This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasi-stationary distributions for time-changed symmetric α\alpha-stable processes killed upon hitting zero

Zhe-Kang Fang Laboratory of Mathematics and Complex Systems(Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China.    Yong-Hua Mao 11footnotemark: 1    Tao Wang 11footnotemark: 1
Abstract

For a time-changed symmetric α\alpha-stable process killed upon hitting zero, under the condition of entrance from infinity, we prove the existence and uniqueness of quasi-stationary distribution (QSD). The exponential convergence to the QSD from any initial distribution is proved under conditions on transition densities.

Keywords and phrases: Quasi-stationary distribution; stable process; time-change; entrance at infinity; ground state.

Mathematics Subject classification(2020): 60G52 60F99

1 Introduction and main results

Quasi-stationary distribution (QSD in short) is a good measurement to describe the long-time behavior of the absorbing Markov process when the process is conditioned to survive. Many efforts were made to study the existence, uniqueness, the domains of attraction of QSDs and the convergence rate to a QSD for various Markov processes, cf. [6, 10, 11] for Markov chains, [3, 6, 15] for diffusion processes, and [12, 13, 16, 22] for general Markov processes under some additional conditions.

In this paper, we will study QSDs for time-changed symmetric stable processes killed upon hitting zero. Let X:=(Xt)t0X:=(X_{t})_{t\geqslant 0} be a symmetric α\alpha-stable process on \mathbb{R} with generator Δα/2:=(Δ)α/2\Delta^{\alpha/2}:=-(-\Delta)^{\alpha/2}, α(1,2)\alpha\in(1,2), where (Δ)α/2-(-\Delta)^{\alpha/2} is the fractional Laplacian. Consider the following stochastic differential equation:

dYt=σ(Yt)dXt,\mathrm{d}Y_{t}=\sigma\left(Y_{t-}\right)\mathrm{d}X_{t}, (1.1)

where σ\sigma is a strictly positive continuous function on \mathbb{R}. By [7, Proposition 2.1], there is a unique weak solution Y=(Yt)t0Y=(Y_{t})_{t\geqslant 0} to the SDE (1.1), and YY can also be expressed as a time-changed process Yt:=Xζt,Y_{t}:=X_{\zeta_{t}}, where

ζt:=inf{s>0:0sσ(Xu)αdu>t}.\zeta_{t}:=\inf\left\{s>0:\int_{0}^{s}\sigma\left(X_{u}\right)^{-\alpha}\mathrm{~{}d}u>t\right\}.

By [18, Remark 43.12], the process is pointwise recurrent. Suppose μ(dx):=σ(x)αdx\mu(\mathrm{d}x):=\sigma(x)^{-\alpha}\mathrm{d}x is a probability measure.

Let T0=inf{t>0:Yt=0}T_{0}=\inf\{t>0:Y_{t}=0\}, T=limR+T(R,R)cT_{\infty}=\lim_{R\rightarrow+\infty}T_{(-R,R)^{c}}, and TA=inf{t>0,YtA}T_{A}=\inf\{t>0,Y_{t}\in A\}, for any Borel subset AA\subseteq\mathbb{R}. According to [14, Theorem 2.3] and the strong Markov property, a direct calculation (see Appendix for more details) leads to the conclusion that for any x0x\neq 0, x[T0<T]=1\mathbb{P}_{x}[T_{0}<T_{\infty}]=1, which means the processes are almost-surely absorbed by 0. Let Y0Y^{0} be the (sub-)process of YY killed upon 0, with transition function

Pt0(x,A)=x[YtA,t<T0], for any x0:={0} and A(0).P_{t}^{0}(x,A)=\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]\text{, for any }x\in\mathbb{R}^{0}:=\mathbb{R}\setminus\{0\}\text{ and }A\in\mathscr{B}(\mathbb{R}^{0}).

We call a probability measure ν\nu is a QSD for Y0Y^{0} if for any t0t\geq 0 and any A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

ν[YtA|t<T0]=ν[YtA,t<T0]ν[t<T0]=ν(A),\mathbb{P}_{\nu}[Y_{t}\in A|t<T_{0}]=\frac{\mathbb{P}_{\nu}[Y_{t}\in A,t<T_{0}]}{\mathbb{P}_{\nu}[t<T_{0}]}=\nu(A),

where ν()=0x()ν(dx)\mathbb{P}_{\nu}(\cdot)=\int_{\mathbb{R}^{0}}\mathbb{P}_{x}(\cdot)\nu({\mbox{\rm d}}x).

Döring and Kyprianou [7] studied the entrance and exit from infinity for this process and Wang [25] studied the exponential and strong ergodicity. The main purpose of this paper is to study the QSD for time-changed α\alpha-stable processes killed upon zero. We will consider the existence and uniqueness of QSD, Yaglom limit, domain of attraction and the speed of convergence to the QSD.

In this paper, we will assume the following condition always holds:

Iσ,α:=σ(x)α|x|α1dx<.I^{\sigma,\alpha}:=\int_{\mathbb{R}}\sigma(x)^{-\alpha}|x|^{\alpha-1}{\mbox{\rm d}}x<\infty. (1.2)

By [25, Theorem 1.4], (1.2) is equivalent to strong ergodicity for YY; meanwhile, according to [7, Table 2], (1.2) holds if and only if ±\pm\infty are entrance from infinity.

Denote by L2(0,μ)L^{2}(\mathbb{R}^{0},\mu) the space of square integrable measurable functions on 0\mathbb{R}^{0} with respect to μ\mu. We first present the result on compactness for killed transition semigroup (Pt0)t>0(P_{t}^{0})_{t>0} under the above condition.

Theorem 1.1.

If Iσ,α<I^{\sigma,\alpha}<\infty, then (Pt0)t>0(P_{t}^{0})_{t>0} is compact on L2(0;μ)L^{2}(\mathbb{R}^{0};\mu).

Under entrance from infinity (1.2), by Theorem 1.1, there exists a complete orthonormal set of eigenfunctions {ψn}n0\{\psi_{n}\}_{n\geq 0} with ψnL2(0;μ)=1\|\psi_{n}\|_{L^{2}(\mathbb{R}^{0};\mu)}=1, such that Pt0ψn=eλntψnP_{t}^{0}\psi_{n}=e^{-\lambda_{n}t}\psi_{n} for any n0n\geq 0 and t0t\geq 0, where {λn}n0\{\lambda_{n}\}_{n\geq 0} are eigenvalues of generator of (Pt0)t0(P_{t}^{0})_{t\geq 0}, such that 0<λ0<λ1+0<\lambda_{0}<\lambda_{1}\leq\dots\rightarrow+\infty, where the positivity and simplicity of λ0\lambda_{0} will be proved in Appendix, Proposition A.2. The principal eigenfunction ψ0\psi_{0} is called the ground state.

By using the ground state ψ0\psi_{0}, we can state our results on QSDs.

Theorem 1.2.

If Iσ,α<I^{\sigma,\alpha}<\infty, then Y0Y^{0} has a unique QSD:

ν(A)=Aψ0dμ0ψ0dμ,A(0).\nu(A)=\frac{\int_{A}\psi_{0}\ {\mbox{\rm d}}\mu}{\int_{\mathbb{R}^{0}}\psi_{0}\ {\mbox{\rm d}}\mu},\ A\in\mathscr{B}(\mathbb{R}^{0}). (1.3)

Furthermore, ν\nu is a Yaglom limit of Y0Y^{0}, that is for any x0x\in\mathbb{R}^{0} and any subset A(0)A\in\mathscr{B}\left(\mathbb{R}^{0}\right),

limtx[YtA|t<T0]=ν(A).\lim_{t\rightarrow\infty}\mathbb{P}_{x}[Y_{t}\in A|t<T_{0}]=\nu(A).

Moreover, there exists 0<C(x)<0<C(x)<\infty, such that

x[Yt|t<T0]νTVC(x)e(λ1λ0)t,\|\mathbb{P}_{x}[Y_{t}\in\cdot|t<T_{0}]-\nu\|_{TV}\leq C(x)e^{-(\lambda_{1}-\lambda_{0})t}, (1.4)

where ηTV:=sup|f|1|η(f)|\|\eta\|_{TV}:=\sup_{|f|\leq 1}|\eta(f)| denotes the total variation of a signed measure η\eta.

Next, under some additional assumptions of transition density functions, we can prove ν\nu attracts all probability measures η\eta on 0\mathbb{R}^{0}, and the exponential convergence in total variation.

Theorem 1.3.

Assume Iσ,α<I^{\sigma,\alpha}<\infty. Let

pt0(x,y):=dPt0(x,)dμ(y).p_{t}^{0}(x,y):=\frac{{\mbox{\rm d}}P_{t}^{0}(x,\cdot)}{{\mbox{\rm d}}\mu}(y).

If for any r0>0r_{0}>0, pt0(x,y)p_{t}^{0}(x,y) satisfies that supx[r0,r0]{0}p20(x,x)<+\sup_{x\in[-r_{0},r_{0}]\setminus\{0\}}p_{2}^{0}(x,x)<+\infty, then ν\nu attracts all probability measures η\eta on 0\mathbb{R}^{0}, that is, for any subset A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

limtη[YtA|t<T0]=ν(A).\lim_{t\rightarrow\infty}\mathbb{P}_{\eta}[Y_{t}\in A|t<T_{0}]=\nu(A). (1.5)

Furthermore, if supxp20(x,x)<+\sup_{x}p_{2}^{0}(x,x)<+\infty, then for any probability measure η\eta on 0\mathbb{R}^{0},

η[Yt|t<T0]ν()TVCe(λ1λ0)tηνTVη(ψ0),\|\mathbb{P}_{\eta}[Y_{t}\in\cdot|t<T_{0}]-\nu(\cdot)\|_{TV}\leq\frac{Ce^{-(\lambda_{1}-\lambda_{0})t}\|\eta-\nu\|_{TV}}{\eta(\psi_{0})}, (1.6)

where CC is a constant independent of η\eta.

Remark 1.4.

The Lyapunov function condition is also an important method for proving the existence and uniqueness of QSD, and we refer the reader to [12, Theorem 2.2] for the recent result. Note that the Lyapunov function condition [12, C3] implies

limnsupx𝔼x[T[n,n]]=0,\lim_{n\rightarrow\infty}\sup_{x\in\mathbb{R}}\mathbb{E}_{x}[T_{[-n,n]}]=0,

which is equivalent to entrance from infinity by Lemma 3.2 in this paper.

Note that when σ\sigma is a polynomial, the conditions in above theorem can be explicitly characterized, and we obtain the following conclusion.

Example 1.5.

Consider the polynomial case: σ(x)=(2αγ1)1/α(1+|x|)γ\sigma(x)=\left(\frac{2}{\alpha\gamma-1}\right)^{1/\alpha}(1+|x|)^{\gamma} (where (2αγ1)1/α\left(\frac{2}{\alpha\gamma-1}\right)^{1/\alpha} is the normalizing constant so that the μ\mu is a probability measure). When γ>1\gamma>1, Y0Y^{0} has a unique QSD ν\nu given by (1.3), ν\nu is the Yaglom limit of Y0Y^{0} and (1.4) holds. Furthermore, 1.6 holds if and only if γ>1\gamma>1.

An outline of this paper is as follows. In Section 2, we recall some basic notions and properties about killed processes and Green functions. In section 3, we prove the compactness of the semigroup of killed processes (Theorem 1.1), and the strict positivity, continuity and boundedness of ground state, which plays an important role in subsequent proofs. In section 4, we prove our main results on QSDs (Theorem 1.2, Theorem 1.3 and Example 1.5), and give some corollaries.

2 Killed processes and Green functions

Recall that XX is a one-dimensional symmetric α\alpha-stable process with α(1,2)\alpha\in(1,2), and YY is its time-changed process. According to [9, Theorem 6.2.1], it is known that YY is μ\mu-symmetric. From [5, Section 1], the Dirichlet form (,)(\mathscr{E},\mathscr{F}) associated with YY is given by

(f,g)=12(f(x)f(y))(g(x)g(y))Cαdxdy|xy|1+α,\mathscr{E}(f,g)=\frac{1}{2}\int_{\mathbb{R}}\int_{\mathbb{R}}(f(x)-f(y))(g(x)-g(y))\frac{C_{\alpha}{\mbox{\rm d}}x{\mbox{\rm d}}y}{|x-y|^{1+\alpha}},

and

={fL2(μ):(f,f)<},\mathscr{F}=\{f\in L^{2}(\mu):\mathscr{E}(f,f)<\infty\},

where Cα=α2α1Γ((α+1)/2)πΓ(1α/2)C_{\alpha}=\frac{\alpha 2^{\alpha-1}\Gamma((\alpha+1)/2)}{\sqrt{\pi}\Gamma(1-{\alpha}/{2})}.

Given an open subset BB\subseteq\mathbb{R}, let YBY^{B} be the killed (sub-)process of YY killed upon exiting BB with transition function

PtB(x,A)=x[YtA,t<TBc], for any xB and A(B).P_{t}^{B}(x,A)=\mathbb{P}_{x}[Y_{t}\in A,t<T_{B^{c}}]\text{, for any }x\in B\text{ and }A\in\mathscr{B}(B).

Define

B={f,f~=0,q.e. onBc},B=onB×B,\mathscr{F}^{B}=\{f\in\mathscr{F},\widetilde{f}=0,\ \text{q.e. on}\ B^{c}\},\quad\mathscr{E}^{B}=\mathscr{E}\ \text{on}\ \mathscr{F}^{B}\times\mathscr{F}^{B},

where q.e. stands for quasi-everywhere, and f~\widetilde{f} is a quasi-continuous modification of ff (cf. [17, Section 2.2]). By [17, Theorem 3.5.7], (B,B)(\mathscr{E}^{B},\mathscr{F}^{B}) is a regular Dirichlet form on L2(B;μ)L^{2}(B;\mu) associated with YBY^{B}; YBY^{B} is symmetric with respect to the measure μ|B(dx)\mu|_{B}({\mbox{\rm d}}x) (where L2(B,μ)L^{2}(B,\mu) be the space of square integrable measurable functions on BB with respect to μ\mu). We write (B,𝒟(B))(\mathcal{L}^{B},\mathcal{D}(\mathcal{L}^{B})) for the infinitesimal generator of (PtB)(P_{t}^{B}) in L2(B;μ)L^{2}(B;\mu), with

𝒟(B):={uL2(B;μ):limt0PtBuut exists in L2(B;μ)},\mathcal{D}\left(\mathcal{L}^{B}\right):=\left\{u\in L^{2}(B;\mu):\lim_{t\rightarrow 0}\frac{P_{t}^{B}u-u}{t}\text{ exists in }L^{2}(B;\mu)\right\},

and

Bf=limt0PtBfft in L2(B;μ),for anyf𝒟(B).\mathcal{L}^{B}f=\lim_{t\rightarrow 0}\frac{P_{t}^{\mathrm{B}}f-f}{t}\quad\text{ in }L^{2}(B;\mu),\quad\text{for any}\ f\in\mathcal{D}(\mathcal{L}^{B}).

Let

GB(x,dy)=0+PtB(x,dy)𝑑tG^{B}(x,{\mbox{\rm d}}y)=\int_{0}^{+\infty}P_{t}^{B}(x,{\mbox{\rm d}}y)dt

be the Green potential measure and denote the Green operator by

GBf(x)=Bf(y)GB(x,dy).G^{B}f(x)=\int_{B}f(y)G^{B}(x,{\mbox{\rm d}}y).

Simultaneously, the killed process XBX^{B} and its Green potential measure GXB(x,dy)G_{X}^{B}(x,{\mbox{\rm d}}y) are defined similarly. Let GXB(x,y)G_{X}^{B}(x,y) be the Green function of XBX^{B}, that is, for any x,yBx,y\in B, GXB(x,dy)=GXB(x,y)dyG_{X}^{B}(x,{\mbox{\rm d}}y)=G_{X}^{B}(x,y){\mbox{\rm d}}y. According to [25, Section 2], it should be pointed out here that the Green operator of YBY^{B} has a strong relationship with the Green operator of XBX^{B}:

GBf(x)=Bf(y)GXB(x,y)σ(y)αdy,f().G^{B}f(x)=\int_{B}f(y)G_{X}^{B}(x,y)\sigma(y)^{-\alpha}{\mbox{\rm d}}y,\ \forall f\in\mathscr{B}(\mathbb{R}). (2.1)

On some occasions, the Green function of XBX^{B} can be expressed explicitly, for example:

  1. (1)

    [2, Lemma 4] B=0B=\mathbb{R}^{0}: for any x,y0x,y\neq 0,

    GX0(x,y):=GX{0}c(x,y)=ωα2(|y|α1+|x|α1|yx|α1),G_{X}^{0}(x,y):=G_{X}^{\{0\}^{c}}(x,y)=\frac{\omega_{\alpha}}{2}\left(|y|^{\alpha-1}+|x|^{\alpha-1}-|y-x|^{\alpha-1}\right), (2.2)

    where ωα=1cos(πα/2)Γ(α).\omega_{\alpha}=-\frac{1}{\cos(\pi\alpha/2)\Gamma(\alpha)}. By direct calculation, we have (see [25, Page 9])

    GX0(x,y)ωα(|x|α1|y|α1).G_{X}^{0}(x,y)\leq\omega_{\alpha}(|x|^{\alpha-1}\wedge|y|^{\alpha-1}). (2.3)
  2. (2)

    [8, (11)] B=[1,1]cB=\mathbb{R}\setminus\left[-1,1\right]^{c}: for any x,y[1,1]cx,y\in\left[-1,1\right]^{c},

    GX[1,1]c(x,y)=cα(|xy|α1h(|xy1||xy|)(α1)h(x)h(y)),G_{X}^{\left[-1,1\right]^{c}}(x,y)=c_{\alpha}\left(|x-y|^{\alpha-1}h\left(\frac{|xy-1|}{|x-y|}\right)-(\alpha-1)h(x)h(y)\right), (2.4)

    where cα=21α/(Γ(α/2)2),c_{\alpha}=2^{1-\alpha}/\left({\Gamma(\alpha/2)^{2}}\right), and

    h(x)=1|x|(z21)α21𝑑z.h(x)=\int_{1}^{|x|}\left(z^{2}-1\right)^{\frac{\alpha}{2}-1}dz.

Furthermore, according to [8, Lemma 3.3],

limxGX[1,1]c(x,y)=Kαh(y),\lim_{x\rightarrow\infty}G_{X}^{\left[-1,1\right]^{c}}(x,y)=K_{\alpha}h(y), (2.5)

where KαK_{\alpha} is a constant and defined by

Kα=2cα(1α2)Γ(α2)Γ(1α2)1h(v)1+vdv<.K_{\alpha}=\frac{2c_{\alpha}(1-\frac{\alpha}{2})\Gamma(\frac{\alpha}{2})}{\Gamma(1-\frac{\alpha}{2})}\int_{1}^{\infty}\frac{h^{\prime}(v)}{1+v}{\mbox{\rm d}}v<\infty.

Besides, thanks to the self-similarity of XX, for any R>0R>0,

GX[R,R]c(x,y)=Rα1GX[1,1]c(xR,yR).G_{X}^{\left[-R,R\right]^{c}}(x,y)=R^{\alpha-1}G_{X}^{\left[-1,1\right]^{c}}(\frac{x}{R},\frac{y}{R}). (2.6)

3 Compactness of killed semigroups and properties of the ground states

Let Pt0:=Pt{0}cP_{t}^{0}:=P_{t}^{\{0\}^{c}} be the semigroup of YY killed upon hitting 0. Denote by Y0:=Y{0}cY^{0}:=Y^{\{0\}^{c}}, 0:={0}c\mathcal{L}^{0}:=\mathcal{L}^{\{0\}^{c}} and G0:=G{0}cG^{0}:=G^{\{0\}^{c}} the killed process, the generator of Pt0P_{t}^{0}, and the Green operator on 0\mathbb{R}^{0} respectively. In this section, we first prove that under the condition Iσ,α<I^{\sigma,\alpha}<\infty, (Pt0)t>0(P_{t}^{0})_{t>0} is compact; therefore, we can study the properties of ground state, which is crucial to our proofs of main results on QSDs.

Firstly, we prove Theorem 1.1 and G0G^{0} is a Hilbert-Schmidt operator on L2(0;μ)L^{2}(\mathbb{R}^{0};\mu) under the condition Iσ,α<I^{\sigma,\alpha}<\infty.

Proof of Theorem 1.1.

By [23, Theorem 0.3.9], to demonstrate (Pt0)t>0(P_{t}^{0})_{t>0} is compact, we just need to prove 0 is belong to resolvent set ρ(0)\rho(\mathcal{L}^{0}) of 0\mathcal{L}^{0} and G0G^{0} is compact.

Firstly, we prove 0ρ(0)0\in\rho(\mathcal{L}^{0}), that is, the inverse of 0-\mathcal{L}^{0}, G0=(0)1G^{0}=(-\mathcal{L}^{0})^{-1} is bounded in the operator norm from L2(0;μ)L^{2}(\mathbb{R}^{0};\mu) to L2(0;μ)L^{2}(\mathbb{R}^{0};\mu):

G0L2(0;μ)L2(0;μ)<.\|G^{0}\|_{L^{2}(\mathbb{R}^{0};\mu)\rightarrow L^{2}(\mathbb{R}^{0};\mu)}<\infty.

Note that by (2.3),

G0fL1(0;μ)=00G0(x,y)f(y)μ(dy)μ(dx)00ωα|x|α1f(y)μ(dy)μ(dx)=ωαIσ,αfL1(0;μ).xa\begin{split}\|G^{0}f\|_{L^{1}(\mathbb{R}^{0};\mu)}&=\int_{\mathbb{R}^{0}}\int_{\mathbb{R}^{0}}G^{0}(x,y)f(y)\mu({\mbox{\rm d}}y)\mu({\mbox{\rm d}}x)\\ &\leq\int_{\mathbb{R}^{0}}\int_{\mathbb{R}^{0}}\omega_{\alpha}|x|^{\alpha-1}f(y)\mu({\mbox{\rm d}}y)\mu({\mbox{\rm d}}x)\\ &=\omega_{\alpha}I^{\sigma,\alpha}\|f\|_{L^{1}(\mathbb{R}^{0};\mu)}.xa\end{split}

Therefore, G0L1(0;μ)L1(0;μ)ωαIσ,α<\|G^{0}\|_{L^{1}(\mathbb{R}^{0};\mu)\rightarrow L^{1}(\mathbb{R}^{0};\mu)}\leq\omega_{\alpha}I^{\sigma,\alpha}<\infty, and

G0L(0;μ)L(0;μ)=G0L1(0;μ)L1(0;μ)<.\|G^{0}\|_{L^{\infty}(\mathbb{R}^{0};\mu)\rightarrow L^{\infty}(\mathbb{R}^{0};\mu)}=\|G^{0}\|_{L^{1}(\mathbb{R}^{0};\mu)\rightarrow L^{1}(\mathbb{R}^{0};\mu)}<\infty.

From the Riesz-Thorin theorem, it follows that G0L2(0;μ)L2(0;μ)<\|G^{0}\|_{L^{2}(\mathbb{R}^{0};\mu)\rightarrow L^{2}(\mathbb{R}^{0};\mu)}<\infty. By the definition of resolvent, 0ρ(0)0\in\rho(\mathcal{L}^{0}).

Next, we show that G0G^{0} is a Hilbert-Schmidt operator, which implies that G0G^{0} is compact.

Note that

00(G0(x,y))2μ(dx)μ(dy)00ωα2(|x|α1|y|α1)2μ(dx)μ(dy)ωα20|x|α1μ(dx)ωα0|y|α1μ(dy)=(ωαIσ,α)2<,\begin{split}\int_{\mathbb{R}^{0}}\int_{\mathbb{R}^{0}}(G^{0}(x,y))^{2}\mu({\mbox{\rm d}}x)\mu({\mbox{\rm d}}y)&\leq\int_{\mathbb{R}^{0}}\int_{\mathbb{R}^{0}}\omega_{\alpha}^{2}(|x|^{\alpha-1}\wedge|y|^{\alpha-1})^{2}\mu({\mbox{\rm d}}x)\mu({\mbox{\rm d}}y)\\ &\leq\omega_{\alpha}^{2}\int_{\mathbb{R}^{0}}|x|^{\alpha-1}\mu({\mbox{\rm d}}x)\omega_{\alpha}\int_{\mathbb{R}^{0}}|y|^{\alpha-1}\mu({\mbox{\rm d}}y)=(\omega_{\alpha}I^{\sigma,\alpha})^{2}<\infty,\end{split} (3.1)

therefore G0(x,y)L2(0×0;μ×μ)G^{0}(x,y)\in L^{2}(\mathbb{R}^{0}\times\mathbb{R}^{0};\mu\times\mu), and hence G0G^{0} is a Hilbert-Schmidt operator.

Theorem 1.1 indicates that there exists a complete orthonormal set of eigenfunctions {ψn}n0\{\psi_{n}\}_{n\geq 0} with ψnL2(0;μ)=1\|\psi_{n}\|_{L^{2}(\mathbb{R}^{0};\mu)}=1, such that Pt0ψn=eλntψnP_{t}^{0}\psi_{n}=e^{-\lambda_{n}t}\psi_{n} for any n0n\geq 0 and t0t\geq 0, where {λn}n0\{\lambda_{n}\}_{n\geq 0} are eigenvalues of generator of (Pt0)t0(P_{t}^{0})_{t\geq 0}, satisfying 0<λ0<λ1+0<\lambda_{0}<\lambda_{1}\leq\dots\rightarrow+\infty, where the positivity and simplicity of λ0\lambda_{0} will be proved in Appendix, Proposition A.2. The principal eigenfunction ψ0\psi_{0} is called the ground state. Next, we are going to prove some basic properties about ψ0\psi_{0}. We prove the positivity and continuity of ψ0\psi_{0} on 0\mathbb{R}^{0} in the following theorem.

Theorem 3.1.

If Iσ,α<I^{\sigma,\alpha}<\infty, then ψ0\psi_{0} can be chosen to be strictly positive and continuous on 0\mathbb{R}^{0}.

Proof.

Firstly, we prove ψ0\psi_{0} can be chosen to be nonnegative.

Actually, by using the proof by contradiction, we have μ({x:ψ0(x)0})=1\mu(\{x:\psi_{0}(x)\geq 0\})=1 or μ({x:ψ0(x)0})=1\mu(\{x:\psi_{0}(x)\leq 0\})=1. Assume that μ({x:ψ0(x)>0})>0\mu(\{x:\psi_{0}(x)>0\})>0 and μ({x:ψ0(x)<0})>0\mu(\{x:\psi_{0}(x)<0\})>0. Then Leb({(x,y):ψ0(x)ψ0(y)<0})>0\mathrm{Leb}(\{(x,y):\psi_{0}(x)\psi_{0}(y)<0\})>0, where Leb()\mathrm{Leb}(\cdot) is the Lebesgue measure. Note that on {(x,y):ψ0(x)ψ0(y)0}\{(x,y):\psi_{0}(x)\psi_{0}(y)\geq 0\},

(ψ0(x)ψ0(y))2=(|ψ0(x)||ψ0(y)|)2,(\psi_{0}(x)-\psi_{0}(y))^{2}=(|\psi_{0}(x)|-|\psi_{0}(y)|)^{2},

while on {(x,y):ψ0(x)ψ0(y)<0}\{(x,y):\psi_{0}(x)\psi_{0}(y)<0\},

(ψ0(x)ψ0(y))2>(|ψ0(x)||ψ0(y)|)2.(\psi_{0}(x)-\psi_{0}(y))^{2}>(|\psi_{0}(x)|-|\psi_{0}(y)|)^{2}.

Therefore,

(ψ0,ψ0)=12({(x,y):ψ0(x)ψ0(y)0}+{(x,y):ψ0(x)ψ0(y)<0})(ψ0(x)ψ0(y))2Cαdxdy|xy|1+α>12({(x,y):ψ0(x)ψ0(y)0}+{(x,y):ψ0(x)ψ0(y)<0})(|ψ0(x)||ψ0(y)|)2Cαdxdy|xy|1+α=(|ψ0|,|ψ0|).\begin{split}\mathscr{E}(\psi_{0},\psi_{0})&=\frac{1}{2}\left(\int_{\{(x,y):\psi_{0}(x)\psi_{0}(y)\geq 0\}}+\int_{\{(x,y):\psi_{0}(x)\psi_{0}(y)<0\}}\right)(\psi_{0}(x)-\psi_{0}(y))^{2}\frac{C_{\alpha}{\mbox{\rm d}}x{\mbox{\rm d}}y}{|x-y|^{1+\alpha}}\\ &>\frac{1}{2}\left(\int_{\{(x,y):\psi_{0}(x)\psi_{0}(y)\geq 0\}}+\int_{\{(x,y):\psi_{0}(x)\psi_{0}(y)<0\}}\right)(|\psi_{0}(x)|-|\psi_{0}(y)|)^{2}\frac{C_{\alpha}{\mbox{\rm d}}x{\mbox{\rm d}}y}{|x-y|^{1+\alpha}}\\ &=\mathscr{E}(|\psi_{0}|,|\psi_{0}|).\end{split} (3.2)

However, by the definition of ground state and the first Dirichlet eigenvalue,

(ψ0,ψ0)=λ0=inf{(f,f):μ(f2)=1,f(0)=0,f}(|ψ0|,|ψ0|),\mathscr{E}(\psi_{0},\psi_{0})=\lambda_{0}=\inf\{\mathscr{E}(f,f):\mu(f^{2})=1,f(0)=0,f\in\mathscr{F}\}\leq\mathscr{E}(|\psi_{0}|,|\psi_{0}|),

which contradicts (3.2). Thus μ{x:ψ0(x)>0}=0\mu\{x:\psi_{0}(x)>0\}=0 or μ{x:ψ0(x)<0}=0\mu\{x:\psi_{0}(x)<0\}=0. If μ{x:ψ0(x)>0}=0\mu\{x:\psi_{0}(x)>0\}=0, then ψ0-\psi_{0} satisfies Pt0(ψ0)=eλ0t(ψ0)P_{t}^{0}(-\psi_{0})=e^{-\lambda_{0}t}(-\psi_{0}) and μ{x:ψ0(x)<0}=0\mu\{x:-\psi_{0}(x)<0\}=0. So we can always choose eigenfunction ψ0\psi_{0} satisfying

μ({x:ψ0(x)0})=1.\mu(\{x:\psi_{0}(x)\geq 0\})=1. (3.3)

Note that by the definition of ground state, it is easy to see that

G0ψ0(x)=0Pt0ψ0(x)dt=0eλ0tψ0(x)dt=ψ0(x)λ0.G^{0}\psi_{0}(x)=\int_{0}^{\infty}P_{t}^{0}\psi_{0}(x){\mbox{\rm d}}t=\int_{0}^{\infty}{\mbox{\rm e}}^{-\lambda_{0}t}\psi_{0}(x){\mbox{\rm d}}t=\frac{\psi_{0}(x)}{\lambda_{0}}.

Thus by combining the above equality, (2.1), and (3.3), we get that for any x0x\neq 0,

ψ0(x)λ0=0GX0(x,y)ψ0(y)μ(dy)0,\frac{\psi_{0}(x)}{\lambda_{0}}=\int_{\mathbb{R}^{0}}G_{X}^{0}(x,y)\psi_{0}(y)\mu({\mbox{\rm d}}y)\geq 0, (3.4)

which proves ψ0\psi_{0} is nonnegative.

Next, we prove ψ0\psi_{0} is strictly positive.

Actually,

GX0(x,y)>0 for any x,y0.G_{X}^{0}(x,y)>0\text{ for any }x,y\neq 0. (3.5)

According to (2.2), by noting that GX0(x,y)=GX0(x,y)G_{X}^{0}(x,y)=G_{X}^{0}(-x,-y), we just need to prove that for any x>0x>0, y0y\neq 0, GX0(x,y)>0G_{X}^{0}(x,y)>0. Indeed, GX0(x,)G_{X}^{0}(x,\cdot) is strictly decreasing in (,0),(x,+)(-\infty,0),\ (x,+\infty) and strictly increasing in (0,x)(0,x). Since for any y>xy>x, by [25, Page 592],

GX0(x,y)>ωα2(xy)α1=ωα2xα1>0,G_{X}^{0}(x,y)>\frac{\omega_{\alpha}}{2}(x\wedge y)^{\alpha-1}=\frac{\omega_{\alpha}}{2}x^{\alpha-1}>0,

and GX0(x,0)=0G_{X}^{0}(x,0)=0, then GX0(x,y)>0G_{X}^{0}(x,y)>0 for any y0,x>0y\neq 0,\ x>0.

Now, if there would exist x00x_{0}\neq 0 such that ψ0(x0)=0\psi_{0}(x_{0})=0, then by (3.4),

0=ψ0(x0)λ0=0GX0(x0,y)ψ0(y)μ(dy).0=\frac{\psi_{0}(x_{0})}{\lambda_{0}}=\int_{\mathbb{R}^{0}}G_{X}^{0}(x_{0},y)\psi_{0}(y)\mu({\mbox{\rm d}}y).

By (3.5), and the non-negativity of ψ0\psi_{0}, we would have ψ0=0\psi_{0}=0, μ\mu-a.e., which is contradictory to ψ0L2(0;μ)=1\|\psi_{0}\|_{L^{2}(\mathbb{R}^{0};\mu)}=1. So ψ0\psi_{0} is strictly positive on 0\mathbb{R}^{0}.

Finally, to prove the continuity of ψ0\psi_{0} on 0\mathbb{R}^{0}, w.l.o.g., we assume x0>0x_{0}>0. According to (2.3), for any |xx0|<1x02|x-x_{0}|<1\wedge\frac{x_{0}}{2},

0GX0(x,y)ψ0(y)μ(dy)ωα0(|x||y|)α1ψ0(y)μ(dy)ωα(x0+1)α1μ(ψ0)<.\int_{\mathbb{R}^{0}}G_{X}^{0}(x,y)\psi_{0}(y)\mu({\mbox{\rm d}}y)\leq\omega_{\alpha}\int_{\mathbb{R}^{0}}(|x|\wedge|y|)^{\alpha-1}\psi_{0}(y)\mu(dy)\leq\omega_{\alpha}(x_{0}+1)^{\alpha-1}\mu(\psi_{0})<\infty.

By using (3.4), the continuity of G(,y)G(\cdot,y) on 0\mathbb{R}^{0} for any y0y\neq 0 and dominated convergence theorem, we have thus proved Theorem 3.1. ∎

Next, to prove the boundedness of ψ0\psi_{0}, we need some lemmas.

Lemma 3.2.

Iσ,α:=σ(x)α|x|α1dx<I^{\sigma,\alpha}:=\int_{\mathbb{R}}\sigma(x)^{-\alpha}|x|^{\alpha-1}{\mbox{\rm d}}x<\infty if and only if

limRsupx𝔼x[T[R,R]]=0.\lim_{R\rightarrow\infty}\sup_{x\in\mathbb{R}}\mathbb{E}_{x}[T_{[-R,R]}]=0.
Proof.

If Iσ,α<+I^{\sigma,\alpha}<+\infty, from (2.1), (2.3),

supx𝔼x[T[R,R]]\displaystyle\sup_{x}\mathbb{E}_{x}[T_{[-R,R]}] =supx[R,R]c[R,R]cG[R,R]c(x,dy)\displaystyle=\sup_{x\in[-R,R]^{c}}\int_{[-R,R]^{c}}G^{[-R,R]^{c}}(x,{\mbox{\rm d}}y)
=supx[R,R]c[R,R]cGX[R,R]c(x,y)μ(dy)\displaystyle=\sup_{x\in[-R,R]^{c}}\int_{[-R,R]^{c}}G_{X}^{[-R,R]^{c}}(x,y)\mu({\mbox{\rm d}}y)
supx[R,R]c[R,R]cGX0(x,y)μ(dy)\displaystyle\leq\sup_{x\in[-R,R]^{c}}\int_{[-R,R]^{c}}G_{X}^{0}(x,y)\mu({\mbox{\rm d}}y)
ωα[R,R]c|y|α1μ(dy),\displaystyle\leq\omega_{\alpha}\int_{[-R,R]^{c}}|y|^{\alpha-1}\mu({\mbox{\rm d}}y),

By letting R+R\rightarrow+\infty, we obtain that supx𝔼x[T[R,R]]0\sup_{x}\mathbb{E}_{x}[T_{[-R,R]}]\rightarrow 0.

On the contrary, if Iσ,α=I^{\sigma,\alpha}=\infty, then for any R>0R>0, by using (2.4), (2.5) and (2.6),

supx𝔼x[T[R,R]]\displaystyle\sup_{x}\mathbb{E}_{x}[T_{[-R,R]}] =supx[R,R]c[R,R]cRα1GX[1,1]c(xR,yR)μ(dy)\displaystyle=\sup_{x\in[-R,R]^{c}}\int_{[-R,R]^{c}}R^{\alpha-1}G_{X}^{\left[-1,1\right]^{c}}\left(\frac{x}{R},\frac{y}{R}\right)\mu({\mbox{\rm d}}y)
[R,R]clim infx+Rα1GX[1,1]c(xR,yR)μ(dy)\displaystyle\geq\int_{[-R,R]^{c}}\liminf_{x\rightarrow+\infty}R^{\alpha-1}G_{X}^{\left[-1,1\right]^{c}}\left(\frac{x}{R},\frac{y}{R}\right)\mu({\mbox{\rm d}}y)
=[R,R]cRα1Kαh(yR)μ(dy)\displaystyle=\int_{[-R,R]^{c}}R^{\alpha-1}K_{\alpha}h\left(\frac{y}{R}\right)\mu({\mbox{\rm d}}y)
Kαα[R,R]cRα1(|y|α1Rα11)μ(dy)=+.\displaystyle\geq\frac{K_{\alpha}}{\alpha}\int_{[-R,R]^{c}}R^{\alpha-1}\left(\frac{|y|^{\alpha-1}}{R^{\alpha-1}}-1\right)\mu({\mbox{\rm d}}y)=+\infty.

Remark 3.3.

According to the proof of [25, Theorem 1.4], it is easy to verify that Iσ,α<+I^{\sigma,\alpha}<+\infty is equivalent to supx𝔼x[T0]<+\sup_{x\in\mathbb{R}}\mathbb{E}_{x}[T_{0}]<+\infty; now by Proposition 3.2, we know Iσ,α<+I^{\sigma,\alpha}<+\infty is also equivalent to supx𝔼x[T[1,1]]<+\sup_{x\in\mathbb{R}}\mathbb{E}_{x}[T_{[-1,1]}]<+\infty.

Lemma 3.4.

If Iσ,α<I^{\sigma,\alpha}<\infty, then for any λ>0\lambda>0, there exists a constant R=R(λ)R=R(\lambda), such that

supx0𝔼x[eλT[R,R]]<+.\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[e^{\lambda T_{[-R,R]}}]<+\infty.
Proof.

It follows from Lemma 3.2 that, for any ϵ>0\epsilon>0, there exists R=R(ϵ)R=R(\epsilon), such that

supx𝔼x[T[R,R]]ϵ.\sup_{x}\mathbb{E}_{x}[T_{[-R,R]}]\leq\epsilon.

Using Markov’s inequality, we have

supxx[T[R,R]>1]ϵ.\sup_{x}\mathbb{P}_{x}[T_{[-R,R]}>1]\leq\epsilon.

By Markov property, for any n2n\geq 2,

x(T[R,R]>n)\displaystyle\mathbb{P}_{x}\left(T_{[-R,R]}>n\right) =𝔼x[𝟏{T[R,R]>1}𝟏{T[R,R]θ1>n1}]\displaystyle=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{T_{[-R,R]}>1\right\}}\mathbf{1}_{\left\{T_{[-R,R]}\circ\theta_{1}>n-1\right\}}\right]
=𝔼x[𝟏{T[R,R]>1}𝔼X1[𝟏{T[R,R]>n1}]]\displaystyle=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{T_{[-R,R]}>1\right\}}\mathbb{E}_{X_{1}}\left[\mathbf{1}_{\left\{T_{[-R,R]}>n-1\right\}}\right]\right]
x(T[R,R]>1)supxx(T[R,R]>n1).\displaystyle\leq\mathbb{P}_{x}\left(T_{[-R,R]}>1\right)\sup_{x}\mathbb{P}_{x}\left(T_{[-R,R]}>n-1\right).

Then by induction,

supxx[T[R,R]>n]ϵn.\sup_{x}\mathbb{P}_{x}[T_{[-R,R]}>n]\leq\epsilon^{n}.

By Fubini Theorem, it comes to the fact that for any λ>0\lambda>0, we can take ϵ<eλ\epsilon<e^{-\lambda} and R=R(ϵ)R=R(\epsilon) such that for any x0x\in\mathbb{R}^{0},

𝔼x[eλT[R,R]]\displaystyle\mathbb{E}_{x}[e^{\lambda T_{[-R,R]}}] =0+λeλsx[T[R,R]>s]𝑑ti=0+λeλ(i+1)x[T[R,R]>i]+1\displaystyle=\int_{0}^{+\infty}\lambda e^{\lambda s}\mathbb{P}_{x}[T_{[-R,R]}>s]dt\leq\sum_{i=0}^{+\infty}\lambda e^{\lambda(i+1)}\mathbb{P}_{x}[T_{[-R,R]}>i]+1
i=0+λeλ(i+1)ϵi+1λeλ1eλϵ+1<+.\displaystyle\leq\sum_{i=0}^{+\infty}\lambda e^{\lambda(i+1)}\epsilon^{i}+1\leq\frac{\lambda e^{\lambda}}{1-e^{\lambda}\epsilon}+1<+\infty.

Using Lemma 3.4 and following the proof of [20, Lemma 5.3 and Theorem 5.4], we obtain the following corollary.

Corollary 3.5.

If Iσ,α<I^{\sigma,\alpha}<\infty, then ψ0\psi_{0} is bounded.

4 Proof of the main results on QSD

We verify the main results on QSD in this section. Firstly, we prove Theorem 1.2, which shows the existence and uniqueness of the QSD for Y0Y^{0}, the existence of Yaglom limit and the exponential convergence to Yaglom limit when starting at a single point x0x\neq 0. Secondly, we provide a sufficient condition for exponential convergence to the QSD for any initial distribution (Theorem 1.3). Finally, we focus on Example 1.5 , which indicates the condition Iσ,α<+I^{\sigma,\alpha}<+\infty is a sufficient and necessary condition for uniform exponential convergence on some occasions.

First of all, we prove Theorem 1.2.

Proof of Theorem 1.2.

(1) Firstly, we prove

ν(dx)=ψ0(x)μ(dx)0ψ0(x)μ(dx).\nu(\text{d}x)=\frac{\psi_{0}(x)\mu({\mbox{\rm d}}x)}{\int_{\mathbb{R}^{0}}\psi_{0}(x)\mu({\mbox{\rm d}}x)}.

is a QSD for Y0Y^{0}.

Since ψ0L2(0,μ)\psi_{0}\in L^{2}(\mathbb{R}^{0},\mu) and μ\mu is a finite measure, ψ0L1(0,μ)\psi_{0}\in L^{1}(\mathbb{R}^{0},\mu). According to [9, Lemma 4.1.3] and the μ\mu-symmetry of YY, we know that Y0Y^{0} is μ\mu-symmetric. By using Theorem 1.1 and Theorem 3.1, we get that for all A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

ν[YtA|t<T0]\displaystyle\mathbb{P}_{\nu}[Y_{t}\in A|t<T_{0}] =0x[YtA,t<T0]ν(dx)0x[t<T0]ν(dx)\displaystyle=\frac{\int_{\mathbb{R}^{0}}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]\nu(\text{d}x)}{\int_{\mathbb{R}^{0}}\mathbb{P}_{x}[t<T_{0}]\nu(\text{d}x)}
=0Pt0𝟏A(x)ψ0(x)μ(dx)0Pt0𝟏(x)ψ0(x)μ(dx)\displaystyle=\frac{\int_{\mathbb{R}^{0}}P_{t}^{0}\mathbf{1}_{A}(x)\psi_{0}(x)\mu(\text{d}x)}{\int_{\mathbb{R}^{0}}P_{t}^{0}\mathbf{1}(x)\psi_{0}(x)\mu(\text{d}x)}
=0Pt0ψ0(x)𝟏A(x)μ(dx)0Pt0ψ0(x)𝟏(x)μ(dx)\displaystyle=\frac{\int_{\mathbb{R}^{0}}P_{t}^{0}\psi_{0}(x)\mathbf{1}_{A}(x)\mu(\text{d}x)}{\int_{\mathbb{R}^{0}}P_{t}^{0}\psi_{0}(x)\mathbf{1}(x)\mu(\text{d}x)}
=0eλ0tψ0(x)𝟏A(x)μ(dx)0eλ0tψ0(x)𝟏(x)μ(dx)\displaystyle=\frac{\int_{\mathbb{R}^{0}}e^{-\lambda_{0}t}\psi_{0}(x)\mathbf{1}_{A}(x)\mu(\text{d}x)}{\int_{\mathbb{R}^{0}}e^{-\lambda_{0}t}\psi_{0}(x)\mathbf{1}(x)\mu(\text{d}x)}
=ν(A).\displaystyle=\nu(A).

It comes to the conclusion that ν\nu is a QSD for Y0Y^{0}.

(2) Secondly, we turn to prove the uniqueness of the QSD. Assume η\eta is also a QSD for Y0Y^{0}, and there exists A(0)A\in\mathscr{B}(\mathbb{R}^{0}) such that η(A)>ν(A)\eta(A)>\nu(A).

From the proof of [24, Proposition 3.5], for any xx\in\mathbb{R} and t>0t>0, Pt(x,dy)P_{t}(x,{\mbox{\rm d}}y) has a density function pt(x,y)p_{t}(x,y) with respect to μ\mu. Using [4, (3)], we have for any x0x\in\mathbb{R}^{0} and t>0t>0, Pt0(x,dy)P_{t}^{0}(x,{\mbox{\rm d}}y) has a density function pt0(x,y)p_{t}^{0}(x,y) with respect to μ\mu satisfying

Pt0(x,dy)=pt0(x,y)μ(dy),pt0(x,y)=pt0(y,x), for any x,y0.P_{t}^{0}(x,{\mbox{\rm d}}y)=p_{t}^{0}(x,y)\mu({\mbox{\rm d}}y),\qquad p_{t}^{0}(x,y)=p_{t}^{0}(y,x),\text{ for any }x,y\neq 0.

From [6, Theorem 2.2], there exists λ>0\lambda>0, such that for any A0A\in\mathbb{R}^{0},

η[YtA,t<T0]=eλtη(A).\mathbb{P}_{\eta}[Y_{t}\in A,t<T_{0}]=e^{-\lambda t}\eta(A).

It follows that

0pt0(x,y)𝟏A(y)μ(dy)η(dx)=eλtη(A).\int_{\mathbb{R}^{0}}p_{t}^{0}(x,y)\mathbf{1}_{A}(y)\mu({\mbox{\rm d}}y)\eta({\mbox{\rm d}}x)=e^{-\lambda t}\eta(A).

Then η\eta is absolutely continuous with respect to the Lebesgue measure. Let η(dx)=η(x)dx\eta({\mbox{\rm d}}x)=\eta(x){\mbox{\rm d}}x.

By using Doob-hh transform, we define Yψ0Y^{\psi_{0}} with the transition semigroup as follows:

Ptψ0f=eλ0tPt0(ψ0f)ψ0,for any t>0.P_{t}^{\psi_{0}}f=e^{\lambda_{0}t}\frac{P_{t}^{0}(\psi_{0}f)}{\psi_{0}},\quad\text{for any }t>0.

By definition of symmetry and conservativity, we know that Yψ0Y^{\psi_{0}} is ψ02μ\psi_{0}^{2}\mu-symmetric and conservative. Then we prove Yψ0Y^{\psi_{0}} is irreducible. Indeed, let A0A{\subseteq\mathbb{R}^{0}} be a Ptψ0P_{t}^{\psi_{0}}-invariant measurable set satisfying ψ02μ(A)>0\psi_{0}^{2}\mu(A)>0, according to [9, Lemma 1.6.1], Ptψ0𝟏A(x)=0P_{t}^{\psi_{0}}\mathbf{1}_{A}(x)=0 ψ02μ\psi_{0}^{2}\mu-a.e. on 0A\mathbb{R}^{0}\setminus A for any t>0t>0. Therefore, Pt0(ψ0𝟏A)(x)=0P_{t}^{0}(\psi_{0}\mathbf{1}_{A})(x)=0 ψ02μ\psi_{0}^{2}\mu-a.e. on 0A\mathbb{R}^{0}\setminus A for any t>0t>0, which yields that G0(ψ0𝟏A)(x)=0G^{0}(\psi_{0}\mathbf{1}_{A})(x)=0 ψ02μ\psi_{0}^{2}\mu-a.e. on 0A\mathbb{R}^{0}\setminus A. Since G0(x,y)>0G^{0}(x,y)>0 for any x0x\neq 0 and y0y\neq 0, G0(ψ0𝟏A)(x)>0G^{0}(\psi_{0}\mathbf{1}_{A})(x)>0 for any x0x\neq 0. So ψ02μ(0A)=0\psi_{0}^{2}\mu(\mathbb{R}^{0}\setminus A)=0, which means Yψ0Y^{\psi_{0}} is irreducible. Note that for any compact subsets K,F0K,F\subseteq\mathbb{R}^{0} and any t>0t>0,

η(K)=η[YtK,t<T0]η[t<T0]η[YtK,t<T0]η[YtF,t<T0]=0Pt0𝟏K(x)η(dx)0Pt0𝟏F(x)η(dx)=0ψ0(x)Ptψ0(𝟏Kψ0)(x)η(dx)0ψ0(x)Ptψ0(𝟏Fψ0)(x)η(dx).\begin{split}\eta(K)&=\frac{\mathbb{P}_{\eta}[Y_{t}\in K,t<T_{0}]}{\mathbb{P}_{\eta}[t<T_{0}]}\leq\frac{\mathbb{P}_{\eta}[Y_{t}\in K,t<T_{0}]}{\mathbb{P}_{\eta}[Y_{t}\in F,t<T_{0}]}=\frac{\int_{\mathbb{R}^{0}}P_{t}^{0}\mathbf{1}_{K}(x)\eta({\mbox{\rm d}}x)}{\int_{\mathbb{R}^{0}}P_{t}^{0}\mathbf{1}_{F}(x)\eta({\mbox{\rm d}}x)}\\ &=\frac{\int_{\mathbb{R}^{0}}\psi_{0}(x)P_{t}^{\psi_{0}}(\frac{\mathbf{1}_{K}}{\psi_{0}})(x)\eta({\mbox{\rm d}}x)}{\int_{\mathbb{R}^{0}}\psi_{0}(x)P_{t}^{\psi_{0}}(\frac{\mathbf{1}_{F}}{\psi_{0}})(x)\eta({\mbox{\rm d}}x)}.\end{split} (4.1)

Note that by the continuity and positivity of ψ0\psi_{0},

|𝟏Kψ0|1infxKψ0(x)<.\left|\frac{\mathbf{1}_{K}}{\psi_{0}}\right|\leq\frac{1}{\inf_{x\in K}\psi_{0}(x)}<\infty.

Combining this with the irreducibility and conservativity of Yψ0Y^{\psi_{0}}, [21, Theorem 2.2] is valid, so

Ptψ0(𝟏Kψ0)1μ(0)Kψ0dμ,a.e.,ast+,P_{t}^{\psi_{0}}\left(\frac{\mathbf{1}_{K}}{\psi_{0}}\right)\rightarrow\frac{1}{\mu(\mathbb{R}^{0})}\int_{K}\psi_{0}{\mbox{\rm d}}\mu,\ \text{a.e.},\ \text{as}\ t\rightarrow+\infty,

and

Ptψ0(𝟏Fψ0)1μ(0)Fψ0dμ,a.e.,ast+.P_{t}^{\psi_{0}}\left(\frac{\mathbf{1}_{F}}{\psi_{0}}\right)\rightarrow\frac{1}{\mu(\mathbb{R}^{0})}\int_{F}\psi_{0}{\mbox{\rm d}}\mu,\ \text{a.e.},\ \text{as}\ t\rightarrow+\infty.

Therefore, by dominated convergence theorem, let tt\rightarrow\infty in (4.1), we get that

η(K)Kψ0(x)μ(dx)Fψ0(x)μ(dx).\eta(K)\leq\frac{\int_{K}\psi_{0}(x)\mu({\mbox{\rm d}}x)}{\int_{F}\psi_{0}(x)\mu({\mbox{\rm d}}x)}.

Then for any x0x\neq 0, by taking K=[x,x+Δx]K=[x,x+\Delta x] and F0F\uparrow\mathbb{R}^{0}, we arrive at

η(x)=limΔx0η([x,x+Δx])ΔxlimΔx0[x,x+Δx]ψ0(x)μ(dx)Δxμ(ψ0)=ψ0(x)σ(x)αμ(ψ0).\eta(x)=\lim_{\Delta x\rightarrow 0}\frac{\eta([x,x+\Delta x])}{\Delta x}\leq\lim_{\Delta x\rightarrow 0}\frac{\int_{[x,x+\Delta x]}\psi_{0}(x)\mu({\mbox{\rm d}}x)}{\Delta x\mu(\psi_{0})}=\frac{\psi_{0}(x)\sigma(x)^{-\alpha}}{\mu(\psi_{0})}.

It follows that for any A(0)A\in\mathscr{B}(\mathbb{R}^{0}), η(A)ν(A)\eta(A)\leq\nu(A), which is a contradiction. Thus ν\nu is the unique QSD.

(3) Thirdly, we turn to the proof of the existence of Yaglom limit of Y0Y^{0}. Using Theorem 1.1 and following the proof of [16, Corollary 24], we have for any A(0)A\in\mathscr{B}(\mathbb{R}^{0}) and any t>2t>2,

eλ0tPt0𝟏Aψ0,𝟏Aψ0L2(0;μ)2\displaystyle\|e^{\lambda_{0}t}P_{t}^{0}\mathbf{1}_{A}-\langle\psi_{0},\mathbf{1}_{A}\rangle\psi_{0}\|_{L^{2}(\mathbb{R}^{0};\mu)}^{2}
=n=1+e(λ0λn)tψn,𝟏AψnL2(0;μ)2=n=1+e2(λ0λn)tψn,𝟏A2\displaystyle=\|\sum_{n=1}^{+\infty}e^{(\lambda_{0}-\lambda_{n})t}\langle\psi_{n},\mathbf{1}_{A}\rangle\psi_{n}\|_{L^{2}(\mathbb{R}^{0};\mu)}^{2}=\sum_{n=1}^{+\infty}e^{2(\lambda_{0}-\lambda_{n})t}\langle\psi_{n},\mathbf{1}_{A}\rangle^{2}
e2(λ0λ1)(t1)e2λ0n=0+e2λnψn,𝟏A2\displaystyle\leq e^{2(\lambda_{0}-\lambda_{1})(t-1)}e^{2\lambda_{0}}\sum_{n=0}^{+\infty}e^{-2\lambda_{n}}\langle\psi_{n},\mathbf{1}_{A}\rangle^{2}
=e2(λ1λ0)(t1)e2λ0P10𝟏AL2(0;μ)2.\displaystyle=e^{-2(\lambda_{1}-\lambda_{0})(t-1)}e^{2\lambda_{0}}\|P_{1}^{0}\mathbf{1}_{A}\|_{L^{2}(\mathbb{R}^{0};\mu)}^{2}.

By using Hölder inequality, we obtain

|eλ0(t1)x[YtA,t<T0]ψ0,𝟏Aeλ0ψ0(x)|\displaystyle|e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]-\langle\psi_{0},\mathbf{1}_{A}\rangle e^{-\lambda_{0}}\psi_{0}(x)|
=|eλ0(t1)Pt10𝟏A,p10(x,)ψ0,𝟏Aψ0,p10(x,)|\displaystyle=|e^{\lambda_{0}(t-1)}\langle P_{t-1}^{0}\mathbf{1}_{A},p_{1}^{0}(x,\cdot)\rangle-\langle\psi_{0},\mathbf{1}_{A}\rangle\langle\psi_{0},p_{1}^{0}(x,\cdot)\rangle|
e(λ1λ0)(t2)eλ0(p20(x,x))120 as t+,\displaystyle\leq e^{-(\lambda_{1}-\lambda_{0})(t-2)}e^{\lambda_{0}}(p_{2}^{0}(x,x))^{\frac{1}{2}}\rightarrow 0\text{ as }t\rightarrow+\infty, (4.2)

which yields that

limteλ0tx[YtA,t<T0]=ψ0(x)ψ0,𝟏A,\displaystyle\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]=\psi_{0}(x)\langle\psi_{0},\mathbf{1}_{A}\rangle, (4.3)

and

limteλ0tx[t<T0]=ψ0(x)ψ0,𝟏.\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{x}[t<T_{0}]=\psi_{0}(x)\langle\psi_{0},\mathbf{1}\rangle. (4.4)

Therefore,

limtx[YtA|t<T0]=limteλ0tx[YtA,t<T0]limteλ0tx[t<T0]=ν(A).\displaystyle\lim_{t\rightarrow\infty}\mathbb{P}_{x}[Y_{t}\in A|t<T_{0}]=\frac{\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]}{\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{x}[t<T_{0}]}=\nu(A).

Hence ν\nu is the Yaglom limit of Y0Y^{0}.

(4) Finally, we prove the exponential convergence to the Yaglom limit when starting at a single point x0x\neq 0. Fix x0x\neq 0. According to the positivity (Theorem 3.1), boundedness (Corollary 3.5) of ψ0\psi_{0}, and (4.4),

0<mx:=inft>1eλ0(t1)x[t<T0]supt>1eλ0(t1)x[t<T0]<.0<m_{x}:=\inf_{t>1}e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[t<T_{0}]\leq\sup_{t>1}e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[t<T_{0}]<\infty.

It follows from (4) that

|x[YtA|t<T0]ν(A)|\displaystyle|\mathbb{P}_{x}[Y_{t}\in A|t<T_{0}]-\nu(A)|
=\displaystyle= |eλ0(t1)x[YtA,t<T0]eλ0(t1)x[t<T0]eλ0ψ0(x)ψ0,𝟏Aeλ0ψ0(x)ψ0,1|\displaystyle\left|\frac{e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]}{e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[t<T_{0}]}-\frac{e^{-\lambda_{0}}\psi_{0}(x)\langle\psi_{0},\mathbf{1}_{A}\rangle}{e^{-\lambda_{0}}\psi_{0}(x)\langle\psi_{0},1\rangle}\right|
\displaystyle\leq ψ0(x)ψ0,1|eλ0(t1)x[YtA,t<T0]eλ0ψ0(x)ψ0,𝟏A|mxψ0(x)ψ0,1\displaystyle\frac{\psi_{0}(x)\langle\psi_{0},1\rangle|e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]-e^{-\lambda_{0}}\psi_{0}(x)\langle\psi_{0},\mathbf{1}_{A}\rangle|}{m_{x}\psi_{0}(x)\langle\psi_{0},1\rangle}
+ψ0(x)ψ0,𝟏A|eλ0ψ0(x)ψ0,1eλ0(t1)x[t<T0]|mxψ0(x)ψ0,1\displaystyle+\frac{\psi_{0}(x)\langle\psi_{0},\mathbf{1}_{A}\rangle|e^{-\lambda_{0}}\psi_{0}(x)\langle\psi_{0},1\rangle-e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[t<T_{0}]|}{m_{x}\psi_{0}(x)\langle\psi_{0},1\rangle}
\displaystyle\leq 2e(λ1λ0)(t2)eλ0(p20(x,x))12mx.\displaystyle\frac{2e^{-(\lambda_{1}-\lambda_{0})(t-2)}e^{\lambda_{0}}(p_{2}^{0}(x,x))^{\frac{1}{2}}}{m_{x}}. (4.5)

Since

x[Yt|t<T0]νTV=2supA(0)|x[YtA|t<T0]ν(A)|,\|\mathbb{P}_{x}[Y_{t}\in\cdot|t<T_{0}]-\nu\|_{TV}=2\sup_{A\in\mathscr{B}(\mathbb{R}^{0})}|\mathbb{P}_{x}[Y_{t}\in A|t<T_{0}]-\nu(A)|,

we arrive at (1.4) by choosing

C(x)=4e2λ1(p20(x,x))12mxC(x)=\frac{4e^{2\lambda_{1}}(p_{2}^{0}(x,x))^{\frac{1}{2}}}{m_{x}}

in (4). Hence we finish the proof of Theorem 1.2. ∎

Next, we consider the problem about the domain of attraction of QSD and the speed of convergence. We prove Theorem 1.3 as follows. The idea of the proof benefits from [26, Theorem 4.3] and [22, Proof of Corollary 2.2.4].

Proof of Theorem 1.3.

Firstly, we prove the result about the domain of attraction. We assume that Iσ,α<+I^{\sigma,\alpha}<+\infty and for any r0>0r_{0}>0, supx[r0,r0]{0}p20(x,x)<+\sup_{x\in[-r_{0},r_{0}]\setminus\{0\}}p_{2}^{0}(x,x)<+\infty.

By taking λ=λ0\lambda=\lambda_{0} in Lemma 3.4, there exists R0>0R_{0}>0 such that

B1:=supx0𝔼x[eλ0T[R0,R0]]<+.B_{1}:=\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[e^{\lambda_{0}T_{[-R_{0},R_{0}]}}]<+\infty.

Combining Corollary 3.5 and (4), we have

B2:=supt>2supx[R0,R0]eλ0tx[T0>t]<+.B_{2}:=\sup_{t>2}\sup_{x\in[-R_{0},R_{0}]}e^{\lambda_{0}t}\mathbb{P}_{x}[T_{0}>t]<+\infty.

Then for any x>R0x>R_{0}, using strong Markov property, we get that

x[T0>t]\displaystyle\mathbb{P}_{x}[T_{0}>t] =x[T[R0,R0]>t]+x[T[R0,R0]t,T0>t]\displaystyle=\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}>t]+\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}\leq t,T_{0}>t]
eλ0t𝔼x[eλ0T[R0,R0]]+𝔼x[x[T[R0,R0]t,T0>t|T[R0,R0]]]\displaystyle\leq e^{-\lambda_{0}t}\mathbb{E}_{x}[e^{\lambda_{0}T_{[-R_{0},R_{0}]}}]+\mathbb{E}_{x}\left[\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}\leq t,T_{0}>t|\mathscr{F}_{T_{[-R_{0},R_{0}]}}]\right]
eλ0tB1+𝔼x[𝟏{T[R0,R0]t}x[T0>t|T[R0,R0]]]\displaystyle\leq e^{-\lambda_{0}t}B_{1}+\mathbb{E}_{x}\left[\mathbf{1}_{\{T_{[-R_{0},R_{0}]}\leq t\}}\mathbb{P}_{x}[T_{0}>t|\mathscr{F}_{T_{[-R_{0},R_{0}]}}]\right]
eλ0tB1+0tR0R0y[T0>tu]x[T[R0,R0]du,XT[R0,R0]dy]\displaystyle\leq e^{-\lambda_{0}t}B_{1}+\int_{0}^{t}\int_{-R_{0}}^{R_{0}}\mathbb{P}_{y}[T_{0}>t-u]\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}\in\mathrm{d}u,X_{T_{[-R_{0},R_{0}]}}\in\mathrm{d}y]
eλ0tB1+0tR0R0B2eλ0(tu)x[T[R0,R0]du,XT[R0,R0]dy]\displaystyle\leq e^{-\lambda_{0}t}B_{1}+\int_{0}^{t}\int_{-R_{0}}^{R_{0}}B_{2}e^{-\lambda_{0}(t-u)}\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}\in\mathrm{d}u,X_{T_{[-R_{0},R_{0}]}}\in\mathrm{d}y]
=eλ0tB1+eλ0tB20teλ0ux[T[R0,R0]du]\displaystyle=e^{-\lambda_{0}t}B_{1}+e^{-\lambda_{0}t}B_{2}\int_{0}^{t}e^{\lambda_{0}u}\mathbb{P}_{x}[T_{[-R_{0},R_{0}]}\in\mathrm{d}u]
eλ0tB1+eλ0tB2𝔼x[eλ0T[R0,R0]]\displaystyle\leq e^{-\lambda_{0}t}B_{1}+e^{-\lambda_{0}t}B_{2}\mathbb{E}_{x}[e^{\lambda_{0}T_{[-R_{0},R_{0}]}}]
eλ0tB1(B2+1)<+.\displaystyle\leq e^{-\lambda_{0}t}B_{1}(B_{2}+1)<+\infty.

Then by the above analysis,

supx0supt>2eλ0(t1)x[YtA,t<T0]supx0supt>2eλ0(t1)x[t<T0]<+.\sup_{x\in\mathbb{R}^{0}}\sup_{t>2}e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]\leq\sup_{x\in\mathbb{R}^{0}}\sup_{t>2}e^{\lambda_{0}(t-1)}\mathbb{P}_{x}[t<T_{0}]<+\infty.

Therefore, by using dominated convergence theorem and 4.3, we have

limteλ0tη[YtA,t<T0]\displaystyle\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{\eta}[Y_{t}\in A,t<T_{0}] =limt0eλ0tx[YtA,t<T0]η(dx)\displaystyle=\lim_{t\rightarrow\infty}\int_{\mathbb{R}^{0}}e^{\lambda_{0}t}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]\eta({\mbox{\rm d}}x)
=0limteλ0tx[YtA,t<T0]η(dx)\displaystyle=\int_{\mathbb{R}^{0}}\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{x}[Y_{t}\in A,t<T_{0}]\eta({\mbox{\rm d}}x)
=0ψ0(x)ψ0,𝟏Aη(dx),\displaystyle=\int_{\mathbb{R}^{0}}\psi_{0}(x)\langle\psi_{0},\mathbf{1}_{A}\rangle\eta(\text{d}x),

where we use (4.3) in the last equality. Similarly,

limteλ0tη[t<T0]=0ψ0(x)ψ0,1η(dx).\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{\eta}[t<T_{0}]=\int_{\mathbb{R}^{0}}\psi_{0}(x)\langle\psi_{0},1\rangle\eta(\text{d}x).

Thus we arrive at the conclusion that

limtη[YtA|t<T0]=limteλ0tη[YtA,t<T0]limteλ0tη[t<T0]=ν(A).\displaystyle\lim_{t\rightarrow\infty}\mathbb{P}_{\eta}[Y_{t}\in A|t<T_{0}]=\frac{\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{\eta}[Y_{t}\in A,t<T_{0}]}{\lim_{t\rightarrow\infty}e^{\lambda_{0}t}\mathbb{P}_{\eta}[t<T_{0}]}=\nu(A).

Secondly, we prove the result about the speed of convergence.

Assume that Iσ,α<+I^{\sigma,\alpha}<+\infty and supxp20(x,x)<+\sup_{x}p_{2}^{0}(x,x)<+\infty. Let ht(x)=eλ0tx[T0>t]h_{t}(x)=e^{\lambda_{0}t}\mathbb{P}_{x}[T_{0}>t] and h(x)=ψ0(x)μ(ψ0)h(x)=\psi_{0}(x)\mu(\psi_{0}). Then η(ht)=eλ0tη[T0>t]\eta(h_{t})=e^{\lambda_{0}t}\mathbb{P}_{\eta}[T_{0}>t] and η(h)=η(ψ0)μ(ψ0)\eta(h)=\eta(\psi_{0})\mu(\psi_{0}).

We observe that

η[Yt|t<T0]νTV\displaystyle\left\|\mathbb{P}_{\eta}[Y_{t}\in\cdot|t<T_{0}]-\nu\right\|_{TV} =η[Yt,t<T0]η[t<T0]νTV\displaystyle=\left\|\frac{\mathbb{P}_{\eta}[Y_{t}\in\cdot,t<T_{0}]}{\mathbb{P}_{\eta}[t<T_{0}]}-\nu\right\|_{TV}
=eλ0tηPt0η(ht)νTV\displaystyle=\left\|\frac{e^{\lambda_{0}t}\eta P_{t}^{0}}{\eta(h_{t})}-\nu\right\|_{TV}
=eλ0tηPt0(1η(ht)1η(h)+1η(h))νTV\displaystyle=\left\|e^{\lambda_{0}t}\eta P_{t}^{0}(\frac{1}{\eta(h_{t})}-\frac{1}{\eta(h)}+\frac{1}{\eta(h)})-\nu\right\|_{TV}
eλ0tη(hht)ηPt0η(ht)η(h)TV+eλ0tηPt0η(h)νη(h)TV,\displaystyle\leq\left\|\frac{e^{\lambda_{0}t}\eta(h-h_{t})\eta P_{t}^{0}}{\eta(h_{t})\eta(h)}\right\|_{TV}+\left\|\frac{e^{\lambda_{0}t}\eta P_{t}^{0}-\eta(h)\nu}{\eta(h)}\right\|_{TV}, (4.6)

where ηPt0():=0Pt0(x,)η(dx)\eta P_{t}^{0}(\cdot):=\int_{\mathbb{R}^{0}}P_{t}^{0}(x,\cdot)\eta({\mbox{\rm d}}x). Next, we prove the result by estimating the last two items of (4).

According to (4), if supxp20(x,x)<+\sup_{x}p_{2}^{0}(x,x)<+\infty, then there exists a constant C1C_{1} such that for any A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

|eλ0tPt0𝟏A(x)ψ0(x)Aψ0(y)μ(dy)|C1e(λ1λ0)t.|e^{\lambda_{0}t}P_{t}^{0}\mathbf{1}_{A}(x)-\psi_{0}(x)\int_{A}\psi_{0}(y)\mu({\mbox{\rm d}}y)|\leq C_{1}e^{-(\lambda_{1}-\lambda_{0})t}. (4.7)

Since ν(dx)=ψ0(x)μ(dx)μ(ψ0)\nu({\mbox{\rm d}}x)=\frac{\psi_{0}(x)\mu(\mathrm{d}x)}{\mu(\psi_{0})}, then for any probability measure η\eta on 0\mathbb{R}^{0}, we have

eλ0tηPt0η(ψ0)μ(ψ0)νTV\displaystyle\|e^{\lambda_{0}t}\eta P_{t}^{0}-\eta(\psi_{0})\mu(\psi_{0})\nu\|_{TV}
=2supA(0)|eλ0tηPt0(A)η(ψ0)Aψ0(y)μ(dy)|\displaystyle=2\sup_{A\in\mathscr{B}(\mathbb{R}^{0})}\left|e^{\lambda_{0}t}\eta P_{t}^{0}(A)-\eta(\psi_{0})\int_{A}\psi_{0}(y)\mu({\mbox{\rm d}}y)\right|
=2supA(0)|eλ0t0Pt0𝟏A(x)η(dx)0ψ0(x)Aψ0(y)μ(dy)η(dx)|\displaystyle=2\sup_{A\in\mathscr{B}(\mathbb{R}^{0})}\left|e^{\lambda_{0}t}\int_{\mathbb{R}^{0}}P_{t}^{0}\mathbf{1}_{A}(x)\eta({\mbox{\rm d}}x)-\int_{\mathbb{R}^{0}}\psi_{0}(x)\int_{A}\psi_{0}(y)\mu({\mbox{\rm d}}y)\eta({\mbox{\rm d}}x)\right|
2supA(0)0|eλ0tPt0𝟏A(x)ψ0(x)Aψ0(y)μ(dy)|η(dx)\displaystyle\leq 2\sup_{A\in\mathscr{B}(\mathbb{R}^{0})}\int_{\mathbb{R}^{0}}\left|e^{\lambda_{0}t}P_{t}^{0}\mathbf{1}_{A}(x)-\psi_{0}(x)\int_{A}\psi_{0}(y)\mu({\mbox{\rm d}}y)\right|\eta({\mbox{\rm d}}x)
2C1e(λ1λ0)t.\displaystyle\leq 2C_{1}e^{-(\lambda_{1}-\lambda_{0})t}. (4.8)

Let ην=η~\eta-\nu=\tilde{\eta}. η~\tilde{\eta} is a signed measure and its Hahn decomposition is denoted by η~=η~+η~\tilde{\eta}=\tilde{\eta}_{+}-\tilde{\eta}_{-}. By calculation, it is easy to prove that ν(h)=ν(ht)=1\nu(h)=\nu(h_{t})=1 and eλ0tνPt0=νe^{\lambda_{0}t}\nu P_{t}^{0}=\nu, so

η~(hht)=η(hht),eλ0tηPt0η(h)ν=eλ0tη~Pt0η~(h)ν.\tilde{\eta}(h-h_{t})=\eta(h-h_{t}),\qquad e^{\lambda_{0}t}\eta P_{t}^{0}-\eta(h)\nu=e^{\lambda_{0}t}\tilde{\eta}P_{t}^{0}-\tilde{\eta}(h)\nu.

Using (4), it follows that

eλ0tηPt0η(h)νTV=eλ0tη~Pt0η~(h)νTV\displaystyle\|e^{\lambda_{0}t}\eta P_{t}^{0}-\eta(h)\nu\|_{TV}=\|e^{\lambda_{0}t}\tilde{\eta}P_{t}^{0}-\tilde{\eta}(h)\nu\|_{TV}
eλ0tη~+Pt0η~+(h)νTV+eλ0tη~Pt0η~(h)νTV\displaystyle\leq\|e^{\lambda_{0}t}\tilde{\eta}_{+}P_{t}^{0}-\tilde{\eta}_{+}(h)\nu\|_{TV}+\|e^{\lambda_{0}t}\tilde{\eta}_{-}P_{t}^{0}-\tilde{\eta}_{-}(h)\nu\|_{TV}
2C1e(λ1λ0)tη~TV.\displaystyle\leq 2C_{1}e^{-(\lambda_{1}-\lambda_{0})t}\|\tilde{\eta}\|_{TV}.

Besides, from (4.7), we obtain that

eλ0tη(hht)ηPt0η(ht)TV\displaystyle\left\|\frac{e^{\lambda_{0}t}\eta(h-h_{t})\eta P_{t}^{0}}{\eta(h_{t})}\right\|_{TV} =η[Yt|t<T0]η~(hht)TV\displaystyle=\|\mathbb{P}_{\eta}[Y_{t}\in\cdot|t<T_{0}]\tilde{\eta}(h-h_{t})\|_{TV}
=2supA(0)η[YtA|t<T0]|0(h(x)ht(x))η~(dx)|\displaystyle=2\sup_{A\in\mathscr{B}(\mathbb{R}^{0})}\mathbb{P}_{\eta}[Y_{t}\in A|t<T_{0}]\left|\int_{\mathbb{R}^{0}}(h(x)-h_{t}(x))\tilde{\eta}({\mbox{\rm d}}x)\right|
2C1e(λ1λ0)tη~TV.\displaystyle\leq 2C_{1}e^{-(\lambda_{1}-\lambda_{0})t}\|\tilde{\eta}\|_{TV}.

Combining with (4), it comes to the conclusion by taking C=4C1/μ(ψ0)C=4C_{1}/\mu(\psi_{0}). ∎

In the following, we point out Iσ,α<+I^{\sigma,\alpha}<+\infty is necessary for the QSD attracting all probability measures on 0\mathbb{R}^{0}.

Theorem 4.1.

If there exists a QSD π\pi such that for any probability measure η\eta on 0\mathbb{R}^{0} and any subset A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

limtη[YtA|t<T0]=π(A),\lim_{t\rightarrow\infty}\mathbb{P}_{\eta}[Y_{t}\in A|t<T_{0}]=\pi(A),

then Iσ,α<I^{\sigma,\alpha}<\infty.

Proof.

According to [6, Theorem 2.2], there exists a constant β>0\beta>0, such that

π[T0>t]=eβt,t0.\mathbb{P}_{\pi}[T_{0}>t]=e^{-\beta t},\ \forall\ t\geq 0. (4.9)

By using (4.9), and a similar argument to the proof of [3, Proposition 7.5], we show that for any λ(0,β)\lambda\in(0,\beta) and any probability measure η\eta on 0\mathbb{R}^{0}, 𝔼η[eλT0]<+\mathbb{E}_{\eta}[e^{\lambda T_{0}}]<+\infty. For any x0x\neq 0, by taking η=δx\eta=\delta_{x} (where δx\delta_{x} is the Dirac measure), we obtain that 𝔼x[eλT0]<+\mathbb{E}_{x}[e^{\lambda T_{0}}]<+\infty. Let g(x)=𝔼x[eλT0]<+g(x)=\mathbb{E}_{x}[e^{\lambda T_{0}}]<+\infty.

We claim that gg is bounded. If not, there would exist sequences {xn}\{x_{n}\} such that g(xn)2n,n1g(x_{n})\geq 2^{n},\ \forall\ n\geq 1. However, if we take η=n=1+12nδxn\eta=\sum_{n=1}^{+\infty}\frac{1}{2^{n}}\delta_{x_{n}}, then it is easy to verify that 𝔼η[eλT0]=+\mathbb{E}_{\eta}[e^{\lambda T_{0}}]=+\infty, which is a contradiction.

Therefore, we arrive at

λsupx0𝔼x[T0]+1supx0𝔼x[eλT0]<+.\lambda\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[T_{0}]+1\leq\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[e^{\lambda T_{0}}]<+\infty.

Combining it with Remark 3.3, Iσ,α<I^{\sigma,\alpha}<\infty.∎

Next, we will obtain a corollary about the exponential moments of the hitting time T0T_{0}, and prove the first Dirichlet eigenvalue λ0\lambda_{0} equals to the uniform decay rate

λ0:=limt+1tlogsupx0x[T0>t].\lambda_{0}^{\prime}:=\lim_{t\rightarrow+\infty}-\frac{1}{t}\log\sup_{x\in\mathbb{R}^{0}}\mathbb{P}_{x}[T_{0}>t].

.

Corollary 4.2.

If Iσ,α<I^{\sigma,\alpha}<\infty, and for any r0>0r_{0}>0, supx[r0,r0]{0}p20(x,x)<+\sup_{x\in[-r_{0},r_{0}]\setminus\{0\}}p_{2}^{0}(x,x)<+\infty, then

(1) we have

supx0𝔼x[eλT0]<+if and only ifλ<λ0,\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[e^{\lambda T_{0}}]<+\infty\ \text{if and only if}\ \lambda<\lambda_{0}, (4.10)

(2) λ0=λ0.\lambda_{0}=\lambda_{0}^{\prime}.

Proof.

(1) The “only if” implication follows from [15, Claim 2.4] and the monotonicity of exponential function. Hence we only prove “if” part. By the assumptions, Theorem 1.3 holds. Note that

ν[T0>t]=0Pt01dν=Pt01,ψ0μ(ψ0)=eλ0t,\mathbb{P}_{\nu}[T_{0}>t]=\int_{\mathbb{R}^{0}}P_{t}^{0}1{\mbox{\rm d}}\nu=\frac{\langle P_{t}^{0}1,\psi_{0}\rangle}{\mu(\psi_{0})}={\mbox{\rm e}}^{-\lambda_{0}t},

so by proof of Theorem 4.1, we know for any λ<λ0\lambda<\lambda_{0}, supx𝔼x[eλT0]<+\sup_{x}\mathbb{E}_{x}[e^{\lambda T_{0}}]<+\infty.

(2) Using (4.4), for any x0x\neq 0,

λ0=limt1tlogx[T0>t].\lambda_{0}=\lim_{t\rightarrow\infty}-\frac{1}{t}\log\mathbb{P}_{x}[T_{0}>t].

It follows that

lim supt+1tlogsupx0x[T0>t]limt1tlogx[T0>t]=λ0.\limsup_{t\rightarrow+\infty}-\frac{1}{t}\log\sup_{x\in\mathbb{R}^{0}}\mathbb{P}_{x}[T_{0}>t]\leq\lim_{t\rightarrow\infty}-\frac{1}{t}\log\mathbb{P}_{x}[T_{0}>t]=\lambda_{0}.

For any λ<λ0\lambda<\lambda_{0}, using (4.10) and Chebyshev inequality,

supx0x[T0>t]eλtsupx0𝔼x[eλT0],\sup_{x\in\mathbb{R}^{0}}\mathbb{P}_{x}[T_{0}>t]\leq e^{-\lambda t}\sup_{x\in\mathbb{R}^{0}}\mathbb{E}_{x}[e^{\lambda T_{0}}],

which yields that

lim inft+1tlogsupx0x[T0>t]λ,\liminf_{t\rightarrow+\infty}-\frac{1}{t}\log\sup_{x\in\mathbb{R}^{0}}\mathbb{P}_{x}[T_{0}>t]\geq\lambda,

which completes the proof. ∎

It should be mentioned here that for some classical cases, such as Example 1.5, the exponential convergence to QSD (1.6) is equivalent to the entrance from infinity. Now we prove Example 1.5 as follows.

Proof of Example 1.5.

According to [25, Corollary 6], Iσ,α<+I^{\sigma,\alpha}<+\infty holds if and only if γ>1\gamma>1. Therefore, when γ>1\gamma>1, by Theorem 1.2 , Y0Y^{0} has unique QSD ν\nu given by (1.3), ν\nu is the Yaglom limit of Y0Y^{0} and (1.4) holds.

Furthermore, by [24, (3.11)], when γ>1\gamma>1, for the transition density pt(x,y)p_{t}(x,y) with respect to μ\mu, by choosing t=1t=1, we have there exists a constant C2>0C_{2}>0 such that

p1(x,y)C2,x,y.p_{1}(x,y)\leq C_{2},\quad x,y\in\mathbb{R}.

Note that

p2(x,x)=p1(x,y)2μ(dy)C22,p_{2}(x,x)=\int_{\mathbb{R}}p_{1}(x,y)^{2}\mu({\mbox{\rm d}}y)\leq C_{2}^{2},

thus we know that

supxp20(x,x)supxp2(x,x)<+.\sup_{x}p_{2}^{0}(x,x)\leq\sup_{x}p_{2}(x,x)<+\infty.

Therefore, (1.6) holds in this case. Noting that the exponential convergence (1.6) implies that (1.5), so by Theorem 4.1, (1.6) means that γ>1\gamma>1. Thus the exponential convergence to QSD (1.6) is equivalent to the entrance from infinity in this example. ∎

Finally, let’s discuss the quasi-ergodic distribution for Y0Y^{0}, which is a related topic.

Definition 4.3.

Let ρ\rho be a probability measure on 0\mathbb{R}^{0}. We say ρ\rho is a quasi-ergodic distribution(QED) for Y0Y^{0}, if for any x0x\neq 0 and any A(0)A\in\mathscr{B}(\mathbb{R}^{0}),

limt𝔼x(1t0t𝟏A(Xs)ds|T0>t)=ρ(A).\lim_{t\rightarrow\infty}\mathbb{E}_{x}\left(\frac{1}{t}\int_{0}^{t}\mathbf{1}_{A}(X_{s}){\mbox{\rm d}}s|T_{0}>t\right)=\rho(A).

Using (4.3), (4.4) and Corollary 3.5, it is easy to prove the following statement in the same way as [13, Theorem 3.1].

Corollary 4.4.

Assume Iσ,α<I^{\sigma,\alpha}<\infty, then for any bounded and measurable functions f,gf,g on 0\mathbb{R}^{0}, x0x\neq 0 and 0<p<q<10<p<q<1,

  1. (1)

    limt𝔼x[f(Xpt)g(Xt)|T0>t]=f(y)m(dy)g(y)ν(dy)\lim_{t\rightarrow\infty}\mathbb{E}_{x}[f(X_{pt})g(X_{t})|T_{0}>t]=\int_{\mathbb{R}}f(y)m({\mbox{\rm d}}y)\int_{\mathbb{R}}g(y)\nu({\mbox{\rm d}}y),

  2. (2)

    limt𝔼x[f(Xpt)g(Xqt)|T0>t]=f(y)m(dy)g(y)m(dy)\lim_{t\rightarrow\infty}\mathbb{E}_{x}[f(X_{pt})g(X_{qt})|T_{0}>t]=\int_{\mathbb{R}}f(y)m({\mbox{\rm d}}y)\int_{\mathbb{R}}g(y)m({\mbox{\rm d}}y),

  3. (3)

    limt𝔼x(1t0tf(Xs)ds|T0>t)=f(y)m(dy)\lim_{t\rightarrow\infty}\mathbb{E}_{x}\left(\frac{1}{t}\int_{0}^{t}f(X_{s}){\mbox{\rm d}}s|T_{0}>t\right)=\int_{\mathbb{R}}f(y)m({\mbox{\rm d}}y),

where

m(dy)=ψ0(y)2μ(dy) and ν is the QSD for Y0.m({\mbox{\rm d}}y)=\psi_{0}(y)^{2}\mu({\mbox{\rm d}}y)\text{ and }\nu\text{ is the QSD for }Y^{0}.

Appendix

Proposition A.1 If α(1,2)\alpha\in(1,2), then for all x0x\neq 0, x[T0<T]=1\mathbb{P}_{x}[T_{0}<T_{\infty}]=1.

Proof.

According to [1, Chapter V] and Blumenthal-Getoor-McKean theorem, it is easy to prove the following formula:

x[T0<T[R,+)T(,R]]=GX(R,R)(x,0)GX(R,R)(0,0).\mathbb{P}_{x}[T_{0}<T_{[R,+\infty)}\wedge T_{(-\infty,-R]}]=\frac{G_{X}^{(-R,R)}(x,0)}{G_{X}^{(-R,R)}(0,0)}. (4.11)

Using [14, Theorem 2.2.3], it follows that

GX(R,R)(x,0)=21α|x|α1Γ(α2)21R|x|(s+1)α/21(s1)α/21𝑑s,G_{X}^{(-R,R)}(x,0)=\frac{2^{1-\alpha}|x|^{\alpha-1}}{\Gamma(\frac{\alpha}{2})^{2}}\int_{1}^{\frac{R}{|x|}}(s+1)^{\alpha/2-1}(s-1)^{\alpha/2-1}ds,
GX(R,R)(0,0)=21αRα1Γ(α2)2(α1).G_{X}^{(-R,R)}(0,0)=\frac{2^{1-\alpha}R^{\alpha-1}}{\Gamma(\frac{\alpha}{2})^{2}(\alpha-1)}.

It comes to the conclusion by letting R+R\rightarrow+\infty and using L’Hôspital’s rule in (4.11). ∎

Proposition A.2 If Iσ,α<I^{\sigma,\alpha}<\infty, then λ0>0\lambda_{0}>0. Furthermore, λ0\lambda_{0} is simple.

Proof.

If Iσ,α<I^{\sigma,\alpha}<\infty, then according to [25, Theorem 1.4], the process YY is strongly ergodic, thus YY is exponentially ergodic. Therefore, by [25, Theorem 1.1],

δ:=supx|x|α1(|x|,|x|)σ(y)αdy<.\delta:=\sup_{x}|x|^{\alpha-1}\int_{\mathbb{R}\setminus(-|x|,|x|)}\sigma(y)^{-\alpha}{\mbox{\rm d}}y<\infty.

So by [25, Theorem 1.3], λ0(4ωαδ)1>0.\lambda_{0}\geqslant(4\omega_{\alpha}\delta)^{-1}>0.

According to [19, Theorem 6.6] and spectral representation theorem, the spectral radius of G0G^{0} is a simple eigenvalue and equals to λ01\lambda_{0}^{-1}, which implies λ0\lambda_{0} is a simple eigenvalue.

Acknowledgements This work was supported by the National Nature Science Foundation of China (Grant No. 12171038), National Key Research and Development Program of China (2020YFA0712901).

References

  • [1] R. M. Blumenthal and R. K. Getoor. Markov processes and potential theory. Pure and Applied Mathematics, Vol. 29 Academic Press, 1968.
  • [2] K. Bogdan and T. Zak. On Kelvin transformation. J. Theoret. Probab., 19(1):89–120, 2006.
  • [3] P. Cattiaux, P. Collet, A. Lambert, Servet Martínez, S. Méléard, and J. San Martín. Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab., 37(5):1926–1929, 2009.
  • [4] X. Chen and J. Wang. Intrinsic ultracontractivity for general lévy processes on bounded open sets. Illinois J. Math., 58:1117–1144, 2014.
  • [5] Z.-Q. Chen and J. Wang. Ergodicity for time-changed symmetric stable processes. Stoch. Proc. Appl., 124(9):2799–2823, 2014.
  • [6] P. Collet, S. Martínez, and J. San Martin. Quasi-stationary distributions. Markov chains, diffusions and dynamical systems. Probab. Appl. (N.Y.), Springer, Heidelberg, 2013.
  • [7] L. Doring and A. E. Kyprianou. Entrance and exit at infinity for stable jump diffusions. Ann. Probab., 48(3):1220–1265, 2020.
  • [8] L. Doring, A. E. Kyprianou, and P. Weissmann. Stable processes conditioned to avoid an interval. Stoch. Proc. Appl., 130:471–487, 2020.
  • [9] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes, extended ed. De Gruyter Studies in Mathematics 19. de Gruyter, Berlin., 2011.
  • [10] W.-J. Gao and Y.-H. Mao. Quasi-stationary distribution for the birth–death process with exit boundary. J. Math. Anal. Appl., 427:114–125, 2015.
  • [11] W.-J. Gao, Y.-H. Mao, and C. Zhang. The birth-death processes with regular boundary: stationarity and quasi-stationarity. Acta Math. Sin. (Engl. Ser.), 38(5).
  • [12] A. Guillin, B. Nectoux, and L. Wu. Quasi-stationary distribution for strongly Feller Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian systems. Preprint hal-03068461, 2023.
  • [13] G. He, G. Yang, and Y. Zhu. Some conditional limiting theorems for symmetric Markov processes with tightness property. Electron. Commun. Probab., 24(60):1–11, 2019.
  • [14] A. E. Kyprianou. Stable processes, self-similarity and the unit ball. ALEA Lat. Am. J. Probab. Math. Stat., 15(1):617–690, 2018.
  • [15] J. Littin C. Uniqueness of quasistationary distributions and discrete spectra when \infty is an entrance boundary and 0 is singular. J. Appl. Probab., 49(3):719–730, 2012.
  • [16] S. Méléard and D. Villemonais. Quasi-stationary distributions and population processes. Probab. Surv., 9:340–410, 2012.
  • [17] Y. Oshima. Semi-Dirichlet forms and Markov processes. Berlin: De Gruyter Studies in Mathematics., 2013.
  • [18] K. Sato. Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge: Cambridge Univ. Press., 1999.
  • [19] H. H. Schaefer. Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wissenschaften, vol. 215, Springer, 1974.
  • [20] M. Takeda. Compactness of symmetric Markov semi-groups and boundedness of eigenfunctions. Trans. Amer. Math. Soc., 372(6):3905–3920, 2019.
  • [21] M. Takeda. Existence and uniqueness of quasi-stationary distributions for symmetric markov processes with tightness property. J. Theoret. Probab., 32:2006–2019, 2019.
  • [22] A. Velleret. Exponential quasi-ergodicity for processes with discontinuous trajectories. arXiv.1902.01441, 2019.
  • [23] F.-Y. Wang. Functional Inequalities, Markov Semigroups, and Spectral Theory. Beijing: Science press, 2005.
  • [24] J. Wang and L.T. Zhang. Functional inequalities for time-changed symmetric α\alpha-stable processes. Front. Math. China, 16(2):595–622, 2021.
  • [25] T. Wang. Exponential and strong ergodicity for one-dimensional time-changed symmetric stable processes. Bernoulli, 29(1):580–596, 2023.
  • [26] H. Zhang and G. He. Domain of attraction of quasi-stationary distribution for one-dimensional diffusions. Front. Math. China, 11:411–421, 2016.