This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\AtBeginShipoutNext\AtBeginShipoutDiscard
thanks: [email protected]

Rado Numbers and SAT Computations

Yuan Chang Department of Mathematics, University of California, Davis
1 Shields Ave
Davis, CA 95616
Jesús A. De Loera [email protected] Department of Mathematics, University of California, Davis
1 Shields Ave
Davis, CA 95616
William J. Wesley [email protected] Department of Mathematics, University of California, Davis
1 Shields Ave
Davis, CA 95616

1 Introduction

A well-known result in arithmetic Ramsey theory is Schur’s theorem, which states that for any k1k\geq 1, there is an integer nn such that every kk-coloring of [n]:={1,2,3,,n}[n]:=\{1,2,3,\dots,n\} induces a monochromatic solution to x+y=zx+y=z [24]. The Schur number S(k)S(k) is the smallest such nn with this property. It is very difficult to compute S(k)S(k) and the largest known Schur number is S(5)=161S(5)=161, which was computed in 2018 using SAT solving techniques and created great attention with its massive parallel computation [15]. In this paper we follow this symbolic approach to investigate natural variations of Schur numbers.

The Rado numbers are a generalization of Schur numbers, and are of great importance in arithmetic Ramsey theory (see [12, 17, 19] and the references below). For a given linear equation \mathcal{E}, the kk-color Rado number Rk()R_{k}(\mathcal{E}) is the smallest number nn such that every kk-coloring of [n][n] induces a monochromatic solution to \mathcal{E}, or infinity if there is a kk-coloring of \mathbb{N} with no monochromatic solution to \mathcal{E}. Many 2-color Rado numbers for various types of equations have been computed in, for example, [18, 23, 21, 16]. Explicit formulas for the Rado numbers R2(a(xy)=bz)R_{2}(a(x-y)=bz) and R2(a(x+y)=bz)R_{2}(a(x+y)=bz) are given in [17] and [13]. However, no such formula is known for the general case R2(ax+by=cz)R_{2}(ax+by=cz). There are some computations of 3-color Rado numbers scattered throughout the literature [18, 22, 20], but Rado numbers with more than two colors have not been studied as often. We present a systematic study of these numbers.

Another interesting family of numbers is the generalized Schur numbers S(m,k)=Rk(x1++xm1=xm)S(m,k)=R_{k}(x_{1}+\dots+x_{m-1}=x_{m}). In [4] it was shown that S(m,3)m3m2m1S(m,3)\geq m^{3}-m^{2}-m-1, and it was conjectured in [1] and later proved in [8] that S(m,3)=m3m2m1S(m,3)=m^{3}-m^{2}-m-1. Myers showed in [18] that the numbers Rk(xy=(m2)z)R_{k}(x-y=(m-2)z) give an upper bound for S(m,k)S(m,k), and several more values of Rk(xy=(m2)z)R_{k}(x-y=(m-2)z) were shown to be equal to S(m,k)S(m,k), thus giving exact values for more generalized Schur numbers. Myers went on to make the following conjecture in [18].

Conjecture 1.1 (Myers).

R3(xy=(m2)z)=m3m2m1R_{3}(x-y=(m-2)z)=m^{3}-m^{2}-m-1 for m3m\geq 3.

In this paper we focus on computing Rado numbers for three variable linear homogeneous equations using SAT-based methods described in Section 2. The main contributions of this paper are exact formulas for several families of 3-color Rado numbers. In particular, we show Conjecture 1.1 is true.

Theorem 1.2.

The values of the following Rado numbers are known:

  1. 1.

    R3(xy=(m2)z)=m3m2m1R_{3}(x-y=(m-2)z)=m^{3}-m^{2}-m-1 for m3.m\geq 3.

  2. 2.

    R3(a(xy)=(a1)z)=a3+(a1)2R_{3}(a(x-y)=(a-1)z)=a^{3}+(a-1)^{2} for a3a\geq 3.

  3. 3.

    R3(a(xy)=bz)=a3R_{3}(a(x-y)=bz)=a^{3} for b1b\geq 1, ab+2a\geq b+2, gcd(a,b)=1gcd(a,b)=1.

As a corollary, we obtain the result in [8], an exact formula for the 3-color generalized Schur numbers.

Corollary 1.2.1.

S(m,3)=m3m2m1S(m,3)=m^{3}-m^{2}-m-1 for m1m\geq 1.

We also compute exactly several 3-color and 4-color Rado numbers.

Theorem 1.3.

The values of the following Rado numbers are known.

  1. 1.

    R3(a(xy)=bz)R_{3}(a(x-y)=bz) for 1a,b151\leq a,b\leq 15.

  2. 2.

    R3(a(x+y)=bz)R_{3}(a(x+y)=bz) for 1a,b101\leq a,b\leq 10.

  3. 3.

    R3(ax+by=cz)R_{3}(ax+by=cz) for 1a,b,c61\leq a,b,c\leq 6.

  4. 4.

    R4(xy=az)R_{4}(x-y=az) for 1a41\leq a\leq 4.

  5. 5.

    R4(a(xy)=z)R_{4}(a(x-y)=z) for 1a51\leq a\leq 5.

We collect the 3-color Rado number values we computed in Theorem 1.3 in Tables 1 to 8. We also give the additional values R3(ax+ay=bz)R_{3}(ax+ay=bz) for 3a6, 11b203\leq a\leq 6,\ 11\leq b\leq 20 as well as our values for R4(a(xy)=bz)R_{4}(a(x-y)=bz) in the Appendix (Tables 9 and 10). Underlined entries in these tables correspond to equations whose coefficients are not coprime.

Table 1: 3-color Rado numbers R3(a(xy)=bz)R_{3}(a(x-y)=bz)
bb aa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 14 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375
2 43 14 31 14 125 27 343 64 729 125 1331 216 2197 343 3375
3 94 61 14 73 125 14 343 512 27 1000 1331 64 2197 2744 125
4 173 43 109 14 141 31 343 14 729 125 1331 27 2197 343 3375
5 286 181 186 180 14 241 343 512 729 14 1331 1728 2197 2744 27
6 439 94 43 61 300 14 379 73 31 125 1331 14 2197 343 125
7 638 428 442 456 470 462 14 561 729 1000 1331 1728 2197 14 3375
8 889 173 633 43 665 109 644 14 793 141 1331 31 2197 343 3375
9 1198 856 94 892 910 61 896 896 14 1081 1331 73 2197 2744 125
10 1571 286 1171 181 43 186 1190 180 1206 14 1431 241 2197 343 31
11 2014 1508 1530 1552 1574 1596 1618 1584 1575 1580 14 1849 2197 2744 3375
12 2533 439 173 94 2005 43 2053 61 109 300 2024 14 2341 379 141
13 3134 2432 2458 2484 2510 2536 2562 2588 2574 2530 2541 2544 14 2913 3375
14 3823 638 3039 428 3095 442 43 456 3207 470 3113 462 3146 14 3571
15 4606 3676 286 3736 94 181 3826 3856 186 61 3795 180 3835 3836 14
Table 2: 3-color Rado numbers R3(a(x+y)=bz)R_{3}(a(x+y)=bz)
bb aa 1 2 3 4 5 6 7 8 9 10
1 14 \infty \infty \infty \infty \infty \infty \infty \infty \infty
2 1 14 243 ¯\underline{\infty} \infty ¯\underline{\infty} \infty ¯\underline{\infty} \infty ¯\underline{\infty}
3 54 54 14 384 2000 ¯\underline{\infty} \infty \infty ¯\underline{\infty} \infty
4 \infty 1 108 14 875 243 4459 ¯\underline{\infty} \infty ¯\underline{\infty}
5 \infty 105 135 180 14 864 34303430 3072 12393 ¯\underline{\infty}
6 \infty 54 1 54 750 14 30873087 384 243 2000
7 \infty 455 336 308 875 756756 14 15361536 8748 7500
8 \infty \infty 432 1 1000 108 27442744 14 8019 875
9 \infty \infty 54 585 1125 54 3087 1224 14 6000
10 \infty ¯\underline{\infty} 1125 105 1 135 3430 180 7290 14

If the number Rk()R_{k}(\mathcal{E}) is finite for a fixed kk, we say that the equation \mathcal{E} is kk-regular. If \mathcal{E} is kk-regular for all k1k\geq 1, we say \mathcal{E} is regular. In its simplest version, Rado’s classical theorem gives necessary and sufficient conditions for when a linear homogeneous equation is regular [19].

Theorem 1.4 (Rado).

A linear equation i=1mcixi=0\sum_{i=1}^{m}c_{i}x_{i}=0 with cic_{i}\in\mathbb{Z} is regular if and only if there exists a nonempty subset of the cic_{i} that sums to zero.

Nonregular equations may have finite Rado numbers for small kk. The largest kk for which an equation \mathcal{E} is kk-regular is the degree of regularity of \mathcal{E}, denoted dor()dor(\mathcal{E}). We set dor():=dor(\mathcal{E}):=\infty if \mathcal{E} is regular. Rado also proved a theorem that characterized the 2-regular linear homogeneous equations in three or more variables.

Theorem 1.5 (Rado).

Let m3m\geq 3 and a1,,am{0}.a_{1},\dots,a_{m}\in\mathbb{Z}\setminus\{0\}. Then the equation i=1maixi=0\sum_{i=1}^{m}a_{i}x_{i}=0 is 2-regular if and only if there exists ii and jj such that ai>0a_{i}>0 and aj<0a_{j}<0.

For 3k<3\leq k<\infty, there is no known characterization of the kk-regular equations. In [2] it was shown that for every kk, there exists a linear homogeneous equation in k+1k+1 variables that has degree of regularity kk. However, for a fixed number of variables, the question of what degrees of regularity are possible for homogeneous linear equations remains largely unanswered. Rado made the following conjecture about this question in his Ph.D. thesis [19].

Table 3: R3(ax+by=z)R_{3}(ax+by=z)
bb aa 1 2 3 4 5 6
1 14 43 94 173 286 439
2 \infty 1093 \infty 2975 4422
3 \infty \infty \infty \infty
4 \infty \infty \infty
5 \infty \infty
6 \infty
Table 4: R3(ax+by=2z)R_{3}(ax+by=2z)
bb aa 1 2 3 4 5 6
1 1 14 54 \infty 70 126
2 14 61 43 181 94
3 243 \infty 395 648
4 ¯\underline{\infty} \infty 1093¯\underline{1093}
5 \infty \infty
6 ¯\underline{\infty}
Table 5: R3(ax+by=3z)R_{3}(ax+by=3z)
bb aa 1 2 3 4 5 6
1 54 1 27 54 89 195
2 54 31 \infty 140 108
3 14 109 186 43
4 384 220 \infty
5 2000 1074
6 ¯\underline{\infty}
Table 6: R3(ax+by=4z)R_{3}(ax+by=4z)
bb aa 1 2 3 4 5 6
1 \infty \infty 1 64 100 \infty
2 1 \infty 14 \infty 54
3 108 73 105 \infty
4 14 180 61
5 141 \infty
6 31
Table 7: R3(ax+by=5z)R_{3}(ax+by=5z)
bb aa 1 2 3 4 5 6
1 \infty 45 60 1 125 150
2 105 1 \infty 125 70
3 135 100 125 108
4 180 141 \infty
5 14¯\underline{14} 300
6 864
Table 8: R3(ax+by=6z)R_{3}(ax+by=6z)
bb aa 1 2 3 4 5 6
1 \infty 40 81 \infty 1 216
2 54 81 1 90 27
3 1 \infty 135 14
4 54 \infty 31
5 750 241
6 14
Conjecture 1.6 (Rado’s Boundedness Conjecture).

For all m1m\geq 1, there is a number Δ(m)\Delta(m) such that if a linear equation in mm variables is Δ(m)\Delta(m)-regular, then it is regular.

In [10] it was shown that Rado’s boundedness conjecture is true if it is true for the case of homogeneous equations. Those authors also proved the first nontrivial case of the conjecture by showing that if a linear homogeneous equation in three variables is 24-regular, then it is regular. However, it is not known if 24 is the best possible bound. There are no known examples of a nonregular linear homogeneous equation in three variables that is 4-regular. Moreover, in [10], several coloring lemmas give more precise bounds on the degree of regularity of 3-variable linear homogeneous equations. We contribute further improvements on their results and compute the degree of regularity of all sufficiently small equations ax+by=czax+by=cz.

Theorem 1.7.

The degree of regularity of the equation ax+by=czax+by=cz is known for all 1a,b,c51\leq a,b,c\leq 5.

We also mention a related conjecture of Golowich [11].

Conjecture 1.8.

For each positive integer kk there is an integer m(k)m(k) such that for any mm(k)m\geq m(k), any linear homogeneous equation in mm variables with nonzero integer coefficients not all of the same sign is kk-regular.

We provide counterexamples to the Golowich conjecture. We show that for all m,k3m,k\geq 3 there is a linear homogeneous equation in mm variables that is not kk-regular.

Theorem 1.9.

For all m,k3m,k\geq 3, there is a linear homogeneous equation \mathcal{E} in mm variables that is not kk-regular. In particular,

x1++xm1=(m1)k1k2xmx_{1}+\dots+x_{m-1}=\lceil(m-1)^{\frac{k-1}{k-2}}\rceil x_{m}

is not kk-regular. Thus Conjecture 1.8 is false.

As a corollary, for m3m\geq 3 there exists a linear homogeneous equation in mm variables with degree of regularity exactly 2.

Corollary 1.9.1.

For all m3m\geq 3, there is a linear homogeneous equation \mathcal{E} in mm variables with dor()=2dor(\mathcal{E})=2. In particular,

dor(x1++xm1=(m1)2xm)=2.dor(x_{1}+\dots+x_{m-1}=(m-1)^{2}x_{m})=2.

This paper is organized as follows: in Section 2 we give background on SAT solving and the computational methods we used to compute Rado numbers. Section 3 gives several lemmas used to obtain improved bounds on the degree of regularity of certain families of equations. In Section 4 we introduce a new SAT method to compute families of Rado numbers and prove our main results. Section 5 gives additional details on the computational aspects of this project. The Appendix contains additional tables of Rado numbers and experimental data.

2 SAT Solving and Encoding

In this section we explain how to encode the problem of finding Rado numbers as an instance of SAT and describe additional techniques used to increase performance. The code used for our computations can be found at [9].

2.1 Background on Satisfiability

A literal is a Boolean variable or its negation. A clause is a logical disjunction of literals, and a Boolean formula is in conjunctive normal form (CNF) if it is a logical conjunction of clauses.

The Boolean satisfiability problem (SAT) is the problem of determining whether a given Boolean formula is satisfiable, i.e., there is a true/false assignment to the literals that makes the formula true. Any Boolean formula can be expressed in conjunctive normal form, and most SAT solvers take CNF formulas as input.

2.1.1 Encoding of the Problem

The problem of computing Rado numbers can be encoded as an instance of SAT. Given an equation \mathcal{E} and positive integers n,kn,k, we construct a formula Fnk()F_{n}^{k}(\mathcal{E}) that is satisfiable if and only if there exists a kk-coloring of [n][n] that does not contain a monochromatic solution to \mathcal{E}. Therefore if Fnk()F_{n}^{k}(\mathcal{E}) is satisfiable, then Rk()>nR_{k}(\mathcal{E})>n, and otherwise Rk()nR_{k}(\mathcal{E})\leq n. We use the variables vjiv_{j}^{i} that are assigned the value true if and only if the integer jj is colored with color ii. Following the language used in [15], a formula Fnk()F_{n}^{k}(\mathcal{E}) consists of three different types of clauses: positive, negative, and optional.

  • Positive clauses encode that every number jj is assigned at least one color, and are of the form vj1vj2vjkv_{j}^{1}\vee v_{j}^{2}\vee\dots\vee v_{j}^{k} for 1jn1\leq j\leq n.

  • Negative clauses encode that there are no monochromatic solutions to \mathcal{E}. If (x1,x2,,xm)(x_{1},x_{2},\dots,x_{m}) is a solution to \mathcal{E}, then its corresponding negative clauses are v¯x1iv¯xmi\bar{v}_{x_{1}}^{i}\vee\dots\vee\bar{v}_{x_{m}}^{i} for 1ik1\leq i\leq k. Every positive integer solution xx to \mathcal{E} with xn\|x\|_{\infty}\leq n contributes these kk negative clauses to Fnk()F_{n}^{k}(\mathcal{E}).

  • Optional clauses encode that every number jj is assigned at most one color, and are of the form v¯ji1v¯ji2\bar{v}_{j}^{i_{1}}\vee\bar{v}_{j}^{i_{2}} for 1jn1\leq j\leq n and 1i1<i2k1\leq i_{1}<i_{2}\leq k. These clauses are not strictly necessary since they do not affect the satisfiability of Fnk()F_{n}^{k}(\mathcal{E}), but they ensure that satisfying assignments are in one-to-one correspondence with kk-colorings of [n][n] that avoid monochromatic solutions to \mathcal{E}.

Example 2.1.

The clauses in the formula F43(x+y=z)F^{3}_{4}(x+y=z) are:

Positive clauses:

(v11v12v13)(v21v22v23)(v31v32v33)(v41v42v43)\displaystyle({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}v^{1}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}v^{2}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}v^{3}_{1}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}v^{1}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}v^{2}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}v^{3}_{2}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}v^{1}_{3}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}v^{2}_{3}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}v^{3}_{3}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}v^{1}_{4}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}v^{2}_{4}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}v^{3}_{4}})

Negative clauses:

(v¯11v¯11v¯21)(v¯21v¯11v¯31)(v¯31v¯11v¯41)\displaystyle({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{4}})\wedge
(v¯11v¯21v¯31)(v¯21v¯21v¯41)(v¯11v¯31v¯41)\displaystyle({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{4}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{4}})\wedge
(v¯12v¯12v¯22)(v¯22v¯12v¯32)(v¯32v¯12v¯42)\displaystyle({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{4}})\wedge
(v¯12v¯22v¯32)(v¯22v¯22v¯42)(v¯12v¯32v¯42)\displaystyle({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{4}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{4}})\wedge
(v¯13v¯13v¯23)(v¯23v¯13v¯33)(v¯33v¯13v¯43)\displaystyle({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}})\wedge({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}})\wedge({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{4}})\wedge
(v¯13v¯23v¯33)(v¯23v¯23v¯43)(v¯13v¯33v¯43)\displaystyle({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}})\wedge({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{4}})\wedge({\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{4}})

Optional clauses:

(v¯11v¯12)(v¯11v¯13)(v¯12v¯13)(v¯21v¯22)(v¯21v¯23)(v¯22v¯23)\displaystyle({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{1}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{1}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{2}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{2}})\wedge
(v¯31v¯32)(v¯31v¯33)(v¯32v¯33)(v¯41v¯42)(v¯41v¯43)(v¯42v¯43)\displaystyle({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{3}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{3}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{3}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{4}}\vee{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{4}})\wedge({\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{4}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{4}})\wedge({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{v}^{2}_{4}}\vee{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}\overline{v}^{3}_{4}})

If we input F43(x+y=z)F_{4}^{3}(x+y=z) into a SAT solver, it will output satisfiable. The 33-coloring 1,2,3,4{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}1},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}2},{\color[rgb]{.75,.5,.25}\definecolor[named]{pgfstrokecolor}{rgb}{.75,.5,.25}3,4}, for example, avoids monochromatic solutions. We remark that even though some clauses, such as v¯11v¯11v¯21{{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{1}}\vee{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\overline{v}^{1}_{2}}}, contain redundant literals, these literals are removed in a preprocessing step.

We will use this SAT encoding to prove Theorem 1.3. In Section 5 we give practical details on this encoding and how to generate formulas efficiently.

3 Degree of regularity coloring lemmas

Working towards the goal of computing the degree of regularity and Rado number for as many equations as possible, in this section we collect several results on colorings that avoid monochromatic solutions. These colorings give upper bounds on the degree of regularity of certain equations, and this allows us to avoid doing unnecessary computations. We are especially interested in cases where we can show that the degree of regularity of an equation is at most three. In these cases a computation of a (finite) 3-color Rado number is a proof that the degree of regularity equals three.

The following result gives two algebraic conditions that guarantee an upper bound on the degree of regularity. A version of the first condition was proved in [10].

Lemma 3.1.

Let \mathcal{E} be the equation a1x1++am1xm1=amxma_{1}x_{1}+\dots+a_{m-1}x_{m-1}=a_{m}x_{m} with a1a2am1a_{1}\leq a_{2}\leq\dots\leq a_{m-1} and ai>0a_{i}>0 for all ii. Let S:=i=1m1aiS:=\sum_{i=1}^{m-1}a_{i}. Then \mathcal{E} is not kk-regular if one of the following conditions holds:

  1. (i)

    Sa1k1amk2S\leq\frac{a_{1}^{k-1}}{a_{m}^{k-2}},              (ii)  Sa11k1am11k1S\leq a_{1}^{\frac{1}{k-1}}a_{m}^{1-\frac{1}{k-1}}.

Proof.

For the first condition, let d:=(Sam)1k1d:=\left(\frac{S}{a_{m}}\right)^{\frac{1}{k-1}}. Define the coloring χ(n):=logdn(modk)\chi(n):=\lceil\log_{d}n\rceil\pmod{k}. Suppose (x1,,xm)(x_{1},\dots,x_{m}) is a solution to \mathcal{E}, and let M:=max{x1,,xm1}M:=\max\{x_{1},\dots,x_{m-1}\}. Let ii be the unique integer such that M(di1,di]M\in(d^{i-1},d^{i}]. Then xm=i=1m1aixiamdk1Mdi+k1x_{m}=\frac{\sum_{i=1}^{m-1}a_{i}x_{i}}{a_{m}}\leq d^{k-1}M\leq d^{i+k-1}. By hypothesis we have dk1(a1am)k1d^{k-1}\leq\left(\frac{a_{1}}{a_{m}}\right)^{k-1}. Therefore xma1MamdM>dix_{m}\geq\frac{a_{1}M}{a_{m}}\geq dM>d^{i}. We have shown that χ(xm)[i+1,i+k1]\chi(x_{m})\in[i+1,i+k-1], so χ(xm)χ(M)\chi(x_{m})\neq\chi(M) and there are no χ\chi-monochromatic solutions to \mathcal{E}.

For the second condition, suppose Sa11k1am11k1S\leq a_{1}^{\frac{1}{k-1}}a_{m}^{1-\frac{1}{k-1}} and that (x1,,xm)(x_{1},\dots,x_{m}) is a solution to \mathcal{E}. Again let M=max{x1,,xm1}M=\max\{x_{1},\dots,x_{m-1}\}, and let d=(a1am)1k1.d=\left(\frac{a_{1}}{a_{m}}\right)^{\frac{1}{k-1}}. Define a kk-coloring χ(n)=logd(n)(modk)\chi(n)=\lceil\log_{d}(n)\rceil\pmod{k}. Suppose M(di+1,di]M\in(d^{i+1},d^{i}], so χ(M)=i(modk)\chi(M)=i\pmod{k}. Note d<1d<1 since a1<S<=a11k1am11k1a_{1}<S<=a_{1}^{\frac{1}{k-1}}a_{m}^{1-\frac{1}{k-1}} implies a1<ama_{1}<a_{m}. Then xm=i=1m1aixiamSMamdMdi+1x_{m}=\frac{\sum_{i=1}^{m-1}a_{i}x_{i}}{a_{m}}\leq\frac{SM}{a_{m}}\leq dM\leq d^{i+1}. Moreover, xma1Mam=dk1M>di+kx_{m}\geq\frac{a_{1}M}{a_{m}}=d^{k-1}M>d^{i+k}. Therefore logdxm[i+k1,i+1]\lceil\log_{d}x_{m}\rceil\in[i+k-1,i+1], so χ(xm)χ(M)\chi(x_{m})\neq\chi(M) and there are no χ\chi-monochromatic solutions to \mathcal{E}. ∎

Recall that for any prime pp, the pp-adic valuation vp(x)v_{p}(x) is the largest integer nn such that pnp^{n} divides xx. Many useful colorings come from pp-adic valuations and studying the divisibility properties of an equation’s coefficients. We will freely use the fact that vp(xy)=vp(x)+vp(y)v_{p}(xy)=v_{p}(x)+v_{p}(y) for all integers xx and yy. In [10] the following result was shown:

Lemma 3.2.

Suppose \mathcal{E} is an equation of the form ax+by+cz=0ax+by+cz=0 with vp(a),vp(b),vp(c)v_{p}(a),v_{p}(b),v_{p}(c) all distinct for some prime pp. Then \mathcal{E} has degree of regularity at most 3.

If the condition in Lemma 3.2 is strengthened to distinct pp-adic valuations modulo 3, then we obtain an improved bound on the degree of regularity.

Example 3.3.

Let \mathcal{E} denote the equation x+2y=4zx+2y=4z. Consider the 3-coloring χ(n)=v2(n)(mod3)\chi(n)=v_{2}(n)\pmod{3}. If (x,y,z)(x,y,z) is a solution to \mathcal{E} and χ(x)=χ(y)=χ(z)\chi(x)=\chi(y)=\chi(z), then v2(x),v2(2y),v_{2}(x),v_{2}(2y), and v2(4z)v_{2}(4z) are all distinct since these values are all different modulo 3. Let α=min{v2(x),v2(2y),v2(4z)}\alpha=\min\{v_{2}(x),v_{2}(2y),v_{2}(4z)\}. Then reducing each side of \mathcal{E} modulo pα+1p^{\alpha+1} gives a contradiction. Therefore χ\chi induces no monochromatic solutions to \mathcal{E}.

The following lemma generalizes the proof in the example above.

Lemma 3.4.

Let \mathcal{E} be the equation i=1maixi\sum_{i=1}^{m}a_{i}x_{i}. If there is a prime pp for which vp(ai)vp(aj)(modk)v_{p}(a_{i})\not\equiv v_{p}(a_{j})\pmod{k} for all iji\neq j, then \mathcal{E} is not kk-regular.

Proof.

Define a kk-coloring χ(n):=vp(n)(modk)\chi(n):=v_{p}(n)\pmod{k}. Suppose (x1,,xm)(x_{1},\dots,x_{m}) is a monochromatic solution to \mathcal{E}. Then vp(aixi)vp(ajxj)v_{p}(a_{i}x_{i})\neq v_{p}(a_{j}x_{j}) for iji\neq j since these values are distinct modulo kk. Let α=mini=1m{vp(aixi)}\alpha=\min_{i=1}^{m}\{v_{p}(a_{i}x_{i})\}. Then i=1maixi0(modpα+1)\sum_{i=1}^{m}a_{i}x_{i}\not\equiv 0\pmod{p^{\alpha}+1}, so i=1maixi0\sum_{i=1}^{m}a_{i}x_{i}\neq 0, a contradiction. ∎

The following two results are similar to Lemma 5 and Lemma 6 in [10]. Here we show that under additional assumptions on vp(a+b)v_{p}(a+b) and vp(b+c)v_{p}(b+c), respectively, it follows that the degrees of regularity of certain equations are at most six, which is stronger than the corresponding best bounds in [10]. We also show that another hypothesis on the order a particular group element further improves this upper bound to four.

Lemma 3.5.

Let \mathcal{E} denote the equation ax+by+cz=0ax+by+cz=0. If \mathcal{E} is not regular and 0=vp(a)=vp(b)=vp(a+b)<vp(c)=:r0=v_{p}(a)=v_{p}(b)=v_{p}(a+b)<v_{p}(c)=:r, then dor()<6dor(\mathcal{E})<6. If additionally the element ab1-ab^{-1} in the multiplicative group G=pr×G=\mathbb{Z}_{p^{r}}^{\times} has even order, then dor()<4dor(\mathcal{E})<4.

Proof.

Since vp(a)=vp(b)=0v_{p}(a)=v_{p}(b)=0, let g:=ab1Gg:=-ab^{-1}\in G. Since a+b0(modpr)a+b\not\equiv 0\pmod{p^{r}}, it follows that gg is not the identity element of GG. Let Γ\Gamma denote the graph with vertex set {1,,pr1}\{1,\dots,p^{r}-1\} and edges (x,y)(x,y) if xgy(modpr)x\equiv gy\pmod{p^{r}} (see Figure 1 for an example). Since vp(a+b)=0v_{p}(a+b)=0, it follows that ab11(modp)-ab^{-1}\not\equiv 1\pmod{p}, so Γ\Gamma is loopless. Then Γ\Gamma is a union of disjoint cycles, and each cycle has size ord(g)pi\frac{ord(g)}{p^{i}} for some ii. If ord(g)ord(g) is even, then all of the cycles in Γ\Gamma have even length, and so Γ\Gamma is 2-colorable (note the conditions 0=vp(a)=vp(b)=vp(a+b)0=v_{p}(a)=v_{p}(b)=v_{p}(a+b) imply p2p\neq 2). Otherwise, Γ\Gamma is 3-colorable since each vertex has degree at most 2. Let C1C_{1} be a proper vertex coloring of Γ\Gamma that uses the fewest number of colors. We will construct a (4- or 6-) coloring CC to show that \mathcal{E} is not 4- or 6- regular and conclude dor()<4dor(\mathcal{E})<4 or dor()<6dor(\mathcal{E})<6, respectively.

Let q:=p2rq:=p^{2r}. For all nn\in\mathbb{N}, write n=qαnn=q^{\alpha}n^{\prime} with n0(modq)n^{\prime}\not\equiv 0\pmod{q}. Define the coloring C2C_{2} to be

C2(n)={1if n0(modpr),2if n0(modpr).C_{2}(n)=\begin{cases}1&\text{if }n^{\prime}\not\equiv 0\pmod{p^{r}},\\ 2&\text{if }n^{\prime}\equiv 0\pmod{p^{r}}.\end{cases}

Let CC be the product coloring

C(n)={(C1(n),1)if C2(n)=1(C1(n/pr),2)if C2(n)=2..C(n)=\begin{cases}(C_{1}(n^{\prime}),1)&\text{if }C_{2}(n)=1\\ (C_{1}(n^{\prime}/p^{r}),2)&\text{if }C_{2}(n)=2.\\ \end{cases}.

We claim that CC is a coloring with no monochromatic solutions to \mathcal{E}.

Suppose (x,y,z)(x,y,z) is a monochromatic solution to \mathcal{E}. Write x=qαx,y=qβy,z=qγzx=q^{\alpha}x^{\prime},y=q^{\beta}y^{\prime},z=q^{\gamma}z^{\prime} with x,y,zqx^{\prime},y^{\prime},z^{\prime}\nmid q and ax+by+cz=0ax+by+cz=0. Without loss of generality, we may assume that at least one of α,β\alpha,\beta, and γ\gamma is zero, and in each case we will show a contradiction.

Suppose first that C2(x)=C2(y)=C2(z)=1.C_{2}(x)=C_{2}(y)=C_{2}(z)=1.

Case 1: Suppose α=0\alpha=0. Then if β>0\beta>0, then we may reduce \mathcal{E} modulo prp^{r} to obtain a contradiction since b,c0(modpr)b,c\equiv 0\pmod{p^{r}}, but ax0(modpr)ax\not\equiv 0\pmod{p^{r}}. So we may assume β=0\beta=0. Now suppose ax+by0(modpr)ax+by\equiv 0\pmod{p^{r}}. Then ygx(modpr)y\equiv gx\pmod{p^{r}}. But this is impossible since xx and yy would have different colors by the coloring C1C_{1} (recall that Γ\Gamma is loopless). Therefore ax+by0(modpr)ax+by\not\equiv 0\pmod{p^{r}}, and so ax+by+cz0(modpr)ax+by+cz\not\equiv 0\pmod{p^{r}}, a contradiction.

Case 2: The case β=0\beta=0 is similar to the case α=0\alpha=0.

Case 3: Suppose γ=0\gamma=0 and α,β>0\alpha,\beta>0. Then ax+by0(modq)ax+by\equiv 0\pmod{q}, but cz0(modq)cz\not\equiv 0\pmod{q}, and so ax+by+cz0(modq),ax+by+cz\not\equiv 0\pmod{q}, a contradiction. Therefore α=0\alpha=0 or β=0\beta=0, and the proof follows from one of the previous cases.

If C2(x)=C2(y)=C2(z)=2C_{2}(x)=C_{2}(y)=C_{2}(z)=2, then in all cases we may divide x,y,x^{\prime},y^{\prime}, and zz^{\prime} by prp^{r}, and the proof follows similarly.

Lemma 3.6.

Let \mathcal{E} denote the equation ax+by+cz=0ax+by+cz=0. If \mathcal{E} is not regular and 0=vp(a)<vp(b)=vp(c)=vp(b+c)=:r0=v_{p}(a)<v_{p}(b)=v_{p}(c)=v_{p}(b+c)=:r for some prime pp, then dor()<6dor(\mathcal{E})<6. Write b=prbb=p^{r}b^{\prime} and c=prcc=p^{r}c^{\prime}. If additionally the element g:=bc1g:=-b^{\prime}c^{\prime-1} in the multiplicative group G=ps×G=\mathbb{Z}_{p^{s}}^{\times} has even order, then dor()<4dor(\mathcal{E})<4.

Proof.

Since vp(b+c)=rv_{p}(b+c)=r and vp(b)=vp(c)=0v_{p}(b^{\prime})=v_{p}(c^{\prime})=0, gGg\in G and gg is not the identity element of GG. Let Γ\Gamma denote the graph with vertex set {1,,pr1}\{1,\dots,p^{r}-1\} and edges (x,y)(x,y) if xgy(modpr)x\equiv gy\pmod{p^{r}}. Then Γ\Gamma is a union of disjoint cycles, and each cycle has size ord(g)pi\frac{ord(g)}{p^{i}} for some ii. Note that Γ\Gamma is not loopless since vp(b+c)=rv_{p}(b+c)=r. If gg has even order, then Γ\Gamma is 2-colorable, and otherwise Γ\Gamma is 3-colorable. Let C1C_{1} be a proper vertex coloring of Γ\Gamma that uses the fewest number of colors. We will construct a (4- or 6-) coloring CC to show that \mathcal{E} is not 4- or 6- regular and conclude dor()<4dor(\mathcal{E})<4 or dor()<6dor(\mathcal{E})<6, respectively.

Let q:=p2rq:=p^{2r}, and for all nn\in\mathbb{N}, write n=qαnn=q^{\alpha}n^{\prime} with n0(modp2r)n^{\prime}\not\equiv 0\pmod{p^{2r}}. Define the coloring C2C_{2} to be

C2(n)={1if n0(modpr),2if n0(modpr).C_{2}(n)=\begin{cases}1&\text{if }n^{\prime}\not\equiv 0\pmod{p^{r}},\\ 2&\text{if }n^{\prime}\equiv 0\pmod{p^{r}}.\end{cases}

Let CC be the product coloring

C(n)={(C1(n),1)if C2(n)=1(C1(n/pr),2)if C2(n)=2..C(n)=\begin{cases}(C_{1}(n^{\prime}),1)&\text{if }C_{2}(n)=1\\ (C_{1}(n^{\prime}/p^{r}),2)&\text{if }C_{2}(n)=2.\\ \end{cases}.

Suppose (x,y,z)(x,y,z) is a monochromatic solution to \mathcal{E} with respect to CC. Write x=qαx,y=qβy,z=qγzx=q^{\alpha}x^{\prime},y=q^{\beta}y^{\prime},z=q^{\gamma}z^{\prime} with x,y,zqx^{\prime},y^{\prime},z^{\prime}\nmid q and ax+by+cz=0ax+by+cz=0. Without loss of generality, we may assume that at least one of α,β\alpha,\beta, and γ\gamma is zero, and in each case we will show a contradiction.

Suppose C2(x)=C2(y)=C2(z)=1.C_{2}(x^{\prime})=C_{2}(y^{\prime})=C_{2}(z^{\prime})=1. Case 1: Suppose α=0\alpha=0. Then ax+by+cz0(modpr)ax+by+cz\not\equiv 0\pmod{p^{r}}. Case 2: Suppose α>0\alpha>0 and β=0\beta=0. Then if γ>0\gamma>0, then ax+by+cz0(modq)ax+by+cz\not\equiv 0\pmod{q}, so assume γ=0\gamma=0. If by+cz0(modq)by+cz\equiv 0\pmod{q}, then z=zbc1y(modpr)z=z^{\prime}\equiv-b^{\prime}c^{\prime-1}y^{\prime}\pmod{p^{r}}. But by coloring C1C_{1} it follows that zz and yy have different colors, a contradiction. The case γ=0\gamma=0 is similar.

Suppose C2(x)=C2(y)=C2(z)=2C_{2}(x^{\prime})=C_{2}(y^{\prime})=C_{2}(z^{\prime})=2. If α=0\alpha=0, then ax+by+cz0(modq)ax+by+cz\not\equiv 0\pmod{q}. The cases β=0,γ=0\beta=0,\gamma=0 are similar to above. ∎

Refer to caption
Figure 1: 2-coloring of graph with vertex set [8] and edges (x,y)(x,y) if x2y(mod9)x\equiv 2y\pmod{9}.

4 Two parameter 3-color Rado numbers

In [17] the formulas for the 2-color Rado numbers R2(a(xy)=bz)R_{2}(a(x-y)=bz) and R2(a(x+y)=bz)R_{2}(a(x+y)=bz), a,b0a,b\geq 0 are given. However, a formula for the 2-color Rado numbers R2(ax+by=cz)R_{2}(ax+by=cz) is unknown. Here we give bounds on some 3-color Rado numbers of the form R3(a(xy)=bz)R_{3}(a(x-y)=bz) and R3(a(x+y)=bz)R_{3}(a(x+y)=bz) and prove our main results.

4.1 Rado Numbers R3(a(xy)=bz)R_{3}(a(x-y)=bz)

By Rado’s theorem, the equation a(xy)=bza(x-y)=bz is regular. Table 1 gives values of the 3-color Rado numbers R3(a(xy)=bz)R_{3}(a(x-y)=bz) for 1a,b151\leq a,b\leq 15.

The following lemma gives a simple lower bound on the Rado numbers Rk(a(xy)=bz)R_{k}(a(x-y)=bz).

Lemma 4.1.

Suppose a,b1a,b\geq 1 and gcd(a,b)=1\gcd(a,b)=1. Then Rk(a(xy)=bz)akR_{k}(a(x-y)=bz)\geq a^{k}.

Proof.

Let va(n)v_{a}(n) denote the highest power of aa that divides nn. Then va:[1,ak1]{0,1,,k1}v_{a}:[1,a^{k}-1]\to\{0,1,\dots,k-1\} defines a kk-coloring of [1,ak1][1,a^{k}-1] that has no monochromatic solutions of a(xy)=bza(x-y)=bz. To see this, suppose (x,y,z)(x,y,z) is a monochromatic solution in color cc. If xy,x\leq y, then there is no z[1,ak1]z\in[1,a^{k}-1] that satisfies a(xy)=bza(x-y)=bz, so suppose x>yx>y. Then x=acxx=a^{c}x^{\prime} and y=acyy=a^{c}y^{\prime}, where ax,ya\nmid x^{\prime},y^{\prime}. Since gcd(a,b)=1\gcd(a,b)=1, va(z)=va(bz)=va(a(xy))=va(ac+1(xy))c+1v_{a}(z)=v_{a}(bz)=v_{a}(a(x-y))=v_{a}(a^{c+1}(x^{\prime}-y^{\prime}))\geq c+1, a contradiction. ∎

For the case b=a1b=a-1, we have an improved lower bound on R3(a(xy)=(a1)z).R_{3}(a(x-y)=(a-1)z).

Lemma 4.2.

R3(a(xy)=(a1)z)a3+(a1)2R_{3}(a(x-y)=(a-1)z)\geq a^{3}+(a-1)^{2}.

Proof.

We will construct a coloring of [1,a3+(a1)21][1,a^{3}+(a-1)^{2}-1] that induces no monochromatic solutions to a(xy)=(a1)za(x-y)=(a-1)z. Define

χ(i):={0va(i)=2 or (va(i)=0 and (i<a2a or i>a3a)),1va(i)=1,2otherwise.\chi(i):=\begin{cases}0&v_{a}(i)=2\text{ or }(v_{a}(i)=0\text{ and }(i<a^{2}-a\text{ or }i>a^{3}-a)),\\ 1&v_{a}(i)=1,\\ 2&\text{otherwise.}\end{cases}

Let (x,y,z)(x,y,z) be a positive integer solution to a(xy)=(a1)za(x-y)=(a-1)z. Suppose χ(x)=χ(y)=0\chi(x)=\chi(y)=0. If va(x)=va(y)2v_{a}(x)=v_{a}(y)\geq 2, then since aa and a1a-1 are relatively prime, va(z)=va((a1)z)=va(a(xy))3v_{a}(z)=v_{a}((a-1)z)=v_{a}(a(x-y))\geq 3, and χ(z)0\chi(z)\neq 0. If va(x)=2v_{a}(x)=2 and va(y)=0v_{a}(y)=0, then va(z)=va(a(xy))=1v_{a}(z)=v_{a}(a(x-y))=1, so χ(z)=1\chi(z)=1. The case va(x)=0v_{a}(x)=0 and va(y)=2v_{a}(y)=2 is similar. Note that x>yx>y since zz must be positive. If va(x)=va(y)=0v_{a}(x)=v_{a}(y)=0, xa3ax\geq a^{3}-a and ya2ay\leq a^{2}-a, then a(xy)a(a3a2)>(a1)(a3a)a(x-y)\geq a(a^{3}-a^{2})>(a-1)(a^{3}-a). Then z[a3a,a3+(a1)21]z\in[a^{3}-a,a^{3}+(a-1)^{2}-1]. Since (a1)z=a(xy)(a-1)z=a(x-y), it follows that va(z)1v_{a}(z)\geq 1, so va(z)0v_{a}(z)\neq 0. But the only value z[a3a,a3+(a1)21]z\in[a^{3}-a,a^{3}+(a-1)^{2}-1] with va(z)2v_{a}(z)\geq 2 is a3a^{3}, so χ(z)0\chi(z)\neq 0. Now if va(x)=va(y)=0v_{a}(x)=v_{a}(y)=0 and x,y[1,a2a)x,y\in[1,a^{2}-a) or x,y(a3a,a3+(a1)21]x,y\in(a^{3}-a,a^{3}+(a-1)^{2}-1], then xy<a2ax-y<a^{2}-a, so (a1)z=a(xy)<a3a2(a-1)z=a(x-y)<a^{3}-a^{2}. Then va(z){1,2}.v_{a}(z)\in\{1,2\}. If va(z)=1v_{a}(z)=1, then χ(z)=10\chi(z)=1\neq 0. If va(z)=2v_{a}(z)=2, then za2z\geq a^{2} and (a1)za3a2(a-1)z\geq a^{3}-a^{2}, a contradiction.

Now suppose χ(x)=χ(y)=1\chi(x)=\chi(y)=1. Then va(z)=va(a(xy))2v_{a}(z)=v_{a}(a(x-y))\geq 2, so χ(z)1\chi(z)\neq 1.

If χ(x)=χ(y)=2\chi(x)=\chi(y)=2, then either va(x)=va(y)=0v_{a}(x)=v_{a}(y)=0, or x=a3x=a^{3}. In the former case we have va(z)=va(a(xy))1v_{a}(z)=v_{a}(a(x-y))\geq 1. We have za3z\neq a^{3} since this implies xy=a3a2x-y=a^{3}-a^{2}, but this is impossible since x,y[1,a3(a1)21]x,y\in[1,a^{3}-(a-1)^{2}-1], and it follows that χ(z)2\chi(z)\neq 2. If x=a3x=a^{3}, then ya3y\neq a^{3} and va(y)=0v_{a}(y)=0. Therefore va(z)=va(a(xy))=1v_{a}(z)=v_{a}(a(x-y))=1, so χ(z)2\chi(z)\neq 2.

Therefore there are no monochromatic solutions to a(xy)=(a1)za(x-y)=(a-1)z. ∎

4.2 3-regularity of a(x+y)=bza(x+y)=bz

In his thesis [19], Rado proved the following result on the family of equations a(x+y)=bza(x+y)=bz.

Theorem 4.3 (Rado).

If a/b2ka/b\neq 2^{k} for all kk\in\mathbb{Z}, then dor(a(x+y)=bz)3dor(a(x+y)=bz)\leq 3.

The following lemma strengthens Rado’s result to include the case when a/b=2ka/b=2^{k} for some integer kk.

Lemma 4.4.

R3(x+y=bz)=R_{3}(x+y=bz)=\infty for b4b\geq 4, and R3(a(x+y)=z)=R_{3}(a(x+y)=z)=\infty for a2a\geq 2. Moreover, dor(a(x+y)=bz)3dor(a(x+y)=bz)\leq 3 unless a=1,b=2a=1,b=2.

Proof.

The results follow immediately from Lemma 3.1 and Theorem 4.3. ∎

Table 2 gives the 3-color Rado numbers R3(a(x+y)=bz)R_{3}(a(x+y)=bz) for 1a,b10.1\leq a,b\leq 10. We also give the values of some additional Rado numbers for the equations a(x+y)=bza(x+y)=bz with b>10b>10 in the Appendix.

4.3 Proofs of Main Results

In this section we prove Theorem 1.2 using an encoding of the Rado number problem similar to that in Section 2. The key difference is that in this new encoding, indices of variables are indexed by symbolic polynomial expressions rather than fixed integers.

Let \mathcal{E} be a linear equation in mm variables, and let SS be a set of polynomials. Let CSmC\subseteq S^{m} be a set of solutions to \mathcal{E}. The variable vsiv_{s}^{i} is assigned the value true if and only if the expression sSs\in S is assigned color ii. Positive and optional clauses are constructed similarly to the method in Section 2. The negative clauses are constructed from the solutions in CC. For example, if S={ia:1i7S=\{ia:1\leq i\leq 7}, and \mathcal{E} is the equation xy=5zx-y=5z, then (x,y,z)=(7a,2a,a)(x,y,z)=(7a,2a,a) is a solution. If (7a,2a,a)C(7a,2a,a)\in C, then we add the negative clause v¯7a1v¯2a1v¯a1\bar{v}_{7a}^{1}\vee\bar{v}_{2a}^{1}\vee\bar{v}_{a}^{1} to our formula. The following lemma formalizes this procedure and describes how to use these formulas to compute Rado numbers for families of equations.

Lemma 4.5.

Let Σ={σ1,,σ}\Sigma=\{\sigma_{1},\dots,\sigma_{\ell}\} be a finite alphabet of parameters. Let \mathcal{E} be a linear equation in the variables x1,,xmx_{1},\dots,x_{m} with coefficients in Σ\Sigma. Let SS be a set of expressions over Σ\Sigma, and let CSmC\subset S^{m} be a set of solutions to \mathcal{E}. We define Fk,S,C()F_{k,S,C}(\mathcal{E}) to be the corresponding formula for the kk-color Rado number generated by the clauses from CC as follows.

Fk,S,C()\displaystyle F_{k,S,C}(\mathcal{E}) :=Posk,SNegk,COptk,S,where\displaystyle:=Pos_{k,S}\wedge Neg_{k,C}\wedge Opt_{k,S},\text{where}
Posk,S\displaystyle Pos_{k,S} :=sS(i=1kvsi),\displaystyle:=\bigwedge_{s\in S}\left(\bigvee_{i=1}^{k}v_{s}^{i}\right),
Negk,C\displaystyle Neg_{k,C} :=(s1,,sm)Ci=1kj=1mv¯sji,\displaystyle:=\bigwedge_{(s_{1},\dots,s_{m})\in C}\bigwedge_{i=1}^{k}\bigvee_{j=1}^{m}\bar{v}_{s_{j}}^{i},
Optk,S\displaystyle Opt_{k,S} :=sS1i1<i2k(v¯si1v¯si2).\displaystyle:=\bigwedge_{s\in S}\bigwedge_{1\leq i_{1}<i_{2}\leq k}(\bar{v}_{s}^{i_{1}}\vee\bar{v}_{s}^{i_{2}}).

Let AA\subset\mathbb{Z}^{\ell}. If 1s(a)=s(a1,,a)f(a)1\leq s(a)=s(a_{1},\dots,a_{\ell})\leq f(a) for all sSs\in S, aAa\in A and Fk,S()F_{k,S}(\mathcal{E}) is unsatisfiable, then Rk()f(a)R_{k}(\mathcal{E})\leq f(a) for all aAa\in A.

In other words, if substituting values for parameters in a formula FF always gives a valid formula, i.e., one whose variables are bounded between 1 and nn, then the unsatisfiability of FF gives an upper bound on the Rado numbers for a family of equations. For each equation \mathcal{E} in the family, FF is an unsatisfiable subformula in the corresponding Rado number formula for \mathcal{E}.

We are able to prove Conjecture 1.1 using Lemma 4.5.

Proof of Theorem 1.2.

For the Rado numbers R3(xy=(m2)z)R_{3}(x-y=(m-2)z), in Lemma 4.5 let Σ={m}\Sigma=\{m\}, and let \mathcal{E} be the equation xy=(m2)zx-y=(m-2)z. The set SS is a family of 685 polynomials and the set CC contains 9468 solutions to \mathcal{E}. It is straightforward to show that 1s(m)m3m2m11\leq s(m)\leq m^{3}-m^{2}-m-1 for all m3m\geq 3 and all sSs\in S. The formula F3,S()F_{3,S}(\mathcal{E}) was shown to be unsatisfiable in 0.03 seconds by Satch, proving R3(xy=(m2)z)m3m2m1R_{3}(x-y=(m-2)z)\leq m^{3}-m^{2}-m-1 for m3m\geq 3. By results in [4] and [18], we have R3()S(m,3)m3m2m1R_{3}(\mathcal{E})\geq S(m,3)\geq m^{3}-m^{2}-m-1 for m3m\geq 3, and so R3(xy=(m2)z)=m3m2m1R_{3}(x-y=(m-2)z)=m^{3}-m^{2}-m-1 for m3m\geq 3.

For the Rado numbers R3(a(xy)=(a1)z)R_{3}(a(x-y)=(a-1)z), let Σ={a}\Sigma=\{a\}, and let \mathcal{E} denote the equation a(xy)=(a1)za(x-y)=(a-1)z. We constructed a set SS of 1365 polynomials and a set CC of 20811 solutions to \mathcal{E}. It is again straightforward to show that 1s(a)a3+(a1)21\leq s(a)\leq a^{3}+(a-1)^{2} for all a16a\geq 16 and all sSs\in S. The formula F3,S,C()F_{3,S,C}(\mathcal{E}) was shown to be unsatisfiable in 0.05 seconds by Satch, proving R3()a3+(a1)2R_{3}(\mathcal{E})\leq a^{3}+(a-1)^{2} for a16a\geq 16. By Lemma 4.2 and Theorem 1.3, it follows that R3()=a3+(a1)2R_{3}(\mathcal{E})=a^{3}+(a-1)^{2} for a3a\geq 3.

For the Rado numbers R3(a(xy)=bz)R_{3}(a(x-y)=bz), let Σ={a,b}\Sigma=\{a,b\}, and let \mathcal{E} denote the equation a(xy)=bza(x-y)=bz. We constructed a set SS of 40645 polynomials and a set CC of 490897 solutions to \mathcal{E}. All polynomials p(a,b)p(a,b) were verified to satisfy 1p(a,b)a31\leq p(a,b)\leq a^{3} for all integers a,ba,b satisfying a16,b1a\geq 16,b\geq 1, and ab+2a\geq b+2 using the software GloptiPoly 3 [14]. Some additional valid inequalities were added to the region specified in GloptiPoly 3 using elementary calculus techniques. The formula F3,S,CF_{3,S,C} was shown to be unsatisfiable in 1.72 seconds by Satch, proving R3(a(xy)=bz)a3R_{3}(a(x-y)=bz)\leq a^{3} for all (a,b)(a,b) satisfying a16a\geq 16, b1b\geq 1, and ab+2a\geq b+2. By Theorem 1.3 and Lemma 4.1, R3(a(xy)=bz)=a3R_{3}(a(x-y)=bz)=a^{3} for a3,b1,ab+2a\geq 3,b\geq 1,a\geq b+2 with gcd(a,b)=1\gcd(a,b)=1.

For each of these formulas, the sets SS and CC were constructed using a heuristic search procedure. We give details of this procedure in the Appendix.

The results in Theorem 1.3 were proven by computer.

Proof of Theorem 1.3.

For each finite number Rk(ax+by=cz)R_{k}(ax+by=cz), we produced a kk-coloring of [Rk(ax+by=cz)1][R_{k}(ax+by=cz)-1] that contained no monochromatic solutions to ax+by=czax+by=cz and verified using a SAT solver that the formula FRk(ax+by=cz)k(ax+by=cz)F_{R_{k}(ax+by=cz)}^{k}(ax+by=cz) from the encoding in Section 2 is unsatisfiable. For the remaining cases we concluded R3(ax+by=cz)=R_{3}(ax+by=cz)=\infty using Lemma 3.1. ∎

We are now able to prove Theorem 1.7.

Proof of Theorem 1.7.

Let \mathcal{E} denote the equation ax+by=czax+by=cz. For each triple (a,b,c)(a,b,c) that satisfies 1a,b,c51\leq a,b,c\leq 5 and aba\leq b, we performed the following calculations. If a nonempty subset of {a,b,c}\{a,b,-c\} sums to zero, then dor()=dor(\mathcal{E})=\infty by Theorem 1.4. If vp(a),vp(b)v_{p}(a),v_{p}(b), and vp(c)v_{p}(c) are all distinct modulo 3 for some prime pp, or if one of the inequalities a+ba2ca+b\leq\frac{a^{2}}{c} or a+baca+b\leq\sqrt{ac} holds, then dor()=2dor(\mathcal{E})=2 by Lemma 3.4, Lemma 3.1, and Theorem 1.5.

In all other cases dor()3dor(\mathcal{E})\leq 3 by either Theorem 4.3, Lemma 3.1, Lemma 3.5, or Lemma 3.6. The computation of a finite Rado number in Theorem 1.3 gives dor()=3dor(\mathcal{E})=3. ∎

We now prove Theorem 1.9 and Corollary 1.9.1

Proof of Theorem 1.9 and Corollary 1.9.1.

The proof of Theorem 1.9 is immediate from Lemma 3.1 condition (ii)(ii) since S=m1(m1)k1k2k2k1.S=m-1\leq\lceil(m-1)^{\frac{k-1}{k-2}}\rceil^{\frac{k-2}{k-1}}. Corollary 1.9.1 follows from Theorem 1.5 and setting k=3k=3 in Theorem 1.9. ∎

5 Rado CNF file generation

In this section we discuss some of the computational details from our calculations. The main workflow when computing a Rado number for a given linear equation \mathcal{E} is the following:

  • Generate the CNF file encoding Fnk()F_{n}^{k}(\mathcal{E}).

  • Apply symmetry breaking preprocessing.

  • Determine the satisfiability of Fnk()F_{n}^{k}(\mathcal{E}) with SAT solvers.

  • Adjust nn to find the smallest nn for which Fnk()F_{n}^{k}(\mathcal{E}) is unsatisfiable.

In the following subsections, we explain how to achieve each step of the computation procedure.

5.1 Generating CNF Files

Before we compute a given Rado number with a SAT solver, we must write the formula Fnk()F_{n}^{k}(\mathcal{E}) to a file in DIMACS format (see [7], Chapter 2). For many of our Rado number calculations, this step took far longer than the SAT solving process. The paper [15] uses divide-and-conquer and several CPU years to solve a single difficult SAT formula in five colors; in contrast, we solve many easier problems with only three colors. Generating negative clauses is the most difficult step as it involves enumerating the positive integer solutions to \mathcal{E}.

5.1.1 Generating all solutions

For efficient solution generation to homogeneous linear equations, we used the built-in function isolve in Maple to parameterize the solutions. We then used SymPy to parse the output of Maple and generate the solutions with values in [1,n][1,n].

Example 5.1.

If we want to generate all integer solutions in the interval [1,1000][1,1000] for the equation 43x5y=13z43x-5y=13z, we can feed 43x5y=13z43x-5y=13z into Maple’s isolve function, which gives the output

{x=i,y=6i13j,z=i+5j}.\{x=i,y=6i-13j,z=i+5j\}.

Since we want all integer solutions within [1,1000][1,1000], we can loop ii from 11 to 10001000 and manipulate the inequality

1y=6i13j10001\leq y=6i-13j\leq 1000

into an inner loop where jj is looped from 10006i13\lceil\frac{1000-6i}{-13}\rceil to 16i13\lfloor\frac{1-6i}{-13}\rfloor. For zz, we can simply check whether 1i+5j10001\leq i+5j\leq 1000 is satisfied or not inside the loops to determine if (x,y,z)(x,y,z) is a solution.

5.1.2 Writing Clauses to File

Some of the formulas in our computations contain millions of clauses, and writing these clauses to a file is a time-consuming part of CNF file generation. For example, the CNF file which encodes F163973(5x+5y=19z)F_{16397}^{3}(5x+5y=19z) contains more than 20 million clauses, of which only 6558865588 are positive or optional.

The algorithm to generate all the positive and optional clauses is done though Python. Since the parameterization of the equation \mathcal{E} is also passed to Python, we also used Python to generate the CNF files. We were able to improve CNF file generation speeds for 3-color Rado numbers by implementing loop unrolling.

5.2 Symmetry Breaking

Symmetry breaking is a SAT solving technique that can lead to drastic speedups by preventing the solver from looking in isomorphic areas of the search space. In our case we want to prevent the solver from searching for different permutations of the same coloring.

We can break this symmetry in the formula F43(x+y=z)F_{4}^{3}(x+y=z), for example, by adding the clauses (v11){\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}(v^{1}_{1})} and (v22){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(v^{2}_{2})}. These clauses force number 11 to be red and number 22 to be blue. In general, if \mathcal{E} is a linear homogeneous equation in three variables and we have a solution (x,y,z)(x,y,z) where two of x,y,x,y, and zz are equal to each other, then we can add clauses that force the two equal variables to be the first color and the remaining variable to be the second color. For Rado numbers Rk()R_{k}(\mathcal{E}) with k>3k>3, we can also add clauses that break the symmetries on the other colors (see [15]).

Generating a larger set of symmetry breaking clauses with more sophisticated preprocessing is more difficult and requires far more time than normal file generation. We included only a simple preprocessing step in our solving process. The benefit of this preprocessing becomes more apparent when the number of integers to color or the number of colors grows. Without symmetry breaking, Satch takes nearly 15 minutes to determine that F454(x+y=z)F^{4}_{45}(x+y=z) is unsatisfiable, but only a few seconds after adding symmetry breaking clauses.

5.3 SAT Solvers

Most of the SAT solving computations were done with the solver Satch v0.4.17, developed by Biere [5]. We initially used Satch because it is remarkably fast at proving upper bounds for many 3-color Rado numbers and relatively easy to use. For example, Satch is able to prove the upper bounds for the values in the first column and last row of Table 1 in under 10 seconds for each equation. Later, as we moved towards larger CNF files and more colors, Satch started to struggle.

In order to take advantage of the computation hardware that we had, we also experimented with the multithreaded SAT solver Glucose [3]. In general, Satch performed better on smaller instances, but Glucose solved larger instances up to two times as quickly.

5.4 Binary Search

In order to compute the exact value of a Rado number Rk()R_{k}(\mathcal{E}), we often must determine the satisfiability of Fnk()F_{n}^{k}(\mathcal{E}) for many values of nn. A convenient property of the formulas Fnk()F_{n}^{k}(\mathcal{E}) is that if m<nm<n, then we can obtain the formula Fmk()F_{m}^{k}(\mathcal{E}) simply by deleting all the clauses that contain variables vjiv_{j}^{i} with j>mj>m. Therefore, once we have a formula Fuk()F_{u}^{k}(\mathcal{E}) that is unsatisfiable, we have an upper bound Rk()uR_{k}(\mathcal{E})\leq u, and we no longer need to do any solution (negative clause) generation. After obtaining a lower bound Rk()>R_{k}(\mathcal{E})>\ell with a satisfiable formula Fk()F_{\ell}^{k}(\mathcal{E}), we can compute the exact value of the Rado number Rk()R_{k}(\mathcal{E}) using binary search to jump between \ell and uu. Our initial guesses for suitable bounds on Rk()R_{k}(\mathcal{E}) were made largely through trial and error. However, even with the poor estimates 10R3(xy=bz)500010\leq R_{3}(x-y=bz)\leq 5000 for 1b151\leq b\leq 15, it is possible to compute the exact values for all of these numbers in under two hours.

6 Acknowledgements

This project was supported by National Science Foundation grant DMS-1818969.

References

  • [1] T. Ahmed and D. J. Schaal. On generalized Schur numbers. Exp. Math., 25(2):213–218, 2016.
  • [2] B. Alexeev and J. Tsimerman. Equations resolving a conjecture of Rado on partition regularity. J. Combin. Theory Ser. A, 117(7):1008–1010, 2010.
  • [3] G. Audemard and L. Simon. Predicting learnt clauses quality in modern sat solvers. Twenty-first International Joint Conference on Artificial Intelligence (IJCAI’09), 2009.
  • [4] A. Beutelspacher and W. Brestovansky. Generalized Schur numbers. In Combinatorial theory (Schloss Rauischholzhausen, 1982), volume 969 of Lecture Notes in Math., pages 30–38. Springer, Berlin-New York, 1982.
  • [5] A. Biere. SAT Solver SATCH (version 0.4.17). https://github.com/arminbiere/satch, 2021.
  • [6] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, editors, Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.
  • [7] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD, 2009.
  • [8] L. Boza, J. M. Marín, M. P. Revuelta, and M. I. Sanz. 3-color Schur numbers. Discrete Appl. Math., 263:59–68, 2019.
  • [9] Y. Chang, J. A. D. Loera, and W. J. Wesley. Ramsey research software. https://github.com/itis2010me/Ramsey_Research, 2021.
  • [10] J. Fox and D. J. Kleitman. On Rado’s boundedness conjecture. J. Combin. Theory Ser. A, 113(1):84–100, 2006.
  • [11] N. Golowich. Resolving a conjecture on degree of regularity of linear homogeneous equations. Electron. J. Combin., 21(3):Paper 3.28, 8, 2014.
  • [12] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2013.
  • [13] H. Harborth and S. Maasberg. All two-color Rado numbers for a(x+y)=bza(x+y)=bz. volume 197/198, pages 397–407, 1999. 16th British Combinatorial Conference (London, 1997).
  • [14] D. Henrion, J.-B. Lasserre, and J. Löfberg. GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw., 24(4-5):761–779, 2009.
  • [15] M. J. H. Heule. Schur number five. Proceedings of AAAI-18, pages 6598–6606, 2018.
  • [16] M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the Boolean Pythagorean triples problem via cube-and-conquer. In Theory and applications of satisfiability testing—SAT 2016, volume 9710 of Lecture Notes in Comput. Sci., pages 228–245. Springer, [Cham], 2016.
  • [17] B. M. Landman and A. Robertson. Ramsey theory on the integers, volume 73 of Student Mathematical Library. American Mathematical Society, Providence, RI, second edition, 2014.
  • [18] K. Myers. Computational advances in Rado numbers. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick.
  • [19] R. Rado. Studien zur Kombinatorik. Math. Z., 36(1):424–470, 1933.
  • [20] K. Rendall Truman and D. Schaal. Three-color Rado numbers for x1+x2+c=x3x_{1}+x_{2}+c=x_{3} for negative values of cc. In Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 183, pages 5–10, 2006.
  • [21] D. Saracino. The 2-color Rado number of x1+x2++xn=y1+y2++ykx_{1}+x_{2}+\dots+x_{n}=y_{1}+y_{2}+\dots+y_{k}. Ars Combin., 129:315–321, 2016.
  • [22] D. Schaal. A family of 33-color Rado numbers. In Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), volume 111, pages 150–160, 1995.
  • [23] D. Schaal and M. Zinter. Two-color Rado numbers for the equations 2x1+2x2+c=x32x_{1}+2x_{2}+c=x_{3} and 2x1+2x2+2x3+c=x42x_{1}+2x_{2}+2x_{3}+c=x_{4}. J. Combin. Math. Combin. Comput., 95:201–214, 2015.
  • [24] I. Schur. Über kongruenz xm+ym=zm(modp)x^{m}+y^{m}=z^{m}\pmod{p}. Jahresbericht der Deutschen Mathematiker-Vereinigung, 25:114–116, 1917.

Appendix A Additional Rado Number calculations

In this section we give additional bounds and exact values for various Rado numbers.

A.1 3-color Rado Numbers

Table 9 gives R3(ax+ay=bz)R_{3}(ax+ay=bz) for 3a63\leq a\leq 6, 11b2011\leq b\leq 20.

Table 9: R3(ax+ay=bz)R_{3}(ax+ay=bz)
bb aa 3 4 5 6
11 2019 847 1958 1188
12 ¯\underline{\infty} 54 2400 1
13 \infty 1710 3445 1963
14 \infty 455 3675 336
15 ¯\underline{\infty} 5408 54 105
16 \infty ¯\underline{\infty} 5725 432
17 \infty \infty 8330 4743
18 ¯\underline{\infty} ¯\underline{\infty} 12069 54
19 \infty \infty 16397 6726
20 \infty ¯\underline{\infty} ¯\underline{\infty} 1025

A.2 4-color Rado Numbers

Table 10 gives some values for the 4-color Rado numbers R4(a(xy)=bz)R_{4}(a(x-y)=bz). These numbers are considerably more difficult to compute than R3(a(xy)=bz)R_{3}(a(x-y)=bz), and it took the solver CaDiCaL [6] up to 20 hours to prove some of the upper bounds. Notably, R4(xy=(m2)z)=m4m3m2m1R_{4}(x-y=(m-2)z)=m^{4}-m^{3}-m^{2}-m-1 for 4m64\leq m\leq 6, which implies S(4,4)=171,S(5,4)=469,S(4,4)=171,\ S(5,4)=469, and S(6,4)=1037S(6,4)=1037 by results in [4] and [18].

Table 10: R4(a(xy)=bz)R_{4}(a(x-y)=bz)
bb aa 1 2 3 4 5
1 45 56 81 256 625
2 171 45 103 56
3 469 >225>225 45
4 1037

Appendix B Degree of Regularity Values

Tables 12 to 15 give the values of dor(ax+by=cz)dor(ax+by=cz) for all a,b,ca,b,c with 1a,b,c51\leq a,b,c\leq 5.

Table 11: dor(ax+by=z)dor(ax+by=z)
bb aa 1 2 3 4 5
1 \infty \infty \infty \infty \infty
2 \infty 22 33 22 33
3 \infty 33 22 22 22
4 \infty 22 22 22 22
5 \infty 33 22 22 22
Table 12: dor(ax+by=2z)dor(ax+by=2z)
bb aa 1 2 3 4 5
1 \infty \infty 33 22 33
2 \infty \infty \infty \infty \infty
3 33 \infty 33 22 33
4 22 \infty 22 22 22
5 33 \infty 33 22 22
Table 13: dor(ax+by=3z)dor(ax+by=3z)
bb aa 1 2 3 4 5
1 33 \infty \infty 33 33
2 \infty 33 \infty 22 33
3 \infty \infty \infty \infty \infty
4 33 22 \infty 33 33
5 33 33 \infty 33 33
Table 14: dor(ax+by=4z)dor(ax+by=4z)
bb aa 1 2 3 4 5
1 22 22 \infty \infty 33
2 22 \infty 22 \infty 22
3 \infty 22 33 \infty 33
4 \infty \infty \infty \infty \infty
5 33 22 33 \infty 33
Table 15: dor(ax+by=5z)dor(ax+by=5z)
bb aa 1 2 3 4 5
1 22 33 33 \infty \infty
2 33 33 \infty 22 \infty
3 33 \infty 33 33 \infty
4 \infty 22 33 33 \infty
5 \infty \infty \infty \infty \infty

Appendix C Heuristic search procedure in proof of Theorem 1.2

Here we detail the method FindPolynomials which we used to find the sets SS of polynomials in the proof of Theorem 1.2. We give the version of FindPolynomials used for the equation a(xy)=(a1)za(x-y)=(a-1)z. The procedures for the other two equations were similar, but had minor modifications.

In brief, we initialize SS to a set of polynomials S0S_{0}, and we use an auxiliary set of “gaps” GG to add more polynomials to SS. The procedure BoundedIntegerPolynomial returns true if and only if all of its arguments are polynomials p(a)[a]p(a)\in\mathbb{Z}[a] that satisfy 1p(a)a3+(a1)21\leq p(a)\leq a^{3}+(a-1)^{2} for all a16a\geq 16. The FindPolynomials procedure is not guaranteed to produce a set of clauses that yields an unsatisfiable formula, and it took several attempts to come up with suitable choices for the initial sets S0S_{0} and G0G_{0}. For the equation a(xy)=(a1)za(x-y)=(a-1)z, we set S0={1,a1,a,a+1,a21,a2,a2+1,a3,a3+(a1)2}S_{0}=\{1,a-1,a,a+1,a^{2}-1,a^{2},a^{2}+1,a^{3},a^{3}+(a-1)^{2}\}, G0={1,a1,a,(a1)2,a2}G_{0}=\{1,a-1,a,(a-1)^{2},a^{2}\}, and maxIterations = 3. Files containing the polynomials and clauses used in our formulas can be found in [9].

Algorithm 1 FindPolynomials(S0,G0S_{0},G_{0},maxIterations)
SS0S\leftarrow S_{0}
GG0G\leftarrow G_{0}
for i=1i=1 to maxIterations do
     for p,qp,q in SS do
         rpqa1r\leftarrow\frac{p-q}{a-1}
         if BoundedIntegerPolynomial(rrthen
              GG{r}G\leftarrow G\cup\{r\}
         end if
     end for
     for pSp\in S, qGq\in G do
         r+p+(a1)qr_{+}\leftarrow p+(a-1)q
         if BoundedIntegerPolynomial(r+r_{+}then
              SS{r+}S\leftarrow S\cup\{r_{+}\}
         end if
         rp(a1)qr_{-}\leftarrow p-(a-1)q
         if BoundedIntegerPolynomial(rr_{-}then
              SS{r}S\leftarrow S\cup\{r_{-}\}
         end if
     end for
end for
CC\leftarrow\emptyset
for p,qSp,q\in S do
     xpx\leftarrow p
     yp(a1)qy\leftarrow p-(a-1)q
     zaqz\leftarrow aq \triangleright Here (x,y,z)(x,y,z) is a solution to a(xy)=(a1)z.a(x-y)=(a-1)z.
     if BoundedIntegerPolynomial(x,y,zx,y,zthen
         SS{x,y,z}S\leftarrow S\cup\{x,y,z\}
         CC{{x,y,z}}C\leftarrow C\cup\{\{x,y,z\}\}
     end if
end for
return S,CS,C