This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quasi-Random Influences of Boolean Functions

Fan Chung and Nicholas Sieger
Abstract

We examine a hierarchy of equivalence classes of quasi-random properties of Boolean Functions. In particular, we prove an equivalence between a number of properties including balanced influences, spectral discrepancy, local strong regularity, homomorphism enumerations of colored or weighted graphs and hypergraphs associated with Boolean functions as well as the kkth-order strict avalanche criterion amongst others. We further construct families of quasi-random boolean functions which exhibit the properties of our equivalence theorem and separate the levels of our hierarchy.

1 Introduction

We consider Boolean Functions that map binary strings of length nn to {True,False}\{\textit{True},\textit{False}\}. As boolean functions can encode a wide variety of mathematical and computational objects, such as decision problems, error-correcting codes, communication and cryptographic protocols, voting rules, propositional formulas, and arbitrary subsets of the set of binary strings, these functions are extremely well-studied in computer science, coding theory, cryptography, and data sciences to name a few areas of applications. For each application, many researchers have developed tools and perspectives unique to each area to study these boolean functions and have isolated key properties of boolean functions, for instance as the sensitivity of the function to changes in each coordinate, the size of its Fourier coefficients, or the distance of its support viewed as a binary code.

The goal of this paper is to organize some of these properties of boolean functions into a hierarchy of quasi-random equivalence classes in the same style as the quasi-random equivalence for graphs proven by Chung, Graham, and Wilson in [1] (for details, see section §3). In our main theorem, we show how a number of known analytic properties of boolean functions, such as the kk-th order strict avalanche criterion, restrictions of the function having small Fourier coefficients, and discrepancy of the Fourier coefficients, can be either strengthened or weakened so as to become equivalent to one another in the same sense as in [1]. Motivated by the enumeration of “sub-patterns” within a larger object, we further show that several combinatorial properties of graphs built from our boolean function are equivalent to these analytic properties. These combinatorial properties include counts of rainbow embeddings of graphs and a co-degree condition on graphs defined from the boolean function. Finally, we give an explicit construction of a family of boolean functions which exhibits the properties in our main theorem. As it turns out, our construction depends crucially on the existence of good binary codes.

Our work continues the study of quasi-randomness of graphs and hypergraphs in the work of Chung, Graham, and Wilson [1]. Quasi-randomness theorems exist for other combinatorial objects, including Griffiths’ results on oriented graphs [2], Cooper’s work on permutations [3], Chung and Graham’s work on tournaments [4] and subsets of /N\mathbb{Z}/N\mathbb{Z} [5], kk-uniform linear Hypergraphs in works of Freidman and Widgerson [6] along with Rödl, Schacht, and Kohawakaya [7] and finally Lenz and Mubayi [8], and kk-uniform general hypergraphs in papers of Chung and Graham [9, 10, 11, 12], Frankl, Rödl, Schacht, Kohawakaya, and Nagle in [13, 14, 15, 16, 17], surveyed in the papers of Gowers [18, 19]. There are also several extant theories of quasi-randomness for boolean functions, implicitly in Chung and Graham’s work on subsets of /N\mathbb{Z}/N\mathbb{Z} [5] and explicitly in O’Donnell’s textbook [20], Castro-Silva’s monograph [21], and Chung and Tetali’s work on communication complexity [22]. We shall later prove that our theory of quasi-random boolean functions is distinct from each of these theories and is stronger than several of these theories and incomparable with the others.

Our paper is organized as follows. In section §2, we give the necessary preliminaries to state our quasi-random properties. Then we define the quasi-random properties and present our main results in section §3. We define the properties in extant theories of quasi-randomness for boolean functions in section §4. The main results of this paper are summarized in two flowcharts as seen in Figures 4 and 5. The proof of our main equivalence theorem appears in section §5, followed by the construction of our quasi-random functions in section §6. We then prove our comparison theorems which place our theory of quasi-randomness relative to several extant theories in section §7. Finally, we conclude with some remarks and open problems in section §8.

2 Preliminaries

We refer the reader to O’Donnell’s book [20] for any undefined terminology. We identify the set of binary strings {0,1}n\{0,1\}^{n} with elements of 𝔽2n\mathbb{F}_{2}^{n} via a choice of basis for 𝔽2n\mathbb{F}_{2}^{n}, and then define a boolean function to be a map f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}. We then equip the space of all maps g:𝔽2ng\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\mathbb{C} with the following inner product:

f,g:=𝔼x𝔽2nf(x)g(x)¯=12nx𝔽2nf(x)g(x)¯\langle f,g\rangle\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}f(x)\overline{g(x)}=\frac{1}{2^{n}}\sum_{x\in\mathbb{F}_{2}^{n}}f(x)\overline{g(x)}

where z¯\overline{z} denotes complex conjugation of zz\in\mathbb{C}. For each γ𝔽2n\gamma\in\mathbb{F}_{2}^{n}, the Fourier character χγ:𝔽2n{1,1}\chi_{\gamma}\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is

χγ(x):=(1)γx\chi_{\gamma}(x)\mathrel{\mathop{\ordinarycolon}}=(-1)^{\gamma\cdot x}

where γx:=i=1nγixi\gamma\cdot x\mathrel{\mathop{\ordinarycolon}}=\sum_{i=1}^{n}\gamma_{i}x_{i} is the usual dot product. The Fourier characters are an orthonormal basis for the space of all maps g:𝔽2ng\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\mathbb{C} with the inner product as defined above. Therefore, every function g:𝔽2ng\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\mathbb{C} has unique Fourier coefficients g^(γ)\widehat{g}\left(\gamma\right) where f^(γ)=g,χγ\widehat{f}\left(\gamma\right)=\langle g,\chi_{\gamma}\rangle. The convolution of two functions g and h:𝔽2ng\text{ and }h\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\mathbb{C} is

(gh)(x):=𝔼y𝔽2nf(x+y)g(y)¯.(g*h)(x)\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{y\in\mathbb{F}_{2}^{n}}f(x+y)\overline{g(y)}.

Note that gh^(γ)=g^(γ)h^(γ)\widehat{g*h}\left(\gamma\right)=\widehat{g}\left(\gamma\right)\widehat{h}\left(\gamma\right).

We will also need to track the size of individual vectors in 𝔽2n\mathbb{F}_{2}^{n}. For a vector x𝔽2nx\in\mathbb{F}_{2}^{n}, its Hamming weight, denoted |x||x|, is |{i[n]:xi=1}|\mathinner{\!\left\lvert\{i\in[n]\mathrel{\mathop{\ordinarycolon}}x_{i}=1\}\right\rvert}. Similarly, the Hamming distance between two vectors x and y𝔽2nx\text{ and }y\in\mathbb{F}_{2}^{n} is |xy|\mathinner{\!\left\lvert x-y\right\rvert}. For a subset S𝔽2nS\subseteq\mathbb{F}_{2}^{n}, its diameter is diam(S):=maxx,yS|xy|\operatorname{diam}(S)\mathrel{\mathop{\ordinarycolon}}=\max_{x,y\in S}\mathinner{\!\left\lvert x-y\right\rvert}. The Hamming ball of radius dd in 𝔽2n\mathbb{F}_{2}^{n} and centered at the vector x𝔽2nx\in\mathbb{F}_{2}^{n}, denoted by Bd(n,x)B_{d}(n,x), is {y𝔽2n:|xy|d}\{y\in\mathbb{F}_{2}^{n}\mathrel{\mathop{\ordinarycolon}}\mathinner{\!\left\lvert x-y\right\rvert}\leq d\}.

For a proposition P(x)P(x), let [P(x)]:={1P(x)0¬P(x)[P(x)]\mathrel{\mathop{\ordinarycolon}}=\begin{cases}1&P(x)\\ 0&\neg P(x)\end{cases} denote the indicator function for P(x)P(x). We will write 0 for the zero vector in 𝔽2n\mathbb{F}_{2}^{n} throughout, and write 𝟏𝔽2n\mathbf{1}\in\mathbb{F}_{2}^{n} for the all-ones vector. If 𝒮\mathcal{S} is a distribution on a set SS, and P(x)P(x) is a proposition on the variable xSx\in S, then

x𝒮[P(x)]\operatorname{\mathbb{P}}_{x\sim\mathcal{S}}\left[P(x)\right]

will denote the probability that P(x)P(x) holds where xx is drawn from the distribution 𝒮\mathcal{S}. Whenever we write the expectation or probability over a set, such as 𝔼x𝔽2n\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}, the expectation or probability is taken with respect to the uniform distribution.

Here we state the definitions concerning various aspects of Boolean functions that will be used later.

2.1 The influences of Boolean functions

The notion of “influences” is prominent in both analysis of boolean functions and in cryptography.

Definition 2.1.

For γ𝔽2n\gamma\in\mathbb{F}_{2}^{n}, the γ\gamma-Influence of ff is

Iγ[f]:=x𝔽2n[f(x)f(x+γ)].\operatorname{I}_{\gamma}[f]\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{P}}_{x\in\mathbb{F}_{2}^{n}}\left[f(x)\neq f(x+\gamma)\right].

Note that I0[f]\operatorname{I}_{0}[f] is always 0. Furthermore, for γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} with γi=1\gamma_{i}=1 and γj=0\gamma_{j}=0 for jij\neq i, Iγ[f]\operatorname{I}_{\gamma}[f] is precisely the influence of coordinate ii as studied extensively in O’Donnell [20].

2.2 The spectral sampling of Boolean functions

Parseval’s Theorem states that for f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}

γ𝔽2nf^(γ)2=𝔼x𝔽2n[f(x)2]=1.\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\left[f(x)^{2}\right]=1.

Thus the Fourier coefficients of ff define a probability distribution on 𝔽2n\mathbb{F}_{2}^{n} as follows:

Definition 2.2.

For a fixed boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}, the Spectral Sample 𝒮f\mathcal{S}_{f} is the distribution on 𝔽2n\mathbb{F}_{2}^{n} where

γ𝒮f[γ=δ]=f^(δ)2\operatorname{\mathbb{P}}_{\gamma\sim\mathcal{S}_{f}}\left[\gamma=\delta\right]=\widehat{f}\left(\delta\right)^{2}

for a fixed δ𝔽2n\delta\in\mathbb{F}_{2}^{n}.

2.3 Subcubes and the counting of subcubes

Let [n][n] denote the set {1,,n}\{1,\dots,n\}, and for S[n]S\subseteq[n], let S¯\overline{S} denote [n]S[n]\setminus S. Given a set S[n]S\subseteq[n], and two vectors x𝔽2Sx\in\mathbb{F}_{2}^{S}, y𝔽2S¯y\in\mathbb{F}_{2}^{\overline{S}}, let x𝑆yx\underset{S}{\otimes}y denote the vector where

(x𝑆y)i={xiiSyiiS¯.(x\underset{S}{\otimes}y)_{i}=\begin{cases}x_{i}&i\in S\\ y_{i}&i\in\overline{S}\end{cases}.

The Subcube defined by a set S[n]S\subseteq[n] and a vector z𝔽2S¯z\in\mathbb{F}_{2}^{\overline{S}} is the set

C(S,z):={x𝑆z:x𝔽2S}.C(S,z)\mathrel{\mathop{\ordinarycolon}}=\{x\underset{S}{\otimes}z\mathrel{\mathop{\ordinarycolon}}x\in\mathbb{F}_{2}^{S}\}.

We say that the dimension of a subcube C(S,z)C(S,z) is |S|\mathinner{\!\left\lvert S\right\rvert}. Note that C([n],η)C([n],\eta) where η\eta is the empty string is precisely the hypercube QnQ_{n}. In Figure 1, we have two examples of subcubes. We are also concerned about boolean functions restricted to a subcube:

Definition 2.3.

The restriction of f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} to the subcube C(S,z)C(S,z) is the boolean function f|S,z:𝔽2S{1,1}f|_{S,z}\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{S}\to\{1,-1\} defined by

f|S,z(x)=f(x𝑆z)f|_{S,z}(x)=f(x\underset{S}{\otimes}z)

If S=S=\emptyset, then f|S,z(x)f|_{S,z}(x) is the constant function f(z)f(z), and if S=[n]S=[n], then we recover ff itself.

000000001001010010100100101101011011110110111111
Figure 1: The blue dashed lines in the figure indicate the 22-dimensional subcube C({1,3},1)C(\{1,3\},1), i.e. the set of all length 33 binary strings with a 11 in the second coordinate. The red dotted line indicates the 11-dimensional subcube C({2},01)C(\{2\},01).

2.4 Combinatorial aspects of Boolean functions

Here we give several useful combinatorial interpretations of Boolean functions that are of interest of their own right. For two sets A,BA,B, let ABA\hookrightarrow B denote the set of all injective functions from AA to BB. Let ABA\sqcup B denote the disjoint union of the sets AA and BB.

2.4.1 Bipartite Cayley Graphs

Given a bipartite graph G=(UV,E)G=(U\sqcup V,E), we say UU is its left part, denoted L(G)L(G), and VV its right part, denoted R(G)R(G). For vV(G)v\in V(G), let NG(v)N_{G}(v) denote the neighborhood of vv in GG.

Definition 2.4.

For a boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}, the bipartite Cayley graph of ff, denoted BC(f)BC(f), is the bipartite graph on vertex set 𝔽2n𝔽2n\mathbb{F}_{2}^{n}\sqcup\mathbb{F}_{2}^{n} where uvf(u+v)=1u\sim v\iff f(u+v)=-1.

We observe that the number of edges in BC(f)BC(f) is exactly 22nx𝔽2n[f(x)=1]2^{2n}\operatorname{\mathbb{P}}_{x\in\mathbb{F}_{2}^{n}}[f(x)=-1]. The bipartite Cayley graph is associated to the Cayley graph with vertex set 𝔽2n\mathbb{F}_{2}^{n} and edge set generated by {x𝔽2n:f(x)=1}\{x\in\mathbb{F}_{2}^{n}\mathrel{\mathop{\ordinarycolon}}f(x)=-1\}. See Figure 2 for a more explicit example of BC(f)BC(f).

00000101101011110000101001011111
Figure 2: The bipartite Cayley graph, BC(g)BC(g), of the function g(z)=(1)z1+z2g(z)=(-1)^{z_{1}+z_{2}} for z1,z2𝔽2z_{1},z_{2}\in\mathbb{F}_{2}. gg encodes the XOR function on 22 bits.

2.4.2 Embeddings and homomorphisms of bipartite subgraphs

We consider graph homomorphisms between bipartite graphs which preserve the bipartition.

Definition 2.5.

A Bipartite Graph Homomorphism from H=(UV,F)H=(U\sqcup V,F) to G=(AB,E)G=(A\sqcup B,E) is a pair of injective maps (ψ,ϕ)(\psi,\phi) where ψ:UA\psi\mathrel{\mathop{\ordinarycolon}}U\to A, ϕ:VB\phi\mathrel{\mathop{\ordinarycolon}}V\to B, and

(u,v)F(ψ(u),ϕ(v))E.(u,v)\in F\implies(\psi(u),\phi(v))\in E.

Note that we explicitly define our homomorphisms to be injective. The set of all bipartite graph homomorphisms of a fixed bipartite graph HH into another bipartite graph GG will be denoted by BHOM(H,G)BHOM(H,G). Let

bhom(H,G):=𝔼ψ:UA𝔼ϕ:VB(u,v)F[(ψ(u),ϕ(v))E]\operatorname{bhom}(H,G)\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{\psi\mathrel{\mathop{\ordinarycolon}}U\hookrightarrow A}\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}V\hookrightarrow B}\prod_{(u,v)\in F}[(\psi(u),\phi(v))\in E]

denote the normalized size of BHOM(H,G)BHOM(H,G). We also consider bipartite graph homomorphisms in which the left part is fixed by a particular injection ψ\psi. The set of all bipartite graph homomorphisms with a fixed left map ψ\psi will be denoted by BHOMψ(H,G)BHOM_{\psi}(H,G). Let

bhomψ(H,G):=𝔼ϕ:VB(u,v)F[(ϕ(u),ψ(v))E]\operatorname{bhom}_{\psi}(H,G)\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}V\hookrightarrow B}\prod_{(u,v)\in F}[(\phi(u),\psi(v))\in E]

denote the normalized size of BHOMψ(H,G)BHOM_{\psi}(H,G). We say that an injection ψ\psi has diameter at most kk if the image of ψ\psi is a set of diameter at most kk.

2.4.3 Colored multigraphs

The following definition is inspired by the work of Aharoni et al on rainbow extremal problems [23].

Definition 2.6.

An edge-colored multigraph MM with color set KK is a multigraph with an edge-coloring using colors in KK such that multiple edges between the vertices uu and vv cannot have the same color.

We will typically think of the edges of an edge-colored multigraph as a subset of V×V×KV\times V\times K.

Definition 2.7.

For fixed f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}, k1k\geq 1, and K𝔽2nK\subseteq\mathbb{F}_{2}^{n}, the rainbow Hamming graph RHG(k,f)RHG(k,f) is the colored multigraph on the vertex set Bk(n,0)B_{k}(n,0) with color set K=𝔽2nK=\mathbb{F}_{2}^{n} and edge set defined as

{(u,v,x)V×V×K:f(u+x)=f(v+x)}.\{(u,v,x)\in V\times V\times K\mathrel{\mathop{\ordinarycolon}}f(u+x)=f(v+x)\}.

For an explicit example of a rainbow Hamming graph, see Figure 3.

000001011010000001011010111111111111
Figure 3: The rainbow Hamming graph RHG(1,h)RHG(1,h) of the function h(z)=(1)1z1z2h(z)=(-1)^{1-z_{1}z_{2}} where z1,z2𝔽2z_{1},z_{2}\in\mathbb{F}_{2}. Each edge is labeled by the string in 𝔽22\mathbb{F}_{2}^{2} which defines its color. Note that hh encodes the OR function.

2.4.4 Rainbow embeddings

We consider graph homomorphisms into a colored multigraph which agree with the coloring.

Definition 2.8.

Let MM be a colored multigraph with color set KK and let GG be a fixed (simple) graph. A rainbow embedding of GG into MM is a injective coloring χ:E(G)K\chi\mathrel{\mathop{\ordinarycolon}}E(G)\to K and an injective map ϕ:V(G)V(M)\phi\mathrel{\mathop{\ordinarycolon}}V(G)\to V(M) such that

(u,v)E(G)(ϕ(u),ϕ(v),χ((u,v))E(M).(u,v)\in E(G)\implies(\phi(u),\phi(v),\chi((u,v))\in E(M).

These embeddings are also considered in the work of Alon and Marshall [24].

For a fixed graph GG, a fixed colored multigraph MM with color set KK, let

em(G,M):=𝔼ϕ:V(G)V(M)𝔼χ:E(G)K(u,v)E(G)[(ϕ(u),ϕ(v),χ((u,v)))E(M)]\operatorname{em}(G,M)\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}V(G)\hookrightarrow V(M)}\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow K}\prod_{(u,v)\in E(G)}[(\phi(u),\phi(v),\chi((u,v)))\in E(M)]

be the normalized count of rainbow embeddings of GG into MM. If we additionally fix the injection ϕ:E(G)K\phi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow K, let

emϕ(G,M):=𝔼χ:E(G)K(u,v)E(G)[(ϕ(u),ϕ(v),χ((u,v)))E(M)]\operatorname{em}_{\phi}(G,M)\mathrel{\mathop{\ordinarycolon}}=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow K}\prod_{(u,v)\in E(G)}[(\phi(u),\phi(v),\chi((u,v)))\in E(M)]

be the normalized count of rainbow embeddings with a fixed map ϕ\phi.

2.5 Bent Functions

We consider a specific class of boolean functions originally defined by Rothaus [25].

Definition 2.9.

[25] For nn even, a boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is bent if

|f^(γ)|=2n/2\mathinner{\!\left\lvert\widehat{f}\left(\gamma\right)\right\rvert}=2^{-n/2}

for every γ𝔽2n\gamma\in\mathbb{F}_{2}^{n}.

Note that bent functions only exist for nn even.

We will need the following lemma:

Proposition 2.10.

[25] Let g:𝔽2n{1,1}g\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} be bent. Then

(gg)(x)=[x=0].(g*g)(x)=[x=0].
Example 2.11.

The Inner Product function IP:𝔽22m{1,1}IP\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{2m}\to\{1,-1\} is defined by

IP(z):=(1)i=1mzizm+i=(1)z1z2IP(z)\mathrel{\mathop{\ordinarycolon}}=(-1)^{\sum_{i=1}^{m}z_{i}z_{m+i}}=(-1)^{z_{1}\cdot z_{2}}

where z1z_{1} is the first mm bits of zz and z2z_{2} is the last mm bits of zz.

For the sake of completeness, we show that IPIP is in fact a bent function. To calculate its Fourier coefficients, fix γ𝔽22m\gamma\in\mathbb{F}_{2}^{2m}, and let γ1,γ2𝔽2m\gamma_{1},\gamma_{2}\in\mathbb{F}_{2}^{m} denote the first mm bits of γ\gamma and the last mm bits respectively. For x𝔽22mx\in\mathbb{F}_{2}^{2m}, define x1,x2x_{1},x_{2} similarly. Then,

IP^(γ)\displaystyle\widehat{IP}\left(\gamma\right) =𝔼x𝔽22mIP(x)χγ(x)\displaystyle=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{2m}}IP(x)\chi_{\gamma}(x)
=𝔼x1𝔽2m𝔼x2𝔽2m(1)x1x2+γ1x1+γ2x2\displaystyle=\operatorname{\mathbb{E}}_{x_{1}\in\mathbb{F}_{2}^{m}}\operatorname{\mathbb{E}}_{x_{2}\in\mathbb{F}_{2}^{m}}(-1)^{x_{1}\cdot x_{2}+\gamma_{1}\cdot x_{1}+\gamma_{2}\cdot x_{2}}
=𝔼x1𝔽2m(1)γ1x1𝔼x2𝔽2m(1)(x1+γ2)x2\displaystyle=\operatorname{\mathbb{E}}_{x_{1}\in\mathbb{F}_{2}^{m}}(-1)^{\gamma_{1}\cdot x_{1}}\operatorname{\mathbb{E}}_{x_{2}\in\mathbb{F}_{2}^{m}}(-1)^{(x_{1}+\gamma_{2})\cdot x_{2}}
=𝔼x1𝔽2m(1)γ1x1[x1=γ2]\displaystyle=\operatorname{\mathbb{E}}_{x_{1}\in\mathbb{F}_{2}^{m}}(-1)^{\gamma_{1}\cdot x_{1}}[x_{1}=\gamma_{2}] (1)
=(1)γ1γ22m\displaystyle=(-1)^{\gamma_{1}\cdot\gamma_{2}}2^{-m}

where we use the fact that Fourier characters are orthogonal in line (1). Thus IPIP is a bent function.

3 Quasi-random Properties and the Main Results

We describe a number of quasi-random properties of boolean functions. The properties involve two parameters, denoted by dd and ϵ\epsilon, where ϵ\epsilon indicates the error bound and dd is often related to the rank or dimension of patterns or objects in the property. The proof of the equivalence of these properties is given in section §5.

If f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is chosen uniformly at random, we expect that the γ\gamma-influence (see Definition 2.1) should be close to 12\frac{1}{2}. Our first quasirandom property formalizes that notion:

Property 1.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Balanced Influences Property INF(k,ϵ)INF(k,\epsilon) if the γ\gamma-Influence of ff is close to 12\frac{1}{2} for every nonzero γ\gamma in the Hamming ball of radius kk centered at 0, i.e.

|Iγ[f]12|<ϵ\mathinner{\!\left\lvert\operatorname{I}_{\gamma}[f]-\frac{1}{2}\right\rvert}<\epsilon

for every γ0\gamma\neq\vec{0} in the Hamming ball of radius kk at 0\vec{0}.

We remark that INF(k,0)INF(k,0) is also known as the kkth-Order Avalanche Criterion as studied in cryptography [26].

For f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} drawn uniformly from all boolean functions, the expected spectral sample (see Definition 2.2) is 12n\frac{1}{2^{n}} on each vector in 𝔽2n\mathbb{F}_{2}^{n}. In particular, the total weight of the uniform distribution on a subcube of dimension nkn-k is exactly 2kn2^{k-n}. Our next quasi-random property states that 𝒮f\mathcal{S}_{f} is not far from the uniform distribution on on subcubes.

Property 2.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Spectral Discrepancy Property SD(k,ϵ)SD(k,\epsilon) if the spectral sample of ff has total weight close to 2ln2^{l-n} on every subcube of dimension ll where lnkl\geq n-k i.e.

|z𝒮f[zH]2dim(C(S,z))n|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{P}}_{z\sim\mathcal{S}_{f}}[z\in H]-2^{\dim(C(S,z))-n}\right\rvert}<\epsilon

for every subcube HH of dimension at least nkn-k.

One can think of this property as a form of “discrepancy” for the spectral sample.

Next, we have a counting property on subcubes via the notion of restricted functions (see Definition 2.3). As f|S,zf|_{S,z} is a map 𝔽d{1,1}\mathbb{F}^{d}\to\{1,-1\} for |S|=d\mathinner{\!\left\lvert S\right\rvert}=d, we can consider its Fourier coefficients. The next quasi-random property states that these Fourier coefficients are quite small on average.

Property 3.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Restriction Fourier Property RF(k,ϵ)RF(k,\epsilon) if the average restriction of ff is nearly a bent function on any subcube of dimension at most kk, i.e.

|𝔼z𝔽2S¯[f|S,z^(γ)2]2dim(C(S,z))|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\left[\widehat{f|_{S,z}}\left(\gamma\right)^{2}\right]-2^{-\dim(C(S,z))}\right\rvert}<\epsilon

for every subcube C(S,z)C(S,z) of dimension at most kk and every γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}.

The next property states that we can control certain patterns in the restrictions of ff.

Property 4.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Restriction Convolution Property RC(k,ϵ)RC(k,\epsilon) if the average self-convolution of restrictions of ff to subcubes of dimension at most kk is close to the indicator function of the 0 vector, i.e.

|𝔼z𝔽2S¯(f|S,zf|S,z)(x)[x=0]|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}(f|_{S,z}*f|_{S,z})(x)-[x=\vec{0}]\right\rvert}<\epsilon

for every set S[n]S\subseteq[n] of size at most kk.

Convolutions are closely related to influences, so we have an additional influences property pertaining to an average restricted function:

Property 5.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Restriction Influences Property RI(k,ϵ)RI(k,\epsilon) if the γ\gamma-Influences of the average restriction to subcubes of dimension at most kk are close to 12\frac{1}{2}.

|𝔼z𝔽2S¯Iγ[f|S,z]12|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{I}_{\gamma}[f|_{S,z}]-\frac{1}{2}\right\rvert}<\epsilon

for every set S[n]S\subseteq[n] of size at most kk and every nonzero γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}.

The next combinatorial property states that many pairs of vertices on one side of the bipartite Cayley graph BC(f)BC(f) of ff (see Definition 2.4) have the same number of shared neighbors.

Property 6.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Local Strong Regularity Property LSR(k,ϵ)LSR(k,\epsilon) if the any pair of vertices within distance kk of each other in the left part of the bipartite Cayley graph of ff have approximately the same number of common neighbors, i.e.

|NBC(f)(u)NBC(f)(v)2n(14f^(0)2)|<ϵ\mathinner{\!\left\lvert\frac{N_{BC(f)}(u)\cap N_{BC(f)}(v)}{2^{n}}-\left(\frac{1}{4}-\frac{\widehat{f}\left(0\right)}{2}\right)\right\rvert}<\epsilon

for every pair of vertices x,yx,y on the left side of BC(f)BC(f) such that |xy|k\mathinner{\!\left\lvert x-y\right\rvert}\leq k.

Note that every bipartite Cayley graph has a symmetry which reverses its left and right parts, so we only need to consider the left part in the quasirandom property. We remark that the assumption that |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} is required for Property 6 and the other combinatorial properties.

Our next property concerns the bipartite graph homomorphisms of a fixed bipartite graph with a fixed left map.

Property 7.

Define p=14f^(0)2p=\frac{1}{4}-\frac{\widehat{f}\left(0\right)}{2} and q=12f^(0)2q=\frac{1}{2}-\frac{\widehat{f}\left(0\right)}{2}. A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Degree 22 Homomorphisms Property DTH(k,ϵ)DTH(k,\epsilon) if every bipartite graph GG appears as a subgraph of BC(f)BC(f) as often as in a random bipartite graph for any choice of left map for GG with diameter at most kk, as long as GG has maximum degree 22 in its right part. More formally, the Degree-22 Homomorphisms Property holds if

|bhomψ(G,BC(f))pr2qr1|<ϵpr2qr1\mathinner{\!\left\lvert\operatorname{bhom}_{\psi}(G,BC(f))-p^{r_{2}}q^{r_{1}}\right\rvert}<\epsilon p^{r_{2}}q^{r_{1}}

for every bipartite graph G=(UV,F)G=(U\sqcup V,F) such that VV has maximum degree 22 in GG and |V|2n/2|V|\leq 2^{n/2}, and every injection ψ:U𝔽2n\psi\mathrel{\mathop{\ordinarycolon}}U\to\mathbb{F}_{2}^{n} of diameter at most kk where r2,r1r_{2},r_{1} are the number of vertices in the right part of GG with degree 22 and 11 respectively.

Our next combinatorial property considers embeddings into a the rainbow Hamming graph as defined in definitions 2.6 and 2.8.

Property 8.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} has the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon) if for every fixed simple graph GG and every choice of injection ϕ\phi from GG to the rainbow Hamming graph of ff, there are close to 2|E(G)|2^{-\mathinner{\!\left\lvert E(G)\right\rvert}} colorings of GG which become rainbow embeddings of GG under ϕ\phi. Namely, the Rainbow Embeddings Property holds if

|emϕ(G,RHG(d,f))2|E(G)||<ϵ\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-2^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\right\rvert}<\epsilon

for every fixed graph GG, and every ϕ:V(G)V(RHG(d,f))\phi\mathrel{\mathop{\ordinarycolon}}V(G)\hookrightarrow V(RHG(d,f)) of diameter at most dd.

Remark 3.1.

In Figure 3, consider the graph K1,2K_{1,2} with the injection which sends the left vertex to 0000 and the two right vertices to 01,1001,10. We note that there are exactly 44 possible edge-colorings of K1,2K_{1,2} which become rainbow embeddings under this injection. As there are 1212 possible colorings, it follows that OROR does not satisfy the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon) for any ϵ<1/6\epsilon<1/6.

For properties P(d,ϵ)P(d,\epsilon) and Q(d,ϵ)Q(d,\epsilon), we say PP implies QQ with error bound δ\delta, denoted P(d,ϵ)𝛿Q(d,ϵ)P(d,\epsilon)\overset{\delta}{\implies}Q(d,\epsilon), if for every d1d\geq 1, every ϵ>0\epsilon>0, and every boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}, there is a δ>0\delta>0 such that

P(d,δ)Q(d,ϵ)P(d,\delta)\implies Q(d,\epsilon)\hskip 28.45274pt

where δ\delta depends on dd and ϵ\epsilon but not on the size of the domain of ff. If

P(d,ϵ)δ1Q(d,ϵ)andQ(d,ϵ)δ2P(d,ϵ)P(d,\epsilon)\overset{\delta_{1}}{\implies}Q(d,\epsilon)~{}~{}\text{and}~{}~{}Q(d,\epsilon)\overset{\delta_{2}}{\implies}P(d,\epsilon)

for some error bounds δ1\delta_{1} and δ2\delta_{2}, we say that PP and QQ are equivalent. Our main result is as follows:

Theorem 3.2.

For any fixed dd and ϵ\epsilon, the properties INF(d,ϵ)INF(d,\epsilon)(1), SD(d,ϵ)SD(d,\epsilon)(2), RF(d,ϵ)RF(d,\epsilon)(3), RC(d,ϵ)RC(d,\epsilon)(4), RI(d,ϵ)RI(d,\epsilon)(5), LSR(d,ϵ)LSR(d,\epsilon)(6), DTH(d,ϵ)DTH(d,\epsilon)(7), and RAIN(d,ϵ)RAIN(d,\epsilon)(8) are equivalent.

If a boolean function ff satisfies any one of these properties for some dd and ϵ\epsilon, we say that ff is quasi-random of rank dd with error bound ϵ\epsilon.

We can summarize the proof of our main result in figure 4, where each arrow is labeled with the relevant theorem and error bound.

INF(d,ϵ)INF(d,\epsilon)SD(d,ϵ)SD(d,\epsilon)RF(d,ϵ)RF(d,\epsilon)RC(d,ϵ)RC(d,\epsilon)RI(d,ϵ)RI(d,\epsilon)LSR(d,ϵ)LSR(d,\epsilon)DTH(d,ϵ)DTH(d,\epsilon)RAIN(d,ϵ)RAIN(d,\epsilon)ϵ/2\epsilon/2Thm (5.2)ϵ\epsilonThm 5.4ϵ/2d\epsilon/2^{d}Thm 5.5ϵ\epsilonThm 5.6Thm (5.7ϵ\epsilon4ϵ4\epsilonThm 5.84ϵ4\epsilonThm 5.9ϵp/2e|D2|\epsilon p/2e\mathinner{\!\left\lvert D_{2}\right\rvert}Thm 5.10ϵ(52+f^(0))|E(G)|\epsilon\left(\frac{5}{2}+\widehat{f}\left(0\right)\right)^{-\mathinner{\!\left\lvert E(G)\right\rvert}}Thm (5.12Thm 5.13ϵ/4\epsilon/4
Figure 4: The implications in the main theorem (3.2). Each edge gives the loss in ϵ\epsilon and the reference to the theorem in which the implication is shown.

One can easily observe that P(d+1,ϵ)P(d,ϵ)P(d+1,\epsilon)\implies P(d,\epsilon) for each property PP and every dd and ϵ\epsilon. Our second main result shows that these inclusions are strict, i.e. that there are functions which are quasi-random of rank dd but not quasi-random of rank d+1d+1.

Theorem 3.3.

For each d1d\geq 1, there exists an explicit function fd:𝔽2n{1,1}f_{d}\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2} such that

  • fdf_{d} satisfies the Balanced Influences Property of rank dd with error 0.

  • fdf_{d} does not satisfy the Balanced Influences Property of rank d+1d+1 for any bound ϵ<12\epsilon<\frac{1}{2}.

4 Relating Quasirandom Boolean Functions to Extant theories

There are various other quasi-randomness theorems for boolean functions implicitly or explicitly considered in several related ranging from hypergraphs to analysis of boolean functions. Here we compare the properties defined in Section §3 to an incomplete list of these extant theories.

We first consider Chung and Tetali’s work on the relationship between kk-uniform hypergraphs and boolean functions in [22]. Their ideas also appear implicitly in the works of Gowers [18] on hypergraph regularity lemmas and Szemeredi’s Theorem, and in a survey paper by Casto-Silva [21]. These works convert a boolean function to a kk-uniform hypergraph via the following construction. Given a boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\}, its Cayley Hypergraph HH has the vertex set 𝔽2n\mathbb{F}_{2}^{n} and choosing hyper-edges {x1,,xk}E(H)f(x1++xk)=1\{x_{1},\dots,x_{k}\}\in E(H)\iff f(x_{1}+\dots+x_{k})=-1. Via the Cayley hypergraph, these authors transfer the theory of quasi-randomness for uniform hypergraphs to boolean functions.

The central definition in these works is the following, which we state is a slightly non-traditional fashion:

Definition 4.1.

The kk-th Gowers Uniformity Norm, denoted fU(k)\|f\|_{U(k)}, is defined as

fU(k):=(𝔼x𝔽2n𝔼v1,,vk𝔽2nα1,,αk{0,1}f(x+α1v1++αkvk))2k\|f\|_{U(k)}\mathrel{\mathop{\ordinarycolon}}=\left(\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\operatorname{\mathbb{E}}_{v_{1},\dots,v_{k}\in\mathbb{F}_{2}^{n}}\prod_{\alpha_{1},\dots,\alpha_{k}\in\{0,1\}}f(x+\alpha_{1}v_{1}+\dots+\alpha_{k}v_{k})\right)^{2^{-k}}

We will typically use the following equivalent formula (see [27]):

fU(k)=(𝔼x𝔽2n,M𝔽2n×kv𝔽2kf(x+Mv))2k.\|f\|_{U(k)}=\left(\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n},M\in\mathbb{F}_{2}^{n\times k}}\prod_{v\in\mathbb{F}_{2}^{k}}f(x+Mv)\right)^{2^{-k}}.

The Gowers norms are a direct translation of the properties in [11, 22] which count even and odd octahedra in kk-Uniform hypergraphs. For these theories, the key pseudorandom property is the following:

Property 9.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is (ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regular if

fU(d+1)<ϵ\|f\|_{U(d+1)}<\epsilon

As shown in Castro-Silva’s monograph [21], (ϵ,k+1)(\epsilon,k+1) 𝔽2\mathbb{F}_{2}-Regularity implies (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regularity, and the implication is strict. Hence, just as we have a hierarchy of quasirandom properties in our Theorem 3.3, we can view (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regularity as a similar hierarchy indexed by kk. Furthermore, the k+1k+1-st Gowers norm controls correlation of ff with functions of 𝔽2\mathbb{F}_{2}-degree at most kk as shown in [27]. Hence, we can say that the hierarchy is indexed by 𝔽2\mathbb{F}_{2}-degree.

We show the following Theorem whose proof is found in section §7:

Theorem 4.2.

Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} have (ϵ,d)(\epsilon,d)-Balanced Influences. Then ff is (2d+ϵ,1)(\sqrt{2^{-d}+\epsilon},1) 𝔽2\mathbb{F}_{2}-Regular.

There is a function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with (0,n)(0,n)-Balanced Influences, yet ff is not (ϵ,2)(\epsilon,2) 𝔽2\mathbb{F}_{2}-Regular for any ϵ<1\epsilon<1.

For any d2d\geq 2, there is a function g:𝔽2n{1,1}g\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} which is (ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regular and does not have the Balanced Influences Property of any rank k1k\geq 1 for any error bound ϵ<12\epsilon<\frac{1}{2}.

O’Donnell presents several pseudorandom properties in [20] which center on the Fourier expansion defined in Section §2. The first pseudorandom property he mentions is the following:

Property 10.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is (ϵ,d)(\epsilon,d) \mathbb{R}-Regular if

|f^(γ)|<ϵ\mathinner{\!\left\lvert\widehat{f}\left(\gamma\right)\right\rvert}<\epsilon

for every γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} with |γ|d\mathinner{\!\left\lvert\gamma\right\rvert}\leq d.

One can easily verify that (ϵ,d+1)(\epsilon,d+1) \mathbb{R}-regularity implies (ϵ,d)(\epsilon,d) \mathbb{R}-regularity, and a Fourier character of χγ\chi_{\gamma} where |γ|=d+1\mathinner{\!\left\lvert\gamma\right\rvert}=d+1 shows that the implication is strict. Hence, just as we have a hierarchy of quasirandom properties in our Theorem 3.3, (ϵ,k)(\epsilon,k) \mathbb{R}-Regularity can be viewed as having an increasing hierarchy of pseudorandom properties indexed by kk. Furthermore, (ϵ,n)(\epsilon,n) \mathbb{R}-regularity is equivalent to (ϵ,1)(\epsilon,1) 𝔽2\mathbb{F}_{2}-regularity as is shown in Proposition 6.7 of [20].

We show the following Theorem whose proof can be found in section §7:

Theorem 4.3.

Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} have (ϵ,k)(\epsilon,k) Balanced Influences. Then ff is (2k+ϵ,n)(\sqrt{2^{-k}+\epsilon},n) \mathbb{R}-regular.

Conversely, there is a function which is (ϵ,n)(\epsilon,n) \mathbb{R}-regular which does not have (ϵ,k)(\epsilon,k) Balanced Influences for any rank k1k\geq 1 or error bound ϵ<12\epsilon<\frac{1}{2}.

Another collection of pseudorandom properties of Boolean functions appears implicitly in Chung and Graham’s work on quasirandom subsets of /N\mathbb{Z}/N\mathbb{Z} [5]. To apply their work to boolean functions, we can identify the set of binary strings with elements of /2n\mathbb{Z}/2^{n}\mathbb{Z}. Then a boolean function can be identified with the set of elements of /2n\mathbb{Z}/2^{n}\mathbb{Z} on which it takes the value 1-1. Their key pseudorandom property is the following:

Property 11.

A boolean function f:/2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{Z}/2^{n}\mathbb{Z}\to\{1,-1\} is /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regular with error bound ϵ\epsilon if ff has correlation at most ϵ\epsilon with the all nonzero characters of /2n\mathbb{Z}/2^{n}\mathbb{Z}, i.e. for every nonzero j/2nj\in\mathbb{Z}/2^{n}\mathbb{Z},

|𝔼z/2nf(z)exp(2πijz/2n)|<ϵ.\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{Z}/2^{n}\mathbb{Z}}f(z)\exp(2\pi ijz/2^{n})\right\rvert}<\epsilon.

As shown by Chung and Graham [5], /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regularity controls the correlations of a function ff with a shifted copy of itself much like our Balanced Influences Property (see 1). However, the arithmetic operations considered in /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regularity are carried out over /2n\mathbb{Z}/2^{n}\mathbb{Z} rather than 𝔽2n\mathbb{F}_{2}^{n} as in the Balanced Influences Property.

We prove the following Theorem whose proof is found in section §7:

Theorem 4.4.

For any ϵ>0\epsilon>0 there is a function which is /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regular with error bound ϵ\epsilon but is not (δ,nk+1)(\delta,n-k+1) \mathbb{R}-Regular for any δ<1\delta<1 where k=C0ln(1/ϵ)k=-C_{0}\ln(1/\epsilon) for some absolute constant C0C_{0}.

O’Donnell [20] defines an additional pseudo-random property which uses a different generalization of influences as follows.

Definition 4.5.

For a coordinate ii and a parameter ρ[0,1]\rho\in[0,1], the ρ\rho-stable influence of a boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} is

Iiρ[f]:=γ𝔽2nγi=1ρ|γ|1f^(γ)2.\operatorname{I}_{i}^{\rho}[f]\mathrel{\mathop{\ordinarycolon}}=\sum_{\begin{subarray}{c}\gamma\in\mathbb{F}_{2}^{n}\\ \gamma_{i}=1\end{subarray}}\rho^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\widehat{f}\left(\gamma\right)^{2}.

The key pseudorandom property is:

Property 12.

A boolean function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} has (ϵ,ρ)(\epsilon,\rho) Small Stable Influences if

Iiρ[f]<ϵ\operatorname{I}_{i}^{\rho}[f]<\epsilon

for every i[n]i\in[n].

As shown by O’Donnell[20], ρ\rho-Stable-Influences measure the expected change in the function if the input bits are changed via a particular noise model. Thus, (ϵ,ρ)(\epsilon,\rho) Small Stable Influences implies a form of noise stability.

We show the following Theorem whose proof is found in section §7:

Theorem 4.6.

Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfy SD(d,ϵe(d1)((δ/2)ln(2)))SD(d,\epsilon e^{(d-1)((\delta/2)-\ln(2))}). Then, ff has (ϵ,δ)(\epsilon,\delta) small stable influences. Furthermore, χ𝟏\chi_{\mathbf{1}} has ((1δ)n,δ)((1-\delta)^{n},\delta) small stable influences for any δ<1\delta<1 but does not have (ϵ,k)(\epsilon,k) Balanced Influences for any kk and any ϵ<12\epsilon<\frac{1}{2}.

To summarize, we have figure 5 which includes the relationships between each theory of quasirandomness and our results in Section §3.

(ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regular, d>1d>1(ϵ,1)(\epsilon,1) 𝔽2\mathbb{F}_{2}-Regular(ϵ,δ)(\epsilon,\delta)-Small Stable Influences/2n\mathbb{Z}/2^{n}\mathbb{Z}-Regularity(ϵ,k)(\epsilon,k) \mathbb{R}-Regular, k<nk<n(ϵ,d)(\epsilon,d) Balanced Influences, d>0d>0BentTheorem 4.3Ex 6.5f [20]Theorem 4.6Ex 6.5d [20]Theorem 4.2Theorem 4.2Theorem 4.4
Figure 5: The relationships between different theories of quasi-randomness. Each box is a distinct theory of quasi-randomness. Each arrow is a strict implication. Beside each arrow we give a reference to the proof of the implication. If the result follows by definition, we omit the label for the sake of space. The results of this paper are in bold blue text and blue arrows. Non-implications are red dotted lines with an XX in the middle, with a citation for each result.

5 Proof of the Equivalences in Theorem 3.2

We now proceed to the proof of our main theorems. The following property of the directional influence will be quite useful later.

Proposition 5.1.

If γ𝔽2n\gamma\in\mathbb{F}_{2}^{n}, then

ff(γ)=12Iγ[f]f*f(\gamma)=1-2\operatorname{I}_{\gamma}[f]
Proof.

By definition of γ\gamma-influence,

12Iγ[f]\displaystyle 1-2\operatorname{I}_{\gamma}[f] =12[f(x)f(x+γ)]\displaystyle=1-2\operatorname{\mathbb{P}}[f(x)\neq f(x+\gamma)]
=𝔼x𝔽2n(12[f(x)f(x+γ)])\displaystyle=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\left(1-2[f(x)\neq f(x+\gamma)]\right)
=𝔼x𝔽2nf(x)f(x+γ)\displaystyle=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}f(x)f(x+\gamma)
=ff(γ)\displaystyle=f*f(\gamma)

where we use the fact that f(x){1,1}f(x)\in\{1,-1\} in the second and third equalities. ∎

Our main Theorem 3.2 will be proved in a sequence of implications each of which we state as a Theorem. The first Theorem in the proof of Theorem 3.2 relates the Balanced Influences Property to the Spectral Discrepancy Property.

Theorem 5.2.

For any fixed integer d1d\geq 1 and any ϵ>0\epsilon>0, the Balanced Influences Property INF(d,ϵ/2)INF(d,\epsilon/2) implies the Spectral Discrepancy Property SD(d,ϵ)SD(d,\epsilon).

Proof.

Fix a subcube C(S,z0)C(S,z_{0}) where |S|=nk\mathinner{\!\left\lvert S\right\rvert}=n-k where kdk\leq d. Let M𝔽2S¯×[n]M\in\mathbb{F}_{2}^{\overline{S}\times[n]} be the projection matrix which sends z𝔽2nz\in\mathbb{F}_{2}^{n} to z|S¯z|_{\overline{S}}.

We observe that the indicator function [γC(S,z0)][\gamma\in C(S,z_{0})] can be written as

[γC(S,z0)]=𝔼v𝔽2S¯(1)v(Mγz0).[\gamma\in C(S,z_{0})]=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot(M\gamma-z_{0})}. (2)

Indeed, if γC(S,z0)\gamma\in C(S,z_{0}), then Mγ=z0M\gamma=z_{0}, and 𝔼v𝔽2S¯(1)v(Mγz0)=𝔼v𝔽2S¯1=1\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot(M\gamma-z_{0})}=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}1=1. If γC(S,z0)\gamma\notin C(S,z_{0}), then γj(z0)j\gamma_{j}\neq(z_{0})_{j} for some jS¯j\in\overline{S}. Therefore, 𝔼v𝔽2S¯(1)v(Mγz0)=𝔼v𝔽2S¯(1)vy\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot(M\gamma-z_{0})}=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot y} for some nonzero vector yy. Hence, 𝔼v𝔽2S¯(1)v(Mγz0)=0\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot(M\gamma-z_{0})}=0. Let ff be a function which satisfies the Balanced Influence Property INF(d,ϵ/2)INF(d,\epsilon/2). To use Equation (2), we expand the definition of the spectral sample.

γ𝒮f[γC(S,z0)]\displaystyle\operatorname{\mathbb{P}}_{\gamma\sim\mathcal{S}_{f}}\left[\gamma\in C(S,z_{0})\right] =γC(S,z0)f^(γ)2\displaystyle=\sum_{\gamma\in C(S,z_{0})}\widehat{f}\left(\gamma\right)^{2}
=γ𝔽2nf^(γ)2[γC(S,z0)]\displaystyle=\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}[\gamma\in C(S,z_{0})]
=γ𝔽2nf^(γ)2𝔼v𝔽2S¯(1)v(Mγz0)By Equation (2)\displaystyle=\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot(M\gamma-z_{0})}~{}~{}~{}~{}\text{By Equation (\ref{eqn indicator function as exp sum})}
=𝔼v𝔽2S¯(1)vz0γ𝔽2nf^(γ)2(1)vMγ\displaystyle=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot z_{0}}\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}(-1)^{v\cdot M\gamma}
=𝔼v𝔽2S¯(1)vz0γ𝔽2nf^(γ)2(1)Mvγ\displaystyle=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot z_{0}}\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}(-1)^{M^{\top}v\cdot\gamma}
=𝔼v𝔽2S¯(1)vz0γ𝔽2nf^(γ)2χγ(Mv)By definition of χγ\displaystyle=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{\overline{S}}}(-1)^{v\cdot z_{0}}\sum_{\gamma\in\mathbb{F}_{2}^{n}}\widehat{f}\left(\gamma\right)^{2}\chi_{\gamma}(M^{\top}v)~{}~{}~{}~{}~{}\text{By definition of $\chi_{\gamma}$}
=𝔼v𝔽2k(1)vz0ff(Mv)\displaystyle=\operatorname{\mathbb{E}}_{v\in\mathbb{F}_{2}^{k}}(-1)^{v\cdot z_{0}}f*f(M^{\top}v)

where we use the Fourier expansion of fff*f in the final line. Notice that ff(M0)=(ff)(0)=1f*f(M^{\top}0)=(f*f)(0)=1, and that x=0x=0 is the only solution to Mx=0M^{\top}x=0. Therefore, we can write

|γ𝒮f[γC(S,z0)]2k|\displaystyle\mathinner{\!\left\lvert\operatorname{\mathbb{P}}_{\gamma\sim\mathcal{S}_{f}}\left[\gamma\in C(S,z_{0})\right]-2^{-k}\right\rvert} =|v𝔽2k(1)vz0ff(Mv)2k2k|\displaystyle=\mathinner{\!\left\lvert\sum_{v\in\mathbb{F}_{2}^{k}}(-1)^{v\cdot z_{0}}\dfrac{f*f(M^{\top}v)}{2^{k}}-2^{-k}\right\rvert}
=|v𝔽2k{0}(1)vz0ff(Mv)2k|\displaystyle=\mathinner{\!\left\lvert\sum_{v\in\mathbb{F}_{2}^{k}\setminus\{\vec{0}\}}(-1)^{v\cdot z_{0}}\dfrac{f*f(M^{\top}v)}{2^{k}}\right\rvert}
12kv𝔽2k{0}|ff(Mv)|\displaystyle\leq\frac{1}{2^{k}}\sum_{v\in\mathbb{F}_{2}^{k}\setminus\{\vec{0}\}}\mathinner{\!\left\lvert f*f(Mv)\right\rvert}
=12kv𝔽2k{0}|12IMv[f]|\displaystyle=\frac{1}{2^{k}}\sum_{v\in\mathbb{F}_{2}^{k}\setminus\{\vec{0}\}}\mathinner{\!\left\lvert 1-2\operatorname{I}_{M^{\top}v}[f]\right\rvert}

where we use Lemma 5.1 in the final line. As kdk\leq d, we have |S|=n|S¯|=kd\mathinner{\!\left\lvert S\right\rvert}=n-\mathinner{\!\left\lvert\overline{S}\right\rvert}=k\leq d, |S|d\mathinner{\!\left\lvert S\right\rvert}\leq d. Thus, |v|d\mathinner{\!\left\lvert v\right\rvert}\leq d. Since MM is a projection matrix, |Mv|=|v|d\mathinner{\!\left\lvert M^{\top}v\right\rvert}=\mathinner{\!\left\lvert v\right\rvert}\leq d . There fore, we may apply INF(d,ϵ/2)INF(d,\epsilon/2) to find

|γ𝒮f[γC(S,z0)]2k|\displaystyle\mathinner{\!\left\lvert\operatorname{\mathbb{P}}_{\gamma\sim\mathcal{S}_{f}}\left[\gamma\in C(S,z_{0})\right]-2^{-k}\right\rvert} 12kv𝔽2k{0}ϵϵ\displaystyle\leq\frac{1}{2^{k}}\sum_{v\in\mathbb{F}_{2}^{k}\setminus\{\vec{0}\}}\epsilon\leq\epsilon

As C(S,z0)C(S,z_{0}) is arbitrary, ff also satisfies the Spectral Discrepancy Property SD(d,ϵ)SD(d,\epsilon). ∎

For our next few implications, we will need the following result from O’Donnell’s book [20], translated into our notation.

Lemma 5.3.

[[20] Proposition 3.21] If C(S,z)C(S,z) is a fixed subcube and γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}, then

f|S,z^(γ)=δ𝔽2S¯f^(δ𝑆γ)χδ(z)\widehat{f|_{S,z}}\left(\gamma\right)=\sum_{\delta\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f}\left(\delta\underset{S}{\otimes}\gamma\right)\chi_{\delta}(z)

Now we can relate the spectral sample to the Fourier coefficients of restricted functions.

Theorem 5.4.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0 the Spectral Discrepancy Property SD(d,ϵ)SD(d,\epsilon) implies the Restriction Fourier Property RF(d,ϵ)RF(d,\epsilon).

Proof.

This proof is essentially the proof of Corollary 3.22 in [20], which we reproduce here in our notation for completeness. Suppose f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Spectral Discrepancy Property SD(d,ϵ)SD(d,\epsilon). Let C(S,z)C(S,z) be an arbitrary subcube of dimension kk where kdk\leq d. Then for a fixed γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}, Lemma 5.3 gives us

𝔼z𝔽2S¯f|S,z^(γ)2\displaystyle\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f|_{S,z}}\left(\gamma\right)^{2} =𝔼z𝔽2S¯(δ𝔽2S¯f^(δ𝑆γ)χδ(z))2\displaystyle=\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\left(\sum_{\delta\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f}\left(\delta\underset{S}{\otimes}\gamma\right)\chi_{\delta}(z)\right)^{2}
=δ1,δ2𝔽2S¯𝔼z𝔽2S¯f^(δ1𝑆γ)f^(δ2𝑆γ)χδ1(z)χδ2(z)\displaystyle=\sum_{\delta_{1},\delta_{2}\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f}\left(\delta_{1}\underset{S}{\otimes}\gamma\right)\widehat{f}\left(\delta_{2}\underset{S}{\otimes}\gamma\right)\chi_{\delta_{1}}(z)\chi_{\delta_{2}}(z)
=δ1,δ2𝔽2S¯f^(δ1𝑆γ)f^(δ2𝑆γ)𝔼z𝔽2S¯χδ1(z)χδ2(z)\displaystyle=\sum_{\delta_{1},\delta_{2}\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f}\left(\delta_{1}\underset{S}{\otimes}\gamma\right)\widehat{f}\left(\delta_{2}\underset{S}{\otimes}\gamma\right)\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\chi_{\delta_{1}}(z)\chi_{\delta_{2}}(z)
=δ𝔽2S¯f^(δ𝑆γ)2\displaystyle=\sum_{\delta\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f}\left(\delta\underset{S}{\otimes}\gamma\right)^{2} (3)
=η𝒮f[ηC(S¯,γ)]\displaystyle=\operatorname{\mathbb{P}}_{\eta\sim\mathcal{S}_{f}}\left[\eta\in C(\overline{S},\gamma)\right] (4)

where we use the orthogonality of the Fourier characters in line (3) and the definition of the spectral sample line (4). As kdk\leq d, |S¯|=nknd\mathinner{\!\left\lvert\overline{S}\right\rvert}=n-k\geq n-d. Thus we can apply Property SD(d,ϵ)SD(d,\epsilon) to C(S¯,z)C(\overline{S},z) to find that

|η𝒮f[ηC(S¯,γ)]2k|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{P}}_{\eta\sim\mathcal{S}_{f}}\left[\eta\in C(\overline{S},\gamma)\right]-2^{-k}\right\rvert}<\epsilon

for every γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}. Hence,

|𝔼z𝔽2S¯f|S,z^(γ)22k|<ϵ\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f|_{S,z}}\left(\gamma\right)^{2}-2^{-k}\right\rvert}<\epsilon

for every γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}. As C(S,z)C(S,z) is arbitrary, ff also satisfies the Restriction Fourier Property RF(d,ϵ)RF(d,\epsilon). ∎

With a bound on the Fourier coefficients of restricted functions, we can bound the convolution of a restricted function with itself.

Theorem 5.5.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0 the Restriction Fourier Property SD(d,ϵ/2d)SD(d,\epsilon/2^{d}) implies the Restriction Convolution Property RC(d,ϵ)RC(d,\epsilon)

Proof.

Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} have the Restriction Fourier Property RF(d,ϵ/2d)RF(d,\epsilon/2^{d}), and note that ff also satisfies RF(k,ϵ/2k)RF(k,\epsilon/2^{k}) for every kdk\leq d. Fix kk\in\mathbb{N} such that kdk\leq d and a set S[n]S\subseteq[n] where |S|=k|S|=k.

We have

𝔼z𝔽2S¯(f|S,zf|S,z)(x)\displaystyle\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}(f|_{S,z}*f|_{S,z})(x) =𝔼z𝔽2S¯δ𝔽2Sf|S,z^(δ)2χδ(x)\displaystyle=\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\sum_{\delta\in\mathbb{F}_{2}^{S}}\widehat{f|_{S,z}}\left(\delta\right)^{2}\chi_{\delta}(x)
=δ𝔽2S(𝔼z𝔽2S¯f|S,z^(δ)2)χδ(x)\displaystyle=\sum_{\delta\in\mathbb{F}_{2}^{S}}\left(\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f|_{S,z}}\left(\delta\right)^{2}\right)\chi_{\delta}(x)

Using the Fourier expansion of the indicator function [x=0][x=0], we then have

|𝔼z𝔽2S¯(f|S,zf|Sz)(x)[x=0]|\displaystyle\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}(f|_{S,z}*f|_{Sz})(x)-[x=0]\right\rvert} =|δ𝔽2S(𝔼z𝔽2S¯f|S,z^(δ)212k)χδ(x)|\displaystyle=\mathinner{\!\left\lvert\sum_{\delta\in\mathbb{F}_{2}^{S}}\left(\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f|_{S,z}}\left(\delta\right)^{2}-\frac{1}{2^{k}}\right)\chi_{\delta}(x)\right\rvert}
δ𝔽2S|𝔼z𝔽2S¯f|S,z^(δ)212k|\displaystyle\leq\sum_{\delta\in\mathbb{F}_{2}^{S}}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\widehat{f|_{S,z}}\left(\delta\right)^{2}-\frac{1}{2^{k}}\right\rvert}
δ𝔽2Sϵ2k\displaystyle\leq\sum_{\delta\in\mathbb{F}_{2}^{S}}\frac{\epsilon}{2^{k}}
ϵ\displaystyle\leq\epsilon

where we use RF(k,ϵ/2k)RF(k,\epsilon/2^{k}) in the penultimate line. Since kk and SS are arbitrary, we conclude that ff also satisfies the Restriction Convolution Property RC(d,ϵ)RC(d,\epsilon). ∎

Lemma (5.1) gives us a further property:

Theorem 5.6.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0 the Restriction Convolution Property SD(d,2ϵ)SD(d,2\epsilon) implies the Restriction Influences Property RF(d,ϵ)RF(d,\epsilon).

Proof.

Suppose ff satisfies the Restriction Convolution Property RC(d,2ϵ)RC(d,2\epsilon). By Lemma (5.1) applied to f|S,zf|_{S,z}, we have

Iγ[f|S,z]=1f|S,zf|S,z(γ)2\operatorname{I}_{\gamma}[f|_{S,z}]=\frac{1-f|_{S,z}*f|_{S,z}(\gamma)}{2}

for any fixed SS and zz. Now fix kk\in\mathbb{N} such that kdk\leq d and S[n]S\subseteq[n] where |S|=k|S|=k. Then,

|𝔼z𝔽2S¯Iγ[f|S,z]12|\displaystyle\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{I}_{\gamma}[f|_{S,z}]-\frac{1}{2}\right\rvert} =|(𝔼z𝔽2S¯1f|S,zf|S,z(γ)2)12|\displaystyle=\mathinner{\!\left\lvert\left(\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\frac{1-f|_{S,z}*f|_{S,z}(\gamma)}{2}\right)-\frac{1}{2}\right\rvert}
=|𝔼z𝔽2S¯f|S,zf|S,z(γ)2|\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\frac{f|_{S,z}*f|_{S,z}(\gamma)}{2}\right\rvert}

As γ0\gamma\neq 0, RC(d,2ϵ)RC(d,2\epsilon) implies that the above is at most ϵ\epsilon. Hence, ff satisfies the Restriction Influences Property RI(d,ϵ)RI(d,\epsilon). ∎

As one might imagine, the influences of restricted functions relate nicely to the influences of the original function.

Theorem 5.7.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Restriction Influences Property RI(d,ϵ)RI(d,\epsilon) implies the Balanced Influences Property INF(d,ϵ)INF(d,\epsilon).

Proof.

Suppose f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Restriction Influences Property RF(d,ϵ)RF(d,\epsilon). Fix S[n]S\subseteq[n] with |S|d|S|\leq d and γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}. Then,

𝔼z𝔽2S¯Iγ[f]\displaystyle\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{I}_{\gamma}[f] =𝔼z𝔽2S¯𝔼x𝔽2S[f|S,z(x+γ)f|S,z(x)]\displaystyle=\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{S}}[f|_{S,z}(x+\gamma)\neq f|_{S,z}(x)]
=𝔼z𝔽2S¯𝔼x𝔽2S[f(x𝑆z+γ𝑆z))f(x𝑆z)]\displaystyle=\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{S}}[f(x\underset{S}{\otimes}z+\gamma\underset{S}{\otimes}z))\neq f(x\underset{S}{\otimes}z)]

Let y=x𝑆zy=x\underset{S}{\otimes}z and δ=γ𝑆0\delta=\gamma\underset{S}{\otimes}0. Note that |δ|d\mathinner{\!\left\lvert\delta\right\rvert}\leq d as |S|d\mathinner{\!\left\lvert S\right\rvert}\leq d.

=𝔼y𝔽2n[f(y+δ)f(y)]\displaystyle=\operatorname{\mathbb{E}}_{y\in\mathbb{F}_{2}^{n}}[f(y+\delta)\neq f(y)]
=Iδ[f]\displaystyle=\operatorname{I}_{\delta}[f]

Since any vector of Hamming weight at most dd can be represented as γ𝑆0\gamma\underset{S}{\otimes}0 for some set SS with |S|d\mathinner{\!\left\lvert S\right\rvert}\leq d and γ𝔽2S\gamma\in\mathbb{F}_{2}^{S}, the claim follows by RI(d,ϵ)RI(d,\epsilon). Thus ff also satisfies the Balanced Influences Property INF(d,ϵ)INF(d,\epsilon). ∎

Now we can cross over to more combinatorial properties.

Theorem 5.8.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Restriction Convolution Property RC(d,4ϵ)RC(d,4\epsilon) implies that Local Strong Regularity Property LSR(d,ϵ)LSR(d,\epsilon).

Proof.

Suppose f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Restriction Convolution Property RC(d,4ϵ)RC(d,4\epsilon). Fix u and vu\text{ and }v in the left part of the bipartite Cayley graph of ff such that 0<|uv|d0<\mathinner{\!\left\lvert u-v\right\rvert}\leq d. Let S[n]S\subseteq[n] with |S|=d\mathinner{\!\left\lvert S\right\rvert}=d be a set which contains all the indices on which uu and vv differ. Then,

||N(u)N(v)|2n14+f^(0)2|\displaystyle\mathinner{\!\left\lvert\frac{\mathinner{\!\left\lvert N(u)\cap N(v)\right\rvert}}{2^{n}}-\frac{1}{4}+\frac{\widehat{f}\left(0\right)}{2}\right\rvert} =|𝔼c𝔽2n(1f(u+c))(1f(v+c))414+f^(0)2|\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{c\in\mathbb{F}_{2}^{n}}\frac{(1-f(u+c))(1-f(v+c))}{4}-\frac{1}{4}+\frac{\widehat{f}\left(0\right)}{2}\right\rvert}
=14|2f^(0)(𝔼c𝔽2nf(u+c)+f(c+v))+𝔼c𝔽2nf(u+c)f(v+c)|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert 2\widehat{f}\left(0\right)-\left(\operatorname{\mathbb{E}}_{c\in\mathbb{F}_{2}^{n}}f(u+c)+f(c+v)\right)+\operatorname{\mathbb{E}}_{c\in\mathbb{F}_{2}^{n}}f(u+c)f(v+c)\right\rvert}
=14|𝔼c𝔽2nf(u+c)f(v+c)|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{c\in\mathbb{F}_{2}^{n}}f(u+c)f(v+c)\right\rvert}

where we use the definition f^(0)\widehat{f}\left(0\right) in the final line. Now write u=x𝑆zu=x\underset{S}{\otimes}z, v=y𝑆zv=y\underset{S}{\otimes}z, and c=w𝑆ac=w\underset{S}{\otimes}a. We then have

||N(u)N(v)|2n14+f^(0)2|\displaystyle\mathinner{\!\left\lvert\frac{\mathinner{\!\left\lvert N(u)\cap N(v)\right\rvert}}{2^{n}}-\frac{1}{4}+\frac{\widehat{f}\left(0\right)}{2}\right\rvert} =14|𝔼a𝔽2S¯𝔼w𝔽2Sf(x𝑆z+w𝑆a)f(y𝑆z+w𝑆a)|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{a\in\mathbb{F}_{2}^{\overline{S}}}\operatorname{\mathbb{E}}_{w\in\mathbb{F}_{2}^{S}}f(x\underset{S}{\otimes}z+w\underset{S}{\otimes}a)f(y\underset{S}{\otimes}z+w\underset{S}{\otimes}a)\right\rvert}
=14|𝔼w𝔽2S𝔼a𝔽2S¯f(9x+w)𝑆(z+a))f((y+w)𝑆(z+a))|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{w\in\mathbb{F}_{2}^{S}}\operatorname{\mathbb{E}}_{a\in\mathbb{F}_{2}^{\overline{S}}}f(9x+w)\underset{S}{\otimes}(z+a))f((y+w)\underset{S}{\otimes}(z+a))\right\rvert}
Noting that w+w=0w+w=0,
=14|𝔼w𝔽2S𝔼a𝔽2S¯f|S,a+zf|S,a+z(x+y)|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{w\in\mathbb{F}_{2}^{S}}\operatorname{\mathbb{E}}_{a\in\mathbb{F}_{2}^{\overline{S}}}f|_{S,a+z}*f|_{S,a+z}(x+y)\right\rvert}
=14|𝔼a𝔽2S¯f|S,af|S,a(x+y)|\displaystyle=\frac{1}{4}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{a^{\prime}\in\mathbb{F}_{2}^{\overline{S}}}f|_{S,a^{\prime}}*f|_{S,a^{\prime}}(x+y)\right\rvert}
ϵ\displaystyle\leq\epsilon

where we use RC(d,4ϵ)RC(d,4\epsilon) and the fact that uvu\neq v in the final line. Thus ff also satisfies the Local Strong Regularity Property LSR(d,ϵ)LSR(d,\epsilon). ∎

Theorem 5.9.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Balanced Influences Property INF(d,4ϵ)INF(d,4\epsilon) implies the Local Strong Regularity Property LSR(d,ϵ)LSR(d,\epsilon).

Proof.

Suppose f;𝔽2n{1,1}f;\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Balanced Influences Property INF(d,4ϵ)INF(d,4\epsilon). Fix u,vu,v in the left part of the bipartite Cayley graph of ff such that 0<|uv|d0<\mathinner{\!\left\lvert u-v\right\rvert}\leq d. Then,

||N(u)N(v)|2n14+f^(0)2|\displaystyle\mathinner{\!\left\lvert\frac{\mathinner{\!\left\lvert N(u)\cap N(v)\right\rvert}}{2^{n}}-\frac{1}{4}+\frac{\widehat{f}\left(0\right)}{2}\right\rvert} =|𝔼z𝔽2n(1f(u+z))(1f(v+z))414+f^(0)2|\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{n}}\frac{(1-f(u+z))(1-f(v+z))}{4}-\frac{1}{4}+\frac{\widehat{f}\left(0\right)}{2}\right\rvert}
=14(2f^(0)(𝔼z𝔽2nf(u+z)+f(z+z))+𝔼z𝔽2nf(u+z)f(v+z))\displaystyle=\frac{1}{4}\left(2\widehat{f}\left(0\right)-\left(\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{n}}f(u+z)+f(z+z)\right)+\operatorname{\mathbb{E}}_{z\in\mathbb{F}_{2}^{n}}f(u+z)f(v+z)\right)
=14ff(u+v)\displaystyle=\frac{1}{4}f*f(u+v)
ϵ\displaystyle\leq\epsilon

where we use Lemma (5.1) in the third line and INF(d,4ϵ)INF(d,4\epsilon) in the final line. It follows that ff also satisfies the Local Strong Regularity Property LSR(d,ϵ)LSR(d,\epsilon). ∎

For a,ba,b\in\mathbb{N}, let (a)b(a)_{b} denote the Falling Factorial defined by (a)b=a(a1)(ab+1)(a)_{b}=a(a-1)\dots(a-b+1). Recall that STS\hookrightarrow T is the set of injective functions from SS to TT. For a graph GG two vertices xV(G)x\in V(G) and yV(G)y\in V(G), let x𝐺yx\underset{G}{\sim}y denote the proposition that xx is adjacent to yy. If the graph is clear from context, we will simply write xyx\sim y.

Theorem 5.10.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Local Strong Regularity Property LSR(d,ϵp2e|D2|)LSR(d,\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}) implies the Degree-22 Homomorphisms Property DTE(d,ϵ)DTE(d,\epsilon) where D2D_{2} is the set of vertices of degree 22 in the right part of a bipartite graph GG..

Proof.

Fix a bipartite graph GG with ll vertices in its left part L(G)L(G), rr vertices in its right part R(G)R(G), and maximum degree 22 in R(G)R(G). Let D1,D2D_{1},D_{2} denote sets of vertices in R(G)R(G) of degree 11 and 22 respectively. Finally, for a vertex rr in R(G)R(G), define pr:={qdeg(r)=1pdeg(r)=2p_{r}\mathrel{\mathop{\ordinarycolon}}=\begin{cases}q&\deg(r)=1\\ p&\deg(r)=2\end{cases} where p=14f^(0)2p=\frac{1}{4}-\frac{\widehat{f}\left(0\right)}{2} and q=1f^(0)2q=\frac{1-\widehat{f}\left(0\right)}{2}.

Suppose that f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Local Strong Regularity Property LSR(d,ϵp2e|D2|)LSR(d,\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}). We begin by expanding the Degree-22 Homomorphisms Property (Property 7)

|bhomψ(G,BC(f))p|D2|q|D1||\displaystyle\mathinner{\!\left\lvert\operatorname{bhom}_{\psi}(G,BC(f))-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert} =|𝔼ϕ:R(G)𝔽2n(l,r)E(G)[ψ(l)ϕ(r)]p|D2|q|D1||\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(l,r)\in E(G)}[\psi(l)\sim\phi(r)]-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert}
=|𝔼ϕ:R(G)𝔽2nrR(G)lNG(r)[ψ(l)ϕ(r)]p|D2|q|D1||\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{r\in R(G)}\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert}

where we use the fact that GG is bipartite in the second line. We can now add prprp_{r}-p_{r} to each term in the product and then telescope as follows:

|bhomψ(G,BC(f))p|D2|q|D1||\displaystyle\mathinner{\!\left\lvert\operatorname{bhom}_{\psi}(G,BC(f))-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert} =|𝔼ϕ:R(G)𝔽2n(rR(G)((lNG(r)[ψ(l)ϕ(r)])pr)+pr)p|D2|q|D1||\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\left(\prod_{r\in R(G)}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)+p_{r}\right)-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert}
=|SR(G)𝔼ϕ:R(G)𝔽2n(rR(G)Spr)(rS((lNG(r)[ψ(l)ϕ(r)])pr))|\displaystyle=\mathinner{\!\left\lvert\sum_{\emptyset\neq S\subseteq R(G)}\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\left(\prod_{r\in R(G)\setminus S}p_{r}\right)\left(\prod_{r\in S}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)\right)\right\rvert}
SR(G)(rR(G)Spr)|𝔼ϕ:R(G)𝔽2nrS((lNG(r)[ψ(l)ϕ(r)])pr)|\displaystyle\leq\sum_{\emptyset\neq S\subseteq R(G)}\left(\prod_{r\in R(G)\setminus S}p_{r}\right)\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{r\in S}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)\right\rvert}

We now focus on an individual set SR(G)S\subseteq R(G) and its contribution to the sum:

XS:=|𝔼ϕ:R(G)𝔽2nrS((lNG(r)[ψ(l)ϕ(r)])pr)|X_{S}\mathrel{\mathop{\ordinarycolon}}=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{r\in S}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)\right\rvert}

We would like to exchange the expectation and the product over elements of SS. However, the expectation is over all injections not all functions. Thus we proceed as follows.

XS\displaystyle X_{S} =1(2n)s|ϕ:R(G)𝔽2nrS((lNG(r)[ψ(l)ϕ(r)])pr)|\displaystyle=\frac{1}{(2^{n})_{s}}\mathinner{\!\left\lvert\sum_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{r\in S}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)\right\rvert}
1(2n)s|ϕ:R(G)𝔽2nrS((lNG(r)[ψ(l)ϕ(r)])pr)|\displaystyle\leq\frac{1}{(2^{n})_{s}}\mathinner{\!\left\lvert\sum_{\phi\mathrel{\mathop{\ordinarycolon}}R(G)\to\mathbb{F}_{2}^{n}}\prod_{r\in S}\left(\left(\prod_{l\in N_{G}(r)}[\psi(l)\sim\phi(r)]\right)-p_{r}\right)\right\rvert}
=2ns(2n)si=1s|𝔼ϕ(ri)𝔽2n((lNG(ri)[ψ(l)ϕ(ri)])pr)|\displaystyle=\frac{2^{ns}}{(2^{n})_{s}}\prod_{i=1}^{s}\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi(r_{i})\in\mathbb{F}_{2}^{n}}\left(\left(\prod_{l\in N_{G}(r_{i})}[\psi(l)\sim\phi(r_{i})]\right)-p_{r}\right)\right\rvert}

If deg(ri)=1\deg(r_{i})=1, then

𝔼ϕ(ri)𝔽2n((lNG(ri)[ψ(l)ϕ(ri)])pr)\displaystyle\operatorname{\mathbb{E}}_{\phi(r_{i})\in\mathbb{F}_{2}^{n}}\left(\left(\prod_{l\in N_{G}(r_{i})}[\psi(l)\sim\phi(r_{i})]\right)-p_{r}\right) =𝔼ϕ(ri)𝔽2n[ψ(l)ϕ(ri)]q\displaystyle=\operatorname{\mathbb{E}}_{\phi(r_{i})\in\mathbb{F}_{2}^{n}}[\psi(l)\sim\phi(r_{i})]-q
=𝔼ϕ(ri)𝔽2n1f(ψ(l)+ϕ(r))21f^(0)2\displaystyle=\operatorname{\mathbb{E}}_{\phi(r_{i})\in\mathbb{F}_{2}^{n}}\dfrac{1-f(\psi(l)+\phi(r))}{2}-\frac{1-\widehat{f}\left(0\right)}{2}
=0\displaystyle=0

Thus, XSX_{S} is 0 if SS contains any vertices of degree 11. Assume then that every riSr_{i}\in S has exactly 22 neighbors. Since the neighbors of ϕ(ri)\phi(r_{i}) are fixed by ψ\psi, we may apply LSR(d,ϵp2e|D2|)LSR(d,\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}) to conclude that

|𝔼ϕ(ri)𝔽2n((lNG(ri)[ψ(l)ϕ(ri)])pri)|<ϵp2e|D2|.\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\phi(r_{i})\in\mathbb{F}_{2}^{n}}\left(\left(\prod_{l\in N_{G}(r_{i})}[\psi(l)\sim\phi(r_{i})]\right)-p_{r_{i}}\right)\right\rvert}<\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}.

Thus, if SS only contains vertices of degree 22,

XS\displaystyle X_{S} 2ns(2n)s(ϵp2e|D2|)|S|\displaystyle\leq\frac{2^{ns}}{(2^{n})_{s}}\left(\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}\right)^{\mathinner{\!\left\lvert S\right\rvert}}

We then wish to bound the first term in the product:

2ns(2n)s\displaystyle\frac{2^{ns}}{(2^{n})_{s}} =i=0s111i2n\displaystyle=\prod_{i=0}^{s-1}\frac{1}{1-\frac{i}{2^{n}}}
(1s2n)s\displaystyle\leq\left(1-\frac{s}{2^{n}}\right)^{-s}
exp(s22n)\displaystyle\leq\exp\left(\frac{s^{2}}{2^{n}}\right)
e\displaystyle\leq e

as |S||R|2n/2\mathinner{\!\left\lvert S\right\rvert}\leq\mathinner{\!\left\lvert R\right\rvert}\leq 2^{n/2}. Therefore,

|bhomψ(G,BC(f))p|D2|q|D1||\displaystyle\mathinner{\!\left\lvert\operatorname{bhom}_{\psi}(G,BC(f))-p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\right\rvert} SR(G)(rR(G)Spr)XS\displaystyle\leq\sum_{\emptyset\neq S\subseteq R(G)}\left(\prod_{r\in R(G)\setminus S}p_{r}\right)X_{S}
eSR(G)(rR(G)Spr)[SD1=](ϵp2e|D2|)|S|\displaystyle\leq e\sum_{\emptyset\neq S\subseteq R(G)}\left(\prod_{r\in R(G)\setminus S}p_{r}\right)[S\cap D_{1}=\emptyset]\left(\frac{\epsilon p}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}\right)^{\mathinner{\!\left\lvert S\right\rvert}}
=ep|D2|q|D1|SD2(ϵ2e|D2|)|S|\displaystyle=ep^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\sum_{\emptyset\subsetneq S\subseteq D_{2}}\left(\frac{\epsilon}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}\right)^{\mathinner{\!\left\lvert S\right\rvert}}
=ep|D2|q|D1|((1+ϵ2e|D2|)|D2|1)\displaystyle=ep^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\left(\left(1+\frac{\epsilon}{2e\mathinner{\!\left\lvert D_{2}\right\rvert}}\right)^{\mathinner{\!\left\lvert D_{2}\right\rvert}}-1\right)
ep|D2|q|D1|(eϵ2e1)\displaystyle\leq ep^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\left(e^{\frac{\epsilon}{2e}}-1\right) (5)
p|D2|q|D1|ϵ\displaystyle\leq p^{\mathinner{\!\left\lvert D_{2}\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}\right\rvert}}\epsilon (6)

where we use 1+xex1+x\leq e^{x} in line (5) and ex/21xe^{-x/2}\leq 1-x for x12x\leq\frac{1}{2} in line (6). Hence, ff also satisfies the Degree Two Homomorphisms Property DTH(d,ϵ)DTH(d,\epsilon). ∎

To prove our next theorem, we need a few additional definitions. The subdivision of a graph GG, denoted Sub(G)\operatorname{Sub}(G), is the bipartite graph (AB,E)(A\sqcup B,E) where A=V(G)A=V(G), B={r(u,v):(u,v)E(G)}B=\{r_{(u,v)}\mathrel{\mathop{\ordinarycolon}}(u,v)\in E(G)\}, and E=E1E2E=E_{1}\sqcup E_{2} where E1={(u,r(u,v)):(u,v)E(G)}E_{1}=\{(u,r_{(u,v)})\mathrel{\mathop{\ordinarycolon}}(u,v)\in E(G)\},E2={(v,r(u,v)):(u,v)E(G)}E_{2}=\{(v,r_{(u,v)})\mathrel{\mathop{\ordinarycolon}}(u,v)\in E(G)\}.

For two graphs HH and GG, let HGH\leq G denote the relation that HH is a subgraph of GG. For a subgraph HSub(G)H\leq\operatorname{Sub}(G), let D2(H)R(H)D_{2}(H)\subseteq R(H) denote the set of vertices in R(Sub(G))R(\operatorname{Sub}(G)) of degree 22 in GG. Similarly, let DA(H)R(H)D_{A}(H)\subseteq R(H) and DB(H)R(H)D_{B}(H)\subseteq R(H) denote the sets of vertices of degree 11 in HH whose incident edge is in E1E_{1} and E2E_{2} respectively.

We will need the following technical Lemma.

Lemma 5.11.

Then,

HHSub(G)x|D2(H)|y|DA(H)|z|DB(h)|=(1+x+y+z)|R(Sub(G))|\sum_{\begin{subarray}{c}H\\ H\leq\operatorname{Sub}(G)\end{subarray}}x^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}y^{\mathinner{\!\left\lvert D_{A}(H)\right\rvert}}z^{\mathinner{\!\left\lvert D_{B}(h)\right\rvert}}=(1+x+y+z)^{\mathinner{\!\left\lvert R(\operatorname{Sub}(G))\right\rvert}}
Proof.

We expand the RHS by the multinomial theorem as

(1+x+y+z)|R(G)|=S,T,U,VR(G)STUV=E(G)x|S|y|T|z|U|.(1+x+y+z)^{\mathinner{\!\left\lvert R(G^{\prime})\right\rvert}}=\sum_{\begin{subarray}{c}S,T,U,V\subseteq R(G^{\prime})\\ S\sqcup T\sqcup U\sqcup V=E(G)\end{subarray}}x^{\mathinner{\!\left\lvert S\right\rvert}}y^{\mathinner{\!\left\lvert T\right\rvert}}z^{\mathinner{\!\left\lvert U\right\rvert}}.

We claim that each term in the sum defines a unique subgraph HH of GG^{\prime}. Indeed, for a fixed partition of R(G)R(G^{\prime}) into sets S,T,U,VS,T,U,V, let SS be the set of vertices in R(H)R(H) of degree 22, let TT to be the set of vertices in R(H)R(H) of degree 11 incident to AA, let UU to be the set of vertices in R(H)R(H) of degree 11 incident to BB, and let VV to all remaining vertices. This mapping is bijective, and thus,

S,T,U,VR(G)STUV=E(G)x|S|y|T|z|U|=HGx|D2(H)|y|DA(H)|z|DB(H)|.\sum_{\begin{subarray}{c}S,T,U,V\subseteq R(G^{\prime})\\ S\sqcup T\sqcup U\sqcup V=E(G)\end{subarray}}x^{\mathinner{\!\left\lvert S\right\rvert}}y^{\mathinner{\!\left\lvert T\right\rvert}}z^{\mathinner{\!\left\lvert U\right\rvert}}=\sum_{H\leq G^{\prime}}x^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}y^{\mathinner{\!\left\lvert D_{A}(H)\right\rvert}}z^{\mathinner{\!\left\lvert D_{B}(H)\right\rvert}}.

Theorem 5.12.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Degree-22 Homomorphisms Property DTH(d,ϵ(52+f^(0))|E(G)|)DTH\left(d,\epsilon\left(\frac{5}{2}+\widehat{f}\left(0\right)\right)^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\right) implies the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon).

Proof.

Let GG be a fixed graph. Suppose f;𝔽2n{1,1}f;\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Degree-22 Homomorphisms Property DTH(d,ϵ(52+f^(0))|E(G)|)DTH\left(d,\epsilon\left(\frac{5}{2}+\widehat{f}\left(0\right)\right)^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\right). Let ϕ:V(G)Bd(0)\phi\mathrel{\mathop{\ordinarycolon}}V(G)\hookrightarrow B_{d}(0) be an injection of diameter at most dd. Recalling the definition of a rainbow embedding, we have

emϕ(G,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(G,RHG(d,f)) =𝔼χ:E(G)𝔽2n(u,v)E(G)[(u,v,χ((u,v)))E(RHG(d,f))]\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(u,v)\in E(G)}[(u,v,\chi((u,v)))\in E(RHG(d,f))]
=𝔼χ:E(G)𝔽2n(u,v)E(G)[f(ϕ(u)+χ((u,v)))=f(ϕ(v)+χ((u,v)))]\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(u,v)\in E(G)}[f(\phi(u)+\chi((u,v)))=f(\phi(v)+\chi((u,v)))]
Let U+(u,v)U^{+}(u,v) denote the event that f(ϕ(u)+χ((u,v)))=1f(\phi(u)+\chi((u,v)))=1 and U(u,v)U^{-}(u,v) denote the event that f(ϕ(u)+χ((u,v)))=1f(\phi(u)+\chi((u,v)))=-1. Define V+(u,v)V^{+}(u,v) and V(u,v)V^{-}(u,v) likewise.
emϕ(G,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(G,RHG(d,f)) =𝔼χ:E(G)𝔽2n(u,v)E(G)([U+(u,v)][V+(u,v)]+[U(u,v)][V(u,v)])\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(u,v)\in E(G)}\bigg{(}[U^{+}(u,v)][V^{+}(u,v)]+[U^{-}(u,v)][V^{-}(u,v)]\bigg{)}
=𝔼χ:E(G)𝔽2n(u,v)E(G)([U(u,v)][V(u,v)]+(1[U(u,v)])(1[V(u,v)]))\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(u,v)\in E(G)}\bigg{(}[U^{-}(u,v)][V^{-}(u,v)]+(1-[U^{-}(u,v)])(1-[V^{-}(u,v)])\bigg{)}
=𝔼χ:E(G)𝔽2n(u,v)E(G)(1[U(u,v)][V(u,v)]+2[U(u,v)][V(u,v)])\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(u,v)\in E(G)}\bigg{(}1-[U^{-}(u,v)]-[V^{-}(u,v)]+2[U^{-}(u,v)][V^{-}(u,v)]\bigg{)} (7)

We wish to lift the expression in line (7) to an equivalent expression in terms of a bipartite graph homomorphism of Sub(G)\operatorname{Sub}(G) into BC(f)BC(f). Observe that ϕ\phi is injective and its image has diameter at most kk, so ϕ\phi is a valid choice of the map for the left part of a bipartite graph homomorphism of Sub(G)\operatorname{Sub}(G). Similarly, χ\chi defines the right part of a bipartite graph homomorphism. In consequence, the event U(u,v)U^{-}(u,v), which holds when f(ϕ(u)+χ((u,v)))=1f(\phi(u)+\chi((u,v)))=-1, is precisely the condition that the edge (u,r(u,v))E(Sub(G))(u,r_{(u,v)})\in E(\operatorname{Sub}(G)) is sent to an edge (ϕ(u),χ(u,v))E(BC(f))(\phi(u),\chi(u,v))\in E(BC(f)). Similar statements hold for events U(u,v),V+(u,v),V(u,v)U^{-}(u,v),V^{+}(u,v),V^{-}(u,v).

Therefore, the above expression (7) is precisely the following:

emϕ(G,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(G,RHG(d,f)) =𝔼χ:E(G)𝔽2nr(u,v)R(Sub(G))(1[U(u,v)][V(u,v)]+2[U(u,v)][V(u,v)])\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{r_{(u,v)}\in R(\operatorname{Sub}(G))}\bigg{(}1-[U^{-}(u,v)]-[V^{-}(u,v)]+2[U^{-}(u,v)][V^{-}(u,v)]\bigg{)}

as each edge in GG now corresponds to a unique right vertex in Sub(G)\operatorname{Sub}(G). By Lemma 5.11, we can expand the product as follows:

emϕ(G,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(G,RHG(d,f)) =𝔼χ:E(G)𝔽2nH:HSub(G)2|D2(H)|(1)|D1(H)|(l,r)H[ϕ(l)BC(f)χ(r)]\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}2^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}(-1)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\prod_{(l,r)\in H}[\phi(l)\underset{BC(f)}{\sim}\chi(r)]
=H:HSub(G)2|D2(H)|(1)|D1(H)|𝔼χ:E(G)𝔽2n(l,r)H[ϕ(l)BC(f)χ(r)]\displaystyle=\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}2^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}(-1)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(l,r)\in H}[\phi(l)\underset{BC(f)}{\sim}\chi(r)] (8)

Define

X=|H:HSub(G)2|D2(H)|(1)|D1(H)|((𝔼χ:E(G)𝔽2n(l,r)H[ϕ(l)BC(f)χ(r)])p|D2(H)|q|D1(H)|)|X=\mathinner{\!\left\lvert\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}2^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}(-1)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\left(\left(\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(l,r)\in H}[\phi(l)\underset{BC(f)}{\sim}\chi(r)]\right)-p^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\right)\right\rvert}

Now will simplify XX in two ways. By Equation (8), we have

X\displaystyle X =|𝔼χ:E(G)𝔽2nH:HSub(G)2|D2(H)|(1)|D1(H)|(((l,r)H[ϕ(l)BC(f)χ(r)])p|D2(H)|q|D1(H)|)|\displaystyle=\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}2^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}(-1)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\left(\left(\prod_{(l,r)\in H}[\phi(l)\underset{BC(f)}{\sim}\chi(r)]\right)-p^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\right)\right\rvert}
=|emϕ(G,RHG(d,f))H:HSub(G)(2p)|D2(H)|(q)|D1(H)||\displaystyle=\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}(2p)^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}(-q)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\right\rvert}
=|emϕ(G,RHG(d,f))H:HSub(G)(12f^(0))|D2(H)|(12+f^(0)2)|D1(H)||\displaystyle=\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}\left(\frac{1}{2}-\widehat{f}\left(0\right)\right)^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}\left(-\frac{1}{2}+\frac{\widehat{f}\left(0\right)}{2}\right)^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\right\rvert}

We are now in a situation to apply Lemma 5.11 with x=12f^(0)x=\frac{1}{2}-\widehat{f}\left(0\right) and y=z=12+f^(0)2y=z=-\frac{1}{2}+\frac{\widehat{f}\left(0\right)}{2}.

=|emϕ(G,RHG(d,f))r(u,v)R(Sub(G))(1+2(12+f^(0)2)+12f^(0))|\displaystyle=\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-\prod_{r_{(u,v)}\in R(\operatorname{Sub}(G))}\left(1+2(-\frac{1}{2}+\frac{\widehat{f}\left(0\right)}{2})+\frac{1}{2}-\widehat{f}\left(0\right)\right)\right\rvert}
=|emϕ(G,RHG(d,f))2|E(G)||\displaystyle=\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-2^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\right\rvert}

where we use the fact that |R(Sub(G))|=|E(G)|\mathinner{\!\left\lvert R(\operatorname{Sub}(G))\right\rvert}=\mathinner{\!\left\lvert E(G)\right\rvert}. On the other hand, the triangle inequality gives us that

X\displaystyle X H:HSub(G)2|D2(H)||((𝔼χ:E(G)𝔽2n(l,r)H[ϕ(l)BC(f)χ(r)])p|D2(H)|q|D1(H)|)|\displaystyle\leq\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}2^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}\mathinner{\!\left\lvert\left(\left(\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(G)\hookrightarrow\mathbb{F}_{2}^{n}}\prod_{(l,r)\in H}[\phi(l)\underset{BC(f)}{\sim}\chi(r)]\right)-p^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}}\right)\right\rvert}
ϵ(5/2+f^(0))|E(G)|H:HSub(G)(2p)|D2(H)|q|D1(H)|\displaystyle\leq\epsilon(5/2+\widehat{f}\left(0\right))^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\sum_{H\mathrel{\mathop{\ordinarycolon}}H\leq\operatorname{Sub}(G)}(2p)^{\mathinner{\!\left\lvert D_{2}(H)\right\rvert}}q^{\mathinner{\!\left\lvert D_{1}(H)\right\rvert}} (9)
=ϵ(5/2+f^(0))|E(G)|(1+2q+2p)|E(G)|\displaystyle=\epsilon(5/2+\widehat{f}\left(0\right))^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\left(1+2q+2p\right)^{\mathinner{\!\left\lvert E(G)\right\rvert}} (10)
ϵ\displaystyle\leq\epsilon

where we use the fact that ff satisfies the Degree-22-Homomorphisms Property of rank dd with error bound ϵ(52+f^(0))|E(G)|\epsilon\left(\frac{5}{2}+\widehat{f}\left(0\right)\right)^{-\mathinner{\!\left\lvert E(G)\right\rvert}} in line (9) and Lemma 5.11 in line (10). Putting these two expansions of XX together, we find that

|emϕ(G,RHG(d,f))2|E(G)||<ϵ\mathinner{\!\left\lvert\operatorname{em}_{\phi}(G,RHG(d,f))-2^{-\mathinner{\!\left\lvert E(G)\right\rvert}}\right\rvert}<\epsilon

Thus ff also satisfies the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon). ∎

Theorem 5.13.

For any fixed d1d\geq 1 and ϵ>0\epsilon>0, the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon) implies the Balanced Influences Property INF(d,ϵ)INF(d,\epsilon).

Proof.

Suppose f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfies the Rainbow Embeddings Property RAIN(d,ϵ)RAIN(d,\epsilon). Fix uBd(n,0)u\in B_{d}(n,0), and let ϕ\phi be an injection from V(K2)V(K_{2}) to {u,0}\{u,0\}. By definition of rainbow embeddings, we have

emϕ(K2,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(K_{2},RHG(d,f)) =𝔼χ:E(K2)𝔽2n[(u,0,χ(e))E(RHG(d,f))]\displaystyle=\operatorname{\mathbb{E}}_{\chi\mathrel{\mathop{\ordinarycolon}}E(K_{2})\to\mathbb{F}_{2}^{n}}[(u,0,\chi(e))\in E(RHG(d,f))]
Setting x=χ(e)x=\chi(e) and applying the definition of the edge set of RHG(f)RHG(f)
emϕ(K2,RHG(d,f))\displaystyle\operatorname{em}_{\phi}(K_{2},RHG(d,f)) =𝔼x𝔽2n[f(u+x)=f(x)]\displaystyle=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}[f(u+x)=f(x)]
=x𝔽2n[f(x+u)=f(x)]\displaystyle=\operatorname{\mathbb{P}}_{x\in\mathbb{F}_{2}^{n}}\left[f(x+u)=f(x)\right]
=1Iu[f]\displaystyle=1-\operatorname{I}_{u}[f]

By Property RAIN(d,ϵ)RAIN(d,\epsilon), we have that emϕ(K2,RHG(d,f))12<ϵ{\operatorname{em}_{\phi}(K_{2},RHG(d,f))-\frac{1}{2}}<\epsilon. Hence, it follows that |Iu[f]12|<ϵ\mathinner{\!\left\lvert\operatorname{I}_{u}[f]-\frac{1}{2}\right\rvert}<\epsilon and ff also satisfies the Balanced Influences Property INF(d,ϵ)INF(d,\epsilon). ∎

6 Constructions of Quasirandom Functions

In this section, we construct a large class of functions which separate the Balanced Influences Property INF(d+1,ϵ)INF(d+1,\epsilon) from INF(d,ϵ)INF(d,\epsilon^{\prime}).

A [n,k,d][n,k,d]-binary linear code is a subspace 𝒞𝔽2n\mathcal{C}\subseteq\mathbb{F}_{2}^{n} of dimension kk such that minxy|xy|=d\min_{x\neq y}\mathinner{\!\left\lvert x-y\right\rvert}=d. An [n,k,d][n,k,d] binary linear code may be specified by its parity check matrix M𝔽2(nk)×nM\in\mathbb{F}_{2}^{(n-k)\times n} which has the property that x𝒞Mx=0x\in\mathcal{C}\iff Mx=0. Note that the parity check matrix has rank nkn-k. We will need the following elementary fact regarding linear codes of distance dd.

Lemma 6.1.

[[28], Proposition 2.3.5] If MM is the parity check matrix of a code with distance strictly greater than dd, then any nonzero xker(M)x\in\ker(M) must have |x|>d\mathinner{\!\left\lvert x\right\rvert}>d.

Example 6.2.

Let 𝒞\mathcal{C} be the [7,4][7,4]-Hamming code with parity check matrix HH

H=[01111000101101001101001011100001]H=\begin{bmatrix}0&1&1&1&1&0&0&0\\ 1&0&1&1&0&1&0&0\\ 1&1&0&1&0&0&1&0\\ 1&1&1&0&0&0&0&1\end{bmatrix}

One can check that no vector of Hamming weight 33 or less can be an element of the kernel, as every set of 33 columns has at least one row with an odd number of 11’s

The goal of this section is to demonstrate that a bent function composed with the parity check matrix of a distance dd linear code is a quasi-random of rank dd with error 0.

Proof of Theorem (3.3).

Let 𝒞\mathcal{C} be an [n,k,d][n,k,d] binary linear code such that nkn-k is even and nk+2n\geq k+2. Let H𝔽2(nk)×nH\in\mathbb{F}_{2}^{(n-k)\times n} be a parity check matrix for 𝒞\mathcal{C}. Let g:𝔽2nk{1,1}g\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n-k}\to\{1,-1\} be a bent function, and definef:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} by

f(x):=g(Hx).f(x)\mathrel{\mathop{\ordinarycolon}}=g(Hx).

We claim that

Iγ[f]={12γker(H)0γker(H)\operatorname{I}_{\gamma}[f]=\begin{cases}\frac{1}{2}&\gamma\notin\ker(H)\\ 0&\gamma\in\ker(H)\end{cases}

Indeed, by Lemma (5.1), we have

Iγ[f]\displaystyle\operatorname{I}_{\gamma}[f] =1212ff(γ)\displaystyle=\frac{1}{2}-\frac{1}{2}f*f(\gamma)
=1212𝔼δ𝔽2ng(Hδ)g(H(δ+γ))\displaystyle=\frac{1}{2}-\frac{1}{2}\operatorname{\mathbb{E}}_{\delta\in\mathbb{F}_{2}^{n}}g(H\delta)g(H(\delta+\gamma))
=12122rank(H)2n𝔼ηRange(H)2dim(ker(H))g(η)g(η+Hγ)\displaystyle=\frac{1}{2}-\frac{1}{2}\frac{2^{\operatorname{rank}(H)}}{2^{n}}\operatorname{\mathbb{E}}_{\eta\in\operatorname{Range}(H)}2^{\dim(\ker(H))}g(\eta)g(\eta+H\gamma)
=1212𝔼ηRange(H)g(η)g(η+Hγ)\displaystyle=\frac{1}{2}-\frac{1}{2}\operatorname{\mathbb{E}}_{\eta\in\operatorname{Range}(H)}g(\eta)g(\eta+H\gamma) (11)

where we use the Rank-Nullity Theorem in line (11). As the parity check matrix is a surjective linear map from 𝔽2n𝔽2nk\mathbb{F}_{2}^{n}\to\mathbb{F}_{2}^{n-k}, we have

Iγ[f]\displaystyle\operatorname{I}_{\gamma}[f] =1212𝔼η𝔽2nkg(η)g(η+Hγ)\displaystyle=\frac{1}{2}-\frac{1}{2}\operatorname{\mathbb{E}}_{\eta\in\mathbb{F}_{2}^{n-k}}g(\eta)g(\eta+H\gamma)
={12γker(H)0γker(H)\displaystyle=\begin{cases}\frac{1}{2}&\gamma\notin\ker(H)\\ 0&\gamma\in\ker(H)\end{cases} (12)

where we use Lemma (2.10) in line (12). Now we can apply Lemma (6.1) to conclude that if |γ|d\mathinner{\!\left\lvert\gamma\right\rvert}\leq d, γker(H)\gamma\notin\ker(H). It follows that Iγ[f]=12\operatorname{I}_{\gamma}[f]=\frac{1}{2} for every γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} with 0<|γ|d0<\mathinner{\!\left\lvert\gamma\right\rvert}\leq d.

All that remains is to show that |f^(0)|<12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}<\frac{1}{2}. To that end we observe

f^(0)=𝔼x𝔽2ng(Hx)=2dim(ker(H))2nk2n𝔼y𝔽2nkg(y)\widehat{f}\left(0\right)=\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}g(Hx)=\frac{2^{\dim(\ker(H))}2^{n-k}}{2^{n}}\operatorname{\mathbb{E}}_{y\in\mathbb{F}_{2}^{n-k}}g(y)

by the same reasoning as in line (11) above. Since gg is bent, it follows that

|f^(0)|=|g^(0)|=2nk2.\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}=\mathinner{\!\left\lvert\widehat{g}\left(0\right)\right\rvert}=2^{-\frac{n-k}{2}}.

As nk+2n\geq k+2, we conclude that |f^(0)|12\mathinner{\!\left\lvert\widehat{f}\left(0\right)\right\rvert}\leq\frac{1}{2} and INF(d,0)INF(d,0) holds for ff.

Similarly, as 𝒞\mathcal{C} has distance d+1d+1, there is some γ𝔽2n\gamma^{\prime}\in\mathbb{F}_{2}^{n} with Hamming weight d+1d+1 such that Hγ=0H\gamma^{\prime}=0. Hence, Iγ[f]=0\operatorname{I}_{\gamma^{\prime}}[f]=0 by equation (12) above. Thus INF(d+1,ϵ)INF(d+1,\epsilon) cannot hold for ff unless ϵ12\epsilon\geq\frac{1}{2}. ∎

Remark 6.3.

For rr even, let 𝒞\mathcal{C} be the Hamming code [2r,2rr1,3][2^{r},2^{r}-r-1,3], and let H𝔽2r×2r1H\in\mathbb{F}_{2}^{r\times 2^{r}-1} be its parity check matrix as in Example 6.2. Let IP:𝔽2r{1,1}IP\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{r}\to\{1,-1\} be the inner product function defined in Example (2.11) and define f(x):=IP(Hx)f(x)\mathrel{\mathop{\ordinarycolon}}=IP(Hx). Then, ff has the property that ff(x)={1x𝒞1x𝒞f*f(x)=\begin{cases}-1&x\in\mathcal{C}\\ 1&x\notin\mathcal{C}\end{cases}

7 Proofs of relations among extant Quasirandomness Theories for Boolean Functions

We will prove a series of lemmas which together separate and relate the classes of quasirandom boolean functions defined in section §4.

Lemma 7.1.

If f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} has the Balanced Influences property INF(d,ϵ/2)INF(d,\epsilon/2), then ff is (2d+ϵ,n)(\sqrt{2^{-d}+\epsilon},n) \mathbb{R}-Regular.

Proof.

By Theorem 5.2, if ff has the Balanced Influences Property INF(d,ϵ/2)INF(d,\epsilon/2), then ff has the Spectral Discrepancy Property SD(d,ϵ)SD(d,\epsilon). Fix γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} and let C(S,z)C(S,z) be a subcube of dimension ndn-d which contains γ\gamma. By SD(d,ϵ)SD(d,\epsilon),

f^(γ)2δC(S,z)f^(δ)22d+ϵ.\widehat{f}\left(\gamma\right)^{2}\leq\sum_{\delta\in C(S,z)}\widehat{f}\left(\delta\right)^{2}\leq 2^{-d}+\epsilon.

Therefore, |f^(γ)|2d+ϵ\mathinner{\!\left\lvert\widehat{f}\left(\gamma\right)\right\rvert}\leq\sqrt{2^{-d}+\epsilon} for every γ𝔽2n\gamma\in\mathbb{F}_{2}^{n}. ∎

Lemma 7.2.

For even nn, there is a function f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} which has INF(d,0)INF(d,0) for every dnd\leq n, but fU(3)=1\|f\|_{U(3)}=1.

Proof.

Consider the Inner Product function IP(x):𝔽2n{1,1}IP(x)\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} defined in Example 2.11. As shown in the example, IPIP is a bent function and therefore has the property INF(d,2n/2)INF(d,2^{-n/2}) for every 1dn1\leq d\leq n. However, IPIP has 𝔽2\mathbb{F}_{2}-Degree 22. Since gU(d+1)=1\|g\|_{U(d+1)}=1 if gg has 𝔽2\mathbb{F}_{2}-degree dd [27], we conclude that IPU(3)=1\|IP\|_{U(3)}=1. ∎

Lemma 7.3.

Let g:𝔽2n{1,1}g\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} be a boolean function. Let M𝔽2(n+1)×nM\in\mathbb{F}_{2}^{(n+1)\times n} be the projection matrix which sends x𝔽2n+1x\in\mathbb{F}_{2}^{n+1} to its first nn coordinates, and let w𝔽2n+1w\in\mathbb{F}_{2}^{n+1} be the vector with a single 11 in the n+1n+1st coordinate. Let f:𝔽2n+1{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n+1}\to\{1,-1\} be defined by f(x)=g(Mx)f(x)=g(Mx). If gg is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular, then

  • ff is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular

  • Iw[f]=0\operatorname{I}_{w}[f]=0.

Proof.

We first show that ff is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular. To that end, we have

fU(k)\displaystyle\|f\|_{U(k)} =(𝔼x𝔽2n𝔼N𝔽2n×kv𝔽2kf(x+Nv))2k\displaystyle=\left(\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\operatorname{\mathbb{E}}_{N\in\mathbb{F}_{2}^{n\times k}}\prod_{v\in\mathbb{F}_{2}^{k}}f(x+Nv)\right)^{2^{-k}}
=(𝔼x𝔽2n𝔼N𝔽2n×kv𝔽2kg(M(x+Nv)))2k\displaystyle=\left(\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\operatorname{\mathbb{E}}_{N\in\mathbb{F}_{2}^{n\times k}}\prod_{v\in\mathbb{F}_{2}^{k}}g(M(x+Nv))\right)^{2^{-k}}
=(𝔼x𝔽2n𝔼N𝔽2n×kv𝔽2kg(Mx+MNv))2k\displaystyle=\left(\operatorname{\mathbb{E}}_{x\in\mathbb{F}_{2}^{n}}\operatorname{\mathbb{E}}_{N\in\mathbb{F}_{2}^{n\times k}}\prod_{v\in\mathbb{F}_{2}^{k}}g(Mx+MNv)\right)^{2^{-k}}
=(2k+12(n1)(k+1)2n(k+1)𝔼y𝔽2n1𝔼P𝔽2n1×kv𝔽2kg(y+Pv))2k\displaystyle=\left(\frac{2^{k+1}2^{(n-1)(k+1)}}{2^{n(k+1)}}\operatorname{\mathbb{E}}_{y\in\mathbb{F}_{2}^{n-1}}\operatorname{\mathbb{E}}_{P\in\mathbb{F}_{2}^{n-1\times k}}\prod_{v\in\mathbb{F}_{2}^{k}}g(y+Pv)\right)^{2^{-k}} (13)
=gU(k)\displaystyle=\|g\|_{U(k)} (14)
ϵ\displaystyle\leq\epsilon (15)

where we use the fact that MM is a projection in line (13), and use our assumption on gg in line (14). Thus ff is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular.

For the second claim, we observe that f(x+w)=f(x)f(x+w)=f(x) for every xx. Therefore, Iw[f]=0\operatorname{I}_{w}[f]=0. It follows that ff cannot have INF(d,ϵ)INF(d,\epsilon) for any d1d\geq 1 and ϵ<12\epsilon<\frac{1}{2}. ∎

Now we can prove each of theorems relating our properties to extant theories.

Proof of Theorem (4.2).

We have three claims to prove. First, we consider the relationship between (ϵ,n)(\epsilon,n) Balanced Influences and (ϵ,1)(\epsilon,1) 𝔽2\mathbb{F}_{2}-Regularity. Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} satisfy INF(d,ϵ)INF(d,\epsilon). By Lemma 7.3, ff is (2d+ϵ,n)(\sqrt{2^{-d}+\epsilon},n) \mathbb{R}-regular. By Proposition 6.7 in O’Donnell’s book [20], (ϵ,1)(\epsilon,1) 𝔽2\mathbb{F}_{2}-Regularity is equivalent to (ϵ,n)(\epsilon,n) \mathbb{R}-Regularity. Thus, ff is (2d+ϵ,1)(\sqrt{2^{-d}+\epsilon},1) 𝔽2\mathbb{F}_{2}-Regular.

Now we show that (ϵ,k)(\epsilon,k) Balanced Influences is comparable with (ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regularity for d>1d>1 and any kk. First we show that Balanced Influences INF(d,ϵ)INF(d,\epsilon) cannot imply (ϵ,2)(\epsilon,2) 𝔽2\mathbb{F}_{2}-Regularity. Lemma 7.2 provides a bent function ff such that fU(3)=1\|f\|_{U(3)}=1. It follows that the class of bent functions is distinct from (ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regular functions for any d2d\geq 2 and ϵ<1\epsilon<1. Since every Bent function satisfies INF(k,0)INF(k,0) for any kk\in\mathbb{N} with 1kn1\leq k\leq n, it follows that INF(d,ϵ)INF(d,\epsilon) cannot imply (ϵ,2)(\epsilon,2) 𝔽2\mathbb{F}_{2}-Regularity.

Now we can show that (ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regularity cannot imply (ϵ,k)(\epsilon,k) Balanced Influences for any k1k\geq 1. Let g:𝔽2n{1,1}g\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} be quadratic residue function considered in Example 4.12 of [21]. For any ϵ>0\epsilon>0, there is nn sufficiently large such that gg is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular. By lemma 7.1 applied to gg, we find an f:𝔽2n+1{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n+1}\to\{1,-1\} which is (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regular yet there is a vector w𝔽2n+1w\in\mathbb{F}_{2}^{n+1} such that Iw[f]=0\operatorname{I}_{w}[f]=0. Thus, ff cannot have the Balanced Influences Property INF(k,ϵ)INF(k,\epsilon) for any k1k\geq 1 and ϵ<1\epsilon<1.

It follows that (ϵ,k)(\epsilon,k) 𝔽2\mathbb{F}_{2}-Regularity and Quasirandomness of rank dd with error ϵ\epsilon are incomparable for k2k\geq 2 and d1d\geq 1. ∎

Proof of Theorem 4.3.

We have two claims to show. First, we prove that (δ,k)(\delta,k) Balanced Influences implies (ϵ,n)(\epsilon,n) \mathbb{R}-Regularity. Lemma 7.1 implies that if f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} has INF(d,ϵ)INF(d,\epsilon), then ff is also (2d+ϵ,n)(\sqrt{2^{-d}+\epsilon},n) \mathbb{R}-Regular. Since (ϵ,k)(\epsilon,k) \mathbb{R}-Regularity implies (ϵ,k1)(\epsilon,k-1) \mathbb{R}-Regularity by definition, it follows that any f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} with (ϵ,d)(\epsilon,d) Balanced Influences also satisfies (ϵ,k)(\epsilon,k) \mathbb{R}-Regularity for any knk\leq n.

For the second claim, we must show that (ϵ,k)(\epsilon,k) \mathbb{R}-Regularity cannot imply (ϵ,d)(\epsilon,d) Balanced Influences for any knk\leq n, d1d\geq 1 or ϵ<1\epsilon<1. Consider the inner product function IP:𝔽22n{1,1}IP\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{2n}\to\{1,-1\} defined in Example 1. By applying Lemma 7.3 to IPIP, we find an f:𝔽22n+1{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{2n+1}\to\{1,-1\} which is (2n/2,n)(2^{-n/2},n) \mathbb{R}-regular and yet does not have INF(d,ϵ)INF(d,\epsilon) for any d1d\geq 1 and ϵ<12\epsilon<\frac{1}{2}. As (ϵ,n)(\epsilon,n) \mathbb{R}-regularity implies (ϵ,k)(\epsilon,k) \mathbb{R}-regularity for k<nk<n, it follows that (ϵ,k)(\epsilon,k) \mathbb{R}-regularity does not imply INF(d,ϵ)INF(d,\epsilon) for any k,d,ϵk,d,\epsilon. Thus (δ,k)(\delta,k) \mathbb{R}-Regularity cannot imply (ϵ,d)(\epsilon,d) Balanced Influences for any δ>0\delta>0 or knk\leq n. ∎

Proof of Theorem (4.6).

Assume ff satisfies SD(d,ϵe(d1)((δ/2)ln(2)))SD(d,\epsilon e^{(d-1)((\delta/2)-\ln(2))}). We want show that

Ii1δ[f]=γ𝔽2nγi=1(1δ)|γ|1f^(γ)2\operatorname{I}_{i}^{1-\delta}[f]=\sum_{\begin{subarray}{c}\gamma\in\mathbb{F}_{2}^{n}\\ \gamma_{i}=1\end{subarray}}(1-\delta)^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\widehat{f}\left(\gamma\right)^{2}

is at most ϵ\epsilon. We observe that the set of γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} with γi=1\gamma_{i}=1 is precisely the n1n-1-dimensional subcubes C({i},1)C(\{i\},1), and the same subcube may be divided into 2d12^{d-1} subcubes of dimension ndn-d follows. Pick a set SS of size dd such that {i}S[n]\{i\}\subset S\subset[n]. Then, C({i}¯,1)=z𝔽2Szi=1C(S,z)C(\overline{\{i\}},1)=\bigsqcup_{\begin{subarray}{c}z\in\mathbb{F}_{2}^{S}\\ z_{i}=1\end{subarray}}C(S,z). Therefore,

Ii1δ[f]\displaystyle\operatorname{I}_{i}^{1-\delta}[f] =γ𝔽2nγi=1(1δ)|γ|1f^(γ)2\displaystyle=\sum_{\begin{subarray}{c}\gamma\in\mathbb{F}_{2}^{n}\\ \gamma_{i}=1\end{subarray}}(1-\delta)^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\widehat{f}\left(\gamma\right)^{2}
=z𝔽2Szi=1γC(S,z)(1δ)|γ|1f^(γ)2\displaystyle=\sum_{\begin{subarray}{c}z\in\mathbb{F}_{2}^{S}\\ z_{i}=1\end{subarray}}\sum_{\gamma\in C(S,z)}(1-\delta)^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\widehat{f}\left(\gamma\right)^{2}
z𝔽2Szi=1(maxγC(S,z)(1δ)|γ|1)γC(S,z)f^(γ)2\displaystyle\leq\sum_{\begin{subarray}{c}z\in\mathbb{F}_{2}^{S}\\ z_{i}=1\end{subarray}}\left(\max_{\gamma\in C(S,z)}(1-\delta)^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\right)\sum_{\gamma\in C(S,z)}\widehat{f}\left(\gamma\right)^{2}
ϵe(d1)((δ/2)ln(2))z𝔽2Szi=1(maxγC(S,z)(1δ)|γ|1)\displaystyle\leq\epsilon e^{(d-1)((\delta/2)-\ln(2))}\sum_{\begin{subarray}{c}z\in\mathbb{F}_{2}^{S}\\ z_{i}=1\end{subarray}}\left(\max_{\gamma\in C(S,z)}(1-\delta)^{\mathinner{\!\left\lvert\gamma\right\rvert}-1}\right)

where we use SD(d,ϵe(d1)((δ/2)ln(2)))SD(d,\epsilon e^{(d-1)((\delta/2)-\ln(2))}) in the ultimate line. Now we can simplify the result further:

Ii1δ[f]\displaystyle\operatorname{I}_{i}^{1-\delta}[f] ϵe(d1)((δ/2)ln(2))z𝔽2Szi=1(1δ)|z|1\displaystyle\leq\epsilon e^{(d-1)((\delta/2)-\ln(2))}\sum_{\begin{subarray}{c}z\in\mathbb{F}_{2}^{S}\\ z_{i}=1\end{subarray}}(1-\delta)^{\mathinner{\!\left\lvert z\right\rvert}-1}
=ϵe(d1)((δ/2)ln(2))(j=0d1(d1j)(1δ)j)\displaystyle=\epsilon e^{(d-1)((\delta/2)-\ln(2))}\left(\sum_{j=0}^{d-1}\binom{d-1}{j}(1-\delta)^{j}\right)
=ϵe(d1)((δ/2)ln(2))(2δ)d1\displaystyle=\epsilon e^{(d-1)((\delta/2)-\ln(2))}(2-\delta)^{d-1}
=ϵe(d1)(δ/2)(1δ2)d1\displaystyle=\epsilon e^{(d-1)(\delta/2)}\left(1-\frac{\delta}{2}\right)^{d-1}
ϵ\displaystyle\leq\epsilon

where we use (1+x)ex(1+x)\leq e^{x} in the final line. Thus ff has (ϵ,δ)(\epsilon,\delta)-Small Stable Influences.

Conversely, one can easily verify that χ𝟏\chi_{\mathbf{1}} has ((1δ)n,δ)((1-\delta)^{n},\delta)-Small Stable Influences, but Iγ[χ𝟏]=1\operatorname{I}_{\gamma}[\chi_{\mathbf{1}}]=1 for every γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} with Hamming weight 11. Thus χ𝟏\chi_{\mathbf{1}} does not have INF(d,ϵ)INF(d,\epsilon) for any d1d\geq 1 unless ϵ=12\epsilon=\frac{1}{2}. ∎

The relationship between /2n\mathbb{Z}/2^{n}\mathbb{Z} Regularity and the other theories is more intricate than our other theories of quasi-randomness, largely due to the algebraic differences between /2n\mathbb{Z}/2^{n}\mathbb{Z} and 𝔽2n\mathbb{F}_{2}^{n}. As boolean functions in the sense of /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regularity are not functions on 𝔽2n\mathbb{F}_{2}^{n}, we have the following definition to transfer results between these two theories:

Definition 7.4.

Given z/2nz\in\mathbb{Z}/2^{n}\mathbb{Z}, let z𝔽2nz^{*}\in\mathbb{F}_{2}^{n} denote the vector such that

zi=aiz_{i}^{*}=a_{i}

where z=i=1nai2i1z=\sum_{i=1}^{n}a_{i}2^{i-1} is the binary expansion of zz.

Chung and Graham [[5], Prop. 6.2] prove the following result, translated into our notation:

Lemma 7.5.

[5] There is an absolute constant CC such that the function zχ𝟏(z)z\to\chi_{\mathbf{1}}(z^{*}) is /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regular with error bound C(2+22)n0.92nC\left(\dfrac{\sqrt{2+\sqrt{2}}}{2}\right)^{n}\approx 0.92^{n}.

As χ𝟏\chi_{\mathbf{1}} is a Fourier character, χ𝟏\chi_{\mathbf{1}} cannot be (ϵ,n)(\epsilon,n) \mathbb{R}-Regular for any ϵ<1\epsilon<1. Thus for any δ>0\delta>0, /2n\mathbb{Z}/2^{n}\mathbb{Z} Regularity with error bound δ\delta does not imply (ϵ,n)(\epsilon,n) \mathbb{R}-Regularity for any ϵ<1\epsilon<1. Here we extend their result to show that /2n\mathbb{Z}/2^{n}\mathbb{Z} Regularity with error bound δ\delta cannot even imply (ϵ,k)(\epsilon,k) \mathbb{R}-Regularity for a wide range of k<nk<n.

Proof of Theorem 4.4.

Set k=C0ln(ϵ)k=\lceil-C_{0}\ln(\epsilon)\rceil for some absolute constant C0C_{0} to be defined later. Define S={1,,nk}S=\{1,\dots,n-k\}. Define γ𝔽2n\gamma\in\mathbb{F}_{2}^{n} by γ:=𝟏𝑆0\gamma\mathrel{\mathop{\ordinarycolon}}=\mathbf{1}\underset{S}{\otimes}0 where 𝟏𝔽2S\mathbf{1}\in\mathbb{F}_{2}^{S} is the all-ones vector and 0𝔽2S¯0\in\mathbb{F}_{2}^{\overline{S}} is the zero vector. We will show that χγ\chi_{\gamma} is ϵ\epsilon /2n\mathbb{Z}/2^{n}\mathbb{Z}-Regular.

Define ωn:=exp(2πi2n)\omega_{n}\mathrel{\mathop{\ordinarycolon}}=\exp\left(\dfrac{2\pi i}{2^{n}}\right). Now let c/2n{0}c\in\mathbb{Z}/2^{n}\mathbb{Z}\setminus\{0\} be arbitrary, and via the Euclidean algorithm, write c=2ka+bc=2^{k}a+b where 0b<2k0\leq b<2^{k}. Then,

𝔼z/2nχγ(z)ωncz\displaystyle\operatorname{\mathbb{E}}_{z\in\mathbb{Z}/2^{n}\mathbb{Z}}\chi_{\gamma}(z^{*})\omega_{n}^{-cz} =𝔼0y<2nk𝔼0x<2kχγ(y𝑆x)ωn(2ka+b)(2nkx+y)\displaystyle=\operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\operatorname{\mathbb{E}}_{0\leq x<2^{k}}\chi_{\gamma}(y^{*}\underset{S}{\otimes}x^{*})\omega_{n}^{-(2^{k}a+b)(2^{n-k}x+y)}
We have χγ(y𝑆x)=χ𝟏(y)χ0(x)=χj(y)\chi_{\gamma}(y^{*}\underset{S}{\otimes}x^{*})=\chi_{\mathbf{1}}(y^{*})\chi_{0}(x^{*})=\chi_{j}(y^{*}) by definition of γ\gamma. Hence,
=𝔼0y<2nk𝔼0x<2kχ𝟏(y)ωn2nax2nkxb2kayby\displaystyle=\operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\operatorname{\mathbb{E}}_{0\leq x<2^{k}}\chi_{\mathbf{1}}(y^{*})\omega_{n}^{-2^{n}ax-2^{n-k}xb-2^{k}ay-by}
=𝔼0y<2nk𝔼0x<2kχ𝟏(y)ωn2nkxb2kayby\displaystyle=\operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\operatorname{\mathbb{E}}_{0\leq x<2^{k}}\chi_{\mathbf{1}}(y^{*})\omega_{n}^{-2^{n-k}xb-2^{k}ay-by}
=𝔼0y<2nkχ𝟏(y)ωn2kayby𝔼0x<2kωn2nkxb\displaystyle=\operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\chi_{\mathbf{1}}(y^{*})\omega_{n}^{-2^{k}ay-by}\operatorname{\mathbb{E}}_{0\leq x<2^{k}}\omega_{n}^{-2^{n-k}xb}
=𝔼0y<2nkχ𝟏(y)ωn2kayby𝔼0x<2kωkxb\displaystyle=\operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\chi_{\mathbf{1}}(y^{*})\omega_{n}^{-2^{k}ay-by}\operatorname{\mathbb{E}}_{0\leq x<2^{k}}\omega_{k}^{-xb}
={0b0𝔼0y<2nkχ𝟏(y)ωn2kayb=0\displaystyle=\begin{cases}0&b\neq 0\\ \operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\chi_{\mathbf{1}}(y^{*})\omega_{n}^{-2^{k}ay}&b=0\end{cases}
={0b0𝔼0y<2nkχ𝟏(y)ωnkayb=0\displaystyle=\begin{cases}0&b\neq 0\\ \operatorname{\mathbb{E}}_{0\leq y<2^{n-k}}\chi_{\mathbf{1}}(y^{*})\omega_{n-k}^{ay}&b=0\end{cases}

We may now apply Lemma 7.5 so that

|𝔼z/2nχγ(z)ωncz|\displaystyle\mathinner{\!\left\lvert\operatorname{\mathbb{E}}_{z\in\mathbb{Z}/2^{n}\mathbb{Z}}\chi_{\gamma}^{*}(z)\omega_{n}^{-cz}\right\rvert} C2+22k\displaystyle\leq C\frac{\sqrt{2+\sqrt{2}}}{2}^{k}
C(2+22)C0ln(ϵ)\displaystyle\leq C\left(\dfrac{\sqrt{2+\sqrt{2}}}{2}\right)^{-C_{0}\ln(\epsilon)}
=ϵ\displaystyle=\epsilon

where C0C_{0} is a sufficiently large absolute constant. Thus zχγ(z)z\to\chi_{\gamma}(z^{*}) is ϵ\epsilon-/2n\mathbb{Z}/2^{n}\mathbb{Z} Regular. However, |γ|=nk\mathinner{\!\left\lvert\gamma\right\rvert}=n-k, and so χγ\chi_{\gamma} cannot be (ϵ,nk+1)(\epsilon,n-k+1) \mathbb{R}-Regular for any ϵ<1\epsilon<1. Thus δ\delta-/2n\mathbb{Z}/2^{n}\mathbb{Z} Regularity does not imply (ϵ,nk)(\epsilon,n-k) \mathbb{R}-Regularity for any ϵ<1\epsilon<1. ∎

8 Problems and remarks

Our proof of Theorem (3.3) provides a large class of examples of functions which satisfy INF(d,0)INF(d,0) but not INF(d+1,ϵ)INF(d+1,\epsilon) for ϵ\epsilon small and any d1d\geq 1. Furthermore, these functions have the property that ff(x)f*f(x) is the indicator function for some binary linear code. Many questions remain, some of which we include here.

Question 8.1.

Let f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} be a boolean function such that

ff(x)=[x𝒞]f*f(x)=[x\in\mathcal{C}]

for some nonlinear binary code 𝒞𝔽2n\mathcal{C}\subseteq\mathbb{F}_{2}^{n} of distance dd. Do such functions exist, and if so, is it true that ff has INF(d,0)INF(d,0) but not INF(d+1,ϵ)INF(d+1,\epsilon) for ϵ<12\epsilon<\frac{1}{2}?

Question 8.2.

Is there a classification of functions f:𝔽2n{1,1}f\mathrel{\mathop{\ordinarycolon}}\mathbb{F}_{2}^{n}\to\{1,-1\} which satisfy

ff(x)=[x𝒞]f*f(x)=[x\in\mathcal{C}]

for some [n,k,d][n,k,d] binary linear code 𝒞𝔽2n\mathcal{C}\subseteq\mathbb{F}_{2}^{n}?

We remark that any progress on this question will lead towards a solution of the problem of enumerating bent functions.

There are several other interesting directions to consider.The relationship between our work and (ϵ,d)(\epsilon,d)-𝔽2\mathbb{F}_{2}-Regularity is summarized in Figure 6.

(ϵ,1)(\epsilon,1) 𝔽2\mathbb{F}_{2}-Regular(ϵ,2)(\epsilon,2) 𝔽2\mathbb{F}_{2}-Regular(ϵ,d)(\epsilon,d) 𝔽2\mathbb{F}_{2}-Regular(ϵ,1)(\epsilon,1)-Balanced Influences\vdots(ϵ,n)(\epsilon,n)-Balanced InfluencesBent[21, 22][21, 22][21, 22]Theorem 4.2Def.Def.Def.Theorem 4.2Theorem 4.2Theorem 4.2
Figure 6: The relationships between the properties in Theorem 3.2 and 𝔽2\mathbb{F}_{2}-Regularity. Each arrow is a strict implication. Each arrow which follows by definition has no label, and all other arrows have a label with a reference to the proof of the implication. The results of this paper are in bold blue text and dashed blue arrows. Incomparable properties are linked by red dotted lines.

One can observe that our quasirandom theorem takes a new direction off (ϵ,1)(\epsilon,1)-𝔽2\mathbb{F}_{2}-Regularity in the quasirandom hierarchy defined in [21]. One might ask if there is an analogue of these results for the iith level of the same hierarchy. As the Balanced Influences Property INF(n,0)INF(n,0) is equivalent to a function being bent, any analogue of our results for higher levels may provide a “higher order” analogue of bent functions. Such functions are likely to have very strong cryptographic properties and any constructions of them would be interesting in their own right.

Finally, the relationship between quasirandomness over 𝔽2n\mathbb{F}_{2}^{n} and over /2n\mathbb{Z}/2^{n}\mathbb{Z} seems to be of particular interest. We have the following conjecture, largely from numerical evidence:

Conjecture 8.3.

For any ϵ>0\epsilon>0, there is a k=k(ϵ)k=k(\epsilon) and a δ=δ(ϵ)>0\delta=\delta(\epsilon)>0 such that (δ,k)(\delta,k)-\mathbb{R}-regularity implies ϵ\epsilon-/2n\mathbb{Z}/2^{n}\mathbb{Z}-Regularity.

References

  • [1] F. R. Chung, R. L. Graham, and R. M. Wilson, “Quasi-random graphs,” Combinatorica, vol. 9, pp. 345–362, 12 1989.
  • [2] S. Griffiths, “Quasi-Random Oriented Graphs,” Journal of Graph Theory, vol. 74, pp. 198–209, oct 2013.
  • [3] J. N. Cooper, “Quasirandom permutations,” Journal of Combinatorial Theory, Series A, vol. 106, pp. 123–143, 2004.
  • [4] F. R. Chung and R. L. Graham, “Quasi-random tournaments,” Journal of Graph Theory, vol. 15, pp. 173–198, 6 1991.
  • [5] F. R. Chung and R. L. Graham, “Quasi-random subsets of n\mathbb{Z}_{n},” Journal of Combinatorial Theory Series A, vol. 61, pp. 64–86, 9 1992.
  • [6] J. Friedman and A. Wigderson, On the second eigenvalue of hypergraphs. Citeseer, 1989.
  • [7] Y. Kohayakawa, B. Nagle, V. Rödl, and M. Schacht, “Weak hypergraph regularity and linear hypergraphs,” Journal of Combinatorial Theory, Series B, vol. 100, pp. 151–160, 3 2010.
  • [8] J. Lenz and D. Mubayi, “Eigenvalues and linear quasirandom hypergraphs,” Forum of Mathematics, Sigma, vol. 3, p. 26, 1 2015.
  • [9] F. R. Chung and R. L. Graham, “Quasi‐random hypergraphs,” Random Structures and Algorithms, vol. 1, pp. 105–124, 1990.
  • [10] F. R. Chung, “Quasi-random classes of hypergraphs,” Random Structures and Algorithms, vol. 1, pp. 363–382, 12 1990.
  • [11] F. R. K. Chung and R. L. Graham, “Quasi-random set systems,” Journal of the American Mathematical Society, vol. 4, p. 151, 1 1991.
  • [12] F. R. K. Chung and R. L. Graham, “Cohomological aspects of hypergraphs,” 1992.
  • [13] P. Frankl and V. Rödl, “The uniformity lemma for hypergraphs,” Graphs and Combinatorics, vol. 8, no. 4, pp. 309–312, 1992.
  • [14] V. Rödl and M. Schacht, “Regular partitions of hypergraphs: Counting lemmas,” Combinatorics Probability and Computing, vol. 16, pp. 887–901, 11 2007.
  • [15] V. Rödl and M. Schacht, “Regular partitions of hypergraphs: Regularity lemmas,” Combinatorics Probability and Computing, vol. 16, pp. 833–885, 11 2007.
  • [16] B. Nagle, V. Rödl, and M. Schacht, “The counting lemma for regular k-uniform hypergraphs,” Random Structures and Algorithms, vol. 28, pp. 113–179, 3 2006.
  • [17] Y. Kohayakawa and V. Rödl, “Szemerédi’s regularity lemma and quasi-randomness,” Recent Advances in Algorithms and Combinatorics, pp. 289–351, 2003.
  • [18] W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs,” Combinatorics Probability and Computing, vol. 15, pp. 143–184, 1 2006.
  • [19] W. T. Gowers, “Hypergraph regularity and the multidimensional szemerédi theorem,” Annals of Mathematics, vol. 166, pp. 897–946, 2007.
  • [20] R. O’Donnell, Analysis of Boolean Functions. Cambridge University Press, 2014.
  • [21] D. Castro-Silva, “Quasirandomness in additive groups and hypergraphs,” 2021.
  • [22] F. R. Chung and P. Tetali, “Communication complexity and quasi randomness,” SIAM Journal on Discrete Mathematics, vol. 6, no. 1, pp. 110–123, 1993.
  • [23] R. Aharoni, M. DeVos, S. G. H. de la Maza, A. Montejano, and R. Šámal, “A rainbow version of mantel’s theorem,” arXiv preprint arXiv:1812.11872, 2018.
  • [24] N. Alon and T. Marshall, “Homomorphisms of edge-colored graphs and coxeter groups,” 1998.
  • [25] O. S. Rothaus, “On “bent” functions,” Journal of Combinatorial Theory, Series A, vol. 20, pp. 300–305, may 1976.
  • [26] R. Forrié, “The strict avalanche criterion: Spectral properties of boolean functions and an extended definition,” in Advances in Cryptology — CRYPTO’ 88 (S. Goldwasser, ed.), (New York, NY), pp. 450–468, Springer New York, 1990.
  • [27] H. Hatami, P. Hatami, and S. Lovett, “Higher-order Fourier Analysis and Applications,” Foundations and Trends® in Theoretical Computer Science, vol. 13, no. 4, pp. 247–448, 2019.
  • [28] V. Guruswami, A. Rudra, and M. Sudan, Essential Coding Theory. 2019.