This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quatroids and rational plane cubics

Taylor Brysiewicz Department of Mathematics, University of Western Ontario, London, Canada (ORCID: 0000-0003-4272-5934) [email protected] Fulvio Gesmundo Saarland Informatics Campus, Universität des Saarlandes, Saarbrücken, Germany (ORCID: 0000-0001-6402-021X) [email protected]  and  Avi Steiner Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz, Germany (ORCID: 0000-0003-2095-9203) [email protected]
Abstract.

It is a classical result that there are 1212 (irreducible) rational cubic curves through 88 generic points in 2\mathbb{P}_{\mathbb{C}}^{2}, but little is known about the non-generic cases. The space of 88-point configurations is partitioned into strata depending on combinatorial objects we call quatroids, a higher-order version of representable matroids. We compute all 779777779777 quatroids on eight distinct points in the plane, which produces a full description of the stratification. For each stratum, we generate several invariants, including the number of rational cubics through a generic configuration. As a byproduct of our investigation, we obtain a collection of results regarding the base loci of pencils of cubics and positive certificates for non-rationality.

Key words and phrases:
quatroid, rational cubic, matroid, stratification
2020 Mathematics Subject Classification:
(primary) 14N10, (secondary) 14E08, 55R80, 14H50, 05B35, 14Q05

1. Introduction

In this article, we address the following planar interpolation problem:

(Problem 1) How many rational cubic curves pass through eight distinct points in 2?\textit{How many rational cubic curves pass through eight distinct points in }\mathbb{P}_{\mathbb{C}}^{2}\textit{?}

Famously, the answer to this enumerative problem is 1212 whenever the eight points are in generic position (see Figure 1). A modern proof of this classical result follows by an evaluation of Kontsevich’s Formula [21, Claim 5.2.1]. We consider the non-generic cases of Problem 1.

Refer to caption
Figure 1. Twelve rational cubics through eight generic points in the plane. Any appearances of reducibility or points coinciding with nodes are visual illusions.

For almost all enumerative problems of interest, the count is known only for generic parameters. Determining the conditions of non-genericity for an enumerative problem is a hefty task; the challenge of describing the solution set over non-generic parameters is more difficult still. Such a full analysis has been achieved for few enumerative problems (e.g. [24]). We advance the understanding of non-generic instances of Problem 1 through combinatorial objects we call quatroids.

The parameter space of Problem 1 is the space 𝒫(2)8{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{P}}\subseteq(\mathbb{P}_{\mathbb{C}}^{2})^{8} of configurations of eight distinct points. We partition 𝒫\mathcal{P} into 779777779777 quatroid strata. Each stratum is a locally closed subset 𝒮𝒬𝒫{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{S}_{\mathcal{Q}}}\subset\mathcal{P} indexed by a pair 𝒬=(,𝒥){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{Q}}=({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{I}},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{J}}) of triples \mathcal{I} and sextuples 𝒥\mathcal{J} of {1,2,,8}\{1,2,\ldots,8\}. Those pairs 𝒬\mathcal{Q} for which 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is nonempty are called (representable) quatroids. A configuration p=(p1,,p8){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textbf{p}}=(p_{1},\ldots,p_{8}) is in 𝒮𝒬\mathcal{S}_{\mathcal{Q}} if the triples in \mathcal{I} index the triples of points in 𝐩\mathbf{p} lying on lines, and the sextuples in 𝒥\mathcal{J} do so for sextuples of points lying on (irreducible) conics. A similar construction was explored in [13] in the context of M-curves and singular cubic curves interpolating convex configurations of points in 2\mathbb{P}_{\mathbb{R}}^{2}.

The 779777779777 quatroids appear in 125125 orbits under the natural action of the symmetric group 𝔖8\mathfrak{S}_{8}. We compute a representative quatroid 𝒬{\mathcal{Q}} of each orbit, along with several of its invariants (see Figure 2). Included in this list is the number d𝒬{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}d_{\mathcal{Q}}} of rational cubics through a generic configuration in 𝒮𝒬\mathcal{S}_{\mathcal{Q}}.

Refer to caption
Quatroid #\#: 10 Orbit size: 168168
Lines: {123}\{123\} Conics: {145678}\{145678\}
Reducibles: 1\varnothing^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\varnothing} d𝒬d_{\mathcal{Q}}: 99
\mathbb{Q}-Representative: [242200241104424024430330242423]{\tiny{\begin{bmatrix}24&2&-2&0&0&24&-1&1\\ 0&4&4&24&0&24&-4&3\\ 0&-3&-3&0&24&24&2&-3\end{bmatrix}}}
Figure 2. An example of the data contained in the Appendix and auxiliary files: A labeled illustration (left) of eight points realizing the tenth quatroid orbit 𝒬10=({123},{145678})\mathcal{Q}_{10}=(\{123\},\{145678\}). The size of the orbit of 𝔖8\mathfrak{S}_{8} acting on 𝒬10\mathcal{Q}_{10} is 168168. There is one reducible cubic through a generic configuration of 𝒬10\mathcal{Q}_{10}: the union of a conic and a secant line, indicated by the symbol 1\varnothing^{1}. The additional symbol {\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\varnothing} indicates that this conic+secant appears with multiplicity one higher than expected. A rational representative is given.

The main results about the stratification are summarized in the data contained in the Appendix:

  • Figure 10 and Figure 11 illustrate each quatroid orbit via a real representative if available.

  • Table 4 and Table 5 enumerate each quatroid orbit. Included in these tables are their orbit sizes, combinatorial descriptions, descriptions of the reducible cubics through generic representatives, and the counts of rational cubics through a generic representatives.

  • Table 3 lists and describes the auxiliary files used to obtain the results in the paper.

The code and auxiliary files may be found at

https://mathrepo.mis.mpg.de/QuatroidsAndRationalPlaneCubics

Figure 10/ Figure 11 and Table 4/Table 5 contain 126126 entries, rather than 125125. These correspond to the 126126 orbits of candidate quatroids computed in Section 3. The 63rd63^{\text{rd}} entry in each describes a collection of linear and quadratic dependencies which cannot be realized by any configuration of eight distinct points in 2\mathbb{P}_{\mathbb{C}}^{2}.

An enumerative problem such as Problem 1 can be viewed as a branched cover, in the sense of [3, Section 2.2]. Specifically, let S33{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathbb{P}S^{3}\mathbb{C}^{3}} be the projectivization of the space of homogeneous ternary cubics and consider the following two subsets:

𝒞\displaystyle{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{C}} ={CS33C is rational and irreducible},\displaystyle=\{C\in\mathbb{P}S^{3}\mathbb{C}^{3}\mid C\text{ is rational and irreducible}\},
𝒟\displaystyle{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{D}} ={CS33C is singular}.\displaystyle=\{C\in\mathbb{P}S^{3}\mathbb{C}^{3}\mid C\text{ is singular}\}.

It is a classical fact that 𝒞\mathcal{C} is an open subvariety of the degree 1212 irreducible hypersurface 𝒟S33\mathcal{D}\subseteq\mathbb{P}S^{3}\mathbb{C}^{3} called the discriminant (see, e.g., [16, Example I.4.15]).

 Problem 1 pertains to rational cubics, but it is useful to consider the analogous problem for singular cubics. Hence, we consider incidence correspondences

𝒳\displaystyle{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{X}} ={(p,C)𝒫×𝒞C(pi)=0,i=1,,8},\displaystyle=\{(\textbf{p},C)\in\mathcal{P}\times\mathcal{C}\mid C(p_{i})=0,i=1,\ldots,8\},
𝒳¯\displaystyle{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{\mathcal{X}}} ={(p,C)𝒫×𝒟C(pi)=0,i=1,,8}.\displaystyle=\{(\textbf{p},C)\in\mathcal{P}\times\mathcal{D}\mid C(p_{i})=0,i=1,\ldots,8\}.

The natural projection maps π:𝒳𝒫\pi:\mathcal{X}\to\mathcal{P} and π¯:𝒳¯𝒫\overline{\pi}:\overline{\mathcal{X}}\to\mathcal{P} define two branched covers over 𝒫\mathcal{P}; clearly 𝒳¯\overline{\mathcal{X}} is the closure of 𝒳\mathcal{X} in 𝒫×S33\mathcal{P}\times\mathbb{P}S^{3}\mathbb{C}^{3} and π\pi is the composition of the open inclusion map 𝒞𝒟\mathcal{C}\hookrightarrow\mathcal{D} with π¯\overline{\pi}. With this setup, solving an instance of either enumerative problem over a configuration p𝒫\textbf{p}\in\mathcal{P} is the same as computing the fibers π1(p)\pi^{-1}(\textbf{p}) or π¯1(p)\overline{\pi}^{-1}(\textbf{p}) of the respective branched cover.

For fixed p𝒫\textbf{p}\in\mathcal{P}, the equations C(pi)=0C(p_{i})=0 define a linear space LpS33{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}L_{\textbf{p}}}\subset\mathbb{P}S^{3}\mathbb{C}^{3} on the space of ternary cubics; explicitly, L𝐩L_{\mathbf{p}} is the projectivization of the homogeneous component of degree 33 of the ideal of the points 𝐩\mathbf{p}. If the conditions C(pi)=0C(p_{i})=0 are linearly independent, then the dimension of LpL_{\textbf{p}} is dim(S310)8=1\dim(\mathbb{P}S^{3}\mathbb{C}^{10})-8=1: in this case L𝐩L_{\mathbf{p}} is a pencil. Hence, singular cubics through p𝒫\textbf{p}\in\mathcal{P} correspond to points in Lp𝒟L_{\textbf{p}}\cap\mathcal{D} and the analysis of π¯\overline{\pi} is equivalent to the analysis of how pencils of cubics in S33\mathbb{P}S^{3}\mathbb{C}^{3} meet the discriminant hypersurface 𝒟\mathcal{D}.

In Section 2 we outline the relevant algebro-geometric geometric facts underlying our analysis of the branched covers π\pi and π¯\overline{\pi}. We focus on the geometry of cubics. We characterize the point configurations p𝒫\textbf{p}\in\mathcal{P} for which there are infinitely many singular cubics through p (2.1) as well as those configurations for which there are fewer than 1212 rational cubics through p (Theorem 2.5).

Theorem 2.5 forms the main idea behind the stratification of 𝒫\mathcal{P}. It states that there are fewer than 1212 rational cubics through p𝒫\textbf{p}\in\mathcal{P} if and only if p represents a non-uniform quatroid. In Section 3, we define (representable) quatroids (3.1) of eight distinct points in 2\mathbb{P}_{\mathbb{C}}^{2} and discuss their relationship to matroids. We compute the set of candidate quatroids 𝔔{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathfrak{Q}}, a superset of all quatroids, using algorithm 1. We achieve this by making use of two necessary criteria for 𝒬\mathcal{Q} to be a quatroid: the underlying matroid is representable and 𝒬\mathcal{Q} satisfies Bézout’s weak criteria (3.9). For each candidate quatroid 𝒬\mathcal{Q}, we determine if 𝒬\mathcal{Q} is representable over \mathbb{Q}, \mathbb{R}, or \mathbb{C}. We give explicit representations in the auxiliary file RationalRepresentatives.txt. We show that candidate 𝒬63\mathcal{Q}_{63} is not representable over \mathbb{C}, and as a consequence, we obtain the true list of 125125 orbits of quatroids.

In Section 4 we show that all quatroids have irreducible realization spaces except for 𝒬41\mathcal{Q}_{41}, which has two irreducible components. This result justifies our use of the word generic when considering points on these strata.

Since the number dp{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}d_{\textbf{p}}} of rational cubics through a configuration p is upper semicontinuous, counting the rational cubics interpolating any representative configuration in 𝒮𝒬\mathcal{S}_{\mathcal{Q}} provides a lower bound on the number d𝒬d_{\mathcal{Q}} of rational cubics through a generic point of 𝒮𝒬\mathcal{S}_{\mathcal{Q}}. This is done in Section 5; specifically, we compute these bounds in Theorem 5.5 using our rational representatives.

In Section 6 we turn toward showing that our lower bounds on each d𝒬d_{\mathcal{Q}} are tight. We compute upper bounds for each d𝒬d_{\mathcal{Q}} by bounding the number of reducible cubics through any configuration p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}, using the multiplicity of each reducible cubic as a point on 𝒟\mathcal{D}. Our lower bounds agree with our upper bounds in all but 2424 cases (see Theorem 6.3). In these remaining 2424 cases, the bound is off by one. We account for this discrepency by showing that configurations which represent any of these 2424 quatroid orbits must correspond to lines LpS33L_{\textbf{p}}\subset\mathbb{P}S^{3}\mathbb{C}^{3} which are tangent to a branch of 𝒟\mathcal{D} through a reducible cubic. Doing so, we achieve our main result Theorem 6.13 of determining d𝒬d_{\mathcal{Q}}.

In Section 7 we collect several immediate consequences of our computations and outline challenges to refining our stratification. We explain how quatroids offer positive certificates for the non-rationality of cubics. In this section, we also compute the number of rational quartic curves through two special configurations using numerical algebraic geometry. Finally, we discuss examples which show that a complete stratification may be within reach, which would fully answer Problem 1.

Remark 1.1.

The computations supporting several of our main theorems were first performed numerically using HomotopyContinuation.jl [7] in julia [4]. This includes

  • The computation of generic points on each (nonempty) quatroid stratum.

  • The computation of real points on each stratum other than 𝒮𝒬41\mathcal{S}_{\mathcal{Q}_{41}} and 𝒮𝒬63\mathcal{S}_{\mathcal{Q}_{63}}.

  • The computation of d𝒬d_{\mathcal{Q}} for each candidate quatroid 𝒬\mathcal{Q}

For the sake of accessibility, brevity, and clarity, we decided to list explicit \mathbb{Q}-representatives instead of relying on subtle claims which depend upon numerical certification methods. Ultimately, despite its important role in developing our intuition about the present problem, no proof in this manuscript comes from a numerical computation. We showcase the power of numerical methods in Section 7 when discussing the possibility of extending our results to quartics. ∎

Acknowledgements

We are grateful for the helpful conversations with Lukas Kühne during the early stages of this project. The first author is partially supported by an NSERC Discovery Grant (Canada). The third author is partially supported by DFG Emmy-Noether-Fellowship RE 3567/1-1.

2. Background on Algebraic Geometry and Cubics

In this section, we collect some standard facts about the geometry of points in the plane and cubic curves through them. Let p𝒫\textbf{p}\in\mathcal{P} be a configuration of eight distinct points in 2\mathbb{P}_{\mathbb{C}}^{2} and LpS33L_{\textbf{p}}\subseteq\mathbb{P}S^{3}\mathbb{C}^{3} be the linear space of cubics vanishing at p. Write Z(Lp)Z(L_{\textbf{p}}) for the scheme in 2\mathbb{P}_{\mathbb{C}}^{2} defined by the ideal generated by LpL_{\textbf{p}}, called the base locus of LpL_{\textbf{p}}. A 11-dimensional subspace of S33\mathbb{P}S^{3}\mathbb{C}^{3} is called a pencil of cubics. Plane curves of degree one, two, and three are called lines, quadrics, and cubics, respectively. An irreducible quadric is a conic and a rational cubic is a singular irreducible cubic.

A classical consequence of Bézout’s Theorem [14, Section 5] guarantees that in the cases of interest for Problem 1 the linear space L𝐩L_{\mathbf{p}} is 11-dimensional. We include a proof for completeness.

Proposition 2.1.

Let p𝒫\textbf{p}\in\mathcal{P}. The following are equivalent.

  1. (1)

    The set π¯1(p)=Lp𝒟\overline{\pi}^{-1}(\textbf{p})=L_{\textbf{p}}\cap\mathcal{D} is finite,

  2. (2)

    There is an irreducible cubic through p,

  3. (3)

    No four points of p are on a line and no seven points of p are on a conic,

  4. (4)

    The residue of the scheme Z(L𝐩)Z(L_{\mathbf{p}}) with respect to 𝐩\mathbf{p} is a reduced point p9p_{9}, called the Cayley–Bacharach point of p.

Proof.

Observe preliminarily that by Bézout’s Theorem, the intersection of two cubics is either of positive dimension or it is a 0-dimensional scheme of degree 99 in 2\mathbb{P}_{\mathbb{C}}^{2}. We show part (2) is equivalent to all others.

Part (1)\implies Part (2): The linear space LpL_{\textbf{p}} has dimension at least 11 because it is defined by eight linear conditions on S339\mathbb{P}S^{3}\mathbb{C}^{3}\simeq\mathbb{P}_{\mathbb{C}}^{9}. Hence, if Lp𝒟L_{\textbf{p}}\cap\mathcal{D} is finite, there exists some CLp\𝒟C\in L_{\textbf{p}}\backslash\mathcal{D}, that is, an irreducible cubic through p.

¬\negPart (1)¬\implies\negPart (2): If the intersection Lp𝒟L_{\textbf{p}}\cap\mathcal{D} is infinite, then either L𝐩𝒟L_{\mathbf{p}}\subseteq\mathcal{D} or dimL𝐩2\dim L_{\mathbf{p}}\geq 2.

In the first case, L𝐩L_{\mathbf{p}} is a pencil of singular cubics. By Bertini’s Theorem [15, p.137] the generic element of L𝐩L_{\mathbf{p}} is smooth away from the base locus of L𝐩L_{\mathbf{p}}, so there is a point p2p\in\mathbb{P}_{\mathbb{C}}^{2} such that all elements of L𝐩L_{\mathbf{p}} are singular at pp. Hence, the fat point 2p2p supported at pp is contained in Z(Lp)Z(L_{\textbf{p}}). Since deg(2p)=3\deg(2p)=3, and the base locus of L𝐩L_{\mathbf{p}} contains at least 77 additional distinct points, this implies Z(Lp)Z(L_{\textbf{p}}) is not a 0-dimensional scheme of degree 99 and therefore must contain a positive dimensional component. This component is a curve in 2\mathbb{P}_{\mathbb{C}}^{2} and all elements of L𝐩L_{\mathbf{p}} are multiples of the polynomial ff defining it. The polynomial ff has degree smaller than three since otherwise LpL_{\textbf{p}} is just a point. Hence, L𝐩L_{\mathbf{p}} contains no irreducible element.

Now suppose dimL𝐩2\dim L_{\mathbf{p}}\geq 2. If the points of 𝐩\mathbf{p} lie on a line or on a conic, then L𝐩L_{\mathbf{p}} is generated by the corresponding equation of degree 11 or 22 so it does not contain irreducible elements. Indeed, if L𝐩L_{\mathbf{p}} contains an equation not generated by the ones of lower degree, then 𝐩\mathbf{p} would be contained in a complete intersection of type (1,3)(1,3) or (2,3)(2,3), which contains at most 66 points. In particular, we may assume the ideal of 𝐩\mathbf{p} has no elements of degree 11 or 22. We apply [5, Thm. 3.6], and we refer to [8, Thm. 2.3] for a simpler statement: if dimL𝐩2\dim L_{\mathbf{p}}\geq 2, and the ideal of 𝐩\mathbf{p} contains no elements of degree 22, then the h-vector of 𝐩\mathbf{p} is (1,2,3,1,1)(1,2,3,1,1); in this case 𝐩\mathbf{p} has five points on a line =0\ell=0. Let q1,q2,q3q_{1},q_{2},q_{3} be three linearly independent quadrics vanishing on the (at most) three points of 𝐩\mathbf{p} not lying on \ell, then L𝐩=q1,q2,q3L_{\mathbf{p}}=\langle\ell q_{1},\ell q_{2},\ell q_{3}\rangle. As before, this shows that all elements of L𝐩L_{\mathbf{p}} share a common factor.

Part (2)\impliesPart (3): By Bézout’s Theorem, an irreducible cubic contains no four points on a line or seven on a conic.

Part (3)\impliesPart (2): We showed above that if dimL𝐩2\dim L_{\mathbf{p}}\geq 2 then either 𝐩\mathbf{p} lies on a line or a conic, or at least five elements of 𝐩\mathbf{p} lie on a line. Therefore, assume dimL𝐩=1\dim L_{\mathbf{p}}=1 and suppose all of its elements are reducible. We will show that 𝐩\mathbf{p} has at least four points on a line or at least seven on a conic. As before, by Bertini’s Theorem, all elements of L𝐩L_{\mathbf{p}} have at least one common singular point, and we deduce that either a line or a conic is contained in the base locus of L𝐩L_{\mathbf{p}}.

Suppose the line {=0}\{\ell=0\} is a line in the base locus so that L𝐩=q1,q2L_{\mathbf{p}}=\langle\ell q_{1},\ell q_{2}\rangle. We consider two cases. If {q1=q2=0}\{q_{1}=q_{2}=0\} is 0-dimensional, then it contains at most four points of 𝐩\mathbf{p}, and at least four points of 𝐩\mathbf{p} lie on {=0}\{\ell=0\}. If {q1=q2=0}\{q_{1}=q_{2}=0\} is positive dimensional then q1=1q_{1}=\ell^{\prime}\ell_{1} and q2=2q_{2}=\ell^{\prime}\ell_{2}: then 𝐩{=0}{=0}{1=2=0}\mathbf{p}\subseteq\{\ell=0\}\cup\{\ell^{\prime}=0\}\cup\{\ell_{1}=\ell_{2}=0\}, so that at least four points lie on a line.

Suppose the conic {q=0}\{q=0\} is a conic in the base locus, so that L𝐩=q1,q2L_{\mathbf{p}}=\langle q\ell_{1},q\ell_{2}\rangle. Then 𝐩{q=0}{1=2=0}\mathbf{p}\subseteq\{q=0\}\cup\{\ell_{1}=\ell_{2}=0\}, showing that at least seven points lie on a conic.

Part (2)\impliesPart (4): This is the classical Cayley–Bacharach Theorem. If L𝐩L_{\mathbf{p}} contains at least one irreducible element, then the base locus of L𝐩L_{\mathbf{p}} is a 0-dimensional scheme of degree 99. The residue is, by definition, cut out by the ideal (L𝐩):I(𝐩)(L_{\mathbf{p}}):I(\mathbf{p}), where (L𝐩)(L_{\mathbf{p}}) denotes the ideal generated by the cubics of L𝐩L_{\mathbf{p}}. Since deg(Z(L𝐩))=9\deg(Z(L_{\mathbf{p}}))=9, and 𝐩\mathbf{p} consists of 88 points with 𝐩Z(L𝐩)\mathbf{p}\subseteq Z(L_{\mathbf{p}}), we have that the degree of the residue is 11. This shows that it is a reduced point p9p_{9}.

Part (4)\impliesPart (2): If the residue is a reduced point, then Z(L𝐩)Z(L_{\mathbf{p}}) is 0-dimensional. In this case, the same arguments used above show that the generic element of L𝐩L_{\mathbf{p}} is an irreducible cubic. ∎

A consequence of 2.1 is that if either L𝐩L_{\mathbf{p}} is not a pencil, or if L𝐩𝒟L_{\mathbf{p}}\subseteq\mathcal{D}, then there are no rational cubics through 𝐩\mathbf{p}. When LpL_{\textbf{p}} is a pencil intersecting 𝒟\mathcal{D} in finitely many points, write imultC(Lp,𝒟){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})} for the intersection multiplicity of L𝐩L_{\mathbf{p}} and 𝒟\mathcal{D} at a point CLp𝒟C\in L_{\textbf{p}}\cap\mathcal{D} (see [14, Section 3]): in other words, imultC(Lp,𝒟){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})} is the degree of the component supported at CC in the 0-dimensional scheme L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D}. The related concept of the multiplicity of a point C𝒟C\in\mathcal{D} is defined as follows:

(1) mult𝒟(C)=min{imultC(L,𝒟)LGr(2,S33) with CL},{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textrm{mult}_{\mathcal{D}}(C)}=\min\{\mathrm{imult}_{C}(L,\mathcal{D})\mid L\in\mathrm{Gr}(2,S^{3}\mathbb{C}^{3})\text{ with }C\in L\},

where Gr(2,S33){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathrm{Gr}(2,S^{3}\mathbb{C}^{3})} is the Grassmannian of projective lines in S33\mathbb{P}S^{3}\mathbb{C}^{3}. By a semicontinuity argument, a generic line LL through CC realizes imultC(L,𝒟)=mult𝒟(C)\mathrm{imult}_{C}(L,\mathcal{D})=\mathrm{mult}_{\mathcal{D}}(C).

Our main interest for this work is the following quantity. Recall that 𝒞\mathcal{C} is the subset of 𝒟\mathcal{D} consisting of irreducible cubics.

Definition 2.2.

For p𝒫\textbf{p}\in\mathcal{P}, define

dp=CLp𝒞imultC(Lp,𝒟){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}d_{\textbf{p}}}=\sum_{C\in L_{\textbf{p}}\cap\mathcal{C}}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})

to be the number of rational cubics through p counted with multiplicity.

The following is a direct consequence of 2.1.

Corollary 2.3.

For p𝒫\textbf{p}\in\mathcal{P} the value dpd_{\textbf{p}} is finite.

The set-difference of Lp𝒟L_{\textbf{p}}\cap\mathcal{D} and Lp𝒞L_{\textbf{p}}\cap\mathcal{C} is comprised of the reducible cubics through p. Taking intersection multiplicity into account allows for a stronger correspondence. Hence, for any p𝒫\textbf{p}\in\mathcal{P} satisfying the conditions of 2.1, we define

rp=reducible CLp𝒟imultC(Lp,𝒟)=CLp𝒟\𝒞imultC(Lp,𝒟).{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}r_{\textbf{p}}}=\sum_{\text{reducible }C\in L_{\textbf{p}}\cap\mathcal{D}}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})=\sum_{C\in L_{\textbf{p}}\cap\mathcal{D}\backslash\mathcal{C}}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D}).

If 𝐩\mathbf{p} fails to satisfy the conditions in 2.1, we set r𝐩=r_{\mathbf{p}}=\infty. The following proposition justifies this convention and expresses how rpr_{\textbf{p}} measures the difference of Lp𝒟L_{\textbf{p}}\cap\mathcal{D} and Lp𝒞L_{\textbf{p}}\cap\mathcal{C}.

Proposition 2.4.

Let p𝒫\textbf{p}\in\mathcal{P} satisfy any of the equivalent conditions in 2.1. Then

12=CLp𝒟imultC(Lp,𝒟)=rp+CLp𝒞imultC(Lp,𝒟)=rp+dp.12=\sum_{C\in L_{\textbf{p}}\cap\mathcal{D}}\mathrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})=r_{\textbf{p}}+\sum_{C\in L_{\textbf{p}}\cap\mathcal{C}}\mathrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})=r_{\textbf{p}}+d_{\textbf{p}}.

If 𝐩\mathbf{p} does not satisfy the condition of 2.1, then there are infinitely many reducible cubics through p and moreover dp=0d_{\textbf{p}}=0.

Proof.

If p satisfies 2.1, then LpL_{\textbf{p}} is a line and Lp𝒟L_{\textbf{p}}\cap\mathcal{D} is finite. Since 𝒟\mathcal{D} is a projective hypersurface of degree 1212, the intersection L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D} is a 0-dimensional scheme of degree 1212. This shows the left equality. The middle equality follows from the definition of rpr_{\textbf{p}}. The last equality is the definition of dpd_{\textbf{p}}. The final statement follows from 2.1. ∎

2.4 answers the problem of counting (with multiplicity) the singular cubics through eight distinct points: when finite, this number is 1212. The main insight of 2.4 is that the number dpd_{\textbf{p}} is determined as the difference 12r𝐩12-r_{\mathbf{p}}, and rpr_{\textbf{p}} is the number of reducible cubics through p counted with multiplicity. This main idea anchors our story.

Theorem 2.5.

Let p𝒫\textbf{p}\in\mathcal{P}. The following are equivalent:

  1. (1)

    Either p has three points on a line or six points on a conic,

  2. (2)

    There is a reducible cubic through p, i.e. rp>0r_{\textbf{p}}>0,

  3. (3)

    The inclusion π1(p)π¯1(p)\pi^{-1}(\textbf{p})\subsetneq\overline{\pi}^{-1}(\textbf{p}) is strict,

  4. (4)

    Counted with multiplicity, there are fewer than 1212 rational cubics through p, i.e. dp<12d_{\textbf{p}}<12.

Proof.

If L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D} is infinite, the result follows directly from 2.1. Hence, suppose that L𝐩L_{\mathbf{p}} is a pencil and L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D} is finite.

Part (1)\iffPart (2): If p has three points on a line \ell then the union of \ell and a conic through the remaining five points is a reducible cubic through p. Similarly, if six points are on a conic, then the union of that conic and the line containing the other two is a reducible cubic through p. Conversely, if there is a reducible cubic through p, the pigeonhole principle implies that either three are on a line or six are on a conic since reducible cubics are either unions of three lines or a line-conic union.

Part (2)\iffPart (3): This is immediate from the definitions. Part (4)\impliesPart (3): Since the fibre π¯1(p)\overline{\pi}^{-1}(\textbf{p}) is finite, by 2.4 it consists of 1212 cubics counting multiplicity. From the hypothesis, π1(p)\pi^{-1}(\textbf{p}) does not, so part (3) is true.

Part (2) \implies Part (4): Since the fibre is finite, π¯1(p)\overline{\pi}^{-1}(\textbf{p}) consists of 1212 points counting multiplicity by 2.4. Since part (2) is true, at least one cubic in π¯1(𝐩)\overline{\pi}^{-1}(\mathbf{p}) is reducible, and so there are fewer than 1212 rational cubics through p counting multiplicity. ∎

3. Quatroids

As a consequence of the results in the previous section, any configuration p𝒫\textbf{p}\in\mathcal{P} admitting fewer than 1212 rational cubics must lie on at least one of the following two types of hypersurfaces in 𝒫\mathcal{P}:

Xi1i2i3={p𝒫pi1pi3 are on a line},Yi1i2i6={p𝒫pi1pi6 are on a conic}.{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}X_{i_{1}i_{2}i_{3}}}=\{\textbf{p}\in\mathcal{P}\mid p_{i_{1}}\ldots p_{i_{3}}\text{ are on a line}\},\quad\quad{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}Y_{i_{1}i_{2}\cdots i_{6}}}=\{\textbf{p}\in\mathcal{P}\mid p_{i_{1}}\ldots p_{i_{6}}\text{ are on a conic}\}.

Elements of the intersection lattice of these (83)+(86)=84{{8}\choose{3}}+{{8}\choose{6}}=84 hypersurfaces are indexed by pairs 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) of triples \mathcal{I} and sextuples 𝒥\mathcal{J} of {1,2,,8}\{1,2,\ldots,8\}. Define

𝒵𝒬=(IXI)(J𝒥YJ) and 𝒮𝒬=𝒵𝒬𝒬𝒵𝒬{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{Z}_{\mathcal{Q}}}=\biggl{(}\bigcap_{I\in\mathcal{I}}X_{I}\biggr{)}\cap\biggl{(}\bigcap_{J\in\mathcal{J}}Y_{J}\biggr{)}\quad\text{ and }\quad{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{S}_{\mathcal{Q}}}=\mathcal{Z}_{\mathcal{Q}}\setminus\bigcup_{\mathcal{Q}^{\prime}}\mathcal{Z}_{\mathcal{Q}^{\prime}}

where the union ranges over all 𝒬\mathcal{Q}^{\prime} such that 𝒵𝒬𝒵𝒬\mathcal{Z}_{\mathcal{Q}^{\prime}}\subsetneq\mathcal{Z}_{\mathcal{Q}}.

By construction, the stratification 𝒮{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{S}} of nonempty loci 𝒮𝒬\mathcal{S}_{\mathcal{Q}} partitions the parameter space 𝒫\mathcal{P}. The strata, and thus their indices, are naturally ordered by 𝒬𝒬\mathcal{Q}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\leq}\mathcal{Q}^{\prime} if and only if 𝒮𝒬𝒮𝒬¯\mathcal{S}_{\mathcal{Q}}\subseteq\overline{\mathcal{S}_{\mathcal{Q}^{\prime}}}.

With this setup, we introduce the main combinatorial object of interest. Although we focus on fields of characteristic zero, we give the definition for any field 𝕂{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathbb{K}}. Write 𝒫𝕂{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{P}_{\mathbb{K}}} for the open subset 88-tuples of distinct points in (𝕂2)8(\mathbb{P}_{\mathbb{K}}^{2})^{8}.

Definition 3.1.

Let 𝕂\mathbb{K} be a field and let \mathcal{I} and 𝒥\mathcal{J} be collections of triples and sextuples of {1,2,,8}\{1,2,\ldots,8\}, respectively. The pair 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) is a (𝕂\mathbb{K}-representable) quatroid if there exists a configuration p𝒫𝕂\textbf{p}\in\mathcal{P}_{\mathbb{K}} such that 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}}. In this case, we say 𝒬\mathcal{Q} is representable over 𝕂\mathbb{K}. Equivalently, there exists p𝒫𝕂\textbf{p}\in\mathcal{P}_{\mathbb{K}} such that

  • Every triple of points in p indexed by an element of \mathcal{I} lies on a line,

  • Every sextuple of points in p indexed by an element of 𝒥\mathcal{J} lies on a conic,

  • No other triple of points in p lies on a line,

  • No other sextuple of points in p lies on a conic.

Such a configuration p is said to represent 𝒬\mathcal{Q} over 𝕂\mathbb{K}. The set 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is called the realization space of 𝒬\mathcal{Q} over 𝕂\mathbb{K}.

For any p𝒫\textbf{p}\in\mathcal{P} and S{1,2,,8}S\subseteq\{1,2,\ldots,8\} we write S{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\ell_{S}} for the line through {ps}sS\{p_{s}\}_{s\in S} and qS{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}q_{S}} for the conic through {ps}sS\{p_{s}\}_{s\in S} when such a curve exists and is unique. Given a configuration p satisfying any condition in 2.1, the quatroid represented by p exactly tracks the reducible cubics through p, as detailed in the following result.

Lemma 3.2.

Let p be a configuration satisfying 2.1 and representing a quatroid 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}). A reducible cubic through p has one of the forms:

  1. (a)

    IqIc\ell_{I}\cdot q_{I^{c}} for II\in\mathcal{I},

  2. (b)

    I1I2(I1I2)c\ell_{I_{1}}\cdot\ell_{I_{2}}\cdot\ell_{(I_{1}\cup I_{2})^{c}} for disjoint I1,I2I_{1},I_{2}\in\mathcal{I},

  3. (c)

    qJJcq_{J}\cdot\ell_{J^{c}} for J𝒥J\in\mathcal{J}.

Proof.

If there is a reducible cubic through p, by the pigeonhole principle, and 2.1, either exactly six points of 𝐩\mathbf{p} lie on a conic or exactly three points of 𝐩\mathbf{p} lie on a line.

In the first case, the reducible cubic must be the union of the conic containing six points and the line containing the remaining two. The six points on the conic must be indexed by some J𝒥J\in\mathcal{J}, so the reducible cubic has the form (c).

In the second case, the reducible cubic must be the union of the line containing three points and the quadric containing the remaining five. Following a similar argument as in the first case, if the quadric is a irreducible, then the cubic has the form (a) and otherwise it has the form (b). ∎

Remark 3.3.

An consequence of 3.2 is that the ordering (,𝒥)(,𝒥)(\mathcal{I},\mathcal{J})\leq(\mathcal{I}^{\prime},\mathcal{J}^{\prime}) may be expressed combinatorially. Given our conventions, the full characterization is rather technical. However, we list two simple sufficient conditions:

  1. (a)

    (,𝒥)(,𝒥)(\mathcal{I},\mathcal{J})\leq(\mathcal{I}^{\prime},\mathcal{J}^{\prime}) if \mathcal{I}^{\prime}\subseteq\mathcal{I} and 𝒥𝒥\mathcal{J}^{\prime}\subseteq\mathcal{J},

  2. (b)

    (,𝒥)(,𝒥)(\mathcal{I},\mathcal{J})\leq(\mathcal{I}^{\prime},\mathcal{J}^{\prime}) if \mathcal{I}^{\prime}\subseteq\mathcal{I} and 𝒥𝒥2\mathcal{J}^{\prime}\subseteq\mathcal{J}\cup\mathcal{I}^{2}, where 2\mathcal{I}^{2} denotes the set of subsets obtained as union of two elements of \mathcal{I}.

Condition (b) completely characterizes \leq restricted to a class of quatroids called Bézoutian quatroids defined in 3.15. ∎

We now digress into several remarks on the choice of the term quatroid.

Remark 3.4 (Inspiration for the term).

The term (representable) quatroid is inspired by the term representable matroid. Quatroids partially extend the concept of matroids; representable matroids encode the affine linear dependencies among points, whereas representable quatroids track linear and quadratic dependencies. There are several standard references for matroids. We suggest [28]. ∎

Remark 3.5 (Abstraction of quatroids).

There are several natural ways to extend 3.1 to include point configurations with more points or in higher dimensional spaces. We use the specific definition in 3.1 for the sake of brevity since this is all we need for the purpose of the paper. We leave the challenge of defining a non-representable quatroid for future work. If 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) is not a quatroid, we merely call it a pair. ∎

Remark 3.6 (Pascal’s Theorem to linearize conic conditions).

Pascal’s Theorem states that six points are on a conic if and only if the three auxiliary intersection points of a hexagram as shown in Figure 3 lie on a line, called the Pascal line. One may attempt to convert conic dependencies into linear dependencies using Pascal’s Theorem. This result may be applied to 6060 orderings of the six points, introducing 1515 hexagram lines, 4545 auxiliary points, and 6060 Pascal lines. The right-hand image in Figure 3 illustrates a fraction of how complicated the entire arrangement gets, and thus, the benefit of recording the conic conditions directly. ∎

Refer to caption
Refer to caption
Figure 3. (Left) Illustration of Pascal’s Theorem. (Right) The 1515 hexagram lines and a subset of the 4545 auxiliary points (in view) obtained by applying Pascal’s Theorem 6060 times. The Pascal lines are not drawn.
Remark 3.7 (Simplicity).

Our definition of a quatroid requires that a representative point configuration p consists of distinct points. Such a restriction for matroids means that the matroid is simple: the matroid has no parallel elements (repeated points) and the matroid has no loops (consists of points in 2\mathbb{P}_{\mathbb{C}}^{2}). We suspect that an effective definition of quatroid which covers the case of repeated points would need to involve additional information about this repetition. Possibly, there is a way to combinatorially track some information encoded in the Hilbert scheme of eight points in 2\mathbb{P}_{\mathbb{C}}^{2}. ∎

Remark 3.8.

For the remainder of this article, we assume that 𝕂\mathbb{K} is \mathbb{Q}, \mathbb{R}, or \mathbb{C}. ∎

Given 3.1, a natural question emerges:

Which pairs 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) are representable quatroids?

We address this problem by providing two necessary conditions on 𝒬\mathcal{Q} to be a quatroid, finding all 𝒬\mathcal{Q} satisfying those conditions, and subsequently identifying which of those candidates are quatroids by either exhibiting an element 𝐩𝒫\mathbf{p}\in\mathcal{P} representing it or proving that no such 𝐩\mathbf{p} exists.

3.1. Necessary conditions for being a quatroid

The underlying matroid of a quatroid 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) is the matroid {\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{M}_{\mathcal{I}}} whose nonbases of size three are given by \mathcal{I}. The realization space of \mathcal{M}_{\mathcal{I}} is 𝒮=𝒥𝒮(,𝒥){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{S}_{\mathcal{I}}}=\bigcup_{\mathcal{J}}\mathcal{S}_{(\mathcal{I},\mathcal{J})} because if 𝐩\mathbf{p} represents 𝒬\mathcal{Q}, then it represents \mathcal{M}_{\mathcal{I}} as well. The matroid \mathcal{M}_{\mathcal{I}} is representable if 𝒮\mathcal{S}_{\mathcal{I}} is nonempty. We call a pair 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) matroidal whenever \mathcal{M}_{\mathcal{I}} is representable. A representable quatroid 𝒬\mathcal{Q} is necessarily matroidal. Additional necessary conditions for 𝒬\mathcal{Q} to be representable rely upon Bézout’s Theorem.

Definition 3.9.

A pair 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) satisfies Bézout’s weak criteria if

  1. (1)

    “A line and conic meet in at most two points”:

    |IJ|2 for all (I,J)×𝒥.|I\cap J|\leq 2\text{ for all }(I,J)\in\mathcal{I}\times\mathcal{J}.
  2. (2)

    “Two lines meet in at most one point”:

    |I1I2|>1 for some I1,I2I for every 3-subset of I1I2.|I_{1}\cap I_{2}|>1\text{ for some $I_{1},I_{2}\in\mathcal{I}$}\implies I\in\mathcal{I}\text{ for every }3\text{-subset of }I_{1}\cup I_{2}.
  3. (3)

    “Two conics meet in at most four points”:

    |J1J2|>4 for some J1,J2𝒥J𝒥 for every 6-subset of J1J2.|J_{1}\cap J_{2}|>4\text{ for some $J_{1},J_{2}\in\mathcal{J}$}\implies J\in\mathcal{J}\text{ for every }6\text{-subset of }J_{1}\cup J_{2}.
Example 3.10.

The pair 𝒬=({123,145},{234678})\mathcal{Q}=(\{123,145\},\{234678\}) satisfies all of Bézout’s weak criteria. The pair 𝒬=({123,234},)\mathcal{Q}^{\prime}=(\{123,234\},\emptyset) satisfies the first and (vacuously) the third of Bézout’s weak criteria, but not the second. The pair 𝒬′′=({123},{123456})\mathcal{Q}^{\prime\prime}=(\{123\},\{123456\}) does not satisfy the first of Bézout’s weak criteria. By adding additional triples to 𝒬\mathcal{Q}^{\prime}, one may obtain the pair ({123,124,134,234},)(\{123,124,134,234\},\emptyset) which does satisfy all of Bézout’s weak criteria. This procedure is impossible for pairs such as 𝒬′′\mathcal{Q}^{\prime\prime} which fail Bézout’s first weak criterion. ∎

Lemma 3.11.

If 𝒬\mathcal{Q} is representable, then 𝒬\mathcal{Q} is matroidal and satisfies Bézout’s weak criteria.

Proof.

A representable quatroid is, by definition, matroidal. The proof that a representable quatroid satisfies Bézout’s weak criteria is suggested by the quotations preceding each criterion in 3.9 as detailed below.

Suppose p𝒫\textbf{p}\in\mathcal{P} represents 𝒬\mathcal{Q}. For every II\in\mathcal{I}, J𝒥J\in\mathcal{J}, the line I\ell_{I} and the conic qJq_{J} meet in at most two points of 𝐩\mathbf{p} by Bézout’s Theorem. Therefore, 𝒬\mathcal{Q} satisfies the first weak criterion. Similarly, if I1,I2I_{1},I_{2}\in\mathcal{I}, then I1,I2\ell_{I_{1}},\ell_{I_{2}} meet in at most one point of 𝐩\mathbf{p}, unless I1=I2\ell_{I_{1}}=\ell_{I_{2}}. If I1=I2\ell_{I_{1}}=\ell_{I_{2}}, then any three points of 𝐩\mathbf{p} lying on such line is indexed by a triple in \mathcal{I}. This shows that 𝒬\mathcal{Q} must satisfy the second weak criterion. The proof for the third criterion is similar. ∎

Motivated by our goal of computing all quatroids, and inspired by Bézout’s weak criteria, we introduce the following operation on pairs.

Definition 3.12.

Let \mathcal{I} be a set of triples of {1,2,,8}\{1,2,\ldots,8\}. Define ¯{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{\mathcal{I}}} to be the smallest set of triples containing \mathcal{I} which satisfies Bézout’s second weak criterion. Similarly, for a set 𝒥\mathcal{J} of sextuples of {1,2,,8}\{1,2,\ldots,8\}, define 𝒥¯{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{\mathcal{J}}} to be the smallest set of sextuples containing 𝒥\mathcal{J} which satisfies Bézout’s third weak criterion. For a pair 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}), define 𝒬¯=(¯,𝒥¯){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\overline{\mathcal{Q}}}=(\overline{\mathcal{I}},\overline{\mathcal{J}}).

Lemma 3.13.

The sets ¯\overline{\mathcal{I}} and 𝒥¯\overline{\mathcal{J}} are well-defined, and thus so is 𝒬¯\overline{\mathcal{Q}}.

Proof.

Let \mathcal{I} be a set of triples of {1,2,,8}\{1,2,\ldots,8\}. The definition of ¯\overline{\mathcal{I}} is the smallest set of triples containing \mathcal{I} which satisfies Bézout’s second weak criterion. This set is not empty since the set of all triples of {1,2,,8}\{1,2,\ldots,8\} contains \mathcal{I} and satisfies the second criterion. Moreover, if 1\mathcal{I}_{1} and 2\mathcal{I}_{2} both satisfy Bézout’s second weak criterion, then so does their intersection, proving that the smallest such set of triples is well-defined. The argument for sextuples is exactly the same. ∎

Example 3.14.

Consider the pair 𝒬=({123,124,345},{245678})\mathcal{Q}=(\{123,124,345\},\{245678\}). Then

𝒬¯=({123,124,125,134,135,145,234,235,245,345},{245678}).\overline{\mathcal{Q}}=(\{123,124,125,134,135,145,234,235,245,345\},\{245678\}).

Note that 𝒬\mathcal{Q} satisfies the first and third weak criteria, but not the second. On the other hand 𝒬¯\overline{\mathcal{Q}} satisfies the second and third weak criteria, but not the first. ∎

When a configuration 𝐩\mathbf{p} is contained in an irreducible cubic, Bézout’s Theorem applied to such a cubic restricts which lines and conics pass through subsets of 𝐩\mathbf{p}. This motivates the following definition.

Definition 3.15.

A pair 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) satisfies Bézout’s strong criteria if

  1. (1)

    “An irreducible cubic meets a line in at most three points”:

    I1,I2|I1I2|1.I_{1},I_{2}\in\mathcal{I}\implies|I_{1}\cap I_{2}|\leq 1.
  2. (2)

    “An irreducible cubic meets a conic in at most six points”:

    J1,J2𝒥|J1J2|4.J_{1},J_{2}\in\mathcal{J}\implies|J_{1}\cap J_{2}|\leq 4.

Pairs which satisfy both Bézout’s weak and strong criteria are called Bézoutian.

As with the weak criteria, the quotes suggest the proof of an important result.

Lemma 3.16.

A configuration p𝒫\textbf{p}\in\mathcal{P} satisfies the conditions of 2.1 if and only if p represents a Bézoutian quatroid. Hence, there are no rational cubics through a configuration p that represents a non-Bézoutian quatroid.

Proof.

Let 𝒬\mathcal{Q} denote the quatroid represented by 𝐩𝒫\mathbf{p}\in\mathcal{P}. By 3.11, 𝒬\mathcal{Q} satisfies Bézout’s weak criteria. Suppose p satisfies the conditions of 2.1. Then there is an irreducible cubic through p and so no four points of p lie on a line and no seven lie on a conic. As suggested by the quotations in 3.15, this implies the strong criteria are satisfied: if |I1I2|>1|I_{1}\cap I_{2}|>1 for some I1,I2I_{1},I_{2} then at least four points of 𝐩\mathbf{p} lie on the line I1=I2\ell_{I_{1}}=\ell_{I_{2}} which is a contradiction. The proof for the second criterion is similar.

Conversely, suppose p represents a Bézoutian quatroid 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}). Then no four points of p lie on a line and no seven lie on a conic and so p satisfies the conditions in 2.1. To see this, suppose towards a contradiction that p1,,p4p_{1},\ldots,p_{4} lie on a line: then 123,124,134,234123,124,134,234\in\mathcal{I} so Bézout’s first strong criterion is violated. A similar conclusion holds if seven points lie on a conic. ∎

3.2. Computing all candidate quatroids

We approach the task of computing all quatroids by first computing a list 𝔔{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathfrak{Q}} of candidate quatroids. A pair 𝒬\mathcal{Q} is a candidate quatroid if it is matroidal and satisfies Bézout’s weak criteria. By 3.11, all (representable) quatroids are in 𝔔\mathfrak{Q}.

Remark 3.17.

Our goal is to count rational cubics through 𝐩𝒫\mathbf{p}\in\mathcal{P}, so by 3.16 it is enough to determine all Bézoutian quatroids. However, for completeness, we compute all quatroids. ∎

Since matroidal pairs have underlying representable matroids, we take advantage of existing databases of matroids to begin our computation. We use the database [23], to compile a list 𝔐{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathfrak{M}} of matroids representable by eight distinct points in 2\mathbb{P}_{\mathbb{C}}^{2}. These are the representable simple matroids of rank at most three. There are 6767 orbits of such matroids, under the action of 𝔖8\mathfrak{S}_{8}: 6666 of rank three and 11 of rank two. In this work, we record matroids in terms of their nonbases of size three. The original list from [23] is in the auxiliary file SimpleMatroids38.txt.

We now give an algorithm which produces all candidate quatroids with a given underlying matroid by greedily extending its the conic conditions.

Input: A pair 𝒬=(,)\mathcal{Q}=(\mathcal{I},\emptyset) where 𝔐{\mathcal{I}}\in\mathfrak{M}
Output: A list of all pairs of the form 𝒬=(,𝒥)\mathcal{Q}^{\prime}=(\mathcal{I},\mathcal{J}) which satisfy Bézout’s weak criteria.
1 initialize PairsFound={𝒬}=\{\mathcal{Q}\}
2 initialize PairsToExtend={𝒬}=\{\mathcal{Q}\}
3 (Compute the stabilizer HH of \mathcal{I} in 𝔖8\mathfrak{S}_{8})
4 while PairsToExtend \neq\emptyset do
      5 Choose 𝒬=(,𝒥)\mathcal{Q}^{\prime}=(\mathcal{I},\mathcal{J}) from PairsToExtend and delete 𝒬\mathcal{Q}^{\prime} from PairsToExtend
      6 Set Q’_Extensions={(,𝒥{J})¯}J a 6-subset of {1,,8}\texttt{Q'\_Extensions}=\{\overline{(\mathcal{I},\mathcal{J}\cup\{J\})}\}_{J\text{ a }6\text{-subset of }\{1,\ldots,8\}}
      7 for 𝒬′′Q’_Extensions\mathcal{Q}^{\prime\prime}\in\texttt{Q'\_Extensions} do
            8 if 𝒬′′\mathcal{Q}^{\prime\prime} satisfies Bézout’s weak criteria then
                  9 (Let 𝒬\mathcal{Q}^{*} be a canonical representative of the HH-orbit of 𝒬′′\mathcal{Q}^{\prime\prime})
                  10 if 𝒬\mathcal{Q}^{*}\not\inQuatroidsFound then
                        11 QuatroidsFound𝒬\leftarrow\mathcal{Q}^{*}
                        12 PairsToExtend𝒬\leftarrow\mathcal{Q}^{*}
                        
                  
            
      
13return PairsFound
Algorithm 1 AllConicExtensions
Theorem 3.18.

The set of pairs produced by algorithm 1 on the input (,)(\mathcal{I},\emptyset) coincides with the set of candidate quatroids whose underlying matroid is \mathcal{M}_{\mathcal{I}}. Thus, applying algorithm 1 to every matroid in 𝔐\mathfrak{M} produces 𝔔\mathfrak{Q}.

Proof.

Clearly all pairs in the output of algorithm 1 on the input (,)(\mathcal{I},\emptyset) are candidate quatroids whose underlying matroid is \mathcal{M}_{\mathcal{I}}. We need to show that all candidate quatroids arise in this way. We ignore the parenthetical steps of algorithm 1, which are used only to speed up the process by working modulo the 𝔖8\mathfrak{S}_{8}-action.

By contradiction, assume 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) is a candidate quatroid which is not in the output of algorithm 1 applied to (,)(\mathcal{I},\emptyset). Let 𝒬=(,𝒥)\mathcal{Q}^{\prime}=(\mathcal{I},\mathcal{J}^{\prime}) be a maximal candidate quatroid which is generated by algorithm 1 with 𝒥𝒥\mathcal{J}^{\prime}\subsetneq\mathcal{J}. Let J𝒥𝒥J\in\mathcal{J}\setminus\mathcal{J}^{\prime}.

The first time 𝒬\mathcal{Q}^{\prime} is found in algorithm 1, it is placed in PairsToExtend at step 12. Therefore, it is then chosen in step 5 and the pair 𝒬′′=(,𝒥{J}¯)\mathcal{Q}^{\prime\prime}=(\mathcal{I},\overline{\mathcal{J}^{\prime}\cup\{J\}}) is one of the elements of Q’_Extensions at step 6. When 𝒬′′\mathcal{Q}^{\prime\prime} is chosen in the for loop at step 7, it satisfies the if condition at step 8, because 𝒥{J}¯𝒥\overline{\mathcal{J}^{\prime}\cup\{J\}}\subseteq\mathcal{J} guarantees 𝒬′′\mathcal{Q}^{\prime\prime} satisfies Bézout’s weak criteria. Hence, 𝒬′′\mathcal{Q}^{\prime\prime} is a candidate quatroid and it is produced by algorithm 1. This contradicts the maximality of 𝒬\mathcal{Q}^{\prime}. ∎

Theorem 3.19.

The list 𝔔\mathfrak{Q} of candidate quatroids consists of 780617780617 pairs. Up to the symmetry of 𝔖8\mathfrak{S}_{8}, these occur in 126126 distinct orbits. The numbers of orbits of each size are tallied below:

Orbit Size 1 8 28 35 56 70 105 168 210 280
# Orbits 3 2 2 1 3 1 1 3 2 3
Orbit Size 420 560 840 1680 2520 3360 5040 6720 10080 20160
# Orbits 2 1 13 4 10 13 17 6 22 17
Proof.

The candidate quatroids are computed by calling algorithm 1 on all representable matroids 𝔐\mathfrak{M}. This computation may be performed by calling the function AllConicExtensions(M) in the Quatroids.jl package (see Table 3 for details). All candidate quatroids are produced by the function GenerateAllCandidateQuatroids() and the results are automatically stored in a text file. The function OrbitSizes() then produces a text file listing the corresponding orbit sizes. These functions use features from GAP [17] and OSCAR [26] to work modulo the 𝔖8\mathfrak{S}_{8}-symmetry. ∎

3.3. Representability of Quatroids

A candidate quatroid 𝒬𝔔\mathcal{Q}\in\mathfrak{Q} is a quatroid if and only if it is representable. In order to compile a list of quatroids, for every candidate quatroid 𝒬\mathcal{Q}, we either exhibit an element 𝐩(2)8\mathbf{p}\in(\mathbb{P}_{\mathbb{C}}^{2})^{8} representing it, or we prove that the realization space 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is empty.

Theorem 3.20.

Every 𝒬𝔔\mathcal{Q}\in\mathfrak{Q} is representable over \mathbb{Q} except for the ones in the 𝔖8\mathfrak{S}_{8}-orbits of

𝒬41\displaystyle\mathcal{Q}_{41} =({123,145,167,246,258,357,368,478},{}),\displaystyle=(\{123,145,167,246,258,357,368,478\},\{\}),
𝒬63\displaystyle\mathcal{Q}_{63} =({123,145,246,356},{125678,134678,234578}).\displaystyle=(\{123,145,246,356\},\{125678,134678,234578\}).

Those in the orbit of 𝒬41\mathcal{Q}_{41} are representable over \mathbb{C} but not over \mathbb{R}. Those in the orbit of 𝒬63\mathcal{Q}_{63} are not representable over \mathbb{C}.

Proof.

An explicit \mathbb{Q}-realization is given in the auxiliary files for each of the 124124 orbits different from the ones of 𝒬41\mathcal{Q}_{41} and 𝒬63\mathcal{Q}_{63}. A Macaulay2 [18] script verifying that they are representatives is provided as well. The claims regarding 𝒬41\mathcal{Q}_{41} and 𝒬63\mathcal{Q}_{63} are proved in 3.22 and 3.26. ∎

The following corollary combines Theorem 3.19 and Theorem 3.20.

Corollary 3.21.

Of the 780617780617 pairs (126126 orbits) in 𝔔\mathfrak{Q}, exactly 779777779777 (125125 orbits) are representable over \mathbb{C} and 778937778937 (124124 orbits) are representable over \mathbb{R} and \mathbb{Q}. In particular, the stratification 𝒮\mathcal{S} of 𝒫\mathcal{P} consists of 779777779777 strata, 544748544748 (7676 orbits) of which are Bézoutain.

To complete the proof of Theorem 3.20, we show that 𝒬41\mathcal{Q}_{41} is representable over \mathbb{C} and not over \mathbb{R}, and that 𝒬63\mathcal{Q}_{63} is not representable. To analyze 𝒮𝒬41\mathcal{S}_{\mathcal{Q}_{41}} we extend a standard matroid procedure to put coordinates on the realization space of a quatroid.

We represent an element 𝐩(2)8\mathbf{p}\in(\mathbb{P}_{\mathbb{C}}^{2})^{8} as a 3×83\times 8 matrix, whose columns correspond to elements of 2\mathbb{P}_{\mathbb{C}}^{2}. We are free to work modulo the action of PGL2\mathrm{PGL}_{2} on 2\mathbb{P}_{\mathbb{C}}^{2}; it is convenient to normalize either some of the points of 𝐩\mathbf{p} or some of the conic conditions of 𝒬\mathcal{Q}, leaving some free parameters z1,,zr{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}z_{1},\ldots,z_{r}}. These parameters are free to vary in a quasi-projective variety S𝒬r{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}S_{\mathcal{Q}}}\subseteq\mathbb{C}^{r} described by equations and inequations. The equations are determinantal relations imposed by 𝒬\mathcal{Q}, some of which are identically satisfied after the normalization. The inequations are the determinantal relations not imposed by 𝒬\mathcal{Q}. The realization space 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is a bundle over S𝒬S_{\mathcal{Q}}. In particular, 𝒬\mathcal{Q} is representable if and only if S𝒬S_{\mathcal{Q}} is nonempty and 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is irreducible if and only if S𝒬S_{\mathcal{Q}} is.

Candidate quatroid 𝒬41\mathcal{Q}_{41} is a well-known matroid called the MacLane matroid (see, e.g., [20, 32]) which is realized by a Möbius-Kantor configuration [11, Section 2]. As a matroid, it is non-orientable, not representable over \mathbb{R}, and its realization space is reducible. We give a standard proof regarding its representability.

Lemma 3.22.

The candidate quatroid 𝒬41=({123,145,167,246,258,357,368,478},)\mathcal{Q}_{41}=(\{123,145,167,246,258,357,368,478\},\emptyset) is representable over \mathbb{C} but not \mathbb{R}. Its realization space is the union of two distinct orbits of PGL2\mathrm{PGL}_{2}.

Proof.

The four points p1,p2,p4,p7p_{1},p_{2},p_{4},p_{7} are in general linear position, in the sense that no subset of three of them lie on a line. Therefore, we may normalize them with the action of PGL2\mathrm{PGL}_{2} to be the four points [e1],[e2],[e3][e_{1}],[e_{2}],[e_{3}] and [e1+e2+e3][e_{1}+e_{2}+e_{3}] in 2\mathbb{P}_{\mathbb{C}}^{2}. Using the fact that 123I123\in I, we deduce p3=[1:z1:0]p_{3}=[1:z_{1}:0] for some z1z_{1} and similarly, we write p5,p6,p_{5},p_{6}, and p8p_{8} using the linear relations 145,246,258I145,246,258\in I, respectively, and in this order. We obtain the representation of 𝐩\mathbf{p} as the matrix

A41=[1010101101z10011z40001z2z31z2]A_{41}=\begin{bmatrix}1&0&1&0&1&0&1&1\\ 0&1&z_{1}&0&0&1&1&z_{4}\\ 0&0&0&1&z_{2}&z_{3}&1&z_{2}\end{bmatrix}

subject to the determinantal equations imposed by 167,357,368,478I167,357,368,478\in I. Conditions 167167 and 478478 imply that z3=1=z4z_{3}=1=z_{4}. Condition 368368 implies that z1=1z2z_{1}=1-z_{2}. Finally, 357357 implies that the last remaining parameter, z2z_{2}, satisfies the univariate quadratic equation z22+z2=1-z_{2}^{2}+z_{2}=1, which has two distinct non-real solutions. For either solution, the inequations hold. Hence the set S𝒬41S_{\mathcal{Q}_{41}} consists of two points. Since the two points are inequivalent for the action of PGL2\mathrm{PGL}_{2}, the two corresponding PGL2\mathrm{PGL}_{2}-orbits give rise to two disjoint irreducible components of 𝒮𝒬41\mathcal{S}_{\mathcal{Q}_{41}}. ∎

We now change focus to the non-representability of 𝒬63\mathcal{Q}_{63}. Our proof relies on the following property: for any realization 𝐩\mathbf{p} of 𝒬63\mathcal{Q}_{63}, the base locus Z(L𝐩)Z(L_{\mathbf{p}}) is reduced. Hence, the matroid underlying the base locus is determined by 𝒬63\mathcal{Q}_{63} (see 3.23) and if such a matroid is non-representable, then 𝒬63\mathcal{Q}_{63} is non-representable as well.

A priori the Cayley–Bacharach point of a configuration p of cubics may coincide with one of the eight points in p. In this case the variety underlying the base locus Z(L𝐩)Z(L_{\mathbf{p}}) consists of eight points, but as a scheme, it contains a nonreduced component of degree two supported at the Cayley–Bacharach point. See, for example, Figure 4.

Refer to caption
Figure 4. A configuration p𝒫\textbf{p}\in\mathcal{P} and two cubics C1,C2LpC_{1},C_{2}\in L_{\textbf{p}}. The base locus Z(Lp)Z(L_{\textbf{p}}) is nonreduced, witnessed by the fact that C1C_{1} and C2C_{2} are tangent at one of the eight points.
Lemma 3.23.

Let 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) be a Bézoutian candidate quatroid and let p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}. If 𝒬𝒬\mathcal{Q}\not\leq\mathcal{Q}^{\prime} for every 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}, then the Cayley–Bacharach point of LpL_{\textbf{p}} cannot coincide with any point pip_{i} involved in a line condition II\in\mathcal{I} or conic condition J𝒥J\in\mathcal{J}.

Proof.

Without loss of generality, assume 𝒬=𝒬10\mathcal{Q}^{\prime}=\mathcal{Q}_{10}. Since 𝒬\mathcal{Q} is Bézoutian, the base locus Z(Lp)Z(L_{\textbf{p}}) is 0-dimensional by 2.1 and 3.16. Let p9p_{9} be the Cayley–Bacharach point of 𝐩\mathbf{p}. By 3.3, we have that 𝒬77𝒬10\mathcal{Q}_{77}\leq\mathcal{Q}_{10}, and so we prove that if p9=pip_{9}=p_{i} for some pip_{i} involved in a triple or sextuple of 𝒬\mathcal{Q}, then either 𝒬𝒬77\mathcal{Q}\leq\mathcal{Q}_{77} or 𝒬𝒬10\mathcal{Q}\leq\mathcal{Q}_{10}.

Suppose p9p_{9} coincides with pip_{i} for some ii involved in a conic condition J𝒥J\in\mathcal{J}. Without loss of generality, i=1i=1 and J=123456J=123456. Then C=qJ78C=q_{J}\ell_{78} is a reducible cubic containing 𝐩\mathbf{p}, hence CL𝐩C\in L_{\mathbf{p}}. By Bézout’s Theorem, the conic qJq_{J} cannot contain the five points p2,,p6p_{2},\ldots,p_{6} and a scheme of length two supported on p1p_{1}: if this was the case, the intersection of qJq_{J} with an irreducible cubic in L𝐩L_{\mathbf{p}} would have degree (at least) 77. Hence, 78\ell_{78} contains p1p_{1}. Therefore 𝒬𝒬10\mathcal{Q}\leq\mathcal{Q}_{10}.

Now, suppose that p9p_{9} coincides with pip_{i} for some ii in a line condition II\in\mathcal{I}. Suppose iJi\notin J for any J𝒥J\in\mathcal{J}; if this is not the case, then 𝒬𝒬10\mathcal{Q}\leq\mathcal{Q}_{10} as in the previous case. Without loss of generality i=1i=1 and I=123I=123. Then C=123q45678C=\ell_{123}q_{45678} is a reducible cubic containing 𝐩\mathbf{p}, hence CL𝐩C\in L_{\mathbf{p}}. Similarly to the previous case, by Bézout’s Theorem, the line 123\ell_{123} does not contain the subscheme of Z(Lp)Z(L_{\textbf{p}}) of length two supported at p1p_{1}. Hence, the quadric q45678q_{45678} contains p1p_{1}. Since 𝒬\mathcal{Q} does not contain a conic condition involving i=1i=1, the quadric q145678q_{145678} must be the union of two lines. Up to reordering the points, those two lines are 145\ell_{145} and 678\ell_{678} implying that 𝒬𝒬77\mathcal{Q}\leq\mathcal{Q}_{77}. ∎

Corollary 3.24.

If the base locus p1,,p9p_{1},\ldots,p_{9} of LpL_{\textbf{p}} is a reduced 0-dimensional scheme, then for any sextuple J{1,2,,9}J\subset\{1,2,\ldots,9\}, the points {pj}jJ\{p_{j}\}_{j\in J} lie on a quadric if and only if {pi}iJ\{p_{i}\}_{i\not\in J} lie on a line.

A candidate quatroid 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) is called exhaustive if every i{1,2,,8}i\in\{1,2,\ldots,8\} is involved in some II\in\mathcal{I} or J𝒥J\in\mathcal{J}. 3.23 has the following strong consequence.

Corollary 3.25.

Let 𝒬\mathcal{Q} be an exhaustive Bézoutian quatroid such that 𝒬𝒬\mathcal{Q}\not\leq\mathcal{Q}^{\prime} for every 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}. Then for every p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}, the base locus Z(Lp)Z(L_{\textbf{p}}) is reduced.

3.25 says that there exist quatroids for which every realization gives a reduced base locus. We say that these quatroids, themselves, have reduced base locus. In this case, knowing the matroid underlying the reduced base locus of the pencil of cubics is equivalent to knowing the quatroid underlying any 88-subset of the base locus by 3.24.

Lemma 3.26.

The pair 𝒬63=({123,145,246,356},{125678,134678,234578})\mathcal{Q}_{63}=(\{123,145,246,356\},\{125678,134678,234578\}) is not \mathbb{C}-representable.

Proof.

Suppose towards a contradiction that 𝐩\mathbf{p} represents 𝒬63\mathcal{Q}_{63}. Note that 𝒬63\mathcal{Q}_{63} is Bézoutian, exhaustive, and 𝒬63𝒬\mathcal{Q}_{63}\not\leq\mathcal{Q}^{\prime} for every 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}. By 3.24, 𝒬63\mathcal{Q}_{63} has reduced base locus and the matroid underlying Z(Lp)Z(L_{\textbf{p}}), as represented by nonbases, is

MZ(Lp)={123,145,246,356,349,259,169}.M_{Z(L_{\textbf{p}})}=\{123,145,246,356,349,259,169\}.

This is the Fano matroid, which is famously not \mathbb{C}-representable [28, Prop. 6.4.8]. Hence 𝒬63\mathcal{Q}_{63} is not \mathbb{C}-representable. ∎

Inspired by the proof of 3.26, we name 𝒬63\mathcal{Q}_{63} the Fano candidate.

4. Irreducibility of quatroid strata

In this section, we establish which realization spaces of quatroids are irreducible.

Theorem 4.1.

For every quatroid 𝒬\mathcal{Q} except those in the orbit of 𝒬41\mathcal{Q}_{41}, the realization space 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is irreducible. If 𝒬\mathcal{Q} is in the orbit of 𝒬41\mathcal{Q}_{41}, then 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is the union of two irreducible components.

The statement for 𝒬41\mathcal{Q}_{41} has been shown in 3.22. The rest of the proof of Theorem 4.1 is built on a series of reductions, inspired by [9, Thm. 4.5]. To state them precisely, we introduce a definition.

Definition 4.2.

Let 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) be a quatroid and let i{1,2,,8}i\in\{1,2,\ldots,8\}. The deletion of ii from 𝒬\mathcal{Q} is

𝒬{i}=({IiI},{J𝒥jJ}).{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{Q}-\{i\}}=(\{I\in\mathcal{I}\mid i\notin I\},\{J\in\mathcal{J}\mid j\notin J\}).
Proposition 4.3.

Let 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) be a quatroid and i{1,2,,8}i\in\{1,2,\ldots,8\}. Suppose one of the following conditions holds:

  • ii is in at most two elements I1,I2I_{1},I_{2} of \mathcal{I} and no elements of 𝒥\mathcal{J},

  • ii is in at most one element of 𝒥\mathcal{J} and no elements of \mathcal{I}.

Then 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is irreducible if and only if 𝒮𝒬{i}\mathcal{S}_{\mathcal{Q}-\{i\}} is irreducible. In particular, if 𝒬=(,)\mathcal{Q}=(\mathcal{I},\emptyset) and ||6|\mathcal{I}|\leq 6 then 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is irreducible.

Proof.

First, notice that if ii appears in no elements of \mathcal{I} and 𝒥\mathcal{J}, then 𝒬=𝒬{i}\mathcal{Q}=\mathcal{Q}-\{i\}. Hence, we may assume ii appears in at least one element of 𝒥\mathcal{I}\cup\mathcal{J}. Without loss of generality, let i=8i=8.

Suppose first ii belongs to exactly one element of II\in\mathcal{I}, say I=678I=678. Let π:(2)8(2)7\pi:(\mathbb{P}_{\mathbb{C}}^{2})^{8}\to(\mathbb{P}_{\mathbb{C}}^{2})^{7} be the projection on the first seven factors. Let X=π(𝒮𝒬)X=\pi(\mathcal{S}_{\mathcal{Q}}). First, observe 𝒮𝒬{i}\mathcal{S}_{\mathcal{Q}-\{i\}} is a dense subset of X×2X\times\mathbb{P}_{\mathbb{C}}^{2}: indeed, the line and conic conditions of 𝒬{i}\mathcal{Q}-\{i\} are the line and conic conditions of 𝒬\mathcal{Q} not involving ii, so they are satisfied by 𝐩(2)8\mathbf{p}\in(\mathbb{P}_{\mathbb{C}}^{2})^{8} if and only if π(𝐩)X\pi(\mathbf{p})\in X. In particular, XX is irreducible if and only if 𝒮𝒬{i}\mathcal{S}_{\mathcal{Q}-\{i\}} is irreducible. Moreover, 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is an open dense subset of a 1\mathbb{P}_{\mathbb{C}}^{1}-bundle over XX, embedded in X×2X\times\mathbb{P}_{\mathbb{C}}^{2}: the fiber over 𝐩X\mathbf{p}^{\prime}\in X is an open subset of the line 67\ell_{67}. In particular, XX is irreducible if and only if 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is irreducible.

If ii belongs to exactly one element J𝒥J\in\mathcal{J}, the proof is similar. Suppose J=345678J=345678. The proof follows the same argument described above, with the only difference that 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is an open subset of a fiber bundle over XX whose fiber at 𝐩\mathbf{p} is the conic q34567q_{34567}.

If ii belongs to two exactly two elements I1,I2I_{1},I_{2}\in\mathcal{I}, suppose without loss of generality I1=678I_{1}=678 and I2=458I_{2}=458. Again, the proof is similar. In this case 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is birational to XX, with a birational map given by ϕ:X𝒮𝒬\phi\colon X\to\mathcal{S}_{\mathcal{Q}} defined by ϕ(𝐩)=(𝐩,p8)\phi(\mathbf{p}^{\prime})=(\mathbf{p}^{\prime},p_{8}) where p8=4578p_{8}=\ell_{45}\cap\ell_{78}. ∎

A second reduction is built on the Cayley–Bacharach construction introduced in Section 3. Let 𝒬\mathcal{Q} be an exhaustive Bézoutian quatroid such that 𝒬𝒬\mathcal{Q}\not\leq\mathcal{Q}^{\prime} for every 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}, and let 𝐩\mathbf{p} be any of its realizations. Then Z(L𝐩)Z(L_{\mathbf{p}}) is reduced by 3.25. The underlying matroid of Z(L𝐩)Z(L_{\mathbf{p}}) is well-defined by 3.24 and so is the set of quatroids obtained by deleting any of the nine points. If 𝒬\mathcal{Q}^{\prime} is one such quatroid, write 𝒬𝒬\mathcal{Q}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\leadsto}\mathcal{Q}^{\prime} and say that 𝒬\mathcal{Q}^{\prime} is a modification of 𝒬\mathcal{Q}.

Lemma 4.4.

Let 𝒬,𝒬\mathcal{Q},\mathcal{Q}^{\prime} be quatroids with 𝒬𝒬\mathcal{Q}\leadsto\mathcal{Q}^{\prime}. If 𝒮𝒬\mathcal{S}_{\mathcal{Q}^{\prime}} is irreducible then so is 𝒮𝒬\mathcal{S}_{\mathcal{Q}}.

Proof.

Let 𝒬𝒬\mathcal{Q}\leadsto\mathcal{Q}^{\prime} and write \mathcal{M} for the matroid of the base locus Z(Lp)Z(L_{\textbf{p}}) for any p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}. Consider the realization space 𝒮(2)9\mathcal{S}_{\mathcal{M}}\subseteq(\mathbb{P}_{\mathbb{C}}^{2})^{9} of that matroid. The variety 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is isomorphic to the variety 𝒦𝒮(2)9\mathcal{K}\subseteq\mathcal{S}_{\mathcal{M}}\subseteq(\mathbb{P}_{\mathbb{C}}^{2})^{9} of configurations which are complete intersections of type (3,3)(3,3). Since 𝒮𝒬\mathcal{S}_{\mathcal{Q}^{\prime}} is assumed to be irreducible, the map from 𝒦\mathcal{K} to 𝒮𝒬\mathcal{S}_{\mathcal{Q}^{\prime}} given by forgetting one of the nine points shows that 𝒦\mathcal{K} is birational to 𝒮𝒬\mathcal{S}_{\mathcal{Q}^{\prime}}. ∎

Based on these results, given a quatroid 𝒬\mathcal{Q}, there are four ways to reduce the problem of determining irreducibility of 𝒮𝒬\mathcal{S}_{\mathcal{Q}}:

  1. (i)

    𝒬\mathcal{Q} reduces to 𝒬=𝒬{i}\mathcal{Q}^{\prime}=\mathcal{Q}-\{i\} with ii involved in at most two line conditions and no conic condition,

  2. (ii)

    𝒬\mathcal{Q} reduces to 𝒬=𝒬{i}\mathcal{Q}^{\prime}=\mathcal{Q}-\{i\} with ii involved in no line condition and one conic condition,

  3. (iii)

    𝒬\mathcal{Q} has at most six line conditions and no conic condition,

  4. (iv)

    𝒬𝒬\mathcal{Q}\leadsto\mathcal{Q}^{\prime}.

In these cases, if 𝒮𝒬\mathcal{S}_{\mathcal{Q}^{\prime}} is irreducible, so is 𝒮𝒬\mathcal{S}_{\mathcal{Q}}.

Lemma 4.5.

All quatroids in orbits other than the 2424 orbits represented by

𝒬4,𝒬5,𝒬13,𝒬19,𝒬21,𝒬22,𝒬25,𝒬38,𝒬41,𝒬46,𝒬49,𝒬51,\displaystyle\mathcal{Q}_{4},\mathcal{Q}_{5},\mathcal{Q}_{13},\mathcal{Q}_{19},\mathcal{Q}_{21},\mathcal{Q}_{22},\mathcal{Q}_{25},\mathcal{Q}_{38},\mathcal{Q}_{41},\mathcal{Q}_{46},\mathcal{Q}_{49},\mathcal{Q}_{51},
𝒬53,𝒬57,𝒬58,𝒬59,𝒬62,𝒬66,𝒬73,𝒬76,𝒬81,𝒬82,𝒬101,𝒬123\displaystyle\mathcal{Q}_{53},\mathcal{Q}_{57},\mathcal{Q}_{58},\mathcal{Q}_{59},\mathcal{Q}_{62},\mathcal{Q}_{66},\mathcal{Q}_{73},\mathcal{Q}_{76},\mathcal{Q}_{81},\mathcal{Q}_{82},\mathcal{Q}_{101},\mathcal{Q}_{123}

have irreducible realization spaces.

Proof.

The result is obtained by iteratively applying reductions (i)–(iii). The proof is computational and the reductions are performed by the function QuatroidReductions() in the Quatroids.jl package. This function produces the file ReductionProofs.txt. ∎

Lemma 4.6.

The following relationships hold

𝒬4𝒬17,𝒬5𝒬25,𝒬13𝒬20,𝒬19𝒬60,𝒬22𝒬30,𝒬46𝒬25,\displaystyle\mathcal{Q}_{4}\leadsto\mathcal{Q}_{17},\quad\,\,\,\,\,\mathcal{Q}_{5}\leadsto\mathcal{Q}_{25},\quad\,\,\,\,\mathcal{Q}_{13}\leadsto\mathcal{Q}_{20},\quad\,\,\mathcal{Q}_{19}\leadsto\mathcal{Q}_{60},\quad\,\,\mathcal{Q}_{22}\leadsto\mathcal{Q}_{30},\quad\,\,\mathcal{Q}_{46}\leadsto\mathcal{Q}_{25},\quad\,\,
𝒬49𝒬25,𝒬51𝒬25,𝒬53𝒬40,𝒬57𝒬30,𝒬59𝒬32,𝒬62𝒬32,\displaystyle\mathcal{Q}_{49}\leadsto\mathcal{Q}_{25},\quad\,\,\mathcal{Q}_{51}\leadsto\mathcal{Q}_{25},\quad\,\,\mathcal{Q}_{53}\leadsto\mathcal{Q}_{40},\quad\,\,\mathcal{Q}_{57}\leadsto\mathcal{Q}_{30},\quad\,\,\mathcal{Q}_{59}\leadsto\mathcal{Q}_{32},\quad\,\,\mathcal{Q}_{62}\leadsto\mathcal{Q}_{32},\quad\,\,
𝒬66𝒬36,𝒬73𝒬37,𝒬76𝒬39,𝒬81𝒬45,𝒬82𝒬43.\displaystyle\mathcal{Q}_{66}\leadsto\mathcal{Q}_{36},\quad\,\,\mathcal{Q}_{73}\leadsto\mathcal{Q}_{37},\quad\,\,\mathcal{Q}_{76}\leadsto\mathcal{Q}_{39},\quad\,\,\mathcal{Q}_{81}\leadsto\mathcal{Q}_{45},\quad\,\,\mathcal{Q}_{82}\leadsto\mathcal{Q}_{43}.

In particular, the realization spaces of the quatroids in the same orbits as

𝒬4,𝒬13,𝒬19,𝒬22,𝒬57,𝒬59,𝒬62,𝒬66,𝒬73,𝒬81,𝒬82\mathcal{Q}_{4},\mathcal{Q}_{13},\mathcal{Q}_{19},\mathcal{Q}_{22},\mathcal{Q}_{57},\mathcal{Q}_{59},\mathcal{Q}_{62},\mathcal{Q}_{66},\mathcal{Q}_{73},\mathcal{Q}_{81},\mathcal{Q}_{82}

are all irreducible.

Proof.

All quatroids in the statement satisfy the conditions of 3.25: this is verified computationally, see Table 3. The relation 𝒬𝒬\mathcal{Q}\leadsto\mathcal{Q}^{\prime} is also verified computationally via the function Modifications(Q) in the package Quatroids.jl. Note that each quatroid on the right-hand-side of a \leadsto sign, other than 𝒬25\mathcal{Q}_{25}, has already been shown to have irreducible realization space, therefore 4.4 guarantees that the corresponding quatroids on the left-hand-side have irreducible realization spaces. ∎

The following result completes the proof of Theorem 4.1.

Theorem 4.7.

The realization spaces of quatroids

𝒬21,𝒬25,𝒬38,𝒬58,𝒬101,𝒬123\mathcal{Q}_{21},\mathcal{Q}_{25},\mathcal{Q}_{38},\mathcal{Q}_{58},\mathcal{Q}_{101},\mathcal{Q}_{123}

are irreducible.

Proof.

The auxiliary files include Macaulay2 scripts to reproduce the computations in this proof.

We normalize elements of the realization space in two different ways. Either we normalize a conic conditions to be x02x1x2x_{0}^{2}-x_{1}x_{2} and then three points on such conic to be [0:1:0],[0:0:1],[1:1:1][0:1:0],[0:0:1],[1:1:1], or we normalize four points in 2\mathbb{P}^{2}_{\mathbb{C}} to be [1:0:0],[0:1:0],[0:0:1],[1:1:1][1:0:0],[0:1:0],[0:0:1],[1:1:1]. After this normalization, a point in the realization space of quatroid 𝒬i\mathcal{Q}_{i} is represented by one of the following 3×83\times 8 matrices:

A21=[00011z3z4z51011z2z32z42z5201z111111],A25=[101011z3z401z10011z50001z211z6],A38=[11001z3z4z51z2101z32z42z52z1z1011111],A58=[1100z11z2z3z5110z121z22z32z4z4011111],A101=[1011010z501z1z2001100001z3z4z4],A123=[00001z3z4z510111z32z42z5201z1z21111],\begin{array}[]{rlrl}A_{21}&=\left[\begin{array}[]{cccccccc}0&0&0&1&1&z_{3}&z_{4}&z_{5}\\ 1&0&1&1&z_{2}&z_{3}^{2}&z_{4}^{2}&z_{5}^{2}\\ 0&1&z_{1}&1&1&1&1&1\end{array}\right],&A_{25}&=\left[\begin{array}[]{cccccccc}1&0&1&0&1&1&z_{3}&z_{4}\\ 0&1&z_{1}&0&0&1&1&z_{5}\\ 0&0&0&1&z_{2}&1&1&z_{6}\end{array}\right],\\ {}\hfil\\ A_{38}&=\left[\begin{array}[]{cccccccc}1&1&0&0&1&z_{3}&z_{4}&z_{5}\\ 1&z_{2}&1&0&1&z_{3}^{2}&z_{4}^{2}&z_{5}^{2}\\ z_{1}&z_{1}&0&1&1&1&1&1\end{array}\right],&A_{58}&=\left[\begin{array}[]{cccccccc}1&1&0&0&z_{1}&1&z_{2}&z_{3}\\ z_{5}&1&1&0&z_{1}^{2}&1&z_{2}^{2}&z_{3}^{2}\\ z_{4}&z_{4}&0&1&1&1&1&1\end{array}\right],\\ {}\hfil\\ A_{101}&=\left[\begin{array}[]{cccccccc}1&0&1&1&0&1&0&z_{5}\\ 0&1&z_{1}&z_{2}&0&0&1&1\\ 0&0&0&0&1&z_{3}&z_{4}&z_{4}\\ \end{array}\right],&A_{123}&=\left[\begin{array}[]{cccccccc}0&0&0&0&1&z_{3}&z_{4}&z_{5}\\ 1&0&1&1&1&z_{3}^{2}&z_{4}^{2}&z_{5}^{2}\\ 0&1&z_{1}&z_{2}&1&1&1&1\end{array}\right],\end{array}

where the vectors (z1,,zr)(z_{1},\ldots,z_{r}) are subject to the determinantal relations imposed by the line and conic condition of a quatroid.

We verify in the auxiliary files that the additional conditions cut out an irreducible variety. To prove irreducibility, we reduce to a hypersurface case. To prove irreducibility of a hypersurface, we observe that its singular locus has codimension at least three (in the ambient space). ∎

That every quatroid stratum other than 𝒮𝒬41\mathcal{S}_{\mathcal{Q}_{41}} is irreducible guarantees that the notion of generic point makes sense on these strata. For 𝒮𝒬41\mathcal{S}_{\mathcal{Q}_{41}}, one may perform every computation exhaustively, since up to the PGL2\mathrm{PGL}_{2}-action, this realization space is just two complex conjugate points.

5. The generic number of rational cubics through quatroid strata: a lower bound

Recall from 2.2 that for p𝒫\textbf{p}\in\mathcal{P} the value dpd_{\textbf{p}} is the number of rational cubics through p, counted with multiplicity. The irreducibility of a realization space 𝒮𝒬\mathcal{S}_{\mathcal{Q}} guarantees that this number is constant on a dense open subset of 𝒮𝒬\mathcal{S}_{\mathcal{Q}}. Denote by d𝒬{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}d_{\mathcal{Q}}} this generic value. Our goal is to compute d𝒬d_{\mathcal{Q}} for all quatroids.

In the case of 𝒬41\mathcal{Q}_{41}, it is classically known that, for every 𝐩𝒮𝒬41\mathbf{p}\in\mathcal{S}_{\mathcal{Q}_{41}}, d𝐩=0d_{\mathbf{p}}=0. Indeed, the singular cubics on the pencil L𝐩L_{\mathbf{p}} are four fully reducible cubics f1,,f4f_{1},\ldots,f_{4} each of the form 123\ell_{1}\ell_{2}\ell_{3} with 1,2,3\ell_{1},\ell_{2},\ell_{3} linearly independent. We refer, for instance, to [2] for details.

Let 𝔅{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathfrak{B}} be the set of Bézoutian quatroids. By 2.1, if 𝒬𝔅\mathcal{Q}\notin\mathfrak{B}, then d𝒬=0d_{\mathcal{Q}}=0. For Bézoutian quatroids, we obtain a lower bound on d𝒬d_{\mathcal{Q}} via a semicontinuity argument.

Lemma 5.1.

The function pdp\textbf{p}\mapsto d_{\textbf{p}} is lower semicontinuous.

Proof.

By 2.4, L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D} is either infinite, in which case d𝐩=0d_{\mathbf{p}}=0, or a 0-dimensional scheme of degree 1212. The number dpd_{\textbf{p}} counts, with multiplicity, the number of intersection points Lp𝒟L_{\textbf{p}}\cap\mathcal{D} not occurring on the variety of reducible cubics. Equivalently r𝐩=12d𝐩r_{\mathbf{p}}=12-d_{\mathbf{p}} is the degree of the subscheme of L𝐩𝒟L_{\mathbf{p}}\cap\mathcal{D} supported on the subvariety of reducible cubics. Since this subvariety is closed, upper semicontinuity of r𝐩r_{\mathbf{p}} follows and we conclude that d𝐩d_{\mathbf{p}} is lower semicontinuous. ∎

Corollary 5.2.

Let 𝒬\mathcal{Q} be a quatroid. The number maxp𝒮𝒬(dp)\max_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(d_{\textbf{p}}) is well-defined and equal to d𝒬d_{\mathcal{Q}}. In particular, for any p𝒮𝒬¯\textbf{p}\in\overline{\mathcal{S}_{\mathcal{Q}}} we have that dpd𝒬d_{\textbf{p}}\leq d_{\mathcal{Q}}. Consequently, d𝒬d𝒬d_{\mathcal{Q}^{\prime}}\leq d_{\mathcal{Q}} if 𝒬𝒬\mathcal{Q}^{\prime}\leq\mathcal{Q}.

A consequence of 5.2 is that any point 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}} provides a lower bound d𝐩d𝒬d_{\mathbf{p}}\leq d_{\mathcal{Q}}. We compute the number d𝐩d_{\mathbf{p}} for the rational representatives in RationalRepresentatives.txt using a symbolic calculation. We now discuss how to perform that calculation.

Input: A rational configuration p=(p1,,p8)𝒫\textbf{p}=(p_{1},\ldots,p_{8})\in\mathcal{P} representing a Bézoutian quatroid
Output: dpd_{\textbf{p}}
1 initialize II to be the ideal of the points p1,,p8𝒫p_{1},\ldots,p_{8}\in\mathcal{P}
2 Find a rational basis {C0,C1}\{C_{0},C_{1}\} for II in degree 33
3 Set F=disc(t0C0+t1C1)[t0,t1]F=\textrm{disc}(t_{0}C_{0}+t_{1}C_{1})\in\mathbb{Q}[t_{0},t_{1}]
4 Factor FF over \mathbb{Q}
Optionally, determine the multiplicities of each solution from the powers of the factors
5 Let RR be the kk linear factors of FF with roots {[t0(i):t1(i)]}i=1k\{[t_{0}^{(i)}:t_{1}^{(i)}]\}_{i=1}^{k}
6 For each i=1,,ki=1,\ldots,k factor the cubic t0(i)C0+t1(i)C1t_{0}^{(i)}C_{0}+t_{1}^{(i)}C_{1}
7 Let rpr_{\textbf{p}} be the number of cubics which factor nontrivially, counted with multiplicity
Optionally, compute the type of each reducible (see Table 1)
8 return 12rp12-r_{\textbf{p}}
Algorithm 2 Symbolic Computation of dpd_{\textbf{p}}
Lemma 5.3.

Let p𝒫\textbf{p}\in\mathcal{P} be a rational representative of a Bézoutian quatroid. Let CC be a reducible cubic through p defined by a cubic form ff. Then fS33f\in\mathbb{P}{S}^{3}\mathbb{Q}^{3} and it factors over \mathbb{Q}.

Proof.

Since CC is a reducible cubic, then CC is a union of either (a) three lines or (b) a line and a conic. In case (a), since p represents a Bézoutian quatroid, then each line contains (at least) two elements of 𝐩\mathbf{p} by the pigeonhole principle. In particular, since 𝐩\mathbf{p} is rational, each of the three lines has a rational equation. Similarly, in case (b), since p is Bézoutian, the pigeonhole principal implies that there are at least two points on the line and at least five points on the conic. The equation of a conic through five rational points, as well as the equation of a line through two rational points, has rational coefficients. Consequently, in either (a) or (b), the components of CC must be realized by rational forms whose product is ff, up to scaling. ∎

algorithm 2 uses 5.3 to find the reducible cubics, and their multiplicities, on a pencil.

Proposition 5.4.

algorithm 2 is correct, in the sense that its output is the number d𝐩d_{\mathbf{p}}. Moreover, the optional steps correctly determine the multiplicities of each cubic through p and the type of each reducible cubic in the sense of Table 1.

Proof.

Consider a rational configuration p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} for a Bézoutian quatroid 𝒬\mathcal{Q}. By 2.1, L𝐩=C1,C2L_{\mathbf{p}}=\langle C_{1},C_{2}\rangle and since 𝐩\mathbf{p} is rational the cubics C1,C2C_{1},C_{2} can be taken to have rational coefficients. Step 33 parametrizes the pencil L𝐩L_{\mathbf{p}} and evaluates the discriminant of plane cubics, disc\operatorname{disc}, on it. By the separability of \mathbb{Q}, no irreducible factor has a multiple root, and so the multiplicities of the linear factors over \mathbb{C} are witnessed by the powers of the irreducible factors over \mathbb{Q}. This shows that the first optional step correctly detects the multiplicities.

By 5.3 the reducible cubics through rational configurations are themselves defined over \mathbb{Q}, hence all of them appear in the \mathbb{Q}-factorization of FF as linear factors. Moreover 5.3 also states that the \mathbb{C}-factorization of each such reducible cubic is realized over \mathbb{Q}. Consequently, those which factor nontrivially are precisely the reducible cubics on L𝐩L_{\mathbf{p}}, counted with the appropriate multiplicity, and so their number is rpr_{\textbf{p}}. Since 12=dp+rp12=d_{\textbf{p}}+r_{\textbf{p}}, the number dpd_{\textbf{p}} is correctly determined. The type of each individual reducible cubic may be determined in several elementary ways. In countReducibleCubics.m2, we determine the type via their singular locus. ∎

Theorem 5.5.

The following numbers are lower bounds for d𝒬id_{\mathcal{Q}_{i}}, where 𝒬i\mathcal{Q}_{i} is a Bézoutian quatroid:

ii\,\,\,
1 2 3 4 5 8 9 10 11 12 13 15 16 17 18 19 20 21 22 24
.
dpid_{\mathcal{\textbf{p}}_{i}}
.
12 10 8 6 4 10 8 9 6 7 4 8 6 6 7 4 4 5 2 6
25 26 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
dpid_{\mathcal{\textbf{p}}_{i}}
.
4 5 4 3 2 1 0 0 2 1 1 3 2 2 1 0 3 3 4 5
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 64 65 66
dpid_{\mathcal{\textbf{p}}_{i}}:
.
3 4 4 2 4 2 3 1 6 4 5 2 3 0 4 2 0 5 3 1
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
dpid_{\mathcal{\textbf{p}}_{i}}:
.
5 6 4 7 5 6 3 6 4 2 8 6 9 7 5 3

Moreover, for each rational representative pi\textbf{p}_{i}, the irreducible cubics through pi\textbf{p}_{i} all appear with multiplicity one and the reducible cubics are either conic+secant lines or triangles (see Table 1).

Proof.

For each quatroid 𝒬i\mathcal{Q}_{i}, with i41,63i\neq 41,63, we apply algorithm 2 to the \mathbb{Q}-representative pi𝒮𝒬i\textbf{p}_{i}\in\mathcal{S}_{\mathcal{Q}_{i}} in RationalRepresentatives.txt. 5.2 implies the results are lower bounds for d𝒬id_{{\mathcal{Q}_{i}}}. The optional steps are taken to determine the types and multiplicities of all cubics. ∎

Example 5.6.
Refer to caption
Figure 5. The four reducible cubics through the configuration p. The bold figures are the five lines imposed by 𝒬43\mathcal{Q}_{43}. Each set of figures of the same color union to be one of the four reducible cubics through p.

We detail algorithm 2 on the representative

p=[222121222222121102211112]\textbf{p}=\left[\!\begin{array}[]{cccccccc}-2&2&2&1&-2&1&2&-2\\ 2&-2&-2&2&-1&-2&-1&1\\ 0&2&-2&1&-1&1&-1&2\end{array}\!\right]

of 𝒬43=({123,145,167,246,357},{})\mathcal{Q}_{43}=(\{123,145,167,246,357\},\{\}). A basis for the ideal of 𝐩\mathbf{p} in degree 33 is given by the cubics

C0\displaystyle C_{0} =2x02x1+2x0x122x02x23x0x1x22x12x2+x0x22+x1x22+x23\displaystyle=2x_{0}^{2}x_{1}+2x_{0}x_{1}^{2}-2x_{0}^{2}x_{2}-3x_{0}x_{1}x_{2}-2x_{1}^{2}x_{2}+x_{0}x_{2}^{2}+x_{1}x_{2}^{2}+x_{2}^{3}
C1\displaystyle C_{1} =8x03+8x13+8x02x23x0x1x2+8x12x229x0x2229x1x2219x23\displaystyle=8x_{0}^{3}+8x_{1}^{3}+8x_{0}^{2}x_{2}-3x_{0}x_{1}x_{2}+8x_{1}^{2}x_{2}-29x_{0}x_{2}^{2}-29x_{1}x_{2}^{2}-19x_{2}^{3}

Evaluating the cubic discriminant on the pencil t0C0+t1C1t_{0}C_{0}+t_{1}C_{1} and factoring it yields

(t1)3(t019t1)2(t013t1)2(t05t1)2(375t036 047t02t125 539t0t12+232 083t13).\left(t_{1}\right)^{3}\left(t_{0}-19\,t_{1}\right)^{2}\left(t_{0}-13\,t_{1}\right)^{2}\left(t_{0}-5\,t_{1}\right)^{2}\left(375\,t_{0}^{3}-6\,047\,t_{0}^{2}t_{1}-25\,539\,t_{0}t_{1}^{2}+232\,083\,t_{1}^{3}\right).

We see that there are at most three reducible cubics which occur with multiplicity 22 and at most one reducible cubic occurring with multiplicity 33. Since the nonlinear factor appears with multiplicity one, its \mathbb{C} factors appear with multiplicity one as well. By factoring C[t0:t1]=t0C0+t1C1C_{[t_{0}:t_{1}]}=t_{0}C_{0}+t_{1}C_{1} for [t0:t1]{[0:1],[19:1],[13:1],[5:1]}[t_{0}:t_{1}]\in\{[0:1],[19:1],[13:1],[5:1]\} we see that all these cubics are reducible:

C[0:1]\displaystyle C_{[0:1]} =(x1x2)(x0x2)(2x0+2x1+x2)\displaystyle=\left(x_{1}-x_{2}\right)\left(x_{0}-x_{2}\right)\left(2\,x_{0}+2\,x_{1}+x_{2}\right)
C[19:1]\displaystyle C_{[19:1]} =(x0+x1)(4x02+15x0x1+4x1215x0x215x1x25x22)\displaystyle=\left(x_{0}+x_{1}\right)\left(4\,x_{0}^{2}+15\,x_{0}x_{1}+4\,x_{1}^{2}-15\,x_{0}x_{2}-15\,x_{1}x_{2}-5\,x_{2}^{2}\right)
C[13:1]\displaystyle C_{[13:1]} =(x0+x13x2)(4x02+9x0x1+4x12+3x0x2+3x1x2+x22)\displaystyle=\left(x_{0}+x_{1}-3\,x_{2}\right)\left(4\,x_{0}^{2}+9\,x_{0}x_{1}+4\,x_{1}^{2}+3\,x_{0}x_{2}+3\,x_{1}x_{2}+x_{2}^{2}\right)
C[5:1]\displaystyle C_{[5:1]} =(x0+x1+x2)(4x02+x0x1+4x125x0x25x1x27x22)\displaystyle=\left(x_{0}+x_{1}+x_{2}\right)\left(4\,x_{0}^{2}+x_{0}x_{1}+4\,x_{1}^{2}-5\,x_{0}x_{2}-5\,x_{1}x_{2}-7\,x_{2}^{2}\right)

The first is the union of three lines with no mutual intersection (i.e. a triangle). The remaining three reducible cubics are conic+secant lines. As a result, dp=12332=3d_{\textbf{p}}=12-3-3\cdot 2=3. We display the configuration p and these reducible cubics in Figure 5. ∎

6. The generic number of rational cubics through quatroid strata: an upper bound

In this section, we construct upper bounds for each d𝒬d_{\mathcal{Q}}, and observe that they coincide with the lower bounds listed in Theorem 5.5. Bounding d𝒬d_{\mathcal{Q}} from above is equivalent to bounding rp=12dpr_{\textbf{p}}=12-d_{\textbf{p}} from below, for every p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}. The value rpr_{\textbf{p}} occurs as a sum of intersection multiplicities, which is bounded by a sum of multiplicities in the sense of (1):

(2) rp=reducible CLp𝒟imultC(Lp,𝒟)\displaystyle r_{\textbf{p}}=\sum_{\textrm{reducible }C\in L_{\textbf{p}}\cap\mathcal{D}}\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D}) reducible CLp𝒟minCLGr(2,S33)(imultC(L,𝒟))\displaystyle\geq\sum_{\textrm{reducible }C\in L_{\textbf{p}}\cap\mathcal{D}}\textrm{min}_{C\in L\in\textrm{Gr}(2,S^{3}\mathbb{C}^{3})}(\textrm{imult}_{C}(L,\mathcal{D}))
=reducible CLp𝒟mult𝒟(C)=:mp.\displaystyle=\sum_{\textrm{reducible }C\in L_{\textbf{p}}\cap\mathcal{D}}\textrm{mult}_{\mathcal{D}}(C)=:{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}m_{\textbf{p}}}.

Hence, we obtain the bound dp=12rp12mpd_{\textbf{p}}=12-r_{\textbf{p}}\leq 12-m_{\textbf{p}}. Define m𝒬=minp𝒮𝒬(mp){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}m_{\mathcal{Q}}}=\min_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(m_{\textbf{p}}).

Lemma 6.1.

Let 𝒬\mathcal{Q} be a Bézoutian quatroid. The value m𝒬m_{\mathcal{Q}} is well-defined and equal to mpm_{\textbf{p}} for generic p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}.

Proof.

The statement follows from the fact that the multiplicity of a point on a variety is an upper semicontinuous function of the point. ∎

With these definitions, we can bound d𝒬d_{\mathcal{Q}} from above:

(3) d𝒬=maxp𝒮𝒬(dp)=maxp𝒮𝒬(12rp)=12minp𝒮𝒬(rp)12minp𝒮𝒬(mp)=12m𝒬\displaystyle d_{\mathcal{Q}}=\max_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(d_{\textbf{p}})=\max_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(12-r_{\textbf{p}})=12-\min_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(r_{\textbf{p}})\leq 12-\min_{\textbf{p}\in\mathcal{S}_{\mathcal{Q}}}(m_{\textbf{p}})=12-m_{\mathcal{Q}}

The value 12m𝒬12-m_{\mathcal{Q}} may be thought of, for now, as an expected number of rational cubics through 𝒬\mathcal{Q}.

6.1. An upper bound for d𝒬d_{\mathcal{Q}} through multiplicities of reducible cubics

Equation (3) gives us a way to compute upper bounds for d𝒬d_{\mathcal{Q}}. Crucially, as shown in 3.2 a Bézoutian quatroid 𝒬\mathcal{Q} determines the reducible cubics through any of its representations, and hence the range of the summations in (2). In this section, we determine the values mult𝒟(C)\textrm{mult}_{\mathcal{D}}(C) of the summands.

The multiplicity of a reducible cubic on the discriminant 𝒟\mathcal{D} is invariant under the action of PGL2\mathrm{PGL}_{2} on S33\mathbb{P}S^{3}\mathbb{C}^{3}. Hence, the contribution of a reducible cubic CC to the number mpm_{\textbf{p}} only depends on the orbit of CC under this action. The characterization of these orbits is classical; we refer to [22] for a modern reference. For each orbit, we record in Table 1 its name, a representative C[x0,x1,x2]C\in\mathbb{Q}[x_{0},x_{1},x_{2}], and the multiplicity mult𝒟(C)\mathrm{mult}_{\mathcal{D}}(C). We refer to Section 6.2 for a proof of these multiplicities (see 6.8). Each orbit as well as the orbit-closure containments are illustrated in Figure 6.

Name Representative Multiplicity
Nodal Cubic x0x12x22(x2x0)x_{0}x_{1}^{2}-x_{2}^{2}(x_{2}-x_{0}) 11
Cuspidal Cubic x0x12x23x_{0}x_{1}^{2}-x_{2}^{3} 22
Conic+Secant Line x0(x02+x12x22)x_{0}(x_{0}^{2}+x_{1}^{2}-x_{2}^{2}) 22
Conic+Tangent Line x0(x0x1+x22)x_{0}(x_{0}x_{1}+x_{2}^{2}) 33
Triangle x0x1x2x_{0}x_{1}x_{2} 33
Asterisk x0x1(x0+x1)x_{0}x_{1}(x_{0}+x_{1}) 44
Double Line + Transverse Line x02x1x_{0}^{2}x_{1} 66
Triple Line x03x_{0}^{3} 88
Table 1. A name, representative, and the multiplicity for each singular cubic orbit.
Refer to captionnodal cubicRefer to captioncuspidal cubicRefer to captionconic+secantRefer to captionconic+tangentRefer to captiontriangleRefer to captionasteriskRefer to captiondouble line+transverseRefer to captiontriple line
Figure 6. Orbit closure containments in the discriminant of singular cubics

A consequence of Theorem 5.5 along with the orbit-closure containments of singular cubics, imply that each reducible cubic through a generic configuration of a Bézoutian quatroid stratum is either a triangle or a conic+secant. In light of this fact, we associate to each quatroid stratum 𝒮Q\mathcal{S}_{Q} a string of symbols of the form ij{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\varnothing^{i}\triangle^{j}} which indicates that a generic representative of 𝒮𝒬\mathcal{S}_{\mathcal{Q}} is contained in ii reducible cubics of the form conic+secant, and jj triangles. These are listed, in black font, in the column Reducibles of Table 4 and Table 5.

Theorem 6.2.

Let 𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}) be a Bézoutian quatroid. Then

m𝒬=\displaystyle m_{\mathcal{Q}}= 2||+2|𝒥|2|{{I,J}×𝒥|IJ|=1}|\displaystyle 2\cdot|\mathcal{I}|+2\cdot|\mathcal{J}|-2\cdot\Bigl{|}\Bigl{\{}\{I,J\}\in\mathcal{I}\times\mathcal{J}\mid|I\cap J|=1\Bigr{\}}\Bigr{|}
|{{I1,I2}I1I2=}||{{I1,I2,I3}I1I2I3={1,,8}}|.\displaystyle-\Bigl{|}\Bigl{\{}\{I_{1},I_{2}\}\subset\mathcal{I}\mid I_{1}\cap I_{2}=\emptyset\Bigr{\}}\Bigr{|}-\Bigl{|}\Bigl{\{}\{I_{1},I_{2},I_{3}\}\mid I_{1}\cup I_{2}\cup I_{3}=\{1,\ldots,8\}\Bigr{\}}\Bigr{|}.
Proof.

The proof is an overcount along with a justification of correction terms. For each triple and each sextuple, we count two under the erroneous assumption that every triple and sextuple gives rise to its own conic+secant pair, which by Table 1 has multiplicity two. This accounts for the first two summands. We have directly overcounted conic+secant pairs by the third summand.

The fourth and fifth summands cover the cases when the triple did not give rise to a conic+secant, but rather, a triangle. In one case, two of the three lines of that triangle were counted by 2||2|\mathcal{I}|, contributing a total of 44 to m𝒬m_{\mathcal{Q}}, which should have been a 33 by Table 1. Hence the fourth summand corrects for this. The other case is when all three lines of the triangle were counted by 2||2|\mathcal{I}|, in which case the fourth summand reduced the contribution from 66 to 44, and the fifth and final summand corrects this contribution to 33; this correction term only counts once. ∎

Theorem 6.3.

For all 𝒬𝔅\mathcal{Q}\in\mathfrak{B} the numbers computed by Theorem 5.5 agree with the numbers 12m𝒬12-m_{\mathcal{Q}} except for the following 2424 quatroid orbits

{𝒬10,𝒬12,𝒬18,𝒬21,𝒬26,𝒬29,𝒬31,𝒬38,𝒬47,𝒬56,𝒬58,𝒬72}={𝒬𝔅𝒬𝒬10,𝒬𝒬77}\{\mathcal{Q}_{10},\mathcal{Q}_{12},\mathcal{Q}_{18},\mathcal{Q}_{21},\mathcal{Q}_{26},\mathcal{Q}_{29},\mathcal{Q}_{31},\mathcal{Q}_{38},\mathcal{Q}_{47},\mathcal{Q}_{56},\mathcal{Q}_{58},\mathcal{Q}_{72}\}=\{\mathcal{Q}\in\mathfrak{B}\mid\mathcal{Q}\leq\mathcal{Q}_{10},\mathcal{Q}\not\leq\mathcal{Q}_{77}\}
{𝒬33,𝒬34,𝒬35,𝒬42,𝒬48,𝒬49,𝒬67,𝒬68,𝒬69,𝒬72,𝒬77}={𝒬𝔅𝒬𝒬77}.\{\mathcal{Q}_{33},\mathcal{Q}_{34},\mathcal{Q}_{35},\mathcal{Q}_{42},\mathcal{Q}_{48},\mathcal{Q}_{49},\mathcal{Q}_{67},\mathcal{Q}_{68},\mathcal{Q}_{69},\mathcal{Q}_{72},\mathcal{Q}_{77}\}=\{\mathcal{Q}\in\mathfrak{B}\mid\mathcal{Q}\leq\mathcal{Q}_{77}\}.

In the above cases, the number 12m𝒬12-m_{\mathcal{Q}} is precisely one more than the associated number in Theorem 5.5.

Proof.

The number m𝒬m_{\mathcal{Q}} is easily computed via the formula in Theorem 6.2. ∎

That the bound from Theorem 6.2 only fails to be an equality by at most one is a stroke of luck. Consequently, it is enough to show that for each of these 2424 quatroids, a configuration p represents it only if imultC(Lp,𝒟)>mult𝒟(C)\textrm{imult}_{C}(L_{\textbf{p}},\mathcal{D})>\textrm{mult}_{\mathcal{D}}(C) for some reducible CC through p.

6.2. A tighter bound for d𝒬d_{\mathcal{Q}} through tangent cones of reducible cubics

The expected count of rational cubics through generic p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} fails to be correct when the line LpL_{\textbf{p}} intersects 𝒟\mathcal{D} at some reducible C𝒟C\in\mathcal{D} with intersection multiplicity greater than mult𝒟(C)\textrm{mult}_{\mathcal{D}}(C). Such lines are characterized by the tangent cone to 𝒟\mathcal{D} at CC.

Definition 6.4.

The tangent space to 𝒟\mathcal{D} at C𝒟C\in\mathcal{D} is the union of lines LS33L\subset\mathbb{P}S^{3}\mathbb{C}^{3} for which

imultC(L,𝒟)>1,\textrm{imult}_{C}(L,\mathcal{D})>1,

and is denoted TC𝒟{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textrm{T}_{C}\mathcal{D}}. The tangent cone to 𝒟\mathcal{D} at CC is the union of lines LS33L\subset\mathbb{P}S^{3}\mathbb{C}^{3} for which

imultC(L,𝒟)>mult𝒟(C),\textrm{imult}_{C}(L,\mathcal{D})>\textrm{mult}_{\mathcal{D}}(C),

and is denoted TCC𝒟{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\textrm{TC}_{C}\mathcal{D}}. Such lines are said to be tangent to 𝒟\mathcal{D} at CC.

Remark 6.5.

We refer to [30, Ch. 2] for more standard definitions of tangent spaces and tangent cones. The equivalent 6.4 streamlines the analysis necessary for our results. ∎

For p2p\in\mathbb{P}^{2}_{\mathbb{C}} we let HpS33{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}H_{p}}\subset\mathbb{P}S^{3}\mathbb{C}^{3} be the hyperplane of cubics which vanish at pp. The description of tangent spaces at smooth points of the discriminant is classical.

Remark 6.6.

A point C𝒟C\in\mathcal{D} is a smooth point of 𝒟\mathcal{D} if and only if it is a nodal cubic. If CC is smooth on 𝒟\mathcal{D} and pp is the node of CC then

TC𝒟=TCC𝒟=Hp.\textrm{T}_{C}\mathcal{D}=\textrm{TC}_{C}\mathcal{D}=H_{p}.

For details, see [12, Example 1.2.3]. ∎

Table 2 extends the tangent cone description of 6.6 beyond nodal cubics. Write kHp{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}kH_{p}} for the hyperplane HpH_{p} counted with multiplicity kk. Moreover, if S13\ell\in\mathbb{P}S^{1}{\mathbb{C}}^{3} is a linear form, write 𝒟{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{D}_{\ell}^{\prime}} for the subset of S33\mathbb{P}S^{3}\mathbb{C}^{3} of cubics whose intersection with the line {=0}\{\ell=0\} is singular.

Proposition 6.7.

The information in Table 2 is correct.

Proof.

The Macaulay2 script tangentConesPlaneCubics.m2 proves the result symbolically. ∎

Cubic Orbit Curves Points Tangent Cone
Nodal Cubic CC pp: the node of CC HpH_{p}
Cuspidal Cubic CC pp: the cusp of CC 2Hp2H_{p}
Conic+Secant Line qq: conic, \ell: line (p1,p2)=q(p_{1},p_{2})=q\cap\ell Hp1Hp2H_{p_{1}}\cup H_{p_{2}}
Conic+Tangent Line qq: conic, \ell: line p=qp=q\cap\ell 3Hp3H_{p}
Triangle 1,2,3\ell_{1},\ell_{2},\ell_{3}: lines pk=ijp_{k}=\ell_{i}\cap\ell_{j} Hp1Hp2Hp3H_{p_{1}}\cup H_{p_{2}}\cup H_{p_{3}}
Asterisk 1,2,3\ell_{1},\ell_{2},\ell_{3}: lines p=123p=\ell_{1}\cap\ell_{2}\cap\ell_{3} 4Hp4H_{p}
Double Line+Transverse Line 1\ell_{1}: double line, 2\ell_{2}: line p=12p=\ell_{1}\cap\ell_{2} 2Hp𝒟2H_{p}\cup\mathcal{D}^{\prime}_{\ell}
Triple Line \ell: line 2𝒟2\mathcal{D}^{\prime}_{\ell}
Table 2. Descriptions of tangent cones to the discriminant 𝒟\mathcal{D}.
Remark 6.8.

By definition, the multiplicity of a point CC on the discriminant 𝒟\mathcal{D} is the same as the multiplicity of CC on TCC𝒟\textrm{TC}_{C}\mathcal{D}. Since TCC𝒟\textrm{TC}_{C}\mathcal{D} is a cone over CC, the multiplicity of CC in TCC\textrm{TC}_{C} coincides with the degree of TCC\textrm{TC}_{C}. Hence one may take the Tangent Cone column of Table 2 as the proof of the Multiplicity column of Table 1. We remark that 𝒟\mathcal{D}^{\prime}_{\ell} has degree four since it is a cone over the variety of singular binary cubics. ∎

Corollary 6.9.

Let p𝒫\textbf{p}\in\mathcal{P}. The pencil LpL_{\textbf{p}} is tangent to 𝒟\mathcal{D} at CLpC\in L_{\textbf{p}} if and only if CC is singular at one of the points in p.

Proof.

This follows from the characterization of the tangent cones given in Table 2. ∎

Proposition 6.10.

If p represents 𝒬\mathcal{Q} for 𝒬𝒬\mathcal{Q}\leq\mathcal{Q}^{\prime} where 𝒬\mathcal{Q}^{\prime} is in the same orbit as 𝒬10\mathcal{Q}_{10}, then LpL_{\textbf{p}} tangent to the discriminant. Conversely, if p is a generic point on 𝒮𝒬\mathcal{S}_{\mathcal{Q}} for some 𝒬𝒬\mathcal{Q}\not\leq\mathcal{Q}^{\prime} for every 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}, then LpL_{\textbf{p}} is not tangent to the discriminant.

Proof.

Without loss of generality, assume 𝒬=𝒬10\mathcal{Q}^{\prime}=\mathcal{Q}_{10}. Recall that 𝒬10=({123},{145678})\mathcal{Q}_{10}=(\{123\},\{145678\}) and observe that 123q145678\ell_{123}\cdot q_{145678} is a reducible cubic CC through any realization. It is singular at p1p_{1} and so LpL_{\textbf{p}} is tangent to 𝒟\mathcal{D} at CC. Conversely, for all other quatroids, note that the dpd_{\textbf{p}} computed from Theorem 5.5 agrees with 12m𝒬12-m_{\mathcal{Q}} as computed in Theorem 6.3. Therefore, mp=rpm_{\textbf{p}}=r_{\textbf{p}} and the result follows. ∎

Proposition 6.11.

Let p𝒫\textbf{p}\in\mathcal{P} represent a Bézoutian quatroid. The following are equivalent:

  1. (1)

    LpL_{\textbf{p}} is tangent to 𝒟\mathcal{D},

  2. (2)

    There exists a cubic CLpC\in L_{\textbf{p}} which is singular at a point of p,

  3. (3)

    The base locus Z(Lp)Z(L_{\textbf{p}}) is nonreduced, with one component of length exactly two,

  4. (4)

    dp12mp1d_{\textbf{p}}\leq 12-m_{\textbf{p}}-1.

Proof.

The equivalence of parts (1) and (2) is 6.9. The equivalence of parts (1) and (4) follows directly from the definitions of multiplicity and tangent cone.

If part (2) is true, then so is part (3) since a singular point on a cubic has multiplicity at least two, and thus intersects any other cubic of L𝐩L_{\mathbf{p}} in a scheme of length at least 22. That scheme has length exactly two, because eight points of the base locus are necessarily distinct. To see that part (3) implies part (2), note that if the base locus is not reduced, then all cubics in LpL_{\textbf{p}} have the same tangent at some point pp in p. Up to the action of PGL2\mathrm{PGL}_{2}, assume p=[1:0:0]p=[1:0:0] and write the equations of two cubics C0,C1LpC_{0},C_{1}\in L_{\textbf{p}} as x1x02+F0x_{1}x_{0}^{2}+F_{0} and x1x02+F1x_{1}x_{0}^{2}+F_{1} where x1=0x_{1}=0 is the tangent line of C0C_{0} and C1C_{1} at pp and FiF_{i} involves subquadratic terms in x0x_{0}. The cubic C0C1C_{0}-C_{1} is singular at pp. ∎

Corollary 6.12.

Let 𝒬\mathcal{Q} be a Bézoutian quatroid. The base locus Z(Lp)Z(L_{\textbf{p}}) is nonreduced for every p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} if and only if 𝒬𝒬\mathcal{Q}\leq\mathcal{Q}^{\prime} for some 𝒬\mathcal{Q}^{\prime} in the orbit of 𝒬10\mathcal{Q}_{10}.

We conclude this section by summarizing the results we proved before and completing the proof of the main results of the paper.

Theorem 6.13.

For every 𝒬𝔔\mathcal{Q}\in\mathfrak{Q}, the numbers in the d𝒬d_{\mathcal{Q}} columns of Table 4 and Table 5 correctly give the number of rational cubics through a generic point on 𝒮𝒬\mathcal{S}_{\mathcal{Q}}.

Proof.

As this is the main result of the paper, we summarize the steps we took to achieve it.

For each representable quatroid 𝒬\mathcal{Q}, we found an explicit representative p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} and applied algorithm 2 to p to compute the number dpd_{\textbf{p}} of rational cubics through that representative. This gave the lower bound d𝐩d𝒬d_{\mathbf{p}}\leq d_{\mathcal{Q}}, as shown in Theorem 5.5. Along the way, we showed that the reducible cubics through those representatives are either triangles or conic+secant lines, showing that such reducible orbits are generic. This allowed us to obtain the formula of Theorem 6.2 for m𝒬m_{\mathcal{Q}}. Together, these results imply

dpd𝒬12m𝒬.d_{\textbf{p}}\leq d_{\mathcal{Q}}\leq 12-m_{\mathcal{Q}}.

Theorem 6.3 characterizes when this is an equality. When it is not, 6.12 implies the generic base locus is not reduced and so by 6.11 the inequality tightens to

dpd𝒬12m𝒬1d_{\textbf{p}}\leq d_{\mathcal{Q}}\leq 12-m_{\mathcal{Q}}-1

which again by Theorem 6.3 is an equality. ∎

In Table 4 and Table 5, those Bézoutian quatroids satisfying any of the conditions in 6.11 are indicated by one additional symbol in their Reducibles column. This symbol, written in blue, indicates the type of the reducible cubic at which the intersection multiplicity of the discriminant and LpL_{\textbf{p}} is (one) larger than its multiplicity, for a generic quatroid representative p. Hence, given a string of symbols of the form ij\varnothing^{i}\triangle^{j}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\square} for {,}\square\in\{\varnothing,\triangle\}, one may calculate the value in the column d𝒬d_{\mathcal{Q}} by d𝒬=122i3j1d_{\mathcal{Q}}=12-2i-3j-\textbf{1}_{\square}, where 1\textbf{1}_{\square} is the indicator function of the presence of a third symbol.

6.3. The poset of Bézoutian quatroids

We conclude our work with some observations on the poset of Bézoutian quatroids given by the order \leq. In order to display these results, instead of working with the 544748544748 Bézoutian quatroids, we work modulo the 𝔖8\mathfrak{S}_{8}-symmetry, and use the 7676 orbits instead. This allows us to fully illustrate the induced poset in Figure 7, where 𝒬𝒬\mathcal{Q}\leq\mathcal{Q}^{\prime} if there exists 𝒬′′\mathcal{Q}^{\prime\prime} in the orbit of 𝒬\mathcal{Q}^{\prime} such that 𝒬𝒬′′\mathcal{Q}\leq\mathcal{Q}^{\prime\prime}.

We prove that the dimension of the realization space defines a grading on this poset of Bézoutian quatroids, in the sense of [31, Sec. 3.1]. Recall that 𝒬\mathcal{Q}^{\prime} covers 𝒬\mathcal{Q} when 𝒬\mathcal{Q}^{\prime} is minimally larger than 𝒬\mathcal{Q}. We have the following result.

Theorem 6.14.

The set 𝔅\mathfrak{B} with the order relation \leq on quatroids is represented in Figure 7. It is partitioned into nine layers 𝔅0,,𝔅8\mathfrak{B}_{0},\ldots,\mathfrak{B}_{8}: 𝒬𝔅j\mathcal{Q}\in\mathfrak{B}_{j} if and only if dim𝒮𝒬=8+j\dim\mathcal{S}_{\mathcal{Q}}=8+j. Moreover:

  1. (i)

    𝒬1\mathcal{Q}_{1} is the only quatroid in 𝔅8\mathfrak{B}_{8},

  2. (ii)

    𝒬41\mathcal{Q}_{41} is the only quatroid in 𝔅0\mathfrak{B}_{0},

  3. (iii)

    𝔅\mathfrak{B} is graded by dimension: if 𝒬\mathcal{Q}^{\prime} covers 𝒬\mathcal{Q} then dim𝒮𝒬=dim𝒮𝒬+1\dim\mathcal{S}_{\mathcal{Q}^{\prime}}=\dim\mathcal{S}_{\mathcal{Q}}+1,

  4. (iv)

    𝔅\mathfrak{B} is graded by number of conditions: if 𝒬\mathcal{Q}^{\prime} covers 𝒬\mathcal{Q} then ||+|𝒥|=||+|𝒥|+1|\mathcal{I}^{\prime}|+|\mathcal{J}^{\prime}|=|\mathcal{I}|+|\mathcal{J}|+1.

The proof of Theorem 6.14 relies on the following technical result, related to 3.3: on the subset of Bézoutian quatroids, the second condition listed in 3.3 completely characterizes the order relation.

Lemma 6.15.

Let 𝒬=(,𝒥),𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}),\mathcal{Q}^{\prime}=(\mathcal{I}^{\prime},\mathcal{J}^{\prime}) be Bézoutian quatroids. The following are equivalent:

  1. (i)

    𝒬𝒬\mathcal{Q}\leq\mathcal{Q}^{\prime},

  2. (ii)

    𝒮𝒬𝒮𝒬¯\mathcal{S}_{\mathcal{Q}}\subseteq\overline{\mathcal{S}_{\mathcal{Q}^{\prime}}},

  3. (iii)

    \mathcal{I}^{\prime}\subseteq\mathcal{I} and 𝒥𝒥2\mathcal{J}^{\prime}\subseteq\mathcal{J}\cup\mathcal{I}^{2}, where 2\mathcal{I}^{2} is the set of all subsets of {1,,8}\{1,\ldots,8\} arising as the union of two elements of \mathcal{I}.

Proof.

The equivalence of (i) and (ii) is the definition of the order relation. The fact that (iii) implies (ii) follows from 3.3. It remains to show that (ii) implies (iii). If 𝒮𝒬𝒮𝒬¯\mathcal{S}_{\mathcal{Q}}\subseteq\overline{\mathcal{S}_{\mathcal{Q}^{\prime}}}, every 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}} satisfies the linear and quadratic relations imposed by 𝒬\mathcal{Q}^{\prime}. This immediately implies \mathcal{I}^{\prime}\subseteq\mathcal{I}. To conclude, let J𝒥J\in\mathcal{J}^{\prime}, and without loss of generality assume J=123456J=123456. Since 𝒬\mathcal{Q} is Bézoutian, there is a unique quadric q123456q_{123456} through a generic 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}}. If this quadric is a conic, then 123456𝒥123456\in\mathcal{J}. Otherwise it is the union of two lines: since 𝒬\mathcal{Q} is Bézoutian, no four points lie on a line. Hence, up to relabeling, q123456=123456q_{123456}=\ell_{123}\ell_{456} showing 123,456123,456\in\mathcal{I} and 1234562123456\in\mathcal{I}^{2} as desired. ∎

A technical consequence of 6.15 is that the closure step in step 6 of algorithm 1 does not alter the pair, whenever the quatroid that is being generated is Bézoutian. Implicitly, this fact yields the grading of 𝔅\mathfrak{B} by number of conditions, as one can see in the proof of Theorem 6.14.

Proof of Theorem 6.14.

We first prove statement (iv). Let 𝒬=(,𝒥),𝒬=(,𝒥)\mathcal{Q}=(\mathcal{I},\mathcal{J}),\mathcal{Q}^{\prime}=(\mathcal{I}^{\prime},\mathcal{J}^{\prime}) be quatroids and suppose 𝒬\mathcal{Q}^{\prime} covers 𝒬\mathcal{Q}. By 6.15, \mathcal{I}^{\prime}\subseteq\mathcal{I} and 𝒥𝒥2\mathcal{J}^{\prime}\subseteq\mathcal{J}\cup\mathcal{I}^{2}. We consider several cases:

  • Suppose there is a condition II\in\mathcal{I}\setminus\mathcal{I}^{\prime}.

    • If for every J𝒥J^{\prime}\in\mathcal{J} we have IJI\not\subseteq J^{\prime} then we claim ={I}\mathcal{I}=\mathcal{I}^{\prime}\cup\{I\} and 𝒥=𝒥\mathcal{J}=\mathcal{J}^{\prime}: this is immediate because 𝒬′′=({I},𝒥)\mathcal{Q}^{\prime\prime}=(\mathcal{I}^{\prime}\cup\{I\},\mathcal{J}^{\prime}) satisfies Bézout’s criteria and 𝒬\mathcal{Q}^{\prime} is minimally larger than 𝒬\mathcal{Q}.

    • Otherwise, set J={J𝒥IJ}J^{\prime}_{*}=\{J^{\prime}\in\mathcal{J}^{\prime}\mid I\subseteq J^{\prime}\} and I={JIJJ}I^{\prime}_{*}=\{J^{\prime}\setminus I\mid J^{\prime}\in J^{\prime}_{*}\}. Consider 𝒬′′=(I{I},𝒥J)\mathcal{Q}^{\prime\prime}=(\mathcal{I}^{\prime}\cup I^{\prime}_{*}\cup\{I\},\mathcal{J}^{\prime}\setminus J^{\prime}_{*}). By 6.15 𝒬′′𝒬\mathcal{Q}^{\prime\prime}\leq\mathcal{Q}^{\prime}. Moreover, there is exactly one more condition in 𝒬′′\mathcal{Q}^{\prime\prime} than there is in 𝒬\mathcal{Q}^{\prime}. One may verify that 𝒬′′\mathcal{Q}^{\prime\prime} is Bézoutian and so, as before, we conclude 𝒬′′=𝒬\mathcal{Q}^{\prime\prime}=\mathcal{Q}.

  • If =\mathcal{I}=\mathcal{I}^{\prime}, then 𝒥2=𝒥2=\mathcal{J}^{\prime}\cap\mathcal{I}^{2}=\mathcal{J}^{\prime}\cap{\mathcal{I}^{\prime}}^{2}=\emptyset because 𝒬\mathcal{Q}^{\prime} satisfies Bézout’s weak criteria. This implies 𝒥𝒥\mathcal{J}^{\prime}\subseteq\mathcal{J}, and by minimality 𝒥=𝒥{J}\mathcal{J}=\mathcal{J}^{\prime}\cup\{J\} for some JJ.

This shows statement (iv). Statement (iii) is then a consequence of statement (iv) and the irreducibility of the strata 𝒮𝒬\mathcal{S}_{\mathcal{Q}}. The structure of the poset in Figure 7 and statement (i) and (ii) follow by direct computation, which can be done in a purely combinatorial way using 6.15. ∎

Refer to caption
Figure 7. The poset of Bézoutian quatroids: Red nodes are quatroids 𝒬𝒬10\mathcal{Q}\leq\mathcal{Q}_{10}. A red connection indicates that the quatroids differ by precisely one element, in \mathcal{I}. A blue connection indicates the difference is one element, in 𝒥\mathcal{J}. A black connection indicates any other difference, occurring from sextuples “breaking” into lines. The left picture uses the quatroid orbit indices as labels, and the right picture uses the corresponding values of d𝒬d_{\mathcal{Q}} as labels. Note that the the value d𝒬d_{\mathcal{Q}} never increases moving down in the poset; moreover, if it does not decrease, then a black node becomes a red node

7. Concluding Remarks

7.1. Positive certificates for non-rationality

Theorem 6.13 allows one to design non-rationality certificates for cubic curves through points in special position. More precisely, there are several quatroid strata 𝒮𝒬\mathcal{S}_{\mathcal{Q}} satisfying d𝒬=0d_{\mathcal{Q}}=0: in these cases, for any p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}}, there are no rational cubics through 𝐩\mathbf{p}. The same holds passing to the closure, proving the following result.

Theorem 7.1.

Let p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} for some 𝒬𝒬\mathcal{Q}\leq\mathcal{Q}^{\prime} with

𝒬 in the orbit of an element of {𝒬6,𝒬32,𝒬41,𝒬59,𝒬62,𝒬121}.\mathcal{Q}^{\prime}\text{ in the orbit of an element of }\{\mathcal{Q}_{6},\mathcal{Q}_{32},\mathcal{Q}_{41},\mathcal{Q}_{59},\mathcal{Q}_{62},\mathcal{Q}_{121}\}.

Then there are no rational cubics passing through 𝐩\mathbf{p}.

We point out that if 𝒬𝒬6\mathcal{Q}\leq\mathcal{Q}_{6} or 𝒬𝒬121\mathcal{Q}\leq\mathcal{Q}_{121}, then 𝒬\mathcal{Q} is non-Bézoutian: in this case, there are no irreducible cubics at all passing through 𝐩\mathbf{p}.

We remark that 𝒬59\mathcal{Q}_{59} and 𝒬62\mathcal{Q}_{62} are exhaustive Bézoutian quatroids so the matroid underlying the (reduced) base locus Z(Lp)Z(L_{\textbf{p}}) of any 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}} is well-defined; in these cases, this is the non-Fano matroid 𝒬32\mathcal{Q}_{32}. Configurations of 𝒬59\mathcal{Q}_{59} appear in [13], in the study of the topology of singular cubics. In a sense, configurations 𝐩\mathbf{p} as in Theorem 7.1 are forbidden configurations on a rational cubic. More precisely, we have the following consequence.

Corollary 7.2.

Let C2C\subset\mathbb{P}_{\mathbb{C}}^{2} be an irreducible cubic containing a configuration p𝒮𝒬\textbf{p}\in\mathcal{S}_{\mathcal{Q}} where

𝒬𝒬 for some 𝒬 in the orbit of an element of {𝒬6,𝒬32,𝒬41,𝒬59,𝒬62,𝒬121}.\mathcal{Q}\leq\mathcal{Q}^{\prime}\quad\text{ for some }\mathcal{Q}^{\prime}\text{ in the orbit of an element of }\quad\{\mathcal{Q}_{6},\mathcal{Q}_{32},\mathcal{Q}_{41},\mathcal{Q}_{59},\mathcal{Q}_{62},\mathcal{Q}_{121}\}.

Then CC is not rational. These forbidden quatroids are illustrated in Figure 8.

Refer to caption
Figure 8. The six minimal quatroid orbits forbidding rational cubics through a representation.

To the extent of our knowledge, the existence of forbidden configurations guaranteeing non-rationality gives a novel way to prove non-rationality of a variety. In this sense, these are positive certificates of non-rationality. We leave open the problem of studying positive non-rationality certificates for curves of higher degree, and varieties of higher dimension.

7.2. A finer stratification

We remark that the values d𝒬d_{\mathcal{Q}} are the number of rational cubics through a generic configuration 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}}. A natural question is whether this is the number of rational cubics through every configuration 𝐩𝒮𝒬\mathbf{p}\in\mathcal{S}_{\mathcal{Q}}. This is not the case, as observed in the following construction.

Consider the configuration 𝐩z\mathbf{p}_{z}, depending on a complex parameter zz and described by the matrix

𝐩z=[14916253611123456111111110z].\mathbf{p}_{z}=\left[\begin{array}[]{cccccccc}1&4&9&16&25&36&1&1\\ 1&2&3&4&5&6&1&-1\\ 1&1&1&1&1&1&0&z\end{array}\right].

For generic zz\in\mathbb{C}, the configuration 𝐩z\mathbf{p}_{z} represents quatroid 𝒬2\mathcal{Q}_{2}: the points p1,,p6p_{1},\ldots,p_{6} lie on the conic x12x0x2=0x_{1}^{2}-x_{0}x_{2}=0, and there is no other linear or quadratic relation. For generic zz, L𝐩zL_{\mathbf{p}_{z}} intersects 𝒟\mathcal{D} in the reducible cubic C=q12345678C=q_{123456}\ell_{78} with multiplicity 2=mult𝒟(C)2=\mathrm{mult}_{\mathcal{D}}(C), and 1010 additional rational cubics. Hence d𝐩z=d𝒬=10d_{\mathbf{p}_{z}}=d_{\mathcal{Q}}=10.

Let 𝐩\mathbf{p}^{*} be the configuration for z=0z=0, which represents 𝒬2\mathcal{Q}_{2} as well. In this case, the line 78\ell_{78} is tangent to the conic q123456q_{123456}. The pencil L𝐩L_{\mathbf{p}^{*}} intersects 𝒟\mathcal{D} at CC with intersection multiplicity 3=mult𝒟(C)3=\mathrm{mult}_{\mathcal{D}}(C) and at an additional 99 distinct rational cubics.

This construction shows that there are special configurations 𝐩\mathbf{p}^{*} on the quatroid stratum 𝒮𝒬2\mathcal{S}_{\mathcal{Q}_{2}} satisfying d𝐩<d𝒬2d_{\mathbf{p}^{*}}<d_{\mathcal{Q}_{2}}. A similar example can be constructed on the other maximal non-uniform quatroid 𝒬8\mathcal{Q}_{8}. A slightly different example can be constructed on 𝒬78\mathcal{Q}_{78}: in this case, for a generic choice of 𝐩𝒮𝒬78\mathbf{p}\in\mathcal{S}_{\mathcal{Q}_{78}}, the only reducible cubic on L𝐩L_{\mathbf{p}} is a triangle C=123C=\ell_{1}\ell_{2}\ell_{3} and L𝐩L_{\mathbf{p}} intersects 𝒟\mathcal{D} in CC with multiplicity 3=mult𝒟(C)3=\mathrm{mult}_{\mathcal{D}}(C) and in 99 rational cubics, so that d𝐩=d𝒬78=9d_{\mathbf{p}}=d_{\mathcal{Q}_{78}}=9. There is a locus in 𝒮𝒬78\mathcal{S}_{\mathcal{Q}_{78}} where the triangle CC degenerates to an asterisk: here mult𝒟(C)=4\mathrm{mult}_{\mathcal{D}}(C)=4 and d𝐩=8<d𝒬d_{\mathbf{p}}=8<d_{\mathcal{Q}}.

This phenomenon occurs on other strata. Interestingly, there are strata, such as 𝒮𝒬40\mathcal{S}_{\mathcal{Q}_{40}}, with the property that d𝒬=1d_{\mathcal{Q}}=1 and with a locus of configurations 𝐩\mathbf{p} such that d𝐩=0d_{\mathbf{p}}=0. Understanding these loci, with no rational cubics through them, would provide other non-rationality certificates, in the sense of Section 7.1.

We expect the special loci described in this section always arise with either a conic++line pair C=qC=q\ell degenerating to a conic++tangent pair, or with a triangle C=123C=\ell_{1}\ell_{2}\ell_{3} degenerating to an asterisk. The second phenomenon is linear but it cannot be detected simply by the matroid underlying 𝐩\mathbf{p}; however, it is detected by the underlying discriminantal arrangement [1]. We plan to further investigate higher order versions of the discriminantal arrangement in future work.

7.3. Toward higher degree and higher genus

Given two integers dd and gg, one may consider the locus Vd,gSd3V_{d,g}\subseteq\mathbb{P}S^{d}\mathbb{C}^{3} of plane curves of degree dd and genus gg. In [19], Harris answered a conjecture of Severi [29], proving that Vd,gV_{d,g} is irreducible of dimension 3d+g13d+g-1. This inspired a body of work surrounding the natural enumerative problem:

Given 3d+g13d+g-1 points in 2\mathbb{P}_{\mathbb{C}}^{2}, how many elements of Vd,gV_{d,g} interpolate them?

For generic points, this amounts to computing the degree of (the closure of) Vd,gV_{d,g}: when g=0g=0, the answer is Kontsevich’s formula [21] and a recursive formula was given for any genus in [10]. The present paper dealt with non-generic instances of the problem when (d,g)=(3,0)(d,g)=(3,0), that is the case of rational cubics. Throughout our investigation, we enjoyed a number of nice properties:

  • the cubic discriminant is the union of rational cubics and reducible cubics,

  • the discriminant is cut out by a manageable polynomial,

  • the number of rational cubics through eight generic points is of modest size,

  • there is a known classification of orbit closures of rational and reducible cubics.

We propose the study of curves of higher degree and genus, with similar, higher order methods.

For instance, there are 620620 rational quartics through 11=34+0111=3\cdot 4+0-1 generic points. Despite all the “good” properties mentioned above failing in this setting, numerical methods can generate experimental data. We now consider the problem of computing all rational quartics through two interesting matroid strata on 1111 points. A Lüroth quartic is any quartic curve which goes through the 10=(52)10={{5}\choose{2}} intersection points of five lines. The set of Lüroth quartics forms an unwieldy hypersurface of degree 5454 in the space S43\mathbb{P}S^{4}\mathbb{C}^{3} of homogeneous quartics [6, 25, 27]. These quartics inspire the definition of the Lüroth matroid on 1111 points, which we write in our quatroid format:

𝒬Lüroth=({1367,15910¯,24610¯,2578,3489},{}).{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{Q}_{\textrm{L\"{u}roth}}}=(\{1367,159\underline{10},246\underline{10},2578,3489\},\{\}).

Numerical computations suggest that there are 4040 rational quartics through a Lüroth configuration. In Figure 9 we display one example of a Lüroth configuration and the 1212 real rational quartics which interpolate it.

Refer to caption
Figure 9. Twelve real rational quartics (of the forty over \mathbb{C}) through a Lüroth configuration of 1111 points. The five lines are drawn in red and the rational quartics in blue.

A more restricted matroid is suggested by a regular pentagon configuration [33] which imposes five additional line conditions on the eleventh point. The underlying matroid is

𝒬Pentagon=({1367,15910¯,24610¯,2578,3489,2311¯,1811¯,6911¯,710¯11¯,4511¯},{}){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\mathcal{Q}_{\textrm{Pentagon}}}=(\{1367,159\underline{10},246\underline{10},2578,3489,23\underline{11},18\underline{11},69\underline{11},7\underline{10}\,\underline{11},45\underline{11}\},\{\})

Such a configuration can be realized over \mathbb{R} but not \mathbb{Q}, and it is unique up to the action of PGL2\mathrm{PGL}_{2}. We invite the reader to draw this configuration. A numerical calculation suggests that there are 1010 rational quartics interpolating the regular pentagon configuration, none of which are real.

Appendix

Name Description Relevant Results
Quatroids.jl The julia package Quatroids.jl. All commands loaded by this package are indicated by blue font
SimpleMatroids38.txt File extracted from the database https://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/ listing all simple rank 33 matroids on eight elements
GenerateAllMatroids() Parses the file SimpleMatroids38.txt to obtain an exhaustive list of simple \mathbb{C}-representable matroids of rank at most three on eight elements Theorem 3.19
AllConicExtensions(M) Runs algorithm 1 on a matroid MM represented by nonbases of size three Theorem 3.19
GenerateAllCandidateQuatroids() Runs algorithm 1 all \mathbb{C}-representable matroids of rank at most three on eight elements Theorem 3.19 Table 4 Table 5
OrbitSizes() Computes the sizes of each orbit of candidate quatroids Theorem 3.19 3.21 Table 4 Table 5
Bezoutian() Returns a boolean vector of length 126126 whose ii-th entry indicates whether 𝒬i\mathcal{Q}_{i} is Bézoutian 3.15 Table 4 Table 5
RationalRepresentatives.txt A file, given in julia (.txt) and Macaulay2 (.m2) format, whose ii-th line is a 3×83\times 8 matrix of integers whose columns represent 𝒬i\mathcal{Q}_{i} Theorem 3.20
TestingRepresentatives.m2 A Macaulay2 script which confirms that each representative in RationalRepresentatives.txt represents the quatroid claimed Theorem 3.20
ReducedBaseLocus(Q) Indicates if the quatroid 𝒬\mathcal{Q} has reduced base locus due to 3.25 3.26
QuatroidReductions() Iteratively reduces each quatroid based on the four conditions described in Section 4 4.5
Modifications(Q) Computes all 𝒬\mathcal{Q}^{\prime} such that 𝒬𝒬\mathcal{Q}\leadsto\mathcal{Q}^{\prime} 4.6
IrreducibilityQ21.m2 etc A Macaulay2 script which establishes the irreducibility of 𝒬21\mathcal{Q}_{21} as described in the proof of Theorem 4.7. Similar files exist for 𝒬25,𝒬38,𝒬58,𝒬101,\mathcal{Q}_{25},\mathcal{Q}_{38},\mathcal{Q}_{58},\mathcal{Q}_{101}, and 𝒬123\mathcal{Q}_{123} Theorem 4.7
cubicInvs.m2 A Macaulay2 file containing the cubic discriminant algorithm 2
countReducibleCubics.m2 Applies algorithm 2 to each of the rational representatives of Bézoutian quatroids in RationalRepresentatives.m2 Theorem 5.5 Table 4 Table 5
QuatroidsWeakUpperBounds() Evaluates the formula for m𝒬m_{\mathcal{Q}} from Theorem 6.2 for each Bézoutain quatroid 𝒬\mathcal{Q} Theorem 6.3
ContainedIn10(Q) ContainedIn77(Q) Checks 𝒬𝒬10\mathcal{Q}\leq\mathcal{Q}_{10} and 𝒬𝒬77\mathcal{Q}\leq\mathcal{Q}_{77} respectively Theorem 6.3
tangentConesPlaneCubics.m2 Computes the tangent cones of each singular cubic 6.7 Table 1 Table 2
Table 3. Descriptions of auxiliary files
Num || Orb || Lines Conics Reducibles dQd_{Q}
11 11 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 1212
22 2828 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {123456}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{123456\}}} 1\varnothing^{1} 1010
33 210210 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {123456  123478}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{123456\,\,123478\}}} 2\varnothing^{2} 88
44 420420 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {123456  123478  125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{123456\,\,123478\,\,125678\}}} 3\varnothing^{3} 66
55 105105 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {123456  123478  125678  345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{123456\,\,123478\,\,125678\,\,345678\}}} 4\varnothing^{4} 44
66 88 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {1234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{1234567\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
77 11 {}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{\}}} {12345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{12345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
88 5656 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 1\varnothing^{1} 1010
99 840840 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {124567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124567\}}} 2\varnothing^{2} 88
1010 168168 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {145678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{145678\}}} 1\varnothing^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 99
1111 33603360 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {124567  134568}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124567\,\,134568\}}} 3\varnothing^{3} 66
1212 840840 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {124567  345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124567\,\,345678\}}} 2\varnothing^{2}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 77
1313 33603360 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {124567  134568  234578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124567\,\,134568\,\,234578\}}} 4\varnothing^{4} 44
1414 168168 {123}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\}}} {1245678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{1245678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
1515 840840 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 2\varnothing^{2} 88
1616 33603360 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {124678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124678\}}} 3\varnothing^{3} 66
1717 25202520 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 3\varnothing^{3} 66
1818 33603360 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {234678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234678\}}} 2\varnothing^{2}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 77
1919 16801680 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {124678  135678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124678\,\,135678\}}} 4\varnothing^{4} 44
2020 1008010080 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {124678  234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124678\,\,234567\}}} 4\varnothing^{4} 44
2121 67206720 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {124678  235678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124678\,\,235678\}}} 3\varnothing^{3}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 55
2222 50405040 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {124678  135678  234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124678\,\,135678\,\,234567\}}} 5\varnothing^{5} 22
2323 840840 {123  145}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\}}} {2345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{2345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
2424 840840 {123  145  167}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 3\varnothing^{3} 66
2525 840840 {123  145  167}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 4\varnothing^{4} 44
2626 50405040 {123  145  167}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\}}} {234568}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234568\}}} 3\varnothing^{3}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 55
2727 840840 {123  145  167}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\}}} {2345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{2345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
2828 67206720 {123  145  167  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 4\varnothing^{4} 44
2929 2016020160 {123  145  167  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\}}} {234578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234578\}}} 4\varnothing^{4}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 33
3030 50405040 {123  145  167  246  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 5\varnothing^{5} 22
3131 50405040 {123  145  167  246  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} 5\varnothing^{5}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 11
3232 16801680 {123  145  167  246  257  347}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\,\,347\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 6\varnothing^{6} 0
3333 50405040 {123  145  167  246  257  347  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\,\,347\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 41\varnothing^{4}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 0
3434 2016020160 {123  145  167  246  257  348}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\,\,348\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 31\varnothing^{3}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 22
3535 1008010080 {123  145  167  246  257  348  568}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\,\,348\,\,568\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 22\varnothing^{2}\triangle^{2}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 11
3636 50405040 {123  145  167  246  257  478}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,257\,\,478\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 41\varnothing^{4}\triangle^{1} 11
3737 2016020160 {123  145  167  246  258}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 31\varnothing^{3}\triangle^{1} 33
3838 2016020160 {123  145  167  246  258}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} 31\varnothing^{3}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 22
3939 2016020160 {123  145  167  246  258  357}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\,\,357\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 22\varnothing^{2}\triangle^{2} 22
4040 67206720 {123  145  167  246  258  357  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\,\,357\,\,368\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 13\varnothing^{1}\triangle^{3} 11
4141 840840 {123  145  167  246  258  357  368  478}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\,\,357\,\,368\,\,478\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 4\triangle^{4} 0
4242 2016020160 {123  145  167  246  258  378}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,258\,\,378\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 12\varnothing^{1}\triangle^{2}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 33
4343 33603360 {123  145  167  246  357}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,357\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 31\varnothing^{3}\triangle^{1} 33
4444 2016020160 {123  145  167  246  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,246\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 21\varnothing^{2}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 44
4545 1008010080 {123  145  167  248}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 21\varnothing^{2}\triangle^{1} 55
4646 1008010080 {123  145  167  248}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 31\varnothing^{3}\triangle^{1} 33
4747 2016020160 {123  145  167  248}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\}}} {235678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{235678\}}} 21\varnothing^{2}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 44
4848 50405040 {123  145  167  248  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 21\varnothing^{2}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 44
4949 50405040 {123  145  167  248  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,358\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 31\varnothing^{3}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 22
5050 2016020160 {123  145  167  248  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,368\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 12\varnothing^{1}\triangle^{2} 44
5151 2016020160 {123  145  167  248  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,368\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 22\varnothing^{2}\triangle^{2} 22
5252 33603360 {123  145  167  248  368  578}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,368\,\,578\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 3\triangle^{3} 33
5353 33603360 {123  145  167  248  368  578}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,167\,\,248\,\,368\,\,578\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 13\varnothing^{1}\triangle^{3} 11
5454 33603360 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 3\varnothing^{3} 66
5555 1008010080 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\}}} 4\varnothing^{4} 44
5656 1008010080 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {135678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{135678\}}} 3\varnothing^{3}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 55
5757 1008010080 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {125678  134678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,134678\}}} 5\varnothing^{5} 22
5858 1008010080 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {125678  345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,345678\}}} 4\varnothing^{4}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 33
5959 33603360 {123  145  246}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\}}} {125678  134678  234578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,134678\,\,234578\}}} 6\varnothing^{6} 0
6060 840840 {123  145  246  356}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,356\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 4\varnothing^{4} 44
6161 25202520 {123  145  246  356}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,356\}}} {125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\}}} 5\varnothing^{5} 22
6262 25202520 {123  145  246  356}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,356\}}} {125678  134678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,134678\}}} 6\varnothing^{6} 0
6363 840840 {123  145  246  356}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,356\}}} {125678  134678  234578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,134678\,\,234578\}}} NR NR
Table 4. Data for each candidate quatroid stratum. NR indicates not representable and NB indicates not Bézoutian.
Num || Orb || Lines Conics Reducibles dQd_{Q}
6464 1008010080 {123  145  246  357}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,357\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 21\varnothing^{2}\triangle^{1} 55
6565 2016020160 {123  145  246  357}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,357\}}} {125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\}}} 31\varnothing^{3}\triangle^{1} 33
6666 1008010080 {123  145  246  357}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,357\}}} {125678  134678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,134678\}}} 41\varnothing^{4}\triangle^{1} 11
6767 1008010080 {123  145  246  357  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,357\,\,678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 2\triangle^{2}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 55
6868 1008010080 {123  145  246  378}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,378\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 11\varnothing^{1}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 66
6969 1008010080 {123  145  246  378}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,246\,\,378\}}} {125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\}}} 21\varnothing^{2}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 44
7070 50405040 {123  145  267}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 11\varnothing^{1}\triangle^{1} 77
7171 2016020160 {123  145  267}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\}}} {134678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{134678\}}} 21\varnothing^{2}\triangle^{1} 55
7272 50405040 {123  145  267}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} 11\varnothing^{1}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\varnothing}} 66
7373 2016020160 {123  145  267}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\}}} {134678  234568}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{134678\,\,234568\}}} 31\varnothing^{3}\triangle^{1} 33
7474 50405040 {123  145  267  468}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\,\,468\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 2\triangle^{2} 66
7575 1008010080 {123  145  267  468}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\,\,468\}}} {135678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{135678\}}} 12\varnothing^{1}\triangle^{2} 44
7676 50405040 {123  145  267  468}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,267\,\,468\}}} {135678  234578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{135678\,\,234578\}}} 22\varnothing^{2}\triangle^{2} 22
7777 840840 {123  145  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 1\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 88
7878 25202520 {123  145  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,145\,\,678\}}} {234567}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{234567\}}} 11\varnothing^{1}\triangle^{1}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\triangle}} 66
7979 280280 {123  456}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,456\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} 1\triangle^{1} 99
8080 25202520 {123  456}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,456\}}} {124578}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124578\}}} 11\varnothing^{1}\triangle^{1} 77
8181 50405040 {123  456}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,456\}}} {124578  134678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124578\,\,134678\}}} 21\varnothing^{2}\triangle^{1} 55
8282 16801680 {123  456}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123\,\,456\}}} {124578  134678  235678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{124578\,\,134678\,\,235678\}}} 31\varnothing^{3}\triangle^{1} 33
8383 88 {1234567}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234567\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8484 168168 {123456  178}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123456\,\,178\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8585 2828 {123456}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{123456\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8686 280280 {12345  1678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\,\,1678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8787 33603360 {12345  167  268}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\,\,167\,\,268\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8888 33603360 {12345  167  268  378}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\,\,167\,\,268\,\,378\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
8989 840840 {12345  167}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\,\,167\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9090 5656 {12345}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9191 5656 {12345  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345\,\,678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9292 33603360 {1234  1567  258  368  478}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,1567\,\,258\,\,368\,\,478\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9393 1008010080 {1234  1567  258  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,1567\,\,258\,\,368\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9494 50405040 {1234  1567  258}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,1567\,\,258\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9595 560560 {1234  1567}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,1567\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9696 840840 {1234  156  178}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9797 25202520 {1234  156  178}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\}}} {235678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{235678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9898 1008010080 {1234  156  178  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
9999 1008010080 {1234  156  178  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
100100 25202520 {1234  156  178  257  268}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,268\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
101101 25202520 {1234  156  178  257  268}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,268\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
102102 1008010080 {1234  156  178  257  268  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,268\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
103103 50405040 {1234  156  178  257  268  358  467}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,268\,\,358\,\,467\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
104104 2016020160 {1234  156  178  257  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
105105 2016020160 {1234  156  178  257  358  467}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,358\,\,467\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
106106 1008010080 {1234  156  178  257  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,178\,\,257\,\,368\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
107107 16801680 {1234  156}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
108108 50405040 {1234  156}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\}}} {235678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{235678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
109109 1008010080 {1234  156  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
110110 1008010080 {1234  156  257}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
111111 67206720 {1234  156  257  358}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,358\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
112112 2016020160 {1234  156  257  358  467}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,358\,\,467\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
113113 67206720 {1234  156  257  358  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,358\,\,678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
114114 67206720 {1234  156  257  367}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,367\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
115115 2016020160 {1234  156  257  368}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,368\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
116116 50405040 {1234  156  257  368  478}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,368\,\,478\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
117117 1008010080 {1234  156  257  678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,257\,\,678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
118118 25202520 {1234  156  278}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,278\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
119119 25202520 {1234  156  278}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,278\}}} {345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
120120 33603360 {1234  156  578}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,156\,\,578\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
121121 7070 {1234}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
122122 420420 {1234}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\}}} {125678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
123123 210210 {1234}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\}}} {125678  345678}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{125678\,\,345678\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
124124 280280 {1234  567}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,567\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
125125 3535 {1234  5678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{1234\,\,5678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
126126 11 {12345678}{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{\{12345678\}}} {}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\{\}}} NB 0{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{0}}
Table 5. Data for each candidate quatroid stratum. NR indicates not representable and NB indicates not Bézoutian.
Refer to caption
Figure 10. Illustrations of candidate quatroids via real representatives if possible
Refer to caption
Figure 11. Illustrations of candidate quatroids via real representatives if possible

References

  • ABF+ [23] D. Agostini, T. Brysiewicz, C. Fevola, L. Kühne, B. Sturmfels, S. Telen, and T. Lam. Likelihood degenerations. Advances in Mathematics, 414:108863, 2023. doi:10.1016/j.aim.2023.108863.
  • AD [09] M. Artebani and I. V. Dolgachev. The Hesse pencil of plane cubic curves. L’Enseignement Mathématique, 55(3):235–273, 2009. doi:10.4171/LEM/55-3-3.
  • BBC+ [23] D. Bates, P. Breiding, T. Chen, J. Hauenstein, A. Leykin, and F. Sottile. Numerical nonlinear algebra. arXiv:2302.08585, 2023.
  • BEKS [17] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: a fresh approach to numerical computing. SIAM Rev., 59(1):65–98, 2017. doi:10.1137/141000671.
  • BGM [94] A. Bigatti, A. V. Geramita, and J. C. Migliore. Geometric consequences of extremal behavior in a theorem of Macaulay. Trans. Amer. Math. Soc., 346(1):203–235, 1994. doi:10.1090/S0002-9947-1994-1272673-7.
  • Bry [20] T. Brysiewicz. Numerical Software to Compute Newton polytopes and Tropical Membership. Mathematics in Computer Science, 14(3):577–589, 2020. doi:10.1007/s11786-020-00454-4.
  • BT [18] P. Breiding and S. Timme. HomotopyContinuation.jl: A package for homotopy continuation in Julia. In Mathematical Software–ICMS 2018: 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings 6, page 458–465. Springer, 2018. doi:10.1007/978-3-319-96418-8_54.
  • CG [23] L. Chiantini and F. Gesmundo. Decompositions and Terracini loci of cubic forms of low rank. arXiv:2302.03715, 2023. to appear in Deformation of Artinian Algebras and Jordan Types, CONM.
  • CGMM [22] O. Clarke, K. Grace, F. Mohammadi, and H. J. Motwani. Matroid stratifications of hypergraph varieties, their realization spaces, and discrete conditional independence models. arXiv:2103.16550, 2022. doi:10.1093/imrn/rnac268.
  • CH [98] L. Caporaso and J. Harris. Counting plane curves of any genus. Inventiones Mathematicae, 131(2):345–392, 1998. doi:10.1007/s002220050208.
  • Cox [50] H. S. M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc., 56:413–455, 1950. doi:10.1090/S0002-9904-1950-09407-5.
  • Dol [12] I. V. Dolgachev. Classical algebraic geometry: A modern view. Cambridge University Press, Cambridge, 2012. doi:10.1017/CBO9781139084437.
  • Fie [10] S. Fiedler-Le Touzé. Pencils of cubics with eight base points lying in convex position in P2\mathbb{R}P^{2}. arXiv:1012.2679, 2010.
  • Ful [69] W. Fulton. Algebraic Curves. Math. Lecture Series. Benjaming Cummings, 1969.
  • GH [94] P. A. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.
  • GKZ [94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser, Boston, MA, 1994.
  • Gro [22] The GAP Group. Gap – groups, algorithms, and programming, version 4.12.2, 2022. URL: https://www.gap-system.org.
  • [18] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www2.macaulay2.com.
  • Har [86] J. Harris. On the Severi problem. Inventiones mathematicae, 84(3):445–461, 1986. doi:10.1007/BF01388741.
  • Ing [71] A. W. Ingleton. Representation of Matroids. In Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), page 149–167. Academic Press, London-New York, 1971.
  • KM [94] M. Kontsevich and Y. Manin. Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Physics, 164:525–562, 1994. doi:10.1007/BF02101490.
  • KM [02] I. A. Kogan and M. M. Maza. Computation of canonical forms for ternary cubics. In ISSAC ’02: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, page 151–160, New York, NY, USA, 2002. ACM. doi:10.1145/780506.780526.
  • MMIB [12] Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremner. Database of matroids, 2012. URL: https://www-imai.is.s.u-tokyo.ac.jp/~ymatsu/matroid/.
  • MST [03] G. Megyesi, F. Sottile, and T. Theobald. Common transversals and tangents to two lines and two quadrics in p. Discrete & Computational Geometry, 30(4):543–571, 2003. doi:10.1007/s00454-003-0789-4.
  • OS [10] G. Ottaviani and E. Sernesi. On the hypersurface of Lüroth quartics. Michigan Math. J., 59(2):365–394, 2010. doi:10.1307/mmj/1281531462.
  • Osc [23] Oscar. -open source computer algebra research system, version 0.12.2-dev, 2023.
  • Ott [13] G. Ottaviani. A computational approach to Lüroth quartics. Rendiconti del Circolo Matematico di Palermo, 62:165–177, 2013. doi:10.1007/s12215-013-0114-x.
  • Oxl [06] J. G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University Press, Inc., USA, 2006.
  • Sev [21] F. Severi. Vorlesungen über Algebraische Geometrie: Geometrie auf einer Kurve Riemannsche Flächen Abelsche Integrale. Springer, 1921.
  • Sha [94] I. R. Shafarevich. Basic algebraic geometry. 1 - Varieties in projective space. Springer-Verlag, Berlin, second edition, 1994.
  • Sta [12] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
  • Zie [91] G. M. Ziegler. Some minimal non-orientable matroids of rank three. Geometriae Dedicata, 38(3):365–371, 1991. doi:10.1007/BF00181199.
  • Zie [08] G. M. Ziegler. Nonrational configurations, polytopes, and surfaces. The Mathematical Intelligencer, 30(3):36–42, 2008. doi:10.1007/BF02985377.