This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Qubit Energy Tuner Based on Single Flux Quantum Circuits

Xiao Geng [email protected] Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Rutian Huang Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Yongcheng He Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Kaiyong He Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Genting Dai Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Liangliang Yang Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Xinyu Wu Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Qing Yu Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Mingjun Cheng Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Guodong Chen Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Jianshe Liu Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China    Wei Chen [email protected] Laboratory of Superconducting Quantum Information Processing, School of Integrated Circuits, Tsinghua University, Beijing 100084, China Beijing National Research Center for Information Science and Technology, Beijing 100084, China Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China
Abstract

A device called qubit energy tuner (QET) based on single flux quantum (SFQ) circuits is proposed for Z control of superconducting qubits. Created from the improvement of flux digital-to-analog converters (flux DACs), a QET is able to set the energy levels or the frequencies of qubits, especially flux-tunable transmons, and perform gate operations requiring Z control. The circuit structure of QET is elucidated, which consists of an inductor loop and flux bias units for coarse tuning or fine tuning. The key feature of a QET is analyzed to understand how SFQ pulses change the inductor loop current, which provides external flux for qubits. To verify the functionality of the QET, three simulations are carried out. The first one verifies the responses of the inductor loop current to SFQ pulses. The results show that there is about 4.2% relative deviation between analytical solutions of the inductor loop current and the solutions from WRSpice time-domain simulation. The second and the third simulations with QuTip show how a Z gate and an iSWAP gate can be performed by this QET, respectively, with corresponding fidelities 99.99884% and 99.93906% for only once gate operation to specific initial states. These simulations indicate that the SFQ-based QET could act as an efficient component of SFQ-based quantum-classical interfaces for digital Z control of large-scale superconducting quantum computers.

I Introduction

Josephson qubits with gate and measurement fidelities over the threshold of fault-tolerant quantum computing are an attractive candidate for manufacturing scalable quantum computers. As a traditional way for qubit control and readout, microwave electronics successed in obtaining gate fidelities beyond 99.9% [1] and realizing quantum supremacy [2]. Because of quantitative restrictions to input and output ports of quantum processor and cryogenic transmission lines, the bottleneck of interconnection comes to be significant when the number of qubits increase beyond a thousand. To overcome the bottleneck, it is desirable to introduce single flux quantum (SFQ) digital logic circuits [3] for control and readout [4]. Digital coherent XY control based on SFQ pulses to transmon qubits was proposed [5] and the fidelities of digital single-qubit gates were measured to be about 95% [6]. Methods of optimization to SFQ pulse sequences for single-qubit gates [7, 8] and two-qubit gates like cross-resonance gates and controlled phase (CZ) gates [9, 10, 11] were also studied.

To control qubits flexibly, SFQ-based devices for Z control has become a frontier requiring more research. In 2018, McDermott et al. [4] proposed an SFQ-based coprocessor working at 3 K for control and measurement of a quantum processor requiring SFQ-based flux digital-to-analog converters (flux DACs) [12] for Z control, which is really an inspiring idea for creating a scalable superconducting quantum processor. Recently, Mohammad et al. [9] proposed an SFQ-based digital controller called DigiQ for superconducting qubits, in which the Z control of qubits are performed with bias currents generated by an array of SFQ/DCs. These SFQ/DCs in DigiQ are placed at the 4 K plate of the dilution refrigerator, so bias currents need to be transmitted in superconducting microstrip flex lines to 10 mK plate where the quantum processor works, which is similar to Ref.4.

In order to promote integration further, SFQ logic circuits for control and measurement of qubits should be integrated with quantum processor with 3D integration technologies [13, 14] in the future. Therefore, SFQ-based devices for on-chip Z control need to be researched and designed with circuits as simple as possible for scalable quantum processors. These simple devices should be able to convert SFQ pulse signals to flux signals, just like flux DACs. The circuits for Z control in DigiQ may be a little more complicated than flux DACs, so intuitively flux DACs can be considered as the first choice for developing SFQ-based devices for Z control. However, with a single flux DAC defined in Ref.12, it is difficult to provide flux bias and simultaneously complete a Z-control gate with high precision due to the following reasons. (i)The resetting of a flux DAC at the end of the gate can eliminate not only the flux performing the gate but also the bias flux setting the idle frequency of the controlled qubit. (ii)The resetting is accomplished by applying Φ0/2\Phi_{0}/2 (half of a flux quantum) to the two-junction reset SQUID loop, which may require another flux DAC, an SFQ/DC or a pin of the coprocessor for an external current source. This finally increases the physical footprint and complexity of the coprocessor, or aggravates the situation of interconnection bottleneck.

Here, we propose a new SFQ-based device for Z control, which is created from the improvement of flux DACs. Because its basic function is to tune the energy levels of qubits, it is called qubit energy tuner (QET). With flux provided by a QET, the energy levels or the frequency of a flux-tunable transmon qubit can be set to specific levels. At the same time, it can also perform gate operations which need flux bias, such as a Z gate or an iSWAP gate. After a gate operation, the QET can tune the frequency of the qubit back to its idle frequency.

In this article, the circuit structure of QETs is first described in Section II. The key feature of a specific QET is analyzed and an formula is obtained for calculating its inductor loop current providing flux. Next, the ideal Z control method with square-wave-like currents for flux-tunable tranmson is discribed in Section III. Then in Section IV, simulations are done for presenting how the inductor loop current of a QET that provides flux is changed by SFQ pulses and how a QET performs a Z gate and an iSWAP gate. In Section V, the work in this article is concluded. The challenges and opportunities about the QET in the future are discussed.

II Structure of Qubit Energy Tuner

Refer to caption
Figure 1: Structure of a qubit energy tuner coupled with a flux-tunable transmon.

A qubit energy tuner (QET) contains an inductor loop and some flux bias units, positive or negative, as can be seen in FIG. 1. The inductor loop is weakly coupled to the SQUID of a flux-tunable transmon, providing flux for tuning the energy levels of the transmon. A flux bias unit includes a Josephson junction shunted with an inductor, which is coupled to the inductor loop. The Josephson junction can be made of an intrinsic Josephson junction in parallel with a resistor to be an overdamped Josephson junction. The node connected to the Josephson junction and the inductor is treated as an input port of QET for SFQ pulse signal. After recieving an SFQ pulse, a positive flux bias unit increase the external flux through the SQUID by a specific amount while a negative flux bias unit increase it in the opposite direction or decrease it by the same specific amount. This is realized by making the direction of dotted terminals of positive flux bias units the same as that of the corresponding inductor in the inductor loop but making the direction of dotted terminals of negative flux bias units opposite to that of the corresponding inductor in the inductor loop.

A QET should have at least a pair of flux bias units, in which one is positive and the other is negative. In order to tune the energy levels of a transmon more precisely, QET can be designed to have two or more pairs of flux bias units, among which some pairs are used for coarse tuning and others are used for fine tuning. Inductors in different flux bias units can also be coupled for optimization of circuit performance. The inspiration about the qubit energy tuner is from the design of the flux DAC proposed by Ref. 12 and Ref. 15. Therefore, its circuits have similar but simpler structures compared with those of flux DACs.

Refer to caption
Figure 2: Schematic of a qubit energy tuner with two pairs of flux bias units for coarse tuning and fine tuning.
Refer to caption
Figure 3: Symbol of a QET.

The QET shown in FIG. 2 is taken as an example for the following analysis. It has a pair of flux bias units for coarse tuning and another pair for fine tuning. The parameters of elements in the example are listed in Table 2. The symbol for QET in FIG. 2 is drawn as FIG. 3. The reason why this kind of QET with two pairs of flux bias units is chosen to be analyzed is that it combines the accuracy, simplicity and speed better than other cases with only one or over two pairs of flux bias units. On the one hand, the QET with only a pair of flux bias units has only one precision, which causes a low speed of high-precision tuning or a low precision of high-speed tuning. On the other hand, the QET with three or more pairs of flux bias units have more ports and circuit elements, which means more complicated control, reduced reliability and larger footprint.

According to the formula derivation in Appendix A, by ignoring the influence of SQUID, the current of the inductor loop ip(t)i_{\rm p}(t) is approximately equal to

ip(t)=1F[(ΦAΦB)(Lf2M342)(Lc+M12)Mc+(ΦCΦD)(Lc2M122)(Lf+M34)Mf],\begin{split}i_{\rm p}(t)=&\dfrac{1}{F}[(\varPhi_{\rm A}-\varPhi_{\rm B})(L_{\rm f}^{2}-M_{34}^{2})(L_{\rm c}+M_{12})M_{\rm c}\\ &+(\varPhi_{\rm C}-\varPhi_{\rm D})(L_{\rm c}^{2}-M_{12}^{2})(L_{\rm f}+M_{34})M_{\rm f}],\end{split} (1)

where ΦA\varPhi_{\rm A}, ΦB\varPhi_{\rm B}, ΦC\varPhi_{\rm C} and ΦD\varPhi_{\rm D} are the integral of the voltage at node A, B, C and D over time tt respectively. Because the input signal to these nodes is SFQ, ΦA\varPhi_{\rm A}, ΦB\varPhi_{\rm B}, ΦC\varPhi_{\rm C} and ΦD\varPhi_{\rm D} are multiples of flux quantum Φ0\Phi_{0}. FF, McM_{\rm c}, MfM_{\rm f}, LcL_{\rm c} and LfL_{\rm f} are defined in Appendix A.

Then, the relationship between ip(t)i_{\rm p}(t) and the external flux through the SQUID Φe\varPhi_{\rm e} is

Φe=Mip(t).\varPhi_{\rm e}=Mi_{\rm p}(t). (2)

Denoting

ΦAΦB=ncΦ0,\varPhi_{\rm A}-\varPhi_{\rm B}=n_{\rm c}\Phi_{0}, (3)
ΦCΦD=nfΦ0,\varPhi_{\rm C}-\varPhi_{\rm D}=n_{\rm f}\Phi_{0}, (4)
MF(Lf2M342)(Lc+M12)Mc=rc,\dfrac{M}{F}(L^{2}_{\rm f}-M^{2}_{34})(L_{\rm c}+M_{12})M_{\rm c}=r_{\rm c}, (5)
MF(Lc2M122)(Lf+M34)Mf=rf,\dfrac{M}{F}(L^{2}_{\rm c}-M^{2}_{12})(L_{\rm f}+M_{34})M_{\rm f}=r_{\rm f}, (6)
1F(Lf2M342)(Lc+M12)McΦ0=Δipc,\dfrac{1}{F}(L^{2}_{\rm f}-M^{2}_{34})(L_{\rm c}+M_{12})M_{\rm c}\Phi_{0}=\Delta i_{\rm pc}, (7)
1F(Lc2M122)(Lf+M34)MfΦ0=Δipf,\dfrac{1}{F}(L^{2}_{\rm c}-M^{2}_{12})(L_{\rm f}+M_{34})M_{\rm f}\Phi_{0}=\Delta i_{\rm pf}, (8)
MΔipc=Φec,M\Delta i_{\rm pc}=\varPhi_{\rm ec}, (9)
MΔipf=Φef,M\Delta i_{\rm pf}=\varPhi_{\rm ef}, (10)

yields

ip=ncΔipc+nfΔipf,i_{\rm p}=n_{\rm c}\Delta{i_{\rm pc}}+n_{\rm f}\Delta{i_{\rm pf}}, (11)
Φe=ncΦec+nfΦef,\varPhi_{\rm e}=n_{\rm c}\varPhi_{\rm ec}+n_{\rm f}\varPhi_{\rm ef}, (12)
Φec=rcΦ0,\varPhi_{\rm ec}=r_{\rm c}\Phi_{0}, (13)
Φef=rfΦ0.\varPhi_{\rm ef}=r_{\rm f}\Phi_{0}. (14)

Equation (12),(13) and (14) mean that the flux provided by QET can be divided in to two parts, ncΦecn_{\rm c}\varPhi_{\rm ec} and nfΦefn_{\rm f}\varPhi_{\rm ef}, which are respectively created by coarse tuning and fine tuning. Φec\varPhi_{\rm ec} can be regarded as the flux unit of coarse tuning and Φef\varPhi_{\rm ef} can be regarded as the flux unit of fine tuning. If ncn_{\rm c} (or nfn_{\rm f}) SFQ pulses are inputted to port A (or C) of the QET, then the external flux through the SQUID will increase by ncn_{\rm c} times of Φec\varPhi_{\rm ec} (or nfn_{\rm f} times of Φef\varPhi_{\rm ef}). Then, if this external flux needs to be eliminated, ncn_{\rm c} (or nfn_{\rm f}) SFQ pulses should be inputted to port B (or D). Usually for fine tuning rfr_{\rm f} is smaller than rcr_{\rm c}. If

Lc=L1=Ln1=L2=Ln2,L_{\rm c}=L_{1}=L_{\rm n1}=L_{2}=L_{\rm n2}, (15)
Lf=L3=Ln3=L4=Ln4,L_{\rm f}=L_{3}=L_{\rm n3}=L_{4}=L_{\rm n4}, (16)

then the ratio of the flux unit of coarse tuning to the flux unit of fine tuning can be defined as

rcf=ΦecΦef.r_{\rm cf}=\dfrac{\varPhi_{\rm ec}}{\varPhi_{\rm ef}}. (17)

With Equation (3)\sim(17), there is

rcf=rcrf=ΔipcΔipf=Kc(1K34)Kf(1K12),r_{\rm cf}=\dfrac{r_{\rm c}}{r_{\rm f}}=\dfrac{\Delta i_{\rm pc}}{\Delta i_{\rm pf}}=\dfrac{K_{\rm c}(1-K_{34})}{K_{\rm f}(1-K_{12})}, (18)

where the coupling coefficients are

Kc=McL1Ln1=McL2Ln2=McLc,K_{\rm c}=\dfrac{M_{\rm c}}{\sqrt{L_{1}L_{\rm n1}}}=\dfrac{M_{\rm c}}{\sqrt{L_{2}L_{\rm n2}}}=\dfrac{M_{\rm c}}{L_{\rm c}}, (19)
Kf=MfL1Ln1=MfL2Ln2=MfLf,K_{\rm f}=\dfrac{M_{\rm f}}{\sqrt{L_{1}L_{\rm n1}}}=\dfrac{M_{\rm f}}{\sqrt{L_{2}L_{\rm n2}}}=\dfrac{M_{\rm f}}{L_{\rm f}}, (20)
K12=M12L1L2=M12Lc,K_{\rm 12}=\dfrac{M_{\rm 12}}{\sqrt{L_{1}L_{\rm 2}}}=\dfrac{M_{\rm 12}}{L_{\rm c}}, (21)
K34=M34L3L4=M34Lf.K_{\rm 34}=\dfrac{M_{\rm 34}}{\sqrt{L_{3}L_{\rm 4}}}=\dfrac{M_{\rm 34}}{L_{\rm f}}. (22)

The parameter rcfr_{\rm cf} means the ratio of the flux precision of coarse tuning to that of fine tuning. It should have an appropriate value larger than 11, like 10, to distinguish the two precisions. The parameter rfr_{\rm f} is the ratio of the smallest variation of the flux Φe\varPhi_{\rm e}, Φef\varPhi_{\rm ef}, to flux quantum Φ0\Phi_{0}, that is, it determines the flux precision of fine tuning. The parameter rcr_{\rm c} is the ratio of Φec\varPhi_{\rm ec} to flux quantum Φ0\Phi_{0} and can be set by rc=rcfrfr_{\rm c}=r_{\rm cf}\cdot r_{\rm f}.

To design a QET, the parameters rcfr_{\rm cf}, rfr_{\rm f} and rcr_{\rm c} are main concerns and should be firstly determined. Then, with constraints including Equation (5), (6), (15), (16), (18)\sim(22), all parameter values of circuit elements should be tried and iterated to meet the requirements from the higher-level design, for example, the footprint of the QET on the chip is matched with the footprint of the qubit.

III Ideal Z control by Square-wave-like Currents

For a flux-tunable transmon, the ideal case for Z control is that the waveforms of currents producing external flux Φe\varPhi_{\rm e} are square-wave-like. In this section how the ideal Z control is performed is discussed.

The Hamiltonian of a flux-tunable transmon [16] is

H^=4EC(n^ng)2EJS(φe)cos(ϕ^),\hat{H}=4E_{\rm C}\left(\hat{n}-n_{\rm g}\right)^{2}-E_{\rm JS}(\varphi_{\rm e}){\rm cos}(\hat{\phi}), (23)

where

EJS(φe)=EJΣ|cos(φe)|1+d2tan2(φe),E_{\rm JS}(\varphi_{\rm e})=E_{\rm J\Sigma}|\cos(\varphi_{\rm e})|\sqrt{1+d^{2}\tan^{2}(\varphi_{\rm e})}, (24)

is the effective Josephson energy of the SQUID of the transmon with a total Josephson coupling energy of two junctions

EJΣ=EJ1+EJ2,E_{\rm J\Sigma}=E_{\rm J1}+E_{\rm J2}, (25)

a asymmetry coefficient

d=EJ2EJ1EJΣ,d=\dfrac{E_{\rm J2}-E_{\rm J1}}{E_{\rm J\Sigma}}, (26)

and a reduced external flux

φe=πΦe(t)Φ0.\varphi_{\rm e}=\pi\dfrac{\varPhi_{\rm e}(t)}{\Phi_{0}}. (27)

ECE_{\rm C} is the charging energy of the transmon. ngn_{\rm g} is the effective offset charge. n^\hat{n} and ϕ^\hat{\phi} are respectively the number operator and the phase operator of Cooper pairs. For convenience, the hats of all operators including Hamiltonian are left out in the following derivation.

The solution for the kthk^{\rm th} eigen energy of Equation (23) with first order approximation of perturbation theory [16] is

Ek=k8ECEJS(φe)EC12(6k2+6k+3)EJS(φe).E_{k}=k\sqrt{8E_{\rm C}E_{\rm JS}(\varphi_{\rm e})}-\dfrac{E_{\rm C}}{12}(6k^{2}+6k+3)-E_{\rm JS}(\varphi_{\rm e}). (28)

Usually, the external flux Φe(t)\varPhi_{\rm e}(t) at the moment tt for Z control is provided by a conductor line besides the SQUID with its current, iz(t)i_{\rm z}(t), and a mutual inductance between the line and the SQUID, MM. Because the current in the SQUID is much smaller than iz(t)i_{\rm z}(t), its influence on iz(t)i_{\rm z}(t) can be ignored and there is

Φe(t)=Miz(t).\varPhi_{\rm e}(t)=Mi_{\rm z}(t). (29)

Therefore, EJS(φe)E_{\rm JS}(\varphi_{\rm e}) can be written as

EJS(iz(t))=EJΣ|cos(πMiz(t)Φ0)|1+d2tan2(πMiz(t)Φ0).E_{\rm JS}(i_{\rm z}(t))=E_{\rm J\Sigma}\left|\cos(\pi\dfrac{Mi_{\rm z}(t)}{\Phi_{0}})\right|\sqrt{1+d^{2}\tan^{2}(\pi\dfrac{Mi_{\rm z}(t)}{\Phi_{0}})}. (30)

By changing iz(t)i_{\rm z}(t), EJS(iz(t))E_{\rm JS}(i_{\rm z}(t)) can be set to a target value, then the energy level EkE_{\rm k}, especially E0E_{0} and E1E_{1} can be tuned so that qubit frequency is set to the corresponding target value. When EJS(iz(t))E_{\rm JS}(i_{\rm z}(t)) is set, the condition EJS(iz(t))/EC>>1E_{\rm JS}(i_{\rm z}(t))/E_{\rm C}>>1 should be guaranteed to make sure that the qubit is transmon. According to Equation (28), we have

E0=EC4EJS(φe),E_{0}=-\dfrac{E_{\rm C}}{4}-E_{\rm JS}(\varphi_{\rm e}), (31)
E1=8ECEJS(φe)ECEC4EJS(φe),E_{1}=\sqrt{8E_{\rm C}E_{\rm JS}(\varphi_{\rm e})}-E_{\rm C}-\dfrac{E_{\rm C}}{4}-E_{\rm JS}(\varphi_{\rm e}), (32)
E2=28ECEJS(φe)3ECEC4EJS(φe).E_{2}=2\sqrt{8E_{\rm C}E_{\rm JS}(\varphi_{\rm e})}-3E_{\rm C}-\dfrac{E_{\rm C}}{4}-E_{\rm JS}(\varphi_{\rm e}). (33)

Therefore, the differences of energy levels are

E10=E1E0=8ECEJS(φe)EC,\begin{split}E_{10}=E_{1}-E_{0}=\sqrt{8E_{\rm C}E_{\rm JS}(\varphi_{\rm e})}-\ \ E_{\rm C},\end{split} (34)
E21=E2E1=8ECEJS(φe)2EC,\begin{split}E_{21}=E_{2}-E_{1}=\sqrt{8E_{\rm C}E_{\rm JS}(\varphi_{\rm e})}-2E_{\rm C},\end{split} (35)

and the anharmonicity of the qubit is

α=E21E10=EC.\begin{split}\alpha=E_{21}-E_{10}=-E_{\rm C}.\end{split} (36)

Without losing generality, iz(t)i_{\rm z}(t) has a square-wave-like waveform and is set to be

iz(t)={iw,tstte,ii,0t<tsort>te,i_{\rm z}(t)=\begin{cases}i_{\rm w},&t_{\rm s}\leqslant t\leqslant t_{\rm e},\\ i_{\rm i},&0\leqslant t<t_{\rm s}\ {\rm or}\ t\textgreater t_{\rm e},\\ \end{cases} (37)

where iwi_{\rm w} and iii_{\rm i} are the currents for setting working frequency ωqw\omega_{\rm qw} and idle frequency ωqi\omega_{\rm qi} of a transmon, respectively. ωqw\omega_{\rm qw} is the qubit frequency used for Z control. ωqi\omega_{\rm qi} is the qubit frequency when it is idle and is determined to be the frequency of the rotating frame [17]. tst_{\rm s} and tet_{\rm e} are the moments when a gate operation starts and ends, respectively. Then, the qubit frequency turns to be

ωq(t)={ωqw,tstte,ωqi,0t<tsort>te,\omega_{\rm q}(t)=\begin{cases}\omega_{\rm qw},&t_{\rm s}\leqslant t\leqslant t_{\rm e},\\ \omega_{\rm qi},&0\leqslant t<t_{\rm s}\ {\rm or}\ t\textgreater t_{\rm e},\\ \end{cases} (38)

where

ωqw=(8ECEJS(iw)EC)/,\omega_{\rm qw}=\left(\sqrt{8E_{\rm C}E_{\rm JS}(i_{\rm w})}-E_{\rm C}\right)/\hbar, (39)
ωqi=(8ECEJS(ii)EC)/.\omega_{\rm qi}=\left(\sqrt{8E_{\rm C}E_{\rm JS}(i_{\rm i})}-E_{\rm C}\right)/\hbar. (40)

Here, we denote

Δωq=ωqwωqi.\Delta\omega_{\rm q}=\omega_{\rm qw}-\omega_{\rm qi}. (41)

With Equation (39), (40) and (41), we have

Δωq=8EC(EJS(iw)EJS(ii)).\Delta\omega_{\rm q}=\sqrt{8E_{\rm C}}\left(\sqrt{E_{\rm JS}(i_{\rm w})}-\sqrt{E_{\rm JS}(i_{\rm i})}\right). (42)

For an idle qubit, its Hamiltonian is

H0=(ωqiaa+α2aaaa).H_{0}=\hbar\left(\omega_{\rm qi}a^{\dagger}a+\dfrac{\alpha}{2}a^{\dagger}a^{\dagger}aa\right). (43)

Actually, the time-dependent Hamiltonian of the qubit is

H=(Δω(t)aa+ωqiaa+α2aaaa),H=\hbar\left(\Delta\omega\left(t\right)a^{\dagger}a+\omega_{\rm qi}a^{\dagger}a+\dfrac{\alpha}{2}a^{\dagger}a^{\dagger}aa\right), (44)

where aa^{\dagger} and aa are the creation operator and the annihilation operator, respectively, and Δω(t)\Delta\omega(t) is defined by

Δω(t)=ωq(t)ωqi.\Delta\omega(t)=\omega_{\rm q}(t)-\omega_{\rm qi}. (45)

ωq(t)\omega_{\rm q}(t) is the actual frequency of the qubit. We denote

Hdz=Δω(t)aa,H_{\rm dz}=\hbar\Delta\omega\left(t\right)a^{\dagger}a, (46)

as the drive Hamiltonian for Z control, so there is

H=H0+Hdz.H=H_{0}+H_{\rm dz}. (47)

In the rotating frame, the drive Hamiltonian for Z control turns to be

H~=Hdz,\widetilde{H}=H_{\rm dz}, (48)

and the corresponding evolution operator in the rotating frame is

U~dz=𝒯exp(itsteH~dt),\widetilde{U}_{\rm dz}=\mathcal{T}{\rm exp}\left(-\mathrm{i}\int_{t_{\rm s}}^{t_{\rm e}}\dfrac{\widetilde{H}}{\hbar}{\rm d}t\right), (49)

where 𝒯\mathcal{T} is chronological operator. With Equation (46), (48) and (49), we have

U~dz=𝒯exp(iaatsteΔω(t)dt).\widetilde{U}_{\rm dz}=\mathcal{T}{\rm exp}\left(-\mathrm{i}a^{\dagger}a\int_{t_{\rm s}}^{t_{\rm e}}\Delta\omega\left(t\right){\rm d}t\right). (50)

In the ideal situation where iwi_{\rm w} and iii_{\rm i} are constants, when the qubit is working (tsttet_{\rm s}\leqslant t\leqslant t_{\rm e}), there is ωq(t)=ωqw\omega_{\rm q}(t)=\omega_{\rm qw}, so Δω(t)\Delta\omega(t) becomes the constant Δωq\Delta\omega_{\rm q}:

Δω(t)=Δωq=ωqwωqi,\Delta\omega(t)=\Delta\omega_{\rm q}=\omega_{\rm qw}-\omega_{\rm qi}, (51)

and the Hamiltonian HH turns to be

H=Hw=(ωqwaa+α2aaaa).H=H_{\rm w}=\hbar\left(\omega_{\rm qw}a^{\dagger}a+\dfrac{\alpha}{2}a^{\dagger}a^{\dagger}aa\right). (52)

We define

φ=tsteΔω(t)dt\varphi=-\int_{t_{\rm s}}^{t_{\rm e}}\Delta\omega\left(t\right){\rm d}t (53)

as the phase shift realized by Z control, and define

tz=tetst_{\rm z}=t_{\rm e}-t_{\rm s} (54)

as the gate operation time for Z control. With Equation (42), (51), (53) and (54), we have

φ=Δωqtz=8EC(EJS(ii)EJS(iw))tz.\begin{split}\varphi=&-\Delta\omega_{\rm q}t_{\rm z}\\ =&\sqrt{8E_{\rm C}}\left(\sqrt{E_{\rm JS}(i_{\rm i})}-\sqrt{E_{\rm JS}(i_{\rm w})}\right)t_{\rm z}.\end{split} (55)

And according to Equation (50), the corresponding evolution operator for the qubit turns to be

U~dz=(100eiφ)=(100exp(i8EC(EJS(ii)EJS(iw))tz)).\begin{split}\widetilde{U}_{\rm dz}=&\left(\begin{matrix}1&0\\ 0&e^{\mathrm{i}\varphi}\end{matrix}\right)\\ =&\left(\begin{matrix}1&0\\ 0&\exp\left(\mathrm{i}\sqrt{8E_{\rm C}}\left(\sqrt{E_{\rm JS}(i_{\rm i})}-\sqrt{E_{\rm JS}(i_{\rm w})}\right)t_{\rm z}\right)\end{matrix}\right).\end{split} (56)

To realize on-chip Z control by SFQ, instead of chosing Z control line, iii_{\rm i} and iwi_{\rm w} can be produced by the inductor loop current ip(t)i_{\rm p}(t) of a QET, which means making iz(t)=ip(t)i_{\rm z}(t)=i_{\rm p}(t).

IV Simulation about a QET and Its Gate Operations

A. a Single QET

Refer to caption
Figure 4: The circuits for all simulations.
Refer to caption
Figure 5: The simulation circuits of DC/SFQ.
Refer to caption
Figure 6: The simulation circuits of QET.
Refer to caption
Figure 7: The responses of QET to SFQ pulses produced by DC/SFQ in simulation.
Table 1: The parameters of elements in the DC/SFQ.
Parameters Values Parameters Values
Lq1L_{\rm q1} 1.071 pH Lj33L_{\rm j33} 0.103 pH
Lq2L_{\rm q2} 3.927 pH Jj1J_{\rm j1} 225 μ\muA
Lq3L_{\rm q3} 0.913 pH Jj2J_{\rm j2} 225 μ\muA
Lq4L_{\rm q4} 4.399 pH Jj3J_{\rm j3} 250 μ\muA
Lq5L_{\rm q5} 1.090 pH Lv1L_{\rm v1} 16.8 pH
Lj11L_{\rm j11} 0.058 pH Lv2L_{\rm v2} 15.5 pH
Lj12L_{\rm j12} 0.945 pH Rv1R_{\rm v1} 9.09 Ω\Omega
Lj13L_{\rm j13} 0.355 pH Rv2R_{\rm v2} 14.29 Ω\Omega
Lj21L_{\rm j21} 0.05 pH Rj1R_{\rm j1} 0.766 Ω\Omega
Lj22L_{\rm j22} 0.955 pH Rj2R_{\rm j2} 0.766 Ω\Omega
Lj23L_{\rm j23} 0.096 pH Rj3R_{\rm j3} 0.688 Ω\Omega
Lj31L_{\rm j31} 0.028 pH VqV_{\rm q} 2.5 mV
Lj32L_{\rm j32} 0.961 pH
Table 2: The parameters of elements in the QET.
Parameters Values Parameters Values
L1L_{1} LcL_{\rm c} L11L_{\rm 11} 0.05 pH
L2L_{2} LcL_{\rm c} L12L_{\rm 12} 0.955 pH
L3L_{3} LfL_{\rm f} L13L_{\rm 13} 0.096 pH
L4L_{4} LfL_{\rm f} L21L_{\rm 21} 0.05 pH
LcL_{\rm c} 10 nH L22L_{\rm 22} 0.955 pH
LfL_{\rm f} 10 nH L23L_{\rm 23} 0.096 pH
Ln0L_{\rm n0} 1 nH L31L_{\rm 31} 0.05 pH
Ln1L_{\rm n1} LcL_{\rm c} L32L_{\rm 32} 0.955 pH
Ln2L_{\rm n2} LcL_{\rm c} L33L_{\rm 33} 0.096 pH
Ln3L_{\rm n3} LfL_{\rm f} L41L_{\rm 41} 0.05 pH
Ln4L_{\rm n4} LfL_{\rm f} L42L_{\rm 42} 0.955 pH
Ln5L_{\rm n5} 2 nH L43L_{\rm 43} 0.096 pH
M1M_{1} McM_{\rm c} R1R_{1} 0.766 Ω\Omega
M2M_{2} McM_{\rm c} R2R_{2} 0.766 Ω\Omega
M3M_{3} MfM_{\rm f} R3R_{3} 0.766 Ω\Omega
M4M_{4} MfM_{\rm f} J1J_{1} 160 μ\muA
M12M_{12} 7.023 nH J2J_{2} 160 μ\muA
M34M_{34} 7.023 nH J3J_{3} 160 μ\muA
McM_{\rm c} 8 nH J4J_{4} 160 μ\muA
MfM_{\rm f} 0.8 nH MM 0.02 nH

In order to show how the inductor loop current ip(t)i_{\rm p}(t) of a QET is controlled by SFQ signal, a simulation with supreconducting circuit simulation software WRSpice for the circuits in the blue-dashed-line box in FIG. 4 is performed. The SFQ pulses sent to the input ports of QET, A, B, C and D, are generated by four DC/SFQs, each of which is drived by a time-dependent current source. Here, the DC/SFQ is only used for generating SFQ pulses to verify the functionality of the QET. In practical engineering, the QET can also be drived by SFQ pulses from other SFQ digital circuits. The existance and influence of two qubits in FIG. 4 are ignored temporarily. The circuits of DC/SFQ and QET for simulation is shown in FIG. 5 and FIG. 6, and the corresponding parameters of their elements are listed in TABLE 1 and TABLE 2, which are basd on the SFQ circuit design data from Ref. 18. In these two tables, the parameters whose names start with letter “JJ” are the critical currents of corresponding Josephson junctions. The circuit of the QET in FIG. 6 is a little different from FIG. 2 for consideration of the parasitic inductances, but the functions of the QET will not change essentially. FIG. 7 shows the simulation results including the waveforms of (a) the drive currents for DC/SFQ, ISAI_{\rm SA}, ISBI_{\rm SB}, ISCI_{\rm SC} and ISDI_{\rm SD} mentioned in FIG. 6; (b) the node voltages for QET input ports, VAV_{\rm A}, VBV_{\rm B}, VCV_{\rm C} and VDV_{\rm D}, which are SFQ pulses with time interval 2 ns; (c) the inductor loop current ipi_{\rm p}.

Table 3: The simulation values and analytical values of the inductor loop currents with different ncn_{\rm c} and nfn_{\rm f} in the simulation for a single QET.
ncn_{\rm c} nfn_{\rm f} Simulation (μ\muA) Analytical (μ\muA) Relative Deviation (%)
1 0 13.58935 13.03599 4.245
0 1 1.358815 1.303599 4.236
1 1 14.94845 14.33959 4.246
2 0 27.18550 26.07198 4.271
0 2 2.717590 2.607198 4.234

To change the inductor loop current ip(t)i_{\rm p}(t) which provides external flux Φe=Mip(t)\varPhi_{\rm e}=Mi_{\rm p}(t), ncn_{\rm c} and nfn_{\rm f} can be set by the SFQ pulse sequence from DC/SFQ. The simulation and analytical values of the inductor loop current with different ncn_{\rm c} and nfn_{\rm f} are compared in TABLE 3. First, by setting nc=1n_{\rm c}=1 and nf=0n_{\rm f}=0 with SFQ pulses sent to port A and port B (coarse tuning), Δipc\Delta i_{\rm pc} can be extracted from the height of the leftmost lug boss of the inductor loop current curve in FIG. 7(c). The extraction value of Δipc\Delta i_{\rm pc} is 13.58935 μA{\rm\mu A}, which is close to the value 13.03599 μA{\rm\mu A} calculated by Equation (7) with relative deviation 4.245%. Similarly, by setting nc=0n_{\rm c}=0 and nf=1n_{\rm f}=1 with SFQ pulses sent to port C and port D (fine tuning), Δipf\Delta i_{\rm pf} can also be extracted as 1.358815 μA{\rm\mu A} from the second left current lug boss, which is also close to analytical solution 1.303599 μA{\rm\mu A} from Equation (7) with relative deviation 4.236%. Therefore, the rcfr_{\rm cf} from this simulation is 10.00088 according to Equation (18), almost the same as 10.0, the theory value from analytical solutions.

By setting nc=1n_{\rm c}=1 and nf=1n_{\rm f}=1, the two parts of the inductor loop current correspondingly made by coarse tuning and fine tuning can be accumulated, as shown in the third left lug boss in FIG. 7(c). By setting nc=2n_{\rm c}=2 and nf=0n_{\rm f}=0, the inductor loop current can be double times of Δipc\Delta i_{\rm pc}. Similarly, by setting nc=0n_{\rm c}=0 and nf=2n_{\rm f}=2, the inductor loop current can also be double times of Δipf\Delta i_{\rm pf}. Generally, if the inductor loop current is required to be NcN_{\rm c} times of Δipc\Delta i_{\rm pc} plus NfN_{\rm f} times of Δipf\Delta i_{\rm pf}, then ncn_{\rm c} should be set as NcN_{\rm c} and nfn_{\rm f} should be set as NfN_{\rm f} according to Equation (11).

The waveform of the inductor loop current is similar with composited square waves on the whole, and their rising edges and falling edges are steep, which is helpful for avoiding the crosstalk when the qubit frequency is changing across frequencies of other qubits or resonators, because the qubit frequency is changed quickly enough within time (several picosecond) much shorter than a gate operation time (several nanosecond).

B. Z Gate by a QET

Refer to caption
Figure 8: Z Gate Simulation Results.
Refer to caption
Figure 9: Trajectory of the point representing qubit state in Z gate simulation (in black).

The simulation in this section shows how a QET can perform a Z gate. The circuit for simulation is defined as the circuit in the purple-dashed-line box of FIG. 4, which is based on the circuit of the former simulation in the blue-dashed-line box. The controlled qubit, Qubit 1, is a symmetric flux-tunable transmon connected to the former circuit, so we set d=0d=0 and EJ1=EJ2=EJE_{\rm J1}=E_{\rm J2}=E_{\rm J}. Qubit 2 is ignored temporarily. By controlling the time interval of two SFQ pulses inputted to the port A and B of the QET, the phase of a flux-tunable transmon can be adjusted. Qubit 1 is only drived by coarse tuning with nc=1n_{\rm c}=1, so we set ii=0i_{\rm i}=0 and iw=Δipci_{\rm w}=\Delta i_{\rm pc}, and then Δω(t)\Delta\omega(t) can be approximately treated as the constant Δωq\Delta\omega_{\rm q} when tsttet_{\rm s}\leqslant t\leqslant t_{\rm e}, that is,

iz(t)=ip(t)={Δipc,tstte,0,0t<tsort>te,i_{\rm z}(t)=i_{\rm p}(t)=\begin{cases}\Delta i_{\rm pc},&t_{\rm s}\leqslant t\leqslant t_{\rm e},\\ 0,&0\leqslant t<t_{\rm s}\ {\rm or}\ t\textgreater t_{\rm e},\\ \end{cases} (57)

and

Δωq=4ECEJ(|cos(πMΔipcΦ0)|1).\Delta\omega_{\rm q}=\dfrac{4\sqrt{E_{\rm C}E_{\rm J}}}{\hbar}\left(\sqrt{\left|{\rm cos}\left(\pi\dfrac{M\Delta i_{\rm pc}}{\Phi_{0}}\right)\right|}-1\right). (58)

Then, with Equation (55) and (58), we have

φ=4ECEJ(1|cos(πMΔipcΦ0)|)tz.\varphi=\dfrac{4\sqrt{E_{\rm C}E_{\rm J}}}{\hbar}\left(1-\sqrt{\left|{\rm cos}\left(\pi\dfrac{M\Delta i_{\rm pc}}{\Phi_{0}}\right)\right|}\right)t_{\rm z}. (59)

The evolution operator U~dz\widetilde{U}_{\rm dz} turns to be

U~dz=(100exp(i4ECEJ(1|cos(πMΔipcΦ0)|)tz)).\begin{split}&\widetilde{U}_{\rm dz}=\\ &\left(\begin{matrix}1&0\\ 0&\exp\left({\mathrm{i}\dfrac{4\sqrt{E_{\rm C}E_{\rm J}}}{\hbar}\left(1-\sqrt{\left|{\rm cos}\left(\pi\dfrac{M\Delta i_{\rm pc}}{\Phi_{0}}\right)\right|}\right)t_{\rm z}}\right)\end{matrix}\right).\end{split} (60)

By designing the qubit and the QET, the parameters ECE_{\rm C}, EJE_{\rm J}, MM and Δipc\Delta i_{\rm pc} can be determined properly to make tzt_{\rm z} in a range easy to realize. Then, for more precise control, the value of tzt_{\rm z} should be optimized in practical experiments. Fine tuning can also be performed to compensate gate errors. In this simulation as a simple case, there are EJ/=2π(11.147GHz)E_{\rm J}/\hbar=2\pi\cdot(11.147\ {\rm GHz}), EC/=2π(148.628MHz)E_{\rm C}/\hbar=2\pi\cdot(148.628\ {\rm MHz}), M=0.02nHM=0.02\ {\rm nH}, Δipc=13.58935μA\Delta i_{\rm pc}=13.58935\ {\rm\mu A}. And to realize a Z gate, tzt_{\rm z} should be 2.261 ns by solving the equation φ=π\varphi=\pi. The initial state of Qubit 1 is set to be |ψinit=1/2|0+1/2|1|\psi\rangle_{\rm init}=1/\sqrt{2}|0\rangle+1/\sqrt{2}|1\rangle. The data of ip(t)i_{\rm p}(t) is first extracted from its time-domain simulation in WRSpice similar with the former simulation of the single QET without the qubit. Then it is imported to the Z gate simulation program using QuTip [19, 20] to calculate the time-domain data of the drive Hamiltonian for Z control. By calling the function solving master equation or Schrödinger equation of QuTip, like qutip.mesolve() or qutip.sesolve(), the time-evolution of the qubit state changed by a Z gate operated by the QET can be figured out with a total Hamiltonian HH consisting of drive Hamiltonian HdzH_{\rm dz} and idle qubit Hamiltonian H0H_{0}, which is expressed by Equation (47).

The simulation results for a Z gate by the QET in the rotating frame is presented in FIG. 8. Besides the waveforms including (a) drive currents for DC/SFQ, (b) node voltages for QET input and (c) inductor loop current, (d) the frequencies of the qubit eigen energies and (e) the qubit frequency are also plotted in FIG. 8. The black trajectory of the point representing qubit state on the surface of Bloch sphere is drawn in FIG. 9. In this simulation, the gate operation time 2.261 ns is actually controlled by setting the time interval of rising edges of two square-wave pulses in FIG. 8(a). During the period of gate operation (in the lug boss of inductor loop current curve), the qubit frequency is kept at 4.779 GHz with EJS/EC=137.5E_{\rm JS}/E_{\rm C}=137.5, changed from 5.0 GHz with EJS/EC=150E_{\rm JS}/E_{\rm C}=150. And the end state of the qubit turns to be |ψend=0.70943|0+(0.704760.0049432i)|1|\psi\rangle_{\rm end}=0.70943|0\rangle+(-0.70476-0.0049432{\rm i})|1\rangle, which is close to the ideal end state |ψiend=1/2|01/2|1|\psi\rangle_{\rm iend}=1/\sqrt{2}|0\rangle-1/\sqrt{2}|1\rangle. The Z gate fidelity for only this time of operation is 99.99884%.

C. iSWAP\rm{iSWAP} Gate by a QET

Refer to caption
Figure 10: iSWAP Gate Simulation Result.

The simulation in this section shows how a QET can perform an iSWAP gate by making the frequency of Qubit 1 the same as that of Qubit 2. Compared with the former simulation for Z gate, the method of this simulation with WRSpice and QuTip remains unchanged, but the simulation circuit is enlarged, as shown in the green-dashed-line box in FIG. 4. The coupling strength between Qubit 1 and Qubit 2 is g=2π(5MHz)g=2\pi\cdot(5\ {\rm MHz}). The results is presented in FIG. 10. The frequency of Qubit 1 (5.0 GHz) is tuned to the same level as the frequency of Qubit 2 (4.779 GHz) with ip=Δipc=13.58935μAi_{\rm p}=\Delta i_{\rm pc}=13.58935\ {\rm\mu A} by inputting an SFQ pulse to port A of the QET. Then, the QET does nothing for tz=49.16nst_{\rm z}=49.16\ {\rm ns} to wait for state swaping between Qubit 1 and Qubit 2 with the initial state |ψinit=|01|\psi\rangle_{\rm init}=|01\rangle. When they finished swaping qubit state, the second SFQ pulse is inputted to port B of the QET, which makes Qubit 1 back to its idle frequency. Usually, for two qubits coupling with g=2π(5MHz)g=2\pi\cdot(5\ {\rm MHz}), the iSWAP gate needs 50 ns. However, here the gate operation time is optimized as 49.16 ns to eliminate the extra phase shift of Qubit 1 caused by changing its frequency and to ensure that the fidelity of the iSWAP gate is high enough at the same time. With the ideal end state |ψiend=|10|\psi\rangle_{\rm iend}=|10\rangle and the actual end state |ψend=(0.012969+0.032406i)|01+(0.000578460.99939i)|10|\psi\rangle_{\rm end}=(-0.012969+0.032406{\rm i})|01\rangle+(0.00057846-0.99939{\rm i})|10\rangle in the simulation, the fidelity of the iSWAP gate for only this time of operation is 99.93906%.

V Summary and Outlook

In conclusion, we have proposed a device called qubit energy tuner (QET) with description of its circuit structure and theory for its SFQ-based digital Z control to a flux-tunable transmon. A QET can convert SFQ pulses to external flux for qubits, so it is able to set the idle frequency of a flux-tunable transmon and at the same time perform gate operations involving Z control, like Z gates and iSWAP gates, thus paving an approach for digital Z control of an SFQ-based quantum-classical interface, which is highly desirable for the research and development of a large-scale superconducting quantum computer.

For integrating with flux-tunable transmons and avoiding noise from SFQ circuits simultaneously, the parts of QETs consisting of flux bias units can be fabricated on another substrate which is electrical connected to the qubit chip through through silicon vias (TSVs) and indium bumps of a silicon interposer [13, 14]. To realize mutual inductances between transmon SQUIDs and inductor loops of QETs, TSVs and indium bumps should be parts of inductor loops so that the piece of inductor line of an inductor loop for flux bias can be fabricated on the qubit chip or the surface of the silicon interposer faced to qubits. To eliminate the electrical loss of inductor loops, the material of TSVs should be superconductive, e.g. TiN. QETs may also be used in other application scenarios requiring flux tuning, such as CZ gates [21], flux-tunable couplers [22, 23] and qubit readout with a Josephson photomultiplier [24]. As for further research, it is valuable to design and fabricate this device for experiments about SFQ-based digital control of qubits, especially flux-tunable transmons.

Acknowlegdments

This work is partially supported by the key R&\&D program of Guangdong province (Grant No.2019B010143002).

Appendix A. External Flux of SQUID from the Inductor Loop of QET

According to Kirchhoff’s voltage law, the electric potentials of nodes A, B, C, D, E in FIG. 2 are

VA(t)=L1di1(t)dt+M1dip(t)dt+M12di2(t)dt,V_{\rm A}(t^{\prime})=L_{1}\dfrac{{\rm d}i_{1}(t^{\prime})}{{\rm d}t^{\prime}}+M_{1}\dfrac{{\rm d}i_{\rm p}(t^{\prime})}{{\rm d}t^{\prime}}+M_{12}\dfrac{{\rm d}i_{2}(t^{\prime})}{{\rm d}t^{\prime}}, (61)
VB(t)=L2di2(t)dtM2dip(t)dt+M12di1(t)dt,V_{\rm B}(t^{\prime})=L_{2}\dfrac{{\rm d}i_{2}(t^{\prime})}{{\rm d}t^{\prime}}-M_{2}\dfrac{{\rm d}i_{\rm p}(t^{\prime})}{{\rm d}t^{\prime}}+M_{12}\dfrac{{\rm d}i_{1}(t^{\prime})}{{\rm d}t^{\prime}}, (62)
VC(t)=L3di3(t)dt+M3dip(t)dt+M34di4(t)dt,V_{\rm C}(t^{\prime})=L_{3}\dfrac{{\rm d}i_{3}(t^{\prime})}{{\rm d}t^{\prime}}+M_{3}\dfrac{{\rm d}i_{\rm p}(t^{\prime})}{{\rm d}t^{\prime}}+M_{34}\dfrac{{\rm d}i_{4}(t^{\prime})}{{\rm d}t^{\prime}}, (63)
VD(t)=L4di4(t)dtM4dip(t)dt+M34di3(t)dt,V_{\rm D}(t^{\prime})=L_{4}\dfrac{{\rm d}i_{4}(t^{\prime})}{{\rm d}t^{\prime}}-M_{4}\dfrac{{\rm d}i_{\rm p}(t^{\prime})}{{\rm d}t^{\prime}}+M_{34}\dfrac{{\rm d}i_{3}(t^{\prime})}{{\rm d}t^{\prime}}, (64)
VE(t)=LΣdip(t)dt+M1di1(t)dtM2di2(t)dt+M3di3(t)dtM4di4(t)dt+Mdiq(t)dt,\begin{split}V_{\rm{E}}(t^{\prime})&=L_{\Sigma}\dfrac{{\rm d}i_{\rm p}(t^{\prime})}{{\rm d}t^{\prime}}+M_{1}\dfrac{{\rm d}i_{1}(t^{\prime})}{{\rm d}t^{\prime}}-M_{2}\dfrac{{\rm d}i_{2}(t^{\prime})}{{\rm d}t^{\prime}}\\ &+M_{3}\dfrac{{\rm d}i_{3}(t^{\prime})}{{\rm d}t^{\prime}}-M_{4}\dfrac{{\rm d}i_{4}(t^{\prime})}{{\rm d}t^{\prime}}+M\dfrac{{\rm d}i_{\rm q}(t^{\prime})}{{\rm d}t^{\prime}},\end{split} (65)

where

LΣ=Ln0+Ln1+Ln2+Ln3+Ln4+Ln5L_{\Sigma}=L_{\rm n0}+L_{\rm n1}+L_{\rm n2}+L_{\rm n3}+L_{\rm n4}+L_{\rm n5} (66)

is the total inductance of the inductor loop obtained by summing self inductances of all parts of the inductor loop. L1L_{1}, L2L_{2}, L3L_{3} and L4L_{4} are self inductances of inductors in flux bias units. M1M_{1}, M2M_{2}, M3M_{3} and M4M_{4} are mutual inductances of flux bias units and the inductor loop as shown in FIG. 2. MM is the mutual inductance between the inductor loop and the SQUID of flux-tunable transmon. i1(t)i_{1}(t^{\prime}), i2(t)i_{2}(t^{\prime}), i3(t)i_{3}(t^{\prime}), i4(t)i_{4}(t^{\prime}) are currents of inductors in flux bias units at the moment tt^{\prime}. ip(t)i_{\rm p}(t^{\prime}) and iq(t)i_{\rm q}(t^{\prime}) are the current of inductor loop and the SQUID at the moment tt^{\prime}.

Under the zero initial condition, integrating both sides of Equation (61)-(65) with 0 as lower bound and time tt as upper bound yields

0tVA(t)dt=L1i1(t)+M1ip(t)+M12i2(t),\int^{t}_{0}V_{\rm A}(t^{\prime}){\rm d}t^{\prime}=L_{1}i_{1}(t)+M_{1}i_{\rm p}(t)+M_{12}i_{2}(t), (67)
0tVB(t)dt=L2i2(t)M2ip(t)+M12i1(t),\int^{t}_{0}V_{\rm B}(t^{\prime}){\rm d}t^{\prime}=L_{2}i_{2}(t)-M_{2}i_{\rm p}(t)+M_{12}i_{1}(t), (68)
0tVC(t)dt=L3i3(t)+M3ip(t)+M34i4(t),\int^{t}_{0}V_{\rm C}(t^{\prime}){\rm d}t^{\prime}=L_{3}i_{3}(t)+M_{3}i_{\rm p}(t)+M_{34}i_{4}(t), (69)
0tVD(t)dt=L4i4(t)M4ip(t)+M34i3(t),\int^{t}_{0}V_{\rm D}(t^{\prime}){\rm d}t^{\prime}=L_{4}i_{4}(t)-M_{4}i_{\rm p}(t)+M_{34}i_{3}(t), (70)
0tVE(t)dt=LΣip(t)+M1i1(t)M2i2(t)+M3i3(t)M4i4(t)+Miq(t).\begin{split}\int^{t}_{0}V_{\rm{E}}(t^{\prime}){\rm d}t^{\prime}&=L_{\Sigma}i_{\rm p}(t)+M_{1}i_{1}(t)-M_{2}i_{2}(t)\\ &+M_{3}i_{3}(t)-M_{4}i_{4}(t)+Mi_{\rm q}(t).\end{split} (71)

The mutual inductance MM is designed to be much smaller than total inductance of the inductor loop LΣL_{\Sigma} and other mutual inductances like M1M_{1} for weak coupling to the SQUID of the qubit. And the ring current of the SQUID iqi_{\rm q}(t) should be less than the critical current of its Josephson junctions, which is about tens of nA for Al/AlOx/Al junctions and smaller than the current in the inductance loop ipi_{\rm p}(t) (about several or tens of mA) by two or more orders of magnitude. Therefore, the influence of the SQUID on the inductance loop, MiqMi_{\rm q}, can be ignored in Equation (71), and the electric potential of node E is rewritten as

0tVE(t)dt=LΣip(t)+M1i1(t)M2i2(t)+M3i3(t)M4i4(t).\begin{split}\int^{t}_{0}V_{\rm{E}}(t^{\prime}){\rm d}t^{\prime}&=L_{\Sigma}i_{\rm p}(t)+M_{1}i_{1}(t)-M_{2}i_{2}(t)\\ &+M_{3}i_{3}(t)-M_{4}i_{4}(t).\end{split} (72)

And then, let

ΦA(t)=0tVA(t)dt,\varPhi_{\rm A}(t)=\int^{t}_{0}V_{\rm A}(t^{\prime}){\rm d}t^{\prime}, (73)
ΦB(t)=0tVB(t)dt,\varPhi_{\rm B}(t)=\int^{t}_{0}V_{\rm B}(t^{\prime}){\rm d}t^{\prime}, (74)
ΦC(t)=0tVC(t)dt,\varPhi_{\rm C}(t)=\int^{t}_{0}V_{\rm C}(t^{\prime}){\rm d}t^{\prime}, (75)
ΦD(t)=0tVD(t)dt,\varPhi_{\rm D}(t)=\int^{t}_{0}V_{\rm D}(t^{\prime}){\rm d}t^{\prime}, (76)
ΦE(t)=0tVE(t)dt,\varPhi_{\rm E}(t)=\int^{t}_{0}V_{\rm E}(t^{\prime}){\rm d}t^{\prime}, (77)

we get

𝚽(t)=𝑳𝒊(t),{\bm{\varPhi}}(t)={\bm{L}}{\bm{i}}(t), (78)

where

𝚽(t)=[ΦA(t)ΦB(t)ΦC(t)ΦD(t)ΦE(t)],{\bm{\varPhi}}(t)=\begin{bmatrix}\varPhi_{\rm A}(t)\\ \varPhi_{\rm B}(t)\\ \varPhi_{\rm C}(t)\\ \varPhi_{\rm D}(t)\\ \varPhi_{\rm E}(t)\end{bmatrix}, (79)
𝒊(t)=[i1(t)i2(t)i3(t)i4(t)ip(t)],{\bm{i}}(t)=\begin{bmatrix}i_{1}(t)\\ i_{2}(t)\\ i_{3}(t)\\ i_{4}(t)\\ i_{\rm p}(t)\end{bmatrix}, (80)

and

𝑳=[L1M1200M1M12L200M200L3M34M300M34L4M4M1M2M3M4LΣ].{\bm{L}}=\begin{bmatrix}L_{1}&M_{12}&0&0&M_{1}\\ M_{12}&L_{2}&0&0&-M_{2}\\ 0&0&L_{3}&M_{34}&M_{3}\\ 0&0&M_{34}&L_{4}&-M_{4}\\ M_{1}&-M_{2}&M_{3}&-M_{4}&L_{\Sigma}\end{bmatrix}. (81)

Then, to get 𝒊(t){\bm{i}}(t), we have

𝒊(t)=𝑳1𝚽(t),{\bm{i}}(t)={\bm{L}^{-1}}{\bm{\varPhi}}(t), (82)

where 𝑳1=1F𝑨{\bm{L}^{-1}}=\dfrac{1}{F}{\bm{A}}. 1F\dfrac{1}{F} is the common factor of the elements in the inverse matrix of 𝑳{\bm{L}}. FF is

F=L2(M342(L1LΣM12)+2L1M3M34M4+L3(L4(L1LΣM12)+L1M42)+L1L4M32)+(L1M22LΣM1222M1M12M2)M3422M122M3M34M4+L3((L1M22+LΣM122+2M1M12M2)L4M122M42)L4M122M32.\begin{split}F&=L_{2}(M_{34}^{2}(L_{1}L_{\Sigma}-M_{1}^{2})+2L_{1}M_{3}M_{34}M_{4}\\ &+L_{3}(-L_{4}(L_{1}L_{\Sigma}-M_{1}^{2})+L_{1}M_{4}^{2})+L_{1}L_{4}M_{3}^{2})\\ &+(-L_{1}M_{2}^{2}-L_{\Sigma}M_{12}^{2}-2M_{1}M_{12}M_{2})M_{34}^{2}\\ &-2M_{12}^{2}M_{3}M_{34}M_{4}\\ &+L_{3}((L_{1}M_{2}^{2}+L_{\Sigma}M_{12}^{2}+2M_{1}M_{12}M_{2})L_{4}-M_{12}^{2}M_{4}^{2})\\ &-L_{4}M_{12}^{2}M_{3}^{2}.\end{split} (83)

The elements aija_{ij} (i,j=1,2,3,4,5i,j=1,2,3,4,5) of 𝑨{\bm{A}}, are

a11\displaystyle a_{11} =\displaystyle= L2(M342LΣ+2M3M4M34\displaystyle L_{2}(M_{34}^{2}L_{\Sigma}+2M_{3}M_{4}M_{34}
+(L4LΣ+M42)L3+L4M32)\displaystyle+(-L_{4}L_{\Sigma}+M_{4}^{2})L_{3}+L_{4}M_{3}^{2})
+M22(L3L4M342),\displaystyle+M_{2}^{2}(L_{3}L_{4}-M_{34}^{2}),
a12\displaystyle a_{12} =\displaystyle= M12(M342LΣ2M3M4M34\displaystyle M_{12}(-M_{34}^{2}L_{\Sigma}-2M_{3}M_{4}M_{34}
+(L4LΣM42)L3L4M32)\displaystyle+(L_{4}L_{\Sigma}-M_{4}^{2})L_{3}-L_{4}M_{3}^{2})
+M1M2(L3L4M342),\displaystyle+M_{1}M_{2}(L_{3}L_{4}-M_{34}^{2}),
a13\displaystyle a_{13} =\displaystyle= (L4M3+M34M4)(L2M1+M12M2),\displaystyle-(L_{4}M_{3}+M_{34}M_{4})(L_{2}M_{1}+M_{12}M_{2}),
a14\displaystyle a_{14} =\displaystyle= (L2M1+M12M2)(L3M4+M3M34),\displaystyle(L_{2}M_{1}+M_{12}M_{2})(L_{3}M_{4}+M_{3}M_{34}),
a15\displaystyle a_{15} =\displaystyle= (L3L4M342)(L2M1+M12M2),\displaystyle(L_{3}L_{4}-M_{34}^{2})(L_{2}M_{1}+M_{12}M_{2}),
a21\displaystyle a_{21} =\displaystyle= M12(M342LΣ2M3M4M34\displaystyle M_{12}(-M_{34}^{2}L_{\Sigma}-2M_{3}M_{4}M_{34}
+(L4LΣM42)L3L4M32)\displaystyle+(L_{4}L_{\Sigma}-M_{4}^{2})L_{3}-L_{4}M_{3}^{2})
+M1M2(L3L4M342),\displaystyle+M_{1}M_{2}(L_{3}L_{4}-M_{34}^{2}),
a22\displaystyle a_{22} =\displaystyle= L1(M342LΣ+2M3M4M34\displaystyle L_{1}(M_{34}^{2}L_{\Sigma}+2M_{3}M_{4}M_{34}
+(L4LΣ+M42)L3+L4M32)\displaystyle+(-L_{4}L_{\Sigma}+M_{4}^{2})L_{3}+L_{4}M_{3}^{2})
+M12(L3L4M342),\displaystyle+M_{1}^{2}(L_{3}L_{4}-M_{34}^{2}),
a23\displaystyle a_{23} =\displaystyle= (L4M3+M34M4)(L1M2+M1M12),\displaystyle(L_{4}M_{3}+M_{34}M_{4})(L_{1}M_{2}+M_{1}M_{12}),
a24\displaystyle a_{24} =\displaystyle= (L1M2+M1M12)(L3M4+M3M34),\displaystyle-(L_{1}M_{2}+M_{1}M_{12})(L_{3}M_{4}+M_{3}M_{34}),
a25\displaystyle a_{25} =\displaystyle= (L3L4M342)(L1M2+M1M12),\displaystyle-(L_{3}L_{4}-M_{34}^{2})(L_{1}M_{2}+M_{1}M_{12}),
a31\displaystyle a_{31} =\displaystyle= (L4M3+M34M4)(L2M1+M12M2),\displaystyle-(L_{4}M_{3}+M_{34}M_{4})(L_{2}M_{1}+M_{12}M_{2}),
a32\displaystyle a_{32} =\displaystyle= (L4M3+M34M4)(L1M2+M1M12),\displaystyle(L_{4}M_{3}+M_{34}M_{4})(L_{1}M_{2}+M_{1}M_{12}),
a33\displaystyle a_{33} =\displaystyle= L4(LΣM122+2M1M2M12\displaystyle L_{4}(L_{\Sigma}M_{12}^{2}+2M_{1}M_{2}M_{12}
+(L2LΣ+M22)L1+L2M12)\displaystyle+(-L_{2}L_{\Sigma}+M_{2}^{2})L_{1}+L_{2}M_{1}^{2})
+M42(L1L2M122),\displaystyle+M_{4}^{2}(L_{1}L_{2}-M_{12}^{2}),
a34\displaystyle a_{34} =\displaystyle= M34(LΣM1222M1M2M12\displaystyle M_{34}(-L_{\Sigma}M_{12}^{2}-2M_{1}M_{2}M_{12}
+(L2LΣM22)L1L2M12)\displaystyle+(L_{2}L_{\Sigma}-M_{2}^{2})L_{1}-L_{2}M_{1}^{2})
+M3M4(L1L2M122),\displaystyle+M_{3}M_{4}(L_{1}L_{2}-M_{12}^{2}),
a35\displaystyle a_{35} =\displaystyle= (L1L2M122)(L4M3+M34M4),\displaystyle(L_{1}L_{2}-M_{12}^{2})(L_{4}M_{3}+M_{34}M_{4}),
a41\displaystyle a_{41} =\displaystyle= (L2M1+M12M2)(L3M4+M3M34),\displaystyle(L_{2}M_{1}+M_{12}M_{2})(L_{3}M_{4}+M_{3}M_{34}),
a42\displaystyle a_{42} =\displaystyle= (L1M2+M1M12)(L3M4+M3M34),\displaystyle-(L_{1}M_{2}+M_{1}M_{12})(L_{3}M_{4}+M_{3}M_{34}),
a43\displaystyle a_{43} =\displaystyle= M34(LΣM1222M1M2M12\displaystyle M_{34}(-L_{\Sigma}M_{12}^{2}-2M_{1}M_{2}M_{12}
+(L2LΣM22)L1L2M12)\displaystyle+(L_{2}L_{\Sigma}-M_{2}^{2})L_{1}-L_{2}M_{1}^{2})
+M3M4(L1L2M122),\displaystyle+M_{3}M_{4}(L_{1}L_{2}-M_{12}^{2}),
a44\displaystyle a_{44} =\displaystyle= L3(LΣM122+2M1M2M12\displaystyle L_{3}(L_{\Sigma}M_{12}^{2}+2M_{1}M_{2}M_{12}
+(L2LΣ+M22)L1+L2M12)\displaystyle+(-L_{2}L_{\Sigma}+M_{2}^{2})L_{1}+L_{2}M_{1}^{2})
+M32(L1L2M122),\displaystyle+M_{3}^{2}(L_{1}L_{2}-M_{12}^{2}),
a45\displaystyle a_{45} =\displaystyle= (L1L2M122)(L3M4+M3M34),\displaystyle-(L_{1}L_{2}-M_{12}^{2})(L_{3}M_{4}+M_{3}M_{34}),
a51\displaystyle a_{51} =\displaystyle= (L3L4M342)(L2M1+M12M2),\displaystyle(L_{3}L_{4}-M_{34}^{2})(L_{2}M_{1}+M_{12}M_{2}),
a52\displaystyle a_{52} =\displaystyle= (L3L4M342)(L1M2+M1M12),\displaystyle-(L_{3}L_{4}-M_{34}^{2})(L_{1}M_{2}+M_{1}M_{12}),
a53\displaystyle a_{53} =\displaystyle= (L1L2M122)(L4M3+M34M4),\displaystyle(L_{1}L_{2}-M_{12}^{2})(L_{4}M_{3}+M_{34}M_{4}),
a54\displaystyle a_{54} =\displaystyle= (L1L2M122)(L3M4+M3M34),\displaystyle-(L_{1}L_{2}-M_{12}^{2})(L_{3}M_{4}+M_{3}M_{34}),
a55\displaystyle a_{55} =\displaystyle= (L3L4M342)(L1L2M122).\displaystyle-(L_{3}L_{4}-M_{34}^{2})(L_{1}L_{2}-M_{12}^{2}).

Therefore, we have

ip(t)=1F(a51ΦA(t)+a52ΦB(t)+a53ΦC(t)+a54ΦD(t)+a55ΦE(t)),\begin{split}i_{\rm p}(t)=&\dfrac{1}{F}(a_{51}\varPhi_{\rm A}(t)+a_{52}\varPhi_{\rm B}(t)\\ &+a_{53}\varPhi_{\rm C}(t)+a_{54}\varPhi_{\rm D}(t)+a_{55}\varPhi_{\rm E}(t)),\end{split} (86)

that is

ip(t)=1F(ΦA(t)(L3L4M342)(L2M1+M12M2)ΦB(t)(L3L4M342)(L1M2+M1M12)+ΦC(t)(L1L2M122)(L4M3+M34M4)ΦD(t)(L1L2M122)(L3M4+M3M34)ΦE(t)(L3L4M342)(L1L2M122)).\begin{split}i_{\rm p}(t)=&\dfrac{1}{F}(\varPhi_{\rm A}(t)(L_{3}L_{4}-M_{34}^{2})(L_{2}M_{1}+M_{12}M_{2})\\ &-\varPhi_{\rm B}(t)(L_{3}L_{4}-M_{34}^{2})(L_{1}M_{2}+M_{1}M_{12})\\ &+\varPhi_{\rm C}(t)(L_{1}L_{2}-M_{12}^{2})(L_{4}M_{3}+M_{34}M_{4})\\ &-\varPhi_{\rm D}(t)(L_{1}L_{2}-M_{12}^{2})(L_{3}M_{4}+M_{3}M_{34})\\ &-\varPhi_{\rm E}(t)(L_{3}L_{4}-M_{34}^{2})(L_{1}L_{2}-M_{12}^{2})).\end{split} (87)

Because node E is connected to the ground, ΦE\varPhi_{\rm E} should always be zero. To make the flux bias units of coarse tuning be able to increase or decrease the external flux through the SQUID by the same amount, the following requirements should be met:

L1\displaystyle L_{1} =\displaystyle= L2=Lc,\displaystyle L_{2}=L_{\rm c}, (88a)
M1\displaystyle M_{1} =\displaystyle= M2=Mc.\displaystyle M_{2}=M_{\rm c}. (88b)

Similarly, for the flux bias units of fine tuning, we have

L3\displaystyle L_{3} =\displaystyle= L4=Lf,\displaystyle L_{4}=L_{\rm f}, (89a)
M3\displaystyle M_{3} =\displaystyle= M4=Mf.\displaystyle M_{4}=M_{\rm f}. (89b)

Therefore, ip(t)i_{\rm p}(t) turns to be

ip(t)=1F((ΦAΦB)(Lf2M342)(LcMc+M12Mc)+(ΦCΦD)(Lc2M122)(LfMf+M34Mf)),\begin{split}i_{\rm p}(t)=&\dfrac{1}{F}((\varPhi_{\rm A}-\varPhi_{\rm B})(L_{\rm f}^{2}-M_{34}^{2})(L_{\rm c}M_{\rm c}+M_{12}M_{\rm c})\\ &+(\varPhi_{\rm C}-\varPhi_{\rm D})(L_{\rm c}^{2}-M_{12}^{2})(L_{\rm f}M_{\rm f}+M_{34}M_{\rm f})),\end{split} (90)

and FF turns to be

F=LcLf((LΣLf+Mf2)Lc+LfMc2)+(Lf+M34)(LΣLfLΣM342Mf2)M122+(2Lf2Mc22M342Mc2)M12+Lc((LΣLc2Mc2)M342+2LcMfMfM34+LcLfMf2+Lf2Mc2).\begin{split}F&=L_{\rm c}L_{\rm f}((-L_{\Sigma}L_{\rm f}+M_{\rm f}^{2})L_{\rm c}+L_{\rm f}M_{\rm c}^{2})\\ &+(L_{\rm f}+M_{34})(L_{\Sigma}L_{\rm f}-L_{\Sigma}M_{34}-2M_{\rm f}^{2})M_{12}^{2}\\ &+(2L_{\rm f}^{2}M_{\rm c}^{2}-2M_{34}^{2}M_{\rm c}^{2})M_{12}\\ &+L_{\rm c}((L_{\Sigma}L_{\rm c}-2M_{\rm c}^{2})M_{34}^{2}\\ &+2L_{\rm c}M_{\rm f}M_{\rm f}M_{34}+L_{\rm c}L_{\rm f}M_{\rm f}^{2}+L_{\rm f}^{2}M_{\rm c}^{2}).\end{split} (91)

Hence, the relationship between the current of the inductor loop ip(t)i_{\rm p}(t) and the external flux through the SQUID Φe\varPhi_{\rm e} is

Φe=Mip(t).\varPhi_{\rm e}=Mi_{\rm p}(t). (92)

References

  • Barends et al. [2014] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, et al., Nature 508, 500 (2014).
  • Arute et al. [2019] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, et al., Nature 574, 505 (2019).
  • Likharev and Semenov [1991] K. Likharev and V. Semenov, IEEE Transactions on Applied Superconductivity 1, 3 (1991).
  • McDermott et al. [2018] R. McDermott, M. Vavilov, B. Plourde, F. Wilhelm, P. Liebermann, O. Mukhanov, and T. Ohki, Quantum science and technology 3, 024004 (2018).
  • McDermott and Vavilov [2014] R. McDermott and M. Vavilov, Physical Review Applied 2, 014007 (2014).
  • Leonard Jr et al. [2019] E. Leonard Jr, M. A. Beck, J. Nelson, B. G. Christensen, T. Thorbeck, C. Howington, A. Opremcak, I. V. Pechenezhskiy, K. Dodge, N. P. Dupuis, et al., Physical Review Applied 11, 014009 (2019).
  • Liebermann and Wilhelm [2016] P. J. Liebermann and F. K. Wilhelm, Physical Review Applied 6, 024022 (2016).
  • Li et al. [2019] K. Li, R. McDermott, and M. G. Vavilov, Physical Review Applied 12, 014044 (2019).
  • Jokar et al. [2022] M. R. Jokar, R. Rines, G. Pasandi, H. Cong, A. Holmes, Y. Shi, M. Pedram, and F. T. Chong, in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (2022) pp. 400–414.
  • Dalgaard et al. [2020] M. Dalgaard, F. Motzoi, J. J. Sørensen, and J. Sherson, npj Quantum Information 6, 1 (2020).
  • Jokar et al. [2021] M. R. Jokar, R. Rines, and F. T. Chong, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021) pp. 402–412.
  • Johnson et al. [2010] M. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. Berkley, E. Chapple, R. Harris, J. Johansson, T. Lanting, I. Perminov, et al., Superconductor Science and Technology 23, 065004 (2010).
  • Rosenberg et al. [2017] D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G. Samach, et al., npj quantum information 3, 1 (2017).
  • Rosenberg et al. [2020] D. Rosenberg, S. J. Weber, D. Conway, D.-R. W. Yost, J. Mallek, G. Calusine, R. Das, D. Kim, M. E. Schwartz, W. Woods, et al., IEEE Microwave Magazine 21, 72 (2020).
  • Bunyk et al. [2014] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, et al., IEEE Transactions on Applied Superconductivity 24, 1 (2014).
  • Koch et al. [2007] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Physical Review A 76, 042319 (2007).
  • Krantz et al. [2019] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Applied Physics Reviews 6, 021318 (2019).
  • Li [2018] G. Li, Research on Superconducting RSFQ Circuit for Qubit Control, Ph.D. thesis, Tsinghua University (2018).
  • Johansson et al. [2012] J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 183, 1760 (2012).
  • Johansson et al. [2013] J. Johansson, P. Nation, and F. Nori, Computer Physics Communications 184, 1234 (2013).
  • Xu et al. [2020] Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, et al., Physical Review Letters 125, 240503 (2020).
  • Chen et al. [2014] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, et al., Physical review letters 113, 220502 (2014).
  • Yan et al. [2018] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Physical Review Applied 10, 054062 (2018).
  • Opremcak et al. [2018] A. Opremcak, I. Pechenezhskiy, C. Howington, B. Christensen, M. Beck, E. Leonard Jr, J. Suttle, C. Wilen, K. Nesterov, G. Ribeill, et al., Science 361, 1239 (2018).