This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quark spin-orbit correlations in the pion meson in light-cone quark model

Chentao Tan School of Physics, Southeast University, Nanjing 211189, China    Zhun Lu [email protected] School of Physics, Southeast University, Nanjing 211189, China
Abstract

We study the correlation between the quark spin and orbital angular momentum inside the pion meson. Similar to the case inside the nucleon, the longitudinal spin-orbit correlation Czq/πC_{z}^{q/\pi} in pion meson can be expressed in terms of the corresponding generalized parton distributions (GPDs) and generalized transverse momentum distributions (GTMDs). This provides new information about the spin structure of the pion. Using the wavefunctions of the pion in the light-cone quark model and the overlap representation for GPDs and GTMDs, we present the analytical results for the quark longitudinal spin-orbit correlation. We find that the GPD approach and the GTMD approach lead to the same results. The numerical results is also obtained, showing that the correlation in pion is anti-aligned. In addition, we compare Czq/πC_{z}^{q/\pi} from the GPD approach and the GTMD approach, with xx and the transverse momentum kTk_{T} unintegrated.

I Introduction

Understanding the spin content of hadrons has been recognized as one of the main goals in hadronic physics Jaffe:1989jz ; Ji:1996ek ; Leader:2013jra . Particularly, the correlations between the parton/hadron spin and the orbital motion of partons inside hadron can bring much broader contents to the spin and partonic structure of hadrons. For example, the correlation between the transverse spin of the nucleon and the parton transverse momentum leads to the a novel distribution called as Sivers function Sivers:1989cc ; Sivers:1990fh ; Brodsky:2002cx , which is the asymmetric distribution of the unpolarized parton in the transversely polarized nucleon. Recently, the parton longitudinal spin-orbit correlation Lorce:2014mxa , sketched by LzaSza\langle L_{z}^{a}S_{z}^{a}\rangle, has also received a lot of attentions. It describes the difference between the right-handed and left-hand quark contributions to the quark longitudinal orbital angular momentum (OAM), and provides a new piece of independent information about the longitudinal spin structure of hadrons. Another advantage of the parton longitudinal spin-orbit correlation is that this correlation is invariant under the parity transformation.

In Ref. Lorce:2014mxa , the parton spin-orbit correlation in the nucleon has been studied in details. In particularly, a local gauge-invariant operator definition for the longitudinal spin-orbit correlation is reported, and the quantitative relations between the quark spin-orbit correlation and the moments of the twist-2 or twist-3 (GPDs are provided. In this way, the spin-orbit correlation can be accessed through measurable observables. These extend the previous study Lorce:2011kd that the information of spin-orbit correlations can be deduced from the GTMDs Meissner:2008ay ; Meissner:2009ww ; Lorce:2013pza , which are difficult to measure experimentally so far.

In this work, we study the correlation between the longitudinal spin and the quark orbital angular momentum of valence quarks inside the pion. As the pion meson is a spin-0 hadron, the knowledge of its spin structure in terms of polarized partons is less known and seldom investigated. Fortunately, the parton longitudinal spin-orbit correlation does not require polarization of a hadron. Therefore, in principle one can explore this effect inside spin-0 hadron such as pion meson. For this purpose we apply a light-cone quark model to provide relations for the spin-orbit correlation of pion meson in terms of pion GPDs or GTMDs. It is also interesting to verify if the GPD approach and the GTMD approach can lead to the same result for spin-orbit correlation. We will clarify this result for the pion as a case study.

The rest of the paper is organized as follows: In section II, we define the quark spin-orbit correlation operator in the pion and express the corresponding expectation value in terms of form factors. In section III, we relate the form factors with specific moments of the pion GPDs/GTMDs. In section IV, we provide the analytic results as well as the numerical results of the correlation using the pion wavefunctions deduced from a light-cone quark model. We summarize the paper in Section V.

II Definition

The gauge-invariant light-front operator for quark longitudinal OAM has attracted a lot of interests because it enters the Ji decomposition of the longitudinal spin of the nucleon Ji:1996ek

J^z=S^zq+L^zq+J^zG.\displaystyle\hat{J}_{z}=\hat{S}^{q}_{z}+\hat{L}^{q}_{z}+\hat{J}^{G}_{z}. (1)

Here, L^zq\hat{L}^{q}_{z} represents the operator for quark longitudinal OAM, which is the sum of the left- and right-handed quark contributions:

L^zq\displaystyle\hat{L}^{q}_{z} =d3x12ψ¯γ+(𝒙×i𝑫)zψ=L^zqR+L^zqL,\displaystyle=\int d^{3}x\frac{1}{2}\bar{\psi}\gamma^{+}(\bm{x}\times i\overleftrightarrow{\bm{D}})_{z}\psi=\hat{L}^{q_{R}}_{z}+\hat{L}^{q_{L}}_{z}, (2)

where 𝑫=2ig𝑨\overleftrightarrow{\bm{D}}=\overleftarrow{\bm{\partial}}-\overrightarrow{\bm{\partial}}-2ig\bm{A} is the symmetric covariant derivative, ψR,L=12(I±γ5)ψ\psi_{R,L}=\frac{1}{2}(I\pm\gamma_{5})\psi, a±=12(a0±a3)a^{\pm}=\frac{1}{\sqrt{2}}(a^{0}\pm a^{3}) with aa denoting a generic four-vector, d3x=dxd2xd^{3}x=dx^{-}d^{2}x_{\perp}. However, the complete characterization of the spin structure also requires the knowledge of quark spin-orbit correlations. Particularly, the gauge-invariant longitudinal spin-orbital correlation describes the difference between these left- and right-handed quark contributions Lorce:2014mxa :

C^zq\displaystyle\hat{C}_{z}^{q} =d3x12ψ¯γ+γ5(𝒙×i𝑫)zψ=L^zqRL^zqL.\displaystyle=\int d^{3}x\frac{1}{2}\bar{\psi}\gamma^{+}\gamma_{5}(\bm{x}\times i\overleftrightarrow{\bm{D}})_{z}\psi=\hat{L}^{q_{R}}_{z}-\hat{L}^{q_{L}}_{z}. (3)

This kind of quark spin-orbit correlation inside the spin-1/2 hadron (the nucleon) was studied in Ref. Lorce:2014mxa in details, but has not been investigated in the case of the spin-0 hadron, such as pion meson. Thus, the study of this effect inside the pion meson will provide unique information on the longitudinal-spin of the quark and orbital motion of quarks inside a spin-0 hadron, which has seldom been explored so far.

The matrix elements of the operator in Eq. (3) can be parameterized in terms of form factors. To do this one can starts from the parametrization of the matrix elements of the energy momentum tensor T^qμν\hat{T}_{q}^{\mu\nu}, since the quark OAM operator can also be expressed in terms of T^q+i\hat{T}_{q}^{+i}

L^zq=d3x(x1T^q+2x2T^q+1),\displaystyle\hat{L}^{q}_{z}=\int d^{3}x(x^{1}\hat{T}_{q}^{+2}-x^{2}\hat{T}_{q}^{+1}), (4)

with T^μν\hat{T}^{\mu\nu} has the form Leader:2013jra

T^qμν\displaystyle\hat{T}_{q}^{\mu\nu} =12ψ¯γμiDνψ\displaystyle=\frac{1}{2}\bar{\psi}\gamma^{\mu}i\overleftrightarrow{D}^{\nu}\psi (5)
=T^qRμν+T^qLμν,\displaystyle=\hat{T}^{\mu\nu}_{q_{R}}+\hat{T}^{\mu\nu}_{q_{L}}, (6)

where T^qR,Lμν=12ψ¯R,LγμiDνψR,L\hat{T}^{\mu\nu}_{q_{R,L}}=\frac{1}{2}\bar{\psi}_{R,L}\gamma^{\mu}i\overleftrightarrow{D}^{\nu}\psi_{R,L}. Spin-0 hadrons such as the pion meson whose quark energy momentum tensor has been studied can be parameterized in terms of three form factorsTanaka:2018wea ; Freese:2019bhb ; Polyakov:2018zvc ; Krutov:2020ewr

p|T^qμν(0)|p=2PμPνAq(t)+12(ΔμΔνgμνΔ2)Dq(t)+2Mπ2gμνc¯q(t),\displaystyle\langle{p^{\prime}}|\hat{T}^{\mu\nu}_{q}(0)|p\rangle=2P^{\mu}P^{\nu}A_{q}(t)+\frac{1}{2}(\Delta^{\mu}\Delta^{\nu}-g^{\mu\nu}\Delta^{2})D_{q}(t)+2M_{\pi}^{2}g^{\mu\nu}\bar{c}_{q}(t), (7)

where MπM_{\pi} is the pion mass, P=p+p2P=\frac{p^{\prime}+p}{2} is the average four-momentum, and t=Δ2t=\Delta^{2} is the square of the four-momentum transfer Δ=pp\Delta=p^{\prime}-p. Substituting Eq. (7) into Eq. (4), one finds that LqL_{q}, the OAM of quarks inside the pion, is actually zero.

Similarly, one can also write the quark spin-orbit correlation operator as Lorce:2014mxa

C^zq=d3x(x1T^q5+2x2T^q5+1),\displaystyle\hat{C}^{q}_{z}=\int d^{3}x(x^{1}\hat{T}_{q5}^{+2}-x^{2}\hat{T}_{q5}^{+1}), (8)

where T^q5μν\hat{T}_{q5}^{\mu\nu} is the parity-odd partner of the quark energy-momentum tensor operator and has the form

T^q5μν\displaystyle\hat{T}_{q5}^{\mu\nu} =12ψ¯γμγ5iDνψ\displaystyle=\frac{1}{2}\bar{\psi}\gamma^{\mu}\gamma_{5}i\overleftrightarrow{D}^{\nu}\psi (9)
=T^qRμνT^qLμν.\displaystyle=\hat{T}^{\mu\nu}_{q_{R}}-\hat{T}^{\mu\nu}_{q_{L}}. (10)

The non-forward matrix element of the parity-odd operator T^q5μν\hat{T}_{q5}^{\mu\nu} sandwiched by two pion states can be parameterized in terms of two form factors Lorce:2014mxa  111A~\tilde{A} does not appears here since A~\tilde{A} is the hadron-spin dependent form factor, while pion is spin-0.

p|T^q5μν(0)|p=P[μiϵν]+ΔP2P+(C~q(t)2F~q(t))+iϵμνΔPF~q(t)+𝒪(Δ2),\displaystyle\langle{p^{\prime}}|\hat{T}^{\mu\nu}_{q5}(0)|p\rangle=-{P^{[\mu}i\epsilon^{\nu]+\Delta P}\over 2P^{+}}(\tilde{C}_{q}(t)-2\tilde{F}_{q}(t))+i\epsilon^{\mu\nu\Delta P}\tilde{F}_{q}(t)+\mathcal{O}(\Delta^{2}), (11)

where ϵμναβ\epsilon^{\mu\nu\alpha\beta} is a totally antisymmetric tensor, with ϵ+12=1\epsilon^{+-12}=1.

Substituting Eq. (11) into the matrix element of Eq. (8) and working with 𝑷=𝟎\bm{P}_{\perp}=\bm{0}_{\perp}, which is the case of the light-cone frame:

Czq/πp|C^zq|pp|p=C~q(0).\displaystyle C^{q/\pi}_{z}\equiv\frac{\langle{p}|\hat{C}^{q}_{z}|p\rangle}{{\langle{p}|p\rangle}}=\tilde{C}_{q}(0). (12)

Here, a covariant normalization of pion states has been used: p|p=2p0(2π)3δ3(𝒑𝒑)\langle{p}^{\prime}|p\rangle=2p^{0}(2\pi)^{3}\delta^{3}(\bm{p}^{\prime}-\bm{p}). Therefore, in order to obtain the correlation in the pion meson, one only needs to measure the form factor C~q(t)\tilde{C}_{q}(t).

III connection between spin-orbit correlation in the pion and GPDs/GTMDs

As in the case of energy-momentum tensor, there is no fundamental probe that can couple to T^q5μν\hat{T}^{\mu\nu}_{q5}. Therefore, we will re-represent T^q5μν\hat{T}^{\mu\nu}_{q5} by relating the corresponding form factors to the specific moments of the GPDs or GTMDs. The relation can be obtained using the QCD identity

ψ¯γ[μγ5iDν]ψ=2mψ¯iσμνγ5ψϵμναβα(ψ¯γβψ),\displaystyle\bar{\psi}\gamma^{[\mu}\gamma_{5}i\overleftrightarrow{D}^{\nu]}\psi=2m\bar{\psi}i\sigma^{\mu\nu}\gamma_{5}\psi-\epsilon^{\mu\nu\alpha\beta}\partial_{\alpha}(\bar{\psi}\gamma_{\beta}\psi)\,, (13)

where mm is the quark mass. Taking the non-forward matrix elements of both sides in the above equation, the left-hand side corresponds to the spin-orbit correlation, while we finds for the right side:

p|ψ¯γμψ|p=ΓqVμ\displaystyle\langle{p^{\prime}}|\bar{\psi}\gamma^{\mu}\psi|p\rangle=\Gamma^{\mu}_{qV} (14)
p|ψ¯iσμνγ5ψ|p=ΓqTμν\displaystyle\langle{p^{\prime}}|\bar{\psi}i\sigma^{\mu\nu}\gamma_{5}\psi|p\rangle=\Gamma^{\mu\nu}_{qT} (15)

with

ΓqVμ=2PμF1q/π(x,ξ,t)𝑑x\displaystyle\Gamma^{\mu}_{qV}=2P^{\mu}\int F_{1}^{q/\pi}(x,\xi,t)dx (16)
ΓqTμν=2iϵμναβΔαPβMπH1q/π(x,ξ,t)𝑑x\displaystyle\Gamma^{\mu\nu}_{qT}=\frac{2i\epsilon^{\mu\nu\alpha\beta}\Delta_{\alpha}P_{\beta}}{M_{\pi}}\int H_{1}^{q/\pi}(x,\xi,t)dx (17)

where ξ=Δ+/2P+\xi=-\Delta^{+}/2P^{+} is the skewness variable, and F1q/π(x,ξ,t),H1q/π(x,ξ,t)F_{1}^{q/\pi}(x,\xi,t),H_{1}^{q/\pi}(x,\xi,t) are the twist-2 GPDs Meissner:2008ay ; Burkardt:2007xm of the pion parameterizing the non-local axial-vector and tensor light-front quark correlators, respectively

12dz2πeixP+zp|ψ¯(z2)γ+ψ(z2)|p=F1q/π(x,ξ,t)\displaystyle{1\over 2}\int{dz^{-}\over 2\pi}e^{ixP^{+}z^{-}}\langle p^{\prime}|\bar{\psi}\left(-{z^{-}\over 2}\right)\gamma^{+}{\psi}\left({z^{-}\over 2}\right)|p\rangle=F_{1}^{q/\pi}(x,\xi,t) (18)
12dz2πeixP+zp|ψ¯(z2)iσj+γ5ψ(z2)|p=iϵij𝚫iMπH1q/π(x,ξ,t)\displaystyle{1\over 2}\int{dz^{-}\over 2\pi}e^{ixP^{+}z^{-}}\langle p^{\prime}|\bar{\psi}\left(-{z^{-}\over 2}\right)i\sigma^{j+}\gamma_{5}{\psi}\left({z^{-}\over 2}\right)|p\rangle=-\frac{i\epsilon_{\perp}^{ij}\bm{\Delta}_{\perp}^{i}}{M_{\pi}}H_{1}^{q/\pi}(x,\xi,t) (19)

Therefore, the spin-orbit correlation can be determined by the combination of the moments of F1q/π(x,ξ,t)F_{1}^{q/\pi}(x,\xi,t) and H1q/π(x,ξ,t)H_{1}^{q/\pi}(x,\xi,t)

C~q/π(t)=𝑑x(mMπH1q/π(x,ξ,t)12F1q/π(x,ξ,t)),\displaystyle\tilde{C}^{q/\pi}(t)=\int dx\left(\frac{m}{M_{\pi}}H^{q/\pi}_{1}(x,\xi,t)-\frac{1}{2}F^{q/\pi}_{1}(x,\xi,t)\right), (20)

then the expectation value of quark spin-orbit correlation operator is given

Czq/π=𝑑x(mqMπH1q/π(x,0,0)12F1q/π(x,0,0))\displaystyle C^{q/\pi}_{z}=\int dx\left(\frac{m_{q}}{M_{\pi}}H^{q/\pi}_{1}(x,0,0)-\frac{1}{2}F_{1}^{q/\pi}(x,0,0)\right) (21)

where ξ,t=0\xi,t=0. A comparison can be made with the correlation in the nucleon Lorce:2014mxa

Czq/n=12𝑑xxH~q(x,0,0)12(F1q/n(0)m2MH1q/n(0)),\displaystyle C^{q/n}_{z}=\frac{1}{2}\int dxx\tilde{H}_{q}(x,0,0)-\frac{1}{2}\left(F^{q/n}_{1}(0)-\frac{m}{2M}H_{1}^{q/n}(0)\right), (22)

where the superscript q/nq/n represents the quark flavor qq in nucleon nn, H~(x,ξ,t)\tilde{H}(x,\xi,t) is helicity-fip GPD, F1q/n(t)F^{q/n}_{1}(t) is the Dirac form factor, and H1q/n(t)H^{q/n}_{1}(t) is a tensor form factor. In Ref. Lorce:2014mxa , in order to estimate Czq/nC^{q/n}_{z}, the light-front constituent quark model and the light-front chiral quark-soliton model Lorce:2011dv have been applied to calculate the moments of H~q(x,0,0)\tilde{H}_{q}(x,0,0), the results are compared with experimental measurements Leader:2010rb and lattice calculation LHPC:2010jcs . The main difference between the pion case and the nucleon case is that the helicity-flip H~\tilde{H} also contributes to the spin-orbit correlation of the nucleon. This is because the H~\tilde{H} does not exist in the case of the pion meson.

As derived in Refs. Lorce:2011kd ; Chakrabarti:2016yuw ; Kaur:2019kpi , the spin-orbit correlations can be also expressed in terms of GTMDs. Particularly, CzC_{z} is connected to the GTMD G1,1G_{1,1} by the relation

Czq/π=𝑑xd2𝒌𝒌2M2G1,1q/π(x,0,𝒌2,0,0).\displaystyle C^{q/\pi}_{z}=\int dxd^{2}\bm{k}_{\perp}\frac{\bm{k}^{2}_{\perp}}{M^{2}}G_{1,1}^{q/\pi}(x,0,\bm{k}^{2}_{\perp},0,0). (23)

where G1,1π(x,ξ,𝒌2,𝒌𝚫,𝚫2)G_{1,1}^{\pi}(x,\xi,\bm{k}^{2}_{\perp},\bm{k}_{\perp}\cdot\bm{\Delta}_{\perp},\bm{\Delta}^{2}_{\perp}) is defined as

W[γ+γ5]\displaystyle W^{[\gamma^{+}\gamma_{5}]} =iεij𝒌i𝚫jMπ2G1,1π,\displaystyle=-\frac{i\varepsilon_{\perp}^{ij}\bm{k}_{\perp}^{i}\bm{\Delta}_{\perp}^{j}}{M_{\pi}^{2}}\,G_{1,1}^{\pi}\,, (24)

with the notation

WΓ(x,P,𝒌,Δ)=12Tr[W(P,x,𝒌,Δ)Γ]\displaystyle W^{\Gamma}(x,P,\bm{k}_{\perp},\Delta)={1\over 2}\textrm{Tr}[W(P,x,\bm{k}_{\perp},\Delta)\Gamma]
=dzd2𝒛2(2π)3eikzp|ψ¯(12z)Γ𝒲ψ(12z)|p|z+=0.\displaystyle\qquad=\int\frac{dz^{-}\,d^{2}\bm{z}_{\perp}}{2(2\pi)^{3}}\,e^{ik\cdot z}\,\langle p^{\prime}\,|\,\bar{\psi}(-\tfrac{1}{2}z)\,\Gamma\,{\cal W}\,\psi(\tfrac{1}{2}z)\,|\,p\rangle\,\Big{|}_{z^{+}=0}\,. (25)

where W(P,x,𝒌,Δ)W(P,x,\bm{k}_{\perp},\Delta) is the generalized parton correlation function (GPCF) of the pion. For completeness we also write down the decomposition of the GPCF to other twist-2 GTMDs:

W[γ+]\displaystyle W^{[\gamma^{+}]} =F1,1,\displaystyle=F_{1,1}\,,\vphantom{\frac{1}{1}} (26)
W[iσj+γ5]\displaystyle W^{[i\sigma^{j+}\gamma_{5}]} =iεij𝒌iMπH1,1iεij𝚫iMπH1,2,\displaystyle=-\frac{i\varepsilon_{\perp}^{ij}\bm{k}_{\perp}^{i}}{M_{\pi}}\,H_{1,1}-\frac{i\varepsilon_{\perp}^{ij}\bm{\Delta}_{\perp}^{i}}{M_{\pi}}\,H_{1,2}\,, (27)

Note that unlike F1F_{1} and H1H_{1} which are the GPD-limit of more general GTMDs by 𝒌\bm{k}_{\perp} integral, there is no corresponding GPD for the GTMD G1,1G_{1,1} since it is 𝒌\bm{k}_{\perp}-odd. Therefore, the relation Eq. (23) provides another expression for CzqC_{z}^{q} from a more general structure of the parton correlation.

IV Model results of the spin-orbit correlation of the pion meson

In the previous section, we present two different expressions for the quark spin-orbit correlation CzqC_{z}^{q} of the pion meson. One is in terms of GPDs (Eq. (21)), the other is in terms of GTMD (Eq. (23)). In this section, we will provide the model results for Czq/πC_{z}^{q/\pi} using these two relations. We note that in the case of nucleon, the light-front constituent quark model and the light-front chiral quark-soliton model Lorce:2011dv were applied to calculate the quark spin-orbit correlation numerically. Here, we will provide the analytic result as well numerical result for Czq/πC_{z}^{q/\pi} using a light-cone quark model for the pion meson. The light-cone formalism has been widely used in the parton distribution functions of nucleons and mesons Lepage:1979za ; Bacchetta:2008af , and the overlap representation has also been used to study various form factors of the nucleon Brodsky:2000ii and the pion Xiao:2003wf , anomalous magnetic moment of the nucleon Lu:2006kt as well as GPDs Brodsky:2000xy . The reliability of this model is beyond doubt, and the resulting predicted results agree well with the experiments.

In Ref. Ma:2018ysi , the light-cone quark model Xiao:2003wf was applied to calculate the GTMDs of the pion meson, within the overlap representation for the GPCFs. In this model, the light-cone wave function of the minimal Fock states ψ(x,𝒌,λq,λq¯)\psi(x,\bm{k}_{\perp},\lambda_{q},\lambda_{\bar{q}}) of these wave functions have been derived in Ref. Xiao:2003wf by considering the relativistic effect of quarks Melosh:1974cu ; Ma:1991xq :

ψ(x,𝒌,+,)\displaystyle\psi(x,\bm{k}_{\perp},+,-) =+mq2(mq2+𝒌2)ϕπ(lz=0),\displaystyle=+\frac{m_{q}}{\sqrt{2(m_{q}^{2}+\bm{k}^{2}_{\perp})}}\phi_{\pi}\quad(l^{z}=0),
ψ(x,𝒌,,+)\displaystyle\psi(x,\bm{k}_{\perp},-,+) =mq2(mq2+𝒌2)ϕπ(lz=0),\displaystyle=-\frac{m_{q}}{\sqrt{2(m_{q}^{2}+\bm{k}^{2}_{\perp})}}\phi_{\pi}\quad(l^{z}=0),
ψ(x,𝒌,+,+)\displaystyle\psi(x,\bm{k}_{\perp},+,+) =k1ik22(mq2+𝒌2)ϕπ(lz=1),\displaystyle=-\frac{k_{\perp 1}-ik_{\perp 2}}{\sqrt{2(m_{q}^{2}+\bm{k}^{2}_{\perp})}}\phi_{\pi}\quad(l^{z}=-1),
ψ(x,𝒌,,)\displaystyle\psi(x,\bm{k}_{\perp},-,-) =k1+ik22(mq2+𝒌2)ϕπ(lz=+1),\displaystyle=-\frac{k_{\perp 1}+ik_{\perp 2}}{\sqrt{2(m_{q}^{2}+\bm{k}^{2}_{\perp})}}\phi_{\pi}\quad(l^{z}=+1), (28)

where +,+,- denotes the helicity of the quark and antiquark, and

ϕπ(x,𝒌)=Aexp[18β2𝒌2+mq2x(1x)].\displaystyle\phi_{\pi}(x,\bm{k}_{\perp})=A\ exp[-\frac{1}{8\beta^{2}}\frac{\bm{k}_{\perp}^{2}+m_{q}^{2}}{x(1-x)}]. (29)

As shown in Ref. Xiao:2003wf , within the wave functions in Eq. (28), the light-cone model can describe the transition form factor of the pion meson fairly well.

In this work, we adopt the model results directly from Ref. Ma:2018ysi , in which F1,1F_{1,1}, H1,1H_{1,1}, H1,2H_{1,2} and G1,1G_{1,1} have the expressions:

F1,1q/π\displaystyle F_{1,1}^{q/\pi} =C(2𝒌2(1x)21ξ2/4𝚫22ξ(1x)1ξ2/4𝚫𝒌+2mq2)\displaystyle=C(2\bm{k}^{2}_{\perp}-\frac{(1-x)^{2}}{1-\xi^{2}/4}\frac{\bm{\Delta}^{2}_{\perp}}{2}-\frac{\xi(1-x)}{1-\xi^{2}/4}\bm{\Delta}_{\perp}\cdot\bm{k}_{\perp}+2m_{q}^{2}) (30)
×exp((2x(1+ξ2/4)ξ2)(𝒌2+mq2)+x(1x)2Δ2/2ξ(1x)2𝒌𝚫8β2(x2ξ2/4)(1x))\displaystyle\times exp(-\frac{(2x(1+\xi^{2}/4)-\xi^{2})(\bm{k}^{2}_{\perp}+m_{q}^{2})+x(1-x)^{2}\Delta^{2}_{\perp}/2-\xi(1-x)^{2}\bm{k}_{\perp}\cdot\bm{\Delta}_{\perp}}{8\beta^{2}(x^{2}-\xi^{2}/4)(1-x)}) (31)
G1,1q/π\displaystyle G_{1,1}^{q/\pi} =C2(1x)Mπ21ξ2/4exp((2x(1+ξ2/4)ξ2)(𝒌2+mq2)+x(1x)2𝚫2/2ξ(1x)2𝒌𝚫8β2(x2ξ2/4)(1x)),\displaystyle=-C{2(1-x)M_{\pi}^{2}\over 1-\xi^{2}/4}\exp\left((2x(1+\xi^{2}/4)-\xi^{2})(\bm{k}_{\perp}^{2}+m_{q}^{2})+x(1-x)^{2}\bm{\Delta}_{\perp}^{2}/2-\xi(1-x)^{2}\bm{k}_{\perp}\cdot\bm{\Delta}_{\perp}\over 8\beta^{2}(x^{2}-\xi^{2}/4)(1-x)\right), (32)
H1,1q/π\displaystyle H_{1,1}^{q/\pi} =0\displaystyle=0 (33)
H1,2q/π\displaystyle H_{1,2}^{q/\pi} =C2(1x)mqMπ1ξ2/4exp((2x(1+ξ2/4)ξ2)(𝒌2+mq2)+x(1x)2Δ2/2ξ(1x)2𝒌𝚫8β2(x2ξ2/4)(1x)),\displaystyle=C\frac{2(1-x)m_{q}\,M_{\pi}}{1-\xi^{2}/4}exp(-\frac{(2x(1+\xi^{2}/4)-\xi^{2})(\bm{k}^{2}_{\perp}+m_{q}^{2})+x(1-x)^{2}\Delta^{2}_{\perp}/2-\xi(1-x)^{2}\bm{k}_{\perp}\cdot\bm{\Delta}_{\perp}}{8\beta^{2}(x^{2}-\xi^{2}/4)(1-x)}), (34)

for the valence quark, where

C=A232π3B+B\displaystyle C=\frac{A^{2}}{32\pi^{3}B_{+}B_{-}} (35)

with

B+=(𝒌+1x1+ξ/2Δ22)2+mq2\displaystyle B_{+}=\sqrt{\left(\bm{k}_{\perp}+\frac{1-x}{1+\xi/2}\frac{\Delta^{2}_{\perp}}{2}\right)^{2}+m_{q}^{2}} (36)
B=(𝒌1x1ξ/2Δ22)2+mq2.\displaystyle B_{-}=\sqrt{\left(\bm{k}_{\perp}-\frac{1-x}{1-\xi/2}\frac{\Delta^{2}_{\perp}}{2}\right)^{2}+m_{q}^{2}}. (37)

The 𝒌\bm{k}_{\perp}-even GTMDs can be reduced to GPDs after integrating over 𝒌\bm{k}_{\perp}:

F1q/π(x,ξ,t)\displaystyle F_{1}^{q/\pi}(x,\xi,t) =d2𝒌F1,1,\displaystyle=\int d^{2}\bm{k}_{\perp}F_{1,1}, (38)
H1q/π(x,ξ,t)\displaystyle H_{1}^{q/\pi}(x,\xi,t) =d2𝒌(𝒌Δ𝚫2H1,1+H1,2).\displaystyle=\int d^{2}\bm{k}_{\perp}\left({\bm{k}_{\perp}\cdot\Delta_{\perp}\over\bm{\Delta}_{\perp}^{2}}H_{1,1}+H_{1,2}\right). (39)

Thus, using Eq. (21), in the GPD approach for the spin-orbit correlation,

Czq/π|GPD\displaystyle C^{q/\pi}_{z}\big{|}_{\textrm{GPD}} =𝑑x(mqMπH1Δ(x,0,0)12F1(x,0,0))\displaystyle=\int dx\left(\frac{m_{q}}{M_{\pi}}H^{\Delta}_{1}(x,0,0)-\frac{1}{2}F_{1}(x,0,0)\right)
=A2𝑑xd2𝒌2(1x)mq2(𝒌2+mq2)32π3(𝒌2+mq2)exp(𝒌2+mq24β2x(1x))\displaystyle=A^{2}\int dxd^{2}\bm{k}_{\perp}{2(1-x)m_{q}^{2}-(\bm{k}_{\perp}^{2}+m_{q}^{2})\over 32\pi^{3}(\bm{k}_{\perp}^{2}+m_{q}^{2})}\exp\left(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)}\right) (40)
=𝑑xCzq/π(x)\displaystyle=\int dxC^{q/\pi}_{z}(x)

In the above equation, we have used Czq/π(x)C^{q/\pi}_{z}(x) to denote the integrand.

Since the integration over xx satisfies the relation:

𝑑xd2𝒌 2(1x)exp(𝒌2+mq24β2x(1x))=𝑑xd2𝒌exp(𝒌2+mq24β2x(1x)),\displaystyle\int dx\ d^{2}\bm{k}_{\perp}\,2(1-x)\,\exp\left(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)}\right)=\int dx\ d^{2}\bm{k}_{\perp}\,\exp\left(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)}\right), (41)

Eq. (IV) can be rewritten as

Czq/π|GPD\displaystyle C^{q/\pi}_{z}\big{|}_{\textrm{GPD}} =A2𝑑xd2𝒌𝒌232π3(𝒌2+mq2)exp(𝒌2+mq24β2x(1x))\displaystyle=A^{2}\int dxd^{2}\bm{k}_{\perp}{-\bm{k}_{\perp}^{2}\over 32\pi^{3}(\bm{k}_{\perp}^{2}+m_{q}^{2})}\exp\left(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)}\right)

after integrating over 𝒌\bm{k}_{\perp}, the correlation has the form

Czq/π|GPD\displaystyle C^{q/\pi}_{z}\big{|}_{\textrm{GPD}} =A232π2𝑑x(β2x(1x)exp(mq24β2x(1x))mq2Γ[0,mq24β2x(1x)]),\displaystyle=-{A^{2}\over 32\pi^{2}}\int dx\left(\beta^{2}x(1-x)\exp\left(-{m_{q}^{2}\over 4\beta^{2}x(1-x)}\right)-m_{q}^{2}\Gamma\left[0,{m_{q}^{2}\over 4\beta^{2}x(1-x)}\right]\right), (43)

where Γ[0,x]\Gamma[0,x] is the zero-th order incomplete Γ\Gamma function

Γ[0,x]=xdttet.\displaystyle\Gamma[0,x]=\int_{x}^{\infty}{dt\over t}\,e^{-t}. (44)

The integral in over xx can be performed numerically.

On the other hand, as shown in Eq. (23), Czq/πC^{q/\pi}_{z} can be also calculated from the GTMD G1,1G_{1,1} directly:

Czq/π|GTMD\displaystyle C^{q/\pi}_{z}\big{|}_{\textrm{GTMD}} =𝑑xd2𝒌𝒌2M2G1,π(x,0,𝒌2,0,0)\displaystyle=\int dxd^{2}\bm{k}_{\perp}\frac{\bm{k}^{2}_{\perp}}{M^{2}}G_{1,}^{\pi}(x,0,\bm{k}^{2}_{\perp},0,0)
=A2𝑑xd2𝒌(1x)𝒌216π3(𝒌2+mq2)exp(𝒌2+mq24β2x(1x))\displaystyle=-A^{2}\int dxd^{2}\bm{k}_{\perp}{(1-x)\bm{k}_{\perp}^{2}\over 16\pi^{3}(\bm{k}_{\perp}^{2}+m_{q}^{2})}\exp(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)})
=A232π2𝑑x(β2x(1x)exp(mq24β2x(1x))mq2Γ[0,mq24β2x(1x)])\displaystyle=-{A^{2}\over 32\pi^{2}}\int dx\left(\beta^{2}x(1-x)\exp\left(-{m_{q}^{2}\over 4\beta^{2}x(1-x)}\right)-m_{q}^{2}\Gamma\left[0,{m_{q}^{2}\over 4\beta^{2}x(1-x)}\right]\right)
=𝑑xCzq/π(x).\displaystyle=\int dxC^{q/\pi}_{z}(x). (45)

We find that the above expression is the same as that in Eq. (43). Thus, within the light-cone quark model, we find that the GPD approach and the GTMD approach for the correlation indeed can lead to the same results for Czq/πC^{q/\pi}_{z}.

In the following, we can obtain the numerical results for Czq/πC_{z}^{q/\pi} by adopting the values for the parameters and performing the xx integral in Eqs. (43) or (45). We follow the choice in Refs. Wang:2017onm for the parameter values: A=31.30GeV1β=0.41GeV,m=0.2GeVA=31.30\textrm{GeV}^{-1}\,\beta=0.41\,\textrm{GeV},\,m=0.2\,\textrm{GeV}. The numerical result of the quark spin-orbit correlation inside the pion meson in the light-cone quark model is

Czq/π=0.32\displaystyle C_{z}^{q/\pi}=-0.32 (46)

where qq denotes the valence quarks inside pion (e.g., uu and d¯\bar{d} in π+\pi^{+}). Similar to the case in the nucleon Lorce:2014mxa , the sign of this correlation is negative, which means that the quark longitudinal spin and the quark OAM tend to be anti-correlated inside the pion meson. The absolute value is smaller than those of the nucleon (Czu/n0.9C_{z}^{u/n}\approx-0.9 and Czd/n0.53C_{z}^{d/n}\approx-0.53 Lorce:2014mxa ), implicating a weaker correlation in the pion meson than that in the nucleon.

In order to show the contribution to the quark spin-orbit correlation in the different xx region, we keep Czq/πC_{z}^{q/\pi} unintegrated. That is, we calculate Czq/π(x)C_{z}^{q/\pi}(x) appearing in Eq. (43) or Eq. (45) and show the plot vs xx in Fig. 1. We find that in our model the largest contribution comes from the region xx around 0.5.

Refer to caption
Figure 1: The xx-dependence of the quark longitudinal spin-orbit correlations Czq/π(x)C_{z}^{q/\pi}(x) in the pion meson.

In the following, we also explore the contribution in different region of transverse momentum. Before doing this, we would like to point out that there is another method to calculate the spin-orbit correlation directly from the wave function of the pion meson, instead of GPD or GTMD. As CzC_{z} is the difference of the orbital angular momenta from left-hand and right-hand quarks. Using the wave functions in Eq. (28), Cq/πC^{q/\pi} can be also expressed as

Czq/π|JM\displaystyle C_{z}^{q/\pi}\big{|}_{\textrm{JM}} =L^zqRL^zqL\displaystyle=\hat{L}_{z}^{q_{R}}-\hat{L}_{z}^{q_{L}}
=116π3dxd2k[(|ψ(x,𝒌,+,+|2)(+|ψ(x,𝒌,,)|2)]\displaystyle={1\over 16\pi^{3}}\int dx\int d^{2}k_{\perp}\left[(-|\psi(x,\bm{k}_{\perp},+,+|^{2})-(+|\psi(x,\bm{k}_{\perp},-,-)|^{2})\right]
=A2𝑑xd2𝒌(1x)𝒌216π3(𝒌2+mq2)exp(𝒌2+mq24β2x(1x)).\displaystyle=-A^{2}\int dxd^{2}\bm{k}_{\perp}{(1-x)\bm{k}_{\perp}^{2}\over 16\pi^{3}(\bm{k}_{\perp}^{2}+m_{q}^{2})}\exp\left(-{\bm{k}_{\perp}^{2}+m_{q}^{2}\over 4\beta^{2}x(1-x)}\right). (47)

We find that the results consistent with the result from the GTMD approach. We point out that this method is similar to the Jaffe-Manohar approach for the quark OAM Jaffe:1989jz . We also comment that in this approach, the quark OAM inside the pion meson vanishes, as

Lzq/π|JM=L^zqR+L^zqL\displaystyle L_{z}^{q/\pi}\big{|}_{\textrm{JM}}=\hat{L}_{z}^{q_{R}}+\hat{L}_{z}^{q_{L}} =116π3dxd2k[(|ψ(x,𝒌,+,+|2)+(+|ψ(x,𝒌,,)|2)].\displaystyle={1\over 16\pi^{3}}\int dx\int d^{2}k_{\perp}\left[(-|\psi(x,\bm{k}_{\perp},+,+|^{2})+(+|\psi(x,\bm{k}_{\perp},-,-)|^{2})\right]. (48)

Using the wave function in Eq. 28, we find that Lzq/πL_{z}^{q/\pi} is zero. It comes from the cancelation of the contributions from the left-handed and right-handed quark.

In Fig. 2, we plot the 𝒌\bm{k}_{\perp} dependence of Cz(x,𝒌)C_{z}(x,\bm{k}_{\perp}), which is CzC_{z} keeping both xx and 𝒌\bm{k}_{\perp} unintegrated. The left panel shows Cz(x,𝒌)C_{z}(x,\bm{k}_{\perp}) at x=0.1x=0.1, 0.3, 0.5 and 0.7 from the GPD approach , while the right panel shows that from the GTMD approach. Our results show that, although Cz(x)C_{z}(x) is the same in the two approaches, the 𝒌\bm{k}_{\perp}-dependence of Cz(x,𝒌)C_{z}(x,\bm{k}_{\perp}) can be actually different. In the GTMD approach, Cz(x,𝒌)C_{z}(x,\bm{k}_{\perp}) is negative in the whole reigon, while in the GPD approach, Cz(x,𝒌)C_{z}(x,\bm{k}_{\perp}) is positive in the small kk_{\perp} when xx is not large.

Refer to caption
Refer to caption
Figure 2: Left panel: The kk_{\perp}-dependence of the unintegrated quark correlation Czq/π(x,𝒌2)C_{z}^{q/\pi}(x,\bm{k}_{\perp}^{2}) from the GPD approach at x=x=0.1, 0.3, 0.5 and 0.7 respectively. Right panel: Similar to the left panel, but for that from the GTMD approach.

V Conclusions

We studied the correlation between the longitudinal spin and the quark orbit motion of valence quarks inside the pion meson. We started from the parity-odd partner of the quark energy-momentum tensor operator T^q5μν\hat{T}_{q5}^{\mu\nu} and decompose it into form factors, among which the quark spin orbit correlation is determined by the form factor CzqC_{z}^{q}. We provided two expressions for this correlation CzqC_{z}^{q}. One is in terms of the GPDs of the pion meson, from which the expectation value of the correlation is given by the combination of the first-xx moments of F1q/π(x,ξ,t)F_{1}^{q/\pi}(x,\xi,t) and H1q/π(x,ξ,t)H_{1}^{q/\pi}(x,\xi,t) at ξ=0,t=0GeV2\xi=0,t=0\,\textrm{GeV}^{2}. The other is in terms of the GTMD G1,1G_{1,1}. Using the overlap representation for the pion GPDs and GTMDs derived from a light-cone quark model, we then calculated the analytic result of Czq/πC_{z}^{q/\pi}. We found that the result from the GPD approach are the same as that from the GTMD approach. This verifies from the model aspect that these two approach can be used to access the spin-orbit correlation. In addition, the numerical result of the quark spin-orbit correlation in the model was calculated as Czq/π=0.32C_{z}^{q/\pi}=-0.32. Similar to the case of the nucleon, the negative sign indicates that the quark spin and OAM is tend to be anti-correlated. We also present the results for the xx-dependence and the kk_{\perp}-dependence of the longitudinal spin-orbit correlation, that is, the unintegrated Czq/πC_{z}^{q/\pi}. Our study about the quark longitudinal spin provides a new information for the spin correlation inside the pion meson, further experimental measurement are needed to accurately determine this correlation.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant number 11575043.

References

  • (1) R. L. Jaffe and A. Manohar, Nucl. Phys. B 337, 509-546 (1990).
  • (2) X. D. Ji, Phys. Rev. Lett.  78, 610 (1997).
  • (3) E. Leader and C. Lorce´\acute{e}, Phys. Rept.  541, no. 3, 163 (2014).
  • (4) D. W. Sivers, Phys. Rev. D 41, 83 (1990) doi:10.1103/PhysRevD.41.83
  • (5) D. W. Sivers, Phys. Rev. D 43, 261-263 (1991) doi:10.1103/PhysRevD.43.261
  • (6) S. J. Brodsky, D. S. Hwang and I. Schmidt, Phys. Lett. B 530, 99-107 (2002) doi:10.1016/S0370-2693(02)01320-5 [arXiv:hep-ph/0201296 [hep-ph]].
  • (7) C. Lorce´\acute{e}, Phys. Lett. B 735, 344 (2014).
  • (8) C. Lorce and B. Pasquini, Phys. Rev. D 84, 014015 (2011).
  • (9) S. Meissner, A. Metz, M. Schlegel and K. Goeke, JHEP 0808, 038 (2008).
  • (10) S. Meissner, A. Metz and M. Schlegel, JHEP 0908, 056 (2009).
  • (11) C. Lorce´\acute{e} and B. Pasquini, JHEP 1309, 138 (2013).
  • (12) K. Tanaka, Phys. Rev. D 98, no.3, 034009 (2018) [arXiv:1806.10591 [hep-ph]].
  • (13) A. Freese and I. C. Cloe¨\ddot{e}t,Phys. Rev. C 100 (2019) no.1, 015201.
  • (14) M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, no. 26, 1830025 (2018).
  • (15) A. F. Krutov and V. E. Troitsky, Phys. Rev. D 103, no. 1, 014029 (2021).
  • (16) M. Burkardt and B. Hannafious, Phys. Lett. B 658, 130-137 (2008) [arXiv:0705.1573 [hep-ph]].
  • (17) C. Lorce, B. Pasquini and M. Vanderhaeghen, JHEP 05, 041 (2011) [arXiv:1102.4704 [hep-ph]].
  • (18) E. Leader, A. V. Sidorov and D. B. Stamenov, Phys. Rev. D 82, 114018 (2010) [arXiv:1010.0574 [hep-ph]].
  • (19) J. D. Bratt et al. [LHPC], Phys. Rev. D 82, 094502 (2010) [arXiv:1001.3620 [hep-lat]]..
  • (20) D. Chakrabarti, T. Maji, C. Mondal and A. Mukherjee, Eur. Phys. J. C 76, no. 7, 409 (2016)
  • (21) N. Kaur and H. Dahiya, Eur. Phys. J. A 56, no. 6, 172 (2020)
  • (22) G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett.  43, 545 (1979) Erratum: [Phys. Rev. Lett.  43, 1625 (1979)].
  • (23) A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78, 074010 (2008).
  • (24) S. J. Brodsky, D. S. Hwang, B. Q. Ma and I. Schmidt, Nucl. Phys. B 593, 311 (2001).
  • (25) B. W. Xiao and B. Q. Ma, Phys. Rev. D 68, 034020 (2003).
  • (26) Z. Lu and I. Schmidt, Phys. Rev. D 75 (2007) 073008.
  • (27) S. J. Brodsky, M. Diehl and D. S. Hwang, Nucl. Phys. B 596, 99 (2001).
  • (28) Z. L. Ma and Z. Lu, Phys. Rev. D 98, no. 5, 054024 (2018).
  • (29) Z. Wang, X. Wang and Z. Lu, Phys. Rev. D 95, no. 9, 094004 (2017).
  • (30) K. Tanaka, JPS Conf. Proc.  26, 021003 (2019).
  • (31) H. J. Melosh, Phys. Rev. D 9, 1095 (1974)
  • (32) B. Q. Ma, J. Phys. G 17, L53-L58 (1991)