Queen Mary College, London. (1969)
  • [4] Ollivier, Yann. Invitation to random groups. Ensaios Matemáticos [Mathematical Surveys], Sociedade Brasileira de Matemática, Rio de Janeiro. 10 (2005).
  • [5] Baumslag, Gilbert. Lectures on nilpotent groups. Regional Conference Series in Mathematics American Mathematical Society, Providence, R.I. 2 (1971).