This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasiexact Posets and the Moderate Meet-continuity

Zhaorong He    Zhongqiang Yang    Dongsheng Zhao Department of Mathematics
Shantou University
Shantou, China 515063
School of Mathematics and Statistics
Minnan Normal University
Zhangzhou, China 363000
Department of Mathematics and Mathematics Education, National Institute of Education
Nanyang Technological University
1 Nanyang Walk, Singapore 637616
Abstract

The study of weak domains and quasicontinuous domains leads to the consideration of two types generalizations of domains. In the current paper, we define the weak way-below relation between two nonempty subsets of a poset and quasiexact posets. We prove some connections among quasiexact posets, quasicontinuous domains and weak domains. Furthermore, we introduce the weak way-below finitely determined topology and study its links to Scott topology and the weak way-below topology first considered by Mushburn. It is also proved that a dcpo is a domain if it is quasiexact and moderately meet continuous with the weak way-below relation weakly increasing.

keywords:
Quasiexact dcpo, Quasicontinuous domain, Weak domain, wf topology, Moderate meet-continuity
journal: Electronic Notes in Theoretical Informatics and Computer Sciencevolume: 2thanks: The first two authors were supported by National Natural Science Foundation of China (No. 11971287). This work was completed while the first author visiting Nanyang Technological University under the Chinese Government Scholarship (No. 201908440290). thanks: Email: \normalshape[email protected]thanks: Email: \normalshape[email protected]thanks: Email: \normalshape[email protected]

1 Introduction

Scott [11] proposed a model for information systems using the Scott topology and a binary relation \prec in connection with the information models. For continuous lattices, the relation \prec coincides with the way-below relation. The class of continuous complete lattices was introduced by Scott [12]. However, for general complete lattices, the aforementioned two relations may be distinct.

One of the notable features of continuous lattices is that they admit a unique compact Hausdorff topology for which the meet operation is continuous. This topology, referred to as the CL-topology [4], turns out to be ‘order intrinsic’ - it can be defined merely using the lattice structure. Gierz and Lawson [4] characterized those complete lattices for which the CL-topology is Hausdorff and called them generalized continuous lattices. Gierz et al. [5] introduced the quasicontinuous posets and showed that a complete lattice is generalized continuous if and only if it is quasicontinuous. The key result for establishing the major properties of quasicontinuous dcpos is the Rudin’s Lemma [10].

Coecke and Martin [2] introduced two orders: the Bayesian order on classical states and the spectral order on quantum states. They revealed that the corresponding sets are dcpos with an intrinsic notion of approximation. The operational significance of the orders involved conclusively establishes that physical information has a natural domain-like theoretic structure. Mushburn [14] called the approximation in [2] the weak way-below relation, and defined two topologies on posets: the way-below topology and the weak way-below topology. These topologies coincide with the Scott topology for continuous posets, but are very different for non-continuous posets. Mushburn also showed that while domain representable spaces must be Baire, this is not the case with respect to the new topologies. Thus, Mushburn defined the weak domains and weak domain representable spaces and constructed an example to show that weak domain representable spaces need not be Baire [15].

The class of meet continuous lattices was first introduced by Birkhoff [1]. Later, much investigations on meet continuity for lattices and semilattices sprang up. One can refer to Isbell [8], Hofmann and Stralka [7] and [3]. Kou et al. [9] extended the notion of meet continuity to general dcpos and proved that a dcpo is continuous iff it is meet continuous and quasicontinuous. See [17] and [18] for the investigation of the more general meet-continuous posets and quasicontinuous posets.

As a generalization of the way-below relation between two subsets of posets and the weak way-below relation between elements, we define the weak way-below relation between two subsets of a poset and use this relation to define the quasiexact posets. We show some connections among quasiexact posets, quasicontinuous domains and weak domains. Furthermore, we introduce the weak way-below finitely determined topology (briefly, wf topology) and study its properties as well as its links to Scott topology and weak way-below topology in some special posets. In addition, we prove that a poset is a weak domain if it is moderately meet continuous and quasiexact dcpo with the relation w\ll_{w} weakly increasing, a result similar to the characterization of domains in terms of meet continuity and quasicontinuity. Finally, employing a result by Shen et al. [16], it is deduced that a dcpo is a domain if and only if it is quasiexact and moderately meet continuous with the weak way-below relation weakly increasing.

2 Preliminaries

In this section we recall some notations, definitions and results to be used later.

For any subset AA of a poset PP, we write A={xP:yxfor someyA}\uparrow\nobreak\!A=\{x\in P:y\leq x~{}\mbox{for some}~{}y\in A\}. A subset APA\subseteq P is called an upper set if A=A\uparrow\nobreak\!A=A.

A nonempty subset DD of a poset (P,)(P,\leq) is directed if every two elements in DD have an upper bound in DD. A poset PP is called a directed complete poset (dcpo, for short) if every directed subset DD of PP has a supremum in PP, denoted by D\bigvee D.

For any poset PP, the way-below relation \ll on PP is defined as follows: for every directed subset DD with D\bigvee D existing, yDy\leq\bigvee D implies xdx\leq d for some dDd\in D. A poset PP is continuous if for every xPx\in P, the set x={yP:yx}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}x=\{y\in P:y\ll x\} is directed and x=xx=\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}x. For any xPx\in P, one writs x={yP:xy}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}x=\{y\in P:x\ll y\}.

A subset UU of a poset PP is Scott open if UU is an upper set and for any directed subset DD of PP for which D\bigvee D exists, DU\bigvee D\in U implies DUD\cap U\neq\varnothing. All Scott open subsets of PP form a topology, called the Scott topology on PP and denoted by σ(P)\sigma(P). The space (P,σ(P))(P,\sigma(P)) is called the Scott space of PP, and is denoted by ΣP\Sigma P.

A poset PP is said to be meet continuous111In general, the meet continuity means for dcpos. In the current paper, we slightly misuse this notion. if for any xPx\in P and any directed subset DD, xDx\leq\bigvee D implies x\operatornameclσ(Dx)x\in\operatorname{cl}_{\sigma}(\downarrow\nobreak\!D\cap\downarrow\nobreak\!x).

For any topological space (X,τ)(X,\tau) and a subset AXA\subseteq X, the closure and the interior of AA are denoted by \operatornameclτ(A)\operatorname{cl}_{\tau}(A) and \operatornameintτ(A)\operatorname{int}_{\tau}(A), respectively.

Let (X,τ)(X,\tau) be a topological space. A nonempty subset AA of XX is called irreducible if for any closed sets BB and CC, ABCA\subseteq B\cup C implies ABA\subseteq B or ACA\subseteq C. The space XX is sober if for every irreducible closed set AA, there exists a unique xXx\in X such that \operatornameclτ{x}=A\operatorname{cl}_{\tau}\{x\}=A.

The weak way-below relation on a poset PP is defined as follows [14]: for any x,yPx,y\in P, xx is called weakly way below yy, denoted by xwyx\ll_{w}y if for any directed subset DD of PP, D=y\bigvee D=y implies DxD\cap\uparrow\nobreak\!x\neq\varnothing.

Note that for continuous posets, the relations w\ll_{w} and \ll are the same. For any xPx\in P, we write wx={yP:ywx}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x=\{y\in P:y\ll_{w}x\}. Mushburn [14] pointed out the following properties.

Lemma 1.

[14, Theorem 3.1] For any elements x,y,zx,y,z in a poset PP,

  1. (1)

    If xyx\ll y, then xwyx\ll_{w}y;

  2. (2)

    If xwyx\ll_{w}y, then xyx\leq y;

  3. (3)

    If xywzx\leq y\ll_{w}z, then xwzx\ll_{w}z;

  4. (4)

    If PP has the bottom element \bot, then wx\bot\ll_{w}x.

It is well-known that the way-below relation \ll is transitive: xyzx\ll y\leq z implies xzx\ll z. Whereas, this property may not be true for w\ll_{w}. In fact, Coecke and Martin [2] showed that the transitivity is true for w\ll_{w} if and only if w=\ll_{w}=\ll.

A poset PP is called exact if for any xPx\in P, the set wx\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x is directed and wx=x\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x=x [14]. The relation w\leq_{w} on a poset PP is said to be weakly increasing if for any x,y,z,uPx,y,z,u\in P, xwyzwux\ll_{w}y\leq z\ll_{w}u implies xwzx\ll_{w}z. A poset PP is called a weak domain if it is an exact dcpo with the relation w\ll_{w} weakly increasing.

Shen et al. [16] proved the following characterization of exact dcpos.

Proposition 2.

[16] A dcpo PP is exact if and only if for any xPx\in P, there exists a directed subset DwxD\subseteq\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x such that D=x\bigvee D=x.

For a poset PP, the collection of all nonempty subsets of PP is denoted by 𝒫(P)\mathcal{P}^{*}(P). A preorder \leq on 𝒫(P)\mathcal{P}^{*}(P) is defined by GHG\leq H if HG\uparrow\nobreak\!H\subseteq\uparrow\nobreak\!G. This preorder is sometimes called the Smyth order, see [13].

A nonempty family \mathcal{F} of subsets of a poset PP is said to be directed if given F1F_{1}, F2F_{2}\in\mathcal{F}, there exists F3F_{3}\in\mathcal{F} such that F1,F2F3F_{1},~{}F_{2}\leq F_{3}, that is F3F1F2F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}, or equivalently, F3F1F2\uparrow\nobreak\!F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}. For any G,HPG,H\subseteq P, GG is way below HH, written as GHG\ll H, if for every directed subset DPD\subseteq P, supDH\sup D\in\uparrow\nobreak\!H implies dGd\in\uparrow\nobreak\!G for some dDd\in D. Sometimes, one writes GxG\ll x instead of G{x}G\ll\{x\} and yHy\ll H instead of {y}H\{y\}\ll H. For more details one can refer to [3].

Recall that a dcpo PP is called a quasicontinuous domain if for each xPx\in P the family

\operatornamefin(x)={FP:Fis finite, Fx}\operatorname{fin}(x)=\{F\subseteq P:F~{}~{}\mbox{is finite,~{}~{}}F\ll x\}

is directed and whenever xyx\nleq y, then there exists F\operatornamefin(x)F\in\operatorname{fin}(x) with yF.y\notin\uparrow\nobreak\!F. This statement is equivalent to for each xPx\in P the family

\operatornamefin(x)={FP:Fis finite, Fx}\operatorname{fin}(x)=\{F\subseteq P:F~{}~{}\mbox{is finite,~{}~{}}F\ll x\}

is directed and {F:F\operatornamefin(x)}=x.\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}(x)\}=\uparrow\nobreak\!x.

For more about posets and related notions and results, we refer to [3] and [6].

3 Quasiexact dcpos

We first introduce the following definition, as the generalization of both the way-below relation between two nonempty subsets and the weak way-below relation between two points.

Definition 3

For any poset PP and G,H𝒫(P)G,H\in\mathcal{P}^{*}(P), we say that GG is weakly way below HH and write GwHG\ll_{w}H, if for every directed subset DPD\subseteq P, DH\bigvee D\in H implies dGd\in\uparrow\nobreak\!G for some dDd\in D.

The following properties can be verified straightforwardly.

Lemma 4.

For any poset PP, let G,G,H,H𝒫(P)G,G^{\prime},H,H^{\prime}\in\mathcal{P}^{*}(P) and xPx\in P. Then

  1. (1)

    GwHG\ll_{w}H if and only if GwxG\ll_{w}x for all xHx\in H;

  2. (2)

    GwHG\ll_{w}H if and only if GwH\uparrow\nobreak\!G\ll_{w}H;

  3. (3)

    GwHG\ll_{w}H and GGG\subseteq G^{\prime} imply GwHG^{\prime}\ll_{w}H;

  4. (4)

    GwHG\ll_{w}H and HHH^{\prime}\subseteq H imply GwHG\ll_{w}H^{\prime}.

Thereafter, we write GwxG\ll_{w}x instead of Gw{x}G\ll_{w}\{x\} and ywHy\ll_{w}H instead of {y}wH\{y\}\ll_{w}H. By Lemma 4, ywxy\ll_{w}x is unambiguously defined and this fact is similar with the one for the way-below relation.

For any poset PP and xPx\in P, write

\operatornamefinw(x)={FP:Fis finite,Fwx}.\operatorname{fin}_{w}(x)=\{F\subseteq P:F~{}\mbox{is finite},F\ll_{w}x\}.
Definition 5

A poset PP is said to be quasiexact if for each xPx\in P, the family \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed and {F:F\operatornamefinw(x)}=x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{w}(x)\}=\uparrow\nobreak\!x.

Remark 6.

For any poset PP, it is easy to verify that FwxF\ll_{w}x implies xFx\in\uparrow\nobreak\!F for any FPF\subseteq P and xPx\in P. Thus, {F:F}x\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}\supseteq\uparrow\nobreak\!x holds for all xPx\in P and \operatornamefinw(x)\mathcal{F}\subseteq\operatorname{fin}_{w}(x). In particular, {F:F\operatornamefinw(x)}x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{w}(x)\}\supseteq\uparrow\nobreak\!x for any xPx\in P.

Sometimes it is difficult to characterize the weak way-below relation on a poset. To show a poset PP is quasiexact, it is sufficient to know for any xPx\in P, there are ‘enough’ elements that are weakly way below xx. In order to elaborate this fact, we first show the following lemmas.

The proofs of the following Lemmas 7 and 8 are straightforward.

Lemma 7.

For any poset PP and F𝒫(P),xPF\in\mathcal{P}^{*}(P),x\in P, Fwxif and only ifxFwx.F\ll_{w}x~{}\mbox{if and only if}~{}\downarrow\nobreak\!x\cap F\ll_{w}x.

Lemma 8.

For any poset PP, let 𝒫(P)\mathcal{F}\subseteq\mathcal{P}^{*}(P) and xPx\in P. If \mathcal{F} is directed, then {Fx:F}\{F\cap\downarrow\nobreak\!x:F\in\mathcal{F}\} is directed provided that each FxF\cap\downarrow\nobreak\!x is nonempty.

The following lemma given by Rudin [10] is crucial in proving a number of major properties of quasicontinuous domains, one can also refer to Lemma III-3.3 in [3].

Lemma 9.

(Rudin’s Lemma) For any poset PP, let \mathcal{F} be a directed family of nonempty finite subsets of PP. There exists a directed set DFFD\subseteq\bigcup_{F\in\mathcal{F}}F such that DFD\cap F\neq\varnothing for every FF\in\mathcal{F}.

Lemma 10.

For any dcpo PP, let G𝒫(P)G\in\mathcal{P}^{*}(P) and xPx\in P with GwxG\ll_{w}x. If \mathcal{F} is a directed family of nonempty finite subsets FxF\subseteq\downarrow\nobreak\!x with FFx\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F\subseteq\uparrow\nobreak\!x, then there exists F0F_{0}\in\mathcal{F} such that F0GF_{0}\subseteq\uparrow\nobreak\!G.

Proof 3.1.

Assume, on the contrary that F\GF\backslash\uparrow\nobreak\!G\neq\varnothing for all FF\in\mathcal{F}. For any F1,F2F_{1},F_{2}\in\mathcal{F}, choose F3F_{3}\in\mathcal{F} such that F3F1F2F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}. Then F3\G(F1F2)\G=(F1\G)(F2\G)F_{3}\backslash\uparrow\nobreak\!G\subseteq(\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2})\backslash\uparrow\nobreak\!G=(\uparrow\nobreak\!F_{1}\backslash\uparrow\nobreak\!G)\cap(\uparrow\nobreak\!F_{2}\backslash\uparrow\nobreak\!G). It is easy to verify that F1\G(F1\G)\uparrow\nobreak\!F_{1}\backslash\uparrow\nobreak\!G\subseteq\uparrow\nobreak\!(F_{1}\backslash\uparrow\nobreak\!G) and F2\G(F2\G)\uparrow\nobreak\!F_{2}\backslash\uparrow\nobreak\!G\subseteq\uparrow\nobreak\!(F_{2}\backslash\uparrow\nobreak\!G). Hence F3\G(F1\G)(F2\G)F_{3}\backslash\uparrow\nobreak\!G\subseteq\uparrow\nobreak\!(F_{1}\backslash\uparrow\nobreak\!G)\cap\uparrow\nobreak\!(F_{2}\backslash\uparrow\nobreak\!G). Thus, {F\G:F}\{F\backslash\uparrow\nobreak\!G:F\in\mathcal{F}\} is a directed family of nonempty finite subsets. By Rudin’s Lemma, there exists a directed set DF(F\G)D\subseteq\bigcup_{F\in\mathcal{F}}(F\backslash\uparrow\nobreak\!G) such that D(F\G)D\cap(F\backslash\uparrow\nobreak\!G)\neq\varnothing for any FF\in\mathcal{F}. For every FF\in\mathcal{F}, choose dFDd_{F}\in D such that dFFGd_{F}\in F\setminus\uparrow\nobreak\!G. Then DFdFF(FG)FFx\bigvee D\in\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!d_{F}\subseteq\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!(F\setminus\uparrow\nobreak\!G)\subseteq\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F\subseteq\uparrow\nobreak\!x. Thus, Dx\bigvee D\geq x. Note that DFFxD\subseteq\bigcup_{F\in\mathcal{F}}F\subseteq\downarrow\nobreak\!x, so Dx\bigvee D\leq x. It follows that D=x\bigvee D=x. By GwxG\ll_{w}x, there exists dDd\in D such that dGd\in\uparrow\nobreak\!G, which contradicts DF(F\G)D\subseteq\bigcup_{F\in\mathcal{F}}(F\backslash\uparrow\nobreak\!G).

Similar to Proposition 2 for exact posets, we have the following result.

Proposition 11.

A dcpo PP is quasiexact if and only if for any xPx\in P, there exists a directed subset \operatornamefinw(x)\mathcal{F}\subseteq\operatorname{fin}_{w}(x) such that FF=x\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F=\uparrow\nobreak\!x.

Proof 3.2.

It is enough to prove the sufficiency. Let xPx\in P and \operatornamefinw(x)\mathcal{F}\subseteq\operatorname{fin}_{w}(x) be a directed family with FF=x\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F=\uparrow\nobreak\!x. Since x=FFG\operatornamefinw(x)Gx\uparrow\nobreak\!x=\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F\supseteq\bigcap_{G\in\operatorname{fin}_{w}(x)}\uparrow\nobreak\!G\supseteq\uparrow\nobreak\!x, it follows that G\operatornamefinw(x)G=x\bigcap_{G\in\operatorname{fin}_{w}(x)}\uparrow\nobreak\!G=\uparrow\nobreak\!x. It remains to show that \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed. Let G1,G2\operatornamefinw(x)G_{1},G_{2}\in\operatorname{fin}_{w}(x). By Lemma 7, we have xG1wx\downarrow\nobreak\!x\cap G_{1}\ll_{w}x and xG2wx\downarrow\nobreak\!x\cap G_{2}\ll_{w}x. By Lemma 8, {xF:F}\{\downarrow\nobreak\!x\cap F:F\in\mathcal{F}\} is a directed collection of nonempty finite subsets of x\downarrow\nobreak\!x. Furthermore, {(xF):F}{F:F}=x\bigcap\{\uparrow\nobreak\!(\downarrow\nobreak\!x\cap F):F\in\mathcal{F}\}\subseteq\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}=\uparrow\nobreak\!x. By Lemma 10, there exists F1,F2F_{1},F_{2}\in\mathcal{F} such that xF1(xG1)\downarrow\nobreak\!x\cap F_{1}\subseteq\uparrow\nobreak\!(\downarrow\nobreak\!x\cap G_{1}) and xF2(xG2)\downarrow\nobreak\!x\cap F_{2}\subseteq\uparrow\nobreak\!(\downarrow\nobreak\!x\cap G_{2}). Choose F3F_{3}\in\mathcal{F} such that xF3(xF1)(xF2)\downarrow\nobreak\!x\cap F_{3}\subseteq\uparrow\nobreak\!(\downarrow\nobreak\!x\cap F_{1})\cap\uparrow\nobreak\!(\downarrow\nobreak\!x\cap F_{2}). Note that (xF1)(xF2)(xG1)(xG2)G1G2\uparrow\nobreak\!(\downarrow\nobreak\!x\cap F_{1})\cap\uparrow\nobreak\!(\downarrow\nobreak\!x\cap F_{2})\subseteq\uparrow\nobreak\!(\downarrow\nobreak\!x\cap G_{1})\cap\uparrow\nobreak\!(\downarrow\nobreak\!x\cap G_{2})\subseteq\uparrow\nobreak\!G_{1}\cap\uparrow\nobreak\!G_{2}. It follows that xF3G1G2\downarrow\nobreak\!x\cap F_{3}\subseteq\uparrow\nobreak\!G_{1}\cap\uparrow\nobreak\!G_{2}. Applying Lemma 7 again, we can conclude xF3\operatornamefinw(x)\downarrow\nobreak\!x\cap F_{3}\in\operatorname{fin}_{w}(x), whence \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed. So PP is quasiexact.

We write \operatornamefin(bl)w(x)={F:F\operatornamefinw(x),Fx}\operatorname{fin}_{(bl)w}(x)=\{F:F\in\operatorname{fin}_{w}(x),F\subseteq\downarrow\nobreak\!x\}. For any F\operatornamefinw(x)F\in\operatorname{fin}_{w}(x), we have xFwx\downarrow\nobreak\!x\cap F\ll_{w}x by Lemma 7. It follows that xF\operatornamefin(bl)w(x)\downarrow\nobreak\!x\cap F\in\operatorname{fin}_{(bl)w}(x). Note that F=xFF=\downarrow\nobreak\!x\cap F for any F\operatornamefin(bl)w(x)F\in\operatorname{fin}_{(bl)w}(x), so \operatornamefin(bl)w(x)={xF:F\operatornamefin(bl)w(x)}{xF:F\operatornamefinw(x)}\operatorname{fin}_{(bl)w}(x)=\{\downarrow\nobreak\!x\cap F:F\in\operatorname{fin}_{(bl)w}(x)\}\subseteq\{\downarrow\nobreak\!x\cap F:F\in\operatorname{fin}_{w}(x)\}. Therefore, \operatornamefin(bl)w(x)={xF:F\operatornamefinw(x)}\operatorname{fin}_{(bl)w}(x)=\{\downarrow\nobreak\!x\cap F:F\in\operatorname{fin}_{w}(x)\}.

Now, we give another characterization of quasiexact dcpos.

Proposition 12.

A dcpo PP is quasiexact if and only if for any xPx\in P, the collection \operatornamefin(bl)w(x)\operatorname{fin}_{(bl)w}(x) is directed and F\operatornamefin(bl)w(x)F=x\bigcap_{F\in\operatorname{fin}_{(bl)w}(x)}\uparrow\nobreak\!F=\uparrow\nobreak\!x.

Proof 3.3.

Note that \operatornamefin(bl)w(x)\operatornamefinw(x)\operatorname{fin}_{(bl)w}(x)\subseteq\operatorname{fin}_{w}(x). The sufficiency is immediately from Proposition 11. For the necessity, assume that PP is quasiexact. Then for each xPx\in P, \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed and {G:G\operatornamefinw(x)}=x\bigcap\{\uparrow\nobreak\!G:G\in\operatorname{fin}_{w}(x)\}=\uparrow\nobreak\!x. By Lemma 8, we have \operatornamefin(bl)w(x)\operatorname{fin}_{(bl)w}(x) is also directed. Note also that \operatornamefin(bl)w(x)={xG:G\operatornamefinw(x)}\operatorname{fin}_{(bl)w}(x)=\{\downarrow\nobreak\!x\cap G:G\in\operatorname{fin}_{w}(x)\}. It follows that F\operatornamefin(bl)w(x)F={(xG):G\operatornamefinw(x)}{G:G\operatornamefinw(x)}=x\bigcap_{F\in\operatorname{fin}_{(bl)w}(x)}\uparrow\nobreak\!F=\bigcap\{\uparrow\nobreak\!(\downarrow\nobreak\!x\cap G):G\in\operatorname{fin}_{w}(x)\}\subseteq\bigcap\{\uparrow\nobreak\!G:G\in\operatorname{fin}_{w}(x)\}=\downarrow\nobreak\!x. On the other hand, \operatornamefin(bl)w(x)\operatornamefinw(x)\operatorname{fin}_{(bl)w}(x)\subseteq\operatorname{fin}_{w}(x), so F\operatornamefin(bl)w(x)F{G:G\operatornamefinw(x)}=x\bigcap_{F\in\operatorname{fin}_{(bl)w}(x)}\uparrow\nobreak\!F\supseteq\bigcap\{\uparrow\nobreak\!G:G\in\operatorname{fin}_{w}(x)\}=\downarrow\nobreak\!x. Hence, {F:F\operatornamefin(bl)w(x)}=x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{(bl)w}(x)\}=\uparrow\nobreak\!x.

Applying Propositions 11 and 12, we can derive the following result.

Theorem 13.

For any dcpo PP, the following statements are equivalent:

  1. (aa)

    PP is quasiexact;

  2. (bb)

    for any xPx\in P, the collection \operatornamefin(bl)w(x)\operatorname{fin}_{(bl)w}(x) is directed and {F:F\operatornamefin(bl)w(x)}=x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{(bl)w}(x)\}=\uparrow\nobreak\!x;

  3. (cc)

    for any xPx\in P, there exists a directed subset \operatornamefinw(x)\mathcal{F}\subseteq\operatorname{fin}_{w}(x) such that FF=x\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F=\uparrow\nobreak\!x;

  4. (dd)

    for any xPx\in P, there exists a directed subset \operatornamefin(bl)w(x)\mathcal{F}\subseteq\operatorname{fin}_{(bl)w}(x) such that FF=x\bigcap_{F\in\mathcal{F}}\uparrow\nobreak\!F=\uparrow\nobreak\!x.

Proposition 14.

The cartesian product iIPi\prod_{i\in I}P_{i} of a family of quasiexact dcpos is a quasiexact dcpo, provided that at most finitely many do not have a bottom element i\perp_{i}.

Proof 3.4.

Obviously, iIPi\prod_{i\in I}P_{i} is a dcpo. Let I0I_{0} be a finite subset of II such that PiP_{i} has i\perp_{i} for any iI\I0i\in I\backslash I_{0} and Γ={J:I0JI,Jis finite}\Gamma=\{J:I_{0}\subseteq J\subseteq I,J~{}\mbox{is finite}\}. Consider each x=(xi)iIiIPix=(x_{i})_{i\in I}\in\prod_{i\in I}P_{i}. Take J={jJFj×iI\J{i}:Fj\operatornamefinw(xj),jJ}\mathcal{F}_{J}=\{\prod_{j\in J}F_{j}\times\prod_{i\in I\backslash J}\{\perp_{i}\}:F_{j}\in\operatorname{fin}_{w}(x_{j}),j\in J\} for any JΓJ\in\Gamma and =JΓJ\mathcal{F}=\bigcup_{J\in\Gamma}\mathcal{F}_{J}. Then \operatornamefinw(x)\mathcal{F}\subseteq\operatorname{fin}_{w}(x).

Claim 1.

{F:F}=x\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}=\uparrow\nobreak\!x.

If y=(yi)iIxy=(y_{i})_{i\in I}\notin\uparrow\nobreak\!x, then there exists j0Ij_{0}\in I such that yj0xj0y_{j_{0}}\notin\uparrow\nobreak\!x_{j_{0}}. By the quasiexactness of Pj0P_{j_{0}}, there exists Fj0\operatornamefinw(xj0)F_{j_{0}}\in\operatorname{fin}_{w}(x_{j_{0}}) such that yj0Fj0y_{j_{0}}\notin\uparrow\nobreak\!F_{j_{0}}. Let J0=I0{j0}J_{0}=I_{0}\cup\{j_{0}\}. Let F0=Fj0×jJ0\{j0}Fj×iI\J{i}F_{0}=F_{j_{0}}\times\prod_{j\in J_{0}\backslash\{j_{0}\}}F_{j}\times\prod_{i\in I\backslash J}\{\perp_{i}\}. Then F0J0F_{0}\in\mathcal{F}_{J_{0}}\subseteq\mathcal{F}, but yF0y\notin\uparrow\nobreak\!F_{0}. It follows that yFj0×jJ0\{j0}Fj×iI\JPi=F0y\notin\uparrow\nobreak\!F_{j_{0}}\times\prod_{j\in J_{0}\backslash\{j_{0}\}}\uparrow\nobreak\!F_{j}\times\prod_{i\in I\backslash J}P_{i}=\uparrow\nobreak\!F_{0}. Therefore, {F:F}x\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}\subseteq\uparrow\nobreak\!x. It follows that y{F:F}y\notin\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}, whence {F:F}=x\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}=\uparrow\nobreak\!x.

Claim 2.

\mathcal{F} is a directed subset of \operatornamefinw(x)\operatorname{fin}_{w}(x).

Let F1,F2F_{1},F_{2}\in\mathcal{F}. Suppose that F1=jJ1Fj1×iI\J{i}J1F_{1}=\prod_{j^{\prime}\in J_{1}}F_{j^{\prime}_{1}}\times\prod_{i\in I\backslash J}\{\perp_{i}\}\in\mathcal{F}_{J_{1}} and F2=j′′J2Fj2′′×iI\J{i}J2F_{2}=\prod_{j^{\prime\prime}\in J_{2}}F_{j^{\prime\prime}_{2}}\times\prod_{i\in I\backslash J}\{\perp_{i}\}\in\mathcal{F}_{J_{2}}, where J1,J2J_{1},J_{2} are finite and I0J1,J2II_{0}\subseteq J_{1},J_{2}\subseteq I, moreover, Fj1\operatornamefinw(xj)F_{j^{\prime}_{1}}\in\operatorname{fin}_{w}(x_{j^{\prime}}), Fj2′′\operatornamefinw(xj′′)F_{j^{\prime\prime}_{2}}\in\operatorname{fin}_{w}(x_{j^{\prime\prime}}) for any jJ1j^{\prime}\in J_{1}, j′′J2j^{\prime\prime}\in J_{2}. For any jJ1J2j\in J_{1}\cap J_{2}, Fj1,Fj2\operatornamefinw(xj)F_{j_{1}},F_{j_{2}}\in\operatorname{fin}_{w}(x_{j}). Note that \operatornamefinw(xj)\operatorname{fin}_{w}(x_{j}) is directed. Choose Fj3\operatornamefinw(xj)F_{j_{3}}\in\operatorname{fin}_{w}(x_{j}) such that Fj3Fj1Fj2F_{j_{3}}\subseteq\uparrow\nobreak\!F_{j_{1}}\cap\uparrow\nobreak\!F_{j_{2}}. For any kJ1\J2k^{\prime}\in J_{1}\backslash J_{2} and k′′J2\J1k^{\prime\prime}\in J_{2}\backslash J_{1}, obviously, Fk1Fk1kF_{k^{\prime}_{1}}\subseteq\uparrow\nobreak\!F_{k^{\prime}_{1}}\cap\uparrow\nobreak\!\bot_{k^{\prime}} and Fk2′′Fk2′′k′′F_{k^{\prime\prime}_{2}}\subseteq\uparrow\nobreak\!F_{k^{\prime\prime}_{2}}\cap\uparrow\nobreak\!\bot_{k^{\prime\prime}}. Put J3=J1J2J_{3}=J_{1}\cup J_{2} and

F3=jJ1J2Fj3×kJ1\J2Fk×k′′J2\J1Fk′′×iI\J3{i}.F_{3}=\prod_{j\in J_{1}\cap J_{2}}F_{j_{3}}\times\prod_{k^{\prime}\in J_{1}\backslash J_{2}}F_{k^{\prime}}\times\prod_{k^{\prime\prime}\in J_{2}\backslash J_{1}}F_{k^{\prime\prime}}\times\prod_{i\in I\backslash J_{3}}\{\perp_{i}\}.

Then F3J3F_{3}\in\mathcal{F}_{J_{3}}, J3J_{3} is finite and I0J3II_{0}\subseteq J_{3}\subseteq I. Obviously, F3F1F2F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}.

By Proposition 11, JPjJ\prod_{J}P_{j\in J} is quasiexact.

Some relationships among quasiexact dcpos, weak domains and quasicontinuous domains are shown in the following result.

Proposition 15.
  1. (1)

    Every exact dcpo is quasiexact. Hence, every weak domain is a quasiexact dcpo.

  2. (2)

    Every quasicontinuous domain is a quasiexact dcpo.

Proof 3.5.

(i) Let PP be an exact poset. For any xPx\in P, let ={{d}:dwx}\mathcal{F}=\{\{d\}:d\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x\}. Note that wx\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x is directed with wx=x\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x=x. Then \mathcal{F} is directed and

{F:F}={d:dwx}=(wx)=x.\begin{array}[]{ll}&\bigcap\{\uparrow\nobreak\!F:F\in\mathcal{F}\}\\ =&\bigcap\{\uparrow\nobreak\!d:d\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x\}\\ =&\uparrow\nobreak\!(\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x)\\ =&\uparrow\nobreak\!x.\end{array}

By Proposition 11, PP is quasiexact.

(ii) Assume that PP is a quasicontinuous domain. Obviously, PP is a dcpo. Let xPx\in P. By the assumption and Lemma 1 (1), we get that \operatornamefin(x)\operatorname{fin}(x) is a directed subset of \operatornamefinw(x)\operatorname{fin}_{w}(x) with {F:F\operatornamefin(x)}=x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}(x)\}=\uparrow\nobreak\!x. By Proposition 11, PP is quasiexact.

Quasiexact posets have some weak and quasicontinuous domain-like features, so this terminology seems appropriate.

Shen et al. [16] used two examples to show that quasicontinuous domains need not be weak domains, and that weak domains need not be quasicontinuous domains. Precisely, Example 3.11 in [16] shows that quasicontinuous domains are not necessarily exact, and Example 3.12 in [16] shows that weak domains are not necessarily quasicontinuous.

Here, we shall elaborate some more detailed relationships than those in [16].

The following example shows that quasicontinuous domains are not necessarily weakly increasing. Since every quasicontinuous domain is quasiexact, this example also shows that quasiexact posets need not to be exact or weakly increasing.

Example 3.6.

Let P={a,b,c,d}{xn:n}P=\{a,b,c,d\}\cup\{x_{n}:n\in\mathbb{N}\} with the order

  1. (i)

    a<b<c<da<b<c<d;

  2. (ii)

    xm<xnx_{m}<x_{n} whenever m<nm<n and m,nm,n\in\mathbb{N};

  3. (iii)

    xn<cx_{n}<c for any nn\in\mathbb{N},

where {a,b,c,d}{xn:n}=\{a,b,c,d\}\cap\{x_{n}:n\in\mathbb{N}\}=\varnothing, see Figure 1.

Refer to caption
Figure 1: An exact quasicontinuous domain in which w\ll_{w} is not weakly increasing

In this example, we can trivially check the following facts.

  1. (iv)

    If x{a,b,c}x\in\{a,b,c\}, then F\operatornamefin(x)F\in\operatorname{fin}(x) if and only if F{xn:n};F\cap\{x_{n}:n\in\mathbb{N}\}\neq\varnothing;

  2. (v)

    If x{xn:n}{d}x\in\{x_{n}:n\in\mathbb{N}\}\cup\{d\}, then F\operatornamefin(x)F\in\operatorname{fin}(x) if and only if Fx.F\cap\downarrow\nobreak\!x\neq\varnothing.

It is also trivial to check that \operatornamefin(x)\operatorname{fin}(x) is directed with {F:F\operatornamefin(x)}=x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}(x)\}=\uparrow\nobreak\!x for every xPx\in P, whence PP is a quasicontinuous domain. However, the relation w\ll_{w} is not weakly increasing. Note that awbcwda\ll_{w}b\leq c\ll_{w}d. Consider the directed set D={xn:n}D=\{x_{n}:n\in\mathbb{N}\}. Obviously, D=c\bigvee D=c, but xn⩾̸ax_{n}\ngeqslant a for any nn\in\mathbb{N}. Hence, awca\ll_{w}c does not hold. For the point cPc\in P, it is trivial to verify that c={xn:n}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}c=\{x_{n}:n\in\mathbb{N}\}, whence c=c\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}c=c. Hence, PP is exact.

The following example shows that quasicontinuous domains need not be exact, even when the relation w\ll_{w} is weakly increasing.

Example 16

Let P=(×{1,2}){}P=(\mathbb{N}\times\{1,2\})\cup\{\top\} and define an order by the following rules:

  1. (i)

    (m,i)<(n,i)(m,i)<(n,i) if m<nm<n for all m,nm,n\in\mathbb{N} and i=1,2i=1,2;

  2. (ii)

    (n,i)<(n,i)<\top for all nn\in\mathbb{N} and i=1,2i=1,2 (see Figure 2).

Refer to caption
Figure 2: A non-exact quasicontinuous domain with w\ll_{w} weakly increasing

In this example, for any finite set FPF\subseteq P, F(m,1)F\ll(m,1) if and only if F(m,1)F\cap\downarrow\nobreak\!(m,1)\neq\varnothing and F{(n,2):n}F\cap\{(n,2):n\in\mathbb{N}\}\neq\varnothing; F(m,2)F\ll(m,2) if and only if F(m,2)F\cap\downarrow\nobreak\!(m,2)\neq\varnothing and F{(n,1):n}F\cap\{(n,1):n\in\mathbb{N}\}\neq\varnothing; FF\ll\top if and only if F{(n,1):n}F\cap\{(n,1):n\in\mathbb{N}\}\neq\varnothing and F{(n,2):n}F\cap\{(n,2):n\in\mathbb{N}\}\neq\varnothing. It is easy to verify that PP is a quasicontinuous domain. Thus, PP is quasiexact. Note also that for any finite set FF, Fw(n,i)F\ll_{w}(n,i) if and only if F(n,i)F\cap\downarrow\nobreak\!(n,i)\neq\varnothing, where i=1,2i=1,2; FwF\ll_{w}\top if and only if F{(n,1):n}F\cap\{(n,1):n\in\mathbb{N}\}\neq\varnothing and F{(n,2):n}F\cap\{(n,2):n\in\mathbb{N}\}\neq\varnothing. It is trivial to verify that the relation w\ll_{w} is weakly increasing. However, PP is not exact. Consider the top element \top. For any (m,1)(m,1) and mm\in\mathbb{N}, consider the directed set D={(n,2):n}D=\{(n,2):n\in\mathbb{N}\}. Then D=(m,1)\bigvee D=\top\geq(m,1), but (n,2)⩾̸(m,1)(n,2)\ngeqslant(m,1) for any (n,2)(n,2) and nn\in\mathbb{N}. Thus, (m,1)w(m,1)\notin\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}\top. Similarly, we can verify that (m,2)w(m,2)\notin\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}\top and w\top\notin\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}\top for any ii\in\mathbb{N}. It follows that w=\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}\top=\varnothing. Hence, PP is not exact.

Examples 3.6 and 16 in the current paper also shows that quasiexacnesst does not imply stronger properties of w\ll_{w}.

We take Johnstone’s dcpo to illustrate that weak domains are not necessarily quasicontinuous domain, hence quasiexact dcpos with the relation w\ll_{w} weakly increasing are not necessarily quasicontinuous.

Example 17

(Johnstone space) Let 𝕁=×({ω})\mathbb{J}=\mathbb{N}\times(\mathbb{N}\cup\{\omega\}) with ordering defined by

  1. (i)

    (a,m)<(a,n)(a,m)<(a,n) if m<nm<n for all a,m,na,m,n\in\mathbb{N};

  2. (ii)

    (a,m)<(b,ω)(a,m)<(b,\omega) if mbm\leq b for all a,b,ma,b,m\in\mathbb{N}.

In this example, one can easily check the following fact: For any m,nm,n\in\mathbb{N}, w(m,n)=(m,n)\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}(m,n)=\downarrow\nobreak\!(m,n) and w(m,ω)={(m,n):n}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}(m,\omega)=\{(m,n):n\in\mathbb{N}\}, whence, w(m,n)=(m,n)\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}(m,n)=(m,n) and w(m,ω)=(m,ω)\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}(m,\omega)=(m,\omega). Thus, 𝕁\mathbb{J} is exact. It is trivial to show that w\ll_{w} is weakly increasing. However, 𝕁\mathbb{J} is not quasicontinuous. By the result in [6, Exercise 8.2.14], 𝕁\mathbb{J} is a dcpo with the Scott space Σ(𝕁)\Sigma(\mathbb{J}) non-sober. It follows that PP is not quasicontinuous.

4 The wf topology and moderate meet continuity

In this section, we investigate the links between the quasiexactness and some topologies on posets.

In [14], when the family {wx:xP}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in P\} generates a topology on a poset PP, then this topology is called the weak way-below topology (wwb topology, for short), denoted by τwwb(P)\tau_{wwb}(P). The topological space (P,τwwb(P))(P,\tau_{wwb}(P)) is simply written as (P,τwwb)(P,\tau_{wwb}).

For the following result, we refer the reader to the Theorems 3.8 and 3.10 in [14].

Lemma 18.

[14] Let PP be an exact poset. Then {wx:xP}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in P\} generates the wwb topology, which is finer than the Scott topology.

For any subset FPF\subseteq P, we write wF={aP:Fwa}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F=\{a\in P:F\ll_{w}a\}. Whenever F={x}F=\{x\} for some xPx\in P, we replace w{x}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}\{x\} with wx\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x.

Lemma 19.

If PP is a quasiexact poset, then {wF:FP,Fis finite}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F:F\subseteq P,F~{}\emph{\mbox{is finite}}\} generates a topology on PP.

Proof 4.1.

For any aPa\in P, \operatornamefinw(a)\operatorname{fin}_{w}(a) is directed with {F:F\operatornamefinw(a)}=a\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{w}(a)\}=\uparrow\nobreak\!a. Thus, \operatornamefinw(a)\operatorname{fin}_{w}(a)\neq\varnothing. Choose arbitrarily F\operatornamefinw(a)F\in\operatorname{fin}_{w}(a), then awFa\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F.

Let F1,F2F_{1},F_{2} be finite sets in PP with bwF1wF2b\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F_{1}\cap\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F_{2}, i.e., F1wbF_{1}\ll_{w}b and F2wbF_{2}\ll_{w}b. Note that \operatornamefinw(b)\operatorname{fin}_{w}(b) is directed. There exists F3\operatornamefinw(b)F_{3}\in\operatorname{fin}_{w}(b) such that F3F1F2F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}. For any ePe\in P, if F3weF_{3}\ll_{w}e, then F1,F2weF_{1},F_{2}\ll_{w}e, so bwF3wF1wF2b\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F_{3}\subseteq\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F_{1}\cap\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F_{2}.

Whenever the family {wF:FP,Fis finite}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F:F\subseteq P,F~{}\mbox{is finite}\} generates a topology on PP, we call it the weak way-below finitely determined topology (briefly, wf topology) on PP, denoted by τwf(P)\tau_{wf}(P). The topological space (P,τwf(P))(P,\tau_{wf}(P)) will be simply written as (P,τwf)(P,\tau_{wf}).

Remark 20.
  1. (1)

    For any quasiexact poset PP, we have wF\operatornameintτwf(F)\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F\subseteq\operatorname{int}_{\tau_{wf}}(\uparrow\nobreak\!F) for every F𝒫(P)F\in\mathcal{P}^{*}(P).

  2. (2)

    If a poset PP admits both the wwb topology and the wf topology, then τwwb(P)τwf(P)\tau_{wwb}(P)\subseteq\tau_{wf}(P).

By Lemma 18 and Remark 20 (2), we have the following result.

Lemma 21.

If PP is an exact poset, then σ(P)τwf(P)\sigma(P)\subseteq\tau_{wf}(P).

Note that every quasicontinuous dcpo admits the wf topology. However, the following example shows that quasicontinuous dcpos do not necessarily admit the wwb topology.

Example 22

Consider the set P=(×{1,2}){}P=(\mathbb{N}\times\{1,2\})\cup\{\top\} with the order defined in Example 16, which shows that PP is quasicontinuous dcpo. It is trivial to check the following facts:

  1. (i)

    w(n,i)={(m,i):mn,m}\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}(n,i)=\{(m,i):m\geq n,m\in\mathbb{N}\} for any nn\in\mathbb{N} and i=1,2i=1,2;

  2. (ii)

    w=\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}\top=\varnothing.

Note that the family {wx:xP}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in P\} can not cover \top. Thus, {wx:xP}\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in P\} can not generate the wwb topology.

Mushburn [14] constructed an example to show the wwb topology can be strictly finer than the Scott topology.

Proposition 23.

A poset PP is quasiexact if for any nonempty HPH\subseteq P and any xPx\in P, HwxH\ll_{w}x implies there exists a finite FHF\subseteq\uparrow\nobreak\!H such that FwxF\ll_{w}x.

Proof 4.2.

It is trivial to verify that \operatornamefinw()\operatorname{fin}_{w}(\bot) is directed with {F:Fw}=\bigcap\{\uparrow\nobreak\!F:F\ll_{w}\bot\}=\bot whenever the bottom element \bot exists. Without loss of generality, assume that xx\neq\bot. Note that xP\uparrow\nobreak\!x\subsetneqq P. For any yxy\notin\uparrow\nobreak\!x, we show PywxP\setminus\downarrow\nobreak\!y\ll_{w}x. Otherwise, there exists a directed set DD with D=x\bigvee D=x, but D(Py)=D\cap(P\setminus\downarrow\nobreak\!y)=\varnothing since PyP\setminus\downarrow\nobreak\!y is an upper set. Thus, DyD\subseteq\downarrow\nobreak\!y. It follows that x=Dyx=\bigvee D\leq y, a contradiction. By the hypothesis, there exists a finite set FPyF\subseteq P\setminus\downarrow\nobreak\!y such that FwxF\ll_{w}x. This implies that \operatornamefinw(x)\operatorname{fin}_{w}(x)\neq\varnothing. Furthermore, note that FPy\uparrow\nobreak\!F\subseteq P\setminus\downarrow\nobreak\!y. Then Fy=\uparrow\nobreak\!F\cap\downarrow\nobreak\!y=\varnothing. It follows that yFy\notin\uparrow\nobreak\!F. Hence, {F:F\operatornamefinw(x)}x\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}_{w}(x)\}\subseteq\uparrow\nobreak\!x. It remains to show that \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed. For this, let Fi\operatornamefinw(x)F_{i}\in\operatorname{fin}_{w}(x) and i=1,2i=1,2. We show that F1F2wx\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}\ll_{w}x. For any directed set DD, if D=x\bigvee D=x, then DFiD\cap\uparrow\nobreak\!F_{i}\neq\varnothing, i.e, there exists diDd_{i}\in D and eiFie_{i}\in F_{i} such that dieid_{i}\geq e_{i} for i=1,2i=1,2. Choose d3Dd_{3}\in D such that d3did_{3}\geq d_{i} for i=1,2i=1,2. Then d3eid_{3}\geq e_{i} for i=1,2i=1,2. It follows that F1F2wx\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2}\ll_{w}x. Note that F1F2\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2} is an upper set. By the hypothesis, there exists a finite set F3F1F2F_{3}\subseteq\uparrow\nobreak\!F_{1}\cap\uparrow\nobreak\!F_{2} such that F3wxF_{3}\ll_{w}x. Therefore, \operatornamefinw(x)\operatorname{fin}_{w}(x) is directed.

Proposition 24.

Any poset that has no infinite antichain is quasiexact.

Proof 4.3.

Assume that PP is a poset with no infinite antichain. For any nonempty HPH\subseteq P and any xPx\in P, if HwxH\ll_{w}x, then by Zorn’s lemma we can pick a maximal antichain AA in Hx\uparrow\nobreak\!H\setminus\uparrow\nobreak\!x. Note that F=A{x}F=A\cup\{x\} is finite, contained in H\uparrow\nobreak\!H. We show FwxF\ll_{w}x. For this, let DD be a directed set with D=x\bigvee D=x. Since HwxH\ll_{w}x, eventually, DD is in H\uparrow\nobreak\!H. If d=xd=x for some dDd\in D, then dDFd\in D\cap\uparrow\nobreak\!F. Otherwise, dxd\notin\uparrow\nobreak\!x for any dDd\in D. If there exists dDHd\in D\cap\uparrow\nobreak\!H such that dAAd\notin\uparrow\nobreak\!A\cup\downarrow\nobreak\!A, then dd is incomparable with each aAa\in A. Note that dxd\notin\uparrow\nobreak\!x and that AA is an antichain in Hx\uparrow\nobreak\!H\setminus\uparrow\nobreak\!x. It follows that A{d}A\cup\{d\} is also an antichain in Hx\uparrow\nobreak\!H\setminus\uparrow\nobreak\!x, contradicting the maximality of AA. So DHAAD\cap\uparrow\nobreak\!H\subseteq\uparrow\nobreak\!A\cup\downarrow\nobreak\!A. It cannot be the case DAD\subseteq\downarrow\nobreak\!A since Dx\bigvee D\geq x. Note that every dd large enough in DD is in H\uparrow\nobreak\!H, hence in AA\uparrow\nobreak\!A\cup\downarrow\nobreak\!A, but not all of them in A\downarrow\nobreak\!A, and those that are not must be in A\uparrow\nobreak\!A. Thus, DFDAD\cap\uparrow\nobreak\!F\supseteq D\cap\uparrow\nobreak\!A\neq\varnothing. Applying Proposition 23, we conclude that PP is quasiexact.

Following the characterization of meet continuous posets by means of Scott topology, we define the following meet continuity.

Definition 25

A poset PP admitting the wf topology is said to be moderately meet continuous if for any xPx\in P and directed subset DD, xDx\leq\bigvee D implies that x\operatornameclτwf(Dx)x\in\operatorname{cl}_{\tau_{wf}}(\downarrow\nobreak\!D\cap\downarrow\nobreak\!x).

Lemma 26.

Let PP be a moderately meet continuous poset. Then \operatornameintτwf(F){wx:xF}\operatorname{int}_{\tau_{wf}}(\uparrow\nobreak\!F)\subseteq\bigcup\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in F\} for any F𝒫(P)F\in\mathcal{P}^{*}(P).

Proof 4.4.

For convenience, we write \operatornameintτwf(F)=U\operatorname{int}_{\tau_{wf}}(\uparrow\nobreak\!F)=U and let F={x1,x2,,xn}F=\{x_{1},x_{2},\cdots,x_{n}\}. Assume xUx\in U, but y{wx:xF}y\notin\bigcup\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in F\}, that is, xiwyx_{i}\ll_{w}y does not hold for any i=1,2,,ni=1,2,\cdots,n. Thus, there exists a directed subset DiPD_{i}\subseteq P such that Di=y\bigvee D_{i}=y, but xiDix_{i}\notin\downarrow\nobreak\!D_{i}. By the moderately meet continuity, y\operatornameclτwf(D1y)y\in\operatorname{cl}_{\tau_{wf}}(\downarrow\nobreak\!D_{1}\cap\downarrow\nobreak\!y). Since yUy\in U and Uτwf(P)U\in\tau_{wf}(P), then U(D1y)U\cap(\downarrow\nobreak\!D_{1}\cap\downarrow\nobreak\!y)\neq\varnothing. Pick z1UD1yz_{1}\in U\cap\downarrow\nobreak\!D_{1}\cap\downarrow\nobreak\!y. Note that z1y=D2z_{1}\leq y=\bigvee D_{2}. By the moderately meet continuity again, we have z1\operatornameclτwf(D2z1)z_{1}\in\operatorname{cl}_{\tau_{wf}}(\downarrow\nobreak\!D_{2}\cap\downarrow\nobreak\!z_{1}), whence UD2z1U\cap\downarrow\nobreak\!D_{2}\cap\downarrow\nobreak\!z_{1}\neq\varnothing. Pick z2UD2z1z_{2}\in U\cap\downarrow\nobreak\!D_{2}\cap\downarrow\nobreak\!z_{1}. The rest can be done in the same manner. In other words, we can pick ziUDizi1z_{i}\in U\cap\downarrow\nobreak\!D_{i}\cap\downarrow\nobreak\!z_{i-1} for any ii (1in1\leq i\leq n). Note that zizi1z_{i}\leq z_{i-1} and zi1Di1z_{i-1}\in\downarrow\nobreak\!D_{i-1} for all ii. It follows that znDiz_{n}\in\downarrow\nobreak\!D_{i} for all ii. Thus, zni=1nDiz_{n}\in\bigcap^{n}_{i=1}\downarrow\nobreak\!D_{i}. Also note that znU=intτwf(F)Fz_{n}\in U=\mbox{int}_{\tau_{wf}}(\uparrow\nobreak\!F)\subseteq\uparrow\nobreak\!F. Hence, there exists i0i_{0} (1i0n1\leq i_{0}\leq n) such that xi0znDi0x_{i_{0}}\leq z_{n}\in\downarrow\nobreak\!D_{i_{0}}, showing that xi0Di0x_{i_{0}}\in\downarrow\nobreak\!D_{i_{0}}, a contradiction. Therefore, \operatornameintτwf(F){wx:xF}\operatorname{int}_{\tau_{wf}}(\uparrow\nobreak\!F)\subseteq\bigcup\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in F\}.

Applying Lemmas 4 (3), 26 and Remark 20 , we derive the following conclusion.

Corollary 27.

Let PP be a moderately meet continuous quasiexact poset. Then

wF={wx:xF}=\operatornameintτwf(F)\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}F=\bigcup\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in F\}=\operatorname{int}_{\tau_{wf}}(\uparrow\nobreak\!F)

for any F𝒫(P)F\in\mathcal{P}^{*}(P).

By Remark 20 (2) and Corollary 27, we deduce the following result strengthening Mushburn’s result in [14, Theorem 10].

Theorem 28.

If PP is a moderately meet continuous quasiexact poset, then σ(P)τwwb(P)=τwf(P)\sigma(P)\subseteq\tau_{wwb}(P)=\tau_{wf}(P).

Theorem 29.

Every moderately meet continuous quasiexact poset is exact and meet continuous.

Proof 4.5.

Let PP be a moderately meet continuous quasiexact. To show that PP is exact, we consider any aPa\in P.

Claim 1.

wa\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a is directed.

Let y1,y2way_{1},y_{2}\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a. Then {y1},{y2}\operatornamefinbl(w)(a)\{y_{1}\},\{y_{2}\}\in\operatorname{fin}_{bl(w)}(a). By the hypothesis, there exists F\operatornamefinbl(w)(a)F\in\operatorname{fin}_{bl(w)}(a) such that Fy1y2F\subseteq\uparrow\nobreak\!y_{1}\cap\uparrow\nobreak\!y_{2}. By Corollary 27, we have a{wx:xF}a\in\bigcup\{\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadrightarrow$}}_{w}x:x\in F\}. So there exists xFx\in F such that xwax\ll_{w}a. Note that Fy1y2F\subseteq\uparrow\nobreak\!y_{1}\cap\uparrow\nobreak\!y_{2}, then xy1x\geq y_{1} and xy2x\geq y_{2}.

Claim 2.

{y:ywa}=a\bigcap\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a\}=\uparrow\nobreak\!a.

Obviously, {y:ywa}a\bigcap\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a\}\supseteq\uparrow\nobreak\!a. For any F\operatornamefinbl(w)(a)F\in\operatorname{fin}_{bl(w)}(a), by Corollary 27, we can pick aFFa_{F}\in F such that aFwaa_{F}\ll_{w}a. Then {yF:F\operatornamefinbl(w)(x)}{y:ywx}\{\uparrow\nobreak\!y_{F}:F\in\operatorname{fin}_{bl(w)}(x)\}\subseteq\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x\}. It follows that {y:ywx}{yF:F\operatornamefinbl(w)(x)}{F:F\operatornamefinblw(x)}=x\bigcap\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}x\}\subseteq\bigcap\{\uparrow\nobreak\!y_{F}:F\in\operatorname{fin}_{bl(w)}(x)\}\subseteq\bigcap\{\uparrow\nobreak\!F:F\in\operatorname{fin}^{w}_{bl}(x)\}=\uparrow\nobreak\!x. Hence, {y:ywa}=a\bigcap\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a\}=\uparrow\nobreak\!a. Note that (wa)={y:ywa}\uparrow\nobreak\!(\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a)=\bigcap\{\uparrow\nobreak\!y:y\in\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a\}. So wa=a\bigvee\mathord{\rotatebox[origin={c}]{90.0}{$\twoheadleftarrow$}}_{w}a=a.

By Proposition 2, we conclude that PP is exact.

For any xPx\in P and directed set DPD\subseteq P, if x\operatornameclτwf(Dx)x\in\operatorname{cl}_{\tau_{wf}}(\downarrow\nobreak\!D\cap\downarrow\nobreak\!x), then by Lemma 21 and the definition of closure, we have \operatornameclτwf(Dx)\operatornameclσ(Dx)\operatorname{cl}_{\tau_{wf}}(\downarrow\nobreak\!D\cap\downarrow\nobreak\!x)\subseteq\operatorname{cl}_{\sigma}(\downarrow\nobreak\!D\cap\downarrow\nobreak\!x). Therefore, PP is meet continuous.

Shen et al. [16] showed that every meet continuous weak domain is a domain. By Proposition 29, we conclude the following result.

Corollary 30.

A poset PP is a domain if PP is a moderately meet continuous quasiexact dcpo with the relation w\ll_{w} weakly increasing.

In this paper, we explored the quasiexact posets, parallel to the quasicontinuous posets. A new topology, the wf topology on posets is introduced and used to define the moderately meet continuous posets. Although several results on such structures have been obtained, we still have basic problems to solve as illustrated below.

Problem 1. What is the property pp such that a poset PP is exact if and only if it is quasiexact and has property pp?

It is known that a poset PP is continuous if and only if it is quasicontinuous and meet continuous [17]. However, we still do not have a similar result for exact posets. It is only proved that every exact poset is quasiexact.

Problem 2. Under what conditions, a quasiexact dcpo is quasicontinuous?

At the moment we just know that every quasicontinuous dcpo is quasiexact. It would be ideal if we could find a property qq such that a dcpo is quasicontinuous if and only if it is quasiexact and has property qq.

Acknowledgements

We thank Professor Guohua Wu in Nanyang Technological University for his valuable suggestions.

References

  • [1] G. Birkhoff, “Lattice Theory,” Vol. 25. American Mathematical Society Colloquium Publications, 1967. ISBN: 9780821810255
  • [2] B. Coecke and K. Martin, A partial order on classical and quantum states, in: New Structures in Physics, Lecture Notes in Physics 813, Springer Verlag (2010), pp. 593-683.
    https://doi.org/10.1007/978-3-642-12821-9_10 Available online at
    https://www.cs.ox.ac.uk/techreports/oucl/rr-02-07.html
  • [3] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, 2003. ISBN: 9780521803380
  • [4] G. Gierz and J. Lawson, Generalized continuous and hypercontinuous lattices, The Rocky Mountain Journal of Mathematics, 11 (1981), 271-296.
    https://www.jstor.org/stable/44236598
  • [5] G. Gierz, J. D. Lawson, and A. R. Stralka, Quasicontinuous posets, Houston Journal of Mathematics, 9 (2) (1983), 191-208.
    https://www.math.uh.edu/~hjm/vol09-2.html
  • [6] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, Selected Topics in Point-set Topology, Vol. 22, Cambridge University Press, 2013. ISBN: 9781107034136
  • [7] K. H. Hofmann and A. R. Stralka, The algebraic theory of compact Lawson semilattices: applications of Galois connections to compact semilattices, Dissertationes Mathematicae, 137 (1976), 1-54. Avcailable online at:
    http://eudml.org/doc/268477
  • [8] J. R. Isbell, Meet-continuous lattices, Symposia Mathematica, Vol. XVI (Convegno sui Gruppi Topologici e Gruppi di Lie, INDAM, Rome, 1974), pp. 41–54. Academic Press, London, 1975.
  • [9] H. Kou, Y. Liu and M. Luo, On meet continuous dcpo, Domain and Process \@slowromancapii@, Semantic Structures in Computation. Kluwer, 2001. DOI:
    https://doi.org/10.1007/978-94-017-1291-0_5
  • [10] M. E. Rudin, Directed sets which converge, In L.F. McAuley and M.M. Rao, editors, General Topology and Modern Analysis, University of California, Riverside, 1980, pages 305–307. Academic Press, 1981. ISBN: 012481820X
  • [11] D. S. Scott, Outline of a mathematical of theory of computation, Proceedings of the Fourth Annual Princeton Conference on Information Sciences and System, Princeton University Press, 1970, 169-176. Available online at:
    https://www.cs.ox.ac.uk/publications/publication3720-abstract.html
  • [12] D. S. Scott, Continuous lattices, in: Toposes, algebraic geometry and logic, Springer Lecture Notes in Mathematics 274, Springer-Verlag, 1974, pp. 97-136.
    https://doi.org/10.1007/BFb0073967 Available online at:
    https://www.cs.ox.ac.uk/files/3229/PRG07.pdf
  • [13] M. B. Smyth, Powerdomains, Coventry, UK: Department of Computer Science. (Theory of Computation Report). CS-RR-012, 1976. Available online at:
    http://wrap.warwick.ac.uk/46313/1/WRAP_Smyth_cs-rr-012.pdf
  • [14] J. Mashburn, A comparison of three topologies on ordered sets, Topology Proceedings, 31 (1) (2007), 197-217. Available online at:
    https://ecommons.udayton.edu/mth_fac_pub/18
  • [15] J. Mashburn, Linearly ordered topological spaces and weak domain representability, Topology Proceedings, 35 (2010), 149-164. Available online at:
    https://ecommons.udayton.edu/mth_fac_pub/20
  • [16] C. Shen, G. Wu and D. Zhao, Weak domain models of T1T_{1} spaces, Electronic Notes in Theoretical Computer Science, 345 (2019), 219-232.
    https://doi.org/10.1016/j.entcs.2019.07.025
  • [17] X. Mao and L. Xu, Quasicontinuity of posets via Scott topology and sobrification. Order, 23 (2006), 359-369.
    https://doi.org/10.1007/s11083-007-9054-4
  • [18] X. Mao and L. Xu, Meet continuity properties of posets. Theoretical Computer Science, 410 (2009), 4234-4240.
    https://doi.org/10.1016/j.tcs.2009.06.017