This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasi two-dimensional magnetism in spin-12\frac{1}{2} square lattice compound Cu[C6H2(COO)4][H3N-(CH2)2-NH3]\cdot3H2O

S. Guchhait School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Kerala, India    S. Baby Department of Chemistry, Christian College Chengannur, Alappuzha, Kerala-689122, India    M. Padmanabhan Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala-690525, India    A. Medhi    R. Nath [email protected] School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Kerala, India
Abstract

We report the crystal growth and structural and magnetic properties of quasi two-dimensional S=1/2S=1/2 quantum magnet Cu[C6H2(COO)4][H3N-(CH2)2-NH3]\cdot3H2O. It is found to crystallize in a monoclinic structure with space group C2/mC2/m. The CuO4 plaquettes are connected into a two-dimensional framework in the abab-plane through the anions of [C6H2(COO)4]4- (pyromellitic acid). The [H3N-(CH2)2-NH3]2+\cdot3H2O groups are located between the layers and provide a weak interlayer connection via hydrogen (H…O) bonds. The temperature dependent magnetic susceptibility is well described by S=1/2S=1/2 frustrated square lattice (J1J2J_{1}-J_{2}) model with nearest-neighbor interaction J1/kB5.35J_{1}/k_{\rm B}\simeq 5.35 K and next-nearest-neighbor interaction J2/kB0.01J_{2}/k_{\rm B}\simeq-0.01 K. Even, our analysis using frustrated rectangular lattice (J1a,bJ2J_{1a,b}-J_{2}) model confirms almost isotropic nearest-neighbour interactions (J1a/kB5.31J_{\rm 1a}/k_{\rm B}\simeq 5.31 K and J1b/kB5.38J_{\rm 1b}/k_{\rm B}\simeq 5.38 K) in the abab-plane and J2/kB0.24J_{2}/k_{\rm B}\simeq-0.24 K. Further, the isothermal magnetization at T=1.9T=1.9 K is also well described by a non-frustrated square lattice model with J1/kB5.2J_{1}/k_{\rm B}\simeq 5.2 K. Based on the J2/J1J_{2}/J_{1} ratio, the compound can be placed in the Néel antiferromagnetic state of the J1J2J_{1}-J_{2} phase diagram. No signature of magnetic long-range-order was detected down to 2 K.

pacs:
75.30.Et, 75.50.Ee, 75.40.Cx, 75.50.-y, 75.10.Jm

I Introduction

Quasi-two-dimensional (2D) antiferromagnets are ideal materials to study the interplay between quantum fluctuations and magnetic frustration due to competing interactions. Frustrated square lattice (FSL or J1J2J_{1}-J_{2} model) model is the best known example in this category. The Hamiltonian of the isotropic FSL model can be written as

^=J1ij1NSiSj+J2ij2NSiSj,\hat{\mathcal{H}}=J_{1}\sum_{\langle ij\rangle_{1}}^{N}S_{i}\cdot S_{j}+J_{2}\sum_{\langle ij\rangle_{2}}^{N}S_{i}\cdot S_{j}, (1)

where J1J_{1} and J2J_{2} are the nearest-neighbour (NN) (along the edge) and next-nearest-neighbour (NNN) (along the diagonal) interactions, respectively in a square. The classically possible ground states in this model are determined by the frustration angle ϕ=tan1(J2/J1)\phi=\text{tan}^{-1}(J_{2}/J_{1}).Shannon et al. (2004) There are three possible order states: Néel antiferromagnetic (NAF, 0.5πϕ0.15π-0.5\pi\leq\phi\leq 0.15\pi), columnar antiferromagnetic (CAF, 0.15πϕ0.85π0.15\pi\leq\phi\leq 0.85\pi), and ferromagnetic (FM, 0.85πϕ0.5π0.85\pi\leq\phi\leq-0.5\pi) states with wave vectors (QxQ_{x}, QyQ_{y}) = (π\pi, π\pi), [(π\pi, 0) or (0, π\pi)], and (0, 0), respectively.Shannon et al. (2006); Schmidt and Thalmeier (2017) The transition regimes NAF/CAF and CAF/FM are known as quantum critical regimes, though the precise boundaries of these regimes are not yet well defined. It is proposed that the ground state in these critical regimes are not exactly quantum spin-liquid but different dimer phases with a singlet gap and gapless nematic phases, respectively.Sushkov et al. (2001); Shannon et al. (2006); Singh et al. (1999); Capriotti et al. (2003); Schmidt et al. (2007a, b)

The J1J2J_{1}-J_{2} phase diagram has been extended further to the spatially anisotropic square lattice or rectangular lattice (known as J1a,bJ2J_{1a,b}-J_{2} model).Schmidt et al. (2011a) The Hamiltonian for a 2D S=1/2S=1/2 frustrated rectangular lattice (FRL) model can be written as

^=J1aij1aNSiSj+J1bij1bNSiSj+J2ij2NSiSj.\hat{\mathcal{H}}=J_{1a}\sum_{\langle ij\rangle_{1a}}^{N}S_{i}\cdot S_{j}+J_{1b}\sum_{\langle ij\rangle_{1b}}^{N}S_{i}\cdot S_{j}+J_{2}\sum_{\langle ij\rangle_{2}}^{N}S_{i}\cdot S_{j}. (2)

Here, J1aJ_{\rm 1a} and J1bJ_{\rm 1b} are the anisotropic exchange couplings along the edges of the square and the coupling along the diagonals (J2J_{2}) remains same. The classically predicted phase diagram becomes a function of frustration angle ϕ=tan1(J2/(J1a2+J1b2)2)\phi=\text{tan}^{-1}\left(J_{2}/\sqrt{\frac{(J_{1a}^{2}+J_{1b}^{2})}{2}}\right) and anisotropy parameter θ=tan\theta=\text{tan}(J1b/J1a)1{}^{-1}(J_{1b}/J_{1a}). The introduction of a rectangular distortion does not significantly change the phase diagram. The predicted phases are FM, NAF, and columnar antiferromagnets [CAFa, (QxQ_{x}, QyQ_{y}) = (π\pi, 0) and CAFb, (QxQ_{x}, QyQ_{y}) = (0, π\pi)]. The only difference is that the CAF phases are degenerate for the isotropic model (J1a=J1b)(J_{1a}=J_{1b}) with θ=π4\theta=\frac{\pi}{4} or θ=3π4\theta=\frac{-3\pi}{4}. Further, the J1a,bJ2J_{1a,b}-J_{2} model predicts that the CAF phase is stable for all values of ϕ\phi, especially in the spin nematic phase regime of the isotropic J1J2J_{1}-J_{2} model.Schmidt et al. (2011a)

The S=1/2S=1/2 FSL model has been realized in the class of layered V4+ based inorganic compounds AAAA^{\prime}(VO)(PO4)2 (AAAA^{\prime} = Zn2, Pb2, SrZn, PbZn, BaZn, and BaCd) and Li2VO(Si,Ge)O4.Nath et al. (2008, 2009); Yogi et al. (2015); Tsirlin et al. (2010); Carretta et al. (2009); Bossoni et al. (2011); Nath et al. (2009); Roy et al. (2011); Nath et al. (2008); Tsirlin et al. (2010); Rosner et al. (2003); Bettler et al. (2019); Tsirlin et al. (2011, 2009) Among these compounds, BaCdVO(PO4)2 is the one located very close to the nematic phase regime in the J1J2J_{1}-J_{2} phase diagram and is being extensively studied. Some of the recent studies have reported the signature of spin nematic phase in BaCdVO(PO4)2.Povarov et al. (2019); Skoulatos et al. (2019); Bhartiya et al. (2019) A few metal-organic compounds based on V4+ and Cu2+ have also been studied in light of the 2D spin-1/21/2 Heisenberg model.Guchhait et al. (2019); Woodward et al. (2002); Rønnow et al. (2001); Nath et al. (2015) A series of Cu based quasi-2D organometallic magnets where Cu2+ ions are bridged by pyrazine molecules are [Cu(HF2)(pyz)2]XX (XX = BF4{}_{4}^{-}, ClO4{}_{4}^{-}, PF6{}_{6}^{-}, SbF6{}_{6}^{-}, and AsF6{}_{6}^{-})Goddard et al. (2008) and [Cu(pyz)2]X2X_{2} (XX= ClO4{}_{4}^{-} and BF4{}_{4}^{-}).Lancaster et al. (2007); Woodward et al. (2007); Tsyrulin et al. (2010) These compounds are having square lattice network with negligible NNN exchange coupling (J2J_{2}). Another family of Cu based organo-metallic square lattice compounds are A2A_{2}CuX4X_{4} (AA = 5CAP and 5MAP, XX = Br and Cl) without frustration.Woodward et al. (2002) Recently, we have reported that Cu[C6H2(COO)4][C2H5NH3]2 is a quasi-2D spatially anisotropic non-frustrated spin-1/21/2 square lattice with exchange couplings J1a/kB=5.6J_{1a}/k_{\rm B}=5.6 K and J1c/kB=8.0J_{1c}/k_{\rm B}=8.0 K along aa- and cc-directions, respectively.Nath et al. (2015)

In this work, we report the synthesis and magnetic properties of a new organic spin-1/2 quantum magnet Cu[C6H2(COO)4][H3N-(CH2)2-NH3]\cdot3H2O (or C12H18CuN2O11). The magnetization data analysis confirms the non-frustrated quasi-2D nature with a weak anisotropy in the in-plane couplings. It does not show the onset of magnetic long-range-ordering (LRO) down to 2 K, reflecting weak inter-plane coupling and hence perfect two-dimensionality.

Refer to caption
Figure 1: (a) Three dimensional view of the C12H18CuN2O11 structure featuring negatively charged {Cu[C6H2(COO)4]}2- layers connected by the [H3N-(CH2)2-NH3]2+\cdot3H2O groups through hydrogen bond. JJ_{\rm\perp} is the exchange coupling between two layer. (b) A section of the {Cu[C6H2(COO)4]}2- layer in abab-plane showing the exchange couplings forming a rectangular spin lattice of Cu2+ ions. The exchange couplings J1aJ_{\rm 1a} and J1bJ_{\rm 1b} are along the edges of the rectangle and J2J_{\rm 2} is along the diagonal.

II Techniques

Single crystals of the Cu(II)-based metal organic hybrid compound C12H18CuN2O11 were synthesised by using 1,2,4,5-benzenetetracarboxylic acid (H4BTC). Since the compound contains four carboxylic acid groups, we were initially getting mixture of products from which isolation of pure phase of the material was difficult. After repeated trials and by varying the reaction conditions the phase-pure form of the compound was obtained by adopting the following procedure. Copper acetate monohydrate (5 mmol, 1.00 g), ethylene diamine (5 mmol, 0.35 mL), H4BTC (5 mmol, 1.27 g) were reacted in 30 mL DMF-water mixture (taken in 1:1 volume ratio). The initial blue product formed was filtered out. The clear and pale blue filtrate obtained was kept for slow evaporation for 8 days at room temperature. Light bluish needle type crystals of the target compound in phase-pure form were separated and dried in air. The yield was 45% (based on Cu).

Single crystal x-ray diffraction (XRD) was performed on a good-quality single crystal at room temperature using a Bruker KAPPA APEX-II CCD diffractometer equipped with graphite monochromated Mo Kα1K_{\alpha 1} radiation (λ=0.71073\lambda=0.71073 Å). The data were collected using APEX3 software and reduced with SAINT/XPREP.Bruker (2016) An empirical absorption correction was done using the SADABS program.Sheldrick (1994) The structure was solved with direct methods using SHELXT-2018/2Sheldrick (2015) and refined by the full matrix least squares on F2F^{2} using SHELXL-2018/3, respectively.Sheldrick (2018) All the hydrogen atoms were placed geometrically and held in the riding mode for the final refinements. The final refinements included atomic positions for all the atoms, anisotropic thermal parameters for all the nonhydrogen atoms, and isotropic thermal parameters for the hydrogen atoms. The crystal data and details of the structure refinement parameters are listed in Table 1.

As the size of the crystals was too small, it was not possible to do the magnetic measurements on the individual crystals and hence powder sample was used for this purpose. The temperature (TT) dependent magnetic susceptibility [χ(T)\chi(T)] in four different magnetic fields (μ0H=0.5\mu_{\rm 0}H=0.5, 1, 3, and 5 T) was measured in the temperature range 2T3002\leq T\leq 300 K using the vibrating sample magnetometer (VSM) attachment to the Physical Property Measurement System (PPMS, Quantum Design). A magnetic isotherm (magnetization MM vs field HH) was measured by varying the magnetic field from 0 to 14 T at T=1.9T=1.9 K.

The Quantum Monte Carlo (QMC) simulation for magnetization was performed assuming the Heisenberg model on a nonfrustrated square lattice with an isotropic exchange coupling. We used the Hamiltonian in the presence of a magnetic field ^=Ji,jSiSjHiSiz\hat{\mathcal{H}}=J\sum_{\langle i,j\rangle}S_{i}\cdot S_{j}-H\sum_{i}S^{z}_{i}, where JJ represents the exchange coupling strength between spins at the ithi^{th} and jthj^{th} sites and HH is the external magnetic field. We used the directed loop QMC algorithm in the stochastic series expansion representationSandvik (1999); Alet et al. (2005) implemented in the ALPS software package.ALP The lattice size was taken to be 20×2020\times 20 (400 sites) and measurements were done from a simulation of about 10510^{5} sweeps including about 5000 thermalization sweeps.

III Results

III.1 Crystal Structure

Table 1: Crystal structure data for C12H18CuN2O11at room temperature.
Empirical formula C12H18CuN2O11
Formula weight (MrM_{r}) 429.8
Temperature 296(2) K
Crystal system Monoclinic
Space group C2/mC2/m
Lattice parameters a=11.4258(3)a=11.4258(3) Å,
b=18.4562(5)b=18.4562(5) Å,
c=7.4747(2)c=7.4747(2) Å,
β=95.079(2)\beta=95.079(2)^{\circ}
Unit cell volume (VcellV_{\rm cell}) 1570.05(7) Å3
Z 4
Radiation type MoKα1K_{\alpha 1}
Wavelength (λ\lambda) 0.71073 Å
Diffractometer Bruker KAPPA APEX-II CCD
Crystal size 0.2×0.15×0.10.2\times 0.15\times 0.1 mm3
2Θ\Theta range for data collection 4.2 to 50
Index ranges 13h13-13\leq h\leq 13,
21k21-21\leq k\leq 21,
8l8-8\leq l\leq 8
Absorption coefficient (μ\mu) 1.459 mm-1
FF(000) 884
Reflections collected 6671
Independent reflections 1429 [Rint=0.0183R_{\rm int}=0.0183]
Data/restraints/parameters 1429/3/128
Goodness-of-fit on F2F^{2} 1.104
Final RR indexes, I2σ(I)I\geq 2\sigma(I) R1=0.0272R_{1}=0.0272, ωR2=0.0709\omega R_{2}=0.0709
Final RR indexes, all data R1=0.0293R_{1}=0.0293, ωR2=0.0723\omega R_{2}=0.0723
Largest difference peak/hole 1.014 / -0.487 e.Å-3
Calculated crystal density ρcal\rho_{\rm cal} 1.818 mg/mm3

C12H18CuN2O11 stabilizes in a monoclinic crystal structure with space group C2/mC2/m. The lattice parameters, atomic positions, and main bond distances along with their angles at room temperature are tabulated in Tables 1, 2, and 3, respectively. The crystal structure is shown in Fig. 1. Each Cu atom is bonded with four O atoms forming a CuO4 square. As the Cu-O distances are unequal, CuO4 is slightly distorted. The CuO4 plaquettes are connected via [C6H2(COO)4]4- building rectangular layers in the abab-plane [Fig. 1(b)]. The distance between NN Cu2+ ions along the smaller edge (along aa-axis) of a rectangle is 5.7176\sim 5.7176 Åwhile along the longer edge (along bb-axis) these distances are unequal (8.9963\sim 8.9963 Å and 9.4599\sim 9.4599 Å). Hence, the rectangular lattice is expected to be anisotropic or to form a trapezoid. The corresponding exchange couplings are marked as J1aJ_{\rm 1a} and J1bJ_{\rm 1b} along the aa- and bb-axes, respectively as shown in Fig. 1(b). The NNN distances between Cu2+ ions along diagonals of the rectangle is 10.8533\sim 10.8533 Åwith exchange coupling J2J_{\rm 2}. Further, the distance between two Cu2+ ions in two adjacent layers along the crystallography cc-axis is 7.4747\sim 7.4747 Å. The [H3N-(CH2)2-NH3]2+\cdot3H2O groups lie sandwiched between the layers and are connecting the Cu2+ ions from the adjacent layers via weak hydrogen bonds [see Fig. 1(a)]. Thus, because of the large spacial distance and weak hydrogen bonding, the inter-layer interaction (JJ_{\perp}) is expected to be very weak.

Table 2: The atomic coordinates (x,y,zx,y,z) for C12H18CuN2O11. UisoU_{\rm iso} is the isotropic atomic displacement parameters which is defined as one-third of the trace of the orthogonal UijU_{\rm ij} tensor. The errors are from the least-square structure refinement. The positions of hydrogen atoms are fixed.
Atomic sites xx yy zz UisoU_{\rm iso}2)
Cu(1) 0.5000 0.2563(1) 0.5000 0.014(1)
C(1) 0.6438(2) 0.3652(1) 0.4217(3) 0.017(1)
C(2) 0.7105(2) 0.4346(1) 0.4625(3) 0.016(1)
C(3) 0.8186(2) 0.4346(1) 0.5676(3) 0.015(1)
C(4) 0.8826(2) 0.3647(1) 0.6121(3) 0.017(1)
C(5) 0.6582(3) 0.5000 0.4095(5) 0.018(1)
C(6) 0.8710(3) 0.5000 0.6194(5) 0.017(1)
C(7) 0.8001(3) 0.2579(2) 1.0704(4) 0.028(1)
N(1) 0.8215(2) 0.3372(1) 1.0812(3) 0.027(1)
O(1) 0.6135(3) 0.4228(2) 0.8964(3) 0.053(1)
O(2) 1.1385(14) 0.5000 0.9284(18) 0.276(7)
O(1) 0.6159(1) 0.3316(1) 0.5616(2) 0.019(1)
O(2) 0.6151(2) 0.3465(1) 0.2655(2) 0.029(1)
O(3) 0.8804(1) 0.3193(1) 0.4837(2) 0.021(1)
O(4) 0.9361(2) 0.3563(1) 0.7637(2) 0.026(1)
H(5) 0.5875 0.5000 0.3377 0.021
H(6) 0.9423 0.5000 0.6899 0.021
H(1A) 0.8805 0.3462 1.1641 0.04
H(1B) 0.8399 0.3534 0.9751 0.04
H(1C) 0.7569 0.3595 1.1109 0.04
H(7A) 0.7809 0.2399 1.1862 0.034
H(7B) 0.8706 0.2333 1.0394 0.034
H(1A) 0.581(3) 0.407(4) 0.784(4) 0.14(3)
H(1B) 0.6826 0.4369 0.8998 0.21(4)
Table 3: Some selected bond lengths and bond angles for C12H18CuN2O11.
Bond length Bond length
(Å) (Å)
C(1)-O(2) 1.234(3) C(4)-O(4) 1.249(3)
C(1)-O(1) 1.280(3) C(4)-O(3) 1.273(3)
C(1)-C(2) 1.508(3) N(1)-C(7) 1.485(4)
C(2)-C(5) 1.389(3) C(7)-C(7)1 1.513(5)
C(2)-C(3) 1.404(3) O(1)-Cu(1) 1.9464(16)
C(3)-C(6) 1.388(3) O(3)-Cu(1)2 1.9490(16)
C(3)-C(4) 1.505(3)
Bond angles Bond angles
() ()
O(2)-C(1)-O(1) 124.9(2) C(2)3-C(5)-C(2) 120.7(3)
O(2)-C(1)-C(2) 121.1(2) C(3)3-C(6)-C(3) 121.0(3)
O(1)-C(1)-C(2) 113.9(2) N(1)-C(7)-C(7)1 109.8(3)
C(5)-C(2)-C(3) 119.6(2) C(1)-O(1)-Cu(1) 111.50(15)
C(5)-C(2)-C(1) 118.9(2) C(4)-O(3)-Cu(1)2 117.21(15)
C(3)-C(2)-C(1) 121.1(2) O(1)-Cu(1)-O(1)4 88.92(10)
C(6)-C(3)-C(2) 119.5(2) O(1)-Cu(1)-O(3)5 169.86(7)
C(6)-C(3)-C(4) 119.6(2) O(1)4-Cu(1)-O(3)5 92.14(7)
C(2)-C(3)-C(4) 120.7(2) O(1)-Cu(1)-O(3)2 92.14(7)
O(4)-C(4)-O(3) 125.2(2) O(1)4-Cu(1)-O(3)2 169.86(7)
O(4)-C(4)-C(3) 119.8(2) O(3)5-Cu(1)-O(3)2 88.59(10)
O(3)-C(4)-C(3) 114.9(2)
  • Symmetry transformations used to generate equivalent atoms of table 3:
    1-x+3/2,-y+1/2,-z+2 2-x+3/2,-y+1/2,-z+1 3x,-y+1,z
    4-x+1,y,-z+1 5x-1/2,-y+1/2,z.

III.2 Magnetic Susceptibility

Refer to caption
Figure 2: Upper panel: χ(T)\chi(T) vs TT in an applied field of μ0H=0.5\mu_{\rm 0}H=0.5 T. The solid and dashed lines are the best fits of the data using HTSE of frustrated square lattice and frustrated rectangular lattice models [Eq. (4)], respectively. Inset: The low temperature χ(T)\chi(T) measured in different fields. Lower panel: Inverse magnetic susceptibility (1/χ1/\chi) vs TT and the solid line is the Curie-Weiss fit.

Magnetic susceptibility (χ=M/H\chi=M/H) as a function of temperature (TT) measured in an applied field of μ0H=0.5\mu_{0}H=0.5 T is shown in the upper panel of Fig. 2. In the high temperature region, χ(T)\chi(T) increases systematically with lowering temperature, typically expected in the paramagnetic state. It then passes through a broad maximum at around Tχmax5.13T_{\chi}^{\rm max}\simeq 5.13 K mimicking the short-range AF ordering in the system. This is a clear evidence of quasi-2D nature of the compound. No signature of magnetic LRO was observed down to 2 K. As shown in the inset of the upper panel of Fig. 2, the broad maximum shifts towards lower temperatures with increasing magnetic field. This behavior is quite similar to that observed in other low-dimensional antiferromagnets.Nath et al. (2015, 2008)

χ(T)\chi(T) in the high temperature region can be fitted by

χ(T)=χ0+CTθCW,\chi(T)=\chi_{0}+\frac{C}{T-\theta_{\rm CW}}, (3)

where, χ0\chi_{0} is the temperature-independent susceptibility consisting of core diamagnetic susceptibility (χdia\chi_{\rm dia}) of the core electron shells of the atoms and Van-Vleck paramagnetic susceptibility (χvv\chi_{\rm vv}) of the open shells of the Cu2+ ions in the sample. The second term is the Curie-Weiss (CW) law where CC is Curie constant and θCW\theta_{\rm CW} is Curie-Weiss temperature. Our experimental χ(T)\chi(T) data in the temperature range T18T\geq 18 K were fitted well by Eq. (3) yielding χ02.26×104\chi_{0}\simeq-2.26\times 10^{-4} cm3/mol-Cu2+, C0.46C\simeq 0.46 cm3.K/mol-Cu2+, and θCW5.17\theta_{\rm CW}\simeq-5.17 K. The negative Curie-Weiss temperature indicates predominance of AF exchange interactions between the Cu2+ ions in the compound. From the value of CC, the effective magnetic moment μeff=(3kBC/NAμB2)12\mu_{\rm eff}=(3k_{\rm B}C/N_{\rm A}\mu_{\rm B}^{2})^{\frac{1}{2}}, (where kBk_{\rm B} is the Boltzmann constant, NAN_{\rm A} is the Avogadro’s number, and μB\mu_{\rm B} is the Bohr magneton) is estimated to be μeff1.91\mu_{\rm eff}\simeq 1.91 μB/\mu_{\rm B}/Cu2+. This value of μeff\mu_{\rm eff} [=gS(S+1)μB=g\sqrt{S(S+1)}\mu_{\rm B}] corresponds to a Landé gg-factor of g2.21g\simeq 2.21 which is slightly larger than the ideal value (g=2g=2), expected for spin-1/21/2. A slightly larger value of gg is typically found for Cu2+ based compounds from ESR experiments.Nath et al. (2014); Janson et al. (2011); Arango et al. (2011)

To understand the geometry of the spin lattice, χ(T)\chi(T) in the high temperature regime was fitted by the sum of a temperature independent term (χ0\chi_{0}) and a temperature dependent term

χ(T)=χ0+χspin(T).\chi(T)=\chi_{0}+\chi_{\rm spin}(T). (4)

Here, χspin(T)\chi_{\rm spin}(T) is the high-temperature series expansion (HTSE) of spin susceptibility for the spin-1/21/2 FSL model (J1J2J_{1}-J_{2} model).Rosner et al. (2003); Schmidt et al. (2011b) The expression is given by

χspin(T)=NAg2μB2kBTn(J1kBT)nmcm,n(J2J1)m.\displaystyle\chi_{\rm spin}(T)=\frac{N_{\rm A}g^{2}\mu_{\rm B}^{2}}{k_{\rm B}T}\sum_{n}\left(\frac{J_{1}}{k_{\rm B}T}\right)^{n}\sum_{m}c_{m,n}\left(\frac{J_{\rm 2}}{J_{\rm 1}}\right)^{m}. (5)

The values of the coefficients, cm,nc_{m,n} are tabulated in Ref. Rosner et al. (2003). The best fit of the χ(T)\chi(T) data (upper panel of Fig. 2) by Eq. (4) in the temperature range T>5.4T>5.4 K resulted two different solutions: Solution I: χ02.65×104\chi_{0}\simeq-2.65\times 10^{-4} cm3/mol-Cu2+, J1/kB5.35J_{1}/k_{\rm B}\simeq 5.35 K, J2/kB0.01J_{2}/k_{\rm B}\simeq-0.01 K, and g2.23g\simeq 2.23 and Solution II: χ02.68×104\chi_{0}\simeq-2.68\times 10^{-4} cm3/mol-Cu2+, J1/kB5.35J_{1}/k_{\rm B}\simeq 5.35 K, J2/kB0.01J_{2}/k_{\rm B}\simeq 0.01 K, and g2.23g\simeq 2.23. As discussed later, the solution I appears to be the correct solution. In both cases, the value of J2J_{2} is negligibly small and hence can be ignored. Nevertheless, for both the solutions the compound can be placed in the NAF regime of the J1J2J_{1}-J_{2} phase diagram.

As discussed earlier, the Cu2+ ions form a slightly distorted square lattice. In an attempt to test the spin-lattice, χ(T)\chi(T) data were fitted by the FRL model (see Fig. 2). The fit was done using Eq. (4) where χspin\chi_{\rm spin} is taken as HTSE for the anisotropic FSL/FRL model given in Ref. Schmidt et al. (2011b). Our fit in the temperature range T>5.4T>5.4 K results χ02.3×104\chi_{0}\simeq-2.3\times 10^{-4} cm3/mol-Cu2+, g2.22g\simeq 2.22, J1a/kB5.31J_{\rm 1a}/k_{\rm B}\simeq 5.31 K, J1b/kB5.38J_{\rm 1b}/k_{\rm B}\simeq 5.38 K, and J2/kB0.24J_{\rm 2}/k_{\rm B}\simeq-0.24 K. As J1a/kBJ_{\rm 1a}/k_{\rm B} and J1b/kBJ_{\rm 1b}/k_{\rm B} are having almost equal magnitude, the spin-lattice can essentially be treated as a weakly anisotropic square lattice.

III.3 Magnetic Isotherm

Refer to caption
Figure 3: Magnetization (M)(M) as a function of magnetic field HH at T=1.9T=1.9 K measured up to 14 T. The solid line is the QMC simulation, assuming a uniform nonfrustrated square lattice model with J/kB=5.2J/k_{\rm B}=5.2 K.

Magnetization (MM) as a function of applied field (HH) measured at T=1.9T=1.9 K is shown in Fig. 3. MM varies almost linearly with HH with a small curvature and at μ0H=14\mu_{0}H=14 T it is still below the saturation field. According to theoretical calculation by Schmidt et al.Schmidt et al. (2007a), the saturation field of a FSL model can be expressed as

μ0HS=JckBzSgμB{[112(cosQx+cosQy)]cosϕ+(1cosQxcosQy)sinϕ},\begin{split}\mu_{0}H_{\rm S}=\frac{J_{c}k_{\rm B}zS}{g\mu_{\rm B}}&\left\{\left[1-\frac{1}{2}(\cos Q_{x}+\cos Q_{y})\right]\cos\phi\right.\\ &\quad\left.{}+(1-\cos Q_{x}\cos Q_{y})\sin\phi\vphantom{\frac{1}{2}}\right\},\end{split} (6)

where z=4z=4 is the magnetic coordination number, S=1/2S=1/2, and (QxQ_{x}, QyQ_{y}) are the wave vectors which are different for different ordered states. Putting (QxQ_{x}, QyQ_{y}) = (π\pi, π\pi), the saturation field for the NAF phase will have the form μ0HS=4J1kB/(gμB)\mu_{\rm 0}H_{\rm S}=4J_{\rm 1}k_{\rm B}/(g\mu_{\rm B}), which is independent of J2J_{\rm 2}. Using J1/kB5.35J_{\rm 1}/k_{\rm B}\simeq 5.35 K and g=2.23g=2.23 in this formula, the value of saturation field is calculated to be μ0HSsq14.3\mu_{0}H_{\rm S}^{\rm sq}\simeq 14.3 T. Even putting the values of J1aJ_{\rm 1a} and J1bJ_{\rm 1b} in a spin-1/21/2 FRL model, the saturation field is calculated to be μ0HSrect=2(J1a+J1b)kB/(gμB)14.3\mu_{0}H_{\rm S}^{\rm rect}=2(J_{\rm 1a}+J_{\rm 1b})k_{\rm B}/(g\mu_{\rm B})\simeq 14.3 T.Nath et al. (2015)

In order to further understand the nature of spin lattice, QMC simulation is done taking J/kB=5.2J/k_{\rm B}=5.2 K in a non-frustrated square lattice model. As shown in Fig. 3, the QMC simulated data reproduce the shape of our experimental curve perfectly reflecting the non-frustrated square lattice nature of the spin-lattice. The simulated curve changes the slope at around μ0H15\mu_{0}H\simeq 15 T, which is very close to the saturation field expected for the compound. It reaches a saturation magnetization of MS1.1μBM_{\rm S}\simeq 1.1\mu_{\rm B}/Cu2+ for μ0H>15\mu_{0}H>15 T which is consistent with the expected value of MS=gSμB1.1μB/M_{\rm S}=gS\mu_{\rm B}\simeq 1.1\mu_{\rm B}/Cu2+ for S=1/2S=1/2 and g=2.23g=2.23.

IV Discussion and Summary

According to mean field approximation, for the FSL model, one can write θCW=zS(S+1)3kB(J1+J2)\theta_{\rm CW}=\frac{zS(S+1)}{3k_{\rm B}}(J_{1}+J_{2}).Domb et al. (1964) Taking S=1/2S=1/2, z=4z=4, J1/kB5.35J_{1}/k_{\rm B}\simeq 5.35 K, and J2/kB0.01J_{2}/k_{\rm B}\simeq-0.01 K, we got θCW5.34\theta_{\rm CW}\simeq 5.34 K which is very close to the CW temperature obtained from the 1/χ1/\chi analysis. Using the values of J1J_{1} and J2J_{2}, the frustration control parameter is calculated to be ϕ=0.1\phi=-0.1^{\circ} (0.0006π\sim-0.0006\pi), which places the compound in the NAF ordered state of the J1J2J_{1}-J_{2} phase diagram.Nath et al. (2008) Similarly, for a FRL model one can write θCW=(J1a+J1b2+J2)/kB\theta_{\rm CW}=(\frac{J_{\rm 1a}+J_{\rm 1b}}{2}+J_{\rm 2})/k_{\rm B}. Taking J1a/kB5.31J_{\rm 1a}/k_{\rm B}\simeq 5.31 K, J1b/kB5.38J_{\rm 1b}/k_{\rm B}\simeq 5.38 K, and J2/kB0.24J_{2}/k_{\rm B}\simeq-0.24 K we got θCW5.11\theta_{\rm CW}\simeq 5.11 K which is even closer to the CW temperature obtained from the 1/χ1/\chi analysis. The anisotropic angle and frustration angle are estimated to be θ0.252π\theta\simeq 0.252\pi and ϕ0.014π\phi\simeq-0.014\pi, respectively in the NAF regime of the J1a,bJ2J_{1a,b}-J_{2} phase diagram.Schmidt et al. (2011a)

Usually, in a frustrated magnet, the extent of frustration can be quantified by the frustration parameter f=|θCW|TNf=\frac{|\theta_{\rm CW}|}{T_{\rm N}}. C12H18CuN2O11 has no magnetic LRO down to 2 K which makes this system a good example of a quasi-2D AF system. The lower limit of the frustration parameter of this compound is estimated to be f>5.1722.6f>\frac{5.17}{2}\simeq 2.6, taking the upper limit of TN=2T_{\rm N}=2 K. Here, |θCW|>TN|\theta_{\rm CW}|>T_{\rm N} implies that the magnetic LRO (TNT_{\rm N}) is prevented by quantum fluctuations due to low dimensionality of the spin-lattice and the role of frustration has negligible effect. Further, assuming that TN<2T_{\rm N}<2 K and using the appropriate exchange couplings, the upper limit of the inter-layer coupling is estimated to be negligibly small compared to the intra-layer coupling.Majlis et al. (1992); Schmidt and Thalmeier (2017) Thus, this compound is another example of a quasi-2D nonfrustrated system with J1/TN>2.67J_{1}/T_{\rm N}>2.67, similar to the compounds tabulated in Ref. Guchhait et al. (2019).

Refer to caption
Figure 4:

A rectangular unit showing the superexchange interactions J1aJ_{\rm 1a} and J1bJ_{\rm 1b} along with their respective bridging angles ψ60.5\angle\psi\simeq 60.5^{\circ} and ξ119.6\angle\xi\simeq 119.6^{\circ} between C-atoms, in the C6-phenyl ring.

From the crystal structure, the Cu-Cu distance along bb-direction is greater than the one along aa-direction. Therefore, one would expect J1aJ_{\rm 1a} to be larger than J1bJ_{\rm 1b}. Similar scenario has been realized in Cu[C6H2(COO)4][C2H5NH3]2 in which the DFT calculations show that J1a<J1cJ_{\rm 1a}<J_{\rm 1c}, even though the Cu-Cu distance along aa-direction is alomost half of the distance along cc-direction.Nath et al. (2015) This non-trivial behaviour is attributed to the characteristic features of [C6H2(COO)4]4- anion through which the superexchange takes place. In Cu[C6H2(COO)4][C2H5NH3]2, the effective bridging angles between C atoms belonging to the C6-phenyl ring along the superexchange paths are ψ59.9\angle\psi\simeq 59.9^{\circ} and ξ120.1\angle\xi\simeq 120.1^{\circ} for J1aJ_{\rm 1a} and J1cJ_{\rm 1c}, respectively in the acac-plane. Therefore, it is argued that according to Goodenough-Kanamori-Anderson rules one finds J1c>J1aJ_{\rm 1c}>J_{\rm 1a} and does not follow Cu-Cu distance. As shown in Fig. 4, in C12H18CuN2O11, the angles are ψ60.5\angle\psi\simeq 60.5^{\circ} and ξ119.6\angle\xi\simeq 119.6^{\circ}. This explains why J1aJ_{\rm 1a} and J1bJ_{\rm 1b} have nearly equal values despite different Cu-Cu distances. However, to establish this proposition, a precise estimation of exchange couplings using band structure calculation is required.

In summary, we have synthesized single crystals of C12H18CuN2O11 and reported its crystal structure and magnetic properties in detail. C12H18CuN2O11 crystallizes in a monoclinic crystal structure with space group C2/mC2/m. Because of the low symmetry crystal structure, Cu2+ ions form anisotropic square lattices. The analysis of χ(T)\chi(T) demonstrates that the compound behaves as a nearly nonfrustrated spin-1/21/2 square lattice with J1/kB5.3J_{1}/k_{\rm B}\simeq 5.3 K, despite its anisotropic (or rectangular) structural arrangement. Further, the shape of the magnetic isotherm at T=1.9T=1.9 K could be reproduced well by the QMC simulation assuming a non-frustrated square lattice with J/kB=5.2J/k_{\rm B}=5.2 K, supporting the χ(T)\chi(T) analysis. No sign of magnetic LRO down to 2 K indicates minuscule inter-plane coupling in the system. In this compound J2J_{2} is negligibly small, but its strength can be increased and the frustration ratio J2/J1J_{2}/J_{1} can be tuned by an appropriate choice of the organic ligand that provides superexchange pathway between the magnetic ions. Thus, the metal organic complexes can reciprocate the inorganic compounds as the model systems in the J1J2J_{1}-J_{2} phase diagram.

V Acknowledgement

SG and RN acknowledge SERB, India for financial support bearing sanction order no. CRG/2019/000960. We thank Alex Andrews for his help in solving the crystal structure.

References

  • Shannon et al. (2004) N. Shannon, B. Schmidt, K. Penc,  and P. Thalmeier, “Finite temperature properties and frustrated ferromagnetism in a square lattice Heisenberg model,” Eur. Phys. J. B 38, 599 (2004).
  • Shannon et al. (2006) N. Shannon, T. Momoi,  and P. Sindzingre, “Nematic order in square lattice frustrated ferromagnets,” Phys. Rev. Lett. 96, 027213 (2006).
  • Schmidt and Thalmeier (2017) B. Schmidt and P. Thalmeier, “Néel temperature and reentrant HTH\text{$-$}T phase diagram of quasi-two-dimensional frustrated magnets,” Phys. Rev. B 96, 214443 (2017).
  • Sushkov et al. (2001) O. P. Sushkov, J. Oitmaa,  and Z. Weihong, “Quantum phase transitions in the two-dimensional J1J2J_{1}-J_{2} model,” Phys. Rev. B 63, 104420 (2001).
  • Singh et al. (1999) R. R. P. Singh, Z. Weihong, C. J. Hamer,  and J. Oitmaa, “Dimer order with striped correlations in the J1J2{J}_{1}{-J}_{2} Heisenberg model,” Phys. Rev. B 60, 7278 (1999).
  • Capriotti et al. (2003) L. Capriotti, F. Becca, A. Parola,  and S. Sorella, “Suppression of dimer correlations in the two-dimensional J1J2{J}_{1}-{J}_{2} Heisenberg model: An exact diagonalization study,” Phys. Rev. B 67, 212402 (2003).
  • Schmidt et al. (2007a) B. Schmidt, P. Thalmeier,  and N. Shannon, “Magnetocaloric effect in the frustrated square lattice J1J2{J}_{1}\text{$-$}{J}_{2} model,” Phys. Rev. B 76, 125113 (2007a).
  • Schmidt et al. (2007b) B. Schmidt, N. Shannon,  and P. Thalmeier, “The frustrated J1J2{J_{1}-J_{2}} model in high magnetic fields,” J. Phys.: Condens. Matter 19, 145211 (2007b).
  • Schmidt et al. (2011a) B. Schmidt, M. Siahatgar,  and P. Thalmeier, “Ordered moment in the anisotropic and frustrated square lattice Heisenberg model,” Phys. Rev. B 83, 075123 (2011a).
  • Nath et al. (2008) R. Nath, A. A. Tsirlin, H. Rosner,  and C. Geibel, “Magnetic properties of BaCdVO(PO4)2\text{BaCdVO}{({\text{PO}}_{4})}_{2}: A strongly frustrated spin-12\frac{1}{2} square lattice close to the quantum critical regime,” Phys. Rev. B 78, 064422 (2008).
  • Nath et al. (2009) R. Nath, Y. Furukawa, F. Borsa, E. E. Kaul, M. Baenitz, C. Geibel,  and D. C. Johnston, “Single-crystal P31{}^{31}\text{P} NMR studies of the frustrated square-lattice compound Pb2VO(PO4)2,” Phys. Rev. B 80, 214430 (2009).
  • Yogi et al. (2015) A. Yogi, N. Ahmed, R. Nath, A. A. Tsirlin, S. Kundu, A. V. Mahajan, J. Sichelschmidt, B. Roy,  and Y. Furukawa, “Antiferromagnetism of Zn2VO(PO4)2,” Phys. Rev. B 91, 024413 (2015).
  • Tsirlin et al. (2010) A. A. Tsirlin, R. Nath, A. M. Abakumov, R. V. Shpanchenko, C. Geibel,  and H. Rosner, “Frustrated square lattice with spatial anisotropy: Crystal structure and magnetic properties of PbZnVO(PO4)2\text{PbZnVO}{({\text{PO}}_{4})}_{2},” Phys. Rev. B 81, 174424 (2010).
  • Carretta et al. (2009) P. Carretta, M. Filibian, R. Nath, C. Geibel,  and P. J. C. King, “Fluctuations and correlations in a frustrated S=12S=\frac{1}{2} square lattice with competing ferromagnetic and antiferromagnetic interactions studied by muon-spin relaxation,” Phys. Rev. B 79, 224432 (2009).
  • Bossoni et al. (2011) L. Bossoni, P. Carretta, R. Nath, M. Moscardini, M. Baenitz,  and C. Geibel, “NMR and μ\muSR study of spin correlations in SrZnVO(PO4)2: An S=12S=\frac{1}{2} frustrated magnet on a square lattice,” Phys. Rev. B 83, 014412 (2011).
  • Roy et al. (2011) B. Roy, Y. Furukawa, R. Nath,  and D. C. Johnston, “Low-temperature 31p NMR study of the two-dimensional frustrated square lattice compound BaCdVO(PO4)2,” J. Phys.: Conf. Ser. 320, 012048 (2011).
  • Rosner et al. (2003) H. Rosner, R. R. P. Singh, W. H. Zheng, J. Oitmaa,  and W. E. Pickett, “High-temperature expansions for the J1J2{J}_{1}-{J}_{2} Heisenberg models: Applications to ab initio calculated models for Li2VOSiO4 and Li2VOGeO4,” Phys. Rev. B 67, 014416 (2003).
  • Bettler et al. (2019) S. Bettler, F. Landolt, Ö. M. Aksoy, Z. Yan, S. Gvasaliya, Y. Qiu, E. Ressouche, K. Beauvois, S. Raymond, A. N. Ponomaryov, S. A. Zvyagin,  and A. Zheludev, “Magnetic structure and spin waves in the frustrated ferro-antiferromagnet Pb2VO(PO4)2\mathrm{Pb}_{2}\mathrm{VO}{({\mathrm{PO}}_{4})}_{2},” Phys. Rev. B 99, 184437 (2019).
  • Tsirlin et al. (2011) A. A. Tsirlin, R. Nath, A. M. Abakumov, Y. Furukawa, D. C. Johnston, M. Hemmida, H.-A. Krug von Nidda, A. Loidl, C. Geibel,  and H. Rosner, “Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5,” Phys. Rev. B 84, 014429 (2011).
  • Tsirlin et al. (2009) A. A. Tsirlin, B. Schmidt, Y. Skourski, R. Nath, C. Geibel,  and H. Rosner, “Exploring the spin-12\frac{1}{2} frustrated square lattice model with high-field magnetization studies,” Phys. Rev. B 80, 132407 (2009).
  • Povarov et al. (2019) K. Y. Povarov, V. K. Bhartiya, Z. Yan,  and A. Zheludev, “Thermodynamics of a frustrated quantum magnet on a square lattice,” Phys. Rev. B 99, 024413 (2019).
  • Skoulatos et al. (2019) M. Skoulatos, F. Rucker, G. J. Nilsen, A. Bertin, E. Pomjakushina, J. Ollivier, A. Schneidewind, R. Georgii, O. Zaharko, L. Keller, C. Rüegg, C. Pfleiderer, B. Schmidt, N. Shannon, A. Kriele, A. Senyshyn,  and A. Smerald, “Putative spin-nematic phase in BaCdVO(PO4)2\mathrm{BaCdVO}(\mathrm{PO}_{4}{)}_{2},” Phys. Rev. B 100, 014405 (2019).
  • Bhartiya et al. (2019) V. K. Bhartiya, K. Y. Povarov, D. Blosser, S. Bettler, Z. Yan, S. Gvasaliya, S. Raymond, E. Ressouche, K. Beauvois, J. Xu, F. Yokaichiya,  and A. Zheludev, “Presaturation phase with no dipolar order in a quantum ferro-antiferromagnet,” Phys. Rev. Research 1, 033078 (2019).
  • Guchhait et al. (2019) S. Guchhait, U. Arjun, P. K. Anjana, M. Sahoo, A. Thirumurugan, A. Medhi, Y. Skourski, B. Koo, J. Sichelschmidt, B. Schmidt, M. Baenitz,  and R. Nath, “Case study of bilayered spin-12\frac{1}{2} square lattice compound VO(HCOO)2.H2O,” Phys. Rev. Mater. 3, 104409 (2019).
  • Woodward et al. (2002) F. M. Woodward, A. S. Albrecht, C. M. Wynn, C. P. Landee,  and M. M. Turnbull, “Two-dimensional S=12S=\frac{1}{2}Heisenberg antiferromagnets: Synthesis, structure, and magnetic properties,” Phys. Rev. B 65, 144412 (2002).
  • Rønnow et al. (2001) H. M. Rønnow, D. F. McMorrow, R. Coldea, A. Harrison, I. D. Youngson, T. G. Perring, G. Aeppli, O. Syljuåsen, K. Lefmann,  and C. Rischel, “Spin Dynamics of the 2D Spin 12\frac{1}{2} Quantum Antiferromagnet Copper Deuteroformate Tetradeuterate (CFTD),” Phys. Rev. Lett. 87, 037202 (2001).
  • Nath et al. (2015) R. Nath, M. Padmanabhan, S. Baby, A. Thirumurugan, D. Ehlers, M. Hemmida, H.-A. Krug von Nidda,  and A. A. Tsirlin, “Quasi-two-dimensional S=12S=\frac{1}{2} magnetism of Cu[C6H2(COO)4][C2H5NH3]2,” Phys. Rev. B 91, 054409 (2015).
  • Goddard et al. (2008) P. A. Goddard, J. Singleton, P. Sengupta, R. D. McDonald, T. Lancaster, S. J. Blundell, F. L. Pratt, S. Cox, N. Harrison, J. L. Manson, H. I. Southerland,  and J. A. Schlueter, “Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets,” New J. Phys. 10, 083025 (2008).
  • Lancaster et al. (2007) T. Lancaster, S. J. Blundell, M. L. Brooks, P. J. Baker, F. L. Pratt, J. L. Manson, M. M. Conner, F. Xiao, C. P. Landee, F. A. Chaves, S. Soriano, M. A. Novak, T. P. Papageorgiou, A. D. Bianchi, T. Herrmannsdörfer, J. Wosnitza,  and J. A. Schlueter, “Magnetic order in the S=1/2S=1/2 two-dimensional molecular antiferromagnet copper pyrazine perchlorate Cu(Pz)2(ClO4)2\mathrm{Cu}{(\mathrm{Pz})}_{2}{(\mathrm{Cl}{\mathrm{O}}_{4})}_{2},” Phys. Rev. B 75, 094421 (2007).
  • Woodward et al. (2007) F. M. Woodward, P. J. Gibson, G. B. Jameson, C. P. Landee, M. M. Turnbull,  and R. D. Willett, “Two-Dimensional Heisenberg Antiferromagnets:  Syntheses, X-ray Structures, and Magnetic Behavior of [Cu(pz)2](ClO4)2, [Cu(pz)2](BF4)2, and [Cu(pz)2(NO3)](PF6),” Inorg. Chem. 46, 4256 (2007).
  • Tsyrulin et al. (2010) N. Tsyrulin, F. Xiao, A. Schneidewind, P. Link, H. M. Rønnow, J. Gavilano, C. P. Landee, M. M. Turnbull,  and M. Kenzelmann, “Two-dimensional square-lattice S=12S=\frac{1}{2} antiferromagnet Cu(pz)2(ClO4)2\text{Cu}{(\text{pz})}_{2}{({\text{ClO}}_{4})}_{2},” Phys. Rev. B 81, 134409 (2010).
  • Bruker (2016) A. Bruker, “APEX3, SAINT-Plus, XPREP,”  (2016).
  • Sheldrick (1994) G. M. Sheldrick, “Siemens area correction absorption correction program,” University of Göttingen, Göttingen, Germany  (1994).
  • Sheldrick (2015) G. M. Sheldrick, “Shelxt–integrated space-group and crystal-structure determination,” Acta Crystallogr. A: Foundations and Advances 71, 3 (2015).
  • Sheldrick (2018) G. M. Sheldrick, “Shelxl-2018/3 software package,” University of Göttingen, Germany  (2018).
  • Sandvik (1999) A. W. Sandvik, “Stochastic series expansion method with operator-loop update,” Phys. Rev. B 59, R14157 (1999).
  • Alet et al. (2005) F. Alet, S. Wessel,  and M. Troyer, “Generalized directed loop method for quantum Monte Carlo simulations,” Phys. Rev. E 71, 036706 (2005).
  • (38) “ALPS project,” http://alps.comp-phys.org/ .
  • Nath et al. (2014) R. Nath, K. M. Ranjith, J. Sichelschmidt, M. Baenitz, Y. Skourski, F. Alet, I. Rousochatzakis,  and A. A. Tsirlin, “Hindered magnetic order from mixed dimensionalities in CuP2O6,” Phys. Rev. B 89, 014407 (2014).
  • Janson et al. (2011) O. Janson, A. A. Tsirlin, J. Sichelschmidt, Y. Skourski, F. Weickert,  and H. Rosner, “Long-range superexchange in CuA22{}_{2}A_{2}O7 (A=A= P, As, and V) as a key element of the microscopic magnetic model,” Phys. Rev. B 83, 094435 (2011).
  • Arango et al. (2011) Y. C. Arango, E. Vavilova, M. Abdel-Hafiez, O. Janson, A. A. Tsirlin, H. Rosner, S.-L. Drechsler, M. Weil, G. Nénert, R. Klingeler, O. Volkova, A. Vasiliev, V. Kataev,  and B. Büchner, “Magnetic properties of the low-dimensional spin-12\frac{1}{2} magnet α\alpha-Cu2As2O7,” Phys. Rev. B 84, 134430 (2011).
  • Schmidt et al. (2011b) H.-J. Schmidt, A. Lohmann,  and J. Richter, “Eighth-order high-temperature expansion for general Heisenberg Hamiltonians,” Phys. Rev. B 84, 104443 (2011b).
  • Domb et al. (1964) C. Domb, ,  and A. R. Miedema, Progress in Low Temperature Physics, Vol. 4 (North Holland,Amsterdam, 1964).
  • Majlis et al. (1992) N. Majlis, S. Selzer,  and G. C. Strinati, “Dimensional crossover in the magnetic properties of highly anisotropic antiferromagnets,” Phys. Rev. B 45, 7872 (1992).