This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Random average sampling and reconstruction in shift-invariant subspaces of mixed Lebesgue spaces

Ankush Kumar Garg School of Mathematics,
Indian Institute of Science Education
and Research Thiruvananthapuram,
Maruthamala P.O., Vithura,
Thiruvananthapuram-695551.
[email protected]
   S. Arati School of Mathematics,
Indian Institute of Science Education
and Research Thiruvananthapuram,
Maruthamala P.O., Vithura,
Thiruvananthapuram-695551.
[email protected]
   P. Devaraj School of Mathematics,
Indian Institute of Science Education
and Research Thiruvananthapuram,
Maruthamala P.O., Vithura,
Thiruvananthapuram-695551.
[email protected]
Abstract.

In this paper, the problem of reconstruction of signals in mixed Lebesgue spaces from their random average samples has been studied. Probabilistic sampling inequalities for certain subsets of shift-invariant spaces have been derived. It is shown that the probabilities increase to one when the sample size increases. Further, explicit reconstruction formulae for signals in these subsets have been obtained for which the numerical simulations have also been performed.

Key words and phrases:
mixed Lebesgue spaces; probabilistic reconstruction; random average sampling; sampling inequality; shift-invariant subspaces.
1991 Mathematics Subject Classification:
46E30; 94A20; 94A12

1. Introduction

In information theory, it is highly desirable to gain maximum information about a function (or signal) using the least available data. Image processing, data analysis, computer tomography, bio-engineering and artificial intelligence are a few fields which often deal with sampling and reconstruction problems. In 1949, the celebrated Shannon sampling theorem was proved which turned out to be a milestone in this field of study and set the foundation for information theory. Over these years, the theory of sampling has been intensively studied. For a detailed survey on the theory, we refer to Butzer and Stens [7]. Further, the theory has been developed for shift-invariant spaces with a single generator as well as with multiple generators in various contexts such as regular, irregular, average and multi-channel sampling by several authors.

The average sampling is a useful and a practical model of sampling when the physical devices fail to measure the exact value of a signal at a given time. Sun and Zhou gave the reconstruction formulae from local convoluted samples for band-limited functions in [19, 20], for spline subspaces in [21, 22] and for shift-invariant subspaces with symmetric averaging functions in [23]. The average sampling and reconstruction algorithms for shift-invariant subspaces were also studied in [1, 13, 8]. In [18], the average sampling has been analyzed for a reproducing kernel subspace of LpL^{p}- spaces. Li et al. gave the reconstruction formula for the functions in local shift-invariant subspaces of L2(d)L^{2}(\mathbb{R}^{d}) from average random samples in [16].

Random sampling is another type of sampling which has been used in practical applications such as learning theory, image filtering and compressed sensing. In [2], Bass and Gröchenig discussed random sampling for multivariate trigonometric polynomials. They obtained the probabilistic sampling inequality for band-limited functions on \mathbb{R} in [3] and the same for band-limited functions on d\mathbb{R}^{d} in [4]. Random sampling in shift-invariant spaces was studied in [26, 24, 9]. Yang and Tao in [25] studied random sampling and gave an approximation model for signals having bounded derivatives. Random sampling for reproducing kernel subspaces was analyzed in [17, 11, 15]. The random sampling theory was also extended to mixed Lebesgue spaces which are generalized versions of the Lebesgue spaces. In this context, the random sampling for reproducing kernel subspaces was studied in [10] and that for multiply generated shift-invariant subspaces was analyzed in [12]. For a detailed study of the mixed Lebesgue spaces, we refer to [5].

This paper deals with the study of random average sampling for functions in mixed Lebesgue spaces using a probabilistic approach. For 1<p,q<1<p,q<\infty, let Lp,q(×d)L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}) denote the mixed Lebesgue space, which consists of complex valued measurable functions on ×d\mathbb{R}\times\mathbb{R}^{d} such that

((d|f(x,y)|q𝑑y)p/q𝑑x)1/p<\bigg{(}\int_{\mathbb{R}}\bigg{(}\int_{\mathbb{R}^{d}}|f(x,y)|^{q}dy\bigg{)}^{p/q}dx\bigg{)}^{1/p}<\infty

and let L,(×d)L^{\infty,\infty}(\mathbb{R}\times\mathbb{R}^{d}) denote the set of all complex valued measurable functions on d+1\mathbb{R}^{d+1} such that fL,(×d):=esssup|f|<\|f\|_{L^{\infty,\infty}(\mathbb{R}\times\mathbb{R}^{d})}:=ess\sup|f|<\infty.

Similarly, for 1<p,q<1<p,q<\infty, lp,q(×d)l^{p,q}(\mathbb{Z}\times\mathbb{Z}^{d}) denotes the space of all complex sequences c=(c(k1,k2))(k1,k2d)c=\big{(}c(k_{1},k_{2})\big{)}_{(k_{1}\in\mathbb{Z},k_{2}\in\mathbb{Z}^{d})} such that

clp,q:=(k1(k2d|c(k1,k2)|q)p/q)1/p<\|c\|_{l^{p,q}}:=\left(\sum_{k_{1}\in\mathbb{Z}}\left(\sum_{k_{2}\in\mathbb{Z}^{d}}|c(k_{1},k_{2})|^{q}\right)^{p/q}\right)^{1/p}<\infty

and l,(×d)l^{\infty,\infty}(\mathbb{Z}\times\mathbb{Z}^{d}) denotes the space of all complex sequences on d+1\mathbb{Z}^{d+1} such that cl,:=supkd+1|c(k)|<.\|c\|_{l^{\infty,\infty}}:=\displaystyle\sup_{k\in\mathbb{Z}^{d+1}}|c(k)|<\infty. We observe that Lp,p(×d)=Lp(d+1)L^{p,p}(\mathbb{R}\times\mathbb{R}^{d})=L^{p}(\mathbb{R}^{d+1}) and lp,p(×d)=lp(d+1)l^{p,p}(\mathbb{Z}\times\mathbb{Z}^{d})=l^{p}(\mathbb{Z}^{d+1}) for 1<p<.1<p<\infty.


We consider a multiply generated shift-invariant subspace of the mixed Lebesgue space Lp,q(×d),1<p,q<,L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}),1<p,q<\infty, of the form

Vp,q(Φ)={k1k2dcT(k1,k2)Φ(k1,k2):c(lp,q(×d))r}V^{p,q}(\Phi)=\bigg{\{}\sum_{k_{1}\in\mathbb{Z}}\sum_{k_{2}\in\mathbb{Z}^{d}}{\textbf{c}^{T}(k_{1},k_{2})}\Phi(\cdot-k_{1},\cdot-k_{2}):\textbf{c}\in\big{(}l^{p,q}(\mathbb{Z}\times\mathbb{Z}^{d})\big{)}^{r}\bigg{\}}

where Φ=(ϕ1,ϕ2,,ϕr)T\Phi=(\phi_{1},\phi_{2},\dots,\phi_{r})^{T} with ϕiLp,q(×d)\phi_{i}\in L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}) and c=(c1,c2,,cr)T.\textbf{c}=(c_{1},c_{2},\dots,c_{r})^{T}.

We prove the sampling inequalities for certain subsets of Vp,q(Φ)V^{p,q}(\Phi) and estimate the probabilities with which they hold. Our results show that the probability tends to one as the number of samples increases. Further, using these sampling inequalities, we derive explicit reconstruction formulae. We also simulate the reconstruction numerically for certain examples and obtain the error estimates.

2. Preliminaries

The subsets of Vp,q(Φ)V^{p,q}(\Phi) that are needed for our analysis are defined as follows :
Let CKC_{K} denote the compact set [K1,K1]×[K2,K2]d×d[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d}\subseteq\mathbb{R}\times\mathbb{R}^{d} for some positive constants K1K_{1} and K2K_{2} and Vp,q(Φ,δ,CK)V^{p,q}(\Phi,\delta,C_{K}) be the set

Vp,q(Φ,δ,CK):={fVp,q(Φ):fLp,q(CK)(1δ)fLp,q(×d)},V^{p,q}(\Phi,\delta,C_{K}):=\big{\{}f\in V^{p,q}(\Phi):\|f\|_{L^{p,q}(C_{K})}\geq(1-\delta)\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}\big{\}},

where 0<δ<10<\delta<1. In fact, Vp,q(Φ,δ,CK)V^{p,q}(\Phi,\delta,C_{K}) consists of the signals in Vp,q(Φ)V^{p,q}(\Phi) whose energy is concentrated on the set CK.C_{K}.

For a positive integer NN, VNp,q(Φ)V_{N}^{p,q}(\Phi) denotes the finite dimensional subspace of Vp,q(Φ)V^{p,q}(\Phi) given by

VNp,q(Φ):={i=1r|k1|N|k2|Nci(k1,k2)ϕi(k1,k2):cilp,q([N,N]×[N,N]d)},V_{N}^{p,q}(\Phi):=\bigg{\{}\sum_{i=1}^{r}\sum_{|k_{1}|\leq N}\sum_{|k_{2}|\leq N}c_{i}(k_{1},k_{2})\phi_{i}(\cdot-k_{1},\cdot-k_{2}):c_{i}\in l^{p,q}\bigg{(}[-N,N]\times[-N,N]^{d}\bigg{)}\bigg{\}},

where for a multi-index k=(k1,k2,,kd)d,|k|:=max1id|ki|.k=(k_{1},k_{2},\dots,k_{d})\in\mathbb{Z}^{d},|k|:=\displaystyle\max_{1\leq i\leq d}|k_{i}|.
The unit ball of the above space is

VNp,q,(Φ):={gVNp,q(Φ):gLp,q(×d)=1}.V_{N}^{p,q,*}(\Phi):=\big{\{}g\in V_{N}^{p,q}(\Phi):\|g\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}=1\big{\}}.

For ω>0\omega>0 and ψL1(d+1),\psi\in L^{1}(\mathbb{R}^{d+1}), the subset VN,ω,ψp,q(Φ)V_{N,\omega,\psi}^{p,q}(\Phi) is defined as

VN,ω,ψp,q(Φ):={fVNp,q(Φ):fψLp,q(CK)ω}V_{N,\omega,\psi}^{p,q}(\Phi):=\big{\{}f\in V_{N}^{p,q}(\Phi):\|f*\psi\|_{L^{p,q}(C_{K})}\geq\omega\big{\}}

and its unit ball is denoted by VN,ω,ψp,q,(Φ).V_{N,\omega,\psi}^{p,q,*}(\Phi).
Further, for 0<μ1,0<\mu\leq 1, we define

VN,ψp,q(Φ,μ,CK):={fVNp,q(Φ)\displaystyle V_{N,\psi}^{p,q}(\Phi,\mu,C_{K}):=\bigg{\{}f\in V_{N}^{p,q}(\Phi) :\displaystyle: μψL1(d+1)fLp,q(×d)\displaystyle\mu\|\psi\|_{{L}^{1}(\mathbb{R}^{d+1})}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})} (2.1)
CK|(fψ)(x,y)|dxdy}\displaystyle\quad\leq\int_{C_{K}}|(f*\psi)(x,y)|dxdy\bigg{\}}

Also, for 0<δ<1,0<\delta<1, we define Vψp,q(Φ,δ,CK)V_{\psi}^{p,q}(\Phi,\delta,C_{K}) as

Vψp,q(Φ,δ,CK)\displaystyle V_{\psi}^{p,q}(\Phi,\delta,C_{K}) :=\displaystyle:= {fVp,q(Φ,δ,CK):fψLp,q(CK)\displaystyle\big{\{}f\in V^{p,q}(\Phi,\delta,C_{K}):\|f*\psi\|_{L^{p,q}(C_{K})}
(1δ)ψL1,1(CK)fLp,q(×d)}\displaystyle\quad\quad\quad\geq(1-\delta)\|\psi\|_{L^{1,1}(C_{K})}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}\big{\}}

and Vψp,q,(Φ,δ,CK)V_{\psi}^{p,q,*}(\Phi,\delta,C_{K}) as its unit ball.

We make the following assumptions for our study:

(A1)(A_{1}) The generators ϕ1,ϕ2,,ϕr\phi_{1},\phi_{2},\dots,\phi_{r} have stable shifts, i.e., there exist positive constants α1\alpha_{1} and α2\alpha_{2} such that

α1clp,qk1k2dcT(k1,k2)Φ(k1,k2)Lp,q(×d)α2clp,q,\alpha_{1}\|\textbf{c}\|_{l^{p,q}}\leq\bigg{\|}\sum_{k_{1}\in\mathbb{Z}}\sum_{k_{2}\in\mathbb{Z}^{d}}\textbf{c}^{T}(k_{1},k_{2})\Phi(\cdot-k_{1},\cdot-k_{2})\bigg{\|}_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}\leq\alpha_{2}\|\textbf{c}\|_{l^{p,q}}, (2.2)

for c(lp,q(×d))r\textbf{c}\in\left(l^{p,q}(\mathbb{Z}\times\mathbb{Z}^{d})\right)^{r} and clp,q=i=1rcilp,q<.\|\textbf{c}\|_{l^{p,q}}=\sum_{i=1}^{r}\|c_{i}\|_{l^{p,q}}<\infty.
Also ϕi\phi_{i}’s are continuous with polynomial decay, i.e.,

|ϕi(x,y)|c~(1+|x|)s1(1+|y|)s2,(x,y)(×d),|\phi_{i}(x,y)|\leq\dfrac{\tilde{c}}{(1+|x|)^{s_{1}}(1+|y|)^{s_{2}}},(x,y)\in(\mathbb{R}\times\mathbb{R}^{d}), (2.3)

where c~\tilde{c} is a positive constant and s1,s2s_{1},s_{2} are positive constants satisfying
s1,s2>d+11pdqs_{1},s_{2}>d+1-\frac{1}{p}-\frac{d}{q}.
 
(A2)(A_{2}) The averaging function ψL1(d+1)\psi\in L^{1}(\mathbb{R}^{d+1}) with supp(ψ)CK.(\psi)\subseteq C_{K}.
 
(A3)(A_{3}) There exists a probability density function ρ\rho defined over CKC_{K} such that

𝒞ρ,1ρ(x,y)𝒞ρ,2\mathcal{C}_{\rho,1}\leq\rho(x,y)\leq\mathcal{C}_{\rho,2} (2.4)

for all (x,y)CK,(x,y)\in C_{K}, where 𝒞ρ,1\mathcal{C}_{\rho,1} and 𝒞ρ,2\mathcal{C}_{\rho,2} are positive constants.
 
We provide some examples of generators satisfying the assumption (A1)(A_{1}) in Section 5.

3. Random average sampling inequalities

In this section, we shall show that the sampling inequalities hold with certain probabilities for functions in VN,ω,ψp,q(Φ),VN,ψp,q(Φ,μ,CK)V_{N,\omega,\psi}^{p,q}(\Phi),V_{N,\psi}^{p,q}(\Phi,\mu,C_{K}) and Vψp,q(Φ,δ,CK).V_{\psi}^{p,q}(\Phi,\delta,C_{K}). The result for VN,ω,ψp,q(Φ)V_{N,\omega,\psi}^{p,q}(\Phi) states as follows:

Theorem 3.1.

Let Φ,ψ\Phi,\psi and ρ\rho satisfy assumptions (A1),(A2)(A_{1}),(A_{2}) and (A3)(A_{3}) respectively. Further, let {(xj,yk)}j,k\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}} be a sequence of i.i.d. random variables that are drawn from a general probability distribution over CK=[K1,K1]×[K2,K2]dC_{K}=[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d} and whose density function is ρ\rho. Then for any γ(0,1), 0<ωψL1,1(CK)\gamma\in(0,1),\;0<\omega\leq\|\psi\|_{L^{1,1}(C_{K})} and

nm>(54r2(ln2)(2N+1)(d+1)ψL1,1(CK)(γ𝒞ρ,1(cψL1,1(CK))(1pq)ωpq(2K1)(q1)(2K2)d(p1))2)\displaystyle nm>\left(\dfrac{54r\sqrt{2}(\ln 2)(2N+1)^{(d+1)}\|\psi\|_{L^{1,1}(C_{K})}}{\left(\dfrac{\gamma\mathcal{C}_{\rho,1}\left(c^{*}\|\psi\|_{L^{1,1}(C_{K})}\right)^{(1-pq)}\omega^{pq}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}\right)^{2}}\right)
×(2(γ𝒞ρ,1(cψL1,1(CK))(1pq)ωpq(2K1)(q1)(2K2)d(p1))+81ψL1,1(CK)),\displaystyle\quad\quad\quad\times\left(2\left(\dfrac{\gamma\mathcal{C}_{\rho,1}\left(c^{*}\|\psi\|_{L^{1,1}(C_{K})}\right)^{(1-pq)}\omega^{pq}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}\right)+81\|\psi\|_{L^{1,1}(C_{K})}\right),
(3.1)

the sampling inequality

𝒜γ,ωfLp,q(×d){(fψ)(xj,yk)}j=1,2,,n;k=1,2,,mlp,qγ,ωfLp,q(×d)\mathcal{A}_{\gamma,\omega}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}\leq\bigg{\|}\{(f*\psi)(x_{j},y_{k})\}_{\begin{subarray}{c}j=1,2,\dots,n;\\ k=1,2,\dots,m\end{subarray}}\bigg{\|}_{l^{p,q}}\leq\mathcal{B}_{\gamma,\omega}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})} (3.2)

holds with probability at least 1𝒜1e(nmβ1)𝒜2e(nmβ2)1-\mathcal{A}_{1}e^{(-nm\beta_{1})}-\mathcal{A}_{2}e^{(-nm\beta_{2})} for every ff in VN,ω,ψp,q(Φ),V_{N,\omega,\psi}^{p,q}(\Phi), where

𝒜γ,ω\displaystyle\mathcal{A}_{\gamma,\omega} =\displaystyle= (1γ)𝒞ρ,1(cψL1,1(CK))(1pq)ωpq(2K1)(q1)(2K2)d(p1)n1pm1q,\displaystyle\dfrac{(1-\gamma)\mathcal{C}_{\rho,1}(c^{*}\|\psi\|_{L^{1,1}(C_{K})})^{(1-pq)}\omega^{pq}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}n^{\frac{1}{p}}m^{\frac{1}{q}},
γ,ω\displaystyle\mathcal{B}_{\gamma,\omega} =\displaystyle= 𝒞ρ,2ψL1,1(CK)(2K1)(1pp)(2K2)d(1qq)nm+γ𝒞ρ,1(cψL1,1(CK))(1pq)ωpq(2K1)(q1)(2K2)d(p1)nm,\displaystyle\dfrac{\mathcal{C}_{\rho,2}\|\psi\|_{L^{1,1}(C_{K})}}{(2K_{1})^{\left(\frac{1-p}{p}\right)}(2K_{2})^{d\left(\frac{1-q}{q}\right)}}nm+\dfrac{\gamma\mathcal{C}_{\rho,1}(c^{*}\|\psi\|_{L^{1,1}(C_{K})})^{(1-pq)}\omega^{pq}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}nm,
𝒜1\displaystyle\mathcal{A}_{1} =\displaystyle= 2exp(r(2N+1)(d+1)ln(4c+1)),\displaystyle 2\exp\bigg{(}r(2N+1)^{(d+1)}\ln\big{(}4c^{*}+1\big{)}\bigg{)},
β1\displaystyle\beta_{1} =\displaystyle= (2K1)(1q)(2K2)d(1p)(32γ𝒞ρ,1(ωcψL1,1(CK))pq)26(2K1)(q1)(2K2)d(p1)+γ𝒞ρ,1(ωcψL1,1(CK))pq,\displaystyle\dfrac{(2K_{1})^{(1-q)}(2K_{2})^{d(1-p)}\left(\frac{\sqrt{3}}{2}\gamma\mathcal{C}_{\rho,1}\left(\frac{\omega}{c^{*}\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}\right)^{2}}{6(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}+\gamma\mathcal{C}_{\rho,1}\left(\frac{\omega}{c^{*}\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}},
𝒜2\displaystyle\mathcal{A}_{2} =\displaystyle= 4((2c+14)(c+14))r(2N+1)(d+1)3r(ln2)2(2N+1)(d+1),\displaystyle\dfrac{4\bigg{(}(2c^{*}+\frac{1}{4})(c^{*}+\frac{1}{4})\bigg{)}^{r(2N+1)^{(d+1)}}}{3r(\ln 2)^{2}(2N+1)^{(d+1)}},
β2\displaystyle\beta_{2} =\displaystyle= (2K1)(1q)(2K2)d(1p)(γ𝒞ρ,1(ωcψL1,1(CK))pqc)2182(81(2K1)(q1)(2K2)d(p1)+2γ𝒞ρ,1(ωcψL1,1(CK))pqc),and\displaystyle\dfrac{(2K_{1})^{(1-q)}(2K_{2})^{d(1-p)}\left(\gamma\mathcal{C}_{\rho,1}\left(\frac{\omega}{c^{*}\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}c^{*}\right)^{2}}{18\sqrt{2}\left(81(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}+2\gamma\mathcal{C}_{\rho,1}\left(\frac{\omega}{c^{*}\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}c^{*}\right)},\ \text{and}
c\displaystyle c^{*} =\displaystyle= 4c~2(p+qpq)α1(k11(1+|k1|)(s1pp1))(p1p)(k2d1(1+|k2|)(s2qq1))(q1q).\displaystyle\dfrac{4\tilde{c}}{2^{\left(\frac{p+q}{pq}\right)}\alpha_{1}}\left(\sum_{k_{1}\in\mathbb{Z}}\dfrac{1}{\left(1+|k_{1}|\right)^{\left(\frac{s_{1}p}{p-1}\right)}}\right)^{\left(\frac{p-1}{p}\right)}\left(\sum_{k_{2}\in\mathbb{Z}^{d}}\dfrac{1}{\left(1+|k_{2}|\right)^{\left(\frac{s_{2}q}{q-1}\right)}}\right)^{\left(\frac{q-1}{q}\right)}.

In order to prove Theorem 3.1, we consider for fVp,q(Φ)f\in V^{p,q}(\Phi) and a sequence of i.i.d. random variables {(xj,yk)}j,k\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}} that are drawn from a general probability distribution over CKC_{K} whose density function is ρ,\rho, the random variables Yj,k(f),j,kY_{j,k}(f),j,k\in\mathbb{N}, defined by

Yj,k(f):=|(fψ)(xj,yk)|CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑yY_{j,k}(f):=|(f\ast\psi)(x_{j},y_{k})|-\int_{C_{K}}\rho(x,y)|(f\ast\psi)(x,y)|dxdy (3.3)

and a few of its properties, namely its expectation, variance and certain norm estimates. The proofs of these properties and the subsequent analysis require the following variants of Young’s inequality.

Lemma 3.2.

Let 1p,q,r1\leq p,q,r\leq\infty with 1p+1q=1r+1\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1. Suppose fLp(d),gLq(d)f\in L^{p}(\mathbb{R}^{d}),g\in L^{q}(\mathbb{R}^{d}) with supp(g)CKsupp(g)\subset C_{K}, where CKC_{K} denotes the cube [K,K]d.[-K,K]^{d}. Then,

fgLr(CK)fLp(C2K)gLq(CK).\|f*g\|_{L^{r}(C_{K})}\leq\|f\|_{L^{p}(C_{2K})}\|g\|_{L^{q}(C_{K})}. (3.4)
Proof.

Let 1<p,q<1<p,q<\infty and p,qp^{\prime},q^{\prime} be their conjugate exponents respectively. Consider for xCK,x\in C_{K},

|(fg)(x)|\displaystyle|(f*g)(x)|
d|f(xy)||g(y)|𝑑y\displaystyle\quad\leq\int_{\mathbb{R}^{d}}|f(x-y)||g(y)|dy
=CK|f(xy)||g(y)|𝑑y\displaystyle\quad=\int_{C_{K}}|f(x-y)||g(y)|dy
=CK|f(xy)|pr|f(xy)|(1pr)|g(y)|qr|g(y)|(1qr)𝑑y\displaystyle\quad=\int_{C_{K}}|f(x-y)|^{\frac{p}{r}}|f(x-y)|^{(1-\frac{p}{r})}|g(y)|^{\frac{q}{r}}|g(y)|^{(1-\frac{q}{r})}dy
=CK(|f(xy)|p|g(y)|q)1r|f(xy)|(1pr)|g(y)|(1qr)𝑑y.\displaystyle\quad=\int_{C_{K}}\big{(}|f(x-y)|^{p}|g(y)|^{q}\big{)}^{\frac{1}{r}}|f(x-y)|^{(1-\frac{p}{r})}|g(y)|^{(1-\frac{q}{r})}dy.

As 1p+1q+1r=1,\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}+\frac{1}{r}=1, we get

|(fg)(x)|\displaystyle|(f*g)(x)|
(CK|(|f(xy)|p|g(y)|q)1r|r𝑑y)1r(CK(|f(xy)|(1pr))q𝑑y)1q\displaystyle\quad\leq\bigg{(}\int_{C_{K}}\bigg{|}\big{(}|f(x-y)|^{p}|g(y)|^{q}\big{)}^{\frac{1}{r}}\bigg{|}^{r}dy\bigg{)}^{\frac{1}{r}}\bigg{(}\int_{C_{K}}\big{(}|f(x-y)|^{(1-\frac{p}{r})}\big{)}^{q^{\prime}}dy\bigg{)}^{\frac{1}{q^{\prime}}}
×(CK(|g(y)|(1qr))p𝑑y)1p,\displaystyle\quad\quad\quad\quad\quad\times\bigg{(}\int_{C_{K}}\big{(}|g(y)|^{(1-\frac{q}{r})}\big{)}^{p^{\prime}}dy\bigg{)}^{\frac{1}{p^{\prime}}},

by Holder’s inequality. Now using the relations q=p(1qr)q=p^{\prime}(1-\frac{q}{r}) and p=q(1pr),p=q^{\prime}(1-\frac{p}{r}), we obtain

|(fg)(x)|\displaystyle|(f*g)(x)|
(CK|f(xy)|p|g(y)|q𝑑y)1r(CK|f(xy)|p𝑑y)1q(CK|g(y)|q𝑑y)1p\displaystyle\leq\bigg{(}\int_{C_{K}}|f(x-y)|^{p}|g(y)|^{q}dy\bigg{)}^{\frac{1}{r}}\bigg{(}\int_{C_{K}}|f(x-y)|^{p}dy\bigg{)}^{\frac{1}{q^{\prime}}}\bigg{(}\int_{C_{K}}|g(y)|^{q}dy\bigg{)}^{\frac{1}{p^{\prime}}}
(CK|f(xy)|p|g(y)|q𝑑y)1rfLp(C2K)pqgLq(CK)qp\displaystyle\leq\bigg{(}\int_{C_{K}}|f(x-y)|^{p}|g(y)|^{q}dy\bigg{)}^{\frac{1}{r}}\|f\|^{\frac{p}{q^{\prime}}}_{L^{p}(C_{2K})}\|g\|^{\frac{q}{p^{\prime}}}_{L^{q}(C_{K})}
(CK|f(xy)|p|g(y)|q𝑑y)1rfLp(C2K)(1pr)gLq(CK)(1qr),\displaystyle\leq\bigg{(}\int_{C_{K}}|f(x-y)|^{p}|g(y)|^{q}dy\bigg{)}^{\frac{1}{r}}\|f\|^{(1-\frac{p}{r})}_{L^{p}(C_{2K})}\|g\|^{(1-\frac{q}{r})}_{L^{q}(C_{K})},

which implies

CK|(fg)(x)|r𝑑x\displaystyle\int_{C_{K}}|(f*g)(x)|^{r}dx
fLp(C2K)rpgLq(CK)rqCK(CK|f(xy)|p|g(y)|q𝑑y)𝑑x\displaystyle\leq\|f\|^{r-p}_{L^{p}(C_{2K})}\|g\|^{r-q}_{L^{q}(C_{K})}\int_{C_{K}}\bigg{(}\int_{C_{K}}|f(x-y)|^{p}|g(y)|^{q}dy\bigg{)}dx
=fLp(C2K)rpgLq(CK)rqCK|g(y)|q(CK|f(xy)|p𝑑x)𝑑y\displaystyle=\|f\|^{r-p}_{L^{p}(C_{2K})}\|g\|^{r-q}_{L^{q}(C_{K})}\int_{C_{K}}|g(y)|^{q}\bigg{(}\int_{C_{K}}|f(x-y)|^{p}dx\bigg{)}dy
fLp(C2K)rgLq(CK)rqCK|g(y)|q𝑑y\displaystyle\leq\|f\|^{r}_{L^{p}(C_{2K})}\|g\|^{r-q}_{L^{q}(C_{K})}\int_{C_{K}}|g(y)|^{q}dy
=fLp(C2K)rgLq(CK)r,\displaystyle=\|f\|^{r}_{L^{p}(C_{2K})}\|g\|^{r}_{L^{q}(C_{K})},

thereby proving the desired inequality (3.4). The proof of (3.4) for the other cases is obvious. ∎

The version of Young’s inequality for mixed Lebesgue spaces is given in [14]. The analogous result for the compact subset CK=[K1,K1]×[K2,K2]dC_{K}=[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d} is given below.

Lemma 3.3.

Let 1<p,q<1<p,q<\infty, fLp,q(×d)f\in L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}) and gL1(d+1)g\in L^{1}(\mathbb{R}^{d+1}) with supp(g)CK(g)\subset C_{K}. Then, we have

fgLp,q(CK)fLp,q(C2K)gL1,1(CK).\|f*g\|_{L^{p,q}(C_{K})}\leq\|f\|_{L^{p,q}(C_{2K})}\|g\|_{L^{1,1}(C_{K})}. (3.5)

Also

fgL,(CK)fL,(C2K)gL1,1(CK).\|f*g\|_{L^{\infty,\infty}(C_{K})}\leq\|f\|_{L^{\infty,\infty}(C_{2K})}\|g\|_{L^{1,1}(C_{K})}. (3.6)
Proof.

For a fixed x[K1,K1],x\in[-K_{1},K_{1}], consider the functions fx,gxf_{x},g_{x} on [K2,K2]d,[-K_{2},K_{2}]^{d}, given by fx(y)=f(x,y)f_{x}(y)=f(x,y) and gx(y)=g(x,y),y[K2,K2]d.g_{x}(y)=g(x,y),y\in[-K_{2},K_{2}]^{d}.
Then,

fgLp,q(CK)p\displaystyle\|f*g\|^{p}_{L^{p,q}(C_{K})}
=[K1,K1]([K2,K2]d|df(xx,yy)g(x,y)𝑑y𝑑x|q𝑑y)pq𝑑x\displaystyle=\int_{[-K_{1},K_{1}]}\bigg{(}\int_{[-K_{2},K_{2}]^{d}}\bigg{|}\int_{\mathbb{R}}\int_{\mathbb{R}^{d}}f(x-x^{\prime},y-y^{\prime})g(x^{\prime},y^{\prime})dy^{\prime}dx^{\prime}\bigg{|}^{q}dy\bigg{)}^{\frac{p}{q}}dx
=[K1,K1]([K2,K2]d|(fxxgx)(y)𝑑x|q𝑑y)pq𝑑x\displaystyle=\int_{[-K_{1},K_{1}]}\bigg{(}\int_{[-K_{2},K_{2}]^{d}}\bigg{|}\int_{\mathbb{R}}(f_{x-x^{\prime}}*g_{x^{\prime}})(y)dx^{\prime}\bigg{|}^{q}dy\bigg{)}^{\frac{p}{q}}dx
=[K1,K1]([K2,K2]d|[K1,K1](fxxgx)(y)𝑑x|q𝑑y)pq𝑑x\displaystyle=\int_{[-K_{1},K_{1}]}\bigg{(}\int_{[-K_{2},K_{2}]^{d}}\bigg{|}\int_{[-K_{1},K_{1}]}(f_{x-x^{\prime}}*g_{x^{\prime}})(y)dx^{\prime}\bigg{|}^{q}dy\bigg{)}^{\frac{p}{q}}dx
=[K1,K1][K1,K1](fxxgx)()𝑑xLq([K2,K2]d)p𝑑x.\displaystyle=\int_{[-K_{1},K_{1}]}\bigg{\|}\int_{[-K_{1},K_{1}]}(f_{x-x^{\prime}}*g_{x^{\prime}})(\cdot)dx^{\prime}\bigg{\|}^{p}_{L^{q}([-K_{2},K_{2}]^{d})}dx.

Applying the Minkowski’s integral inequality and Lemma 3.4, we have

[K1,K1](fxxgx)()𝑑xLq([K2,K2]d)\displaystyle\bigg{\|}\int_{[-K_{1},K_{1}]}(f_{x-x^{\prime}}*g_{x^{\prime}})(\cdot)dx^{\prime}\bigg{\|}_{L^{q}([-K_{2},K_{2}]^{d})}
[K1,K1](fxxgx)()Lq([K2,K2]d)𝑑x\displaystyle\leq\int_{[-K_{1},K_{1}]}\|(f_{x-x^{\prime}}*g_{x^{\prime}})(\cdot)\|_{L^{q}([-K_{2},K_{2}]^{d})}dx^{\prime}
[K1,K1]fxxLq([2K2,2K2]d)gxL1([K2,K2]d)𝑑x.\displaystyle\leq\int_{[-K_{1},K_{1}]}\|f_{x-x^{\prime}}\|_{L^{q}([-2K_{2},2K_{2}]^{d})}\|g_{x^{\prime}}\|_{L^{1}([-K_{2},K_{2}]^{d})}dx^{\prime}.

For x[K1,K1],x\in[-K_{1},K_{1}], let f~(x)=fxLq([2K2,2K2]d)\tilde{f}(x)=\|f_{x}\|_{L^{q}([-2K_{2},2K_{2}]^{d})} and g~(x)=gxL1([K2,K2]d).\tilde{g}(x)=\|g_{x}\|_{L^{1}([K_{2},K_{2}]^{d})}. Then supp(g~)[K1,K1](\tilde{g})\subset[-K_{1},K_{1}] and we have

fgLp,q(CK)p\displaystyle\|f*g\|^{p}_{L^{p,q}(C_{K})}
[K1,K1]([K1,K1]fxxLq([2K2,2K2]d)gxL1([K2,K2]d)𝑑x)p𝑑x\displaystyle\leq\int_{[-K_{1},K_{1}]}\bigg{(}\int_{[-K_{1},K_{1}]}\|f_{x-x^{\prime}}\|_{L^{q}([-2K_{2},2K_{2}]^{d})}\|g_{x^{\prime}}\|_{L^{1}([K_{2},K_{2}]^{d})}dx^{\prime}\bigg{)}^{p}dx
=[K1,K1]([K1,K1]f~(xx)g~(x)𝑑x)p𝑑x\displaystyle=\int_{[-K_{1},K_{1}]}\bigg{(}\int_{[-K_{1},K_{1}]}\tilde{f}(x-x^{\prime})\tilde{g}(x^{\prime})dx^{\prime}\bigg{)}^{p}dx
=[K1,K1]|(f~g~)(x)|p𝑑x=f~g~Lp([K1,K1])p.\displaystyle=\int_{[-K_{1},K_{1}]}|(\tilde{f}*\tilde{g})(x)|^{p}dx=\|\tilde{f}*\tilde{g}\|^{p}_{L^{p}([-K_{1},K_{1}])}.

Appealing to Lemma 3.4 once again, we get

fgLp,q(CK)pf~Lp([2K1,2K1])pg~L1([K1,K1])p.\|f*g\|^{p}_{L^{p,q}(C_{K})}\leq\|\tilde{f}\|^{p}_{L^{p}([-2K_{1},2K_{1}])}\|\tilde{g}\|^{p}_{L^{1}([-K_{1},K_{1}])}. (3.7)

Further we observe that

f~Lp([2K1,2K1])p\displaystyle\|\tilde{f}\|^{p}_{L^{p}([-2K_{1},2K_{1}])} =\displaystyle= [2K1,2K1]fxLq([2K2,2K2]d)p𝑑x\displaystyle\int_{[-2K_{1},2K_{1}]}\|f_{x}\|^{p}_{L^{q}([-2K_{2},2K_{2}]^{d})}dx
=\displaystyle= [2K1,2K1]([2K2,2K2]d|f(x,y)|q𝑑y)pq𝑑x\displaystyle\int_{[-2K_{1},2K_{1}]}\bigg{(}\int_{[-2K_{2},2K_{2}]^{d}}|f(x,y)|^{q}dy\bigg{)}^{\frac{p}{q}}dx
=\displaystyle= fLp,q(C2K)p.\displaystyle\|f\|^{p}_{L^{p,q}(C_{2K})}.

Similarly,

g~L1([K1,K1])p\displaystyle\|\tilde{g}\|^{p}_{L^{1}([-K_{1},K_{1}])} =\displaystyle= ([K1,K1]gxL1([K2,K2]d)𝑑x)p\displaystyle\bigg{(}\int_{[-K_{1},K_{1}]}\|g_{x}\|_{L^{1}([-K_{2},K_{2}]^{d})}dx\bigg{)}^{p}
=\displaystyle= ([K1,K1][K2,K2]d|g(x,y)|𝑑y𝑑x)p\displaystyle\bigg{(}\int_{[-K_{1},K_{1}]}\int_{[-K_{2},K_{2}]^{d}}|g(x,y)|dydx\bigg{)}^{p}
=\displaystyle= gL1,1(CK)p.\displaystyle\|g\|^{p}_{L^{1,1}(C_{K})}.

From (3.7), it then follows that

fgLp,q(CK)fLp,q(C2K)gL1,1(CK).\|f*g\|_{L^{p,q}(C_{K})}\leq\|f\|_{L^{p,q}(C_{2K})}\|g\|_{L^{1,1}(C_{K})}.

The proof of (3.6) is obvious. ∎

Now we shall look into the properties satisfied by the random variables Yj,k(f){Y_{j,k}(f)} defined in (3.3).

(1)\displaystyle(1) The expectation𝔼[Yj,k(f)]=0.\displaystyle\ \text{The expectation}\ \mathbb{E}[Y_{j,k}(f)]=0. (3.8)
(2)\displaystyle(2) Yj,k(f)l,fL,(C2K)ψL1,1(CK).\displaystyle\ \|Y_{j,k}(f)\|_{l^{\infty,\infty}}\leq\|f\|_{L^{\infty,\infty}(C_{2K})}\|\psi\|_{L^{1,1}(C_{K})}.

ProofProof. As CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑yfψL,(CK),\displaystyle\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\leq\|f*\psi\|_{L^{\infty,\infty}(C_{K})}, we have

Yj,k(f)l,\displaystyle\|Y_{j,k}(f)\|_{l^{\infty,\infty}}
=supj,k||(fψ)(xj,yk)|CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑y|\displaystyle\quad=\sup_{j,k}\bigg{|}\left|(f\ast\psi)(x_{j},y_{k})\right|-\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\bigg{|}
supj,kmax{|(fψ)(xj,yk)|,CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑y}\displaystyle\quad\leq\sup_{j,k}\max\bigg{\{}\left|(f\ast\psi)(x_{j},y_{k})\right|,\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\bigg{\}}
fψL,(CK)\displaystyle\quad\leq\|f\ast\psi\|_{L^{\infty,\infty}(C_{K})}
fL,(C2K)ψL1,1(CK),\displaystyle\quad\leq\|f\|_{L^{\infty,\infty}(C_{2K})}\|\psi\|_{L^{1,1}(C_{K})},

by (3.6).

(3)\displaystyle(3) Yj,k(f)Yj,k(g)l,2fgL,(C2K)ψL1,1(CK).\displaystyle\ \|Y_{j,k}(f)-Y_{j,k}(g)\|_{l^{\infty,\infty}}\leq 2\|f-g\|_{L^{\infty,\infty}(C_{2K})}\|\psi\|_{L^{1,1}(C_{K})}. (3.9)

ProofProof. Consider,

Yj,k(f)Yj,k(g)l,\displaystyle\|Y_{j,k}(f)-Y_{j,k}(g)\|_{l^{\infty,\infty}}
supj,k||((fg)ψ)(xj,yk)|+CKρ(x,y)|((fg)ψ)(x,y)|𝑑x𝑑y|\displaystyle\quad\leq\sup_{j,k}\bigg{|}|((f-g)\ast\psi)(x_{j},y_{k})|+\int_{C_{K}}\rho(x,y)|((f-g)*\psi)(x,y)|dxdy\bigg{|}
sup(s,t)CK(|((fg)ψ)(s,t)|+(fg)ψL,(CK)CKρ(x,y)𝑑x𝑑y)\displaystyle\quad\leq\sup_{(s,t)\in C_{K}}\bigg{(}|((f-g)\ast\psi)(s,t)|+\|(f-g)\ast\psi\|_{L^{\infty,\infty}(C_{K})}\int_{C_{K}}\rho(x,y)dxdy\bigg{)}
2(fg)ψL,(CK)\displaystyle\quad\leq 2\|(f-g)\ast\psi\|_{L^{\infty,\infty}(C_{K})}
2fgL,(C2K)ψL1,1(CK),\displaystyle\quad\leq 2\|f-g\|_{L^{\infty,\infty}(C_{2K})}\|\psi\|_{L^{1,1}(C_{K})},

by (3.6).

(4)\displaystyle(4) Var(Yj,k(f))fL,(C2K)2ψL1,1(CK)2.\displaystyle\ Var(Y_{j,k}(f))\leq\|f\|^{2}_{L^{\infty,\infty}(C_{2K})}\|\psi\|^{2}_{L^{1,1}(C_{K})}.

ProofProof. It follows from (3.8) that Var(Yj,k(f))=𝔼[Yj,k(f)2].Var(Y_{j,k}(f))=\mathbb{E}[Y_{j,k}(f)^{2}]. Now

𝔼[(Yj,k(f))2]\displaystyle\mathbb{E}[(Y_{j,k}(f))^{2}] =\displaystyle= 𝔼[|(fψ)(xj,yk)|2]+𝔼[(CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑y)2]\displaystyle\mathbb{E}\left[|(f\ast\psi)(x_{j},y_{k})|^{2}\right]+\mathbb{E}\left[\bigg{(}\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\bigg{)}^{2}\right]
2𝔼[|(fψ)(xj,yk)|(CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑y)]\displaystyle\quad\quad-2\mathbb{E}\left[|(f\ast\psi)(x_{j},y_{k})|\bigg{(}\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\bigg{)}\right]
=\displaystyle= 𝔼[|(fψ)(xj,yk)|2](CKρ(x,y)|(fψ)(x,y)|𝑑x𝑑y)2,\displaystyle\mathbb{E}\left[|(f\ast\psi)(x_{j},y_{k})|^{2}\right]-\bigg{(}\int_{C_{K}}\rho(x,y)|(f*\psi)(x,y)|dxdy\bigg{)}^{2},

which leads to the inequality

Var(Yj,k(f))\displaystyle Var(Y_{j,k}(f)) \displaystyle\leq 𝔼[|(fψ)(xj,yk)|2]\displaystyle\ \mathbb{E}[|(f\ast\psi)(x_{j},y_{k})|^{2}]
\displaystyle\leq fψL,(CK)2\displaystyle\|f\ast\psi\|^{2}_{L^{\infty,\infty}(C_{K})}
\displaystyle\leq fL,(C2K)2ψL1,1(CK)2,\displaystyle\|f\|^{2}_{L^{\infty,\infty}(C_{2K})}\|\psi\|^{2}_{L^{1,1}(C_{K})},

by (3.6).

(5)\displaystyle(5) Var(Yj,k(f)Yj,k(g))4fgL,(C2K)2ψL1,1(CK)2.\displaystyle\ Var\big{(}Y_{j,k}(f)-Y_{j,k}(g)\big{)}\leq 4\|f-g\|^{2}_{L^{\infty,\infty}(C_{2K})}\|\psi\|^{2}_{L^{1,1}(C_{K})}.

ProofProof.

Var(Yj,k(f)Yj,k(g))\displaystyle Var\big{(}Y_{j,k}(f)-Y_{j,k}(g)\big{)}
=𝔼[(Yj,k(f)Yj,k(g))2]\displaystyle\quad=\mathbb{E}\big{[}\big{(}Y_{j,k}(f)-Y_{j,k}(g)\big{)}^{2}\big{]}
𝔼[(|((fg)ψ)(xj,yk)|+CKρ(x,y)|((fg)ψ)(x,y)|𝑑x𝑑y)2]\displaystyle\quad\leq\mathbb{E}\left[\bigg{(}\left|\big{(}(f-g)\ast\psi\big{)}(x_{j},y_{k})\right|+\int_{C_{K}}\rho(x,y)\left|\big{(}(f-g)*\psi\big{)}(x,y)\right|dxdy\bigg{)}^{2}\right]
=𝔼[|((fg)ψ)(xj,yk)|2]+(CKρ(x,y)|((fg)ψ)(x,y)|𝑑x𝑑y)2\displaystyle\quad=\mathbb{E}\big{[}|\big{(}(f-g)\ast\psi\big{)}(x_{j},y_{k})|^{2}\big{]}+\bigg{(}\int_{C_{K}}\rho(x,y)|\big{(}(f-g)*\psi\big{)}(x,y)|dxdy\bigg{)}^{2}
2(CKρ(x,y)|((fg)ψ)(x,y)|𝑑x𝑑y)𝔼[|((fg)ψ)(xj,yk)|]\displaystyle\quad\quad\quad 2\bigg{(}\int_{C_{K}}\rho(x,y)|\big{(}(f-g)*\psi\big{)}(x,y)|dxdy\bigg{)}\mathbb{E}\big{[}|\big{(}(f-g)\ast\psi\big{)}(x_{j},y_{k})|\big{]}
4(fg)ψL,(CK)2\displaystyle\quad\leq 4\|(f-g)\ast\psi\|^{2}_{L^{\infty,\infty}(C_{K})}
4fgL,(C2K)2ψL1,1(CK)2,\displaystyle\quad\leq 4\|f-g\|^{2}_{L^{\infty,\infty}(C_{2K})}\|\psi\|^{2}_{L^{1,1}(C_{K})},

by (3.6).


To proceed further, we shall consider the following lemmas. The relation between the L,L^{\infty,\infty} and Lp,qL^{p,q} norms of functions in VNp,q(Φ)V_{N}^{p,q}(\Phi) is given below.

Lemma 3.4.

[12] Suppose that Φ\Phi satisfies (2.2) and (2.3). Then for every function fVNp,q(Φ),f\in V_{N}^{p,q}(\Phi), we have

fL,(×d)cfLp,q(×d),\|f\|_{L^{\infty,\infty}(\mathbb{R}\times\mathbb{R}^{d})}\leq c^{\prime}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})},

where c=2(1p+1q)c~α1(k11(1+|k1|)s1p)1p(k2d1(1+|k2|)s2q)1q\displaystyle c^{\prime}=\dfrac{2^{\left(\frac{1}{p^{\prime}}+\frac{1}{q^{\prime}}\right)}\tilde{c}}{\alpha_{1}}\left(\sum_{k_{1}\in\mathbb{Z}}\dfrac{1}{\left(1+|k_{1}|\right)^{s_{1}p^{\prime}}}\right)^{\frac{1}{p^{\prime}}}\left(\sum_{k_{2}\in\mathbb{Z}^{d}}\dfrac{1}{\left(1+|k_{2}|\right)^{s_{2}q^{\prime}}}\right)^{\frac{1}{q^{\prime}}} and p,qp^{\prime},q^{\prime} denote the conjugate exponents of pp and qq respectively.

As the sampling inequalities are given in a probabilistic sense, it is vital to consider the notion of covering numbers which help in the estimation of the probability.
For a compact set CC in a metric space, its covering number 𝒩(C,ϵ),ϵ>0\mathcal{N}(C,\epsilon),\epsilon>0 is the least number of balls of radius ϵ\epsilon needed to cover C.C. The following lemma gives an upper bound for the covering number of VNp,q,(Φ).V_{N}^{p,q,*}(\Phi).

Lemma 3.5.

[12] Suppose that Φ\Phi satisfies (2.2) and (2.3). Then the covering number of VNp,q,(Φ)V_{N}^{p,q,*}(\Phi) with respect to L,(×d)\|\cdot\|_{L^{\infty,\infty}(\mathbb{R}\times\mathbb{R}^{d})} is bounded by

𝒩(VNp,q,(Φ),ϵ)exp(r(2N+1)(d+1)ln(2cϵ+1)),\mathcal{N}(V_{N}^{p,q,*}(\Phi),\epsilon)\leq\exp\left(r(2N+1)^{(d+1)}\ln\left(\frac{2c^{\prime}}{\epsilon}+1\right)\right),

where cc^{\prime} as in Lemma 3.4.

The analogue of the Bernstein’s inequality for multivariate random variables is as follows (see [6, 12]).

Lemma 3.6.

Let Zj,k(j=1,2,,n;k=1,2,,m)Z_{j,k}(j=1,2,\dots,n;k=1,2,\dots,m) be independent random variables with expected values 𝔼[Zj,k]=0\mathbb{E}[Z_{j,k}]=0 for all j=1,2,,nj=1,2,\dots,n and k=1,2,,m.k=1,2,\dots,m. Assume that Var(Zj,k)σ2Var(Z_{j,k})\leq\sigma^{2} and |Zj,k|M|Z_{j,k}|\leq M almost surely for all j=1,2,,nj=1,2,\dots,n and k=1,2,,m.k=1,2,\dots,m. Then for any λ0\lambda\geq 0,

Prob(|j=1nk=1mZj,k|λ)2exp(λ22nmσ2+23Mλ).Prob\left(\bigg{|}\sum_{j=1}^{n}\sum_{k=1}^{m}Z_{j,k}\bigg{|}\geq\lambda\right)\leq 2\exp\left(-\dfrac{\lambda^{2}}{2nm\sigma^{2}+\frac{2}{3}M\lambda}\right).

We shall now state and prove a crucial lemma for our analysis.

Lemma 3.7.

Let Φ,ψ\Phi,\psi and ρ\rho be as in the hypothesis of Theorem 3.1 and Yj,kY_{j,k} be as defined in (3.3). Then for any m,n,Nm,n,N\in\mathbb{N} and
λ>54r2(ln2)(2N+1)(d+1)(1+(1+3nm2r2(ln2)(2N+1)(d+1))12)ψL1,1(CK),\lambda>54r\sqrt{2}(\ln 2)(2N+1)^{(d+1)}\bigg{(}1+\bigg{(}1+\dfrac{3nm}{2r\sqrt{2}(\ln 2)(2N+1)^{(d+1)}}\bigg{)}^{\frac{1}{2}}\bigg{)}\|\psi\|_{L^{1,1}(C_{K})}, the following inequality holds:

Prob(supfVNp,q,(Φ)|j=1nk=1mYj,k(f)|λ)\displaystyle Prob\left(\sup_{f\in V_{N}^{p,q,*}(\Phi)}\bigg{|}\sum_{j=1}^{n}\sum_{k=1}^{m}Y_{j,k}(f)\bigg{|}\geq\lambda\right)
𝒜1exp(λ24cψL1,1(CK)(2nmcψL1,1(CK)+λ3))\displaystyle\quad\leq\mathcal{A}_{1}\exp\left(-\dfrac{\lambda^{2}}{4c^{*}\|\psi\|_{L^{1,1}(C_{K})}(2nmc^{*}\|\psi\|_{L^{1,1}(C_{K})}+\frac{\lambda}{3})}\right) (3.10)
+𝒜2exp(λ2182ψL1,1(CK)(81nmψL1,1(CK)+2λ)),\displaystyle\quad\quad+\mathcal{A}_{2}\exp\left(-\dfrac{\lambda^{2}}{18\sqrt{2}\|\psi\|_{L^{1,1}(C_{K})}(81nm\|\psi\|_{L^{1,1}(C_{K})}+2\lambda)}\right),

where

𝒜1=2exp(r(2N+1)(d+1)ln(4c+1)),\mathcal{A}_{1}=2\exp\left(r(2N+1)^{(d+1)}\ln\big{(}4c^{*}+1\big{)}\right),
𝒜2=4((2c+14)(c+14))r(2N+1)(d+1)3r(ln2)2(2N+1)(d+1)\mathcal{A}_{2}=\dfrac{4\left((2c^{*}+\frac{1}{4})(c^{*}+\frac{1}{4})\right)^{r(2N+1)^{(d+1)}}}{3r(\ln 2)^{2}(2N+1)^{(d+1)}}

and cc^{*} is as in Theorem 3.1.

The following theorem provides a sampling inequality for another subset VN,ψp,q(Φ,μ,CK)V^{p,q}_{N,\psi}(\Phi,\mu,C_{K}) of Lp,q(×d)L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}), defined as in (2.1).

Theorem 3.8.

Let Φ,ψ,ρ\Phi,\,\psi,\,\rho and the i.i.d random variables {(xj,yk)}j,k\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}} over CKC_{K} be as in the hypothesis of Theorem 3.1. For N, 0<μ1N\in\mathbb{N},\,0<\mu\leq 1 and 0<η<μ𝒞ρ,10<\eta<\mu\mathcal{C}_{\rho,1}, let m,nm,n\in\mathbb{N} be such that

nm>54r2(ln2)(2N+1)(d+1)η(2+81η).nm>\dfrac{54r\sqrt{2}(\ln 2)(2N+1)^{(d+1)}}{\eta}\left(2+\frac{81}{\eta}\right). (3.11)

Then, the sampling inequality for the functions fVN,ψp,q(Φ,μ,CK)f\in V^{p,q}_{N,\psi}(\Phi,\mu,C_{K}), namely,

(nmψL1,1(CK)(μ𝒞ρ,1η))fLp,q(×d)\displaystyle\bigg{(}nm\|\psi\|_{L^{1,1}(C_{K})}(\mu\mathcal{C}_{\rho,1}-\eta)\bigg{)}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}
j=1nk=1m|(fψ)(xj,yk)|\displaystyle\qquad\leq\sum_{j=1}^{n}\sum_{k=1}^{m}|(f\ast\psi)(x_{j},y_{k})|
(nmψL1,1(CK)(𝒞ρ,2(2K1)(p1p)(2K2)d(q1)q+η))fLp,q(×d),\displaystyle\qquad\qquad\leq\bigg{(}nm\|\psi\|_{L^{1,1}(C_{K})}\left(\mathcal{C}_{\rho,2}(2K_{1})^{(\frac{p-1}{p})}(2K_{2})^{\frac{d(q-1)}{q}}+\eta\right)\bigg{)}\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}, (3.12)

holds with probability atleast

1𝒜1exp(nm3η24c(6c+η))𝒜2exp(nmη2182(81+2η)),1-\mathcal{A}_{1}\exp\left(-nm\frac{3\eta^{2}}{4c^{*}(6c^{\ast}+\eta)}\right)-\mathcal{A}_{2}\exp\left(-nm\frac{\eta^{2}}{18\sqrt{2}(81+2\eta)}\right),

where 𝒜1,𝒜2\mathcal{A}_{1},\mathcal{A}_{2} and cc^{\ast} are as in Lemma 3.7.

We shall now consider the sampling inequality for the set Vψp,q(Φ,δ,CK)V_{\psi}^{p,q}(\Phi,\delta,C_{K}). This requires the following finite dimensional approximation.

Lemma 3.9.

[12] Let 1<p,q<,1p+1p=11<p,q<\infty,\frac{1}{p}+\frac{1}{p^{\prime}}=1 and 1q+1q=1.\frac{1}{q}+\frac{1}{q^{\prime}}=1. Let fVp,q(Φ)f\in V^{p,q}(\Phi) and fLp,q(×d)=1,\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}=1, wherein Φ\Phi satisfies the assumption (A1).(A_{1}). Also let CK=[K1,K1]×[K2,K2]dC_{K}=[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d} and s=min{s1,s2}+1p+dq(d+1).s=\min\{s_{1},s_{2}\}+\frac{1}{p}+\frac{d}{q}-(d+1). Then for any ϵ1,ϵ2>0,\epsilon_{1},\epsilon_{2}>0, there exists fNVNp,q(Φ)f_{N}\in V_{N}^{p,q}(\Phi) such that

ffNLp,q(CK)ϵ1\|f-f_{N}\|_{L^{p,q}(C_{K})}\leq\epsilon_{1}
ifNN1(K1,K2,ϵ1)=max{K1,K2}+\displaystyle\text{if}\ N\geq N_{1}(K_{1},K_{2},\epsilon_{1})=\max\{K_{1},K_{2}\}+
(c~(K1)1p(K2)dqd1q(1+K2)(d1q+1p)2(d+1)α1ϵ1(s2qd)1q\displaystyle\quad\quad\quad\quad\quad\quad\quad\bigg{(}\dfrac{\tilde{c}(K_{1})^{\frac{1}{p}}(K_{2})^{\frac{d}{q}}d^{\frac{1}{q^{\prime}}}(1+K_{2})^{\left(\frac{d-1}{q^{\prime}}+\frac{1}{p^{\prime}}\right)}2^{(d+1)}}{\alpha_{1}\epsilon_{1}(s_{2}q^{\prime}-d)^{\frac{1}{q^{\prime}}}}
+c~(K1)1p(K2)dq(1+K1)dq2(d+1)α1ϵ1(s1p1)1p\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad+\dfrac{\tilde{c}(K_{1})^{\frac{1}{p}}(K_{2})^{\frac{d}{q}}(1+K_{1})^{\frac{d}{q^{\prime}}}2^{(d+1)}}{\alpha_{1}\epsilon_{1}(s_{1}p^{\prime}-1)^{\frac{1}{p^{\prime}}}}
+c~(K1)1p(K2)dqd1q(1+K2)(d1q)2(d+1)α1ϵ1(s1p1)1p(s2qd)1q)1s\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+\dfrac{\tilde{c}(K_{1})^{\frac{1}{p}}(K_{2})^{\frac{d}{q}}d^{\frac{1}{q^{\prime}}}(1+K_{2})^{\left(\frac{d-1}{q^{\prime}}\right)}2^{(d+1)}}{\alpha_{1}\epsilon_{1}(s_{1}p^{\prime}-1)^{\frac{1}{p^{\prime}}}(s_{2}q^{\prime}-d)^{\frac{1}{q^{\prime}}}}\bigg{)}^{\frac{1}{s}}

and

ffNL,(CK)ϵ2\|f-f_{N}\|_{L^{\infty,\infty}(C_{K})}\leq\epsilon_{2}
ifNN2(K1,K2,ϵ2)=max{K1,K2}+\displaystyle\text{if}\ N\geq N_{2}(K_{1},K_{2},\epsilon_{2})=\max\{K_{1},K_{2}\}+
(c~d1q(1+K2)(d1q+1p)2(1p+dq)α1ϵ2(s2qd)1q+c~(1+K1)dq2(1p+dq)α1ϵ2(s1p1)1p\displaystyle\quad\quad\quad\quad\quad\quad\quad\bigg{(}\dfrac{\tilde{c}d^{\frac{1}{q^{\prime}}}(1+K_{2})^{\left(\frac{d-1}{q^{\prime}}+\frac{1}{p^{\prime}}\right)}2^{\left(\frac{1}{p^{\prime}}+\frac{d}{q^{\prime}}\right)}}{\alpha_{1}\epsilon_{2}(s_{2}q^{\prime}-d)^{\frac{1}{q^{\prime}}}}+\dfrac{\tilde{c}(1+K_{1})^{\frac{d}{q^{\prime}}}2^{\left(\frac{1}{p^{\prime}}+\frac{d}{q^{\prime}}\right)}}{\alpha_{1}\epsilon_{2}(s_{1}p^{\prime}-1)^{\frac{1}{p^{\prime}}}}
+c~d1q(1+K2)(d1q)2(1p+dq)α1ϵ2(s1p1)1p(s2qd)1q)1s.\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+\dfrac{\tilde{c}d^{\frac{1}{q^{\prime}}}(1+K_{2})^{\left(\frac{d-1}{q^{\prime}}\right)}2^{\left(\frac{1}{p^{\prime}}+\frac{d}{q^{\prime}}\right)}}{\alpha_{1}\epsilon_{2}(s_{1}p^{\prime}-1)^{\frac{1}{p^{\prime}}}(s_{2}q^{\prime}-d)^{\frac{1}{q^{\prime}}}}\bigg{)}^{\frac{1}{s}}.
Theorem 3.10.

Let Φ,ψ,{(xj,yk)}j,k,\Phi,\psi,\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}}, cuboid CK=[K1,K1]×[K2,K2]dC_{K}=[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d} and the probability density function ρ\rho be as in the hypothesis of Theorem (3.1). Then for 0<δ<10<\delta<1, 0<ϵ<1δ0<\epsilon<1-\delta and 0<γ<1ϵ(1δϵ)(1+pq),0<\gamma<1-\dfrac{\epsilon}{(1-\delta-\epsilon)^{(1+pq)}}, the sampling inequality

AfLp,q(×d){(fψ)(xj,yk)}j=1,2,,n;k=1,2,,mlp,qBfLp,q(×d)A\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})}\leq\bigg{\|}\{(f*\psi)(x_{j},y_{k})\}_{\begin{subarray}{c}j=1,2,\dots,n;\\ k=1,2,\dots,m\end{subarray}}\bigg{\|}_{l^{p,q}}\leq B\|f\|_{L^{p,q}(\mathbb{R}\times\mathbb{R}^{d})} (3.13)

holds uniformly for all fVψp,q(Φ,δ,CK)f\in V_{\psi}^{p,q}(\Phi,\delta,C_{K}) with probability at least

1𝒜1e(nmβ1)𝒜2e(nmβ2),1-\mathcal{A}_{1}e^{(-nm\beta_{1})}-\mathcal{A}_{2}e^{(-nm\beta_{2})},

provided n,mn,m satisfies (3.1), where

A=𝒞ρ,1(c)(1pq)ψL1,1(CK)((1γ)(1δϵ)(1+pq)ϵ)(2K1)(q1)(2K2)d(p1)n1pm1q,\displaystyle A=\dfrac{\mathcal{C}_{\rho,1}(c^{*})^{(1-pq)}\|\psi\|_{L^{1,1}(C_{K})}\left((1-\gamma)(1-\delta-\epsilon)^{(1+pq)}-\epsilon\right)}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}n^{\frac{1}{p}}m^{\frac{1}{q}},
B=α2ψL1,1(CK)α1(𝒞ρ,2(2K1)(1pp)(2K2)d(1qq)+γ𝒞ρ,1(c)(1pq)(1δϵ)pq(2K1)(q1)(2K2)d(p1))nm\displaystyle B=\dfrac{\alpha_{2}\|\psi\|_{L^{1,1}(C_{K})}}{\alpha_{1}}\left(\dfrac{\mathcal{C}_{\rho,2}}{(2K_{1})^{\left(\frac{1-p}{p}\right)}(2K_{2})^{d\left(\frac{1-q}{q}\right)}}+\dfrac{\gamma\mathcal{C}_{\rho,1}(c^{*})^{(1-pq)}(1-\delta-\epsilon)^{pq}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}\right)nm
+ϵ𝒞ρ,1(c)(1pq)ψL1,1(CK)(2K1)(q1)(2K2)d(p1)n1pm1q,\displaystyle\quad\quad+\ \dfrac{\epsilon\mathcal{C}_{\rho,1}(c^{*})^{(1-pq)}\|\psi\|_{L^{1,1}(C_{K})}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}n^{\frac{1}{p}}m^{\frac{1}{q}},

the constants c,𝒜1,𝒜2,β1c^{*},\mathcal{A}_{1},\mathcal{A}_{2},\beta_{1} and β2\beta_{2} are as in Theorem 3.1 with ω=(1δϵ)ψL1,1(CK).\omega=(1-\delta-\epsilon)\|\psi\|_{L^{1,1}(C_{K})}. The constant NN appearing in 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2} is given by

N=max{N1(2K1,2K2,ϵ),N2(2K1,2K2,ϵ𝒞ρ,1(c)(1pq)(2K1)(q1)(2K2)d(p1))},N=\max\left\{N_{1}\left(2K_{1},2K_{2},\epsilon\right),N_{2}\left(2K_{1},2K_{2},\dfrac{\epsilon\mathcal{C}_{\rho,1}(c^{*})^{(1-pq)}}{(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}}\right)\right\},

where N1N_{1} and N2N_{2} are as in Lemma 3.9.

Remark 3.11.

We observe that the probabilities with which the sampling inequalities proved in Theorems 3.1, 3.8 and 3.10 hold approach one when the sample size tends to infinity.

4. Reconstruction using random average samples

In this section, we give reconstruction formulae for functions in the signal classes VN,ω,ψp,q(Φ)V_{N,\omega,\psi}^{p,q}(\Phi) and VN,ψp,q(Φ,μ,CK).V_{N,\psi}^{p,q}(\Phi,\mu,C_{K}).

Theorem 4.1.

Let Φ\Phi and ψ\psi satisfy the assumptions (A1)(A_{1}) and (A2)(A_{2}) respectively. Suppose {(xj,yk)}j,k\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}} is a sequence of i.i.d. random variables that are drawn from a general probability distribution over the cuboid CK=[K1,K1]×[K2,K2]dC_{K}=[-K_{1},K_{1}]\times[-K_{2},K_{2}]^{d} with the density function ρ\rho satisfying the assumption (A3)(A_{3}). If

|k1|N|k2|NcT(k1,k2)(Φψ)(k1,k2)Lp,q(CK)β~clp,q\left\|\sum_{|k_{1}|\leq N}\sum_{|k_{2}|\leq N}\textbf{c}^{T}(k_{1},k_{2})(\Phi*\psi)(\cdot-k_{1},\cdot-k_{2})\right\|_{L^{p,q}(C_{K})}\geq\tilde{\beta}\|\textbf{c}\|_{l^{p,q}} (4.1)

holds for all c(lp,q([N,N]×[N,N]d))r,N\textbf{c}\in\left(l^{p,q}\big{(}[-N,N]\times[-N,N]^{d}\big{)}\right)^{r},N\in\mathbb{N} and for some positive constant β~\tilde{\beta}, then for any γ(0,1)\gamma\in(0,1), there exists a finite sequence of functions {Gj,k:(j,k){1,2,,n}×{1,2,,m}}\bigg{\{}G_{j,k}:{(j,k)\in\{1,2,\dots,n\}\times\{1,2,\dots,m\}}\bigg{\}} such that

f(x,y)=j=1nk=1m(fψ)(xj,yk)Gj,k(x,y)f(x,y)=\sum_{j=1}^{n}\sum_{k=1}^{m}(f*\psi)(x_{j},y_{k})G_{j,k}(x,y)

holds for all fVNp,q(Φ)f\in V_{N}^{p,q}(\Phi) with probability at least

1𝒜1exp(nm(2K1)(1q)(2K2)d(1p)(32γ𝒞ρ,1(β~(α2c)1ψL1,1(CK))pq)26(2K1)(q1)(2K2)d(p1)+γ𝒞ρ,1(β~(α2c)1ψL1,1(CK))pq)\displaystyle 1-\mathcal{A}_{1}\exp\left(-nm\dfrac{(2K_{1})^{(1-q)}(2K_{2})^{d(1-p)}\left(\frac{\sqrt{3}}{2}\gamma\mathcal{C}_{\rho,1}\left(\frac{\tilde{\beta}(\alpha_{2}c^{*})^{-1}}{\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}\right)^{2}}{6(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}+\gamma\mathcal{C}_{\rho,1}\left(\frac{\tilde{\beta}(\alpha_{2}c^{*})^{-1}}{\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}}\right)
𝒜2exp(nm(2K1)(1q)(2K2)d(1p)(γ𝒞ρ,1(β~(α2c)1ψL1,1(CK))pqc)2182(81(2K1)(q1)(2K2)d(p1)+2γ𝒞ρ,1(β~(α2c)1ψL1,1(CK))pqc)),\displaystyle-\mathcal{A}_{2}\exp\left(-nm\dfrac{(2K_{1})^{(1-q)}(2K_{2})^{d(1-p)}\left(\gamma\mathcal{C}_{\rho,1}\left(\frac{\tilde{\beta}(\alpha_{2}c^{*})^{-1}}{\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}c^{*}\right)^{2}}{18\sqrt{2}\left(81(2K_{1})^{(q-1)}(2K_{2})^{d(p-1)}+2\gamma\mathcal{C}_{\rho,1}\left(\frac{\tilde{\beta}(\alpha_{2}c^{*})^{-1}}{\|\psi\|_{L^{1,1}(C_{K})}}\right)^{pq}c^{*}\right)}\right),
(4.2)

where c,𝒜1c^{*},\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2} are positive constants as in Theorem 3.1.

Using the sampling inequality provided in Theorem 3.8, we shall give a reconstruction formula for the functions in the set VN,ψp,q(Φ,μ,CK),V^{p,q}_{N,\psi}(\Phi,\mu,C_{K}), given by (2.1).

Theorem 4.2.

Let Φ,ψ\Phi,\,\psi and ρ\rho satisfy the assumptions (A1)(A_{1}), (A2)(A_{2}) and (A3)(A_{3}) respectively. Also, let {(xj,yk)}j,k\{(x_{j},y_{k})\}_{j,k\in\mathbb{N}} denote a sequence of i.i.d random variables over a cuboid CK×dC_{K}\subset\mathbb{R}\times\mathbb{R}^{d} drawn from a probability distribution with probability density function ρ\rho. For N, 0<μ1N\in\mathbb{N},\,0<\mu\leq 1 and 0<η<μ𝒞ρ,10<\eta<\mu\mathcal{C}_{\rho,1}, let m,nm,n\in\mathbb{N} be such that (3.11) is satisfied. Then, there exist functions {Gj,k}j=1,2,,n;k=1,2,,m\{G_{j,k}\}_{\begin{subarray}{c}j=1,2,\cdots,n;\\ k=1,2,\cdots,m\end{subarray}} such that every fVN,ψp,q(Φ,μ,CK)f\in V^{p,q}_{N,\psi}(\Phi,\mu,C_{K}) can be reconstructed by

f(x,y)=j=1nk=1m(fψ)(xj,yk)Gj,k(x,y),(x,y)×df(x,y)=\sum_{j=1}^{n}\sum_{k=1}^{m}(f\ast\psi)(x_{j},y_{k})G_{j,k}(x,y),\quad(x,y)\in\mathbb{R}\times\mathbb{R}^{d}

with probability atleast

1𝒜1exp(nm3η24c(6c+η))𝒜2exp(nmη2182(81+2η)),1-\mathcal{A}_{1}\exp\left(-nm\frac{3\eta^{2}}{4c^{\ast}(6c^{\ast}+\eta)}\right)-\mathcal{A}_{2}\exp\left(-nm\frac{\eta^{2}}{18\sqrt{2}(81+2\eta)}\right),

where 𝒜1,𝒜2\mathcal{A}_{1},\mathcal{A}_{2} and cc^{\ast} are as in Lemma 3.7.

5. Examples and numerical simulation

In this section, we give some examples of generators ϕi\phi_{i} which satisfy the assumption (A1)(A_{1}). We also validate the results obtained in the previous section numerically using some of these examples.

For nn\in{\mathbb{N}}, we consider the cardinal B-spline of degree nn defined on {\mathbb{R}} by

Bn(x)=(B0B0B0)(x),(nconvolutions),B_{n}(x)=(B_{0}*B_{0}*\cdots*B_{0})(x),(n\ \text{convolutions}),

where B0(x)=χ[12,12](x).B_{0}(x)=\chi_{[-\frac{1}{2},\frac{1}{2}]}(x).

Example 1.

We define ϕ:2\phi:{\mathbb{R}}^{2}\rightarrow{\mathbb{R}} by ϕ(x,y):=Bn(x)Bn(y),n.\phi(x,y):=B_{n}(x)B_{n}(y),n\in\mathbb{N}.

Example 2.

For r,N,r,N\in{\mathbb{N}}, let ui,viu_{i},v_{i}\in{\mathbb{Z}} be such that |uiuj|>2N|u_{i}-u_{j}|>2N and |vivj|>2N|v_{i}-v_{j}|>2N for 1i,jr,ij.1\leq i,j\leq r,i\neq j. Let ϕi(x,y)=Bn(xui)Bn(yvi),n\phi_{i}(x,y)=B_{n}(x-u_{i})B_{n}(y-v_{i}),n\in\mathbb{N} for i=1,2,,r.i=1,2,\dots,r.

Example 3.

Let ϕ1\phi_{1} and ϕ2\phi_{2} be two compactly supported continuous functions such that ϕ1(k1,k2)\phi_{1}(\cdot-k_{1},\cdot-k_{2}) is orthogonal to ϕ2(k1,k2)\phi_{2}(\cdot-k^{\prime}_{1},\cdot-k^{\prime}_{2}) for every k1,k1,k2,k2k_{1},k^{\prime}_{1},k_{2},k^{\prime}_{2}\in{\mathbb{Z}} and there exist positive constants A1,B1,A2A_{1},B_{1},A_{2} and B2B_{2} such that A1Pϕ1(ω)B1a.e.A_{1}\leq P_{\phi_{1}}(\omega)\leq B_{1}\;\text{a.e.} and A2Pϕ2(ω)B2a.e..A_{2}\leq P_{\phi_{2}}(\omega)\leq B_{2}\;\text{a.e.}.

For numerical implementations, we consider the cuboid CK=[2.5,2.5]×[2.5,2.5].C_{K}=[-2.5,2.5]\times[-2.5,2.5]. The function f(x,y)f(x,y) and the averaging function ψ(x,y)\psi(x,y) are as defined below:

f(x,y)\displaystyle f(x,y) =\displaystyle= 3B2(x)B2(y1)5B2(x+1)B2(y)and\displaystyle 3B_{2}(x)B_{2}(y-1)-5B_{2}(x+1)B_{2}(y)\ \ \text{and}
ψ(x,y)\displaystyle\psi(x,y) =\displaystyle= χ[18,18]×[18,18](x,y).\displaystyle\chi_{[-\frac{1}{8},\frac{1}{8}]\times[-\frac{1}{8},\frac{1}{8}]}(x,y).

One can easily verify that the functions ff and ψ\psi satisfy the conditions of Theorem 4.1. Using the reconstruction formula provided in Theorem 4.1, the simulation is performed for various values of the sample size nm.nm. The graphical representations of the function ff and its reconstructed version f~\widetilde{f} corresponding to 25 (m=5 and n=5) random samples are shown in Figures 1 and 2 respectively.

Refer to caption
Figure 1. The 3D plot of the function f(x,y).f(x,y).
Refer to caption
Figure 2. The 3D plot of f~\tilde{f} corresponding to 25 samples (n=5, m=5).

The reconstruction error ff~\|f-\widetilde{f}\| is also computed with respect to L,L1L^{\infty},L^{1} and L2L^{2} norms for various sample sizes. The numerical results are presented in Table 1.

Sample size Reconstruction Error
nn mm ff~L(CK)\|f-\widetilde{f}\|_{L^{\infty}(C_{K})} ff~L1(CK)\|f-\widetilde{f}\|_{L^{1}(C_{K})} ff~L2(CK)\|f-\widetilde{f}\|_{L^{2}(C_{K})}
55 55 2.3315e152.3315\ e^{-15} 7.6548e157.6548\ e^{-15} 7.7786e307.7786\ e^{-30}
77 77 2.2204e152.2204\ e^{-15} 3.8640e153.8640\ e^{-15} 2.5115e302.5115\ e^{-30}
1010 1010 1.3323e151.3323\ e^{-15} 3.1535e153.1535\ e^{-15} 1.5283e301.5283\ e^{-30}
Table 1. The reconstruction error ff~\|f-\widetilde{f}\|.

Further, to test Theorem 4.2 numerically, we consider CK=[3,3]×[3,3],C_{K}=[-3,3]\times[-3,3],

f(x,y)\displaystyle f(x,y) =\displaystyle= B1(x)B1(y)+3B1(x1)B1(y1)and\displaystyle B_{1}(x)B_{1}(y)+3B_{1}(x-1)B_{1}(y-1)\ \ \text{and}
ψ(x,y)\displaystyle\psi(x,y) =\displaystyle= χ[12,32]×[12,32].\displaystyle\chi_{[\frac{1}{2},\frac{3}{2}]\times[\frac{1}{2},\frac{3}{2}]}.

It can be easily shown that fV1,ψ2,2(Φ,μ,CK),f\in V_{1,\psi}^{2,2}(\Phi,\mu,C_{K}), where 0<μ1.0<\mu\leq 1. The reconstruction formula in Theorem 4.2 has been used for reconstructing the function ff for different sample sizes. The Figures 3 and 4 show the function ff and its reconstructed version f~\widetilde{f} corresponding to 25 random samples(m=5,n=5m=5,n=5). The errors in L,L1L^{\infty},L^{1} and L2L^{2} norms are calculated and the numerical values are given in Table 2.

Refer to caption
Figure 3. The 3D plot of the function f(x,y)f(x,y)
Refer to caption
Figure 4. The 3D plot of f~\widetilde{f} for n=5,m=5.n=5,m=5.
Sample size Reconstruction Error
nn mm ff~L(CK)\|f-\widetilde{f}\|_{L^{\infty}(C_{K})} ff~L1(CK)\|f-\widetilde{f}\|_{L^{1}(C_{K})} ff~L2(CK)\|f-\widetilde{f}\|_{L^{2}(C_{K})}
55 55 7.8930e147.8930\ e^{-14} 1.6052e131.6052\ e^{-13} 4.7277e274.7277\ e^{-27}
77 77 5.5227e145.5227\ e^{-14} 5.5811e145.5811\ e^{-14} 1.8715e271.8715\ e^{-27}
1010 1010 8.8818e168.8818\ e^{-16} 2.3891e152.3891\ e^{-15} 7.3617e317.3617\ e^{-31}
Table 2. The reconstruction error ff~\|f-\widetilde{f}\|.

Acknowledgment: The second author S. Arati acknowledges the financial support of National Board for Higher Mathematics, Department of Atomic Energy(Government of India). The third author P. Devaraj acknowledges the financial support of the Department of Science and Technology(Government of India) under the research grant DST-SERB Research Grant MTR/2018/000559.

References

  • [1] A. Aldroubi, Q. Sun and W.S. Tang, Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, Journal of Fourier Analysis and Applications. 11(2) (2005) 215-244.
  • [2] R. F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials, SIAM Journal on Mathematical Analysis. 36(3) (2004) 773-795.
  • [3] R. F. Bass and K. Gröchenig, Random sampling of bandlimited functions, Israel Journal of Mathematics. 177(1) (2010) 1-28.
  • [4] R. F. Bass and K. Gröchenig, Relevant sampling of band-limited functions, Illinois Journal of Mathematics. 57(1) (2013) 43-58.
  • [5] A. Benedek and R. Panzone, The space LpL_{p} with mixed norm, Duke Mathematical Journal. 28(3) (1961) 301–324.
  • [6] G. Bennett, Probability inequalities for the sum of independent random variables, Journal of the American Statistical Association. 57(297) (1962) 33-45.
  • [7] P.L. Butzer and R.L. Stens, Sampling theory for not necessarily band-limited functions: A historical overview, SIAM Review. 34(1) (1992) 40-53.
  • [8] P. Devaraj and S. Yugesh, A local weighted average sampling and reconstruction theorem over shift invariant subspaces, Results in Mathematics. 71 (2017) 319-332.
  • [9] H. Führ and J. Xian, Relevant sampling in finitely generated shift-invariant spaces, Journal of Approximation Theory. 240 (2019) 1–15 .
  • [10] P. Goyal, D. Patel and S. Sampath, Random sampling in reproducing kernel subspace of mixed Lebesgue spaces, arXiv:2102.08632.
  • [11] Y. Jiang and W. Li, Random sampling in weighted reproducing kernel subspaces of Lνp(d)L_{\nu}^{p}(\mathbb{R}^{d}), arXiv:2003.02993.
  • [12] Y. Jiang and W. Li, Random sampling in multiply generated shift-invariant subspaces of mixed Lebesgue spaces Lp,q(×d),L^{p,q}(\mathbb{R}\times\mathbb{R}^{d}), Journal of Computational and Applied Mathematics. 386 (2021) 113237.
  • [13] S. Kang and K. H. Kwon, Generalized average sampling in shift invariant spaces, Journal of Mathematical Analysis and Applications. 377 (2011) 70-78.
  • [14] R. Li, B. Liu, R. Liu and Q. Y. Zhang, The Lp,qL^{p,q}-stability of the shifts of finitely many functions in mixed Lebesgue spaces Lp,q(d+1)L^{p,q}(\mathbb{R}^{d+1}), Acta Mathematica Sinica, English Series. 34(6) (2018) 1001-1014.
  • [15] Y. Li, Q. Sun and J. Xian, Random sampling and reconstruction of concentrated signals in a reproducing kernel space, Applied and Computational Harmonic Analysis. 54 (2021) 273-302.
  • [16] Y. Li, J. Wen and J. Xian, Reconstruction from convolution random sampling in local shift invariant spaces, Inverse Problems. 35 (2019) 125008.
  • [17] D. Patel and S. Sampath, Random sampling in reproducing kernel subspaces of Lp(n)L^{p}(\mathbb{R}^{n}), Journal of Mathematical Analysis and Applications. 491 (2020) 124270.
  • [18] M. Z. Nashed, Q. Sun And J Xian, Convolution sampling and reconstruction of signals in a reproducing kernel subspace, Proceedings of the American Mathematical Society. 141(6) (2013) 1995-2007.
  • [19] W. Sun and X. Zhou, Reconstruction of band-limited functions from local averages, Constructive Approximation. 18 (2002) 205-222.
  • [20] W. Sun and X. Zhou, Reconstruction of band-limited signals from local averages, IEEE Transactions on Information Theory. 48 (2002) 2955-2963.
  • [21] W. Sun and X. Zhou, Average sampling in spline subspaces, Applied Mathematics Letters. 15 (2002) 233-237.
  • [22] W. Sun and X. Zhou, Reconstruction of functions in spline subspaces from local averages, Proceedings of the American Mathematical Society. 131(8) (2003) 2561-2571.
  • [23] W. Sun and X. Zhou, Average sampling in shift invariant subspaces with symmetric averaging functions, Journal of Mathematical Analysis and Applications. 287(1) (2003) 279-295.
  • [24] J. Yang, Random sampling and reconstruction in multiply generated shift-invariant spaces, Analysis and Applications. 17(2) (2019) 323–347.
  • [25] J. Yang and X. Tao, Random sampling and approximation of signals with bounded derivatives, Journal of Inequalities and Applications. 107 (2019).
  • [26] J. Yang and W. Wei, Random sampling in shift invariant spaces, Journal of Mathematical Analysis and Applications. 398(1) (2013) 26–34.