This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Quasiparticle solutions for the nonlocal NLSE with an anti-Hermitian term in semiclassical approximation

Anton E. Kulagin [email protected] Tomsk Polytechnic University, 30 Lenina av., 634050 Tomsk, Russia V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1 Academician Zuev Sq., 634055 Tomsk, Russia    Alexander V. Shapovalov [email protected] Department of Theoretical Physics, Tomsk State University, Novosobornaya Sq. 1, 634050 Tomsk, Russia Laboratory for Theoretical Cosmology, International Centre of Gravity and Cosmos, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina av., 634050 Tomsk, Russia
Abstract

We deal with the nn-dimensional nonlinear Schrödinger equation (NLSE) with a cubic nonlocal nonlinearity and an anti-Hermitian term, which is widely used model for the study of open quantum system. We construct asymptotic solutions to the Cauchy problem for such equation within the formalism of semiclassical approximation based on the Maslov complex germ method. Our solutions are localized in a neighbourhood of few points for every given time, i.e. form some spatial pattern. The localization points move over trajectories that are associated with the dynamics of semiclassical quasiparticles. The Cauchy problem for the original NLSE is reduced to the system of ODEs and auxiliary linear equations. The semiclassical nonlinear evolution operator is derived for the NLSE. The general formalism is applied to the specific one-dimensional NLSE with a periodic trap potential, dipole-dipole interaction, and phenomenological damping. It is shown that the long-range interactions in such model, which are considered through the interaction of quasiparticles in our approach, can lead to drastic changes in the behaviour of our asymptotic solutions.

trajectory concentrated states; nonlocal nonlinearity; Maslov complex germ method; dipole-dipole interaction; non-Hermitian operator

I Introduction

The nonlinear Schrödinger equation (NLSE) is a common model of collective excitations in nonlinear media. Its simplest variation with a local cubic nonlinearity and external potential is known as the Gross–Pitaevskii (GP) equation [2]. If one considers an open system, the NLSE with an anti-Hermitian term comes into play [3]. Such variation of the NLSE is widely used in modelling the propagation of optical pulses in nonlinear media [4, 5]. When the model includes the source of light and losses [6, 7], it deals with a fundamentally open system. The NLSE with an anti-Hermitian term also plays crucial role in modelling the Bose–Einstein condensate (BEC) within the framework of the GP model. The interaction of the BEC with an environment described by the anti-Hermitian terms leads to nontrivial effects in this model such as formation of the vortex lattice [8]. The anti-Hermitian terms are also necessary for the mathematical description of an atom laser [9].

The form of nonlinear terms in the NLSE varies greatly depending on specific physical model. In most cases, the cubic nonlinearity is considered as the simplest physically motivated nonlinearity. In the GP model, such nonlinearity describes the effective mean field of interpaticle interaction. The optics related models such as, e.g., the Haus equation [10] often account for the Kerr effect through the nonlinear term. However, even the simplest cubic nonlinearity leads to quite complex models from the mathematical point of view when one deals with the nonlocal nonlinearity. Returning to the GP model, the nonlocality is motivated by the consideration of long-range interactions such as the dipole-dipole interaction [11, 12, 13, 14]. In the Haus-like models, where both of the independent variables are associated with time, the nonlocality describes the memory effect of the medium. Besides the nonlocal Kerr effect, the saturation of the laser medium also can be included into the kernel of the nonlocal nonlinearity within the framework of such models [15]. A number of papers are devoted to the mathematical efforts in consideration of various aspects of nonlocality in the NLSE (see, e.g., [16, 17, 18]) as well to the derivation of such nonlocal models [19, 20, 21, 22, 23, 24]. However, it quite hard to obtain exact mathematical results for such complex equations, especially when the nonlocality and the non-Hermiticity are considered at the same time. Hence, many results rely only on numerical calculations [12, 25].

In order to advance in the problem under consideration, we will apply to the semiclassical approximation. A powerful tool that allows one to deals with such problem is the Maslov complex germ method [26, 27]. In [28], it was shown that this method can be applied to the nonlocal NLSE of a quite general form. Asymptotics for various specific nonlocal NLSE were obtained using the ideas of the Maslov complex germ method in the past years (see, e.g., [29, 30, 31, 32]). In [33], we have shown that the approach [28] can be generalized to the nonlocal NLSE with an anti-Hermitian term. That approach allows one to construct the asymptotic solutions to the Cauchy problem localized in a neighbourhood of one point moving along the trajectory determined by ”classical”  equations. The limitation of such approach with respect to the physics is that it really deals only with weakly nonlocal effects since the respective asymptotic solutions have trivial geometry. On the other hand, the attractive feature of the nonlocal models is the possibility to consider long-range interactions that can lead to nontrivial spatial patterns [34, 35]. Thus, we come to the even more complex problem of constructing asymptotic solutions to the nonlocal NLSE with an anti-Hermitian part that effectively depend on the behaviour of the nonlinearity kernel on its whole support rather than the neighbourhood of a center point, i.e. account for the long-range interactions. It turned out to be possible within the framework of the Maslov complex germ based approach if we introduce the so-called semiclassical quasiparticles similar to the ones in [36] where we dealt with the classical problem of a population dynamics.

The concept of quasiparticles is known in a theory of solitons for nonlinear equations that are exactly integrable in terms of the inverse scattering transform (IST) [37, 38]. The approximate solutions based on this conception can be obtained using the perturbation theory for the equations that are close to the exactly solvable ones with IST [39], e.g., the (1+1)(1+1)-dimensional Kortewe-de Vries equation, the sine-Gordon equation, the NLSE with the local cubic nonlinearity, and some others. Such soliton solutions are treated as modes of the field excitation. Although our problem is far from the exactly solvable cases, the semiclassical quasiparticles can be treated in a similar way. Usually, the term ”quasiparticles”  implies the components of solution that are distinguishable in either the momentum space (see, e.g. [40]) or the coordinate space. The latter one is our case. Note that, for the Haus-like models, where there is no the spatial variables, the quasiparticles can be treated as a train of optical pulses. The distinctive feature of our approach is that the interaction of the semiclassical quasiparticles is ruled by the exact ”classical mechanics”  (dynamical system) rather than by the pertubation of the exactly solvable wave equation.

In this work, we construct the asymptotic solutions to the Cauchy problem for the nonlocal NLSE with an anti-Hermitian term that are semiclassically localized in a neighbourhood of few trajectories associated with the dynamics of quasiparticles. The paper is organized as follows. In Section II, we give the mathematical statement of the problem under consideration, and clarify the meaning of the semiclassically concentrated states. In Section III, we introduce the wave functions of quasiparticles that are auxiliary mathematical objects allowing us to construct the approximate solution to the original NLSE. The moments of such wave functions are defined in Section IV. The solutions to the dynamical system describing these moments is a key elements of our approach. In Section V, we pose the Cauchy problem for the equations associated with the NLSE and give its relation to the original problem. Section VI is devoted to the reduction of the original complex nonlinear problem to the linear ones within the framework of our quasiparticle formalism. The approximate evolution operator for the original NLSE is constructed. In Section VII, we provide the general formalism with a physically motivated example. The one-dimensional NLSE with dipole-dipole interaction, optical-lattice potential, and phenomenological damping is considered. It is shown that the non-perturbative interaction of semiclassical quasiparticles plays a crucial role in the behaviour of the solution to the NLSE. In Section VIII, we conclude with some remarks.

II Nonlocal NLSE with an anti-Hermitian term. Classical equations

We deal with a quite general form of the non-Hermitian nonlocal NLSE that reads as follows:

{it+H(z^,t)[Ψ]iΛH˘(z^,t)[Ψ]}Ψ(x,t)=0,H(z^,t)[Ψ]=V(z^,t)+ϰn𝑑yΨ(y,t)W(z^,w^,t)Ψ(y,t),H˘(z^,t)[Ψ]=V˘(z^,t)+ϰn𝑑yΨ(y,t)W˘(z^,w^,t)Ψ(y,t).\begin{array}[]{l}\bigg{\{}-i\hbar\partial_{t}+H(\hat{z},t)[\Psi]-i\hbar\Lambda\breve{H}(\hat{z},t)[\Psi]\bigg{\}}\Psi(\vec{x},t)=0,\cr\cr H(\hat{z},t)[\Psi]=V(\hat{z},t)+\varkappa\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{y}\,\Psi^{*}(\vec{y},t)W(\hat{z},\hat{w},t)\Psi(\vec{y},t),\cr\breve{H}(\hat{z},t)[\Psi]=\breve{V}(\hat{z},t)+\varkappa\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{y}\,\Psi^{*}(\vec{y},t)\breve{W}(\hat{z},\hat{w},t)\Psi(\vec{y},t).\end{array} (1)

Here, xn\vec{x}\in{\mathbb{R}}^{n},p^x=ix\hat{\vec{p}}_{x}=-i\hbar\partial_{\vec{x}}, z^=(p^x,x)\hat{z}=(\hat{\vec{p}}_{x},\vec{x}), and w^=(p^y,y)\hat{w}=(\hat{\vec{p}}_{y},\vec{y}). As usual for a semiclassical formalism, an operator of the equation is defined in terms of pseudo-differential operators [41, 42]. So, the operators V(z^,t)V(\hat{z},t), V˘(z^,t)\breve{V}(\hat{z},t), W(z^,w^,t)W(\hat{z},\hat{w},t), W˘(z^,w^,t)\breve{W}(\hat{z},\hat{w},t) belong to the set 𝒜t{\mathcal{A}}^{t}_{\hbar} of pseudo-differential operators with smooth symbols growing not faster than polynomial (some related properties and formal definitions are given in Appendix A). Since the equation (1) is given in the coordinate representation, the operator x\vec{x} is the operator of multiplication by x\vec{x}. Hereinafter, we put a right arrow over and only over the nn-dimensional vectors. The nonlocal interactions of atoms in BEC usually lead to the kernels WW and W˘\breve{W} with ”almost compact support”, while the saturation of the medium in the optics related models yield the step-like contribution to the W˘\breve{W}. Due to the wide variety of kernels in physics, the application of our formalism to the specific models can benefit greatly from the generality of our problem statement.

Definition II.1.

The function Ψ(x,t,)\Psi(\vec{x},t,\hbar) belongs to the class 𝒯t({Zs(t),μs(t)}s=1K){\mathcal{T}}^{t}_{\hbar}\left(\left\{Z_{s}(t),\mu_{s}(t)\right\}_{s=1}^{K}\right) of functions semiclassically concentrated on trajectories z=Zs(t)z=Z_{s}(t) with weights μs(t)\mu_{s}(t), s=1,K¯s=\overline{1,K}, if for any operator A^𝒜t\hat{A}\in{\mathcal{A}}_{\hbar}^{t} with a Weyl symbol A(z,t,)A(z,t,\hbar) the followings holds:

lim0Ψ|A^|Ψ(t,)=s=1Kμs(t)A(Zs(t),t,0),Ψ|A^|Ψ(t,)=nΨ(x,t,)A^Ψ(x,t,)𝑑x.\begin{gathered}\lim\limits_{\hbar\to 0}\langle\Psi|\hat{A}|\Psi\rangle(t,\hbar)=\sum_{s=1}^{K}\mu_{s}(t)A(Z_{s}(t),t,0),\\ \langle\Psi|\hat{A}|\Psi\rangle(t,\hbar)=\displaystyle\int\limits_{{\mathbb{R}}^{n}}\Psi^{*}(\vec{x},t,\hbar)\hat{A}\Psi(\vec{x},t,\hbar)d\vec{x}.\end{gathered} (2)

Hereinafter, s=1,K¯s=\overline{1,K} stands for s=1,2,,Ks=1,2,...,K, where KK\in{\mathbb{N}} is interpreted as a total number of quasiparticles. The 2n2n-tuple vector Zs(t)=(Ps(t),Xs(t))Z_{s}(t)=\left(\vec{P}_{s}(t),\vec{X}_{s}(t)\right) can be treated as the phase coordinate of the ss-th quasiparticle, and μs(t)\mu_{s}(t) corresponds to a quantity of matter related to the ss-th quasiparticle (a ”mass”  of the quasiparticle). We term the weight functions μs(t)\mu_{s}(t) as ”masses”  of quasiparticles. Note that μs(t)\mu_{s}(t) is not direct analog for a mass of a classical particle since it is not a measure of inertia of the ss-th particle in a common sense (it will be clear in the specific example in Section VII). However, there are some reasons to draw the analogy with masses for μs(t)\mu_{s}(t) that are given below.

Let μΨ(t,)=Ψ2(t,)\mu_{\Psi}(t,\hbar)=||\Psi||^{2}(t,\hbar). Note that the following relation holds in the class 𝒯t({Zs(t),μs(0)(t)}s=1K){\mathcal{T}}^{t}_{\hbar}\left(\left\{Z_{s}(t),\mu_{s}^{(0)}(t)\right\}_{s=1}^{K}\right):

lim0μΨ(t,)=s=1Kμs(0)(t).\lim\limits_{\hbar\to 0}\mu_{\Psi}(t,\hbar)=\sum_{s=1}^{K}\mu^{(0)}_{s}(t). (3)

This relation is obtained using the substitution of A^=1\hat{A}=1 into (2). Hereinafter, we will denote the second functional parameters of the class 𝒯t({Zs(t),μs(0)(t)}s=1K){\mathcal{T}}^{t}_{\hbar}\left(\left\{Z_{s}(t),\mu_{s}^{(0)}(t)\right\}_{s=1}^{K}\right) by μs(0)(t)\mu^{(0)}_{s}(t) since it corresponds to the zeroth order approximation (with respect of \hbar) of the zeroth moments of the quasiparticle wave function, which will be introduces in Section IV.

Let us also consider the mean value of the coordinate XΨ(t,)=1μΨ(t,)nx|Ψ(x,t)|2\vec{X}_{\Psi}(t,\hbar)=\displaystyle\frac{1}{\mu_{\Psi}(t,\hbar)}\displaystyle\int\limits_{{\mathbb{R}}^{n}}\vec{x}|\Psi(\vec{x},t)|^{2}. From (2) one readily gets the following relation:

lim0XΨ(t,)=s=1Kμs(0)(t)Xs(t)s=1Kμs(0)(t).\lim\limits_{\hbar\to 0}\vec{X}_{\Psi}(t,\hbar)=\displaystyle\frac{\sum_{s=1}^{K}\mu^{(0)}_{s}(t)\vec{X}_{s}(t)}{\sum_{s=1}^{K}\mu^{(0)}_{s}(t)}. (4)

We can treat lim0XΨ(t,)\lim\limits_{\hbar\to 0}\vec{X}_{\Psi}(t,\hbar) as the coordinate of the center of mass of the system within the semiclassical approximation and lim0μΨ(t,)\lim\limits_{\hbar\to 0}\mu_{\Psi}(t,\hbar) as its mass. Then, the equations (3) and (4) correspond to the well-known laws for the mass of a classical system and the position of its center of mass, respectively, where μs(0)(t)\mu^{(0)}_{s}(t) act exactly as masses of the quasiparticles that constitute such system.

Now we go on to the derivation of the equations that determine the parameters of the class 𝒯t({Zs(t),μs(0)(t)}s=1K){\mathcal{T}}^{t}_{\hbar}\left(\left\{Z_{s}(t),\mu_{s}^{(0)}(t)\right\}_{s=1}^{K}\right) on solutions of (1). The equation for μΨ(t,)\mu_{\Psi}(t,\hbar) can be readily obtained using the direct substitution of tΨ(x,t)\partial_{t}\Psi(\vec{x},t) from the original equation (1) into μ˙Ψ(t,)\dot{\mu}_{\Psi}(t,\hbar) and reads as follows:

μ˙Ψ(t,)=2Λn𝑑xΨ(x,t;)H˘(z^,t)[Ψ]Ψ(x,t;)=2ΛΨ|H˘[Ψ]|Ψ==2Λ(Ψ|V˘(z^,t)|Ψ+ϰΨ|n𝑑yΨ(y,t)W˘(z^,w^,t)Ψ(y,t)|Ψ).\begin{gathered}\dot{\mu}_{\Psi}(t,\hbar)=-2\Lambda\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{x}\,\Psi^{*}(\vec{x},t;\hbar)\breve{H}(\hat{z},t)[\Psi]\Psi(\vec{x},t;\hbar)=-2\Lambda\langle\Psi|\breve{H}[\Psi]|\Psi\rangle=\\ =-2\Lambda\left(\langle\Psi|\breve{V}(\hat{z},t)|\Psi\rangle+\varkappa\langle\Psi|\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{y}\,\Psi^{*}(\vec{y},t)\breve{W}(\hat{z},\hat{w},t)\Psi(\vec{y},t)|\Psi\rangle\right).\end{gathered} (5)

Using (2), we also obtain

lim0Ψ|V˘(z^,t)|Ψ=s=1Kμs(0)(t)V˘(Zs(t),t),lim0Ψ|n𝑑yΨ(y,t)W˘(z^,w^,t)Ψ(y,t)|Ψ=s=1Kr=1Kμs(0)(t)μr(0)(t)W˘(Zs(t),Zr(t),t).\begin{gathered}\lim\limits_{\hbar\to 0}\langle\Psi|\breve{V}(\hat{z},t)|\Psi\rangle=\sum_{s=1}^{K}\mu^{(0)}_{s}(t)\breve{V}(Z_{s}(t),t),\\ \lim\limits_{\hbar\to 0}\langle\Psi|\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{y}\,\Psi^{*}(\vec{y},t)\breve{W}(\hat{z},\hat{w},t)\Psi(\vec{y},t)|\Psi\rangle=\sum_{s=1}^{K}\sum_{r=1}^{K}\mu^{(0)}_{s}(t)\mu^{(0)}_{r}(t)\breve{W}(Z_{s}(t),Z_{r}(t),t).\end{gathered} (6)

Then, the equation (5), in the limit 0\hbar\to 0, can be written as follows:

s=1Kμ˙s(0)(t)=2Λs=1Kμs(0)(t)(V˘(Zs(t),t)+ϰr=1Kμr(0)(t)W˘(Zs(t),Zr(t),t)).\sum_{s=1}^{K}\dot{\mu}^{(0)}_{s}(t)=-2\Lambda\sum_{s=1}^{K}\mu^{(0)}_{s}(t)\left(\breve{V}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)\breve{W}(Z_{s}(t),Z_{r}(t),t)\right). (7)

Now, let AΨ(t)=A^Ψ=Ψ|A^|ΨA_{\Psi}(t)=\langle\hat{A}\rangle_{\Psi}=\langle\Psi|\hat{A}|\Psi\rangle. The exact equation for AΨ(t)A_{\Psi}(t) is as follows:

tA^(t)Ψ=A^(t)tΨ+i[H(z^,t)[Ψ],A^(t)]ΨΛ[H˘(z^,t)[Ψ],A^(t)]+Ψ=\displaystyle\displaystyle\frac{\partial}{\partial t}\langle\hat{A}(t)\rangle_{\Psi}=\bigg{\langle}\displaystyle\frac{\partial\hat{A}(t)}{\partial t}\bigg{\rangle}_{\Psi}+\frac{i}{\hbar}\big{\langle}\big{[}H(\hat{z},t)[\Psi],\hat{A}(t)\big{]}\big{\rangle}_{\Psi}-\Lambda\big{\langle}\big{[}\breve{H}(\hat{z},t)[\Psi],\hat{A}(t)\big{]}_{+}\big{\rangle}_{\Psi}= (8)
=A^(t)tΨ+i[V(z^,t),A(z^,t)]ΨΛ[V˘(z^,t),A(z^,t)]+Ψ+\displaystyle=\bigg{\langle}\displaystyle\frac{\partial\hat{A}(t)}{\partial t}\bigg{\rangle}_{\Psi}+\displaystyle\frac{i}{\hbar}\big{\langle}[V(\hat{z},t),A(\hat{z},t)]\big{\rangle}_{\Psi}-\Lambda\big{\langle}[\breve{V}(\hat{z},t),A(\hat{z},t)]_{+}\big{\rangle}_{\Psi}+ (9)
+ϰn𝑑yΨ(i[W(z^,w^,t),A(z^,t)]Λ[W˘(z^,w^,t),A(z^,t)]+)Ψ(y,t)Ψ.\displaystyle+\varkappa\bigg{\langle}\displaystyle\int\limits_{{\mathbb{R}}^{n}}d\vec{y}\,\Psi^{*}\Big{(}\displaystyle\frac{i}{\hbar}[W(\hat{z},\hat{w},t),A(\hat{z},t)]-\Lambda[\breve{W}(\hat{z},\hat{w},t),A(\hat{z},t)]_{+}\Big{)}\Psi(\vec{y},t)\bigg{\rangle}_{\Psi}. (10)

Let us use the property (68) of pseudo-differential operators. Then, for the operator A^=A(z^,t)\hat{A}=A(\hat{z},t) with a Weyl symbol A(z,t)A(z,t), in the limit 0\hbar\to 0, we come at the following equation:

ddts=1Kμs(0)(t)A(Zs(t),t)=s=1Kμs(0)(t)(A(zs,t)t{V(zs,t),A(zs,t)}2ΛV˘(zs,t)A(zs,t)++ϰr=1Kμr(0)(t)({W(zs,wr,t),A(zs,t)}2ΛW˘(zs,wr,t)A(zs,t)))|zs=Zs(t),wr=Zr(t).\begin{gathered}\displaystyle\frac{d}{dt}\sum_{s=1}^{K}\mu^{(0)}_{s}(t)A(Z_{s}(t),t)=\sum_{s=1}^{K}\mu^{(0)}_{s}(t)\Bigg{(}\displaystyle\frac{\partial A(z_{s},t)}{\partial t}-\left\{V(z_{s},t),A(z_{s},t)\right\}-2\Lambda\breve{V}(z_{s},t)A(z_{s},t)+\\ +\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)\Big{(}-\left\{W(z_{s},w_{r},t),A(z_{s},t)\right\}-2\Lambda\breve{W}(z_{s},w_{r},t)A(z_{s},t)\Big{)}\Bigg{)}\Big{|}_{z_{s}=Z_{s}(t),\,w_{r}=Z_{r}(t)}.\end{gathered} (11)

In particular, for A(z,t)=zA(z,t)=z, we have

ddts=1Kμs(0)(t)Zs(t)=s=1Kμs(0)(t)(JVz(Zs(t),t)2ΛV˘(Zs(t),t)Zs(t)++ϰr=1Kμr(0)(t)(JWz(Zs(t),Zr(t),t)2ΛW˘(Zs(t),Zr(t),t)Zs(t))).\begin{gathered}\displaystyle\frac{d}{dt}\sum_{s=1}^{K}\mu^{(0)}_{s}(t)Z_{s}(t)=\sum_{s=1}^{K}\mu^{(0)}_{s}(t)\Bigg{(}JV_{z}(Z_{s}(t),t)-2\Lambda\breve{V}(Z_{s}(t),t)Z_{s}(t)+\\ +\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)\Big{(}JW_{z}(Z_{s}(t),Z_{r}(t),t)-2\Lambda\breve{W}(Z_{s}(t),Z_{r}(t),t)Z_{s}(t)\Big{)}\Bigg{)}.\end{gathered} (12)

Note that the system of the first order ordinary differential equations (ODEs) (7), (12) is closed.

The system of (2n+1)(2n+1) equations (7), (12) admits particular solutions that satisfy the following system of K(2n+1)K(2n+1) equations:

μ˙s(0)(t)=2Λμs(0)(t)(V˘(Zs(t),t)+ϰr=1Kμr(0)(t)W˘(Zs(t),Zr(t),t)),Z˙s(t)=JVz(Zs(t),t)+ϰr=1Kμr(0)(t)JWz(Zs(t),Zr(t)),s=1,K¯.\begin{gathered}\dot{\mu}^{(0)}_{s}(t)=-2\Lambda\mu^{(0)}_{s}(t)\left(\breve{V}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)\breve{W}(Z_{s}(t),Z_{r}(t),t)\right),\\ \dot{Z}_{s}(t)=JV_{z}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)JW_{z}(Z_{s}(t),Z_{r}(t)),\quad s=\overline{1,K}.\end{gathered} (13)

We will try an asymptotic solution to the equation (1) in the class 𝒯t({Zs(t),μs(0)(t)}s=1K){\mathcal{T}}^{t}_{\hbar}\left(\left\{Z_{s}(t),\mu_{s}^{(0)}(t)\right\}_{s=1}^{K}\right) where the functional parameters Zs(t)Z_{s}(t), μs(0)(t)\mu^{(0)}_{s}(t), s=1,K¯s=\overline{1,K}, satisfy the system of ”classical”  equations (13). We term the system (13) as the zeroth order KK-particle Hamilton-Ehrenfest system by analogy with [28].

III Wave functions of quasiparticles

Let us introduce the family of classes of trajectory concentrated functions 𝒫t(Zs(t),Ss(t,)){\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)) that reads as follows [28]:

𝒫t(Zs(t),Ss(t,))={Φ:Φ(x,t,)=n/4φ(Δxs,t,)exp[i(Ss(t,)+Ps(t),Δxs)]}.\displaystyle{\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar))=\bigg{\{}\Phi:\Phi(\vec{x},t,\hbar)=\hbar^{-n/4}\cdot\varphi\Big{(}\frac{\Delta\vec{x}_{s}}{\sqrt{\hbar}},t,\hbar\Big{)}\cdot\exp\Big{[}\frac{i}{\hbar}\left(S_{s}(t,\hbar)+\langle\vec{P}_{s}(t),\Delta\vec{x}_{s}\rangle\right)\Big{]}\bigg{\}}. (14)

Here, Φ(x,t,)\Phi(\vec{x},t,\hbar) is a general element of the class 𝒫t(Zs(t),Ss(t,)){\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)); the real functions Zs(t)=(Ps(t),Xs(t))Z_{s}(t)=(\vec{P}_{s}(t),\vec{X}_{s}(t)) and Ss(t,)S_{s}(t,\hbar) are functional parameters of the class 𝒫t(Zs(t),Ss(t,)){\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)); Δxs=xXs(t)\Delta\vec{x}_{s}=\vec{x}-\vec{X}_{s}(t); the function φ(ξ,t,)\varphi(\vec{\xi},t,\hbar) belongs to the Schwartz space 𝕊\mathbb{S} with respect to the variables ξn\vec{\xi}\in{\mathbb{R}}^{n}; the functions Zs(t),Ss(t,)Z_{s}(t),S_{s}(t,\hbar), and φ(ξ,t,)\varphi(\vec{\xi},t,\hbar) smoothly depend on tt and regularly depend on \sqrt{\hbar} in a neighbourhood of =0\hbar=0. The notations ,\langle\cdot,\cdot\rangle stands for the Euclidean scalar product of vectors.

The functions Zs(t)Z_{s}(t) and μs(0)(t)\mu^{(0)}_{s}(t), which determine the trajectory and ”mass”  of the ss-th quasiparticle, will be subjected to the system of equation (13), and the function Ss(t,)S_{s}(t,\hbar) will be defined later.

We will seek for a solution to the equation (1) in the set of functions that can be presented as follows:

Ψ(x,t,)=s=1KΨs(x,t,),Ψs(x,t,)𝒫t(Zs(t),Ss(t,)).\Psi(\vec{x},t,\hbar)=\sum_{s=1}^{K}\Psi_{s}(\vec{x},t,\hbar),\quad\Psi_{s}(\vec{x},t,\hbar)\in{\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)). (15)

Note that the function Ψ(x,t,)\Psi(\vec{x},t,\hbar) does not belong to the family of classes 𝒫t{\mathcal{P}}_{\hbar}^{t} in the general case K>1K>1. In the specific case K=1K=1, the formalism that we propose here can be reduced to the one constructed in [33] under some simplifying assumptions. The function Ψ\Psi of the form (15) meets the definition (2). Thus, Ψs\Psi_{s} can be termed as semiclassical wave function of the ss-th quasiparticle.

One readily gets, that, if the function Ψs(x,t,)\Psi_{s}(\vec{x},t,\hbar) satisfies the system

{it+H(z^,t)[r=1KΨr]iΛH˘(z^,t)[r=1KΨr]}Ψs(x,t)=0,s=1,K¯,\begin{array}[]{l}\bigg{\{}-i\hbar\partial_{t}+H(\hat{z},t)[\sum_{r=1}^{K}\Psi_{r}]-i\hbar\Lambda\breve{H}(\hat{z},t)[\sum_{r=1}^{K}\Psi_{r}]\bigg{\}}\Psi_{s}(\vec{x},t)=0,\quad s=\overline{1,K},\end{array} (16)

the function Ψ(x,t,)\Psi(\vec{x},t,\hbar) given by (15) obeys the original equation (1). For brevity, we will denote the class 𝒫t(Zs(t),Ss(t,)){\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)) as 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s) where it does not cause the confusion.

It was proved in [28, 43] that, for functions from the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s) on a finite time interval t[0;T]t\in[0;T], the following asymptotic estimates hold:

{Δz^s}α=O^(|α|/2),Δz^s=(Δp^s,Δxs),\displaystyle\{\Delta\hat{z}_{s}\}^{\alpha}=\hat{{\rm O}}(\hbar^{|\alpha|/2}),\quad\Delta\hat{z}_{s}=(\Delta\hat{\vec{p}}_{s},\Delta\vec{x}_{s}), (17)
Φs|{Δz^s}α|Φs=O(|α|/2),Φs𝒫t(s).\displaystyle\langle\Phi_{s}|\{\Delta\hat{z}_{s}\}^{\alpha}|\Phi_{s}\rangle={\rm O}(\hbar^{|\alpha|/2}),\quad\Phi_{s}\in{\mathcal{P}}_{\hbar}^{t}(s). (18)

Here, the following notations are used. The estimate A^=O^(m)\hat{A}=\hat{{\rm O}}(\hbar^{m}), m0m\geq 0, in (17) means that

A^ΦΦ=O(m),Φ𝒫t|s;\displaystyle\frac{||\hat{A}\Phi||}{||\Phi||}={\rm O}(\hbar^{m}),\quad\Phi\in{\mathcal{P}}_{\hbar}^{t}|_{s}; (19)

Zs(t)=(Ps(t),Xs(t))Z_{s}(t)=(\vec{P}_{s}(t),\vec{X}_{s}(t)), Δz^s=z^Zs(t)=(Δp^s,Δxs)\Delta\hat{z}_{s}=\hat{z}-Z_{s}(t)=(\Delta\hat{\vec{p}}_{s},\Delta\vec{x}_{s}), Δp^s=p^Ps(t)\Delta\hat{\vec{p}}_{s}=\hat{\vec{p}}-\vec{P}_{s}(t), Δxs=xXs(t)\Delta\vec{x}_{s}=\vec{x}-\vec{X}_{s}(t); {Δz^s}α\{\Delta\hat{z}_{s}\}^{\alpha} is the operator determined by the Weyl symbol (Δzs)α=(zZs(t))α(\Delta{z}_{s})^{\alpha}=(z-Z_{s}(t))^{\alpha}. The multi-index α+2n\alpha\in{\mathbb{Z}}^{2n}_{+} (2n2n-tuple) reads α=(α1,α2,,α2n)\alpha=(\alpha_{1},\alpha_{2},\ldots,\alpha_{2n}); αj+1\alpha_{j}\in{\mathbb{Z}}^{1}_{+}, j=1,2,,2nj=1,2,\ldots,2n; |α|=α1+α2++α2n|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{2n}. For v=(v1,v2,,v2n)v=(v_{1},v_{2},\ldots,v_{2n}), we put vα=v1α1v2α2v2nα2nv^{\alpha}=v_{1}^{\alpha_{1}}v_{2}^{\alpha_{2}}\ldots v_{2n}^{\alpha_{2n}}.

In particular, we have

Δxs=O^(),Δp^s=O^(),\displaystyle\Delta{x}_{s}=\hat{{\rm O}}(\sqrt{\hbar}),\quad\Delta\hat{p}_{s}=\hat{{\rm O}}(\sqrt{\hbar}), (20)
i/tS˙s(t,)+Ps(t),X˙s(t)+Z˙s(t),JΔz^s=O^().\displaystyle-i\hbar\partial/\partial t-\dot{S}_{s}(t,\hbar)+\langle{\vec{P}}_{s}(t),\dot{\vec{X}}_{s}(t)\rangle+\langle\dot{Z}_{s}(t),J{\Delta\hat{z}}_{s}\rangle=\hat{{\rm O}}(\hbar). (21)

The functions ΔΦs(α)(t,)\Delta^{(\alpha)}_{\Phi_{s}}(t,\hbar) are |α||\alpha|-th order central moments of the function Φs\Phi_{s}.

Hereinafter, all calculations and commentaries are given for t[0;T]t\in[0;T] where T<T<\infty.

IV Moments of the functions Ψs\Psi_{s}

Let us introduce the following definition for m-th order central moments of the functions Ψs(x,t,)\Psi_{s}(\vec{x},t,\hbar):

Δs,j1j2jm(t,)[Ψs]=Ψs|Δz^s,j1Δz^s,j2Δz^s,jm|Ψs|symmetrized over j1,,jm.\begin{gathered}\Delta_{s,j_{1}j_{2}...j_{m}}(t,\hbar)[\Psi_{s}]=\langle\Psi_{s}|\Delta\hat{z}_{s,j_{1}}\Delta\hat{z}_{s,j_{2}}...\Delta\hat{z}_{s,j_{m}}|\Psi_{s}\rangle\Big{|}_{\text{symmetrized over }j_{1},...,j_{m}}.\end{gathered} (22)

Indices jkj_{k}, k=1,m¯k=\overline{1,m}, stand for a number of the element z2nz\in{\mathbb{R}}^{2n}. The formula (22) symmetrized over j1,,jmj_{1},...,j_{m} means that Δs,j1j2jm(t,)\Delta_{s,j_{1}j_{2}...j_{m}}(t,\hbar) is the expectation of the operator with the Weyl symbol A(z)=Δzs,j1Δzs,j2Δzs,jmA(z)=\Delta{z}_{s,j_{1}}\Delta{z}_{s,j_{2}}...\Delta{z}_{s,j_{m}}, Δzs=zZs(t)\Delta z_{s}=z-Z_{s}(t). Thereinafter, the zeroth order moment of the functions Ψs(x,t,)\Psi_{s}(\vec{x},t,\hbar) will be denoted by

μs(t,)[Ψs]=Ψs2.\mu_{s}(t,\hbar)[\Psi_{s}]=||\Psi_{s}||^{2}. (23)

It is clear that Δs,j1j2jm(t,)[Ψs]=O(m/2)\Delta_{s,j_{1}j_{2}...j_{m}}(t,\hbar)[\Psi_{s}]={\rm O}(\hbar^{m/2}) from (18). Let the trajectories x=Xs(t)\vec{x}=\vec{X}_{s}(t) do not intersect for different ss, i.e.

Zr(t)Zs(t),rs,t[0,T].Z_{r}(t)\neq Z_{s}(t),\quad r\neq s,\quad\forall t\in[0,T]. (24)

Under assumption (24), the asymptotic expansion for the operator H(z,t)[r=1KΨr]H(z,t)[\sum_{r=1}^{K}\Psi_{r}] reads

H(z^,t)[r=1KΨr]=V(z^,t)+ϰr=1K(W(z^,w,t)μr(t,)[Ψr]++m=1M1m!Wwj1wj2wjm(z^,w,t)Δr,j1j2jm(t,)[Ψr])|w=Zr(t)+O^((M+1)/2).\begin{gathered}H(\hat{z},t)\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}=V(\hat{z},t)+\varkappa\sum_{r=1}^{K}\bigg{(}W(\hat{z},w,t)\mu_{r}(t,\hbar)[\Psi_{r}]+\\ +\sum_{m=1}^{M}\displaystyle\frac{1}{m!}W_{w_{j_{1}}w_{j_{2}}...w_{j_{m}}}(\hat{z},w,t)\Delta_{r,j_{1}j_{2}...j_{m}}(t,\hbar)[\Psi_{r}]\bigg{)}\Big{|}_{w=Z_{r}(t)}+\hat{{\rm O}}(\hbar^{(M+1)/2}).\end{gathered} (25)

Hereinafter, the summation over repeated indices jkj_{k} and iki_{k}, kk\in{\mathbb{N}}, is implied. The summation over other repeated indices is not implied until it is explicitly stated. The similar relation holds for H˘\breve{H} up to changes of HH˘H\to\breve{H}, VV˘V\to\breve{V}, and WW˘W\to\breve{W}. Note that we have taken into account in (25) that the following estimate holds under assumption (24):

Ψr|A(z^,t)|Ψs=O(),rs.\langle\Psi_{r}|A(\hat{z},t)|\Psi_{s}\rangle={\rm O}(\hbar^{\infty}),\quad r\neq s. (26)

In the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s), the moments (22), (23) also admit the following expansion:

Δs,j1j2jm(t,)[Ψs]=k=mMk/2Δs,j1j2jm(k)(t)[Ψs]+O((M+1)/2),μs(t,)[Ψs]=k=0Mk/2μs(k)(t)[Ψs]+O((M+1)/2).\begin{gathered}\Delta_{s,j_{1}j_{2}...j_{m}}(t,\hbar)[\Psi_{s}]=\sum_{k=m}^{M}\hbar^{k/2}\Delta^{(k)}_{s,j_{1}j_{2}...j_{m}}(t)[\Psi_{s}]+{\rm O}(\hbar^{(M+1)/2}),\\ \mu_{s}(t,\hbar)[\Psi_{s}]=\sum_{k=0}^{M}\hbar^{k/2}\mu^{(k)}_{s}(t)[\Psi_{s}]+{\rm O}(\hbar^{(M+1)/2}).\end{gathered} (27)

Hence, the equations (10) for the moments of up to the MM-th order with the accuracy of O((M+1)/2){\rm O}(\hbar^{(M+1)/2}) form a closed system of ODEs. We term this system as the MM-th order KK-particle Hamilton–Ehrenfest system for M1M\geq 1 following [28]. The Hamilton–Ehrenfest systems for M3M\leq 3 are derived in Appendix B.

V Cauchy problem

Let us denote

L^[r=1KΨr]=it+H(z^,t)[r=1KΨr]iΛH˘(z^,t)[r=1KΨr].\hat{L}\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}=-i\hbar\partial_{t}+H(\hat{z},t)\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}-i\hbar\Lambda\breve{H}(\hat{z},t)\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}. (28)

We pose the Cauchy problem for (1) as follows:

Ψ(x,t,)|t=0=ψ(x,).\Psi(\vec{x},t,\hbar)\Big{|}_{t=0}=\psi(\vec{x},\hbar). (29)

Let the initial condition ψ(x,t,)\psi(\vec{x},t,\hbar) meets the condition (15), i.e. we have

ψ(x,)=s=1Kψs(x,),ψs(x,)𝒫0(Zs(0),Ss(0,)).\psi(\vec{x},\hbar)=\sum_{s=1}^{K}\psi_{s}(\vec{x},\hbar),\qquad\psi_{s}(\vec{x},\hbar)\in{\mathcal{P}}_{\hbar}^{0}(Z_{s}(0),S_{s}(0,\hbar)). (30)

Then, the solution to the Cauchy problem for (16) with the initial conditions

Ψs(x,t,)|t=0=ψs(x,),s=1,K¯,\Psi_{s}(\vec{x},t,\hbar)\Big{|}_{t=0}=\psi_{s}(\vec{x},\hbar),\quad s=\overline{1,K}, (31)

constitutes the solution to the Cauchy problem (1), (29), (30) following (15).

Let 𝐂{\bf C} be set of initial conditions for the Hamilton–Ehrenfest system:

𝐂=(μs(0,),((Δs,j1j2jm(0,))jk=12n)m=1)s=1K,k=1,m¯.{\bf C}=\left(\mu_{s}(0,\hbar),\left(\left(\Delta_{s,j_{1}j_{2}...j_{m}}(0,\hbar)\right)_{j_{k}=1}^{2n}\right)_{m=1}^{\infty}\right)_{s=1}^{K},\quad k=\overline{1,m}. (32)

The parameters 𝐂{\bf C} enumerate the parametric family of the solutions to the Cauchy problem for the MM-th order Hamilton–Ehrenfest system. We need those solutions from this family that correspond to the initial condition (31):

𝐂[(ψs)s=1K]=(μs(0,)[ψs],((Δs,j1j2jm(0,)[ψs])jk=12n)m=1)s=1K,k=1,m¯.{\bf C}\Big{[}\big{(}\psi_{s}\big{)}_{s=1}^{K}\Big{]}=\left(\mu_{s}(0,\hbar)[\psi_{s}],\left(\left(\Delta_{s,j_{1}j_{2}...j_{m}}(0,\hbar)[\psi_{s}]\right)_{j_{k}=1}^{2n}\right)_{m=1}^{\infty}\right)_{s=1}^{K},\quad k=\overline{1,m}. (33)

Then, if we replace the moments in (25) with the solutions to the Hamilton–Ehrenfest system corresponding to the initial conditions 𝐂{\bf C}, the resulting operators H(z^,t,𝐂)H(\hat{z},t,{\bf C}) and H˘(z^,t,𝐂)\breve{H}(\hat{z},t,{\bf C}) can be treated as linear ones parameterized by 𝐂{\bf C}. The linear operators H(z^,t,𝐂)H(\hat{z},t,{\bf C}) and H˘(z^,t,𝐂)\breve{H}(\hat{z},t,{\bf C}) act on the function Ψs\Psi_{s} in the same way as H(z^,t)[r=1KΨr]H(\hat{z},t)\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]} and H˘(z^,t)[r=1KΨr]\breve{H}(\hat{z},t)\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]} if the parameters 𝐂{\bf C} obey the following algebraic condition:

𝐂=𝐂[(ψs)s=1K].{\bf C}={\bf C}\Big{[}\big{(}\psi_{s}\big{)}_{s=1}^{K}\Big{]}. (34)

Note that, within the accuracy of O((M+1)/2){\rm O}(\hbar^{(M+1)/2}), we need to determine only a finite set of elements of 𝐂{\bf C}, i.e. (34) is equal to the finite system of algebraic equations.

VI Associated linear NLSE

In the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s), in view of (13), the estimate (21) yields:

itS˙s(t)+Ps(t),X˙s(t)++Vz(Zs(t),t)+ϰr=1Kμr(0)(t)Wz(Zs(t),Zr(t),t),Δz^s=O^().\begin{gathered}-i\hbar\partial_{t}-\dot{S}_{s}(t)+\langle\vec{P}_{s}(t),\dot{\vec{X}}_{s}(t)\rangle+\\ +\big{\langle}V_{z}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu^{(0)}_{r}(t)W_{z}(Z_{s}(t),Z_{r}(t),t),\Delta\hat{z}_{s}\big{\rangle}=\hat{{\rm O}}(\hbar).\end{gathered} (35)

Expanding operators H(z^,t,𝐂)H(\hat{z},t,{\bf C}) and H˘(z^,t,𝐂)\breve{H}(\hat{z},t,{\bf C}) into an asymptotic series in a neighbourhood of the trajectory z=Zs(t)z=Z_{s}(t), we obtain the following estimate in the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s):

H(z^,t,𝐂)=m=0M1k!Hzj1zjm(z,t,𝐂)|z=Zs(t)Δz^s,j1Δz^s,jm+O^((M+1)/2).\begin{gathered}H(\hat{z},t,{\bf C})=\sum_{m=0}^{M}\displaystyle\frac{1}{k!}H_{z_{j_{1}}...z_{j_{m}}}(z,t,{\bf C})\Big{|}_{z=Z_{s}(t)}\Delta\hat{z}_{s,j_{1}}...\Delta\hat{z}_{s,j_{m}}+\hat{{\rm O}}(\hbar^{(M+1)/2}).\end{gathered} (36)

Using the estimates (36),(25), and (35) for M=1M=1, in the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s), one readily gets that the operator (28) can be written as

L^[r=1KΨr]=m=2ML^s(m)[r=1KΨr]+O^((M+1)/2),L^s(m)[r=1KΨr]=O^(m/2),\hat{L}\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}=\sum_{m=2}^{M}\hat{L}_{s}^{(m)}\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}+\hat{{\rm O}}(\hbar^{(M+1)/2}),\quad\hat{L}_{s}^{(m)}\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]}=\hat{{\rm O}}(\hbar^{m/2}), (37)

if we put the functional parameter Ss(t)S_{s}(t) of the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s) as follows:

S˙s(t,)=Ps(t),X˙s(t)(V(z,t)+ϰr=1K(μr(t,)W(z,w)++Δr,j(t,)Wwj(z,w,t))|w=Zr(t))|z=Zs(t),\begin{gathered}\dot{S}_{s}(t,\hbar)=\langle\vec{P}_{s}(t),\dot{\vec{X}}_{s}(t)\rangle-\Bigg{(}V(z,t)+\varkappa\sum_{r=1}^{K}\bigg{(}\mu_{r}(t,\hbar)W(z,w)+\\ +\Delta_{r,j}(t,\hbar)W_{w_{j}}(z,w,t)\bigg{)}\Big{|}_{w=Z_{r}(t)}\Bigg{)}\bigg{|}_{z=Z_{s}(t)},\end{gathered} (38)

where summation over repeated index jj is implied, and the moments μr(t,)\mu_{r}(t,\hbar), Δr,j(t,)\Delta_{r,j}(t,\hbar) correspond to the initial conditions (34). Note that we replace the operators L^s(m)[r=1KΨr]\hat{L}_{s}^{(m)}\Big{[}\sum_{r=1}^{K}\Psi_{r}\Big{]} with the linear operators L^s(m)(𝐂)\hat{L}_{s}^{(m)}({\bf C}) under the algebraic condition (34) in view of (28). In (38) and thereinafter, we will omit the argument 𝐂{\bf C} if it does not cause the confusion.

Let us give the explicit form of the operators L^s(m)\hat{L}_{s}^{(m)} in (37) for m=2m=2 and m=3m=3:

L^s(2)=itS˙s(t,)+Ps,j1(t)X˙s,j1(t)+ϰ2r=1KΔr,j1j2(t,)W|j1j2(Zs(t),Zr(t),t)iΛV˘(Zs(t),t)iΛϰr=1Kμr(t,)W˘|(Zs(t),Zr(t),t)++Vj1(Zs(t),t)Δz^s,j1+ϰr=1Kμr(t,)Wi1|(Zs(t),Zr(t),t)Δz^s,i1++ϰr=1KΔr,j1(t,)Wi1|j1(Zs(t),Zr(t),t)Δz^s,i1+12Vj1j2(Zs(t),t)Δz^s,j1Δz^s,j2++ϰ2r=1Kμr(t,)Wi1i2|(Zs(t),Zr(t),t)Δz^s,i1Δz^s,i2,\begin{gathered}\hat{L}_{s}^{(2)}=-i\hbar\partial_{t}-\dot{S}_{s}(t,\hbar)+\vec{P}_{s,j_{1}}(t)\dot{\vec{X}}_{s,j_{1}}(t)+\displaystyle\frac{\varkappa}{2}\sum_{r=1}^{K}\Delta_{r,j_{1}j_{2}}(t,\hbar)W_{|j_{1}j_{2}}(Z_{s}(t),Z_{r}(t),t)-\\ -i\hbar\Lambda\breve{V}(Z_{s}(t),t)-i\hbar\Lambda\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)\breve{W}_{|}(Z_{s}(t),Z_{r}(t),t)+\\ +V_{j_{1}}(Z_{s}(t),t)\Delta\hat{z}_{s,j_{1}}+\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)W_{i_{1}|}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}+\\ +\varkappa\sum_{r=1}^{K}\Delta_{r,j_{1}}(t,\hbar)W_{i_{1}|j_{1}}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}+\displaystyle\frac{1}{2}V_{j_{1}j_{2}}(Z_{s}(t),t)\Delta\hat{z}_{s,j_{1}}\Delta\hat{z}_{s,j_{2}}+\\ +\displaystyle\frac{\varkappa}{2}\sum_{r=1}^{K}\mu_{r}(t,\hbar)W_{i_{1}i_{2}|}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}\Delta\hat{z}_{s,i_{2}},\end{gathered} (39)
L^s(3)=ϰ6r=1KΔr,j1j2j3(t,)W|j1j2j3(Zs(t),Zr(t),t)iΛϰr=1KΔr,j1(t,)W˘|j1(Zs(t),Zr(t),t)++ϰ2r=1KΔr,j1j2(t,)Wi1|j1j2(Zs(t),Zr(t),t)Δz^s,i1iΛV˘j1(Zs(t),t)Δz^s,j1iΛϰr=1Kμr(t,)W˘i1|(Zs(t),Zr(t),t)Δz^s,i1++ϰ2r=1KΔr,j1(t,)Wi1i2|j1(Zs(t),Zr(t),t)Δz^s,i1Δz^s,i2++16Vj1j2j3(Zs(t),t)Δz^s,j1Δz^s,j2Δz^s,j3++ϰ6r=1Kμr(t,)Wi1i2i3|(Zs(t),Zr(t),t)Δz^s,i1Δz^s,i2Δz^s,i3.\begin{gathered}\hat{L}_{s}^{(3)}=\displaystyle\frac{\varkappa}{6}\sum_{r=1}^{K}\Delta_{r,j_{1}j_{2}j_{3}}(t,\hbar)W_{|j_{1}j_{2}j_{3}}(Z_{s}(t),Z_{r}(t),t)-i\hbar\Lambda\varkappa\sum_{r=1}^{K}\Delta_{r,j_{1}}(t,\hbar)\breve{W}_{|j_{1}}(Z_{s}(t),Z_{r}(t),t)+\\ +\displaystyle\frac{\varkappa}{2}\sum_{r=1}^{K}\Delta_{r,j_{1}j_{2}}(t,\hbar)W_{i_{1}|j_{1}j_{2}}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}-i\hbar\Lambda\breve{V}_{j_{1}}(Z_{s}(t),t)\Delta\hat{z}_{s,j_{1}}-\\ -i\hbar\Lambda\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)\breve{W}_{i_{1}|}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}+\\ +\displaystyle\frac{\varkappa}{2}\sum_{r=1}^{K}\Delta_{r,j_{1}}(t,\hbar)W_{i_{1}i_{2}|j_{1}}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}\Delta\hat{z}_{s,i_{2}}+\\ +\displaystyle\frac{1}{6}V_{j_{1}j_{2}j_{3}}(Z_{s}(t),t)\Delta\hat{z}_{s,j_{1}}\Delta\hat{z}_{s,j_{2}}\Delta\hat{z}_{s,j_{3}}+\\ +\displaystyle\frac{\varkappa}{6}\sum_{r=1}^{K}\mu_{r}(t,\hbar)W_{i_{1}i_{2}i_{3}|}(Z_{s}(t),Z_{r}(t),t)\Delta\hat{z}_{s,i_{1}}\Delta\hat{z}_{s,i_{2}}\Delta\hat{z}_{s,i_{3}}.\end{gathered} (40)

Here, the following notations are used:

Vj1jm(z,t)=mzj1zjmV(z,t),Wi1ik|j1jm(z,w,t)=k+mzi1zikwj1wjmW(z,w,t).\begin{gathered}V_{j_{1}...j_{m}}(z,t)=\displaystyle\frac{\partial^{m}}{\partial z_{j_{1}}...\partial z_{j_{m}}}V(z,t),\\ W_{i_{1}...i_{k}|j_{1}...j_{m}}(z,w,t)=\displaystyle\frac{\partial^{k+m}}{\partial z_{i_{1}}...\partial z_{i_{k}}\partial w_{j_{1}}...\partial w_{j_{m}}}W(z,w,t).\end{gathered} (41)

Note that the operators L^s(m)\hat{L}_{s}^{(m)}, m=0,¯m=\overline{0,\infty}, are not uniquely defined. The specific form of (39), (40) was chosen for reasons of brevity of the corresponding formulae. Moreover, the functions μs(t,)\mu_{s}(t,\hbar) and Δs,j1jm(t,)\Delta_{s,j_{1}...j_{m}}(t,\hbar) in (39), (40) can be replaced with the approximate ones with accuracy of O(2){\rm O}(\hbar^{2}). If we replace μs(t,)\mu_{s}(t,\hbar) and Δs,j1jm(t,)\Delta_{s,j_{1}...j_{m}}(t,\hbar) with the approximate ones with accuracy of O(3/2){\rm O}(\hbar^{3/2}) in (39), then the formulae (40) will change.

Functions from the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s) admit the following asymptotic expansions:

Ψs(x,t,)=Ψs(0)(x,t,)+1/2Ψs(1)(x,t,)+2Ψs(2)(x,t,)+,\Psi_{s}(\vec{x},t,\hbar)=\Psi^{(0)}_{s}(\vec{x},t,\hbar)+\hbar^{1/2}\Psi^{(1)}_{s}(\vec{x},t,\hbar)+\hbar^{2}\Psi^{(2)}_{s}(\vec{x},t,\hbar)+..., (42)

where Ψs(k)(x,t,)𝒫t(Zs(t),Ss(t,))\Psi^{(k)}_{s}(\vec{x},t,\hbar)\in{\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)).

Let the integration constants (34) correspond to the initial conditions that are expanded as follows:

ψs(x,)=ψs(0)(x,)+1/2ψs(1)(x,)+1ψs(2)(x,)+,ψs(0)(x,)𝒫0(Zs(0),Ss(0,)).\begin{gathered}\psi_{s}(\vec{x},\hbar)=\psi^{(0)}_{s}(\vec{x},\hbar)+\hbar^{1/2}\psi^{(1)}_{s}(\vec{x},\hbar)+\hbar^{1}\psi^{(2)}_{s}(\vec{x},\hbar)+...,\\ \psi^{(0)}_{s}(\vec{x},\hbar)\in{\mathcal{P}}_{\hbar}^{0}(Z_{s}(0),S_{s}(0,\hbar)).\end{gathered} (43)

Then, the terms of the asymptotic sequence in (42) can be found from the following system of equations:

L^s(2)(𝐂)Ψs(0)(x,t,)=0,L^s(2)(𝐂)Ψs(1)(x,t,)=1/2L^s(3)(𝐂)Ψs(0)(x,t,),L^s(2)(𝐂)Ψs(2)(x,t,)=1L^s(4)(𝐂)Ψs(0)(x,t,)1/2L^s(3)(𝐂)Ψs(1)(x,t,),\begin{gathered}\hat{L}_{s}^{(2)}({\bf C})\Psi^{(0)}_{s}(\vec{x},t,\hbar)=0,\\ \hat{L}_{s}^{(2)}({\bf C})\Psi^{(1)}_{s}(\vec{x},t,\hbar)=-\hbar^{-1/2}\hat{L}_{s}^{(3)}({\bf C})\Psi^{(0)}_{s}(\vec{x},t,\hbar),\\ \hat{L}_{s}^{(2)}({\bf C})\Psi^{(2)}_{s}(\vec{x},t,\hbar)=-\hbar^{-1}\hat{L}_{s}^{(4)}({\bf C})\Psi^{(0)}_{s}(\vec{x},t,\hbar)-\hbar^{-1/2}\hat{L}^{(3)}_{s}({\bf C})\Psi^{(1)}_{s}(\vec{x},t,\hbar),\\ ...\end{gathered} (44)

The equation

L^s(2)(𝐂)Φs(x,t,,𝐂)=0,\hat{L}^{(2)}_{s}({\bf C})\Phi_{s}(\vec{x},t,\hbar,{\bf C})=0, (45)

where L^(2)(𝐂)\hat{L}^{(2)}({\bf C}) is given by (39) is termed as the associated linear Schrodinger equation (ALSE). Actually, it is the parametric family of equations where 𝐂{\bf C} are numeric parameters and ss refers to the functional parameters Zs(t)Z_{s}(t) of the class 𝒫t(Zs(t),Ss(t,)){\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)). Note that we subject the function Ss(t,)S_{s}(t,\hbar) to (38). Hence, it is not an independent functional parameter within our formalism.

The solutions to the ALSE (45) constitute the leading terms of asymptotics for Ψs(x,t,)𝒫t(Zs(t),Ss(t,))\Psi_{s}(\vec{x},t,\hbar)\in{\mathcal{P}}_{\hbar}^{t}(Z_{s}(t),S_{s}(t,\hbar)), s=1,K¯s=\overline{1,K}, if the parameters 𝐂{\bf C} meet the algebraic condition (34) and Φs(x,t,,𝐂)|t=0=ψs(x,)\Phi_{s}(\vec{x},t,\hbar,{\bf C})\Big{|}_{t=0}=\psi_{s}(\vec{x},\hbar), s=1,K¯s=\overline{1,K}.

The equation (45) can be written as follows:

{it+H~s(t,𝐂)+H~s,i1(t,𝐂)Δz^s,i1+12H~s,i1i2(t,𝐂)Δz^s,i1Δz^s,i2}Φs(x,t,,𝐂)=0,H~s(t,𝐂)=S˙s(t,)+Ps,j1(t)X˙s,j1(t)+ϰ2r=1KΔr,j1j2(t,)W|j1j2(Zs(t),Zr(t),t)iΛV˘(Zs(t),t)iΛϰr=1Kμr(t,)W˘|(Zs(t),Zr(t),t),H~s,i1(t,𝐂)=Vi1(Zs(t),t)+ϰr=1Kμr(t,)Wi1|(Zs(t),Zr(t),t)++ϰr=1KΔr,j1(t,)Wi1|j1(Zs(t),Zr(t),t),H~s,i1i2(t,𝐂)=Vi1i2(Zs(t),t)+ϰr=1Kμr(t,)Wi1i2|(Zs(t),Zr(t),t).\begin{gathered}\bigg{\{}-i\hbar\partial_{t}+\tilde{H}_{s}(t,{\bf C})+\tilde{H}_{s,i_{1}}(t,{\bf C})\Delta\hat{z}_{s,i_{1}}+\displaystyle\frac{1}{2}\tilde{H}_{s,i_{1}i_{2}}(t,{\bf C})\Delta\hat{z}_{s,i_{1}}\Delta\hat{z}_{s,i_{2}}\bigg{\}}\Phi_{s}(\vec{x},t,\hbar,{\bf C})=0,\\ \tilde{H}_{s}(t,{\bf C})=-\dot{S}_{s}(t,\hbar)+\vec{P}_{s,j_{1}}(t)\dot{\vec{X}}_{s,j_{1}}(t)+\displaystyle\frac{\varkappa}{2}\sum_{r=1}^{K}\Delta_{r,j_{1}j_{2}}(t,\hbar)W_{|j_{1}j_{2}}(Z_{s}(t),Z_{r}(t),t)-\\ -i\hbar\Lambda\breve{V}(Z_{s}(t),t)-i\hbar\Lambda\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)\breve{W}_{|}(Z_{s}(t),Z_{r}(t),t),\\ \tilde{H}_{s,i_{1}}(t,{\bf C})=V_{i_{1}}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)W_{i_{1}|}(Z_{s}(t),Z_{r}(t),t)+\\ +\varkappa\sum_{r=1}^{K}\Delta_{r,j_{1}}(t,\hbar)W_{i_{1}|j_{1}}(Z_{s}(t),Z_{r}(t),t),\\ \tilde{H}_{s,i_{1}i_{2}}(t,{\bf C})=V_{i_{1}i_{2}}(Z_{s}(t),t)+\varkappa\sum_{r=1}^{K}\mu_{r}(t,\hbar)W_{i_{1}i_{2}|}(Z_{s}(t),Z_{r}(t),t).\end{gathered} (46)

If det((H~s,i1i2(t,𝐂))i1,i2=1n)0\det\bigg{(}\Big{(}\tilde{H}_{s,i_{1}i_{2}}(t,{\bf C})\Big{)}_{i_{1},i_{2}=1}^{n}\bigg{)}\neq 0, the Green functions for (46) reads

Gs(x,y,t,,𝐂)=1det(2πiMs,3(t))exp{i[0t(Ps(τ),X˙s(τ)H~s(τ,𝐂))dτ++Ps(t),ΔxsPs(0),Δys12Δxs,Ms,31(t,𝐂)Ms,1(t,𝐂)Δxs++Δxs,Ms,31(t,𝐂)Δys12Δys,Ms,4(t,𝐂)Ms,31(t,𝐂)Δys]},\begin{gathered}G_{s}(\vec{x},\vec{y},t,\hbar,{\bf C})=\displaystyle\frac{1}{\sqrt{\det\big{(}-2\pi i\hbar M_{s,3}(t)\big{)}}}\exp\Bigg{\{}\displaystyle\frac{i}{\hbar}\bigg{[}\displaystyle\int\limits_{0}^{t}\Big{(}\langle\vec{P}_{s}(\tau),\dot{\vec{X}}_{s}(\tau)\rangle-\tilde{H}_{s}(\tau,{\bf C})\Big{)}d\tau+\\ +\langle\vec{P}_{s}(t),\Delta\vec{x}_{s}\rangle-\langle\vec{P}_{s}(0),\Delta\vec{y}_{s}\rangle-\displaystyle\frac{1}{2}\langle\Delta\vec{x}_{s},M_{s,3}^{-1}(t,{\bf C})M_{s,1}(t,{\bf C})\Delta\vec{x}_{s}\rangle+\\ +\langle\Delta\vec{x}_{s},M_{s,3}^{-1}(t,{\bf C})\Delta\vec{y}_{s}\rangle-\displaystyle\frac{1}{2}\langle\Delta\vec{y}_{s},M_{s,4}(t,{\bf C})M_{s,3}^{-1}(t,{\bf C})\Delta\vec{y}_{s}\rangle\bigg{]}\Bigg{\}},\end{gathered} (47)

where Δys=yXs(0)\Delta\vec{y}_{s}=\vec{y}-\vec{X}_{s}(0) and 2n×2n2n\times 2n block matrices Ms=(Ms,1Ms,3Ms,2Ms,4)M_{s}=\begin{pmatrix}M_{s,1}&&-M_{s,3}\cr-M_{s,2}&&M_{s,4}\end{pmatrix} are solutions to the Cauchy problem

M˙s,i1i2(t,𝐂)=Ms,i1j1(t,𝐂)H~s,j1j2(t,𝐂)Jj2i2,Ms,i1i2(0)=δi1i2.\dot{M}_{s,i_{1}i_{2}}(t,{\bf C})=-M_{s,i_{1}j_{1}}(t,{\bf C})\tilde{H}_{s,j_{1}j_{2}}\big{(}t,{\bf C}\big{)}J_{j_{2}i_{2}},\qquad M_{s,i_{1}i_{2}}(0)=\delta_{i_{1}i_{2}}. (48)

Then, Ψs(0)\Psi_{s}^{(0)} is given by

Ψs(0)(x,t,)=nGs(x,y,t,,𝐂[(ψs)s=1K])ψs(0)(y,)𝑑y.\Psi_{s}^{(0)}(\vec{x},t,\hbar)=\displaystyle\int\limits_{{\mathbb{R}}^{n}}G_{s}\Big{(}\vec{x},\vec{y},t,\hbar,{\bf C}\Big{[}\big{(}\psi_{s}\big{)}_{s=1}^{K}\Big{]}\Big{)}\psi_{s}^{(0)}(\vec{y},\hbar)d\vec{y}. (49)

Note that 𝐂[(ψs)s=1K]{\bf C}\Big{[}\big{(}\psi_{s}\big{)}_{s=1}^{K}\Big{]} can not be replaced with 𝐂[(ψs(0))s=1K]{\bf C}\Big{[}\big{(}\psi_{s}^{(0)}\big{)}_{s=1}^{K}\Big{]} in (49) if ψs(k)0\psi_{s}^{(k)}\neq 0, k1k\geq 1.

Actually, we can solve all equations in (44) using the Green function (47) and Duhamel‘s principle. For example, Ψ(1)(x,t,)\Psi^{(1)}(\vec{x},t,\hbar) reads

Ψs(1)(x,t,)=nGs(x,y,t,,𝐂[(D^rψ)r=1K])ψs(1)(y,)𝑑y++0tdτi3/2nGs(x,y,tτ,,𝐂[(D^rψ)r=1K])L^s(3)(τ,𝐂[(D^rψ)r=1K])Ψs(0)(y,τ,)𝑑y.\begin{gathered}\Psi_{s}^{(1)}(\vec{x},t,\hbar)=\displaystyle\int\limits_{{\mathbb{R}}^{n}}G_{s}\Big{(}\vec{x},\vec{y},t,\hbar,{\bf C}\Big{[}\big{(}\hat{D}_{r}\psi\big{)}_{r=1}^{K}\Big{]}\Big{)}\psi_{s}^{(1)}(\vec{y},\hbar)dy+\\ +\int_{0}^{t}\displaystyle\frac{d\tau}{i\hbar^{3/2}}\displaystyle\int\limits_{{\mathbb{R}}^{n}}G_{s}\Big{(}\vec{x},\vec{y},t-\tau,\hbar,{\bf C}\Big{[}\big{(}\hat{D}_{r}\psi\big{)}_{r=1}^{K}\Big{]}\Big{)}\hat{L}_{s}^{(3)}\Big{(}\tau,{\bf C}\Big{[}\big{(}\hat{D}_{r}\psi\big{)}_{r=1}^{K}\Big{]}\Big{)}\Psi^{(0)}_{s}(\vec{y},\tau,\hbar)d\vec{y}.\end{gathered} (50)

Note that one can put ψs(0)(y,)=ψs(y,)\psi_{s}^{(0)}(\vec{y},\hbar)=\psi_{s}(\vec{y},\hbar) in the expansion (43) for simplicity of notations. In that case, the first term disappears in (50), and the relation (49) can be written via the decomposition operator D^s\hat{D}_{s}, which is given by D^sψ(x,)=ψs(x,)\hat{D}_{s}\psi(\vec{x},\hbar)=\psi_{s}(\vec{x},\hbar), as follows:

Ψ(0)(x,t,)=U^(t)ψ(x,)=s=1KnGs(x,y,t,,𝐂[(D^rψ)r=1K])D^sψ(y,)𝑑y,\begin{gathered}\Psi^{(0)}(\vec{x},t,\hbar)=\hat{U}(t)\psi(\vec{x},\hbar)=\sum_{s=1}^{K}\displaystyle\int\limits_{{\mathbb{R}}^{n}}G_{s}\Big{(}\vec{x},\vec{y},t,\hbar,{\bf C}\Big{[}\big{(}\hat{D}_{r}\psi\big{)}_{r=1}^{K}\Big{]}\Big{)}\hat{D}_{s}\psi(\vec{y},\hbar)d\vec{y},\end{gathered} (51)

Thus, (51) defines the semiclassical nonlinear evolution operator U^(t)\hat{U}(t) for (1).

VII Example

In this Section, we consider the example of the one-dimensional (n=1n=1) nonlocal NLSE with an anti-Hermitian term defined by symbols

V(z)=12p2+ϵcosx,W(z,w)=c2((xy)2+c2)3/2,\begin{gathered}V(z)=\displaystyle\frac{1}{2}p^{2}+\epsilon\cos x,\qquad W(z,w)=\displaystyle\frac{c^{2}}{\left((x-y)^{2}+c^{2}\right)^{3/2}},\end{gathered} (52)

where x,yx,y\in{\mathbb{R}}.

The function W(z,w,t)W(z,w,t) from (52) decribes the regularized kernel of the mean field for the dipole-dipole interparticle interaction (see [12]) where c>0c>0 is the regularization parameter. The term ϵcosx\epsilon\cos x describes the optical-lattice potential where ϵ\epsilon characterizes its strength.

The one way of description of the Bose–Einstein condensate in open systems within the mean field approximation is the model with the phenomenological damping. Such approach is based on the change of the operator iti\partial_{t} in the NLSE by (iγ)t(i-\gamma)\partial_{t} where γ>0\gamma>0 is the rate of the phenomenological damping [44]. Under notations (1), accurate to the coefficient \hbar, it corresponds to the anti-Hermitian term with Λγ\Lambda\approx\gamma for small γ\gamma and its symbols V˘(z)=V(z)\breve{V}(z)=V(z), W˘(z,w)=W(z,w)\breve{W}(z,w)=W(z,w). Thus, the equation under consideration can be written as follows:

{it1iΛ+12p^2+ϵcosx+ϰc2((xy)2+c2)3/2|Ψ(y,t)|2𝑑y}Ψ(x,t)=0.\bigg{\{}\displaystyle\frac{-i\hbar\partial_{t}}{1-i\hbar\Lambda}+\displaystyle\frac{1}{2}\hat{p}^{2}+\epsilon\cos x+\varkappa\displaystyle\int\limits_{-\infty}^{\infty}\displaystyle\frac{c^{2}}{\big{(}(x-y)^{2}+c^{2}\big{)}^{3/2}}|\Psi(y,t)|^{2}dy\bigg{\}}\Psi(x,t)=0. (53)

Let us pose the initial condition corresponding to two quasiparticles localized in a neighbourhood of points x=X1(0)x=X_{1}(0) and x=X2(0)x=X_{2}(0). For the sake of simplicity, the density profile of both quasiparticles are supposed to be gaussian. The initial pulses of quasiparticles are set equal to zero. Such initial condition reads.

Ψ(x,t,)|t=0=ψ(x,),ψ(x,)=N11/4exp((xX1(0))22γ12)+N21/4exp((xX2(0))22γ22),\begin{gathered}\Psi(x,t,\hbar)\Big{|}_{t=0}=\psi(x,\hbar),\\ \psi(x,\hbar)=\displaystyle\frac{N_{1}}{\hbar^{1/4}}\exp\Big{(}-\displaystyle\frac{\left(x-X_{1}(0)\right)^{2}}{2\gamma_{1}^{2}\hbar}\Big{)}+\displaystyle\frac{N_{2}}{\hbar^{1/4}}\exp\Big{(}-\displaystyle\frac{\left(x-X_{2}(0)\right)^{2}}{2\gamma_{2}^{2}\hbar}\Big{)},\end{gathered} (54)

where the values N1N_{1}, N2N_{2}, X1(0)X_{1}(0), X2(0)X_{2}(0), γ1\gamma_{1}, and γ2\gamma_{2} are parameters of the initial condition.

The initial condition (54) can be naturally presented in the form (30) as follows:

ψ1(x,)=N11/4exp((xX1(0))22γ12),ψ2(x,)=N21/4exp((xX2(0))22γ22).\begin{gathered}\psi_{1}(x,\hbar)=\displaystyle\frac{N_{1}}{\hbar^{1/4}}\exp\Big{(}-\displaystyle\frac{\left(x-X_{1}(0)\right)^{2}}{2\gamma_{1}^{2}\hbar}\Big{)},\\ \psi_{2}(x,\hbar)=\displaystyle\frac{N_{2}}{\hbar^{1/4}}\exp\Big{(}-\displaystyle\frac{\left(x-X_{2}(0)\right)^{2}}{2\gamma_{2}^{2}\hbar}\Big{)}.\end{gathered} (55)

For the initial conditions (55), one readily gets the following initial conditions for the two-particle Hamilton–Ehrenfest system:

Ps(0)=0,μs(0,)=γsNs2π,Δj(0,)=0,Δs,11(0,)=2γs2,Δs,22(0,)=γs22,Δs,12(0,)=Δs,21(0,)=0,Δs,ijk(0,)=0,i,j,k=1,2,s=1,2.\begin{gathered}P_{s}(0)=0,\qquad\mu_{s}(0,\hbar)=\gamma_{s}N_{s}^{2}\sqrt{\pi},\qquad\Delta_{j}(0,\hbar)=0,\\ \Delta_{s,11}(0,\hbar)=\displaystyle\frac{\hbar}{2\gamma_{s}^{2}},\qquad\Delta_{s,22}(0,\hbar)=\displaystyle\frac{\hbar\gamma_{s}^{2}}{2},\qquad\Delta_{s,12}(0,\hbar)=\Delta_{s,21}(0,\hbar)=0,\\ \Delta_{s,ijk}(0,\hbar)=0,\qquad i,j,k=1,2,\qquad s=1,2.\end{gathered} (56)

The parameters Xs(0)X_{s}(0), s=1,2s=1,2, are initial conditions for functions Xs(t)X_{s}(t), respectively. Here, we use the notations as in the main body of the article rather than as in Appendix B, i.e. the number of the quasiparticle is given in a subscript, and the numbers of elements of matrices and vectors follow it after a comma. The vectors XsX_{s} and PsP_{s} do not have the number of element since they are scalar in the one-dimensional case. The initial conditions (56) satisfy (81). Hence, the two-particle Hamilton–Ehrenfest system has the simplified form (80) in this case.

For the example under consideration, the zeroth order two-particle Hamilton–Ehrenfest system (the system (74) or (13) in the matrix form) is as follows:

P˙1(t)=ϵsinX1(t)+ϰμ2(0)(t)c2X1(t)X2(t)(c2+(X1(t)X2(t))2)5/2,P˙2(t)=ϵsinX2(t)ϰμ1(0)(t)c2X1(t)X2(t)(c2+(X1(t)X2(t))2)5/2,X˙1(t)=P1(t),X˙2(t)=P2(t),μ˙1(0)(t)=2Λμ1(0)(t)(12P12(t)+ϵcosX1(t)+ϰμ1(0)(t)c+ϰμ2(0)(t)c2(c2+(X1(t)X2(t))2)3/2),μ˙2(0)(t)=2Λμ2(0)(t)(12P22(t)+ϵcosX2(t)+ϰμ2(0)(t)c+ϰμ1(0)(t)c2(c2+(X1(t)X2(t))2)3/2).\begin{gathered}\dot{P}_{1}(t)=\epsilon\sin X_{1}(t)+\varkappa\mu_{2}^{(0)}(t)c^{2}\displaystyle\frac{X_{1}(t)-X_{2}(t)}{\left(c^{2}+\left(X_{1}(t)-X_{2}(t)\right)^{2}\right)^{5/2}},\\ \dot{P}_{2}(t)=\epsilon\sin X_{2}(t)-\varkappa\mu_{1}^{(0)}(t)c^{2}\displaystyle\frac{X_{1}(t)-X_{2}(t)}{\left(c^{2}+\left(X_{1}(t)-X_{2}(t)\right)^{2}\right)^{5/2}},\\ \dot{X}_{1}(t)=P_{1}(t),\\ \dot{X}_{2}(t)=P_{2}(t),\\ \dot{\mu}^{(0)}_{1}(t)=-2\Lambda\mu_{1}^{(0)}(t)\left(\displaystyle\frac{1}{2}P_{1}^{2}(t)+\epsilon\cos X_{1}(t)+\displaystyle\frac{\varkappa\mu_{1}^{(0)}(t)}{c}+\displaystyle\frac{\varkappa\mu_{2}^{(0)}(t)c^{2}}{\left(c^{2}+\left(X_{1}(t)-X_{2}(t)\right)^{2}\right)^{3/2}}\right),\\ \dot{\mu}^{(0)}_{2}(t)=-2\Lambda\mu_{2}^{(0)}(t)\left(\displaystyle\frac{1}{2}P_{2}^{2}(t)+\epsilon\cos X_{2}(t)+\displaystyle\frac{\varkappa\mu_{2}^{(0)}(t)}{c}+\displaystyle\frac{\varkappa\mu_{1}^{(0)}(t)c^{2}}{\left(c^{2}+\left(X_{1}(t)-X_{2}(t)\right)^{2}\right)^{3/2}}\right).\end{gathered} (57)

If the regularization parameter cc is sufficiently small in the sense that it has a little effect on terms corresponding to the long-range interaction (c|Xs|c\ll|X_{s}|, s=1,2s=1,2, in them), then the system (57) can be reduced to the form

P˙1(t)=ϵsinX1(t)+ϰμ2(0)(t)c2X1(t)X2(t)|X1(t)X2(t)|5,P˙2(t)=ϵsinX2(t)ϰμ1(0)(t)c2X1(t)X2(t)|X1(t)X2(t)|5,X˙1(t)=P1(t),X˙2(t)=P2(t),μ˙1(0)(t)=2Λμ1(0)(t)(12P12(t)+ϵcosX1(t)+ϰμ1(0)c+ϰμ2(0)(t)c2|X1(t)X2(t)|3),μ˙2(0)(t)=2Λμ2(0)(t)(12P22(t)+ϵcosX2(t)+ϰμ2(0)c+ϰμ1(0)(t)c2|X1(t)X2(t)|3).\begin{gathered}\dot{P}_{1}(t)=\epsilon\sin X_{1}(t)+\varkappa\mu_{2}^{(0)}(t)c^{2}\displaystyle\frac{X_{1}(t)-X_{2}(t)}{\left|X_{1}(t)-X_{2}(t)\right|^{5}},\\ \dot{P}_{2}(t)=\epsilon\sin X_{2}(t)-\varkappa\mu_{1}^{(0)}(t)c^{2}\displaystyle\frac{X_{1}(t)-X_{2}(t)}{\left|X_{1}(t)-X_{2}(t)\right|^{5}},\\ \dot{X}_{1}(t)=P_{1}(t),\\ \dot{X}_{2}(t)=P_{2}(t),\\ \dot{\mu}^{(0)}_{1}(t)=-2\Lambda\mu_{1}^{(0)}(t)\left(\displaystyle\frac{1}{2}P_{1}^{2}(t)+\epsilon\cos X_{1}(t)+\displaystyle\frac{\varkappa\mu_{1}^{(0)}}{c}+\displaystyle\frac{\varkappa\mu_{2}^{(0)}(t)c^{2}}{\left|X_{1}(t)-X_{2}(t)\right|^{3}}\right),\\ \dot{\mu}^{(0)}_{2}(t)=-2\Lambda\mu_{2}^{(0)}(t)\left(\displaystyle\frac{1}{2}P_{2}^{2}(t)+\epsilon\cos X_{2}(t)+\displaystyle\frac{\varkappa\mu_{2}^{(0)}}{c}+\displaystyle\frac{\varkappa\mu_{1}^{(0)}(t)c^{2}}{\left|X_{1}(t)-X_{2}(t)\right|^{3}}\right).\end{gathered} (58)

Let us write all coefficients under notations (72) for equations of the third order two-particle Hamilton–Ehrenfest system (74), (80) in an explicit form. We will omit the multiplier ϰ\varkappa in coefficients (72) (as if it is equal to 1). For terms corresponding to the long-range interaction we give the exact expression as well as the approximate one (after symbol \approx) for a small regularization parameter.

Vs=12Ps2(t)+ϵcosXs(t);V1s=Ps(t),V2s=ϵsinXs(t);V11s=1,V12s=V21s=0,V22s=ϵcosXs(t);Vabcs={ϵsinXs(t),a=b=c=2,0,otherwise;W|11=W|22=1c,W|12=W|21=c2(c2+R122(t))3/2c2|R12(t)|3;W2|11=W2|22=W|222=W|211=0,W2|12=W2|21=W|212=W|221=3c2R12(t)(c2+R122(t))5/23c2R12(t)|R12(t)|5;W22|11=W22|22=W|2211=W|2222=W2|211=W2|222=3c3,W22|12=W22|21=W|2212=W|2221=W2|212=W2|221=3c2(4R122(t)c2)(c2+R122(t))7/212c2|R12(t)|5;W222|11=W222|22=W22|211=W22|222=W2|2211=W2|2222=W|22211=W|22222=0,W222|12=W222|21=W22|212=W22|221=W2|2212=W2|2221=W|22212=W|22221==15c2(3c24R122(t))R12(t)(c2+R122(t))9/260c2R12(t)|R12(t)|7.\begin{gathered}V^{s}=\displaystyle\frac{1}{2}P_{s}^{2}(t)+\epsilon\cos X_{s}(t);\\ V_{1}^{s}=P_{s}(t),\qquad V_{2}^{s}=-\epsilon\sin X_{s}(t);\\ V_{11}^{s}=1,\qquad V_{12}^{s}=V_{21}^{s}=0,\qquad V_{22}^{s}=-\epsilon\cos X_{s}(t);\\ V_{abc}^{s}=\left\{\begin{array}[]{l}\epsilon\sin X_{s}(t),\quad a=b=c=2,\cr 0,\quad\text{otherwise};\end{array}\right.\\ W_{|}^{11}=W_{|}^{22}=\displaystyle\frac{1}{c},\qquad W_{|}^{12}=W_{|}^{21}=\displaystyle\frac{c^{2}}{\left(c^{2}+R_{12}^{2}(t)\right)^{3/2}}\approx\displaystyle\frac{c^{2}}{|R_{12}(t)|^{3}};\\ W_{2|}^{11}=W_{2|}^{22}=W_{|2}^{22}=W_{|2}^{11}=0,\\ W_{2|}^{12}=-W_{2|}^{21}=-W_{|2}^{12}=W_{|2}^{21}=\displaystyle\frac{-3c^{2}R_{12}(t)}{\left(c^{2}+R_{12}^{2}(t)\right)^{5/2}}\approx\displaystyle\frac{-3c^{2}R_{12}(t)}{|R_{12}(t)|^{5}};\\ W_{22|}^{11}=W_{22|}^{22}=W_{|22}^{11}=W_{|22}^{22}=-W_{2|2}^{11}=-W_{2|2}^{22}=\displaystyle\frac{-3}{c^{3}},\\ W_{22|}^{12}=W_{22|}^{21}=W_{|22}^{12}=W_{|22}^{21}-=W_{2|2}^{12}=-W_{2|2}^{21}=\displaystyle\frac{3c^{2}\left(4R_{12}^{2}(t)-c^{2}\right)}{\left(c^{2}+R_{12}^{2}(t)\right)^{7/2}}\approx\displaystyle\frac{12c^{2}}{|R_{12}(t)|^{5}};\\ W_{222|}^{11}=W_{222|}^{22}=W_{22|2}^{11}=W_{22|2}^{22}=W_{2|22}^{11}=W_{2|22}^{22}=W_{|222}^{11}=W_{|222}^{22}=0,\\ W_{222|}^{12}=-W_{222|}^{21}=-W_{22|2}^{12}=W_{22|2}^{21}=W_{2|22}^{12}=-W_{2|22}^{21}=-W_{|222}^{12}=W_{|222}^{21}=\\ =\displaystyle\frac{15c^{2}\left(3c^{2}-4R_{12}^{2}(t)\right)R_{12}(t)}{\left(c^{2}+R_{12}^{2}(t)\right)^{9/2}}\approx\displaystyle\frac{-60c^{2}R_{12}(t)}{|R_{12}(t)|^{7}}.\end{gathered} (59)

Here, we denoted R12(t)=X1(t)X2(t)R_{12}(t)=X_{1}(t)-X_{2}(t), R122(t)=(X1(t)X2(t))2R_{12}^{2}(t)=\left(X_{1}(t)-X_{2}(t)\right)^{2}. Also, it is implied that all derivative of WW with respect to pulses are identically zero.

The leading term of asymptotics, Ψ(0)(x,t,)=Ψ1(0)(x,t,)+Ψ2(0)(x,t,)\Psi^{(0)}(x,t,\hbar)=\Psi^{(0)}_{1}(x,t,\hbar)+\Psi^{(0)}_{2}(x,t,\hbar), given by (49) reads as follows on solutions to two-particle Hamilton–Ehrenfest system and system (48):

Ψs(0)(x,t,)=Nsγs1/4γs2Ms,4(t)iMs,3(t)exp{ϖs(t)Δxs22++i[0t(Ps2(τ)H~(τ))dτ+Ps(t)Δxs]},ϖs(t)=γs2γs2Ms,4(t)+iMs,3(t)Ms,3(t)(Ms,3(t)+iγs2Ms,4(t)).\begin{gathered}\Psi_{s}^{(0)}(x,t,\hbar)=\displaystyle\frac{N_{s}\gamma_{s}}{\hbar^{1/4}\sqrt{\gamma_{s}^{2}M_{s,4}(t)-iM_{s,3}(t)}}\exp\Bigg{\{}-\displaystyle\frac{\varpi_{s}(t)\Delta x_{s}^{2}}{2\hbar}+\\ +\displaystyle\frac{i}{\hbar}\bigg{[}\displaystyle\int\limits_{0}^{t}\Big{(}P_{s}^{2}(\tau)-\tilde{H}(\tau)\Big{)}d\tau+P_{s}(t)\Delta x_{s}\bigg{]}\Bigg{\}},\\ \varpi_{s}(t)=\displaystyle\frac{\gamma_{s}^{2}-\gamma_{s}^{2}M_{s,4}(t)+iM_{s,3}(t)}{M_{s,3}(t)\left(M_{s,3}(t)+i\gamma_{s}^{2}M_{s,4}(t)\right)}.\end{gathered} (60)

One readily gets that the function (60) meets the initials condition (55), the relation limt0ϖs(t)=1γs2\lim_{t\to 0}\varpi_{s}(t)=\displaystyle\frac{1}{\gamma_{s}^{2}} is taken into the consideration The first correction to the leading term of asymptotics (60) given by (50) reads:

Ψs(1)(x,t,)=0t𝑑τNsγs(a3c0+a2(bc1+c2)+b3c3+ab(bc2+3c3))f9/4iMs,3(tτ)iMs,3(τ)γs2Ms,4(τ)a7/2exp(b22a),f=exp{i[0τ(Ps2(τ~)H~(τ~))dτ~+0tτ(Ps2(τ~)H~(τ~))dτ~++Ps(tτ)Δx~s12Ms,31(tτ)Ms,1(tτ)(Δx~s)2Ms,4(tτ)2Ms,3(tτ)(Xs2(tτ)Xs2(τ))+Xs(τ)Xs(tτ)Ms,3(tτ)Δx~s]},a=ϖs(τ)+iMs,4(tτ)Ms,3(tτ),b=i[Xs(tτ)Xs(τ)+Ps(τ)+Δx~sMs,3(tτ)],c3=16(μ1(τ,)W222|s1(τ)+μ2(τ,)W222|s2(τ))+16V222(τ),c2=12(Δ1,2(τ,)W22|2s1(τ)+Δ2,2(τ,)W22|2s2(τ)),c1=12(Δ1,22(τ,)W2|22s1(τ)+Δ2,22(τ,)W2|22s2(τ))iΛV˘2(τ)iΛ(μ1(τ,)W˘2|s1(τ)+μ2(τ,)W˘2|s2(τ))+V˘1(τ)ϖs(τ),c0=iΛ(Δ1,2(τ,)W˘|2s1(τ)+Δ2,2(τ,)W˘|2s2(τ)),Δx~s=xXs(tτ).\begin{gathered}\Psi_{s}^{(1)}(x,t,\hbar)=\displaystyle\int\limits_{0}^{t}d\tau\displaystyle\frac{N_{s}\gamma_{s}\left(a^{3}c_{0}+a^{2}(bc_{1}+c_{2})+b^{3}c_{3}+ab(bc_{2}+3c_{3})\right)f}{\hbar^{9/4}\sqrt{iM_{s,3}(t-\tau)}\sqrt{iM_{s,3}(\tau)-\gamma_{s}^{2}M_{s,4}(\tau)}a^{7/2}}\exp\left(\displaystyle\frac{b^{2}}{2a}\right),\\ \\ f=\exp\Bigg{\{}\displaystyle\frac{i}{\hbar}\bigg{[}\displaystyle\int\limits_{0}^{\tau}\Big{(}P_{s}^{2}(\tilde{\tau})-\tilde{H}(\tilde{\tau})\Big{)}d\tilde{\tau}+\displaystyle\int\limits_{0}^{t-\tau}\Big{(}\langle P_{s}^{2}(\tilde{\tau})-\tilde{H}(\tilde{\tau})\Big{)}d\tilde{\tau}+\\ +P_{s}(t-\tau)\Delta\tilde{x}_{s}-\displaystyle\frac{1}{2}M_{s,3}^{-1}(t-\tau)M_{s,1}(t-\tau)(\Delta\tilde{x}_{s})^{2}-\\ -\displaystyle\frac{M_{s,4}(t-\tau)}{2M_{s,3}(t-\tau)}\left(X_{s}^{2}(t-\tau)-X_{s}^{2}(\tau)\right)+\displaystyle\frac{X_{s}(\tau)-X_{s}(t-\tau)}{M_{s,3}(t-\tau)}\Delta\tilde{x}_{s}\bigg{]}\Bigg{\}},\\ \\ a=\displaystyle\frac{\varpi_{s}(\tau)}{\hbar}+\displaystyle\frac{iM_{s,4}(t-\tau)}{\hbar M_{s,3}(t-\tau)},\\ \\ b=\displaystyle\frac{i}{\hbar}\bigg{[}X_{s}(t-\tau)-X_{s}(\tau)+P_{s}(\tau)+\displaystyle\frac{\Delta\tilde{x}_{s}}{M_{s,3}(t-\tau)}\bigg{]},\\ \\ c_{3}=\displaystyle\frac{1}{6}\left(\mu_{1}(\tau,\hbar)W_{222|}^{s1}(\tau)+\mu_{2}(\tau,\hbar)W_{222|}^{s2}(\tau)\right)+\displaystyle\frac{1}{6}V_{222}(\tau),\\ \\ c_{2}=\displaystyle\frac{1}{2}\left(\Delta_{1,2}(\tau,\hbar)W_{22|2}^{s1}(\tau)+\Delta_{2,2}(\tau,\hbar)W_{22|2}^{s2}(\tau)\right),\\ \\ c_{1}=\displaystyle\frac{1}{2}\left(\Delta_{1,22}(\tau,\hbar)W_{2|22}^{s1}(\tau)+\Delta_{2,22}(\tau,\hbar)W_{2|22}^{s2}(\tau)\right)-\\ -i\hbar\Lambda\breve{V}_{2}(\tau)-i\hbar\Lambda\left(\mu_{1}(\tau,\hbar)\breve{W}_{2|}^{s1}(\tau)+\mu_{2}(\tau,\hbar)\breve{W}_{2|}^{s2}(\tau)\right)+\hbar\breve{V}_{1}(\tau)\varpi_{s}(\tau),\\ \\ c_{0}=-i\hbar\Lambda\left(\Delta_{1,2}(\tau,\hbar)\breve{W}_{|2}^{s1}(\tau)+\Delta_{2,2}(\tau,\hbar)\breve{W}_{|2}^{s2}(\tau)\right),\\ \\ \Delta\tilde{x}_{s}=x-X_{s}(t-\tau).\end{gathered} (61)

Here, same as in Appendix B, the coefficient ϰ\varkappa is included in functions WW and W˘\breve{W}. We explicitly write the argument τ\tau for functions VV, V˘\breve{V}, WW, and W˘\breve{W} implying that the substitution t=τt=\tau, including x=Xs(τ)x=X_{s}(\tau), y=Xs(τ)y=X_{s}(\tau), p=Ps(τ)p=P_{s}(\tau), is made in them

Let us consider the initial condition (54), (55) with parameters that correspond to rest point of the dynamical system for Xs(t)X_{s}(t), Ps(t)P_{s}(t), and Δs(2)(t)\Delta_{s}^{(2)}(t), s=1,2s=1,2, for the linear Hermitian case ϰ=Λ=0\varkappa=\Lambda=0. Then, we can put

X1(0)=π,X2(0)=πX_{1}(0)=\pi,\qquad X_{2}(0)=-\pi (62)

to ensure that X˙s(t)=P˙s(t)=0\dot{X}_{s}(t)=\dot{P}_{s}(t)=0, s=1,2s=1,2. The equations for Δs(2)(t)\Delta_{s}^{(2)}(t) for the linear non-Hermitian case read as follows:

Δ˙s,11(2)(t)=2V22sΔs,12(t),Δ˙s,22(2)(t)=2V11sΔs,12(t),Δ˙s,12(2)(t)=V22sΔs,22(t)+V11sΔs,11(t).\begin{gathered}\dot{\Delta}_{s,11}^{(2)}(t)=-2V_{22}^{s}\Delta_{s,12}(t),\\ \dot{\Delta}_{s,22}^{(2)}(t)=2V_{11}^{s}\Delta_{s,12}(t),\\ \dot{\Delta}_{s,12}^{(2)}(t)=-V_{22}^{s}\Delta_{s,22}(t)+V_{11}^{s}\Delta_{s,11}(t).\end{gathered} (63)

Then, from (56), (59), and (63), one readily gets the following equation for the rest point of (63):

γs4=1ϵ,s=1,2.\gamma_{s}^{4}=\displaystyle\frac{1}{\epsilon},\quad s=1,2. (64)

The parameters NsN_{s} evidently do not affect the dynamics of the quasiparticles in the linear case. For the sake of simplicity, let us consider the symmetric case N1=N2N_{1}=N_{2}. Thus, for the parameters (62), (64), we arrive at the stationary asymptotic solution of the linear Schrödinger equation. On the contrary, for the nonlinear case, we obtain the non-stationery solution whose dynamics is caused solely by a nonlinear pertubation of quasiparticles. Let us consider such dynamics starting from the nonlinear Hermitian case (ϰ0\varkappa\neq 0, Λ=0\Lambda=0). Fig. 1 shows the phase trajectory of the first (s=1s=1) quasiparticle. Since we consider the symmetric case, the trajectory of the second quasiparticle is the same up to the sign of PsP_{s} and XsX_{s}. The Fig. 1 is given for N1=N2=1N_{1}=N_{2}=1, ϵ=1\epsilon=1, =0.1\hbar=0.1, c=3c=3. The trajectory Zs(t)Z_{s}(t) accurate to O(){\rm O}(\hbar) is determined by the solutions to the system (57), while the trajectory accurate to O(2){\rm O}(\hbar^{2}) is found as Zs(t,)=Zs(t)+(Δs,1(2)(t),Δs,2(2)(t))μs(0)(t)+μs(2)(t)Z_{s}(t,\hbar)=Z_{s}(t)+\displaystyle\frac{\hbar\big{(}\Delta_{s,1}^{(2)}(t),\Delta_{s,2}^{(2)}(t)\big{)}}{\mu_{s}^{(0)}(t)+\hbar\mu_{s}^{(2)}(t)}, where μs(t)=const\mu_{s}(t)=\mathop{\rm const}\nolimits\, for Λ=0\Lambda=0.

Refer to caption

Figure 1: Phase trajectory of the first quasiparticle for ϰ=2\varkappa=2 and Λ=0\Lambda=0

The solutions of the system (57) yield the closed trajectory as it is clear from Fig. 1. From the linearized form (with respect to the variation of Zs(0)(t)Z^{(0)}_{s}(t)) of the system (57) one readily gets the approximate period of the trajectory that is TZ2π(ϵ+ϰγ1N12πc232π22c2(c2+4π2)7/2)T_{Z}\approx 2\pi\bigg{(}\epsilon+\varkappa\gamma_{1}N_{1}^{2}\sqrt{\pi}c^{2}\displaystyle\frac{32\pi^{2}-2c^{2}}{(c^{2}+4\pi^{2})^{7/2}}\bigg{)} (approximately 6.36 for the values of parameters for Fig. 1). The trajectory becomes nonperiodic if we take into consideration the solutions to the second order two-particle Hamilton–Ehrenfest system, Δs,i(2)(t)\Delta_{s,i}^{(2)}(t) and μs(2)(t)\mu^{(2)}_{s}(t). Although, it is almost periodic for relatively small tt.

Now, let us go on to the non-Hermitian case. Fig. 2 shows the comparison of trajectories obtained from the system (57) for Λ=0\Lambda=0 and Λ=1\Lambda=1. The trajectory corresponding to the open system (Λ=1\Lambda=1) is evidently nonperiodic due to the transient process. The evolution of quasiparticle masses (they are equal in the symmetric case under consideration) are shown in Fig. 3. Also, the dispersion σs2(t)\sigma_{s}^{2}(t) of the wave function of a quasiparticle is given in Fig. 4 that reads as follows:

σs2(t)=Δs,22(2)(t)μs(0)(t)+μs(2)(t).\sigma_{s}^{2}(t)=\displaystyle\frac{\hbar\cdot\Delta_{s,22}^{(2)}(t)}{\mu_{s}^{(0)}(t)+\hbar\mu_{s}^{(2)}(t)}. (65)
Refer to caption

Figure 2: Phase trajectory of the first quasiparticle for ϰ=2\varkappa=2 and various Λ\Lambda
Refer to caption

Figure 3: Evolution of the mass of a quasiparticle for ϰ=2\varkappa=2 and Λ=1\Lambda=1
Refer to caption

Figure 4: Dispersion of the wave function of a quasiparticle for ϰ=2\varkappa=2 and Λ=1\Lambda=1

Since the dispersion of the wave functions for each quasiparticle is bounded periodic function, the asymptotic solution to (53) behave as two interacting and oscillating soliton-like wave functions. The density corresponding to this solution is presented in Fig. 5. This solution is constructed using relation (60). The contribution of the higher correction (61) turned out to be very small in this specific case (the corrections to Fig. 5 are visually indistinguishable). The dashed line in Fig. 5 shows the spatial form of the external trap, ϵcosx\epsilon\cos x.

Refer to caption

Figure 5: Squared absolute value of the asymptotic solution to (53) for two quasiparticles, ϰ=2\varkappa=2, and Λ=1\Lambda=1

Note that in the considered case the interparticle interaction was relatively small in the sense that the trajectories deviate from the stationary point for the small value d122πd_{12}\ll 2\pi. It is due to that the effective potential of the dipole-dipole interaction quickly decrease with the increase of range. Thus, one would expect that the solution oscillate near the stationary one if the system is stable. However, let us look on the dispersion of the wave function of a single quasiparticle (K=1K=1) that is equal to the asymptotic solution to (53) in this case. Fig. 6 shows one for the same values of parameters except the number of quasiparticles (it is equal to putting N2=0N_{2}=0). The dispersion quickly tends to zero with a time, i.e. the solution experiences a collapse. It means that we observed the soliton-like behaviour of the ensemble of interacting quasiparticles for the case K=2K=2 and the interaction between quasiparticles that is quite small in the mentioned sense is crucial for such behaviour. Evidently, the common perturbative calculations with respect to the parameter of the long-range interaction can not catch such effect. It is worth to mention that the dispersion does not tend to zero so quickly for a single quasiparticle in the case of a closed system (Λ=0\Lambda=0).

Refer to caption

Figure 6: Dispersion of the asymptotic solutions corresponding of a single quasiparticle for ϰ=2\varkappa=2 and Λ=1\Lambda=1

VIII Conclusion

We have developed the formalism that allows one to construct the asymptotic solution Ψ(x,t)\Psi(\vec{x},t) to the Cauchy problem for the nn-dimensional NLSE (1) with a nonlocal nonlinearity and non-Hermitian operator within the semiclassical approximation (0\hbar\to 0). The solution has the following geometric structure. The main share of matter (if we associate |Ψ(x,t)|2|\Psi(\vec{x},t)|^{2} with the matter density) is localized in a neighbourhood of a finite number KK of points moving along the trajectories that are determined by the auxiliary dynamical systems (13). This system is treated as equations of ”classical mechanics”  for KK quasiparticles with time-dependent weights (”masses”). The time dependent weights (”masses”) are governed by the anti-Hermitian terms in the original NLSE (1), while the equations for phase trajectories of quasiparticles are generated by the Hermitian terms. We have introduced the wave functions of the quasiparticles, Ψs(x,t)\Psi_{s}(\vec{x},t), that allow us to explicitly obtain the semiclassical nonlinear evolution operator for (1). The construction of such approximate evolution operator relies on solutions to the Cauchy problem for the system of ODEs (the Hamilton–Ehrenfect system) describing the quantum corrections to the ”classical equations”  (13). Thus, the geometric properties of the asymptotic solutions under consideration are associated with the phase trajectories of the quasiparticles. These quasiparticles are close to the ones in the soliton theory [37, 38] in the sense that they can be treated as modes of the excitations of nonlinear system. However, in our asymptotic expansion, we do not rely on exact solutions to the soliton equations but do on the solutions to the ”classical equations”  for the system with (2n+1)K(2n+1)K degrees of freedom and to the system of ODEs for the moments of the wave functions of quasiparticles. It fundamentally differs our approach from the common perturbation theory for solitons [39]. For the single quasiparticle (K=1K=1), the approach proposed is reduced to the one presented in [33]. If we additionally omit the anti-Hermitian terms in (1) (put Λ=0\Lambda=0), we come to the method given in [28]. Finally, for the linear case (ϰ=0\varkappa=0), our approach become the interpretation of the well-known Maslov complex germ method [26]. Note that specific case Λ=0\Lambda=0, ϰ0\varkappa\neq 0 also was not considered anywhere for K>1K>1.

The approach proposed is illustrated with the physically motivated example in Section VII. We have applied our method to the one-dimensional NLSE with the periodic external potential corresponding to the optical-lattice, the dipole-dipole interaction, and the phenomenological damping. Our asymptotic analysis shows that the soliton-like behaviour of the solution with the two-point geometry of localization is conditioned on the mechanism of the interaction between quasiparticles in such model.

The results for the specific NLSE (53) emphasize the importance of the dynamical system derived in this work within the framework of the semiclassical approximation, since it determines the geometric properties and qualitative behaviour of the solution to the NLSE that describes the open quantum system. The comprehensive analysis of this dynamical system, including the symmetry analysis [45, 46], can be subject for a separate study. Moreover, it is of interest to apply our formalism to the model equation of the optical pulse propagation in nonlinear media in order to discover the physical effects that can be conditioned on the mechanics of the interacting quasiparticles in such physical interpretation of the NLSE. These are the prospects for the future researches.

Acknowledgement

The study is supported by Russian Science Foundation, project no. 23-71-01047, https://rscf.ru/en/project/23-71-01047/.

Appendix A Pseudo-differential operators

Let functions A(p,x,t,)A(\vec{p},\vec{x},t,\hbar), p,xn\vec{p},\vec{x}\in{\mathbb{R}}^{n} from the class 𝒮t{\mathcal{S}}_{\hbar}^{t} satisfy the following conditions for every fixed t0t\geq 0:
1) A(p,x,t,)CA(\vec{p},\vec{x},t,\hbar)\in C^{\infty} with respect to p\vec{p} and x\vec{x};
2) A(p,x,t,)A(\vec{p},\vec{x},t,\hbar) and all its derivatives grow not faster that polynomials of |p||\vec{p}| and |x||\vec{x}| as |p|,|x||\vec{p}|,|\vec{x}|\to\infty;
3) A(p,x,t,)A(\vec{p},\vec{x},t,\hbar) regularly depends on the parameter \hbar in a neighborhood of =0\hbar=0.
We also use the brief notation A(z,t,)=A(p,x,t,)A(z,t,\hbar)=A(\vec{p},\vec{x},t,\hbar), z=(p,x)2nz=(\vec{p},\vec{x})\in{\mathbb{R}}^{2n}.

Definition A.1.

A pseudo-differential Weyl-ordered operator is an operator A^=A(z^,t,)=A(p^,x,t,)\hat{A}=A(\hat{z},t,\hbar)=A(\hat{\vec{p}},\vec{x},t,\hbar) that is defined by [41]

A(p^,x,t,)Φ(x,t,)=1(2π)n2n𝑑p𝑑yexp(ip,xy)A(p,x+y2,t,)Φ(y,t,),A(\hat{\vec{p}},\vec{x},t,\hbar)\Phi(\vec{x},t,\hbar)=\displaystyle\frac{1}{(2\pi\hbar)^{n}}\displaystyle\int\limits_{{\mathbb{R}}^{2n}}d\vec{p}d\vec{y}\exp\Big{(}\displaystyle\frac{i}{\hbar}\langle\vec{p},\vec{x}-\vec{y}\rangle\Big{)}A\Big{(}\vec{p},\displaystyle\frac{\vec{x}+\vec{y}}{2},t,\hbar\Big{)}\Phi(\vec{y},t,\hbar), (66)

where A(p,x,t,)𝒮tA(\vec{p},\vec{x},t,\hbar)\in{\mathcal{S}}_{\hbar}^{t} and Ψ(x,t,)𝕊\Psi(\vec{x},t,\hbar)\in{\mathbb{S}} for fixed tt, \hbar. Here, 𝕊{\mathbb{S}} is the Schwartz space, and a,b=i=1naibi\langle a,b\rangle=\sum_{i=1}^{n}a_{i}b_{i} is the Euclidian scalar product.

The function A(z,t,)A(z,t,\hbar) in (66) is termed the Weyl symbol of the operator A^=A(z^,t,)\hat{A}=A(\hat{z},t,\hbar).

We denote by 𝒜t{\mathcal{A}}_{\hbar}^{t} the set of pseudo-differential operators defined above.

Note that the Weyl ordering is the ”symmetric”  ordering since it leads to the usual symmetrization for differential operators. For example, if A(p,x,t,)=pxA(p,x,t,\hbar)=px, n=1n=1, the respective Weyl-ordered operator reads A(p^,x,t,)=12(p^x+xp^)A(\hat{p},x,t,\hbar)=\displaystyle\frac{1}{2}\left(\hat{p}x+x\hat{p}\right).

For the semiclassical approximation theory, the following property of pseudo-differential operators is useful. Let the pseudo-differential operators C(z^,t)C(\hat{z},t) and D(z^,t)D(\hat{z},t) be given by

C(z^,t)=[A(z^,t),B(z^,t)]=A(z^,t)B(z^,t)B(z^,t)A(z^,t),D(z^,t)=[A(z^,t),B(z^,t))]+=A(z^,t)B(z^,t)+B(z^,t)A(z^,t),\begin{gathered}C(\hat{z},t)=\big{[}A(\hat{z},t),B(\hat{z},t)\big{]}=A(\hat{z},t)B(\hat{z},t)-B(\hat{z},t)A(\hat{z},t),\\ D(\hat{z},t)=\big{[}A(\hat{z},t),B(\hat{z},t))\big{]}_{+}=A(\hat{z},t)B(\hat{z},t)+B(\hat{z},t)A(\hat{z},t),\end{gathered} (67)

where A(z^,t)A(\hat{z},t) and B(z^,t)B(\hat{z},t) are pseudo-differential operators with the Weyl symbols A(z,t)A(z,t) and B(z,t)B(z,t) respectively.

Then, their Weyl symbols C(z,t)C(z,t) and D(z,t)D(z,t) obey the following relations [47]:

lim0C(z,t)i={A(z,t),B(z,t)},lim0D(z,t)=2A(z,t)B(z,t).\begin{gathered}\lim_{\hbar\to 0}\displaystyle\frac{C(z,t)}{i\hbar}=\big{\{}A(z,t),B(z,t)\big{\}},\qquad\lim_{\hbar\to 0}D(z,t)=2A(z,t)B(z,t).\end{gathered} (68)

where {A(z,t),B(z,t)}=A(z,t)z,JB(z,t)z\big{\{}A(z,t),B(z,t)\big{\}}=\bigg{\langle}\displaystyle\frac{\partial A(z,t)}{\partial z},J\frac{\partial B(z,t)}{\partial z}\bigg{\rangle} is the Poisson bracket, J=(0𝕀n×n𝕀n×n0)J=\begin{pmatrix}0&-{\mathbb{I}}_{n\times n}\cr{\mathbb{I}}_{n\times n}&0\end{pmatrix}.

Appendix B Higher order Hamilton–Ehrenfest system

In this Appendix, for the given ss-th quasiparticle, let us denote

Hj1j2jm=mH(z,t)[Ψ]zj1zj2zjm|z=Zs(t),H˘j1j2jm=mH˘(z,t)[Ψ]zj1zj2zjm|z=Zs(t),\begin{gathered}H_{j_{1}j_{2}...j_{m}}=\displaystyle\frac{\partial^{m}H(z,t)[\Psi]}{\partial z_{j_{1}}\partial z_{j_{2}}...\partial z_{j_{m}}}\bigg{|}_{z=Z_{s}(t)},\\ \breve{H}_{j_{1}j_{2}...j_{m}}=\displaystyle\frac{\partial^{m}\breve{H}(z,t)[\Psi]}{\partial z_{j_{1}}\partial z_{j_{2}}...\partial z_{j_{m}}}\bigg{|}_{z=Z_{s}(t)},\end{gathered} (69)

where functions HH, H˘\breve{H} are symmetrized with respect to j1,j2,,jm+2nj_{1},j_{2},...,j_{m}\in{\mathbb{Z}}_{+}^{2n}.

In the class 𝒫t(s){\mathcal{P}}_{\hbar}^{t}(s), the equations (10) yield the following accurate to O(2){\rm O}(\hbar^{2}):

μ˙s=Λ(2H˘μs+2H˘aΔs,a+H˘abΔs,ab+13H˘abcΔs,abc),Δ˙s,i=JiaHaμs+JiaHabΔs,b+12JiaHabcΔs,bc+16JiaHabcdΔs,bcdΛ(2H˘Δs,i+2H˘aΔs,ai+H˘abΔs,abi)Z˙s,iμs,Δ˙s,ij=2JiaHaΔs,j+2JiaHabΔs,bj+JiaHabcΔs,bcjΛ(2H˘Δs,ij+2H˘aΔs,aij)2Δs,iZ˙s,j.Δ˙s,ijk=3JiaHaΔs,jk+3JiaHabΔs,jkb2ΛH˘Δs,ijk3Δs,ijZ˙s,k.\begin{gathered}{\color[rgb]{0,0,1}\dot{\mu}_{s}}=-\Lambda\left(2\breve{H}\mu_{s}+2\breve{H}_{a}\Delta_{s,a}+\breve{H}_{ab}\Delta_{s,ab}+\displaystyle\frac{1}{3}\breve{H}_{abc}\Delta_{s,abc}\right),\\ {\color[rgb]{0,0,1}\dot{\Delta}_{s,i}}=J_{ia}H_{a}\mu_{s}+J_{ia}H_{ab}\Delta_{s,b}+\displaystyle\frac{1}{2}J_{ia}H_{abc}\Delta_{s,bc}+\displaystyle\frac{1}{6}J_{ia}H_{abcd}\Delta_{s,bcd}-\\ -\Lambda\left(2\breve{H}\Delta_{s,i}+2\breve{H}_{a}\Delta_{s,ai}+\breve{H}_{ab}\Delta_{s,abi}\right)-\dot{Z}_{s,i}\mu_{s},\\ {\color[rgb]{0,0,1}\dot{\Delta}_{s,ij}}=2J_{ia}H_{a}\Delta_{s,j}+2J_{ia}H_{ab}\Delta_{s,bj}+J_{ia}H_{abc}\Delta_{s,bcj}-\\ -\Lambda\left(2\breve{H}\Delta_{s,ij}+2\breve{H}_{a}\Delta_{s,aij}\right)-2\Delta_{s,i}\dot{Z}_{s,j}.\\ {\color[rgb]{0,0,1}\dot{\Delta}_{s,ijk}}=3J_{ia}H_{a}\Delta_{s,jk}+3J_{ia}H_{ab}\Delta_{s,jkb}-2\Lambda\breve{H}\Delta_{s,ijk}-3\Delta_{s,ij}\dot{Z}_{s,k}.\end{gathered} (70)

Hereinafter, we imply the symmetrization with respect to indices i,j,k+2ni,j,k\in{\mathbb{Z}}_{+}^{2n} in each term and summation over the repeated indices a,b,c,d+2na,b,c,d\in{\mathbb{Z}}_{+}^{2n}. E.g., we have

AiaBjak=13!a=12n(AiaBjak+AiaBkaj+AjaBiak+AkaBiaj+AjaBkai+AkaBjai).A_{ia}B_{jak}=\displaystyle\frac{1}{3!}\sum_{a=1}^{2n}\Big{(}A_{ia}B_{jak}+A_{ia}B_{kaj}+A_{ja}B_{iak}+A_{ka}B_{iaj}+A_{ja}B_{kai}+A_{ka}B_{jai}\Big{)}. (71)

Also, we highlight time derivatives in blue in this Appendix for better readability.

Using expansions (27), (25), (36), and the contracted notations

μs(k)=μs(k)(t)[Ψs],Δj1jms(k)=Δs,j1jm(k)(t)[Ψs],r=r=1K,Vj1j2jms=mV(z,t)zj1zj2zjm|z=Zs(t),Wi1i2iq|j1j2jrsr=ϰq+rW(z,w,t)zi1ziqwj1wjr|z=Zs(t),w=Zr(t),V˘j1j2jms=mV˘(z,t)zj1zj2zjm|z=Zs(t),W˘i1i2iq|j1j2jrsr=ϰq+rW˘(z,w,t)zi1ziqwj1wjr|z=Zs(t),w=Zr(t),\begin{gathered}\mu^{s(k)}=\mu^{(k)}_{s}(t)[\Psi_{s}],\quad\Delta_{j_{1}...j_{m}}^{s(k)}=\Delta_{s,j_{1}...j_{m}}^{(k)}(t)[\Psi_{s}],\quad\sum_{r}=\sum_{r=1}^{K},\\ V_{j_{1}j_{2}...j_{m}}^{s}=\displaystyle\frac{\partial^{m}V(z,t)}{\partial z_{j_{1}}\partial z_{j_{2}}...\partial z_{j_{m}}}\bigg{|}_{z=Z_{s}(t)},\\ W_{i_{1}i_{2}...i_{q}|j_{1}j_{2}...j_{r}}^{sr}=\varkappa\displaystyle\frac{\partial^{q+r}W(z,w,t)}{\partial z_{i_{1}}...\partial z_{i_{q}}\partial w_{j_{1}}...\partial w_{j_{r}}}\bigg{|}_{z=Z_{s}(t),\,w=Z_{r}(t)},\\ \breve{V}_{j_{1}j_{2}...j_{m}}^{s}=\displaystyle\frac{\partial^{m}\breve{V}(z,t)}{\partial z_{j_{1}}\partial z_{j_{2}}...\partial z_{j_{m}}}\bigg{|}_{z=Z_{s}(t)},\\ \breve{W}_{i_{1}i_{2}...i_{q}|j_{1}j_{2}...j_{r}}^{sr}=\varkappa\displaystyle\frac{\partial^{q+r}\breve{W}(z,w,t)}{\partial z_{i_{1}}...\partial z_{i_{q}}\partial w_{j_{1}}...\partial w_{j_{r}}}\bigg{|}_{z=Z_{s}(t),\,w=Z_{r}(t)},\end{gathered} (72)

we obtain the KK-particle Hamilton–Ehrenfest systems of up to the third order inclusive. In equations of this Appendix, we omit the upper indices ss and rr for functions VV, V˘\breve{V}, WW, and W˘\breve{W} in order to make clear that there is no summation over them as over the repeated indices (the summation over rr will be given explicitly where it is needed). Such contracted notations do not cause confusion since these indices always go in the same order as in (72). Nevertheless, the superscripts are convenient for writing these functions explicitly for specific cases as in Section VII. If we do not differentiate the function WW or W˘\breve{W} with respect to eigther zz or ww (or both of them), we still keep the delimiter ||, e.g.

W|j1j2=ϰ2W(z,w,t)wj1wj2|z=Zs(t),w=Zr(t),W˘|=ϰW˘(z,w,t)|z=Zs(t),w=Zr(t).\begin{gathered}W_{|j_{1}j_{2}}=\varkappa\displaystyle\frac{\partial^{2}W(z,w,t)}{\partial w_{j_{1}}\partial w_{j_{2}}}\bigg{|}_{z=Z_{s}(t),\,w=Z_{r}(t)},\\ \breve{W}_{|}=\varkappa\breve{W}(z,w,t)\Big{|}_{z=Z_{s}(t),\,w=Z_{r}(t)}.\end{gathered} (73)

The zeroth order KK-particle Hamilton–Ehrenfest system, which is given in (13), reads as follows under notations (72):

Z˙is(0)=JiaVa+rJiaWa|μr(0),μ˙s(0)=Λ(2V˘μs(0)+rW˘|μr(0)μs(0)).\begin{gathered}{\color[rgb]{0,0,1}\dot{Z}^{s(0)}_{i}}=J_{ia}V_{a}+\sum_{r}J_{ia}W_{a|}\mu^{r(0)},\\ {\color[rgb]{0,0,1}\dot{\mu}^{s(0)}}=-\Lambda\Bigg{(}2\breve{V}\mu^{s(0)}+\sum_{r}\breve{W}_{|}\mu^{r(0)}\mu^{s(0)}\Bigg{)}.\end{gathered} (74)

The first order KK-particle Hamilton–Ehrenfest system (accurate to O(){\rm O}(\sqrt{\hbar})) includes (74) and the following equations:

Δ˙is(1)=JiarWa|μr(1)μs(0)+JiarWa|bΔbr(1)μs(0)+JiaVabΔas(1)+JiarWab|Δbs(1)μr(0)Λ(2V˘Δis(1)+2rW˘|Δis(1)μr(0)),μ˙s(1)=Λ(2V˘μs(1)+2rW˘|μr(0)μs(1)+2rW˘|μr(1)μs(0)+2rW˘|aΔar(1)μs(0)++2V˘aΔas(1)+2rW˘a|Δas(1)μr(0)).\begin{gathered}{\color[rgb]{0,0,1}\dot{\Delta}^{s(1)}_{i}}=J_{ia}\sum_{r}W_{a|}\mu^{r(1)}\mu^{s(0)}+J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\mu^{s(0)}+J_{ia}V_{ab}\Delta_{a}^{s(1)}+J_{ia}\sum_{r}W_{ab|}\Delta_{b}^{s(1)}\mu^{r(0)}-\cr-\Lambda\left(2\breve{V}\Delta_{i}^{s(1)}+2\sum_{r}\breve{W}_{|}\Delta_{i}^{s(1)}\mu^{r(0)}\right),\cr{\color[rgb]{0,0,1}\dot{\mu}^{s(1)}}=-\Lambda\Bigg{(}2\breve{V}\mu^{s(1)}+2\sum_{r}\breve{W}_{|}\mu^{r(0)}\mu^{s(1)}+2\sum_{r}\breve{W}_{|}\mu^{r(1)}\mu^{s(0)}+2\sum_{r}\breve{W}_{|a}\Delta_{a}^{r(1)}\mu^{s(0)}+\cr+2\breve{V}_{a}\Delta^{s(1)}_{a}+2\sum_{r}\breve{W}_{a|}\Delta^{s(1)}_{a}\mu^{r(0)}\Bigg{)}.\end{gathered} (75)

The second order KK-particle Hamilton–Ehrenfest system (accurate to O(){\rm O}(\hbar)) includes (74), (75), and the following equations:

Δ˙is(2)=JiarWa|μr(1)μs(1)+JiarWa|μr(2)μs(0)+JiarWa|bΔbr(1)μs(1)++JiarWa|bΔbr(2)μs(0)+12JiarWa|bcΔbcr(2)μs(0)++JiaVabΔbs(2)+JiarWab|Δbs(2)μr(0)+JiarWab|Δbs(1)μr(1)+JiarWab|cΔbs(1)Δcr(1)++12JiaVabcΔbcs(2)+12JiarWabc|Δbcs(2)μr(0)Λ(2V˘Δis(2)+2rW˘|Δis(2)μr(0)+2rW˘|Δis(1)μr(1)+2rW˘|aΔis(1)Δar(1)++2V˘aΔais(2)+2rW˘a|Δais(2)μr(0)),Δ˙ijs(2)=2JiarWa|Δjs(1)μr(1)+2JiarWa|bΔjs(1)Δbr(1)+2JiaVabΔbjs(2)+2JiarWab|Δbjs(2)μr(0)Λ(2V˘Δijs(2)+2rW˘|Δijs(2)μr(0)),μ˙s(2)=Λ(2V˘μs(2)+2rW˘|μs(2)μr(0)+2rW˘|μs(1)μr(1)+2rW˘|μs(0)μr(2)++2rW˘|aμs(1)Δar(1)+2rW˘|aμs(0)Δar(2)+rW˘|abμs(0)Δabr(2)++2V˘aΔas(2)+2rW˘a|Δas(1)μr(1)+2rW˘a|Δas(2)μr(0)+2rW˘a|bΔas(1)Δbr(1)++V˘abΔabs(2)+rW˘ab|Δabs(2)μr(0)).\begin{gathered}{\color[rgb]{0,0,1}\dot{\Delta}^{s(2)}_{i}}=J_{ia}\sum_{r}W_{a|}\mu^{r(1)}\mu^{s(1)}+J_{ia}\sum_{r}W_{a|}\mu^{r(2)}\mu^{s(0)}+J_{ia}\sum_{r}W_{a|b}\Delta^{r(1)}_{b}\mu^{s(1)}+\\ +J_{ia}\sum_{r}W_{a|b}\Delta^{r(2)}_{b}\mu^{s(0)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{a|bc}\Delta^{r(2)}_{bc}\mu^{s(0)}+\\ +J_{ia}V_{ab}\Delta_{b}^{s(2)}+J_{ia}\sum_{r}W_{ab|}\Delta_{b}^{s(2)}\mu^{r(0)}+J_{ia}\sum_{r}W_{ab|}\Delta_{b}^{s(1)}\mu^{r(1)}+J_{ia}\sum_{r}W_{ab|c}\Delta_{b}^{s(1)}\Delta_{c}^{r(1)}+\\ +\displaystyle\frac{1}{2}J_{ia}V_{abc}\Delta^{s(2)}_{bc}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{abc|}\Delta^{s(2)}_{bc}\mu^{r(0)}-\\ -\Lambda\Bigg{(}2\breve{V}\Delta_{i}^{s(2)}+2\sum_{r}\breve{W}_{|}\Delta_{i}^{s(2)}\mu^{r(0)}+2\sum_{r}\breve{W}_{|}\Delta_{i}^{s(1)}\mu^{r(1)}+2\sum_{r}\breve{W}_{|a}\Delta_{i}^{s(1)}\Delta_{a}^{r(1)}+\\ +2\breve{V}_{a}\Delta_{ai}^{s(2)}+2\sum_{r}\breve{W}_{a|}\Delta_{ai}^{s(2)}\mu^{r(0)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\Delta}^{s(2)}_{ij}}=2J_{ia}\sum_{r}W_{a|}\Delta_{j}^{s(1)}\mu^{r(1)}+2J_{ia}\sum_{r}W_{a|b}\Delta_{j}^{s(1)}\Delta_{b}^{r(1)}+2J_{ia}V_{ab}\Delta_{bj}^{s(2)}+2J_{ia}\sum_{r}W_{ab|}\Delta_{bj}^{s(2)}\mu^{r(0)}-\\ -\Lambda\Bigg{(}2\breve{V}\Delta_{ij}^{s(2)}+2\sum_{r}\breve{W}_{|}\Delta_{ij}^{s(2)}\mu^{r(0)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\mu}^{s(2)}}=-\Lambda\Bigg{(}2\breve{V}\mu^{s(2)}+2\sum_{r}\breve{W}_{|}\mu^{s(2)}\mu^{r(0)}+2\sum_{r}\breve{W}_{|}\mu^{s(1)}\mu^{r(1)}+2\sum_{r}\breve{W}_{|}\mu^{s(0)}\mu^{r(2)}+\\ +2\sum_{r}\breve{W}_{|a}\mu^{s(1)}\Delta_{a}^{r(1)}+2\sum_{r}\breve{W}_{|a}\mu^{s(0)}\Delta_{a}^{r(2)}+\sum_{r}\breve{W}_{|ab}\mu^{s(0)}\Delta_{ab}^{r(2)}+\\ +2\breve{V}_{a}\Delta_{a}^{s(2)}+2\sum_{r}\breve{W}_{a|}\Delta_{a}^{s(1)}\mu^{r(1)}+2\sum_{r}\breve{W}_{a|}\Delta_{a}^{s(2)}\mu^{r(0)}+2\sum_{r}\breve{W}_{a|b}\Delta_{a}^{s(1)}\Delta_{b}^{r(1)}+\\ +\breve{V}_{ab}\Delta_{ab}^{s(2)}+\sum_{r}\breve{W}_{ab|}\Delta_{ab}^{s(2)}\mu^{r(0)}\Bigg{)}.\end{gathered} (76)

The third order KK-particle Hamilton–Ehrenfest system (accurate to O(3/2){\rm O}(\hbar^{3/2})) includes (74), (75), (76), and the following equations:

Δ˙is(3)=JiarWa|μr(1)μs(2)+JiarWa|μr(2)μs(1)+JiarWa|μr(3)μs(0)++JiarWa|bΔbr(1)μs(2)+JiarWa|bΔbr(2)μs(1)+JiarWa|bΔbr(3)μs(0)++12JiarWa|bcΔbcr(2)μs(1)+12JiarWa|bcΔbcr(3)μs(0)+16JiarWa|bcdΔbcdr(3)μs(0)++JiaVabΔbs(3)+JiarWab|μr(0)Δbs(3)+JiarWab|μr(1)Δbs(2)+JiarWab|μr(2)Δbs(1)++JiarWab|cΔcr(1)Δbs(2)+JiarWab|cΔcr(2)Δbs(1)+12JiarWab|cdΔcdr(2)Δbs(1)++12JiaVabcΔbcs(3)+12JiarWabc|μr(1)Δbcs(2)+12JiarWabc|μr(0)Δbcs(3)++12JiarWabc|dΔdr(1)Δbcs(2)+16JiaVabcdΔbcds(3)+16JiarWabcd|μr(0)Δbcds(3)Λ(2VΔis(3)+2rW|μr(0)Δis(3)+2rW|μr(1)Δis(2)+2rW|μr(2)Δis(1)++2rW|aΔar(1)Δis(2)+2rW|aΔar(2)Δis(1)+rW|abΔabr(2)Δis(1)++2VaΔais(3)+2rWa|μr(0)Δais(3)+2rWa|μr(1)Δais(2)+2rWa|bΔbr(1)Δais(2)++VabΔabis(3)+rWab|μr(0)Δabis(3)),Δ˙ijs(3)=2JiarWa|μr(1)Δjs(2)+2JiarWa|μr(2)Δjs(1)+2JiarWa|bΔbr(1)Δjs(2)++2JiarWa|bΔbr(2)Δjs(1)+JiarWa|bcΔbcr(2)Δjs(1)++2JiaVabΔbjs(3)+2JiarWab|μr(0)Δbjs(3)+2JiarWab|μr(1)Δbjs(2)++2JiarWab|cΔcr(1)Δbjs(2)+JiaVabcΔbcjs(3)+JiarWabc|μr(0)Δbcjs(3)Λ(2VΔijs(3)+2rW|μr(0)Δijs(3)+2rW|μr(1)Δijs(2)++2rW|aΔar(1)Δijs(2)+2VaΔaijs(3)+2rWa|μr(0)Δaijs(3)),Δ˙ijks(3)=3JiarWa|μr(1)Δjks(2)+3JiarWa|bΔbr(1)Δjks(2)++3JiaVabΔjkbs(3)+3JiarWab|μr(0)Δjkbs(3)Λ(2VΔijks(3)+2rW|μr(0)Δijks(3)).\begin{gathered}{\color[rgb]{0,0,1}\dot{\Delta}^{s(3)}_{i}}=J_{ia}\sum_{r}W_{a|}\mu^{r(1)}\mu^{s(2)}+J_{ia}\sum_{r}W_{a|}\mu^{r(2)}\mu^{s(1)}+J_{ia}\sum_{r}W_{a|}\mu^{r(3)}\mu^{s(0)}+\\ +J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\mu^{s(2)}+J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(2)}\mu^{s(1)}+J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(3)}\mu^{s(0)}+\\ +\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{a|bc}\Delta_{bc}^{r(2)}\mu^{s(1)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{a|bc}\Delta_{bc}^{r(3)}\mu^{s(0)}+\displaystyle\frac{1}{6}J_{ia}\sum_{r}W_{a|bcd}\Delta_{bcd}^{r(3)}\mu^{s(0)}+\\ +J_{ia}V_{ab}\Delta_{b}^{s(3)}+J_{ia}\sum_{r}W_{ab|}\mu^{r(0)}\Delta_{b}^{s(3)}+J_{ia}\sum_{r}W_{ab|}\mu^{r(1)}\Delta_{b}^{s(2)}+J_{ia}\sum_{r}W_{ab|}\mu^{r(2)}\Delta_{b}^{s(1)}+\\ +J_{ia}\sum_{r}W_{ab|c}\Delta_{c}^{r(1)}\Delta_{b}^{s(2)}+J_{ia}\sum_{r}W_{ab|c}\Delta_{c}^{r(2)}\Delta_{b}^{s(1)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{ab|cd}\Delta_{cd}^{r(2)}\Delta_{b}^{s(1)}+\\ +\displaystyle\frac{1}{2}J_{ia}V_{abc}\Delta_{bc}^{s(3)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{abc|}\mu^{r(1)}\Delta_{bc}^{s(2)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{abc|}\mu^{r(0)}\Delta_{bc}^{s(3)}+\\ +\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{abc|d}\Delta_{d}^{r(1)}\Delta_{bc}^{s(2)}+\displaystyle\frac{1}{6}J_{ia}V_{abcd}\Delta_{bcd}^{s(3)}+\displaystyle\frac{1}{6}J_{ia}\sum_{r}W_{abcd|}\mu^{r(0)}\Delta_{bcd}^{s(3)}-\\ -\Lambda\Bigg{(}2V\Delta_{i}^{s(3)}+2\sum_{r}W_{|}\mu^{r(0)}\Delta_{i}^{s(3)}+2\sum_{r}W_{|}\mu^{r(1)}\Delta_{i}^{s(2)}+2\sum_{r}W_{|}\mu^{r(2)}\Delta_{i}^{s(1)}+\\ +2\sum_{r}W_{|a}\Delta_{a}^{r(1)}\Delta_{i}^{s(2)}+2\sum_{r}W_{|a}\Delta_{a}^{r(2)}\Delta_{i}^{s(1)}+\sum_{r}W_{|ab}\Delta_{ab}^{r(2)}\Delta_{i}^{s(1)}+\\ +2V_{a}\Delta_{ai}^{s(3)}+2\sum_{r}W_{a|}\mu^{r(0)}\Delta_{ai}^{s(3)}+2\sum_{r}W_{a|}\mu^{r(1)}\Delta_{ai}^{s(2)}+2\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\Delta_{ai}^{s(2)}+\\ +V_{ab}\Delta_{abi}^{s(3)}+\sum_{r}W_{ab|}\mu^{r(0)}\Delta_{abi}^{s(3)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\Delta}^{s(3)}_{ij}}=2J_{ia}\sum_{r}W_{a|}\mu^{r(1)}\Delta_{j}^{s(2)}+2J_{ia}\sum_{r}W_{a|}\mu^{r(2)}\Delta_{j}^{s(1)}+2J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\Delta_{j}^{s(2)}+\\ +2J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(2)}\Delta_{j}^{s(1)}+J_{ia}\sum_{r}W_{a|bc}\Delta_{bc}^{r(2)}\Delta_{j}^{s(1)}+\\ +2J_{ia}V_{ab}\Delta_{bj}^{s(3)}+2J_{ia}\sum_{r}W_{ab|}\mu^{r(0)}\Delta_{bj}^{s(3)}+2J_{ia}\sum_{r}W_{ab|}\mu^{r(1)}\Delta_{bj}^{s(2)}+\\ +2J_{ia}\sum_{r}W_{ab|c}\Delta_{c}^{r(1)}\Delta_{bj}^{s(2)}+J_{ia}V_{abc}\Delta_{bcj}^{s(3)}+J_{ia}\sum_{r}W_{abc|}\mu^{r(0)}\Delta_{bcj}^{s(3)}-\\ -\Lambda\Bigg{(}2V\Delta_{ij}^{s(3)}+2\sum_{r}W_{|}\mu^{r(0)}\Delta_{ij}^{s(3)}+2\sum_{r}W_{|}\mu^{r(1)}\Delta_{ij}^{s(2)}+\\ +2\sum_{r}W_{|a}\Delta_{a}^{r(1)}\Delta_{ij}^{s(2)}+2V_{a}\Delta_{aij}^{s(3)}+2\sum_{r}W_{a|}\mu^{r(0)}\Delta_{aij}^{s(3)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\Delta}_{ijk}^{s(3)}}=3J_{ia}\sum_{r}W_{a|}\mu^{r(1)}\Delta_{jk}^{s(2)}+3J_{ia}\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\Delta_{jk}^{s(2)}+\\ +3J_{ia}V_{ab}\Delta_{jkb}^{s(3)}+3J_{ia}\sum_{r}W_{ab|}\mu^{r(0)}\Delta_{jkb}^{s(3)}-\Lambda\Bigg{(}2V\Delta_{ijk}^{s(3)}+2\sum_{r}W_{|}\mu^{r(0)}\Delta_{ijk}^{s(3)}\Bigg{)}.\end{gathered} (77)
μ˙s(3)=Λ(2Vμs(3)+2rW|μr(0)μs(3)+2rW|μr(1)μs(2)+2rW|μr(2)μs(1)++2rW|μr(3)μs(0)+2rW|aΔar(1)μs(2)+2rW|aΔar(2)μs(1)+2rW|aΔar(3)μs(0)++rW|abΔabr(2)μs(1)+rW|abΔabr(3)μs(0)+13rW|abcΔabcr(3)μs(0)++2VaΔas(3)+2rWa|μr(0)Δas(3)+2rWa|μr(1)Δas(2)+2rWa|μr(2)Δas(1)++2rWa|bΔbr(1)Δas(2)+2rWa|bΔbr(2)Δas(1)+rWa|bcΔbcr(2)Δas(1)++VabΔabs(3)+rWab|μr(0)Δabs(3)+rWab|μr(1)Δabs(2)+rWab|cΔcr(1)Δabs(2)++13VabcΔabcs(3)+13rWabc|μr(0)Δabcs(3)).\begin{gathered}{\color[rgb]{0,0,1}\dot{\mu}^{s(3)}}=\Lambda\Bigg{(}2V\mu^{s(3)}+2\sum_{r}W_{|}\mu^{r(0)}\mu^{s(3)}+2\sum_{r}W_{|}\mu^{r(1)}\mu^{s(2)}+2\sum_{r}W_{|}\mu^{r(2)}\mu^{s(1)}+\\ +2\sum_{r}W_{|}\mu^{r(3)}\mu^{s(0)}+2\sum_{r}W_{|a}\Delta_{a}^{r(1)}\mu^{s(2)}+2\sum_{r}W_{|a}\Delta_{a}^{r(2)}\mu^{s(1)}+2\sum_{r}W_{|a}\Delta_{a}^{r(3)}\mu^{s(0)}+\\ +\sum_{r}W_{|ab}\Delta_{ab}^{r(2)}\mu^{s(1)}+\sum_{r}W_{|ab}\Delta_{ab}^{r(3)}\mu^{s(0)}+\displaystyle\frac{1}{3}\sum_{r}W_{|abc}\Delta_{abc}^{r(3)}\mu^{s(0)}+\\ +2V_{a}\Delta_{a}^{s(3)}+2\sum_{r}W_{a|}\mu^{r(0)}\Delta_{a}^{s(3)}+2\sum_{r}W_{a|}\mu^{r(1)}\Delta_{a}^{s(2)}+2\sum_{r}W_{a|}\mu^{r(2)}\Delta_{a}^{s(1)}+\\ +2\sum_{r}W_{a|b}\Delta_{b}^{r(1)}\Delta_{a}^{s(2)}+2\sum_{r}W_{a|b}\Delta_{b}^{r(2)}\Delta_{a}^{s(1)}+\sum_{r}W_{a|bc}\Delta_{bc}^{r(2)}\Delta_{a}^{s(1)}+\\ +V_{ab}\Delta_{ab}^{s(3)}+\sum_{r}W_{ab|}\mu^{r(0)}\Delta_{ab}^{s(3)}+\sum_{r}W_{ab|}\mu^{r(1)}\Delta_{ab}^{s(2)}+\sum_{r}W_{ab|c}\Delta_{c}^{r(1)}\Delta_{ab}^{s(2)}+\\ +\displaystyle\frac{1}{3}V_{abc}\Delta_{abc}^{s(3)}+\displaystyle\frac{1}{3}\sum_{r}W_{abc|}\mu^{r(0)}\Delta_{abc}^{s(3)}\Bigg{)}.\end{gathered} (78)

From (75), (77),(78), one readily gets that they admit solutions

μs(2k+1)(t,𝐂)=0,Δs,i1im(2k+1)(t,𝐂)=0,k+,\mu^{(2k+1)}_{s}(t,{\bf C})=0,\qquad\Delta_{s,i_{1}...i_{m}}^{(2k+1)}(t,{\bf C})=0,\qquad k\in{\mathbb{Z}_{+}}, (79)

for certain chose of initial conditions 𝐂{\bf C}. Note that is also valid for the case when symbols VV, WW, V˘\breve{V}, and W˘\breve{W} regularly depend on \hbar. In this work, we consider the case when VV, WW, V˘\breve{V}, and W˘\breve{W} do not depend on the parameter \hbar just for reasons of the brevity of formulae and simplicity of text. However, the generalization on the case of regular dependence of V(z,t,)V(z,t,\hbar), W(z,w,t,)W(z,w,t,\hbar), V˘(z,t,)\breve{V}(z,t,\hbar), and W˘(z,w,t,)\breve{W}(z,w,t,\hbar) on \hbar does not meet the fundamental difficulties and just makes formulae (76)—(78) more cumbersome.

If we consider the initial conditions for the equation (1) that satisfy (81) (for t=0t=0), the system (76) reads:

Δ˙is(2)=JiarWa|μr(2)μs(0)+JiarWa|bΔbr(2)μs(0)+12JiarWa|bcΔbcr(2)μs(0)++JiaVabΔbs(2)+JiarWab|Δbs(2)μr(0)+12JiaVabcΔbcs(2)+12JiarWabc|Δbcs(2)μr(0)Λ(2V˘Δis(2)+2rW˘|Δis(2)μr(0)+2V˘aΔais(2)+2rW˘a|Δais(2)μr(0)),Δ˙ijs(2)=2JiaVabΔbjs(2)+2JiarWab|Δbjs(2)μr(0)Λ(2V˘Δijs(2)+2rW˘|Δijs(2)μr(0)),μ˙s(2)=Λ(2V˘μs(2)+2rW˘|μs(2)μr(0)+2rW˘|μs(0)μr(2)++2rW˘|aμs(0)Δar(2)+rW˘|abμs(0)Δabr(2)+2V˘aΔas(2)++2rW˘a|Δas(2)μr(0)+V˘abΔabs(2)+rW˘ab|Δabs(2)μr(0)).\begin{gathered}{\color[rgb]{0,0,1}\dot{\Delta}^{s(2)}_{i}}=J_{ia}\sum_{r}W_{a|}\mu^{r(2)}\mu^{s(0)}+J_{ia}\sum_{r}W_{a|b}\Delta^{r(2)}_{b}\mu^{s(0)}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{a|bc}\Delta^{r(2)}_{bc}\mu^{s(0)}+\\ +J_{ia}V_{ab}\Delta_{b}^{s(2)}+J_{ia}\sum_{r}W_{ab|}\Delta_{b}^{s(2)}\mu^{r(0)}+\displaystyle\frac{1}{2}J_{ia}V_{abc}\Delta^{s(2)}_{bc}+\displaystyle\frac{1}{2}J_{ia}\sum_{r}W_{abc|}\Delta^{s(2)}_{bc}\mu^{r(0)}-\\ -\Lambda\Bigg{(}2\breve{V}\Delta_{i}^{s(2)}+2\sum_{r}\breve{W}_{|}\Delta_{i}^{s(2)}\mu^{r(0)}+2\breve{V}_{a}\Delta_{ai}^{s(2)}+2\sum_{r}\breve{W}_{a|}\Delta_{ai}^{s(2)}\mu^{r(0)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\Delta}^{s(2)}_{ij}}=2J_{ia}V_{ab}\Delta_{bj}^{s(2)}+2J_{ia}\sum_{r}W_{ab|}\Delta_{bj}^{s(2)}\mu^{r(0)}-\Lambda\Bigg{(}2\breve{V}\Delta_{ij}^{s(2)}+2\sum_{r}\breve{W}_{|}\Delta_{ij}^{s(2)}\mu^{r(0)}\Bigg{)},\\ {\color[rgb]{0,0,1}\dot{\mu}^{s(2)}}=-\Lambda\Bigg{(}2\breve{V}\mu^{s(2)}+2\sum_{r}\breve{W}_{|}\mu^{s(2)}\mu^{r(0)}+2\sum_{r}\breve{W}_{|}\mu^{s(0)}\mu^{r(2)}+\\ +2\sum_{r}\breve{W}_{|a}\mu^{s(0)}\Delta_{a}^{r(2)}+\sum_{r}\breve{W}_{|ab}\mu^{s(0)}\Delta_{ab}^{r(2)}+2\breve{V}_{a}\Delta_{a}^{s(2)}+\\ +2\sum_{r}\breve{W}_{a|}\Delta_{a}^{s(2)}\mu^{r(0)}+\breve{V}_{ab}\Delta_{ab}^{s(2)}+\sum_{r}\breve{W}_{ab|}\Delta_{ab}^{s(2)}\mu^{r(0)}\Bigg{)}.\end{gathered} (80)

Also, μs(1)=μs(3)=0\mu^{s(1)}=\mu^{s(3)}=0, Δis(1)=Δis(3)=0\Delta_{i}^{s(1)}=\Delta_{i}^{s(3)}=0, Δij(3)=0\Delta_{ij}^{(3)}=0, Δijk(3)=0\Delta_{ijk}^{(3)}=0 in this case. Therefore, if one limits himself to the initial conditions ψ(x,)\psi(\vec{x},\hbar) satisfying

μ(2k+1)(t)[ψs]|t=0=0,Δi1im(2k+1)(t)[ψs]|t=0=0,k=0,1,m=1,2,3.\mu^{(2k+1)}(t)[\psi_{s}]\Big{|}_{t=0}=0,\qquad\Delta_{i_{1}...i_{m}}^{(2k+1)}(t)[\psi_{s}]\Big{|}_{t=0}=0,\qquad k=0,1,\qquad m=1,2,3. (81)

the system (74) is both the zeroth and first order Hamilton–Ehrenfest system (accurate to moments that are equal to zero) while the system (80) on solutions to (74) is both the second and third order Hamilton–Ehrenfest system. Note that the third order Hamilton–Ehrenfest system allows one to construct the first correction to the leading term of asymptotics, which has the same formal accuracy with respect to \hbar as the leading term of asymptotics for the wave function constructed by the Maslov canonical operator method [26] for the case ϰ=0\varkappa=0, Λ=0\Lambda=0.

References

  • [1]
  • [2] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose-Einstein condensation in trapped gases,” Reviews of Modern Physics 71(3), 463–512 (1999).
  • [3] Y. Ashida, Z. Gong, and M. Ueda, “Non-Hermitian physics,” Advances in Physics 69, 249–435 (2020). https://doi.org/10.1080/00018732.2021.1876991.
  • [4] F. Lederer, G. Stegeman, D. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Physics Reports-review Section of Physics Letters 463, 1–126 (2008). https://doi.org/10.1016/j.physrep.2008.04.004.
  • [5] G. Agrawal, Nonlinear Fiber Optics (2013). https://doi.org/10.1016/C2011-0-00045-5.
  • [6] B. Aleksić, L. Uvarova, and N. Aleksić, “Dissipative structures in the resonant interaction of laser radiation with nonlinear dispersive medium,” Optical and Quantum Electronics 53 (2021). https://doi.org/10.1007/s11082-021-03017-4.
  • [7] B. Aleksić, L. Uvarova, N. Aleksić, and M. Belić, “Cubic quintic Ginzburg Landau equation as a model for resonant interaction of EM field with nonlinear media,” Optical and Quantum Electronics 52 (2020). https://doi.org/10.1007/s11082-020-02271-2.
  • [8] A. L. Fetter and A. A. Svidzinsky, “Vortices in a trapped dilute Bose-Einstein condensate,” Journal of Physics Condensed Matter 13(12), 135–194 (2001).
  • [9] F. Arecchi, J. Bragard, and L. Castellano, “Dissipative dynamics of an open Bose Einstein condensate,” Optics Communications 179(1), 149–156 (2000). https://doi.org/10.1016/S0030-4018(99)00670-7.
  • [10] H. Haus, Waves and Fields in Optoelectronics, Prentice-Hall series in solid state physical electronics (Prentice-Hall, 1984).
  • [11] M. A. Baranov, “Theoretical progress in many-body physics with ultracold dipolar gases,” Physics Reports 464(3), 71–111 (2008).
  • [12] J. Cuevas, B. A. Malomed, P. G. Kevrekidis, and D. J. Frantzeskakis, “Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions,” Physical Review A - Atomic, Molecular, and Optical Physics 79(5) (2009).
  • [13] L. Klaus, T. Bland, E. Poli, C. Politi, G. Lamporesi, E. Casotti, R. Bisset, M. Mark, and F. Ferlaino, “Observation of vortices and vortex stripes in a dipolar condensate,” Nature Physics 18, 1–6 (2022). https://doi.org/10.1038/s41567-022-01793-8.
  • [14] Q. Zhao, “Effects of Dipole-Dipole Interaction on Vortex Motion in Bose-Einstein Condensates,” Journal of Low Temperature Physics 204, 1–11 (2021). https://doi.org/10.1007/s10909-021-02594-8.
  • [15] M. Nizette and A. Vladimirov, “Generalized Haus master equation model for mode-locked class- B lasers,” Physical Review E 104, 014215 (2021). https://doi.org/10.1103/PhysRevE.104.014215.
  • [16] C. W. Curtis, “On nonlocal Gross-Pitaevskii equations with periodic potentials,” Journal of Mathematical Physics 53(7), 073709 (2012).
  • [17] G. Koutsokostas, I. Moseley, T. Horikis, and D. Frantzeskakis, “Particle and wave dynamics of nonlocal solitons in external potentials,” Physics Letters A p. 129683 (2024). https://doi.org/10.1016/j.physleta.2024.129683.
  • [18] A. Breev, A. Shapovalov, and D. Gitman, “Noncommutative Reduction of Nonlinear Schrödinger Equation on Lie Groups,” Universe 8, 445 (2022). https://doi.org/10.3390/universe8090445.
  • [19] L. Bobmann, C. Dietze, and P. Nam, “Focusing dynamics of 2D Bose gases in the instability regime,” (2023). https://doi.org/10.48550/arXiv.2307.00956.
  • [20] C. Boccato, S. Cenatiempo, and B. Schlein, “Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics,” Annales Henri Poincarè 18, 113–191 (2017). https://doi.org/10.1007/s00023-016-0513-6.
  • [21] N. Benedikter, G. Oliveira, and B. Schlein, “Quantitative Derivation of the Gross-Pitaevskii Equation,” Communications on Pure and Applied Mathematics 68(8), 1399–1482 (2014). https://doi.org/10.1002/cpa.21542.
  • [22] P. Pickl, “A Simple Derivation of Mean Field Limits for Quantum Systems,” Letters in Mathematical Physics 97, 151–164 (2011). https://doi.org/10.1007/s11005-011-0470-4.
  • [23] H. Spohn, “Kinetic equations from Hamiltonian dynamics: Markovian limits,” Rev. Mod. Phys. 52, 569–616 (1980). https://doi.org/10.1103/RevModPhys.52.569.
  • [24] G. Marcucci, D. Pierangeli, S. Gentilini, N. Ghofraniha, Z. Chen, and C. Conti, “Optical spatial shock waves in nonlocal nonlinear media,” Advances in Physics: X 4, 1662733 (2019). https://doi.org/10.1080/23746149.2019.1662733.
  • [25] F. Wächtler and L. Santos, “Quantum filaments in dipolar Bose-Einstein condensates,” Phys. Rev. A 93, 061603 (2016). https://doi.org/10.1103/PhysRevA.93.061603.
  • [26] V. Maslov, The Complex WKB Method for Nonlinear Equations. I. Linear Theory (Birkhauser Verlag, Basel, 1994).
  • [27] V. V. Belov and S. Y. Dobrokhotov, “Semiclassical Maslov asymptotics with complex phases. I. General approach,” Theoretical and Mathematical Physics 92(2), 843–868 (1992).
  • [28] V. V. Belov, A. Y. Trifonov, and A. V. Shapovalov, “The trajectory-coherent approximation and the system of moments for the hartree type equation,” International Journal of Mathematics and Mathematical Sciences 32(6), 325–370 (2002).
  • [29] A. L. Lisok, A. Y. Trifonov, and A. V. Shapovalov, “Quasi-energy spectral series for a nonlocal Gross-Pitaevskii equation,” Russian Physics Journal 50(7), 695–709 (2007).
  • [30] A. Athanassoulis, T. Paul, F. Pezzotti, and M. Pulvirenti, “Semiclassical Propagation of Coherent States for the Hartree Equation,” Ann. Henri Poincare 22, 1613–1634 (2011). https://doi.org/10.1007/s00023-011-0115-2.
  • [31] A. V. Pereskokov, “Semiclassical asymptotics of the spectrum near the lower boundary of spectral clusters for a Hartree-type operator,” Mathematical Notes 101(5-6), 1009–1022 (2017).
  • [32] A. Pereskokov, “Asymptotics of the Spectrum of a Hartree Type Operator with Self-Consistent Potential Including the Macdonald Function,” Journal of Mathematical Sciences 279, 1–17 (2024). https://doi.org/10.1007/s10958-024-07029-9.
  • [33] A. E. Kulagin and A. V. Shapovalov, “A Semiclassical Approach to the Nonlocal Nonlinear Schrödinger Equation with a Non-Hermitian Term,” Mathematics 12(4), 580 (2024). https://doi.org/10.3390/math12040580.
  • [34] Z. Shi, F. Badshah, L. Qin, Y. Zhou, H. Huang, and Y. Zhang, “Spatially modulated control of pattern formation in a general nonlocal nonlinear system,” Chaos, Solitons and Fractals 175, 113929 (2023). https://doi.org/10.1016/j.chaos.2023.113929.
  • [35] K.-T. Xi and H. Saito, “Droplet formation in a Bose-Einstein condensate with strong dipole-dipole interaction,” Physical Review A 93, 011604 (2016). https://doi.org/10.1103/PhysRevA.93.011604.
  • [36] A. E. Kulagin and A. V. Shapovalov, “Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation,” Physica Scripta 99(4), 045228 (2024). https://doi.org/10.1088/1402-4896/ad302c.
  • [37] V. E. Zakhavrov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of solitons. The inverse scattering method (Consultants Bureau Platform, NY, 1984).
  • [38] R. Dodd, J. Eilbeck, J. Gibbon, and H. Morris, Soliton and nonlinear wave equations (Academic Press, London, 1982).
  • [39] V. Karpman and V. Solov’ev, “A perturbation theory for soliton systems,” Physica D: Nonlinear Phenomena 3(1), 142–164 (1981). https://doi.org/10.1016/0167-2789(81)90123-8.
  • [40] C. Ribeiro and U. Fischer, “Nonlocal field theory of quasiparticle scattering in dipolar Bose-Einstein condensates,” SciPost Physics Core 6 (2023). https://doi.org/10.21468/SciPostPhysCore.6.1.003.
  • [41] V. Maslov, Operational Methods (Mir Publishers, Moscow, 1976).
  • [42] V. Maslov and V. Nazaikinskii, “Algebras with general commutation relations and their applications. I. Pseudodifferential equations with increasing coefficients,” Journal of Mathematical Sciences 15, 167–273 (1981). https://doi.org/10.1007/BF01083678.
  • [43] A. V. Shapovalov, A. E. Kulagin, and A. Y. Trifonov, “The Gross–Pitaevskii equation with a nonlocal interaction in a semiclassical approximation on a curve,” Symmetry 12(2), 201 (2020). https://doi.org/10.3390/sym12020201.
  • [44] S. Choi, S. A. Morgan, and K. Burnett, “Phenomenological damping in trapped atomic Bose-Einstein condensates,” Phys. Rev. A 57, 4057–4060 (1998). https://doi.org/10.1103/PhysRevA.57.4057.
  • [45] V. Obukhov, “Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with four-parameter groups of motions in the presence of an external electromagnetic field,” Journal of Mathematical Physics 63, 023505 (2022). https://doi.org/10.1063/5.0080703.
  • [46] K. Osetrin, I. Kirnos, E. Osetrin, and A. Filippov, “Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field,” Symmetry 13, 1173 (2021). https://doi.org/10.3390/sym13071173.
  • [47] M. V. Karasev, “Weyl and ordered calculus of noncommuting operators,” Mathematical Notes of the Academy of Sciences of the USSR 26(6), 945–958 (1979).