This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum traces for SLn()\mathrm{SL}_{n}(\mathbb{C}): The case n=3n=3

Daniel C. Douglas Department of Mathematics, Virginia Tech, 225 Stanger Street, Blacksburg, VA 24061 [email protected]
Abstract.

We generalize Bonahon–Wong’s SL2()\mathrm{SL}_{2}(\mathbb{C})-quantum trace map to the setting of SL3()\mathrm{SL}_{3}(\mathbb{C}). More precisely, given a non-zero complex parameter q=e2πiq=e^{2\pi i\hbar}, we associate to each isotopy class of framed oriented links KK in a thickened punctured surface 𝔖×(0,1)\mathfrak{S}\times(0,1) a Laurent polynomial Trλq(K)=Trλq(K)(Xiq)\mathrm{Tr}_{\lambda}^{q}(K)=\mathrm{Tr}_{\lambda}^{q}(K)(X_{i}^{q}) in qq-deformations XiqX_{i}^{q} of the Fock–Goncharov 𝒳\mathcal{X}-coordinates for higher Teichmüller space. This construction depends on a choice λ\lambda of ideal triangulation of the surface 𝔖\mathfrak{S}. Along the way, we propose a definition for a SLn()\mathrm{SL}_{n}(\mathbb{C})-version of this invariant.

This work was partially supported by the U.S. National Science Foundation grants DMS-1406559 and DMS-1711297

1. Introduction

For a finitely generated group Γ\Gamma and a suitable Lie group GG, a primary object of study in low-dimensional geometry and topology is the GG-character variety

G(Γ)={ρ:ΓG}//G,\mathscr{R}_{G}(\Gamma)=\left\{\rho:\Gamma\to G\right\}/\!\!/G,

consisting of group homomorphisms ρ\rho from Γ\Gamma to GG, considered up to conjugation. Here, the quotient is taken in the algebraic geometric sense of geometric invariant theory [MFK94]. Character varieties can be explored using a wide variety of mathematical skill sets. Some examples include the Higgs bundle approach of Hitchin [Hit92], the dynamics approach of Labourie [Lab06], and the representation theory approach of Fock–Goncharov [FG06b].

In the case where the group Γ=π1(𝔖)\Gamma=\pi_{1}(\mathfrak{S}) is the fundamental group of a punctured surface 𝔖\mathfrak{S} of finite topological type with negative Euler characteristic, and where the Lie group G=SLn()G=\mathrm{SL}_{n}(\mathbb{C}) is the special linear group, we are interested in studying a relationship between two competing deformation quantizations of the character variety SLn()(π1(𝔖))\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\pi_{1}(\mathfrak{S})), which we denote simply by SLn()(𝔖)\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S}). Here, a deformation quantization {q}q\{\mathscr{R}^{q}\}_{q} of a Poisson space \mathscr{R} is a family of non-commutative algebras q\mathscr{R}^{q} parametrized by a non-zero complex parameter q=e2πiq=e^{2\pi i\hbar}, such that the lack of commutativity in q\mathscr{R}^{q} is infinitesimally measured in the semi-classical limit 0\hbar\to 0 by the Poisson bracket of the space \mathscr{R}. In the case where =SLn()(𝔖)\mathscr{R}=\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S}) is the character variety, the bracket is provided by the Goldman Poisson structure on SLn()(𝔖)\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S}) [Gol84, Gol86, BG93].

The first quantization of the character variety is the SLn()\mathrm{SL}_{n}(\mathbb{C})-skein algebra 𝒮nq(𝔖)\mathscr{S}^{q}_{n}(\mathfrak{S}) of the surface 𝔖\mathfrak{S}; see [Tur89, Wit89, Prz91, BFKB99, Kup96, Sik05, CKM14]. The skein algebra is motivated by the classical algebraic geometric approach to studying the character variety SLn()(𝔖)\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S}) by means of its commutative algebra of regular functions [SLn()(𝔖)]\mathbb{C}[\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S})]. An example of a regular function is the trace function Trγ:SLn()(𝔖)\mathrm{Tr}_{\gamma}:\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S})\to\mathbb{C} associated to a closed curve γπ1(𝔖)\gamma\in\pi_{1}(\mathfrak{S}) sending a representation ρ:π1(𝔖)SLn()\rho:\pi_{1}(\mathfrak{S})\to\mathrm{SL}_{n}(\mathbb{C}) to the trace Tr(ρ(γ))\mathrm{Tr}(\rho(\gamma))\in\mathbb{C} of the matrix ρ(γ)SLn()\rho(\gamma)\in\mathrm{SL}_{n}(\mathbb{C}). A theorem of classical invariant theory, due to Procesi [Pro76], implies that the trace functions Trγ\mathrm{Tr}_{\gamma} generate the algebra of functions [SLn()(𝔖)]\mathbb{C}[\mathscr{R}_{\mathrm{SL}_{n}(\mathbb{C})}(\mathfrak{S})] as an algebra. According to the philosophy of Turaev and Witten, quantizations of the character variety should be of a 3-dimensional nature. Indeed, elements of the skein algebra 𝒮nq(𝔖)\mathscr{S}^{q}_{n}(\mathfrak{S}) are represented by (formal linear combinations of) knots (or links) KK in the thickened surface 𝔖×(0,1)\mathfrak{S}\times(0,1). The skein algebra 𝒮nq(𝔖)\mathscr{S}^{q}_{n}(\mathfrak{S}) has the advantage of being natural, but is difficult to work with in practice.

The second quantization of the SLn()\mathrm{SL}_{n}(\mathbb{C})-character variety is the Fock–Goncharov quantum space 𝒯nq(𝔖)\mathscr{T}_{n}^{q}(\mathfrak{S}); see [CF99, Kas98, FG09]. At the classical level, Fock–Goncharov [FG06b] introduced a framed version PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}} (also called the 𝒳\mathcal{X}-moduli space) of the PSLn()\mathrm{PSL}_{n}(\mathbb{C})-character variety, which, roughly speaking, consists of representations ρ:π1(𝔖)PSLn()\rho:\pi_{1}(\mathfrak{S})\to\mathrm{PSL}_{n}(\mathbb{C}) equipped with additional linear algebraic data attached to the punctures of 𝔖\mathfrak{S}. Associated to each ideal triangulation λ\lambda of the punctured surface 𝔖\mathfrak{S} is a λ\lambda-coordinate chart UλU_{\lambda} for PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}} parametrized by NN non-zero complex coordinates X1,X2,,XNX_{1},X_{2},\dots,X_{N} where the integer NN depends only on the topology of the surface 𝔖\mathfrak{S} and the rank of the Lie group SLn()\mathrm{SL}_{n}(\mathbb{C}). When written in terms of these coordinates XiX_{i} the trace functions Trγ\mathrm{Tr}_{\gamma} on the character variety take the form of Laurent polynomials Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}) in nn-roots of the XiX_{i} (a subtlety being that Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}) depends on the regular homotopy class of γ\gamma, represented by immersed curves, rather than the homotopy class of γ\gamma). At the quantum level, there are qq-deformed versions XiqX_{i}^{q} of these coordinates, which no longer commute but qq-commute with each other, according to the underlying Poisson structure. The quantized character variety 𝒯nq(𝔖)\mathscr{T}_{n}^{q}(\mathfrak{S}) is obtained by gluing together quantum tori 𝒯nq(σ)\mathscr{T}_{n}^{q}(\sigma), including one for each triangulation σ=λ\sigma=\lambda consisting of Laurent polynomials in the quantized Fock–Goncharov coordinates XiqX_{i}^{q}. The quantum character variety 𝒯nq(𝔖)\mathscr{T}_{n}^{q}(\mathfrak{S}) has the advantage of being easier to work with than the skein algebra 𝒮nq(𝔖)\mathscr{S}^{q}_{n}(\mathfrak{S}), but is less intrinsic.

We seek qq-deformed versions Trγq\mathrm{Tr}_{\gamma}^{q} of the trace functions, associating to a closed curve γ\gamma a Laurent polynomial in the quantized Fock–Goncharov coordinates with respect to a fixed triangulation λ\lambda. Turaev and Witten’s philosophy leads us from the 2-dimensional setting of curves γ\gamma on the surface 𝔖\mathfrak{S} to the 33-dimensional setting of knots KK in the thickened surface 𝔖×(0,1)\mathfrak{S}\times(0,1). More precisely:

Conjecture 1 (SLn()\mathrm{SL}_{n}(\mathbb{C})-quantum trace map).

Fix a (2n2)(2*n^{2})-root ω1/2=q1/(2n2){0}\omega^{1/2}=q^{1/(2*n^{2})}\in\mathbb{C}-\{0\}. For each ideal triangulation λ\lambda of the punctured surface 𝔖\mathfrak{S} (with empty boundary, 𝔖=\partial\mathfrak{S}=\varnothing), there exists an injective algebra homomorphism

Trλω:𝒮nq(𝔖)𝒯nω(λ),\mathrm{Tr}^{\omega}_{\lambda}:\mathscr{S}^{q}_{n}(\mathfrak{S})\hookrightarrow\mathscr{T}_{n}^{\omega}(\lambda),

such that if ω1/2=1\omega^{1/2}=1, then for every blackboard-framed oriented knot KK in the thickened surface 𝔖×(0,1)\mathfrak{S}\times(0,1) projecting to an immersed closed curve γ\gamma on the surface 𝔖\mathfrak{S},

Trλ1(K)=Tr~γ(Xi1/n).\mathrm{Tr}_{\lambda}^{1}(K)=\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}).

This last equation says that the Fock–Goncharov classical trace polynomial associated to the curve γ\gamma is recovered in the classical limit. Moreover, the SLn()\mathrm{SL}_{n}(\mathbb{C})-quantum trace map should be natural, appropriately interpreted, with respect to the choice of triangulation λ\lambda; see [Kim21].

Conjecture 1 is due to Chekhov–Fock [Foc97, CF00] in the case n=2n=2, and was proved ‘by hand’ in that case by Bonahon–Wong [BW11]. One of the motivations of the present work is to develop a conceptual understanding of their construction.

We prove the following, slightly weaker, version of Conjecture 1 in the case n=3n=3:

Theorem 2 (Theorem 22, SL3()\mathrm{SL}_{3}(\mathbb{C})-quantum trace polynomials).

Fix a (232)(2*3^{2})-root ω1/2=q1/(232)=q1/18{0}\omega^{1/2}=q^{1/(2*3^{2})}=q^{1/18}\in\mathbb{C}-\{0\}. For each ideal triangulation λ\lambda of the punctured surface 𝔖\mathfrak{S} (with possibly non-empty boundary), there exists a function

Trλω:{isotopy classes of (stated) framed oriented links K in 𝔖×(0,1)}𝒯3ω(λ)\mathrm{Tr}_{\lambda}^{\omega}:\left\{\textnormal{isotopy classes of (stated) framed oriented links }K\textnormal{ in }\mathfrak{S}\times(0,1)\right\}\to\mathscr{T}_{3}^{\omega}(\lambda)

such that if ω1/2=1\omega^{1/2}=1, then for every blackboard-framed oriented link KK whose components K1,K2,,KK_{1},K_{2},\dots,K_{\ell} project to immersed closed oriented curves γ1,γ2,,γ\gamma_{1},\gamma_{2},\dots,\gamma_{\ell} in 𝔖\mathfrak{S},

Trλ1(K)=j=1Tr~γj(Xi1/3).\mathrm{Tr}_{\lambda}^{1}(K)=\prod_{j=1}^{\ell}\widetilde{\mathrm{Tr}}_{\gamma_{j}}(X_{i}^{1/3}).

Moreover, this invariant satisfies the qq-evaluated HOMFLYPT relation [FYH+85, PT87], as well as the unknot and framing skein relations, for n=3n=3; see Figures 1, 2, 3. In the figures, [n]q=(qnqn)/(qq1)[n]_{q}=(q^{n}-q^{-n})/(q-q^{-1}) is the quantum integer, and ζ¯n=(1)n1q(1n2)/n\overline{\zeta}_{n}=(-1)^{n-1}q^{(1-n^{2})/n} is (essentially) the (co)ribbon element of the quantum special linear group SLnq\mathrm{SL}_{n}^{q} (see Appendix A). ∎

Refer to caption
Figure 1. HOMFLYPT skein relation.
Refer to caption
Figure 2. Unknot skein relation.
Refer to caption
(a) Positive kinks
Refer to caption
(b) Negative kinks
Figure 3. Framing skein relations.

In particular, the isotopy invariance property of Theorem 2 can be thought of as the main step toward proving Conjecture 1 in the case n=3n=3.

Theorem 2 was originally proved as part of [Dou20]. Our proof is also ‘by hand’, generalizing the strategy of [BW11], and relies on computer assistance for some of the calculations; see Appendix B.

Along the way, we propose a definition for a SLn()\mathrm{SL}_{n}(\mathbb{C})-version of the quantum trace polynomials; see §5.3. That this construction is well-defined for general nn is expected to follow from recent related work [CS23], which shares some overlap with [Dou21]; see Remark 37.

The solution of [BW11] in the n=2n=2 case is implicitly related to the theory of the quantum group Uq(𝔰𝔩2)\mathrm{U}_{q}(\mathfrak{sl}_{2}) or, more precisely, of its Hopf dual SL2q\mathrm{SL}_{2}^{q}; see for instance [Kas95]. For general nn, we make this relationship more explicit; see §3.4 and Appendix A.

In addition to the HOMFLYPT relation, the skein algebra 𝒮nq(𝔖)\mathscr{S}^{q}_{n}(\mathfrak{S}) has other relations, best expressed as identities among certain nn-valent graphs WW in 𝔖×(0,1)\mathfrak{S}\times(0,1) called webs [Kup96, Sik01, CKM14]. It is therefore desirable to extend the definition of the quantum trace polynomials from links KK to webs WW. Building on our construction for links, Kim [Kim20, Kim21] defined a SL3()\mathrm{SL}_{3}(\mathbb{C})-quantum trace map for webs, which is natural with respect to the choice of ideal triangulation λ\lambda. Combined with Kim’s work, the results of [DS24, DS20] lead to a proof of the injectivity property of Conjecture 1 in the case n=3n=3, which is closely related to the study of linear bases of skein algebras; see [DS24, §9.3].

As another application, Kim [Kim20] constructed a SL3()\mathrm{SL}_{3}(\mathbb{C})-quantum Fock–Goncharov duality map [FG09] (of the bangle, rather than bracelet, form [Thu14]), generalizing much of the n=2n=2 solution of [AK17]; see also [All19, CKKO20]. For other related studies in the SL3()\mathrm{SL}_{3}(\mathbb{C})-setting, see [Hig23, FS22, IY23].

Lê–Yu [LY23] constructed a SLn()\mathrm{SL}_{n}(\mathbb{C})-quantum trace map for webs, agreeing at the level of links with the definition proposed in this paper. Their construction fits into a theory of SLn()\mathrm{SL}_{n}(\mathbb{C})-stated skein algebras [Lê18, CL22, LS21].

Quantum traces also appear in the context of spectral networks [Gab17, NY20]. Empirical computations performed together with A. Neitzke (see [NY22]) suggest that, at least for simple curves, the SL3()\mathrm{SL}_{3}(\mathbb{C})-quantum trace map defined in this paper agrees with that constructed in [NY22]; see also [KLS23] in the case n=2n=2.

The quantum trace map is a tool for studying the representation theory of skein algebras [BW16, FKBL19], relevant to topological quantum field theories [Wit89, BHMV95].

Acknowledgements

This work would not have been possible without the guidance of my Ph.D. advisor Francis Bonahon. Many thanks go out to Sasha Shapiro and Thang Lê for informing me about related research and for enjoyable conversations, as well as to Dylan Allegretti and Zhe Sun who helped me fine-tune my ideas. I am also grateful to Andy Neitzke for sharing his enthusiasm for experiment, as well as to the referee for their helpful comments. Last but not least, Person D would like to thank Person G for their limitless support (and artistic inspiration).

2. Classical trace polynomials for SLn\mathrm{SL}_{n}

In this section, we will associate a Laurent polynomial Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}) in commuting formal nn-roots X1±1/nX_{1}^{\pm 1/n}, X2±1/nX_{2}^{\pm 1/n}, \dots, XN±1/nX_{N}^{\pm 1/n} to each immersed oriented closed curve γ\gamma transverse to a fixed ideal triangulation λ\lambda of a punctured surface 𝔖\mathfrak{S}, where NN depends only on the topology of 𝔖\mathfrak{S} and the rank of the Lie group SLn()\mathrm{SL}_{n}(\mathbb{C}).

2.1. Topological setup

Let 𝔖\mathfrak{S} be an oriented punctured surface of finite topological type, namely 𝔖\mathfrak{S} is obtained by removing a finite subset PP, called the set of punctures, from a compact oriented surface 𝔖¯\overline{\mathfrak{S}}. In particular, note that 𝔖\mathfrak{S} may have non-empty boundary, 𝔖\partial\mathfrak{S}\neq\varnothing. We require that there is at least one puncture, that each component of 𝔖¯\partial\overline{\mathfrak{S}} is punctured (that is, intersects PP), and that the Euler characteristic χ(𝔖)\chi(\mathfrak{S}) of the punctured surface 𝔖\mathfrak{S} satisfies χ(𝔖)<d/2\chi(\mathfrak{S})<d/2 where dd is the number of components of 𝔖\partial\mathfrak{S}. Note that each component of 𝔖\partial\mathfrak{S} is an ideal arc. These topological conditions guarantee the existence of an ideal triangulation λ\lambda of the punctured surface 𝔖\mathfrak{S}, namely a triangulation λ¯\overline{\lambda} of the surface 𝔖¯\overline{\mathfrak{S}} whose vertex set is equal to the set of punctures PP. See Figure 4 for some examples of ideal triangulations. The ideal triangulation λ\lambda consists of ϵ=3χ(𝔖)+2d\epsilon=-3\chi(\mathfrak{S})+2d edges EE and τ=2χ(𝔖)+d\tau=-2\chi(\mathfrak{S})+d triangles 𝔗\mathfrak{T}.

For simplicity, we always assume that λ\lambda does not contain any self-folded triangles. Consequently, each triangle 𝔗\mathfrak{T} of λ\lambda has three distinct edges. Such an ideal triangulation λ\lambda always exists (except when 𝔖\mathfrak{S} is a disk with one internal puncture and one puncture on the boundary). Our results should generalize to allow for self-folded triangles, requiring only minor adjustments (one would need to modify Definition 17–compare [BW11, §2.1], which makes use of the Weyl quantum ordering (§3.1.3)–but the main definition, Definition 35, is un-changed).

Refer to caption
(a) Four times punctured sphere
Refer to caption
(b) Once punctured torus
Figure 4. Ideal triangulations (𝔖=\partial\mathfrak{S}=\varnothing).

2.2. Discrete triangle

The discrete nn-triangle Θn\Theta_{n} is

Θn=def{(a,b,c)3;a,b,c0,a+b+c=n},\Theta_{n}\overset{\text{def}}{=}\left\{(a,b,c)\in\mathbb{Z}^{3};a,b,c\geqslant 0,a+b+c=n\right\},

as shown in Figure 5. The interior of the nn-discrete triangle is

int(Θn)=def{(a,b,c)3;a,b,c>0,a+b+c=n}.\mathrm{int}(\Theta_{n})\overset{\text{def}}{=}\left\{(a,b,c)\in\mathbb{Z}^{3};a,b,c>0,a+b+c=n\right\}.
Refer to caption
Figure 5. Discrete triangle (n=5n=5).

2.3. Dotted ideal triangulations

Let the punctured surface 𝔖\mathfrak{S} be equipped with an ideal triangulation λ\lambda, and let N=ϵ(n1)+τ(n1)(n2)/2N=\epsilon(n-1)+\tau(n-1)(n-2)/2; see §2.1.

The associated dotted ideal triangulation consists of λ\lambda together with NN distinct black dots attached to the edges EE and triangles 𝔗\mathfrak{T} of λ\lambda, where there are n1n-1 edge-dots attached to each edge EE and (n1)(n2)/2(n-1)(n-2)/2 triangle-dots attached to each triangle 𝔗\mathfrak{T} (punctures, that is, triangle vertices, are always drawn as white dots). For each triangle 𝔗\mathfrak{T} including its three boundary edges E1E_{1}, E2E_{2}, E3E_{3}, these dots are arranged as the vertices of the discrete nn-triangle Θn\Theta_{n} (minus its three corner vertices) overlaid on top of the ideal triangle 𝔗\mathfrak{T}; see Figures 6 and 7. We talk about boundary-dots or interior-dots depending on whether the dots are on the boundary of interior of the surface.

Given a triangle 𝔗\mathfrak{T} of λ\lambda, which acquires an orientation from the orientation of 𝔖\mathfrak{S}, and given an edge EE of 𝔗\mathfrak{T}, it makes sense to say that an edge-dot on EE is to the left or to the right of another edge-dot on EE as viewed from the triangle 𝔗\mathfrak{T}; see Figure 6(b).

We always assume that we have chosen an ordering for the NN dots lying on the dotted ideal triangulation λ\lambda, so we can talk about the ii-th dot, i=1,2,,Ni=1,2,\dots,N.

Refer to caption
(a) Four times punctured sphere
Refer to caption
(b) Ideal triangle
Figure 6. Dotted ideal triangulations (n=3n=3).
Refer to caption
Figure 7. Dotted ideal triangulation (n=4n=4).

2.4. Classical polynomial algebra

Let the punctured surface 𝔖\mathfrak{S} be equipped with a dotted ideal triangulation λ\lambda.

Definition 3.

The classical polynomial algebra 𝒯n1(λ)=[X1±1/n,X2±1/n,,XN±1/n]\mathscr{T}_{n}^{1}(\lambda)=\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] associated to the dotted ideal triangulation λ\lambda is the commutative algebra of Laurent polynomials generated by formal nn-roots Xi1/nX_{i}^{1/n} and their inverses. We think of the generator Xi1/nX_{i}^{1/n} as associated to the ii-th dot lying on λ\lambda. As for dots, see §2.3, we speak of edge- and triangle-generators as well as boundary- and interior-generators. Elements Xi±1=(Xi±1/n)nX_{i}^{\pm 1}=(X_{i}^{\pm 1/n})^{n} of 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) are called coordinates. We often indicate edge-coordinates with the letter ZZ instead of XX.

Remark 4.

The algebraic coordinates XiX_{i} in the classical polynomial algebra correspond to Fock–Goncharov’s geometric coordinates for the framed PSLn()\mathrm{PSL}_{n}(\mathbb{C})-character variety PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}}; see §1. As a caveat, in the classical geometric setting the Fock–Goncharov coordinates XiX_{i} are associated only to the interior-dots (not to the boundary-dots), while in the quantum algebraic setting there are coordinates XiX_{i} associated to the boundary-dots as well.

In the language of cluster algebras [FZ02], these boundary-variables are also called frozen variables [FG06a, FG06b, FWZ16]. From the classical geometric point of view, one can think of the frozen boundary-coordinates as having the potential to become ‘actual’ un-frozen interior-coordinates if the surface-with-boundary 𝔖\mathfrak{S} were included inside the interior of a larger surface 𝔖\mathfrak{S}^{\prime}. At the quantum algebraic level, the inclusion of boundary-coordinates is an essential step in order to observe the local quantum properties; see, for instance, Theorem 16.

In the case of SL2()\mathrm{SL}_{2}(\mathbb{R}) or SL2()\mathrm{SL}_{2}(\mathbb{C}), the Fock–Goncharov coordinates XiX_{i} coincide with the shear or shear-bend coordinates for Teichmüller space due to Thurston [Thu97]; see [Bon96, Foc97, FG07a, HN16] for more details. There is also a geometric interpretation of Fock–Goncharov’s coordinates in the case n=3n=3, where the coordinates parametrize convex projective structures on the surface 𝔖\mathfrak{S}; see [FG07b, CTT20].

2.5. Elementary edge and triangle matrices

Let Mn(𝒯n1(λ))\mathrm{M}_{n}(\mathscr{T}_{n}^{1}(\lambda)) denote the algebra of n×nn\times n matrices with coefficients in the commutative classical polynomial algebra 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) == [X1±1/n,X2±1/n,,XN±1/n]\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}]; see Definition 9. Let the special linear group SLn(𝒯n1(λ))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) be the subset of Mn(𝒯n1(λ))\mathrm{M}_{n}(\mathscr{T}_{n}^{1}(\lambda)) consisting of the matrices with determinant equal to 11.

Let Z=Xi±1Z=X_{i}^{\pm 1} be an edge-coordinate in the classical polynomial algebra 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda). For j=1,2,,n1j=1,2,\dots,n-1 define the jj-th elementary edge matrix 𝐒jedge(Z)SLn(𝒯n1(λ))\mathbf{S}^{\mathrm{edge}}_{j}(Z)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐒jedge(Z)=defZj/n(ZZZ111)SLn(𝒯n1(λ))(Z appears j times).\mathbf{S}^{\mathrm{edge}}_{j}(Z)\overset{\text{def}}{=}Z^{-j/n}\left(\begin{smallmatrix}Z&&&&&&&\\ &Z&&&&&&\\ &&\ddots&&&&&\\ &&&Z&&&&\\ &&&&1&&&\\ &&&&&1&&\\ &&&&&&\ddots&\\ &&&&&&&1\end{smallmatrix}\right)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda))\,\,\left(Z\text{ appears }j\text{ times}\right).

Note the normalizing factor Zj/nZ^{-j/n} multiplying the matrix on the left (or on the right). Similarly, for any triangle-coordinate X=Xi±1X=X_{i}^{\pm 1} in 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) and for any index j=1,2,,n1j=1,2,\dots,n-1 define the jj-th left elementary triangle matrix 𝐒jleft(X)SLn(𝒯n1(λ))\mathbf{S}^{\mathrm{left}}_{j}(X)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐒jleft(X)=defX(j1)/n(XX11111)SLn(𝒯n1(λ))(X appears j1 times),\mathbf{S}^{\mathrm{left}}_{j}(X)\overset{\text{def}}{=}X^{-(j-1)/n}\left(\begin{smallmatrix}X&&&&&&&\\ &\ddots&&&&&&\\ &&X&&&&&\\ &&&1&1&&&\\ &&&&1&&&\\ &&&&&1&&\\ &&&&&&\ddots&\\ &&&&&&&1\end{smallmatrix}\right)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda))\,\,\left(X\text{ appears }j-1\text{ times}\right),

and define the jj-th right elementary triangle matrix 𝐒jright(X)SLn(𝒯n1(λ))\mathbf{S}^{\mathrm{right}}_{j}(X)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐒jright(X)=defX(j1)/n(11111X1X1)SLn(𝒯n1(λ))(X appears j1 times).\mathbf{S}^{\mathrm{right}}_{j}(X)\overset{\text{def}}{=}X^{(j-1)/n}\left(\begin{smallmatrix}1&&&&&&&\\ &\ddots&&&&&&\\ &&1&&&&&\\ &&&1&&&\\ &&&1&1&&&\\ &&&&&X^{-1}&&\\ &&&&&&\ddots&\\ &&&&&&&X^{-1}\end{smallmatrix}\right)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda))\,\,\left(X\text{ appears }j-1\text{ times}\right).

Note that 𝐒1left(X)\mathbf{S}^{\mathrm{left}}_{1}(X) and 𝐒1right(X)\mathbf{S}^{\mathrm{right}}_{1}(X) do not actually involve the variable XX, so we will denote these matrices by 𝐒1left\mathbf{S}^{\mathrm{left}}_{1} and 𝐒1right\mathbf{S}^{\mathrm{right}}_{1}, respectively.

Remark 5.

In the theory of Fock–Goncharov, these elementary matrices for edges and triangles are called snake-move matrices. Each such matrix is the coordinate transformation matrix passing between a pair of compatibly normalized projective coordinate systems associated to a pair of adjacent snakes. For a framed local system in PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}} with coordinates XiX_{i}, computing the monodromy of the local system around a curve γ\gamma amounts to multiplying together a sequence of snake-move matrices along the direction of the curve. For more details, see [FG06b, §9], [GMN14, Appendix A], and [Dou20, Chapter 2].

2.6. Local monodromy matrices

Let 𝔗\mathfrak{T} be a dotted ideal triangle, which we think of as sitting inside a larger dotted ideal triangulation λ\lambda; see Figure 6. We assign n×nn\times n matrices with coefficients in the classical polynomial algebra 𝒯n1(λ)=[X1±1/n,X2±1/n,,XN±1/n]\mathscr{T}_{n}^{1}(\lambda)=\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] to various ‘short’ oriented arcs lying on the surface 𝔖\mathfrak{S}.

Recall that we think of the nn-discrete triangle Θn\Theta_{n}2.2) as overlaid on top of the triangle 𝔗\mathfrak{T}, so that there is a one-to-one correspondence between coordinates Xi=XabcX_{i}=X_{abc} in 𝒯n1(𝔗)𝒯n1(λ)\mathscr{T}_{n}^{1}(\mathfrak{T})\subseteq\mathscr{T}_{n}^{1}(\lambda) and vertices (a,b,c)(a,b,c) in Θn{(n,0,0),(0,n,0),(0,0,n)}\Theta_{n}-\{(n,0,0),(0,n,0),(0,0,n)\} (in other words, in the nn-discrete triangle Θn\Theta_{n} minus its three corner vertices). Note that XabcX_{abc} is a triangle-coordinate if and only if (a,b,c)(a,b,c) is an interior point (a,b,c)int(Θn)(a,b,c)\in\mathrm{int}(\Theta_{n}), otherwise XabcX_{abc} is an edge-coordinate.

We will use the following notational convention. Given an arbitrary family 𝐌i\mathbf{M}_{i} of n×nn\times n matrices, put

i=MN𝐌i=def𝐌M𝐌M+1𝐌N,i=N+1M𝐌i=def1(MN),\displaystyle\prod_{i=M}^{N}\mathbf{M}_{i}\overset{\text{def}}{=}\mathbf{M}_{M}\mathbf{M}_{M+1}\cdots\mathbf{M}_{N},\,\,\prod_{i=N+1}^{M}\mathbf{M}_{i}\overset{\text{def}}{=}1\,\,\left(M\leqslant N\right),
i=NM𝐌i=def𝐌N𝐌N1𝐌M,i=M1N𝐌i=def1(MN).\displaystyle\coprod_{i=N}^{M}\mathbf{M}_{i}\overset{\text{def}}{=}\mathbf{M}_{N}\mathbf{M}_{N-1}\cdots\mathbf{M}_{M},\,\,\coprod_{i=M-1}^{N}\mathbf{M}_{i}\overset{\text{def}}{=}1\,\,\left(M\leqslant N\right).

First, consider a left-moving arc γ¯\overline{\gamma}, as shown in Figure 8. We assume γ¯\overline{\gamma} has no kinks (Figures 3(a) and 3(b)). Let 𝐗=(Xi)\mathbf{X}=(X_{i}) be a vector consisting of the triangle-coordinates XiX_{i} (Definition 3). Define the associated left matrix 𝐌left(𝐗)\mathbf{M}^{\mathrm{left}}(\mathbf{X}) in SLn(𝒯n1(λ))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐌left(𝐗)=defi=n11(𝐒1leftj=2i𝐒jleft(X(j1)(ni)(ij+1)))SLn(𝒯n1(λ)),\mathbf{M}^{\mathrm{left}}(\mathbf{X})\overset{\text{def}}{=}\coprod_{i=n-1}^{1}\left(\mathbf{S}^{\mathrm{left}}_{1}\prod_{j=2}^{i}\mathbf{S}^{\mathrm{left}}_{j}(X_{(j-1)(n-i)(i-j+1)})\right)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)),

where the matrix 𝐒jleft(Xabc)\mathbf{S}_{j}^{\mathrm{left}}(X_{abc}) is the jj-th left elementary triangle matrix; see §2.5. (The dots colored red in the figure correspond to the coordinates appearing in the expression of the matrix associated to the curve.)

Next, consider a right-moving arc γ¯\overline{\gamma}, as shown in Figure 9. We assume γ¯\overline{\gamma} has no kinks. We define the associated right matrix 𝐌right(𝐗)\mathbf{M}^{\mathrm{right}}(\mathbf{X}) in SLn(𝒯n1(λ))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐌right(𝐗)=defi=n11(𝐒1rightj=2i𝐒jright(X(ij+1)(ni)(j1)))SLn(𝒯n1(λ)),\mathbf{M}^{\mathrm{right}}(\mathbf{X})\overset{\text{def}}{=}\coprod_{i=n-1}^{1}\left(\mathbf{S}^{\mathrm{right}}_{1}\prod_{j=2}^{i}\mathbf{S}^{\mathrm{right}}_{j}(X_{(i-j+1)(n-i)(j-1)})\right)\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)),

where the matrix 𝐒jright(Xabc)\mathbf{S}_{j}^{\mathrm{right}}(X_{abc}) is the jj-th right elementary triangle matrix; see §2.5.

Next, consider an edge-crossing arc γ¯\overline{\gamma}, as shown on the left hand or right hand side of Figure 10. Let ZjZ_{j}, j=1,2,,n1j=1,2,\dots,n-1, be the jj-th edge-coordinate (Definition 3), measured from right to left as seen by the triangle out of which the arc is moving. Let 𝐙=(Zj)\mathbf{Z}=(Z_{j}) be a vector consisting of the ZjZ_{j}’s. Define the associated edge matrix 𝐌edge(𝐙)\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}) in SLn(𝒯n1(λ))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)) by

𝐌edge(𝐙)=defj=1n1𝐒jedge(Zj)SLn(𝒯n1(λ)),\mathbf{M}^{\mathrm{edge}}(\mathbf{Z})\overset{\text{def}}{=}\prod_{j=1}^{n-1}\mathbf{S}^{\mathrm{edge}}_{j}(Z_{j})\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)),

where the matrix 𝐒jedge(Zj)\mathbf{S}_{j}^{\mathrm{edge}}(Z_{j}) is the jj-th elementary edge matrix; see §2.5. Note that if the orientation of the edge-crossing arc is reversed, then the edge matrix changes by permuting the coordinates ZjZ_{j} by ZjZnjZ_{j}\leftrightarrow Z_{n-j}; see Figure 10.

Observe that the order in which the elementary matrices 𝐒j\mathbf{S}_{j} are multiplied does not matter in the formula for the edge matrix 𝐌edge(𝐙)\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}), since they are diagonal, but does matter in the formulas for the triangle matrices 𝐌left(𝐗)\mathbf{M}^{\mathrm{left}}(\mathbf{X}) and 𝐌right(𝐗)\mathbf{M}^{\mathrm{right}}(\mathbf{X}).

Lastly, define the clockwise U-turn matrix 𝐔\mathbf{U} in SLn()\mathrm{SL}_{n}(\mathbb{C}) by

𝐔=def((1)n1+11+1)SLn().\mathbf{U}\overset{\text{def}}{=}\left(\begin{smallmatrix}&&&&\\ &&&&(-1)^{n-1}\\ &&&\reflectbox{$\ddots$}&\\ &&+1&&\\ &-1&&&\\ +1&&&&\end{smallmatrix}\right)\in\mathrm{SL}_{n}(\mathbb{C}).

We associate to a clockwise U-turn arc (resp. counterclockwise U-turn arc) γ¯\overline{\gamma}, as shown on the left hand (resp. right hand) side of Figure 11, the U-turn matrix 𝐔\mathbf{U} (resp. transpose 𝐔T\mathbf{U}^{\mathrm{T}} of the U-turn matrix). Again, we have assumed that γ¯\overline{\gamma} has no kinks. Note that 𝐔T=𝐔\mathbf{U}^{\mathrm{T}}=-\mathbf{U} (resp. =𝐔=\mathbf{U}) when nn is even (resp. odd).

Refer to caption
Figure 8. Left matrix (n=5n=5).
Refer to caption
Figure 9. Right matrix (n=5n=5).
Refer to caption
Figure 10. Edge matrices (n=4)(n=4).
Refer to caption
(a) Clockwise U-turn
Refer to caption
(b) Counterclockwise U-turn
Figure 11. U-turn matrices (n=3)(n=3).

2.7. Definition of the SLn\mathrm{SL}_{n}-classical trace polynomials

Let γ\gamma be an immersed oriented closed curve in the surface 𝔖\mathfrak{S} such that γ\gamma is transverse to the ideal triangulation λ\lambda. We want to calculate the classical trace polynomial Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}) in 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) == [X1±1/n,X2±1/n,,XN±1/n]\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] associated to the immersed curve γ\gamma. We say that the polynomial Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n}) is obtained from a ‘state sum’, ‘local-to-global’, or ‘transfer matrices’ construction.

More precisely, as we travel along the curve γ\gamma according to its orientation, assume γ\gamma crosses edges EjkE_{j_{k}} for k=1,2,,Kk=1,2,\dots,K in that order, and assume γ\gamma crosses triangles 𝔗ik\mathfrak{T}_{i_{k}} for k=1,2,,Kk=1,2,\dots,K in that order. As the curve γ\gamma crosses the edge EjkE_{j_{k}}, moving out of the triangle 𝔗ik1\mathfrak{T}_{i_{k-1}} into the triangle 𝔗ik\mathfrak{T}_{i_{k}}, this defines an edge-crossing arc γ¯jk\overline{\gamma}_{j_{k}}; see §2.6 and Figure 10. Put 𝐙jk=((Zjk)j)\mathbf{Z}_{j_{k}}=((Z_{j_{k}})_{j^{\prime}}) and put

𝐌jkedge=def𝐌edge(𝐙jk)SLn(𝒯n1(λ)),\mathbf{M}^{\mathrm{edge}}_{j_{k}}\overset{\text{def}}{=}\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}_{j_{k}})\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)),

the associated edge matrix, where the (Zjk)j’s(Z_{j_{k}})_{j^{\prime}}\text{'s} are the j=1,,n1j^{\prime}=1,\dots,n-1 edge-coordinates attached to the edge EjkE_{j_{k}} measured from right to left as seen from 𝔗ik1\mathfrak{T}_{i_{k-1}}. As γ\gamma traverses the triangle 𝔗ik\mathfrak{T}_{i_{k}} between two edges EjkE_{j_{k}} and Ejk+1E_{j_{k+1}}, it does one of three things:

  • the curve γ\gamma turns left, ending on Ejk+1EjkE_{j_{k+1}}\neq E_{j_{k}}, see Figure 8;

  • or γ\gamma turns right, ending on Ejk+1EjkE_{j_{k+1}}\neq E_{j_{k}}, see Figure 9;

  • or γ\gamma does a U-turn, thereby returning to the same edge Ejk+1=EjkE_{j_{k+1}}=E_{j_{k}}, see Figure 11.

We also keep track of the following winding information: for the first and second items above, the number tkt_{k} of full turns to the right that the curve γ\gamma makes while traversing the triangle 𝔗ik\mathfrak{T}_{i_{k}}; and for the third item above, the number 2tk+12t_{k}+1 of half turns to the right that the curve γ\gamma makes before coming back to the same edge EjkE_{j_{k}}. Note tkt_{k}\in\mathbb{Z}. Note that the turning integer tkt_{k} associated to the curve γ\gamma as it traverses the triangle 𝔗ik\mathfrak{T}_{i_{k}} will only be relevant when nn is even. Let the (Xik)i’s(X_{i_{k}})_{i^{\prime}}\text{'s} be the i=1,,(n1)(n2)/2i^{\prime}=1,\dots,(n-1)(n-2)/2 triangle-coordinates attached to the triangle 𝔗ik\mathfrak{T}_{i_{k}}, and put 𝐗ik=((Xik)i)\mathbf{X}_{i_{k}}=((X_{i_{k}})_{i^{\prime}}); see Figure 8. Let γ\gamma^{\prime} be the curve obtained by ‘pulling tight’ the kinks of γ\gamma. (In particular, γ\gamma and γ\gamma^{\prime} are homotopic, but not, in general, regularly homotopic.) Corresponding to the three items above:

  • the curve γ\gamma^{\prime} turns left, defining a left-moving arc γ¯\overline{\gamma}^{\prime} and an associated left matrix 𝐌ik=𝐌left(𝐗ik)\mathbf{M}^{\prime}_{i_{k}}=\mathbf{M}^{\mathrm{left}}(\mathbf{X}_{i_{k}}), see §2.6 and Figure 8;

  • or the curve γ\gamma^{\prime} turns right, defining a right-moving arc γ¯\overline{\gamma}^{\prime} and an associated right matrix 𝐌ik=𝐌right(𝐗ik)\mathbf{M}^{\prime}_{i_{k}}=\mathbf{M}^{\mathrm{right}}(\mathbf{X}_{i_{k}}), see §2.6 and Figure 9;

  • or the curve γ\gamma^{\prime} does a clockwise or counterclockwise U-turn, thereby returning to the same edge Ejk+1=EjkE_{j_{k+1}}=E_{j_{k}} and defining a U-turn arc γ¯\overline{\gamma}^{\prime}, see §2.6 and Figure 11.

In the first two cases, where γ¯\overline{\gamma}^{\prime} is either left- or right-moving, put

𝐌ik=def(1)(n1)tk𝐌ikSLn(𝒯n1(λ)),\mathbf{M}_{i_{k}}\overset{\text{def}}{=}(-1)^{(n-1)t_{k}}\mathbf{M}^{\prime}_{i_{k}}\in\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\lambda)),

and in the third case, where γ¯\overline{\gamma}^{\prime} is a U-turn, put

𝐌ik=def(1)(n1)tk𝐔SLn(),\mathbf{M}_{i_{k}}\overset{\text{def}}{=}(-1)^{(n-1)t_{k}}\mathbf{U}\in\mathrm{SL}_{n}(\mathbb{C}),

where 𝐔\mathbf{U} is the U-turn matrix defined in §2.6. Note, in the third case, that this is consistent with what was said in §2.6, where, in the case γ¯\overline{\gamma} has no kinks, γ¯=γ¯\overline{\gamma}^{\prime}=\overline{\gamma} is associated to 𝐔\mathbf{U} (resp. 𝐔T=(1)n1𝐔\mathbf{U}^{\mathrm{T}}=(-1)^{n-1}\mathbf{U}) if γ¯\overline{\gamma} travels clockwise hence tk=0t_{k}=0 (resp. counterclockwise hence tk=1t_{k}=-1).

Definition 6.

The SLn\mathrm{SL}_{n}-classical trace polynomial Tr~γ(Xi1/n)𝒯n1(λ)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n})\in\mathscr{T}_{n}^{1}(\lambda) associated to the immersed oriented closed curve γ\gamma, transverse to the ideal triangulation λ\lambda, is defined by

Tr~γ(Xi1/n)=defTr(𝐌j1edge𝐌i1𝐌j2edge𝐌i2𝐌jKedge𝐌iK)𝒯n1(λ)=[X1±1/n,,XN±1/n],\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n})\overset{\text{def}}{=}\mathrm{Tr}(\mathbf{M}^{\mathrm{edge}}_{j_{1}}\mathbf{M}_{i_{1}}\mathbf{M}^{\mathrm{edge}}_{j_{2}}\mathbf{M}_{i_{2}}\cdots\mathbf{M}^{\mathrm{edge}}_{j_{K}}\mathbf{M}_{i_{K}})\in\mathscr{T}_{n}^{1}(\lambda)=\mathbb{C}[X_{1}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}],

where on the right hand side we have taken the usual matrix trace. Note that this is independent of where one starts along the curve γ\gamma, by the conjugation invariance of the trace.

2.8. Relation to Fock–Goncharov theory

In this subsection, we assume (for simplicity) the surface 𝔖\mathfrak{S} has empty boundary, 𝔖=\partial\mathfrak{S}=\varnothing. A complete flag EFlag(n)E\in\mathrm{Flag}(\mathbb{C}^{n}) is a maximal nested sequence of distinct sub-spaces {0}=E(0)E(1)E(2)E(n)=n\left\{0\right\}=E^{(0)}\subsetneq E^{(1)}\subsetneq E^{(2)}\subsetneq\cdots\subsetneq E^{(n)}=\mathbb{C}^{n}. The group PSLn()\mathrm{PSL}_{n}(\mathbb{C}) acts on the set of complete flags by matrix multiplication.

In [FG06b], Fock–Goncharov define the moduli space of framed local systems, also called the 𝒳\mathscr{X}-moduli space, whose complex points have been denoted in this paper by PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}}. A framed local system over \mathbb{C} is, roughly speaking, a pair (ρ,ξ)(\rho,\xi) where ρ:π1(𝔖)PSLn()\rho:\pi_{1}(\mathfrak{S})\to\mathrm{PSL}_{n}(\mathbb{C}) is a group homomorphism and ξ\xi assigns to each puncture pp a complete flag ξ(p)\xi(p) invariant under the monodromy of any peripheral curve γp\gamma_{p} around pp, that is, ρ(γp)(ξ(p))=ξ(p)Flag(n)\rho(\gamma_{p})(\xi(p))=\xi(p)\in\mathrm{Flag}(\mathbb{C}^{n}). Framed local systems are considered up to equivalence under the action of PSLn()\mathrm{PSL}_{n}(\mathbb{C}), which in particular acts on representations ρ\rho by conjugation.

Fock–Goncharov associate to each ideal triangulation λ\lambda of 𝔖\mathfrak{S} a coordinate chart UλU_{\lambda} for the moduli space PSLn()(𝔖)fr\mathscr{R}_{\mathrm{PSL}_{n}(\mathbb{C})}(\mathfrak{S})_{\mathrm{fr}} parametrized by non-zero complex coordinates XiX_{i}. Here, NN is the number of dots associated to the ideal triangulation λ\lambda; see §2.3, 2.4. In particular, choosing λ\lambda and NN-many coordinates XiX_{i} determines a representation ρ=ρ(Xi)\rho=\rho(X_{i}) up to conjugation. Since ρ\rho is valued in PSLn()\mathrm{PSL}_{n}(\mathbb{C}), the trace Tr(ρ(γ))\mathrm{Tr}(\rho(\gamma)) for any γπ1(𝔖)\gamma\in\pi_{1}(\mathfrak{S}) is well-defined only up to multiplication by a nn-root of unity.

Theorem 7 ([FG06b], SLn\mathrm{SL}_{n}-classical trace polynomials).

Fix an ideal triangulation λ\lambda of the punctured surface 𝔖\mathfrak{S}. Let ρ=ρ(Xi)\rho=\rho(X_{i}) be a representation ρ:π1(𝔖)PSLn()\rho:\pi_{1}(\mathfrak{S})\to\mathrm{PSL}_{n}(\mathbb{C}) given by Fock–Goncharov coordinates XiX_{i} as above. Moreover, choose arbitrary nn-roots Xi1/n{0}X_{i}^{1/n}\in\mathbb{C}-\{0\}. Then for each immersed oriented closed curve γ\gamma in 𝔖\mathfrak{S} transverse to the ideal triangulation λ\lambda, the trace Tr(ρ(γ))\mathrm{Tr}(\rho(\gamma)) equals the evaluated classical trace polynomial Tr~γ(Xi1/n)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/n})\in\mathbb{C} (Definition 6) up to multiplication by a nn-root of unity. ∎

3. Quantum matrices for SLn\mathrm{SL}_{n}

In this section, we will define quantum versions of the classical polynomial algebra and the classical local monodromy matrices, and relate them to the quantum special linear group SLnq\mathrm{SL}_{n}^{q}. Throughout, let q{0}q\in\mathbb{C}-\left\{0\right\} and ω=q1/n2\omega=q^{1/n^{2}} be a n2n^{2}-root of qq. Technically, also choose ω1/2\omega^{1/2}.

3.1. Quantum tori, matrix algebras, and the Weyl quantum ordering

3.1.1. Quantum tori

For a natural number N>0N^{\prime}>0, let 𝐏\mathbf{P} (for ‘Poisson’) be an integer N×NN^{\prime}\times N^{\prime} anti-symmetric matrix.

Definition 8.

The quantum torus (with nn-roots) 𝒯ω(𝐏)\mathscr{T}^{\omega}(\mathbf{P}) associated to 𝐏\mathbf{P} is the quotient of the free algebra {X11/n,X11/n,,XN1/n,XN1/n}\mathbb{C}\{X_{1}^{1/n},X_{1}^{-1/n},\dots,X_{N^{\prime}}^{1/n},X_{N^{\prime}}^{-1/n}\} in the indeterminates Xi±1/nX_{i}^{\pm 1/n} by the two-sided ideal generated by the relations

Ximi/nXjmj/n=ω𝐏ijmimjXjmj/nXimi/n(mi,mj),Xim/nXim/n=Xim/nXim/n=1(m).X_{i}^{m_{i}/n}X_{j}^{m_{j}/n}=\omega^{\mathbf{P}_{ij}m_{i}m_{j}}X_{j}^{m_{j}/n}X_{i}^{m_{i}/n}\,\,(m_{i},m_{j}\in\mathbb{Z}),\,\,X_{i}^{m/n}X_{i}^{-{m/n}}=X_{i}^{-{m/n}}X_{i}^{m/n}=1\,\,(m\in\mathbb{Z}).

Put Xi±1=(Xi±1/n)nX_{i}^{\pm 1}=(X_{i}^{\pm 1/n})^{n}. We refer to the Xi±1/nX_{i}^{\pm 1/n} as generators, and the XiX_{i} as quantum coordinates, or just coordinates. Define the subset of fractions

/n=def{m/n;m}.\mathbb{Z}/n\overset{\text{def}}{=}\left\{{m/n};m\in\mathbb{Z}\right\}\subseteq\mathbb{Q}.

Written in terms of the coordinates XiX_{i} and the fractions r/nr\in\mathbb{Z}/n, the relations above become

XiriXjrj=q𝐏ijrirjXjrjXiri(ri,rj/n),XirXir=XirXir=1(r/n).X_{i}^{r_{i}}X_{j}^{r_{j}}=q^{\mathbf{P}_{ij}r_{i}r_{j}}X_{j}^{r_{j}}X_{i}^{r_{i}}\,\,(r_{i},r_{j}\in\mathbb{Z}/n),\,\,X_{i}^{r}X_{i}^{-r}=X_{i}^{-r}X_{i}^{r}=1\,\,(r\in\mathbb{Z}/n).

3.1.2. Matrix algebras

Definition 9.

Let 𝒯\mathscr{T} be a, possibly non-commutative, algebra, and let nn^{\prime} be a positive integer. The matrix algebra with coefficients in 𝒯\mathscr{T}, denoted Mn(𝒯)\mathrm{M}_{n^{\prime}}(\mathscr{T}), is the complex vector space of n×nn^{\prime}\times n^{\prime} matrices, equipped with the usual multiplicative structure. Specifically, the product 𝐌𝐍\mathbf{M}\mathbf{N} of two matrices 𝐌\mathbf{M} and 𝐍\mathbf{N} is defined entry-wise by

(𝐌𝐍)ij=defk=1n𝐌ik𝐍kj𝒯(1i,jn).(\mathbf{M}\mathbf{N})_{ij}\overset{\text{def}}{=}\sum_{k=1}^{n^{\prime}}\mathbf{M}_{ik}\mathbf{N}_{kj}\in\mathscr{T}\,\,\left(1\leqslant i,j\leqslant n^{\prime}\right).

As usual, the entry 𝐌ij\mathbf{M}_{ij} of a matrix 𝐌\mathbf{M} is the entry in the ii-th row and jj-th column. Note that the order of 𝐌ik\mathbf{M}_{ik} and 𝐍kj\mathbf{N}_{kj} in the above equation matters since these elements might not commute in 𝒯\mathscr{T}.

3.1.3. Weyl quantum ordering

If 𝒯\mathscr{T} is a quantum torus (§3.1.1), then there is a linear map

[]:{X1±1/n,,XN±1/n}𝒯,[-]\colon\mathbb{C}\{X_{1}^{\pm 1/n},\dots,X_{N^{\prime}}^{\pm 1/n}\}\to\mathscr{T},

from the free algebra to 𝒯\mathscr{T}, called the Weyl quantum ordering, defined by the property that a word Xi1r1Xi2r2XikrkX_{i_{1}}^{r_{1}}X_{i_{2}}^{r_{2}}\cdots X_{i_{k}}^{r_{k}} for ra/nr_{a}\in\mathbb{Z}/n (note iai_{a} may equal ibi_{b} if aba\neq b) is mapped to

[Xi1r1Xi2r2Xikrk]=def(q121a<bk𝐏iaibrarb)Xi1r1Xi2r2Xikrk𝒯.[X_{i_{1}}^{r_{1}}X_{i_{2}}^{r_{2}}\cdots X_{i_{k}}^{r_{k}}]\overset{\text{def}}{=}\left(q^{-\frac{1}{2}\sum_{1\leqslant a<b\leqslant k}\mathbf{P}_{i_{a}i_{b}}r_{a}r_{b}}\right)X_{i_{1}}^{r_{1}}X_{i_{2}}^{r_{2}}\cdots X_{i_{k}}^{r_{k}}\in\mathscr{T}.

Also, the empty word is mapped to 11. Note the Weyl ordering [][-] depends on the choice of ω1/2\omega^{1/2}; see the beginning of §3. The Weyl ordering is specially designed to satisfy the symmetry

[Xi1r1Xikrk]=[Xiσ(1)rσ(1)Xiσ(k)rσ(k)]𝒯,[X_{i_{1}}^{r_{1}}\cdots X_{i_{k}}^{r_{k}}]=[X_{i_{\sigma(1)}}^{r_{\sigma(1)}}\cdots X_{i_{\sigma(k)}}^{r_{\sigma(k)}}]\in\mathscr{T},

for every permutation σ\sigma of {1,,k}\left\{1,\dots,k\right\}. Also, [Xi1/nXi1/n]=1[X_{i}^{1/n}X_{i}^{-1/n}]=1. Let

[]:[X1±1/n,,XN±1/n]𝒯,[-]\colon\mathbb{C}[X_{1}^{\pm 1/n},\dots,X_{N^{\prime}}^{\pm 1/n}]\to\mathscr{T},

be the induced linear map from the commutative Laurent polynomial algebra to 𝒯\mathscr{T}. This determines a linear map of matrix algebras

[]:Mn([X1±1/n,,XN±1/n])Mn(𝒯),[𝐌]ij=def[𝐌ij]𝒯.[-]\colon\mathrm{M}_{n^{\prime}}(\mathbb{C}[X_{1}^{\pm 1/n},\dots,X_{N^{\prime}}^{\pm 1/n}])\to\mathrm{M}_{n^{\prime}}(\mathscr{T}),\,\,[\mathbf{M}]_{ij}\overset{\text{def}}{=}[\mathbf{M}_{ij}]\in\mathscr{T}.

3.2. Fock–Goncharov quantum torus for a triangle

Let Γ(Θn)\Gamma(\Theta_{n}) denote the set of corner vertices Γ(Θn)={(n,0,0),(0,n,0),(0,0,n)}\Gamma(\Theta_{n})=\left\{(n,0,0),(0,n,0),(0,0,n)\right\} of the discrete triangle Θn\Theta_{n}; see §2.2.

Define a function

𝐏:(ΘnΓ(Θn))×(ΘnΓ(Θn)){2,1,0,1,2},\mathbf{P}:(\Theta_{n}-\Gamma(\Theta_{n}))\times(\Theta_{n}-\Gamma(\Theta_{n}))\to\left\{-2,-1,0,1,2\right\},

using the quiver with vertex set ΘnΓ(Θn)\Theta_{n}-\Gamma(\Theta_{n}) illustrated in Figure 12. The function 𝐏\mathbf{P} is defined by sending the ordered tuple (v1,v2)(v_{1},v_{2}) of vertices of ΘnΓ(Θn)\Theta_{n}-\Gamma(\Theta_{n}) to 22 (resp. 2-2) if there is a solid arrow pointing from v1v_{1} to v2v_{2} (resp. v2v_{2} to v1v_{1}), to 11 (resp. 1-1) if there is a dotted arrow pointing from v1v_{1} to v2v_{2} (resp. v2v_{2} to v1v_{1}), and to 0 if there is no arrow connecting v1v_{1} and v2v_{2}. Note that internal arrows are solid, and boundary arrows are dotted. By labeling the vertices of ΘnΓ(Θn)\Theta_{n}-\Gamma(\Theta_{n}) by their coordinates (a,b,c)(a,b,c) we may think of the function 𝐏\mathbf{P} as a N×NN\times N anti-symmetric matrix 𝐏=(𝐏abc,abc)\mathbf{P}=(\mathbf{P}_{abc,a^{\prime}b^{\prime}c^{\prime}}) called the Poisson matrix associated to the quiver. Here, N=3(n1)+(n1)(n2)/2N=3(n-1)+(n-1)(n-2)/2; see §2.3.

Definition 10.

The Fock–Goncharov quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}), also denoted [X1±1/n,,XN±1/n]ω\mathbb{C}[X_{1}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}]^{\omega}, associated to the triangle 𝔗\mathfrak{T} is defined to be the quantum torus 𝒯ω(𝐏)\mathscr{T}^{\omega}(\mathbf{P}) determined by the N×NN\times N Poisson matrix 𝐏\mathbf{P}, with generators Xi±1/n=Xabc±1/nX_{i}^{\pm 1/n}=X_{abc}^{\pm 1/n} for all (a,b,c)ΘnΓ(Θn)(a,b,c)\in\Theta_{n}-\Gamma(\Theta_{n}). Note that when q=ω=1q=\omega=1 this recovers the classical polynomial algebra 𝒯n1(𝔗)\mathscr{T}_{n}^{1}(\mathfrak{T}) for 𝔗\mathfrak{T}; see §2.4.

As a notational convention, for j=1,2,,n1j=1,2,\dots,n-1 we write Zj±1/nZ_{j}^{\pm 1/n} (resp. Zj±1/nZ_{j}^{\prime\pm 1/n} and Zj′′±1/nZ_{j}^{\prime\prime\pm 1/n}) in place of Xj0(nj)±1/nX_{j0(n-j)}^{\pm 1/n} (resp. Xj(nj)0±1/nX_{j(n-j)0}^{\pm 1/n} and X0j(nj)±1/nX_{0j(n-j)}^{\pm 1/n}); see Figure 13. So, triangle-coordinates will be denoted Xi=XabcX_{i}=X_{abc} for (a,b,c)Int(Θn)(a,b,c)\in\mathrm{Int}(\Theta_{n}) while edge-coordinates will be denoted Zj,Zj,Zj′′Z_{j},Z^{\prime}_{j},Z^{\prime\prime}_{j}.

Remark 11.

Intuitively speaking, we think of the ZZ-coordinates as quantizations of ‘half’ of their corresponding classical edge-coordinates. This is because the ‘other half’ of each coordinate lives in an adjacent triangle. When viewed inside an ideal triangulation λ\lambda, an edge EE of λ\lambda ‘splits’ this classical edge-coordinate into its two ‘quantum halves’. Compare Figure 16.

3.3. Quantum left and right matrices

Although the general (global) definition of the SLn\mathrm{SL}_{n}-quantum trace polynomials (§5.3) is somewhat technical (requiring that one keep track of the ordering of the non-commuting quantum torus variables), the extension of the local monodromy matrices (§2.6) to the quantum setting is more straightforward, just using the Weyl quantum ordering (§3.1.3) to symmetrize the variables.

3.3.1. Weyl quantum ordering for the Fock–Goncharov quantum torus

Let 𝒯=𝒯nω(𝔗)\mathscr{T}=\mathscr{T}_{n}^{\omega}(\mathfrak{T}) be the Fock–Goncharov quantum torus (§3.2)\ref{sec:Fock-Goncharov-algebra-for-a-triangle}). Then the Weyl ordering [][-] of §3.1.3 gives a map

[]:Mn(𝒯n1(𝔗))Mn(𝒯nω(𝔗)),[-]:\mathrm{M}_{n}(\mathscr{T}_{n}^{1}(\mathfrak{T}))\to\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})),

where we have used the identification 𝒯n1(𝔗)[X1±1/n,X2±1/n,,XN±1/n]\mathscr{T}_{n}^{1}(\mathfrak{T})\cong\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] discussed in §3.2.

Refer to caption
Figure 12. Quiver defining the Fock–Goncharov quantum torus (n=5)(n=5).

3.3.2. Quantum left and right matrices

Let 𝔗\mathfrak{T} be a triangle. An extended left-moving arc γ¯\overline{\gamma} is similar to a left-moving arc, from §2.6, except that it extends all the way to the two distinct edges of the triangle 𝔗\mathfrak{T}; see Figure 13. We think of an extended left-moving arc γ¯\overline{\gamma} as the concatenation of ‘half’ of an edge-crossing arc γ¯11/2\overline{\gamma}^{1/2}_{1} together with a left-moving arc γ¯2\overline{\gamma}_{2} together with another half of an edge-crossing arc γ¯31/2\overline{\gamma}^{1/2}_{3}, as indicated in Figure 13; compare Remark 11. We refer to these halves of edge-crossing arcs as half-edge-crossing arcs. Similarly, we define extended right-moving arcs γ¯\overline{\gamma}.

Defined as in §2.6 are left matrices 𝐌left(𝐗)\mathbf{M}^{\mathrm{left}}(\mathbf{X}), right matrices 𝐌right(𝐗)\mathbf{M}^{\mathrm{right}}(\mathbf{X}), and edge matrices 𝐌edge(𝐙)\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}) in SLn(𝒯n1(𝔗))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\mathfrak{T})) associated to non-extended left-moving arcs (Figure 8), non-extended right-moving arcs (Figure 9), and half-edge-crossing arcs, respectively.

Definition 12.

Put vectors 𝐗=(Xi)\mathbf{X}=(X_{i}), 𝐙=(Zj)\mathbf{Z}=(Z_{j}), 𝐙=(Zj)\mathbf{Z}^{\prime}=(Z^{\prime}_{j}), and 𝐙′′=(Zj′′)\mathbf{Z}^{\prime\prime}=(Z^{\prime\prime}_{j}) as in Figure 13. To an extended left-moving arc γ¯\overline{\gamma}, as in Figure 13, we associate a quantum left matrix 𝐋ω\mathbf{L}^{\omega} in Mn(𝒯nω(𝔗))\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})) by the formula

𝐋ω=def𝐋ω(𝐙,𝐗,𝐙)=def[𝐌edge(𝐙)𝐌left(𝐗)𝐌edge(𝐙)]Mn(𝒯nω(𝔗)),\mathbf{L}^{\omega}\overset{\text{def}}{=}\mathbf{L}^{\omega}(\mathbf{Z},\mathbf{X},\mathbf{Z}^{\prime})\overset{\text{def}}{=}[\mathbf{M}^{\mathrm{edge}}(\mathbf{Z})\mathbf{M}^{\mathrm{left}}(\mathbf{X})\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}^{\prime})]\in\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})),

where we have applied the Weyl quantum ordering [][-] discussed in §3.3.1 to the product 𝐌edge(𝐙)𝐌left(𝐗)𝐌edge(𝐙)\mathbf{M}^{\mathrm{edge}}(\mathbf{Z})\mathbf{M}^{\mathrm{left}}(\mathbf{X})\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}^{\prime}) of classical matrices in Mn(𝒯n1(𝔗))\mathrm{M}_{n}(\mathscr{T}_{n}^{1}(\mathfrak{T})) (actually, in SLn(𝒯n1(𝔗))\mathrm{SL}_{n}(\mathscr{T}_{n}^{1}(\mathfrak{T}))). This just means that we apply the Weyl ordering to each entry of the classical matrix. Similarly, to an extended right-moving arc γ¯\overline{\gamma}, as in Figure 13, we associate a quantum right matrix 𝐑ω\mathbf{R}^{\omega} in Mn(𝒯nω(𝔗))\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})) by the formula

𝐑ω=def𝐑ω(𝐙,𝐗,𝐙′′)=def[𝐌edge(𝐙)𝐌right(𝐗)𝐌edge(𝐙′′)]Mn(𝒯nω(𝔗)).\mathbf{R}^{\omega}\overset{\text{def}}{=}\mathbf{R}^{\omega}(\mathbf{Z},\mathbf{X},\mathbf{Z}^{\prime\prime})\overset{\text{def}}{=}[\mathbf{M}^{\mathrm{edge}}(\mathbf{Z})\mathbf{M}^{\mathrm{right}}(\mathbf{X})\mathbf{M}^{\mathrm{edge}}(\mathbf{Z}^{\prime\prime})]\in\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})).
Refer to caption
Figure 13. Quantum left and right matrices (n=5)(n=5).

3.4. Quantum SLn\mathrm{SL}_{n} and its points: first result

(For a more theoretical discussion about quantum SLn\mathrm{SL}_{n}, see Appendix A.) Let 𝒯\mathscr{T} be a, possibly non-commutative, algebra.

Definition 13.

A 2×22\times 2 matrix 𝐌=(abcd)\mathbf{M}=\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right) in M2(𝒯)\mathrm{M}_{2}(\mathscr{T}) is a 𝒯\mathscr{T}-point of the quantum matrix algebra M2q\mathrm{M}_{2}^{q}, denoted 𝐌M2q(𝒯)M2(𝒯)\mathbf{M}\in\mathrm{M}_{2}^{q}(\mathscr{T})\subseteq\mathrm{M}_{2}(\mathscr{T}), if

(\ast) ba=qab,dc=qcd,ca=qac,db=qbd,bc=cb,daad=(qq1)bc𝒯.ba=qab,\,\,dc=qcd,\,\,ca=qac,\,\,db=qbd,\,\,bc=cb,\,\,da-ad=(q-q^{-1})bc\in\mathscr{T}.

A matrix 𝐌M2(𝒯)\mathbf{M}\in\mathrm{M}_{2}(\mathscr{T}) is a 𝒯\mathscr{T}-point of the quantum special linear group SL2q\mathrm{SL}_{2}^{q}, denoted 𝐌SL2q(𝒯)M2q(𝒯)M2(𝒯)\mathbf{M}\in\mathrm{SL}_{2}^{q}(\mathscr{T})\subseteq\mathrm{M}_{2}^{q}(\mathscr{T})\subseteq\mathrm{M}_{2}(\mathscr{T}), if 𝐌M2q(𝒯)\mathbf{M}\in\mathrm{M}_{2}^{q}(\mathscr{T}) and the quantum determinant

Detq(𝐌)=defadq1bc=1𝒯.\mathrm{Det}^{q}(\mathbf{M})\overset{\text{def}}{=}ad-q^{-1}bc=1\in\mathscr{T}.

These notions are also defined for n×nn\times n matrices, as follows.

Definition 14.

A matrix 𝐌Mn(𝒯)\mathbf{M}\in\mathrm{M}_{n}(\mathscr{T}) is a 𝒯\mathscr{T}-point of the quantum matrix algebra Mnq\mathrm{M}_{n}^{q}, denoted 𝐌Mnq(𝒯)Mn(𝒯)\mathbf{M}\in\mathrm{M}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}(\mathscr{T}), if every 2×22\times 2 submatrix (𝐌ik𝐌im𝐌jk𝐌jm)\left(\begin{smallmatrix}\mathbf{M}_{ik}&\mathbf{M}_{im}\\ \mathbf{M}_{jk}&\mathbf{M}_{jm}\end{smallmatrix}\right) of 𝐌\mathbf{M} is a 𝒯\mathscr{T}-point of M2q\mathrm{M}_{2}^{q}. That is,

MimMik=qMikMim,𝐌jm𝐌jk=q𝐌jk𝐌jm,𝐌jk𝐌ik=q𝐌ik𝐌jk,MjmMim=qMimMjm,\displaystyle\textbf{M}_{im}\textbf{M}_{ik}=q\textbf{M}_{ik}\textbf{M}_{im},\,\,\mathbf{M}_{jm}\mathbf{M}_{jk}=q\mathbf{M}_{jk}\mathbf{M}_{jm},\,\,\mathbf{M}_{jk}\mathbf{M}_{ik}=q\mathbf{M}_{ik}\mathbf{M}_{jk},\,\,\textbf{M}_{jm}\textbf{M}_{im}=q\textbf{M}_{im}\textbf{M}_{jm},
MimMjk=MjkMim,MjmMikMikMjm=(qq1)MimMjk,\displaystyle\textbf{M}_{im}\textbf{M}_{jk}=\textbf{M}_{jk}\textbf{M}_{im},\,\,\textbf{M}_{jm}\textbf{M}_{ik}-\textbf{M}_{ik}\textbf{M}_{jm}=(q-q^{-1})\textbf{M}_{im}\textbf{M}_{jk},

for all i<ji<j and k<mk<m, where 1i,j,k,mn1\leqslant i,j,k,m\leqslant n. A matrix 𝐌Mn(𝒯)\mathbf{M}\in\mathrm{M}_{n}(\mathscr{T}) is a 𝒯\mathscr{T}-point of the quantum special linear group SLnq\mathrm{SL}_{n}^{q}, denoted 𝐌SLnq(𝒯)Mnq(𝒯)Mn(𝒯)\mathbf{M}\in\mathrm{SL}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}(\mathscr{T}), if both 𝐌Mnq(𝒯)\mathbf{M}\in\mathrm{M}_{n}^{q}(\mathscr{T}) and Detq(𝐌)=1\mathrm{Det}^{q}(\mathbf{M})=1. Here, the quantum determinant Detq(𝐌)𝒯\mathrm{Det}^{q}(\mathbf{M})\in\mathscr{T} of a matrix 𝐌Mn(𝒯)\mathbf{M}\in\mathrm{M}_{n}(\mathscr{T}) is

Detq(𝐌)=defσSn(q1)(σ)𝐌1σ(1)𝐌2σ(2)𝐌nσ(n)𝒯,\mathrm{Det}^{q}(\mathbf{M})\overset{\text{def}}{=}\sum_{\sigma\in S_{n}}(-q^{-1})^{\ell(\sigma)}\mathbf{M}_{1\sigma(1)}\mathbf{M}_{2\sigma(2)}\cdots\mathbf{M}_{n\sigma(n)}\in\mathscr{T},

where the length (σ)\ell(\sigma) of the permutation σSn\sigma\in S_{n} is the minimum number of factors appearing in a decomposition of σ\sigma as a product of adjacent transpositions (i,i+1)(i,i+1); see, for example, [BG02, Chapter I.2].

Remark 15.

Note that the definitions satisfy the property that if a 𝒯\mathscr{T}-point 𝐌Mnq(𝒯)Mn(𝒯)\mathbf{M}\in\mathrm{M}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}(\mathscr{T}) is a triangular matrix, then the diagonal entries 𝐌ii𝒯\mathbf{M}_{ii}\in\mathscr{T} commute, and Detq(𝐌)=i𝐌ii𝒯\mathrm{Det}^{q}(\mathbf{M})=\prod_{i}\mathbf{M}_{ii}\in\mathscr{T}.

Note also that the subsets Mnq(𝒯)Mn(𝒯)\mathrm{M}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}(\mathscr{T}) and SLnq(𝒯)Mn(𝒯)\mathrm{SL}_{n}^{q}(\mathscr{T})\subseteq\mathrm{M}_{n}(\mathscr{T}) are generally not closed under matrix multiplication.

Take 𝒯=𝒯nω(𝔗)\mathscr{T}=\mathscr{T}_{n}^{\omega}(\mathfrak{T}) to be the Fock–Goncharov quantum torus for the triangle 𝔗\mathfrak{T}, as defined in §3.2. Let 𝐋ω\mathbf{L}^{\omega} and 𝐑ω\mathbf{R}^{\omega} in Mn(𝒯nω(𝔗))\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})) be the quantum left and right matrices, respectively, as defined in Definition 12. In a companion paper, we prove:

Theorem 16 ([Dou21], SLn\mathrm{SL}_{n}-quantum matrices).

The quantum left and right matrices,

𝐋ω=𝐋ω(𝐙,𝐗,𝐙)and 𝐑ω=𝐑ω(𝐙,𝐗,𝐙′′)Mn(𝒯nω(𝔗)),\mathbf{L}^{\omega}=\mathbf{L}^{\omega}(\mathbf{Z},\mathbf{X},\mathbf{Z}^{\prime})\,\,\text{and }\,\,\mathbf{R}^{\omega}=\mathbf{R}^{\omega}(\mathbf{Z},\mathbf{X},\mathbf{Z}^{\prime\prime})\in\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})),

are 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T})-points of the quantum special linear group SLnq\mathrm{SL}_{n}^{q}. That is, 𝐋ω,𝐑ωSLnq(𝒯nω(𝔗))Mn(𝒯nω(𝔗))\mathbf{L}^{\omega},\mathbf{R}^{\omega}\in\mathrm{SL}_{n}^{q}(\mathscr{T}_{n}^{\omega}(\mathfrak{T}))\subseteq\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})). ∎

The proof uses a quantum version of Fock–Goncharov snakes; see Remark 5. See also Remark 37 for recent related work.

3.5. Examples

3.5.1. SL3\mathrm{SL}_{3} example.

Consider the case n=3n=3; see Figure 14. On the right hand side, we show the quiver defining the commutation relations in the quantum torus 𝒯3ω(𝔗)\mathscr{T}_{3}^{\omega}(\mathfrak{T}), recalling Figure 12 and the definitions of §3.1.1 and 3.2. For instance, the following are some sample commutation relations:

XZ=q2ZX,XW=q2WX,ZW=qWZ,ZW=q2WZ.XZ^{\prime}=q^{2}Z^{\prime}X,\,\,XW^{\prime}=q^{-2}W^{\prime}X,\,\,ZW=qWZ,\,\,ZW^{\prime}=q^{2}W^{\prime}Z.

Then, the quantum left and right matrices are computed as

𝐋ω=[W13Z23(WZZ1)(1111)X13(X111)(1111)Z13W23(ZWW1)]\displaystyle\mathbf{L}^{\omega}=\left[W^{-\frac{1}{3}}Z^{-\frac{2}{3}}\left(\begin{smallmatrix}WZ&&\\ &Z&\\ &&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&1&\\ &1&\\ &&1\end{smallmatrix}\right)X^{-\frac{1}{3}}\left(\begin{smallmatrix}X&&\\ &1&1\\ &&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&1&\\ &1&\\ &&1\end{smallmatrix}\right)Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\left(\begin{smallmatrix}Z^{\prime}W^{\prime}&&\\ &W^{\prime}&\\ &&1\end{smallmatrix}\right)\right]
=([W23Z13X23Z23W13][W23Z13X23Z13W13]+[W23Z13X13Z13W13][W23Z13X13Z13W23]0[W13Z13X13Z13W13][W13Z13X13Z13W23]00[W13Z23X13Z13W23]),\displaystyle=\left(\begin{smallmatrix}\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{\frac{2}{3}}Z^{\prime\frac{2}{3}}W^{\prime\frac{1}{3}}\right]&\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{\frac{2}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]+\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]&\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\right]\\ 0&\left[W^{-\frac{1}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]&\left[W^{-\frac{1}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\right]\\ 0&0&\left[W^{-\frac{1}{3}}Z^{-\frac{2}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\right]\end{smallmatrix}\right),

and

𝐑ω=[W13Z23(WZZ1)(1111)X+13(111X1)(1111)Z13W23(ZWW1)]\displaystyle\mathbf{R}^{\omega}=\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}\left(\begin{smallmatrix}W^{\prime}Z^{\prime}&&\\ &Z^{\prime}&\\ &&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&&\\ &1&\\ &1&1\end{smallmatrix}\right)X^{+\frac{1}{3}}\left(\begin{smallmatrix}1&&\\ 1&1&\\ &&X^{-1}\end{smallmatrix}\right)\left(\begin{smallmatrix}1&&\\ &1&\\ &1&1\end{smallmatrix}\right)Z^{-\frac{1}{3}}W^{-\frac{2}{3}}\left(\begin{smallmatrix}ZW&&\\ &W&\\ &&1\end{smallmatrix}\right)\right]
=([W23Z13X13Z23W13]00[W13Z13X13Z23W13][W13Z13X13Z13W13]0[W13Z23X13Z23W13][W13Z23X13Z13W13]+[W13Z23X23Z13W13][W13Z23X23Z13W23]).\displaystyle=\left(\begin{smallmatrix}\left[W^{\prime\frac{2}{3}}Z^{\prime\frac{1}{3}}X^{\frac{1}{3}}Z^{\frac{2}{3}}W^{\frac{1}{3}}\right]&0&0\\ \left[W^{\prime-\frac{1}{3}}Z^{\prime\frac{1}{3}}X^{\frac{1}{3}}Z^{\frac{2}{3}}W^{\frac{1}{3}}\right]&\left[W^{\prime-\frac{1}{3}}Z^{\prime\frac{1}{3}}X^{\frac{1}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]&0\\ \left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{\frac{1}{3}}Z^{\frac{2}{3}}W^{\frac{1}{3}}\right]&\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{\frac{1}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]+\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{-\frac{2}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]&\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{-\frac{2}{3}}Z^{-\frac{1}{3}}W^{-\frac{2}{3}}\right]\end{smallmatrix}\right).

Theorem 16 says that these two matrices are elements of SL3q(𝒯3ω(𝔗))\mathrm{SL}_{3}^{q}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})). For instance, the entries a,b,c,da,b,c,d of the 2×22\times 2 sub-matrix of 𝐋ω\mathbf{L}^{\omega},

(abcd)=(𝐋12ω𝐋13ω𝐋22ω𝐋23ω)=([W23Z13X23Z13W13]+[W23Z13X13Z13W13][W23Z13X13Z13W23][W13Z13X13Z13W13][W13Z13X13Z13W23]),\begin{split}\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)=\left(\begin{smallmatrix}\mathbf{L}^{\omega}_{12}&\mathbf{L}^{\omega}_{13}\\ \mathbf{L}^{\omega}_{22}&\mathbf{L}^{\omega}_{23}\end{smallmatrix}\right)=\left(\begin{smallmatrix}\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{\frac{2}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]+\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]&\left[W^{\frac{2}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\right]\\ \left[W^{-\frac{1}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime\frac{1}{3}}\right]&\left[W^{-\frac{1}{3}}Z^{\frac{1}{3}}X^{-\frac{1}{3}}Z^{\prime-\frac{1}{3}}W^{\prime-\frac{2}{3}}\right]\end{smallmatrix}\right),\end{split}

satisfy Equation (\ast13). For a computer verification of this, see Appendix B. We also demonstrate in the appendix that Equation (\ast13) is satisfied by the entries a,b,c,da,b,c,d of the 2×22\times 2 sub-matrix of 𝐑ω\mathbf{R}^{\omega},

(abcd)=(𝐑21ω𝐑22ω𝐑31ω𝐑32ω)=([W13Z13X13Z23W13][W13Z13X13Z13W13][W13Z23X13Z23W13][W13Z23X13Z13W13]+[W13Z23X23Z13W13]).\begin{split}\left(\begin{smallmatrix}a&b\\ c&d\end{smallmatrix}\right)\!=\!\left(\begin{smallmatrix}\mathbf{R}^{\omega}_{21}&\mathbf{R}^{\omega}_{22}\\ \mathbf{R}^{\omega}_{31}&\mathbf{R}^{\omega}_{32}\end{smallmatrix}\right)\!=\!\left(\begin{smallmatrix}\left[W^{\prime-\frac{1}{3}}Z^{\prime\frac{1}{3}}X^{\frac{1}{3}}Z^{\frac{2}{3}}W^{\frac{1}{3}}\right]&\left[W^{\prime-\frac{1}{3}}Z^{\prime\frac{1}{3}}X^{\frac{1}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]\\ \left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{\frac{1}{3}}Z^{\frac{2}{3}}W^{\frac{1}{3}}\right]&\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{\frac{1}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]+\left[W^{\prime-\frac{1}{3}}Z^{\prime-\frac{2}{3}}X^{-\frac{2}{3}}Z^{-\frac{1}{3}}W^{\frac{1}{3}}\right]\end{smallmatrix}\right).\end{split}
Refer to caption
(a) Quantum left and right matrices
Refer to caption
(b) Fock–Goncharov quiver
Figure 14. Example in the case n=3n=3.

3.5.2. SL4\mathrm{SL}_{4} example.

Consider the case n=4n=4; see Figure 15. On the right hand side, we show the quiver defining the commutation relations in the quantum torus 𝒯4ω(𝔗)\mathscr{T}_{4}^{\omega}(\mathfrak{T}), recalling Figure 12 and the definitions of §3.1.1 and 3.2. For instance, the following are some sample commutation relations:

X3Z2′′=q2X3Z2′′,X3X1=q2X1X3,Z3Z2=qZ2Z3,Z3Z3=q2Z3Z3.X_{3}Z^{\prime\prime}_{2}=q^{2}X_{3}Z^{\prime\prime}_{2},\,\,X_{3}X_{1}=q^{-2}X_{1}X_{3},\,\,Z_{3}Z_{2}=qZ_{2}Z_{3},\,\,Z_{3}Z^{\prime}_{3}=q^{2}Z^{\prime}_{3}Z_{3}.

Then, the quantum left and right matrices are computed as

𝐋ω=[Z114Z224Z334(Z1Z2Z3Z2Z3Z31)(11111)X114(X11111)X224(X2X2111)(11111)X314(X31111)(11111)Z114Z224Z334(Z1Z2Z3Z2Z3Z31)],\begin{split}\mathbf{L}^{\omega}=&\Bigg{[}Z_{1}^{-\frac{1}{4}}Z_{2}^{-\frac{2}{4}}Z_{3}^{-\frac{3}{4}}\left(\begin{smallmatrix}Z_{1}Z_{2}Z_{3}&&&\\ &Z_{2}Z_{3}&&\\ &&Z_{3}&\\ &&&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&1&&\\ &1&&\\ &&1&\\ &&&1\end{smallmatrix}\right)X_{1}^{-\frac{1}{4}}\left(\begin{smallmatrix}X_{1}&&&\\ &1&1&\\ &&1&\\ &&&1\end{smallmatrix}\right)X_{2}^{-\frac{2}{4}}\left(\begin{smallmatrix}X_{2}&&&\\ &X_{2}&&\\ &&1&1\\ &&&1\end{smallmatrix}\right)\\ &\left(\begin{smallmatrix}1&1&&\\ &1&&\\ &&1&\\ &&&1\end{smallmatrix}\right)X_{3}^{-\frac{1}{4}}\left(\begin{smallmatrix}X_{3}&&&\\ &1&1&\\ &&1&\\ &&&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&1&&\\ &1&&\\ &&1&\\ &&&1\end{smallmatrix}\right)Z_{1}^{\prime-\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{3}^{\prime-\frac{3}{4}}\left(\begin{smallmatrix}Z^{\prime}_{1}Z^{\prime}_{2}Z^{\prime}_{3}&&&\\ &Z^{\prime}_{2}Z^{\prime}_{3}&&\\ &&Z^{\prime}_{3}&\\ &&&1\end{smallmatrix}\right)\Bigg{]},\end{split}

and

𝐑ω=[Z114Z224Z334(Z1Z2Z3Z2Z3Z31)(11111)X2+14(1111X21)X1+24(111X11X11)(11111)X3+14(1111X31)(11111)Z1′′14Z2′′24Z3′′34(Z1′′Z2′′Z3′′Z2′′Z3′′Z3′′1)].\begin{split}\mathbf{R}^{\omega}=&\Bigg{[}Z_{1}^{-\frac{1}{4}}Z_{2}^{-\frac{2}{4}}Z_{3}^{-\frac{3}{4}}\left(\begin{smallmatrix}Z_{1}Z_{2}Z_{3}&&&\\ &Z_{2}Z_{3}&&\\ &&Z_{3}&\\ &&&1\end{smallmatrix}\right)\left(\begin{smallmatrix}1&&&\\ &1&&\\ &&1&\\ &&1&1\end{smallmatrix}\right)X_{2}^{+\frac{1}{4}}\left(\begin{smallmatrix}1&&&\\ &1&&\\ &1&1&\\ &&&X_{2}^{-1}\end{smallmatrix}\right)X_{1}^{+\frac{2}{4}}\left(\begin{smallmatrix}1&&&\\ 1&1&&\\ &&X_{1}^{-1}&\\ &&&X_{1}^{-1}\end{smallmatrix}\right)\\ &\left(\begin{smallmatrix}1&&&\\ &1&&\\ &&1&\\ &&1&1\end{smallmatrix}\right)X_{3}^{+\frac{1}{4}}\left(\begin{smallmatrix}1&&&\\ &1&&\\ &1&1&\\ &&&X_{3}^{-1}\end{smallmatrix}\right)\left(\begin{smallmatrix}1&&&\\ &1&&\\ &&1&\\ &&1&1\end{smallmatrix}\right)Z_{1}^{\prime\prime-\frac{1}{4}}Z_{2}^{\prime\prime-\frac{2}{4}}Z_{3}^{\prime\prime-\frac{3}{4}}\left(\begin{smallmatrix}Z^{\prime\prime}_{1}Z^{\prime\prime}_{2}Z_{3}^{\prime\prime}&&&\\ &Z^{\prime\prime}_{2}Z^{\prime\prime}_{3}&&\\ &&Z^{\prime\prime}_{3}&\\ &&&1\end{smallmatrix}\right)\Bigg{]}.\end{split}

Theorem 16 says that these two matrices are elements of SL4q(𝒯4ω(𝔗))\mathrm{SL}_{4}^{q}(\mathscr{T}_{4}^{\omega}(\mathfrak{T})). For instance, the entries a,b,c,da,b,c,d of the 2×22\times 2 sub-matrix (arranged as a 4×14\times 1 matrix) of 𝐋ω\mathbf{L}^{\omega}, (abcd)=(𝐋13ω𝐋14ω𝐋23ω𝐋24ω)=\left(\begin{smallmatrix}a\\ b\\ c\\ d\end{smallmatrix}\right)=\left(\begin{smallmatrix}\mathbf{L}^{\omega}_{13}\\ \mathbf{L}^{\omega}_{14}\\ \mathbf{L}^{\omega}_{23}\\ \mathbf{L}^{\omega}_{24}\end{smallmatrix}\right)=

([Z314Z224Z134Z314Z224Z114X114X224X314]+[Z314Z224Z134Z314Z224Z114X114X224X314]+[Z314Z224Z134Z314Z224Z114X134X224X314][Z314Z224Z134Z334Z224Z114X114X224X314][Z314Z224Z114Z314Z224Z114X114X224X314]+[Z314Z224Z114Z314Z224Z114X114X224X314][Z314Z224Z114Z334Z224Z114X114X224X314]),\begin{split}\left(\begin{smallmatrix}[Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{\frac{3}{4}}Z_{3}^{\prime\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{-\frac{2}{4}}X_{3}^{-\frac{1}{4}}]+[Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{\frac{3}{4}}Z_{3}^{\prime\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{\frac{2}{4}}X_{3}^{-\frac{1}{4}}]+[Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{\frac{3}{4}}Z_{3}^{\prime\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{\frac{3}{4}}X_{2}^{\frac{2}{4}}X_{3}^{-\frac{1}{4}}]\\ [Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{\frac{3}{4}}Z_{3}^{\prime-\frac{3}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{-\frac{2}{4}}X_{3}^{-\frac{1}{4}}]\\ [Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{-\frac{1}{4}}Z_{3}^{\prime\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{-\frac{2}{4}}X_{3}^{-\frac{1}{4}}]+[Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{-\frac{1}{4}}Z_{3}^{\prime\frac{1}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{\frac{2}{4}}X_{3}^{-\frac{1}{4}}]\\ [Z_{3}^{\frac{1}{4}}Z_{2}^{\frac{2}{4}}Z_{1}^{-\frac{1}{4}}Z_{3}^{\prime-\frac{3}{4}}Z_{2}^{\prime-\frac{2}{4}}Z_{1}^{\prime-\frac{1}{4}}X_{1}^{-\frac{1}{4}}X_{2}^{-\frac{2}{4}}X_{3}^{-\frac{1}{4}}]\end{smallmatrix}\right),\end{split}

satisfy Equation (\ast13). For a computer verification of this, see Appendix B. We also demonstrate in the appendix that Equation (\ast13) is satisfied by the entries a,b,c,da,b,c,d of the 2×22\times 2 sub-matrix (arranged as a 4×14\times 1 matrix) of 𝐑ω\mathbf{R}^{\omega}, (abcd)=(𝐑31ω𝐑32ω𝐑41ω𝐑42ω)=\left(\begin{smallmatrix}a\\ b\\ c\\ d\end{smallmatrix}\right)\!=\!\left(\begin{smallmatrix}\mathbf{R}^{\omega}_{31}\\ \mathbf{R}^{\omega}_{32}\\ \mathbf{R}^{\omega}_{41}\\ \mathbf{R}^{\omega}_{42}\end{smallmatrix}\right)\!=\!

([Z314Z212Z114X214X112X314Z3′′14Z2′′12Z1′′34][Z314Z212Z114X214X112X314Z3′′14Z2′′12Z1′′14]+[Z314Z212Z114X214X112X314Z3′′14Z2′′12Z1′′14][Z334Z212Z114X214X112X314Z3′′14Z2′′12Z1′′34][Z334Z212Z114X234X112X314Z3′′14Z2′′12Z1′′14]+[Z334Z212Z114X214X112X314Z3′′14Z2′′12Z1′′14]+[Z334Z212Z114X214X112X314Z3′′14Z2′′12Z1′′14]).\begin{split}\left(\begin{smallmatrix}[Z_{3}^{\frac{1}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime\frac{3}{4}}]\\ [Z_{3}^{\frac{1}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{-\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime-\frac{1}{4}}]+[Z_{3}^{\frac{1}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime-\frac{1}{4}}]\\ [Z_{3}^{-\frac{3}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime\frac{3}{4}}]\\ [Z_{3}^{-\frac{3}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{-\frac{3}{4}}X_{1}^{-\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime-\frac{1}{4}}]+[Z_{3}^{-\frac{3}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{-\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime-\frac{1}{4}}]+[Z_{3}^{-\frac{3}{4}}Z_{2}^{-\frac{1}{2}}Z_{1}^{-\frac{1}{4}}X_{2}^{\frac{1}{4}}X_{1}^{\frac{1}{2}}X_{3}^{\frac{1}{4}}Z_{3}^{\prime\prime\frac{1}{4}}Z_{2}^{\prime\prime\frac{1}{2}}Z_{1}^{\prime\prime-\frac{1}{4}}]\end{smallmatrix}\right).\end{split}
Refer to caption
(a) Quantum left and right matrices
Refer to caption
(b) Fock–Goncharov quiver
Figure 15. Example in the case n=4n=4.

3.6. Quantum tori for surfaces

For a dotted ideal triangulation λ\lambda of 𝔖\mathfrak{S}, in §2.4 we defined the classical polynomial algebra 𝒯n1(λ)=[X1±1/n,X2±1/n,,XN±1/n]\mathscr{T}_{n}^{1}(\lambda)=\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] where there is one generator Xi±1/nX_{i}^{\pm 1/n} associated to every dot on λ\lambda. In the case where 𝔖=𝔗\mathfrak{S}=\mathfrak{T} is an ideal triangle, in §3.2 we deformed the classical polynomial algebra 𝒯n1(𝔗)\mathscr{T}_{n}^{1}(\mathfrak{T}) to a quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}). We now generalize the quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}) to a quantum torus 𝒯nω(λ)\mathscr{T}_{n}^{\omega}(\lambda) associated to the triangulated surface (𝔖,λ)(\mathfrak{S},\lambda) which deforms the classical polynomial algebra 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda).

For each dotted triangle 𝔗\mathfrak{T} of λ\lambda, associate a copy 𝔗^\widehat{\mathfrak{T}} of 𝔗\mathfrak{T}, which is also a dotted triangle, such as that shown in Figure 6(b). Note that the boundary 𝔗^\partial\widehat{\mathfrak{T}} consists of three ideal edges. The dotted ideal triangulation λ\lambda can be reconstructed from the individual triangles 𝔗^\widehat{\mathfrak{T}} by supplying additional gluing data. To each dotted triangle 𝔗^\widehat{\mathfrak{T}} associate the Fock–Goncharov quantum torus 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}) of the triangle 𝔗^\widehat{\mathfrak{T}}, whose coordinates we will denote by X^\widehat{X}. Recall that a generator X^abc±1/n\widehat{X}_{abc}^{\pm 1/n} of the quantum torus 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}) is either a triangle-generator or an edge-generator. If X^abc±1/n\widehat{X}_{abc}^{\pm 1/n} is an edge-generator, then there are two cases:

  • the corresponding generator Xi±1/nX_{i}^{\pm 1/n} in the classical polynomial algebra 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) for the glued surface (𝔖,λ)(\mathfrak{S},\lambda) is a boundary-generator;

  • the corresponding generator Xi±1/nX_{i}^{\pm 1/n} in 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) is an interior-generator.

In the second case, the corresponding interior-generator Xi±1/nX_{i}^{\pm 1/n} in 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) lies on an internal edge EE of the ideal triangulation λ\lambda. So, there exists a triangle 𝔗\mathfrak{T}^{\prime} adjacent to 𝔗\mathfrak{T} along the edge EE. Moreover, there exists a unique edge-generator X^abc±1/n\widehat{X}_{a^{\prime}b^{\prime}c^{\prime}}^{\prime\pm 1/n} in the quantum torus 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}^{\prime}) for the triangle 𝔗^\widehat{\mathfrak{T}}^{\prime} that also corresponds to the interior-generator Xi±1/nX_{i}^{\pm 1/n} in 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) lying on the internal edge EE. Therefore, we may say that the two quantum generators X^abc±1/n\widehat{X}_{abc}^{\pm 1/n} in 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}) and X^abc±1/n\widehat{X}_{a^{\prime}b^{\prime}c^{\prime}}^{\prime\pm 1/n} in 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}^{\prime}) correspond to one another; see Figure 16.

Definition 17.

The Fock–Goncharov quantum torus 𝒯nω(λ)\mathscr{T}_{n}^{\omega}(\lambda) associated to the surface 𝔖\mathfrak{S} equipped with the dotted ideal triangulation λ\lambda is the sub-algebra,

𝒯nω(λ)copies 𝔗^ of triangles 𝔗 of λ𝒯nω(𝔗^),\mathscr{T}_{n}^{\omega}(\lambda)\subseteq\bigotimes_{\text{copies }\widehat{\mathfrak{T}}\text{ of triangles }\mathfrak{T}\text{ of }\lambda}\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}),

of the tensor product of the Fock–Goncharov quantum tori 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}) associated to the copies 𝔗^\widehat{\mathfrak{T}} of the dotted triangles 𝔗\mathfrak{T} of the ideal triangulation λ\lambda, generated:

  • by triangle-generators X^abc±1/n\widehat{X}_{abc}^{\pm 1/n} in 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}});

  • by tensor products X^abc±1/nX^abc±1/n\widehat{X}_{abc}^{\pm 1/n}\otimes\widehat{X}_{a^{\prime}b^{\prime}c^{\prime}}^{\prime\pm 1/n} in 𝒯nω(𝔗^)𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}})\otimes\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}^{\prime}) of corresponding edge-generators associated to a common internal edge EE lying between two triangles 𝔗\mathfrak{T} and 𝔗\mathfrak{T}^{\prime} in λ\lambda;

  • and by edge-generators X^abc±1/n\widehat{X}_{abc}^{\pm 1/n} in 𝒯nω(𝔗^)\mathscr{T}_{n}^{\omega}(\widehat{\mathfrak{T}}) associated to boundary edges E𝔖E\subseteq\partial\mathfrak{S} of λ\lambda.

In particular, when q=ω=1q=\omega=1, the Fock–Goncharov quantum torus 𝒯n1(λ)\mathscr{T}_{n}^{1}(\lambda) is naturally isomorphic to the classical polynomial algebra [X1±1/n,X2±1/n,,XN±1/n]\mathbb{C}[X_{1}^{\pm 1/n},X_{2}^{\pm 1/n},\dots,X_{N}^{\pm 1/n}] (as indicated by the notation). (Going forward, we will omit the ‘hat’ symbol in the notation, naturally identifying triangles 𝔗\mathfrak{T} with 𝔗^\widehat{\mathfrak{T}}.)

Remark 18.

An important difference between the local quantum tori 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}) for the triangles 𝔗\mathfrak{T} and the global quantum torus 𝒯nω(λ)\mathscr{T}_{n}^{\omega}(\lambda) for the triangulated surface (𝔖,λ)(\mathfrak{S},\lambda) is that two edge-generators Xabc±1/nX_{abc}^{\pm 1/n} and XABC±1/nX_{ABC}^{\pm 1/n} in 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}) lying on the same boundary edge of 𝔗\mathfrak{T} may not commute, rather may qq-commute, while the corresponding interior-generators Xabc±1/nXabc±1/nX_{abc}^{\pm 1/n}\otimes X_{a^{\prime}b^{\prime}c^{\prime}}^{\prime\pm 1/n} and XABC±1/nXABC±1/nX_{ABC}^{\pm 1/n}\otimes X_{A^{\prime}B^{\prime}C^{\prime}}^{\prime\pm 1/n} in 𝒯nω(λ)\mathscr{T}_{n}^{\omega}(\lambda) always commute. This is because the orientations of the two triangles’ 𝔗\mathfrak{T} and 𝔗\mathfrak{T}^{\prime} quivers go against each other (Figures 12, 16). Intuitively, the local qq-commutation relations on the boundary are created upon ‘splitting the edge-coordinates in half’ at the quantum level (Remarks 4, 11). This phenomenon does not occur for SL2\mathrm{SL}_{2} because there each edge carries only one coordinate.

Refer to caption
(a) Before gluing
Refer to caption
(b) After gluing
Figure 16. Interior-generators as tensor products of local edge-generators, shown in the case n=3n=3.

4. Main theorem: quantum trace polynomials for SL3\mathrm{SL}_{3}

4.1. Framed oriented links in thickened surfaces

So far, we have been working in the 2-dimensional setting of the punctured surface 𝔖\mathfrak{S}. We now turn to the 3-dimensional setting of the thickened surface 𝔖×(0,1)\mathfrak{S}\times(0,1). We will follow [BW11, §3.1], the only difference being that we consider oriented links.

Definition 19.

A framed oriented link KK in the thickened surface 𝔖×(0,1)\mathfrak{S}\times(0,1) is a compact oriented one-dimensional manifold, possibly-with-boundary, K𝔖×(0,1)K\subseteq\mathfrak{S}\times(0,1) that is embedded in 𝔖×(0,1)\mathfrak{S}\times(0,1) and is equipped with a framing (see below), satisfying the following properties:

  • we have K=K((𝔖)×(0,1))\partial K=K\cap((\partial\mathfrak{S})\times(0,1));

  • the framing at a boundary point of KK is vertical, meaning parallel to the (0,1)(0,1) axis and pointing in the 11 direction (or, in pictures, toward the eye of the reader);

  • for each boundary component kk of 𝔖\mathfrak{S}, the finitely many points (K)(k×(0,1))(\partial K)\cap(k\times(0,1)) have distinct heights, meaning that the coordinates with respect to (0,1)(0,1) are distinct.

Here, by a framing, we mean the choice of a smooth assignment along the link KK of unit vectors in the tangent spaces of 𝔖×(0,1)\mathfrak{S}\times(0,1) such that this vector field on KK is everywhere orthogonal to KK. A framed oriented knot KK is a closed framed oriented link (namely, a framed oriented link with empty boundary K=\partial K=\varnothing) with one connected component. Two framed oriented links KK and KK^{\prime} are isotopic if KK can be smoothly deformed to KK^{\prime} through the class of framed oriented links. By possibly introducing kinks (Figures 3(a) and 3(b)), one can always isotope a framed link so that it has blackboard framing, meaning constant vertical framing in the 11 direction (with respect to the (0,1)(0,1) coordinate).

Remark 20.

We display links in figures by their diagrams, namely their projections onto the surface 𝔖𝔖×{1/2}\mathfrak{S}\cong\mathfrak{S}\times\{1/2\} equipped with over/under crossing information. By convention, all link diagrams represent blackboard-framed links.

Instead of using the picture conventions of [BW11, §3.5], in our diagrams we will indicate explicitly which points lying on a single boundary component k×(0,1)k\times(0,1) of 𝔖×(0,1)\mathfrak{S}\times(0,1) are higher or lower with respect to the (0,1)(0,1) direction. (Note, importantly, that two points of K\partial K on a single boundary component k×(0,1)k\times(0,1) cannot exchange heights during an isotopy of the link.)

One can think of a framed link KK as a ‘ribbon’, namely an oriented annulus (that is, oriented as a surface, not to be confused with link orientations) embedded in 𝔖×(0,1)\mathfrak{S}\times(0,1) where the framing is perpendicular to the annulus and determined by the orientation.

4.2. Stated links

Definition 21.

A (nn-)stated framed oriented link (K,s)(K,s) is a framed oriented link KK equipped with a function

s:K{1,2,,n},s:\partial K\to\{1,2,\dots,n\},

called the state, assigning to each element of the boundary of the link a state-number in {1,2,,n}\{1,2,\dots,n\} (we often confuse ‘state’ with these state-numbers). Note that a stated closed link is the same thing as a closed link. As for links, there is the corresponding notion of isotopy of stated links.

Let (K,s)(K,s) be a stated framed oriented link in a triangulated surface (𝔖,λ)(\mathfrak{S},\lambda) obtained by gluing together two triangulated surfaces (𝔖1,λ1)(\mathfrak{S}_{1},\lambda_{1}) and (𝔖2,λ2)(\mathfrak{S}_{2},\lambda_{2}) along edges of the triangulations. Let K1K_{1} and K2K_{2} be the associated links in 𝔖1\mathfrak{S}_{1} and 𝔖2\mathfrak{S}_{2}. We say states s1s_{1} and s2s_{2} for stated links (K1,s1)(K_{1},s_{1}) and (K2,s2)(K_{2},s_{2}) such that s1s_{1} and s2s_{2} agree with ss on K\partial K are compatible if their values agree on the common boundaries of K1K_{1} and K2K_{2} (resulting from cutting KK).

4.3. Main result

In this subsection, we restrict to the case n=3n=3. Let the surface 𝔖\mathfrak{S} be equipped with a dotted ideal triangulation λ\lambda. Recall the Fock–Goncharov quantum torus 𝒯3ω(λ)triangles 𝔗 of λ𝒯3ω(𝔗)\mathscr{T}_{3}^{\omega}(\lambda)\subseteq\bigotimes_{\textnormal{triangles }\mathfrak{T}\text{ of }\lambda}\mathscr{T}_{3}^{\omega}(\mathfrak{T}) associated to this data; see Definition 17.

Note that if K𝔖×(0,1)K\subseteq\mathfrak{S}\times(0,1) is a blackboard-framed oriented knot (meaning, in particular, that it is closed), and if π:𝔖×(0,1)𝔖×{1/2}𝔖\pi:\mathfrak{S}\times(0,1)\to\mathfrak{S}\times\{1/2\}\cong\mathfrak{S} is the natural projection, then, possibly after an arbitrarily small perturbation of the knot KK, we have that γ=π(K)\gamma=\pi(K) is an immersed oriented closed curve in 𝔖\mathfrak{S}, so we may consider the classical trace polynomial Tr~γ(Xi1/3)\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/3}) in 𝒯31(λ)=[X1±1/3,X2±1/3,,XN±1/3]\mathscr{T}_{3}^{1}(\lambda)=\mathbb{C}[X_{1}^{\pm 1/3},X_{2}^{\pm 1/3},\dots,X_{N}^{\pm 1/3}] associated to γ\gamma; see Definition 6.

We now give a more detailed version of Theorem 2 from §1. Technically, our solution involves choosing a square root ω1/2\omega^{1/2} of the parameter ω\omega. Proofs will be given in §5, 6.

Theorem 22 (SL3\mathrm{SL}_{3}-quantum trace polynomials).

Let q{0}q\in\mathbb{C}-\{0\} be a non-zero complex number, and let ω=q1/32\omega=q^{1/3^{2}} be a 323^{2}-root of qq; choose also ω1/2\omega^{1/2}. There is a function

Trλω:{stated framed oriented links (K,s) in 𝔖×(0,1)}𝒯3ω(λ),\mathrm{Tr}^{\omega}_{\lambda}:\left\{\textnormal{stated framed oriented links $(K,s)$ in }\mathfrak{S}\times(0,1)\right\}\to\mathscr{T}_{3}^{\omega}(\lambda),

satisfying the following properties:

  1. (A)

    the element Trλω(K,s)𝒯3ω(λ)\mathrm{Tr}_{\lambda}^{\omega}(K,s)\in\mathscr{T}_{3}^{\omega}(\lambda) is invariant under isotopy of stated framed oriented links;

  2. (B)

    the SL3\mathrm{SL}_{3}-HOMFLYPT skein relation (Figure 1 with n=3n=3) holds;

  3. (C)

    the SL3\mathrm{SL}_{3}-quantum unknot and framing relations (Figures 2 and 3 with n=3n=3) hold.

Complement 23.

Moreover, this invariant satisfies the following additional properties.

  • (Classical Trace Property) Let q=ω=ω1/2=1q=\omega=\omega^{1/2}=1 and let KK be a closed blackboard-framed oriented knot. Then,

    Trλ1(K)=Tr~γ(Xi1/3)𝒯31(λ),\mathrm{Tr}^{1}_{\lambda}(K)=\widetilde{\mathrm{Tr}}_{\gamma}(X_{i}^{1/3})\in\mathscr{T}_{3}^{1}(\lambda),

    where γ\gamma is the immersed oriented closed curve obtained by projecting KK to 𝔖\mathfrak{S}.

  • (Multiplication Property) Let (K,s)=(K1,s1)(K2,s2)(K,s)(K,s)=(K_{1},s_{1})\cup(K_{2},s_{2})\cup\dots\cup(K_{\ell},s_{\ell}) be a stated framed oriented link, written as a disjoint union of links KjK_{j}. Assume in addition that Kj1K_{j-1} lies entirely below KjK_{j} in 𝔖×(0,1)\mathfrak{S}\times(0,1), with respect to the height coordinate. Then,

    Trλω(K,s)=Trλω(K1,s1)Trλω(K2,s2)Trλω(K,s)𝒯3ω(λ).\mathrm{Tr}^{\omega}_{\lambda}(K,s)=\mathrm{Tr}^{\omega}_{\lambda}(K_{1},s_{1})\mathrm{Tr}^{\omega}_{\lambda}(K_{2},s_{2})\cdots\mathrm{Tr}^{\omega}_{\lambda}(K_{\ell},s_{\ell})\in\mathscr{T}_{3}^{\omega}(\lambda).

    Note that the order of multiplication matters, since 𝒯3ω(λ)\mathscr{T}_{3}^{\omega}(\lambda) is non-commutative.

  • (State Sum Property) Let (K,s)(K,s) be a stated framed oriented link in a triangulated surface (𝔖,λ)(\mathfrak{S},\lambda) obtained by gluing together two triangulated surfaces (𝔖1,λ1)(\mathfrak{S}_{1},\lambda_{1}) and (𝔖2,λ2)(\mathfrak{S}_{2},\lambda_{2}). Let K1K_{1} and K2K_{2} be the associated links in 𝔖1\mathfrak{S}_{1} and 𝔖2\mathfrak{S}_{2}. Then,

    Trλω(K,s)=compatible s1,s2Trλ1ω(K1,s1)Trλ2ω(K2,s2)𝒯3ω(λ).\mathrm{Tr}^{\omega}_{\lambda}(K,s)=\sum_{\textnormal{compatible }s_{1},s_{2}}\mathrm{Tr}^{\omega}_{\lambda_{1}}(K_{1},s_{1})\otimes\mathrm{Tr}^{\omega}_{\lambda_{2}}(K_{2},s_{2})\in\mathscr{T}^{\omega}_{3}(\lambda).

5. Quantum trace polynomials for SLn\mathrm{SL}_{n}

The corresponding version of Theorem 22 and Complement 23 should hold in the case of SLn\mathrm{SL}_{n}, by replacing 33 with nn everywhere in the statement. In this section, we will construct the quantum trace map Trλω\mathrm{Tr}_{\lambda}^{\omega} for general nn. However, we only give a proof that it is well-defined for n=3n=3. For concreteness, along the way we will give explicit formulas for the case n=3n=3. When n=2n=2, our construction coincides with that in [BW11]. In particular, our construction gives a way to think of their construction, which was defined for un-oriented links, in terms of oriented links. Throughout, fix q{0}q\in\mathbb{C}-\{0\} and a n2n^{2}-root ω=q1/n2{0}\omega=q^{1/n^{2}}\in\mathbb{C}-\{0\} of qq. Technically, also choose ω1/2\omega^{1/2}.

5.1. Matrix conventions

We will need to display 3×33\times 3 and 32×323^{2}\times 3^{2} matrices. Lower indices will indicate rows and upper indices will indicate columns. A 3×33\times 3 matrix 𝐌=(Mij)\mathbf{M}=(M_{i}^{j}) will be displayed in the general form

𝐌=(M11M12M13M21M22M23M31M32M33).\mathbf{M}=\left(\begin{smallmatrix}M_{1}^{1}&M_{1}^{2}&M_{1}^{3}\\ M_{2}^{1}&M_{2}^{2}&M_{2}^{3}\\ M_{3}^{1}&M_{3}^{2}&M_{3}^{3}\end{smallmatrix}\right).

A 32×323^{2}\times 3^{2} matrix 𝐌=(Mi1i2j1j2)\mathbf{M}=(M_{i_{1}i_{2}}^{j_{1}j_{2}}) will be displayed in the general form

𝐌=(M1111M1112M1113M1121M1122M1123M1131M1132M1133M1211M1212M1213M1221M1222M1223M1231M1232M1233M1311M1312M1313M1321M1322M1323M1331M1332M1333M2111M2112M2113M2121M2122M2123M2131M2132M2133M2211M2212M2213M2221M2222M2223M2231M2232M2233M2311M2312M2313M2321M2322M2323M2331M2332M2333M3111M3112M3113M3121M3122M3123M3131M3132M3133M3211M3212M3213M3221M3222M3223M3231M3232M3233M3311M3312M3313M3321M3322M3323M3331M3332M3333).\mathbf{M}=\left(\begin{smallmatrix}M_{11}^{11}&M_{11}^{12}&M_{11}^{13}&M_{11}^{21}&M_{11}^{22}&M_{11}^{23}&M_{11}^{31}&M_{11}^{32}&M_{11}^{33}\\ M_{12}^{11}&M_{12}^{12}&M_{12}^{13}&M_{12}^{21}&M_{12}^{22}&M_{12}^{23}&M_{12}^{31}&M_{12}^{32}&M_{12}^{33}\\ M_{13}^{11}&M_{13}^{12}&M_{13}^{13}&M_{13}^{21}&M_{13}^{22}&M_{13}^{23}&M_{13}^{31}&M_{13}^{32}&M_{13}^{33}\\ M_{21}^{11}&M_{21}^{12}&M_{21}^{13}&M_{21}^{21}&M_{21}^{22}&M_{21}^{23}&M_{21}^{31}&M_{21}^{32}&M_{21}^{33}\\ M_{22}^{11}&M_{22}^{12}&M_{22}^{13}&M_{22}^{21}&M_{22}^{22}&M_{22}^{23}&M_{22}^{31}&M_{22}^{32}&M_{22}^{33}\\ M_{23}^{11}&M_{23}^{12}&M_{23}^{13}&M_{23}^{21}&M_{23}^{22}&M_{23}^{23}&M_{23}^{31}&M_{23}^{32}&M_{23}^{33}\\ M_{31}^{11}&M_{31}^{12}&M_{31}^{13}&M_{31}^{21}&M_{31}^{22}&M_{31}^{23}&M_{31}^{31}&M_{31}^{32}&M_{31}^{33}\\ M_{32}^{11}&M_{32}^{12}&M_{32}^{13}&M_{32}^{21}&M_{32}^{22}&M_{32}^{23}&M_{32}^{31}&M_{32}^{32}&M_{32}^{33}\\ M_{33}^{11}&M_{33}^{12}&M_{33}^{13}&M_{33}^{21}&M_{33}^{22}&M_{33}^{23}&M_{33}^{31}&M_{33}^{32}&M_{33}^{33}\\ \end{smallmatrix}\right).

If VV and WW are finite-dimensional complex vector spaces with bases {v1,,vm}\{v_{1},\dots,v_{m}\} and {w1,,wp}\{w_{1},\dots,w_{p}\} and if T:VWT:V\to W is a linear map, we define the p×mp\times m matrix [T]Mp,m()[T]\in\mathrm{M}_{p,m}(\mathbb{C}) associated to TT and these bases of VV and WW by the property

T(vj)=i=1p[T]ijwi(j=1,2,,m).T(v_{j})=\sum_{i=1}^{p}[T]_{i}^{j}w_{i}\,\,(j=1,2,\dots,m).

5.2. Biangle quantum trace map

A biangle 𝔅\mathfrak{B} is a closed disk with two punctures on its boundary. Biangles do not admit ideal triangulations, so 𝔖\mathfrak{S} is never a biangle. However, we may still consider stated framed oriented links (K,s)(K,s) in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1) defined just as before. In this subsection, we will (implicitly) use the Reshetikhin–Turaev construction [RT90] to provide an analogue of Theorem 22 and Complement 23 for biangles, valued in the complex numbers \mathbb{C}; see Appendix A for the explicit (and more conceptual) connection to [RT90]. Note that this subsection does not require the choice of square root ω1/2\omega^{1/2}.

Parametrize the thickened biangle 𝔅×(0,1)[0,1]××(0,1)\mathfrak{B}\times(0,1)\cong[0,1]\times\mathbb{R}\times(0,1) such that, in Figure 17(a) say, the first coordinate points along the page to the right, the second coordinate points along the page up, and the third coordinate points out of the page toward the eye of the reader. Note this parametrization is not canonical: there are two possibilities, related by ‘turning the biangle on its head’. The construction will be independent of this choice of parametrization (see the comments after Proposition 30).

In order to state the result, we first define some elementary matrices associated to certain local link diagrams, namely various U-turns and crossings.

5.2.1. U-turns

In Figures 17 and 18, we show the four possible U-turns, which are in particular stated framed oriented links with the blackboard framing. In agreement with our picture conventions (see Remark 20), the boundary point of the link that is labeled ‘Higher’ or ‘H’ is higher, namely has a greater coordinate with respect to the (0,1)(0,1) direction, than the boundary point of the link that is labeled ‘Lower’ or ‘L’.

Definition 24.

  • The SLn\mathrm{SL}_{n}-coribbon element is

    ζ¯n=def(1)n1q(1n2)/n(=(1)n1ωn(1n2)){0}.\overline{\zeta}_{n}\overset{\text{def}}{=}(-1)^{n-1}q^{(1-n^{2})/n}\,\,\left(=(-1)^{n-1}\omega^{n(1-n^{2})}\right)\,\,\in\mathbb{C}-\{0\}.

    (Note the overbar notation in ζ¯n\overline{\zeta}_{n} does not mean ‘complex conjugation’.) For the categorical context, see §A.3.2.

  • Define the square root of the (signed) coribbon element by

    σ¯n=def+q(1n2)/2n(=+ωn(1n2)/2){0}.\overline{\sigma}_{n}\overset{\text{def}}{=}+q^{(1-n^{2})/2n}\,\,\left(=+\omega^{n(1-n^{2})/2}\right)\,\,\in\mathbb{C}-\{0\}.

    We require the parenthetical ‘signed’ because we can only say σ¯n2=(1)n1ζ¯n\overline{\sigma}_{n}^{2}=(-1)^{n-1}\overline{\zeta}_{n}. Note that n(1n2)n(1-n^{2}) is always even, so here we do not need to choose a square root ω1/2\omega^{1/2}.

  • Define a n×nn\times n matrix 𝐔q\mathbf{U}^{q} over the complex numbers by

    𝐔q=defσ¯n((1)n1q(1n)/2+q(n5)/2q(n3)/2+q(n1)/2)Mn(),\mathbf{U}^{q}\overset{\text{def}}{=}\overline{\sigma}_{n}\left(\begin{smallmatrix}&&&&(-1)^{n-1}q^{(1-n)/2}\\ &&&\reflectbox{$\ddots$}&\\ &&+q^{(n-5)/2}&&\\ &-q^{(n-3)/2}&&&\\ +q^{(n-1)/2}&&&&\end{smallmatrix}\right)\in\mathrm{M}_{n}(\mathbb{C}),

    where it is implicit that we are putting q=ωn2q=\omega^{n^{2}} as above, so q(n12k)/2q^{(n-1-2k)/2} is defined. Note that the common ratio between adjacent entries in the matrix is equal to q-q. Note also that putting q=ω=1q=\omega=1 recovers the classical U-turn matrix 𝐔\mathbf{U} from §2.6. For example, in the case n=3n=3, the 3×33\times 3 matrix 𝐔q\mathbf{U}^{q} is

    𝐔q=+q4/3(00+q1010+q00)M3().\mathbf{U}^{q}=+q^{-4/3}\left(\begin{smallmatrix}0&0&+q^{-1}\\ 0&-1&0\\ +q&0&0\end{smallmatrix}\right)\in\mathrm{M}_{3}(\mathbb{C}).
Definition 25.

For each pair of states s1,s2{1,2,,n}s_{1},s_{2}\in\{1,2,\dots,n\}, define four complex numbers

Tr𝔅ω(Udeccw)s1s2,Tr𝔅ω(Udecccw)s1s2,Tr𝔅ω(Uincccw)s1s2,Tr𝔅ω(Uinccw)s1s2,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{dec}}^{\text{cw}})_{s_{1}}^{s_{2}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{dec}}^{\text{ccw}})_{s_{1}}^{s_{2}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{inc}}^{\text{ccw}})_{s_{1}}^{s_{2}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{inc}}^{\text{cw}})_{s_{1}}^{s_{2}}\in\mathbb{C},

by the matrix equations

(Tr𝔅ω(Udeccw)s1s2)=def𝐔qMn(),(Tr𝔅ω(Udecccw)s1s2)=def(ζ¯n)1𝐔qMn(),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{dec}}^{\text{cw}})_{s_{1}}^{s_{2}})\overset{\text{def}}{=}\mathbf{U}^{q}\in\mathrm{M}_{n}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{dec}}^{\text{ccw}})_{s_{1}}^{s_{2}})\overset{\text{def}}{=}(\overline{\zeta}_{n})^{-1}\mathbf{U}^{q}\in\mathrm{M}_{n}(\mathbb{C}),
(Tr𝔅ω(Uincccw)s1s2)=def(𝐔q)TMn(),(Tr𝔅ω(Uinccw)s1s2)=def(ζ¯n)1(𝐔q)TMn(),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{inc}}^{\text{ccw}})_{s_{1}}^{s_{2}})\overset{\text{def}}{=}(\mathbf{U}^{q})^{\mathrm{T}}\in\mathrm{M}_{n}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{inc}}^{\text{cw}})_{s_{1}}^{s_{2}})\overset{\text{def}}{=}(\overline{\zeta}_{n})^{-1}(\mathbf{U}^{q})^{\mathrm{T}}\in\mathrm{M}_{n}(\mathbb{C}),

see §5.1. Here, the superscript T\mathrm{T} indicates that we are taking the matrix transpose. For example, in the case n=3n=3, in the above formulas (ζ¯3)1=+q+8/3(\overline{\zeta}_{3})^{-1}=+q^{+8/3}.

Remark 26.

When n=2n=2, these formulas agree with those in [BW11, Proposition 13.2.b] for the underlying un-oriented link, taking α=ω5\alpha=-\omega^{-5} and β=ω1\beta=\omega^{-1}; see [BW11, Prop. 26].

Refer to caption
(a) Clockwise
Refer to caption
(b) Counterclockwise
Figure 17. Decreasing U-turns.
Refer to caption
(a) Counterclockwise
Refer to caption
(b) Clockwise
Figure 18. Increasing U-turns.

5.2.2. Crossings

Shown in Figures 19 and 20 are the eight possible crossings, with blackboard framing and the usual picture conventions as above.

Let VV be a nn-dimensional complex vector space, and let VV^{*} be the complex vector space dual to VV. Choose a linear basis {e1,e2,,en}\{e^{1},e^{2},\dots,e^{n}\} for VV, and let {e1,e2,,en}\{e_{1}^{*},e_{2}^{*},\dots,e_{n}^{*}\} be the corresponding dual basis for VV^{*}. Define four linear isomorphisms

c¯V,V:VVVV,c¯V,V:VVVV,\displaystyle\overline{c}_{V,V}:V\otimes V\to V\otimes V,\,\,\overline{c}_{V^{*},V^{*}}:V^{*}\otimes V^{*}\to V^{*}\otimes V^{*},
c¯V,V:VVVV,c¯V,V:VVVV,\displaystyle\overline{c}_{V^{*},V}:V^{*}\otimes V\to V\otimes V^{*},\,\,\overline{c}_{V,V^{*}}:V\otimes V^{*}\to V^{*}\otimes V,

by extending linearly the following assignments for tensor product basis elements

c¯V,V(eiej)=defq+1/n{q1eiei,i=j,(q1q)eiej+ejei,i<j,ejei,i>j,\displaystyle\overline{c}_{V,V}(e^{i}\otimes e^{j})\overset{\text{def}}{=}q^{+1/n}\begin{cases}q^{-1}e^{i}\otimes e^{i},&i=j,\\ (q^{-1}-q)e^{i}\otimes e^{j}+e^{j}\otimes e^{i},&i<j,\\ e^{j}\otimes e^{i},&i>j,\end{cases}
c¯V,V(eiej)=defq+1/n{q1eiei,i=j,(q1q)eiej+ejei,i>j,ejei,i<j,\displaystyle\overline{c}_{V^{*},V^{*}}(e_{i}^{*}\otimes e_{j}^{*})\overset{\text{def}}{=}q^{+1/n}\begin{cases}q^{-1}e_{i}^{*}\otimes e_{i}^{*},&i=j,\\ (q^{-1}-q)e_{i}^{*}\otimes e_{j}^{*}+e_{j}^{*}\otimes e_{i}^{*},&i>j,\\ e_{j}^{*}\otimes e_{i}^{*},&i<j,\end{cases}
c¯V,V(eiej)=defq1/n{qeiei+(qq1)1k<iekek,i=j,ejei,ij,\displaystyle\overline{c}_{V^{*},V}(e^{*}_{i}\otimes e^{j})\overset{\text{def}}{=}q^{-1/n}\begin{cases}qe^{i}\otimes e^{*}_{i}+(q-q^{-1})\sum_{1\leqslant k<i}e^{k}\otimes e^{*}_{k},&i=j,\\ e^{j}\otimes e^{*}_{i},&i\neq j,\end{cases}
c¯V,V(eiej)=defq1/n{qeiei+(qq1)i<knq2(ki)ekek,i=j,ejei,ij.\displaystyle\overline{c}_{V,V^{*}}(e^{i}\otimes e^{*}_{j})\overset{\text{def}}{=}q^{-1/n}\begin{cases}qe^{*}_{i}\otimes e^{i}+(q-q^{-1})\sum_{i<k\leqslant n}q^{2(k-i)}e^{*}_{k}\otimes e^{k},&i=j,\\ e^{*}_{j}\otimes e^{i},&i\neq j.\end{cases}

Define bases βV,V\beta_{V,V}, βV,V\beta_{V^{*},V^{*}}, βV,V\beta_{V^{*},V}, and βV,V\beta_{V,V^{*}} of VVV\otimes V, VVV^{*}\otimes V^{*}, VVV^{*}\otimes V, and VVV\otimes V^{*} by

(βV,V)ij=defeiej,(βV,V)ij=def(q)nieni+1(q)njenj+1,\displaystyle(\beta_{V,V})_{ij}\overset{\text{def}}{=}e^{i}\otimes e^{j},\,\,(\beta_{V^{*},V^{*}})_{ij}\overset{\text{def}}{=}(-q)^{n-i}e^{*}_{n-i+1}\otimes(-q)^{n-j}e^{*}_{n-j+1},
(βV,V)ij=def(q)nieni+1ej,(βV,V)ij=defei(q)njenj+1.\displaystyle(\beta_{V^{*},V})_{ij}\overset{\text{def}}{=}(-q)^{n-i}e^{*}_{n-i+1}\otimes e^{j},\,\,(\beta_{V,V^{*}})_{ij}\overset{\text{def}}{=}e^{i}\otimes(-q)^{n-j}e^{*}_{n-j+1}.

For example, when n=2n=2, the ordered basis βV,V\beta_{V,V} is {e1e1,e1e2,e2e1,e2e2}\left\{e^{1}\otimes e^{1},e^{1}\otimes e^{2},e^{2}\otimes e^{1},e^{2}\otimes e^{2}\right\}.

The following fact, a simple calculation from the above definitions, motivates the definitions of the matrices 𝐂sameq\mathbf{C}^{q}_{\mathrm{same}} and 𝐂oppq\mathbf{C}^{q}_{\mathrm{opp}} below (and will be used in Appendix A).

Fact 27.

We have the following equalities of matrices

𝐂sameq=def[c¯V,V]=[c¯V,V]Mn2(),𝐂oppq=def[c¯V,V]=[c¯V,V]Mn2(),\displaystyle\mathbf{C}^{q}_{\mathrm{same}}\overset{\mathrm{def}}{=}[\overline{c}_{V,V}]=[\overline{c}_{V^{*},V^{*}}]\in\mathrm{M}_{n^{2}}(\mathbb{C}),\,\,\mathbf{C}^{q}_{\mathrm{opp}}\overset{\mathrm{def}}{=}[\overline{c}_{V^{*},V}]=[\overline{c}_{V,V^{*}}]\in\mathrm{M}_{n^{2}}(\mathbb{C}),

representing the linear isomorphisms c¯V,V\overline{c}_{V,V}, c¯V,V\overline{c}_{V^{*},V^{*}}, c¯V,V\overline{c}_{V^{*},V} and c¯V,V\overline{c}_{V^{*},V} when expressed in terms of the bases βV,V\beta_{V,V}, βV,V\beta_{V^{*},V^{*}}, βV,V\beta_{V^{*},V} and βV,V\beta_{V,V^{*}}. Also, these matrices are symmetric. ∎

For example, in the case n=3n=3, these two 32×323^{2}\times 3^{2} matrices 𝐂sameq\mathbf{C}_{\text{same}}^{q} and 𝐂oppq\mathbf{C}_{\text{opp}}^{q} are given by

𝐂sameq=q+1/3(q1000000000q1q010000000q1q0001000100000000000q1000000000q1q01000100000000000100000000000q1)M32(),\displaystyle\mathbf{C}_{\text{same}}^{q}=q^{+1/3}\left(\begin{smallmatrix}q^{-1}&0&0&0&0&0&0&0&0\\ 0&q^{-1}-q&0&1&0&0&0&0&0\\ 0&0&q^{-1}-q&0&0&0&1&0&0\\ 0&1&0&0&0&0&0&0&0\\ 0&0&0&0&q^{-1}&0&0&0&0\\ 0&0&0&0&0&q^{-1}-q&0&1&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&q^{-1}\end{smallmatrix}\right)\in\mathrm{M}_{3^{2}}(\mathbb{C}),
𝐂oppq=q+2/3(q100000000000q10000000q210q1q01000q1000000000q1q0100000000000q1000100000000000q100000000000q1)M32().\displaystyle\mathbf{C}_{\text{opp}}^{q}=q^{+2/3}\left(\begin{smallmatrix}q^{-1}&0&0&0&0&0&0&0&0\\ 0&0&0&q^{-1}&0&0&0&0&0\\ 0&0&q^{2}-1&0&q^{-1}-q&0&1&0&0\\ 0&q^{-1}&0&0&0&0&0&0&0\\ 0&0&q^{-1}-q&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&q^{-1}&0\\ 0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&q^{-1}&0&0&0\\ 0&0&0&0&0&0&0&0&q^{-1}\end{smallmatrix}\right)\in\mathrm{M}_{3^{2}}(\mathbb{C}).

See Remark 29 for a discussion of how Fact 27 relates to the quantum group SLnq\mathrm{SL}_{n}^{q}.

An observation is that, for general nn, when q=ω=1q=\omega=1 then the two matrices 𝐂same1\mathbf{C}_{\text{same}}^{1} and 𝐂opp1\mathbf{C}_{\text{opp}}^{1} are identical. For another property of these RR-matrices, see §5.4.1.

Definition 28.

For each quadruple of states s1,s2,s3,s4{1,2,,n}s_{1},s_{2},s_{3},s_{4}\in\{1,2,\dots,n\}, define eight complex numbers

Tr𝔅ω(Cpos-sameover-to-lower)s1s2s3s4,Tr𝔅ω(Cneg-sameover-to-higher)s1s2s3s4,Tr𝔅ω(Cpos-sameover-to-higher)s1s2s3s4,Tr𝔅ω(Cneg-sameover-to-lower)s1s2s3s4,\displaystyle\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-same}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}},
Tr𝔅ω(Cneg-oppover-to-lower)s1s2s3s4,Tr𝔅ω(Cpos-oppover-to-higher)s1s2s3s4,Tr𝔅ω(Cneg-oppover-to-higher)s1s2s3s4,Tr𝔅ω(Cpos-oppover-to-lower)s1s2s3s4,\displaystyle\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-opp}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-opp}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-opp}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-opp}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}},

by the matrix equations

(Tr𝔅ω(Cpos-sameover-to-lower)s1s2s3s4)=def𝐂sameqMn2(),(Tr𝔅ω(Cneg-sameover-to-higher)s1s2s3s4)=def(𝐂sameq)1Mn2(),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}\mathbf{C}_{\text{same}}^{q}\in\mathrm{M}_{n^{2}}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}(\mathbf{C}_{\text{same}}^{q})^{-1}\in\mathrm{M}_{n^{2}}(\mathbb{C}),
(Tr𝔅ω(Cpos-sameover-to-higher)s1s2s3s4)=def𝐂sameqMn2(),(Tr𝔅ω(Cneg-sameover-to-lower)s1s2s3s4)=def(𝐂sameq)1Mn2(),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}\mathbf{C}_{\text{same}}^{q}\in\mathrm{M}_{n^{2}}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-same}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}(\mathbf{C}_{\text{same}}^{q})^{-1}\in\mathrm{M}_{n^{2}}(\mathbb{C}),
(Tr𝔅ω(Cneg-oppover-to-lower)s1s2s3s4)=def𝐂oppqMn2(),(Tr𝔅ω(Cpos-oppover-to-higher)s1s2s3s4)=def(𝐂oppq)1Mn2(),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-opp}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}\mathbf{C}_{\text{opp}}^{q}\in\mathrm{M}_{n^{2}}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-opp}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}(\mathbf{C}_{\text{opp}}^{q})^{-1}\in\mathrm{M}_{n^{2}}(\mathbb{C}),
(Tr𝔅ω(Cneg-oppover-to-higher)s1s2s3s4)=def𝐂oppqMn2(),(Tr𝔅ω(Cpos-oppover-to-lower)s1s2s3s4)=def(𝐂oppq)1Mn2().\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-opp}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}\mathbf{C}_{\text{opp}}^{q}\in\mathrm{M}_{n^{2}}(\mathbb{C}),\,\,(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-opp}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}})\overset{\text{def}}{=}(\mathbf{C}_{\text{opp}}^{q})^{-1}\in\mathrm{M}_{n^{2}}(\mathbb{C}).
Remark 29.

In the case n=2n=2, these formulas agree with those in [BW11, Lemma 22], for the underlying un-oriented link, taking A=ω2A=\omega^{-2}, α=ω5\alpha=-\omega^{-5} and β=ω1\beta=\omega^{-1} (see [BW11, Proposition 26]). In particular, as another indication of the un-oriented nature of SL2\mathrm{SL}_{2}, when n=2n=2 the two matrices 𝐂sameq\mathbf{C}^{q}_{\mathrm{same}} and 𝐂oppq\mathbf{C}^{q}_{\mathrm{opp}} are identical for all qq and ω\omega (we saw above that, for general nn, this is only true for q=ω=1q=\omega=1). This can be explained conceptually as follows. For any nn, the vector spaces VV and VV^{*} can be given the structure of a right SLnq\mathrm{SL}_{n}^{q}-comodule; see Appendix A. When n=2n=2, the linear isomorphism VVV\to V^{*}, e1qe2e^{1}\mapsto-qe_{2}^{*}, e2e1e^{2}\mapsto e_{1}^{*} is an isomorphism of right SL2q\mathrm{SL}_{2}^{q}-comodules, but this is not true for n>2n>2. This is why, loosely speaking, the choices above for the bases βV,V\beta_{V,V}, βV,V\beta_{V^{*},V^{*}}, βV,V\beta_{V^{*},V} and βV,V\beta_{V,V^{*}} are ‘preferred’.

The linear isomorphisms c¯V,V\overline{c}_{V,V}, c¯V,V\overline{c}_{V^{*},V^{*}}, c¯V,V\overline{c}_{V^{*},V} and c¯V,V\overline{c}_{V^{*},V} arise naturally as braidings in the ribbon category of finite-dimensional right SLnq\mathrm{SL}_{n}^{q}-comodules, where the categorical coribbon element ζ¯SLnq\overline{\zeta}_{\mathrm{SL}_{n}^{q}} is essentially given by Definition 24; see Appendix A. Possibly of interest, we have implicitly taken a ‘symmetric’ duality, which is more fitting for the current setting. In the notation of [Kas95] (compare [Kas95, Chapter XIV.2, Example 1]), these symmetric dualities bVb_{V} and dVd_{V} are related to the usual ones by bV=νbVKasselb_{V}=\nu b_{V}^{\textnormal{Kassel}} and dV=ν1dVKasseld_{V}=\nu^{-1}d_{V}^{\textnormal{Kassel}}, where ν=q(1n)/2n=σ¯nq(n1)/2\nu=q^{(1-n)/2n}=\overline{\sigma}_{n}q^{(n-1)/2}; see Appendix A. Note that ν\nu is the bottom left entry of 𝐔q\mathbf{U}^{q}, see Definition 24.

Refer to caption
(a) positive crossing, over strand higher to lower
Refer to caption
(b) negative crossing, over strand lower to higher
Refer to caption
(c) positive crossing, over strand lower to higher
Refer to caption
(d) negative crossing, over strand higher to lower
Figure 19. Same direction crossings.
Refer to caption
(a) negative crossing, over strand higher to lower
Refer to caption
(b) positive crossing, over strand lower to higher
Refer to caption
(c) negative crossing, over strand lower to higher
Refer to caption
(d) positive crossing, over strand higher to lower
Figure 20. Opposite direction crossings.

5.2.3. Trivial strand

Consider a single strand crossing from one boundary edge of the biangle to the other boundary edge, as shown in Figure 21. Note that the height of the strand with respect to the (0,1)(0,1) component does not play a role in this particular case.

This trivial strand corresponds to the n×nn\times n identity matrix. That is, define for each pair of states s1,s2{1,2,,n}s_{1},s_{2}\in\{1,2,\dots,n\} the complex number Tr𝔅ω(I)s1s2\mathrm{Tr}^{\omega}_{\mathfrak{B}}(I)_{s_{1}}^{s_{2}} by the matrix equation

(Tr𝔅ω(I)s1s2)=def𝐈𝐝nMn().(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(I)_{s_{1}}^{s_{2}})\overset{\text{def}}{=}\mathbf{Id}_{n}\in\mathrm{M}_{n}(\mathbb{C}).
Refer to caption
Figure 21. Trivial strand.

5.2.4. Kinks and the biangle quantum trace map

Up to this point, we have assigned complex numbers Tr𝔅ω(K,s)\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K,s) to a handful of small stated blackboard-framed oriented links (K,s)(K,s) (but not their isotopy classes) in the parametrized (see the beginning of §5.2) thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1). We now provide the general assignment.

Assume first that the blackboard-framed link KK has no kinks. For the moment, we also assume that higher points of K({0}××(0,1))K\cap(\left\{0\right\}\times\mathbb{R}\times(0,1)) (resp. K({1}××(0,1))K\cap(\left\{1\right\}\times\mathbb{R}\times(0,1))) have larger second coordinates with respect to the parametrization of 𝔅×(0,1)[0,1]××(0,1)\mathfrak{B}\times(0,1)\cong[0,1]\times\mathbb{R}\times(0,1); see, for example, Figures 17, 18, 19, 20. (Recall, in particular, Remark 20.) Fixing endpoints, isotope (without introducing kinks) KK into an arbitrary bridge position. This means that, after isotopy, there exists a partition 0=x0<x1<<xp=10=x_{0}<x_{1}<\dots<x_{p}=1 of [0,1][0,1] such that K([xi,xi+1]××(0,1))=Ki=Ki,K\cap([x_{i},x_{i+1}]\times\mathbb{R}\times(0,1))=K_{i}=\cup_{\ell}K_{i,\ell} is a disjoint union of links Ki,K_{i,\ell} satisfying:

  • the higher points of Ki({xi}××(0,1))K_{i}\cap(\left\{x_{i}\right\}\times\mathbb{R}\times(0,1)) have a larger second coordinate;

  • for each ii, there is a single \ell such that Ki,K_{i,\ell} is either a U-turn (Figures 17, 18) or a crossing (Figures 19, 20), and the other Ki,K_{i,\ell}’s are trivial (Figure 21 and its inverse, with opposite orientation).

(Compare [BW11, §4, proof of Lemma 15].) For each i=0,1,,p1i=0,1,\dots,p-1 and any state sis_{i} on KiK_{i}, define

Tr𝔅ω(Ki,si)=defTr𝔅ω(Ki,,si|Ki,),\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K_{i},s_{i})\overset{\text{def}}{=}\prod_{\ell}\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K_{i,\ell},s_{i}|_{K_{i,\ell}})\in\mathbb{C},

see §5.2.1, 5.2.2, 5.2.3. We then define the number

Tr𝔅ω(K,s)=defcompatible s0,s1,,sp1i=0,1,,p1Tr𝔅ω(Ki,si).\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K,s)\overset{\text{def}}{=}\sum_{\textnormal{compatible }s_{0},s_{1},\dots,s_{p-1}}\prod_{i=0,1,\dots,p-1}\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K_{i},s_{i})\in\mathbb{C}.

Here, the states sis_{i} are compatible (Definition 21) if s|K({0}××(0,1))=s0|K0({0}××(0,1))s|_{K\cap(\left\{0\right\}\times\mathbb{R}\times(0,1))}=s_{0}|_{K_{0}\cap(\left\{0\right\}\times\mathbb{R}\times(0,1))} and
si|Ki({xi+1}××(0,1))=si+1|Ki+1({xi+1}××(0,1))s_{i}|_{K_{i}\cap(\left\{x_{i+1}\right\}\times\mathbb{R}\times(0,1))}=s_{i+1}|_{K_{i+1}\cap(\left\{x_{i+1}\right\}\times\mathbb{R}\times(0,1))} and sp1|Kp1({1}××(0,1))=s|K({1}××(0,1))s_{p-1}|_{K_{p-1}\cap(\left\{1\right\}\times\mathbb{R}\times(0,1))}=s|_{K\cap(\left\{1\right\}\times\mathbb{R}\times(0,1))}.

Define Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)\in\mathbb{C} for a general stated blackboard-framed oriented link (K,s)(K,s), possibly with kinks (§4.1), as follows. By isotopy, sliding the link horizontally along the boundary of 𝔅×(0,1)\mathfrak{B}\times(0,1) while preserving blackboard framing throughout, we can arrange that the boundary K\partial K satisfies the ‘higher point, larger second coordinate’ condition assumed just above. (Note this sliding might introduce or remove kinks.) Let KK^{\prime} be the blackboard-framed link without kinks obtained by removing the kinks of KK (more precisely, pulling tight by homotopy–not isotopy–the kinks in the un-framed link underlying KK), and further isotoped into a bridge position as above. Then we have defined a complex number Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K^{\prime},s)\in\mathbb{C}. Define Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)\in\mathbb{C} by modifying Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K^{\prime},s) according to the un-kinking ‘skein relations’ shown in Figures 3(a) and 3(b). (For example, in the case n=3n=3, ζ¯3=+q8/3\overline{\zeta}_{3}=+q^{-8/3}.) More precisely, for PP (resp. NN) the number of positive (resp. negative) kinks of KK,

Tr𝔅ω(K,s)=def(ζ¯n)PNTr𝔅ω(K,s).\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)\overset{\text{def}}{=}(\overline{\zeta}_{n})^{P-N}\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K^{\prime},s)\in\mathbb{C}.
Proposition 30 (SLn\mathrm{SL}_{n}-biangle quantum trace map).

Let 𝔅×(0,1)\mathfrak{B}\times(0,1) be the (non-parametrized) thickened biangle. Then the construction of the current section determines a function

Tr𝔅ω:{stated framed oriented links (K,s) in 𝔅×(0,1)},\mathrm{Tr}^{\omega}_{\mathfrak{B}}:\left\{\textnormal{stated framed oriented links }(K,s)\textnormal{ in }\mathfrak{B}\times(0,1)\right\}\to\mathbb{C},

satisfying the following properties:

  1. (A)

    the number Tr𝔅ω(K,s)\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K,s)\in\mathbb{C} is invariant under isotopy of stated framed oriented links;

  2. (B)

    the SLn\mathrm{SL}_{n}-HOMFLYPT skein relation (Figure 1) holds;

  3. (C)

    the SLn\mathrm{SL}_{n}-quantum unknot and framing relations (Figures 2 and 3) hold.

Moreover, this invariant satisfies the Multiplication Property

Tr𝔅ω(K,s)=j=1Tr𝔅ω(Kj,sj),\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)=\prod_{j=1}^{\ell}\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K_{j},s_{j})\in\mathbb{C},

in the case where KK is the disjoint union of links KjK_{j} having mutually non-overlapping heights (note the order of multiplication is immaterial, in contrast to Complement 23), as well as the State Sum Property

Tr𝔅ω(K,s)=compatible s1,s2Tr𝔅1ω(K1,s1)Tr𝔅2ω(K2,s2),\mathrm{Tr}_{\mathfrak{B}}^{\omega}(K,s)=\sum_{\textnormal{compatible }s_{1},s_{2}}\mathrm{Tr}_{\mathfrak{B}_{1}}^{\omega}(K_{1},s_{1})\mathrm{Tr}_{\mathfrak{B}_{2}}^{\omega}(K_{2},s_{2})\in\mathbb{C},

where K1K_{1} and K2K_{2} are the links obtained by cutting the biangle 𝔅\mathfrak{B} into two biangles 𝔅1\mathfrak{B}_{1} and 𝔅2\mathfrak{B}_{2}.

For the proof of part (A) of the proposition, namely the isotopy invariance, we refer the reader to Appendix A, which makes use of a ‘symmetric’ specialization of the Reshetikhin–Turaev invariant (see Figure 41). The skein relations, parts (B) and (C), are local calculations; see §5.4.1.

Note that (assuming isotopy invariance) the State Sum Property is immediate from the construction. It suffices to establish the Multiplication Property when =2\ell=2 (assuming K1K_{1} lies below K2K_{2}, say). This follows from the State Sum Property and the definition for the trivial strand (Figure 21) by choosing a parametrization of 𝔅×(0,1)[0,1]××(0,1)\mathfrak{B}\times(0,1)\cong[0,1]\times\mathbb{R}\times(0,1), the partition 0<1/2<10<1/2<1 of [0,1][0,1], and a position for the links such that (K1,s1)[0,1]××(0,1/2)(K_{1},s_{1})\subseteq[0,1]\times\mathbb{R}\times(0,1/2) (resp. (K2,s2)[0,1]××(1/2,1)(K_{2},s_{2})\subseteq[0,1]\times\mathbb{R}\times(1/2,1)) with only trivial strands in [1/2,1]××(0,1/2)[1/2,1]\times\mathbb{R}\times(0,1/2) (resp. [0,1/2]××(1/2,1)[0,1/2]\times\mathbb{R}\times(1/2,1)). (Compare [BW11, Lemma 19].)

We note, in particular, that the biangle quantum trace map is independent of the choice of parametrization of the biangle 𝔅\mathfrak{B}, discussed at the beginning of §5.2. Indeed, this property follows either from the properties of the symmetric specialization of the Reshetikhin–Turaev invariant (Appendix A), or directly from the symmetries of the matrices corresponding to the links displayed in Figures 17, 18, 19, 20, 21.

Remark 31.

The Reshetikhin–Turaev invariant can be defined more generally for ribbon graphs, including so-called webs [Kup96, Sik05]. In [BW11], the SL2\mathrm{SL}_{2}-quantum trace is defined by splitting the edges of the ideal triangulation λ\lambda to form biangles and then “pushing all of the complexities of the link into the biangles,” [BW11, p.1596] leaving only flat arcs lying over the triangles. In order to construct the SLn\mathrm{SL}_{n}-quantum trace for webs, one can perform the same procedure, in particular pushing all of the vertices of the web into the biangles. Then, the Reshetikhin–Turaev invariant can be applied to the webs in the biangles and (as we will see in the next section) the Fock–Goncharov matrices can be associated to the arcs lying over the triangles. This is essentially the strategy employed in [Kim20] in the case n=3n=3.

5.3. Definition of the SLn\mathrm{SL}_{n}-quantum trace polynomials

Our construction of the quantum trace map in the general nn case will follow exactly the same procedure as explained in [BW11, §3.4-6] for the case n=2n=2, where our Proposition 30 plays the role of Proposition 13 in [BW11, §4]. It remains to discuss how Property (2)(a) of Theorem 11 in [BW11, §3.4], concerning the values of the quantum traces for arcs in triangles (see Remark 31), generalizes to our setting, which we have essentially already done. (In particular, we follow the ‘ordered lower to higher, multiply left to right’ convention of [BW11] for ordering the non-commutative variables associated to different arc components lying over a single triangle.) After this, the rest of the construction is identical to [BW11, §6, pp. 1600-1601], where the quantum trace for a general triangulated surface (𝔖,λ)(\mathfrak{S},\lambda) is defined as a state sum over the triangles of the ideal triangulation λ\lambda of 𝔖\mathfrak{S}. We proceed below to spell all of this out in greater detail. Now is the point where we require the choice of square root ω1/2\omega^{1/2}; see Remark 33.

5.3.1. Arcs in a triangle

Generalizing Property (2)(a) of Theorem 11 in [BW11, §3.4] to the case of general nn is accomplished by using the quantum left and right matrices 𝐋ω\mathbf{L}^{\omega} and 𝐑ω\mathbf{R}^{\omega}, with coefficients in the Fock–Goncharov quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}) for a triangle 𝔗\mathfrak{T} in the ideal triangulation λ\lambda, appearing earlier in Theorem 16.

Consider a single extended left-moving or right-moving arc crossing the triangle between two distinct boundary edges, such as those shown in Figure 13; see §3.3.2. For example, in the case n=3n=3, these extended left-moving and right-moving arcs are displayed in Figures 22(a) and 22(b). Using the notation from these figures, the n=3n=3 quantum left and right matrices 𝐋ω=𝐋ω(W,Z,W,Z,X)\mathbf{L}^{\omega}=\mathbf{L}^{\omega}(W,Z,W^{\prime},Z^{\prime},X) and 𝐑ω=𝐑ω(W,Z,W,Z,X)\mathbf{R}^{\omega}=\mathbf{R}^{\omega}(W,Z,W^{\prime},Z^{\prime},X) are given by

𝐋ω(W,Z,W,Z,X)=def([DL1/3WZXZW][DL1/3WZXW]+[DL1/3WZW][DL1/3WZ]0[DL1/3ZW][DL1/3Z]00[DL1/3])SL3q(𝒯3ω(𝔗)),\mathbf{L}^{\omega}(W,Z,W^{\prime},Z^{\prime},X)\overset{\text{def}}{=}\left(\begin{smallmatrix}[D_{L}^{-1/3}WZXZ^{\prime}W^{\prime}]&[D_{L}^{-1/3}WZXW^{\prime}]+[D_{L}^{-1/3}WZW^{\prime}]&[D_{L}^{-1/3}WZ]\\ 0&[D_{L}^{-1/3}ZW^{\prime}]&[D_{L}^{-1/3}Z]\\ 0&0&[D_{L}^{-1/3}]\end{smallmatrix}\right)\in\mathrm{SL}_{3}^{q}(\mathscr{T}^{\omega}_{3}(\mathfrak{T})),

where DL1/3D_{L}^{-1/3} in 𝒯3ω(𝔗)\mathscr{T}_{3}^{\omega}(\mathfrak{T}) is defined by

DL1/3=defW1/3Z2/3X1/3Z1/3W2/3𝒯3ω(𝔗),D_{L}^{-1/3}\overset{\text{def}}{=}W^{-1/3}Z^{-2/3}X^{-1/3}Z^{\prime-1/3}W^{\prime-2/3}\in\mathscr{T}_{3}^{\omega}(\mathfrak{T}),

and

𝐑ω(W,Z,W,Z,X)=def([DR1/3WZZW]00[DR1/3ZZW][DR1/3ZW]0[DR1/3ZW][DR1/3W]+[DR1/3X1W][DR1/3X1])SL3q(𝒯3ω(𝔗)),\mathbf{R}^{\omega}(W,Z,W^{\prime},Z^{\prime},X)\overset{\text{def}}{=}\left(\begin{smallmatrix}[D_{R}^{-1/3}W^{\prime}Z^{\prime}ZW]&0&0\\ [D_{R}^{-1/3}Z^{\prime}ZW]&[D_{R}^{-1/3}Z^{\prime}W]&0\\ [D_{R}^{-1/3}ZW]&[D_{R}^{-1/3}W]+[D_{R}^{-1/3}X^{-1}W]&[D_{R}^{-1/3}X^{-1}]\end{smallmatrix}\right)\in\mathrm{SL}_{3}^{q}(\mathscr{T}^{\omega}_{3}(\mathfrak{T})),

where DR1/3D_{R}^{-1/3} in 𝒯3ω(𝔗)\mathscr{T}_{3}^{\omega}(\mathfrak{T}) is defined by

DR1/3=defW1/3Z2/3X1/3Z1/3W2/3𝒯3ω(𝔗).D_{R}^{-1/3}\overset{\text{def}}{=}W^{\prime-1/3}Z^{\prime-2/3}X^{1/3}Z^{-1/3}W^{-2/3}\in\mathscr{T}_{3}^{\omega}(\mathfrak{T}).

(This is the result of multiplying out the snake-move matrices in the case n=3n=3; compare §3.5.1.)

Definition 32.

For general nn, define for each pair of states s1,s2{1,2,,n}s_{1},s_{2}\in\{1,2,\dots,n\} two elements in the quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T})

Tr𝔗ω(L)s1s2,Tr𝔗ω(R)s1s2𝒯nω(𝔗),\mathrm{Tr}^{\omega}_{\mathfrak{T}}(L)_{s_{1}}^{s_{2}},\,\,\mathrm{Tr}^{\omega}_{\mathfrak{T}}(R)_{s_{1}}^{s_{2}}\in\mathscr{T}_{n}^{\omega}(\mathfrak{T}),

by the matrix equations (see §5.1)

(Tr𝔗ω(L)s1s2)=def𝐋ωSLnq(𝒯nω(𝔗))Mn(𝒯nω(𝔗)),\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{T}}(L)_{s_{1}}^{s_{2}})\overset{\text{def}}{=}\mathbf{L}^{\omega}\in\mathrm{SL}_{n}^{q}(\mathscr{T}_{n}^{\omega}(\mathfrak{T}))\subseteq\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})),
(Tr𝔗ω(R)s1s2)=def𝐑ωSLnq(𝒯nω(𝔗))Mn(𝒯nω(𝔗)).\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{T}}(R)_{s_{1}}^{s_{2}})\overset{\text{def}}{=}\mathbf{R}^{\omega}\in\mathrm{SL}_{n}^{q}(\mathscr{T}_{n}^{\omega}(\mathfrak{T}))\subseteq\mathrm{M}_{n}(\mathscr{T}_{n}^{\omega}(\mathfrak{T})).
Remark 33.

In the above matrices, we recall that the square brackets surrounding the monomials indicate that we are taking the Weyl quantum ordering, which depends on the quiver defining the qq-commutation relations in the Fock–Goncharov quantum torus 𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}); see §3.1.3 and Figure 12. It is here that the choice of ω1/2\omega^{1/2} enters into the construction.

In Theorem 16, we saw that the quantum left and right matrices 𝐋ω\mathbf{L}^{\omega} and 𝐑ω\mathbf{R}^{\omega} are points of the quantum special linear group SLnq\mathrm{SL}_{n}^{q}. Note that, in order for these matrices to satisfy even just the relations required to be in the quantum matrix algebra Mnq\mathrm{M}_{n}^{q}, they had to be normalized by ‘dividing out’ their determinants. For example, the above n=3n=3 version of the matrix 𝐋ω\mathbf{L}^{\omega} would not satisfy the qq-commutation relations required to be a point of M3q\mathrm{M}_{3}^{q} if we had instead put DL=1D_{L}=1.

Refer to caption
(a) Left
Refer to caption
(b) Right
Figure 22. Quantum left and right matrices for n=3n=3.

5.3.2. Good position of a link

Fix an ideal triangulation λ\lambda of 𝔖\mathfrak{S}. Form the corresponding split ideal triangulation λ^\widehat{\lambda} of 𝔖\mathfrak{S} by ‘splitting’ each edge EE of λ\lambda into a biangle 𝔅E\mathfrak{B}_{E}. (Compare [BW11, §5].) See Figure 23. For notational simplicity, we identify the triangles of λ\lambda with the triangles of λ^\widehat{\lambda}. A framed link KK is said to be in good position with respect to the split ideal triangulation λ^\widehat{\lambda} if:

  • the link KK is transverse to E^×(0,1)\widehat{E}\times(0,1) for each edge E^\widehat{E} of λ^\widehat{\lambda};

  • for each triangle 𝔗j\mathfrak{T}_{j} of λ^\widehat{\lambda}, the intersection K(𝔗j×(0,1))=Kj=Kj,K\cap(\mathfrak{T}_{j}\times(0,1))=K_{j}=\cup_{\ell}K_{j,\ell} consists of a disjoint union of arcs Kj,K_{j,\ell}, each connecting distinct sides of 𝔗j×(0,1)\mathfrak{T}_{j}\times(0,1);

  • the arcs Kj,K_{j,\ell} are ‘flat’, in the sense that each arc has a constant height with respect to the vertical coordinate of 𝔗j×(0,1)\mathfrak{T}_{j}\times(0,1) and has the blackboard framing.

(Compare [BW11, Lemma 23].) In particular, when in good position, all of the ‘complexity’ of the link KK resides in the thickened biangles i(𝔅i×(0,1))\cup_{i}(\mathfrak{B}_{i}\times(0,1)). A good position move between framed oriented links K1K_{1} and K2K_{2} in good position is one of the oriented versions of the local moves depicted in Figures 15-19 in [BW11, §5]. In the present article, these moves are displayed in Figures 24, 25, 26, 27 (Move I); Figures 28, 29 (Move II); Figures 30, 31, 32, 33 (Move III); Figures 34, 35, 36, 37 (Move IV); and, Figure 38 (Move V).

The proof of the following fact is the same as the proof of the corresponding un-oriented version ([BW11, Lemma 24]).

Fact 34.

Any framed oriented link KK has a good position with respect to the split ideal triangulation λ^\widehat{\lambda}. Any two isotopic framed oriented links K1K_{1} and K2K_{2} in good position are related by a sequence of good position moves and their inverses (and isotopies through framed oriented links in good position). ∎

Refer to caption
Figure 23. Split ideal triangulation

5.3.3. General case

Let KK be any blackboard-framed oriented link (recall that a framed link can be isotoped to have the blackboard framing by possibly introducing kinks). By §5.3.2, we may assume that KK is in good position with respect to the split ideal triangulation λ^\widehat{\lambda}. Let the biangles of λ^\widehat{\lambda} be denoted 𝔅i\mathfrak{B}_{i} for i=1,2,,pi=1,2,\dots,p and let the triangles be denoted 𝔗j\mathfrak{T}_{j} for j=1,2,,mj=1,2,\dots,m. Put Li=K(𝔅i×(0,1))L_{i}=K\cap(\mathfrak{B}_{i}\times(0,1)) and Kj=K(𝔗j×(0,1))K_{j}=K\cap(\mathfrak{T}_{j}\times(0,1)). By definition of good position, Kj=Kj,1Kj,2Kj,jK_{j}=K_{j,1}\cup K_{j,2}\cup\dots\cup K_{j,{\ell_{j}}} where each component Kj,K_{j,\ell} is a flat oriented arc connecting distinct sides of 𝔗j×(0,1)\mathfrak{T}_{j}\times(0,1). Choose indices such that Kj,K_{j,\ell} lies below Kj,+1K_{j,{\ell+1}} with respect to the height order of 𝔗j×(0,1)\mathfrak{T}_{j}\times(0,1). For any state sjs_{j} on KjK_{j}, by §5.3.1, the triangle quantum torus elements Tr𝔗ω(Kj,,sj|Kj,)𝒯nω(𝔗j)\mathrm{Tr}_{\mathfrak{T}}^{\omega}(K_{j,\ell},s_{j}|_{K_{j,\ell}})\in\mathscr{T}_{n}^{\omega}(\mathfrak{T}_{j}) are defined for =1,2,,j\ell=1,2,\dots,\ell_{j}. Assign such a quantum torus element to the stated link (Kj,sj)(K_{j},s_{j}) by

Tr𝔗jω(Kj,sj)=defTr𝔗jω(Kj,1,sj|Kj,1)Tr𝔗jω(Kj,2,sj|Kj,2)Tr𝔗jω(Kj,j,sj|Kj,j)𝒯nω(𝔗j).\mathrm{Tr}_{\mathfrak{T}_{j}}^{\omega}(K_{j},s_{j})\overset{\text{def}}{=}\mathrm{Tr}_{\mathfrak{T}_{j}}^{\omega}(K_{j,1},s_{j}|_{K_{j,1}})\mathrm{Tr}_{\mathfrak{T}_{j}}^{\omega}(K_{j,2},s_{j}|_{K_{j,2}})\cdots\mathrm{Tr}_{\mathfrak{T}_{j}}^{\omega}(K_{j,{\ell_{j}}},s_{j}|_{K_{j,{\ell_{j}}}})\in\mathscr{T}_{n}^{\omega}(\mathfrak{T}_{j}).

Note, importantly, the order in which the non-commuting elements Tr𝔗ω(Kj,,sj|Kj,)\mathrm{Tr}_{\mathfrak{T}}^{\omega}(K_{j,\ell},s_{j}|_{K_{j,\ell}}) are multiplied, the convention being ‘ordered lower to higher, multiply left to right’. For any state tit_{i} on LiL_{i}, let the numbers Tr𝔅iω(Li,ti)\mathrm{Tr}^{\omega}_{\mathfrak{B}_{i}}(L_{i},t_{i})\in\mathbb{C} be defined by Proposition 30.

Definition 35.

Let (K,s)(K,s) be a stated blackboard-framed oriented link in 𝔖×(0,1)\mathfrak{S}\times(0,1) in good position with respect to the split ideal triangulation λ^\widehat{\lambda}. The SLn\mathrm{SL}_{n}-quantum trace polynomial Trλω(K,s)\mathrm{Tr}_{\lambda}^{\omega}(K,s) is defined by

Trλω(K,s)=defcompatible t1,t2,,tp,s1,s2,,sm(i=1pTr𝔅iω(Li,ti))(j=1mTr𝔗jω(Kj,sj))triangles 𝔗j𝒯nω(𝔗j),\mathrm{Tr}_{\lambda}^{\omega}(K,s)\overset{\text{def}}{=}\sum_{\text{compatible }t_{1},t_{2},\dots,t_{p},s_{1},s_{2},\dots,s_{m}}\left(\prod_{i=1}^{p}\mathrm{Tr}^{\omega}_{\mathfrak{B}_{i}}(L_{i},t_{i})\right)\left(\bigotimes_{j=1}^{m}\mathrm{Tr}^{\omega}_{\mathfrak{T}_{j}}(K_{j},s_{j})\right)\in\bigotimes_{\textnormal{triangles }\mathfrak{T}_{j}}\mathscr{T}_{n}^{\omega}(\mathfrak{T}_{j}),

where the compatibility condition (Definition 21) for the states tit_{i} and sjs_{j} with respect to the state ss and the split triangulation λ^\widehat{\lambda} is analogous to that in §5.2.4. (Compare [BW11, §6, p. 1600-1601].) Note that the quantities Tr𝔗jω(Kj,sj)\mathrm{Tr}^{\omega}_{\mathfrak{T}_{j}}(K_{j},s_{j}) commute in the tensor product, since they lie in different tensor factors 𝒯nω(𝔗j)𝔗𝒯nω(𝔗)\mathscr{T}_{n}^{\omega}(\mathfrak{T}_{j})\subseteq\bigotimes_{\mathfrak{T}}\mathscr{T}_{n}^{\omega}(\mathfrak{T}).

This completes the construction of the SLn\mathrm{SL}_{n}-quantum trace map for links. One would still need to show it is well-defined, that is, independent of the choice of good position (equivalently, independent of isotopy); see §6 for a proof in the case n=3n=3.

5.4. Properties

Assuming isotopy invariance, we conclude this section with a few observations.

The above state sum definition of the quantum trace polynomial takes as input a stated framed oriented link (K,s)(K,s) and outputs an element of the tensor product 𝔗𝒯nω(𝔗)\bigotimes_{\mathfrak{T}}\mathscr{T}^{\omega}_{n}(\mathfrak{T}). We had indicated earlier (Theorem 22) that the image should lie in the Fock–Goncharov quantum torus sub-algebra 𝒯nω(λ)𝔗𝒯nω(𝔗)\mathscr{T}^{\omega}_{n}(\lambda)\subseteq\bigotimes_{\mathfrak{T}}\mathscr{T}^{\omega}_{n}(\mathfrak{T}); see §3.6. The following fact is justified by a straightforward analysis of the structure of the local U-turn, crossing, left, and right matrices. (Compare [BW11, Lemma 25]. See also [Kim20], where a stronger property is established.)

Fact 36.

The quantum trace polynomial Trλω(K,s)\mathrm{Tr}_{\lambda}^{\omega}(K,s) is an element of 𝒯nω(λ)\mathscr{T}^{\omega}_{n}(\lambda). ∎

Proof of (the general nn version of) Complement 23.

The Classical Trace Property is by construction, comparing with the classical matrices of §2. The State Sum Property is immediate from the construction (assuming isotopy invariance). The Multiplication Property follows from the State Sum Property by the corresponding property for biangles (Proposition 30), together with the definitions of good position and the quantities Tr𝔗jω(Kj,sj)𝒯nω(𝔗j)\mathrm{Tr}^{\omega}_{\mathfrak{T}_{j}}(K_{j},s_{j})\in\mathscr{T}_{n}^{\omega}(\mathfrak{T}_{j}). (Compare [BW11, §6, p.1609].) ∎

We remark that the quantum trace Trλω(K,s)\mathrm{Tr}^{\omega}_{\lambda}(K,s) of a stated framed oriented link (K,s)(K,s) can be thought of as a tensor having dimension equal to the number of boundary points piKp_{i}\in\partial K of the link, each associated to a state sis_{i}. If the states sis_{i} are partitioned into two groups si1,,sis_{i_{1}},\dots,s_{i_{\ell}} and sj1,,sjms_{j_{1}},\dots,s_{j_{m}}, then the quantum trace of the link can be written as a matrix (Trλω(K,s)si1,,sisj1,,sjm)(\mathrm{Tr}^{\omega}_{\lambda}(K,s)_{s_{i_{1}},\dots,s_{i_{\ell}}}^{s_{j_{1}},\dots,s_{j_{m}}}) with coefficients in 𝒯nω(λ)\mathscr{T}_{n}^{\omega}(\lambda); see §6 for examples.

5.4.1. Skein relations

We justify parts (B)-(C) in (the general nn version of) Theorem 22.

The first skein relation is the well-known (qq-evaluated) HOMFLYPT relation from knot theory [FYH+85, PT87]. The RR-matrices for the quantum group SLnq\mathrm{SL}_{n}^{q} satisfy this skein relation. For us, this relation appears with the normalization displayed in Figure 1. One can check from, say, Figures 19(a), 19(b), 21 together with the definitions of §5.2.2 and §5.2.3 that the quantum trace map Trλω\mathrm{Tr}^{\omega}_{\lambda} satisfies this skein relation, translating to the matrix equation

q1/n𝐂sameqq+1/n(𝐂sameq)1=(q1q)𝐈𝐝n2Mn2().q^{-1/n}\mathbf{C}^{q}_{\text{same}}-q^{+1/n}(\mathbf{C}^{q}_{\text{same}})^{-1}=(q^{-1}-q)\mathbf{Id}_{n^{2}}\in\mathrm{M}_{n^{2}}(\mathbb{C}).

The second skein relation, coming from the U-turn ‘duality’ matrices (Figures 17 and 18), says that the contractible untwisted unknot KK evaluates to (1)n1(-1)^{n-1} times the quantum integer [n]q=(qnqn)/(qq1)=k=1nq2kn1[n]_{q}=(q^{n}-q^{-n})/(q-q^{-1})=\sum_{k=1}^{n}q^{2k-n-1}; see Figure 2. The third skein relation consists of the positive and negative framing relations; see Figure 3.

6. Isotopy invariance: proof of the main theorem

Proof of Theorem 22.

Parts (B)-(C) were discussed above. In this section, we will establish part (A): the SL3\mathrm{SL}_{3}-quantum trace map is invariant under isotopy. It suffices to check the oriented good position moves; see §5.3.2. We do this ‘by hand’, using computer assistance. ∎

The more difficult moves are those of type (II) and (IV). Indeed, (I) can be computed directly from the definitions (although it is still somewhat non-trivial), (III) is essentially equivalent to Theorem 16, and (V) is equivalent to the kink-removing skein relations appearing in Figure 3. However, below we will justify moves (I), (III), and (V) as well.

Remark 37.

In the general case of SLn\mathrm{SL}_{n}, a proof of essentially these same algebraic identities (including Theorem 16), which are equivalent to the local isotopy moves discussed in this section, is given in [CS23] (motivated by [SS19, SS17] and earlier by [FG06a, GSV09]) in the context of quantum integrable systems; see also [GS19]. Consequently, these works can be applied to finish the proof of the general nn version of Theorem 22.

6.1. Notation

Throughout this section, we will be considering a single triangle with 7 coordinates, denoted as in Figure 28. (Note that the coordinates we are currently labeling as W2W_{2}, Z2Z_{2}, W3W_{3}, Z3Z_{3}, XX were labeled, respectively, WW, ZZ, WW^{\prime}, ZZ^{\prime}, XX in §5.3.1.) We define matrices 𝐋ω(W2,Z2,W3,Z3,X)\mathbf{L}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X) and 𝐑ω(W2,Z2,W3,Z3,X)\mathbf{R}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X) in SL3q(𝒯3ω(𝔗))M3(𝒯3ω(𝔗)\mathrm{SL}_{3}^{q}(\mathscr{T}^{\omega}_{3}(\mathfrak{T}))\subseteq\mathrm{M}_{3}(\mathscr{T}^{\omega}_{3}(\mathfrak{T}) by the same formulas as in §5.3.1. These matrices are considered as functions of the ordered 55-tuple (W2,Z2,W3,Z3,X)(W_{2},Z_{2},W_{3},Z_{3},X). For example, we may also consider a matrix 𝐑ω(W3,Z3,W1,Z1,X)\mathbf{R}^{\omega}(W_{3},Z_{3},W_{1},Z_{1},X) corresponding to the right turn in Figure 28.

6.2. Move (I)

In Figure 24, we show one of the oriented versions of Move (I). Let KK be the link on the left, and KK^{\prime} the link on the right. According to the definition of the quantum trace (§5.3) as a State Sum Formula, the equality expressing Move (I) can be interpreted as an equality of 3×33\times 3 matrices. Specifically, the claim is that the matrix,

(II) (Trλω(K)s1s2)=(a1b1c10e1f100i1)q4/3σ¯3(00+q1010+q00)(A100D1E10G1H1I1)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)\overbrace{q^{-4/3}}^{\overline{\sigma}_{3}}\left(\begin{smallmatrix}0&0&+q^{-1}\\ 0&-1&0\\ +q&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)=
=(q1/3A1c1q4/3D1b1+q7/3G1a1q4/3E1b1+q7/3H1a1q7/3I1a1q1/3A1f1q4/3D1e1q4/3E1e10q1/3A1i100)M3(𝒯3ω(𝔗)),\displaystyle=\left(\begin{smallmatrix}q^{-1/3}A_{1}c_{1}-q^{-4/3}D_{1}b_{1}+q^{-7/3}G_{1}a_{1}&-q^{-4/3}E_{1}b_{1}+q^{-7/3}H_{1}a_{1}&q^{-7/3}I_{1}a_{1}\\ q^{-1/3}A_{1}f_{1}-q^{-4/3}D_{1}e_{1}&-q^{-4/3}E_{1}e_{1}&0\\ q^{-1/3}A_{1}i_{1}&0&0\end{smallmatrix}\right)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

is equal to the matrix

q4/3σ¯3(00+q1010+q00)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)),\overbrace{q^{-4/3}}^{\overline{\sigma}_{3}}\left(\begin{smallmatrix}0&0&+q^{-1}\\ 0&-1&0\\ +q&0&0\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

where we have used Figure 17(a) and the matrix (Tr𝔅ω(Udeccw)s1s2)=𝐔q(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{dec}}^{\text{cw}})_{s_{1}}^{s_{2}})=\mathbf{U}^{q} from §5.2.1 for the middle matrix, and where we have put (§6.1)

(A100D1E10G1H1I1)=def𝐑ω(W2,Z2,W3,Z3,X),(a1b1c10e1f100i1)=def𝐋ω(W2,Z2,W3,Z3,X)M3(𝒯3ω(𝔗)).\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{R}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X),\,\,\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{L}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).

See Appendix B for a computer check of the above equality of 3×33\times 3 matrices in M3(𝒯3ω(𝔗))\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})) representing this oriented Move (I) example. Also checked in Appendix B are the other three oriented versions of Move (I), whose equivalent matrix formulations are displayed in Figures 25, 26, 27. (Note that the reversal of order of the non-commuting variables in the case of Moves (I) and (I.c) is due to the ‘ordered lower to higher, multiply left to right’ rule; see §5.3.)

(I.bI.b) (Trλω(K)s1s2)=(a1b1c10e1f100i1)(00+q1/30q4/30+q7/300)(A100D1E10G1H1I1)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)\left(\begin{smallmatrix}0&0&+q^{-1/3}\\ 0&-q^{-4/3}&0\\ +q^{-7/3}&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)=
=(q7/3c1A1q4/3b1D1+q1/3a1G1q4/3b1E1+q1/3a1H1q1/3a1I1q7/3f1A1q4/3e1D1q4/3e1E10q7/3i1A100)\displaystyle=\left(\begin{smallmatrix}q^{-7/3}c_{1}A_{1}-q^{-4/3}b_{1}D_{1}+q^{-1/3}a_{1}G_{1}&-q^{-4/3}b_{1}E_{1}+q^{-1/3}a_{1}H_{1}&q^{-1/3}a_{1}I_{1}\\ q^{-7/3}f_{1}A_{1}-q^{-4/3}e_{1}D_{1}&-q^{-4/3}e_{1}E_{1}&0\\ q^{-7/3}i_{1}A_{1}&0&0\end{smallmatrix}\right)
=?(00+q1/30q4/30+q7/300)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)).\displaystyle\overset{?}{=}\left(\begin{smallmatrix}0&0&+q^{-1/3}\\ 0&-q^{-4/3}&0\\ +q^{-7/3}&0&0\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).
(I.cI.c) (Trλω(K)s1s2)=(A100D1E10G1H1I1)(00+q1/30q4/30+q7/300)(a1b1c10e1f100i1)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)\left(\begin{smallmatrix}0&0&+q^{1/3}\\ 0&-q^{4/3}&0\\ +q^{7/3}&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)=
=(00q1/3i1A10q4/3e1E1q4/3f1E1+q1/3i1D1q7/3a1I1q7/3b1I1q4/3e1H1q7/3c1I1q4/3f1H1+q1/3i1G1)\displaystyle=\left(\begin{smallmatrix}0&0&q^{1/3}i_{1}A_{1}\\ 0&-q^{4/3}e_{1}E_{1}&-q^{4/3}f_{1}E_{1}+q^{1/3}i_{1}D_{1}\\ q^{7/3}a_{1}I_{1}&q^{7/3}b_{1}I_{1}-q^{4/3}e_{1}H_{1}&q^{7/3}c_{1}I_{1}-q^{4/3}f_{1}H_{1}+q^{1/3}i_{1}G_{1}\end{smallmatrix}\right)
=?(00+q1/30q4/30+q7/300)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)).\displaystyle\overset{?}{=}\left(\begin{smallmatrix}0&0&+q^{1/3}\\ 0&-q^{4/3}&0\\ +q^{7/3}&0&0\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).
(I.dI.d) (Trλω(K)s1s2)=(A100D1E10G1H1I1)(00+q7/30q4/30+q1/300)(a1b1c10e1f100i1)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)\left(\begin{smallmatrix}0&0&+q^{7/3}\\ 0&-q^{4/3}&0\\ +q^{1/3}&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)=
=(00q7/3A1i10q4/3E1e1q4/3E1f1+q7/3D1i1q1/3I1a1q1/3I1b1q4/3H1e1q1/3I1c1q4/3H1f1+q7/3G1i1)\displaystyle=\left(\begin{smallmatrix}0&0&q^{7/3}A_{1}i_{1}\\ 0&-q^{4/3}E_{1}e_{1}&-q^{4/3}E_{1}f_{1}+q^{7/3}D_{1}i_{1}\\ q^{1/3}I_{1}a_{1}&q^{1/3}I_{1}b_{1}-q^{4/3}H_{1}e_{1}&q^{1/3}I_{1}c_{1}-q^{4/3}H_{1}f_{1}+q^{7/3}G_{1}i_{1}\end{smallmatrix}\right)
=?(00+q7/30q4/30+q1/300)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)).\displaystyle\overset{?}{=}\left(\begin{smallmatrix}0&0&+q^{7/3}\\ 0&-q^{4/3}&0\\ +q^{1/3}&0&0\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).
Refer to caption
Figure 24. One of the oriented versions of Move (I).
Refer to caption
Figure 25. Move (I.b).
Refer to caption
Figure 26. Move (I.c).
Refer to caption
Figure 27. Move (I.d).

6.3. Move (II)

In Figure 28, we show one of the oriented versions of Move (II). Let KK be the link on the left, and KK^{\prime} the link on the right. According to the definition of the quantum trace (§5.3) as a State Sum Formula, the equality expressing Move (II) can be interpreted as an equality of 3×33\times 3 matrices. Specifically, the claim is that the matrix,

(IIII) (Trλω(K)s1s2)=(A200D2E20G2H2I2)q4/3σ¯3(00+q010+q100)(A100D1E10G1H1I1)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}A_{2}&0&0\\ D_{2}&E_{2}&0\\ G_{2}&H_{2}&I_{2}\end{smallmatrix}\right)\overbrace{q^{-4/3}}^{\overline{\sigma}_{3}}\left(\begin{smallmatrix}0&0&+q\\ 0&-1&0\\ +q^{-1}&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)=
=(q1/3A2G1q1/3A2H1q1/3A2I1q4/3E2D1+q1/3D2G1q4/3E2E1+q1/3D2H1q1/3D2I1q7/3I2A1q4/3H2D1+q1/3G2G1q4/3H2E1+q1/3G2H1q1/3G2I1)M3(𝒯3ω(𝔗)),\displaystyle=\left(\begin{smallmatrix}q^{-1/3}A_{2}G_{1}&q^{-1/3}A_{2}H_{1}&q^{-1/3}A_{2}I_{1}\\ -q^{-4/3}E_{2}D_{1}+q^{-1/3}D_{2}G_{1}&-q^{-4/3}E_{2}E_{1}+q^{-1/3}D_{2}H_{1}&q^{-1/3}D_{2}I_{1}\\ q^{-7/3}I_{2}A_{1}-q^{-4/3}H_{2}D_{1}+q^{-1/3}G_{2}G_{1}&-q^{-4/3}H_{2}E_{1}+q^{-1/3}G_{2}H_{1}&q^{-1/3}G_{2}I_{1}\end{smallmatrix}\right)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

is equal to the matrix

(a3b3c30e3f300i3)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)),\left(\begin{smallmatrix}a_{3}&b_{3}&c_{3}\\ 0&e_{3}&f_{3}\\ 0&0&i_{3}\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

where we have used Figure 18(a) and the matrix (Tr𝔅ω(Uincccw)s1s2)=(𝐔q)T(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(U_{\text{inc}}^{\text{ccw}})_{s_{1}}^{s_{2}})=(\mathbf{U}^{q})^{\mathrm{T}} from §5.2.1 for the middle matrix, and where we have put (§6.1)

(A200D2E20G2H2I2)=def𝐑ω(W3,Z3,W1,Z1,X),(A100D1E10G1H1I1)=def𝐑ω(W2,Z2,W3,Z3,X),\displaystyle\left(\begin{smallmatrix}A_{2}&0&0\\ D_{2}&E_{2}&0\\ G_{2}&H_{2}&I_{2}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{R}^{\omega}(W_{3},Z_{3},W_{1},Z_{1},X),\,\,\left(\begin{smallmatrix}A_{1}&0&0\\ D_{1}&E_{1}&0\\ G_{1}&H_{1}&I_{1}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{R}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X),
(a3b3c30e3f300i3)=def𝐋ω(W1,Z1,W2,Z2,X)M3(𝒯3ω(𝔗)).\displaystyle\left(\begin{smallmatrix}a_{3}&b_{3}&c_{3}\\ 0&e_{3}&f_{3}\\ 0&0&i_{3}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{L}^{\omega}(W_{1},Z_{1},W_{2},Z_{2},X)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).

See Appendix B for a computer check of the above equality of 3×33\times 3 matrices in M3(𝒯3ω(𝔗))\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})) representing this oriented Move (II) example. Also checked in Appendix B is the other oriented version of Move (II), whose equivalent matrix formulation is displayed in Figure 29.

(II.bII.b) (Trλω(K)s1s2)=(a1b1c10e1f100i1)(00+q7/30q4/30+q1/300)(a2b2c20e2f200i2)=\displaystyle(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}}^{s_{2}})=\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)\left(\begin{smallmatrix}0&0&+q^{-7/3}\\ 0&-q^{-4/3}&0\\ +q^{-1/3}&0&0\end{smallmatrix}\right)\left(\begin{smallmatrix}a_{2}&b_{2}&c_{2}\\ 0&e_{2}&f_{2}\\ 0&0&i_{2}\end{smallmatrix}\right)=
=(q1/3a2c1q1/3b2c1q4/3e2b1q1/3c2c1q4/3f2b1+q7/3i2a1q1/3a2f1q1/3b2f1q4/3e2e1q1/3c2f1q4/3f2e1q1/3a2i1q1/3b2i1q1/3c2i1)\displaystyle=\left(\begin{smallmatrix}q^{-1/3}a_{2}c_{1}&q^{-1/3}b_{2}c_{1}-q^{-4/3}e_{2}b_{1}&q^{-1/3}c_{2}c_{1}-q^{-4/3}f_{2}b_{1}+q^{-7/3}i_{2}a_{1}\\ q^{-1/3}a_{2}f_{1}&q^{-1/3}b_{2}f_{1}-q^{-4/3}e_{2}e_{1}&q^{-1/3}c_{2}f_{1}-q^{-4/3}f_{2}e_{1}\\ q^{-1/3}a_{2}i_{1}&q^{-1/3}b_{2}i_{1}&q^{-1/3}c_{2}i_{1}\end{smallmatrix}\right)
=?(A300D3E30G3H3I3)=(Trλω(K)s1s2)M3(𝒯3ω(𝔗)).\displaystyle\overset{?}{=}\left(\begin{smallmatrix}A_{3}&0&0\\ D_{3}&E_{3}&0\\ G_{3}&H_{3}&I_{3}\end{smallmatrix}\right)=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}}^{s_{2}})\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).
Refer to caption
Figure 28. One of the oriented versions of Move (II).
Refer to caption
Figure 29. Move (II.b).

6.4. Move (III)

In Figure 30, we show one of the oriented versions of Move (III). Let KK be the link on the left, and KK^{\prime} the link on the right. According to the definition of the quantum trace (§5.3) as a State Sum Formula, the equality expressing Move (III) can be interpreted as an equality of 32×323^{2}\times 3^{2} matrices (§5.1). Specifically, the claim is that the matrix,

(IIIIII) (Trλω(K)s1s2s3s4)=(a1200000000a1b1a1e10000000a1c1a1f1a1i1000000b1a100e1a100000b12b1e10e1b1e120000b1c1b1f1b1i1e1c1e1f1e1i1000c1a100f1a100i1a100c1b1c1e10f1b1f1e10i1b1i1e10c12c1f1c1i1f1c1f12f1i1i1c1i1f1i12)M32(𝒯3ω(𝔗)),(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}s_{2}}^{s_{3}s_{4}})=\left(\begin{smallmatrix}a_{1}^{2}&0&0&0&0&0&0&0&0\\ a_{1}b_{1}&a_{1}e_{1}&0&0&0&0&0&0&0\\ a_{1}c_{1}&a_{1}f_{1}&a_{1}i_{1}&0&0&0&0&0&0\\ b_{1}a_{1}&0&0&e_{1}a_{1}&0&0&0&0&0\\ b_{1}^{2}&b_{1}e_{1}&0&e_{1}b_{1}&e_{1}^{2}&0&0&0&0\\ b_{1}c_{1}&b_{1}f_{1}&b_{1}i_{1}&e_{1}c_{1}&e_{1}f_{1}&e_{1}i_{1}&0&0&0\\ c_{1}a_{1}&0&0&f_{1}a_{1}&0&0&i_{1}a_{1}&0&0\\ c_{1}b_{1}&c_{1}e_{1}&0&f_{1}b_{1}&f_{1}e_{1}&0&i_{1}b_{1}&i_{1}e_{1}&0\\ c_{1}^{2}&c_{1}f_{1}&c_{1}i_{1}&f_{1}c_{1}&f_{1}^{2}&f_{1}i_{1}&i_{1}c_{1}&i_{1}f_{1}&i_{1}^{2}\end{smallmatrix}\right)\in\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

is equal to the matrix

(a1200000000qb1a1+(1q2)a1b1e1a10(qq1)(e1a1a1e1)00000qc1a1+(1q2)a1c1f1a1i1a1(qq1)(f1a1a1f1)00(qq1)(i1a1a1i1)00qa1b100a1e100000b12q1e1b10q1b1e1+(1q2)e1b1e120000qc1b1+(1q2)b1c1f1b1+(q1q)e1c1i1b1(q2+2q2)e1c1+c1e1+(qq1)(f1b1b1f1)qf1e1+(1q2)e1f1i1e1(qq1)(i1b1b1i1)(qq1)(i1e1e1i1)0qa1c100a1f100a1i100qb1c1e1c10b1f1+(qq1)e1c1qe1f10b1i1e1i10c12q1f1c1q1i1c1q1c1f1+(1q2)f1c1f12q1i1f1q1c1i1+(1q2)i1c1q1f1i1+(1q2)i1f1i12)\displaystyle\left(\begin{smallmatrix}a_{1}^{2}&0&0&0&0&0&0&0&0\\ qb_{1}a_{1}\\ +(1-q^{2})a_{1}b_{1}&e_{1}a_{1}&0&(q-q^{-1})(e_{1}a_{1}-a_{1}e_{1})&0&0&0&0&0\\ \begin{smallmatrix}qc_{1}a_{1}\\ +(1-q^{2})a_{1}c_{1}\end{smallmatrix}&f_{1}a_{1}&i_{1}a_{1}&(q-q^{-1})(f_{1}a_{1}-a_{1}f_{1})&0&0&\begin{smallmatrix}(q-q^{-1})(i_{1}a_{1}\\ -a_{1}i_{1})\end{smallmatrix}&0&0\\ qa_{1}b_{1}&0&0&a_{1}e_{1}&0&0&0&0&0\\ b_{1}^{2}&q^{-1}e_{1}b_{1}&0&q^{-1}b_{1}e_{1}+(1-q^{-2})e_{1}b_{1}&e_{1}^{2}&0&0&0&0\\ \begin{smallmatrix}qc_{1}b_{1}\\ +(1-q^{2})b_{1}c_{1}\end{smallmatrix}&\begin{smallmatrix}f_{1}b_{1}\\ +(q^{-1}-q)e_{1}c_{1}\end{smallmatrix}&i_{1}b_{1}&\begin{smallmatrix}(-q^{2}+2-q^{-2})e_{1}c_{1}\\ +c_{1}e_{1}\\ +(q-q^{-1})(f_{1}b_{1}-b_{1}f_{1})\end{smallmatrix}&\begin{smallmatrix}qf_{1}e_{1}\\ +(1-q^{2})e_{1}f_{1}\end{smallmatrix}&i_{1}e_{1}&\begin{smallmatrix}(q-q^{-1})(i_{1}b_{1}\\ -b_{1}i_{1})\end{smallmatrix}&\begin{smallmatrix}(q-q^{-1})(i_{1}e_{1}\\ -e_{1}i_{1})\end{smallmatrix}&0\\ qa_{1}c_{1}&0&0&a_{1}f_{1}&0&0&a_{1}i_{1}&0&0\\ qb_{1}c_{1}&e_{1}c_{1}&0&b_{1}f_{1}+(q-q^{-1})e_{1}c_{1}&qe_{1}f_{1}&0&b_{1}i_{1}&e_{1}i_{1}&0\\ c_{1}^{2}&q^{-1}f_{1}c_{1}&q^{-1}i_{1}c_{1}&q^{-1}c_{1}f_{1}+(1-q^{-2})f_{1}c_{1}&f_{1}^{2}&q^{-1}i_{1}f_{1}&\begin{smallmatrix}q^{-1}c_{1}i_{1}\\ +(1-q^{-2})i_{1}c_{1}\end{smallmatrix}&\begin{smallmatrix}q^{-1}f_{1}i_{1}\\ +(1-q^{-2})i_{1}f_{1}\end{smallmatrix}&i_{1}^{2}\end{smallmatrix}\right)
=(Trλω(K)s1s2s3s4)M32(𝒯3ω(𝔗)),\displaystyle=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}s_{2}}^{s_{3}s_{4}})\in\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

where we have used Figures 19(b), 19(a) and the matrices (Tr𝔅ω(Cneg-sameover-to-higher)s1s2s3s4)=(𝐂sameq)1(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{neg-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})=(\mathbf{C}_{\text{same}}^{q})^{-1} and (Tr𝔅ω(Cpos-sameover-to-lower)s1s2s3s4)=𝐂sameq(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-lower}})_{s_{1}s_{2}}^{s_{3}s_{4}})=\mathbf{C}_{\text{same}}^{q}, respectively, from §5.2.2 as part of the computation for the matrix on the right, and where we have put (§6.1)

(a1b1c10e1f100i1)=def𝐋ω(W2,Z2,W3,Z3,X)M3(𝒯3ω(𝔗)).\left(\begin{smallmatrix}a_{1}&b_{1}&c_{1}\\ 0&e_{1}&f_{1}\\ 0&0&i_{1}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{L}^{\omega}(W_{2},Z_{2},W_{3},Z_{3},X)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).

See Appendix B for a computer check of the above equality of 32×323^{2}\times 3^{2} matrices in M32(𝒯3ω(𝔗))\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})) representing this oriented Move (III) example. In Figures 31, 32, and 33 we prove the remaining oriented versions of Move (III), in terms of the moves already established.

Refer to caption
Figure 30. One of the oriented versions of Move (III).
Refer to caption
Figure 31. Move (III.b) and its proof.
Refer to caption
Figure 32. Move (III.c) and its proof.
Refer to caption
Figure 33. Move (III.d) and its proof.

6.5. Move (IV)

In Figure 34, we show one of the oriented versions of Move (IV). Let KK be the link on the left, and KK^{\prime} the link on the right. According to the definition of the quantum trace (§5.3) as a State Sum Formula, the equality expressing Move (IV) can be interpreted as an equality of 32×323^{2}\times 3^{2} matrices (§5.1). Specifically, the claim is that the matrix,

(IVIV) (Trλω(K)s1s2s3s4)=(a3A200b3A200c3A200a3D2a3E20b3D2b3E20c3D2c3E20a3G2a3H2a3I2b3G2b3H2b3I2c3G2c3H2c3I2000e3A200f3A200000e3D2e3E20f3D2f3E20000e3G2e3H2e3I2f3G2f3H2f3I2000000i3A200000000i3D2i3E20000000i3G2i3H2i3I2)M32(𝒯3ω(𝔗)),(\mathrm{Tr}^{\omega}_{\lambda}(K)_{s_{1}s_{2}}^{s_{3}s_{4}})=\left(\begin{smallmatrix}a_{3}A_{2}&0&0&b_{3}A_{2}&0&0&c_{3}A_{2}&0&0\\ a_{3}D_{2}&a_{3}E_{2}&0&b_{3}D_{2}&b_{3}E_{2}&0&c_{3}D_{2}&c_{3}E_{2}&0\\ a_{3}G_{2}&a_{3}H_{2}&a_{3}I_{2}&b_{3}G_{2}&b_{3}H_{2}&b_{3}I_{2}&c_{3}G_{2}&c_{3}H_{2}&c_{3}I_{2}\\ 0&0&0&e_{3}A_{2}&0&0&f_{3}A_{2}&0&0\\ 0&0&0&e_{3}D_{2}&e_{3}E_{2}&0&f_{3}D_{2}&f_{3}E_{2}&0\\ 0&0&0&e_{3}G_{2}&e_{3}H_{2}&e_{3}I_{2}&f_{3}G_{2}&f_{3}H_{2}&f_{3}I_{2}&\\ 0&0&0&0&0&0&i_{3}A_{2}&0&0\\ 0&0&0&0&0&0&i_{3}D_{2}&i_{3}E_{2}&0\\ 0&0&0&0&0&0&i_{3}G_{2}&i_{3}H_{2}&i_{3}I_{2}\\ \end{smallmatrix}\right)\in\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

is equal to the matrix

q+1/3(q1A2a300q1A2b300q1A2c300D2a3E2a30D2b3+(q1q)A2e3E2b30D2c3+(q1q)A2f3E2c30G2a3H2a3I2a3G2b3H2b3I2b3G2c3+(q1q)A2i3H2c3I2c3000A2e300A2f300000q1D2e3q1E2e30q1D2f3q1E2f30000G2e3H2e3I2e3G2f3+(q1q)D2i3H2f3+(q1q)E2i3I2f3000000A2i300000000D2i3E2i30000000q1G2i3q1H2i3q1I2i3)\displaystyle q^{+1/3}\left(\begin{smallmatrix}q^{-1}A_{2}a_{3}&0&0&q^{-1}A_{2}b_{3}&0&0&q^{-1}A_{2}c_{3}&0&0\\ D_{2}a_{3}&E_{2}a_{3}&0&D_{2}b_{3}+(q^{-1}-q)A_{2}e_{3}&E_{2}b_{3}&0&D_{2}c_{3}+(q^{-1}-q)A_{2}f_{3}&E_{2}c_{3}&0\\ G_{2}a_{3}&H_{2}a_{3}&I_{2}a_{3}&G_{2}b_{3}&H_{2}b_{3}&I_{2}b_{3}&G_{2}c_{3}+(q^{-1}-q)A_{2}i_{3}&H_{2}c_{3}&I_{2}c_{3}\\ 0&0&0&A_{2}e_{3}&0&0&A_{2}f_{3}&0&0\\ 0&0&0&q^{-1}D_{2}e_{3}&q^{-1}E_{2}e_{3}&0&q^{-1}D_{2}f_{3}&q^{-1}E_{2}f_{3}&0\\ 0&0&0&G_{2}e_{3}&H_{2}e_{3}&I_{2}e_{3}&G_{2}f_{3}+(q^{-1}-q)D_{2}i_{3}&H_{2}f_{3}+(q^{-1}-q)E_{2}i_{3}&I_{2}f_{3}\\ 0&0&0&0&0&0&A_{2}i_{3}&0&0\\ 0&0&0&0&0&0&D_{2}i_{3}&E_{2}i_{3}&0\\ 0&0&0&0&0&0&q^{-1}G_{2}i_{3}&q^{-1}H_{2}i_{3}&q^{-1}I_{2}i_{3}\\ \end{smallmatrix}\right)
=(Trλω(K)s1s2s3s4)M32(𝒯3ω(𝔗)),\displaystyle=(\mathrm{Tr}^{\omega}_{\lambda}(K^{\prime})_{s_{1}s_{2}}^{s_{3}s_{4}})\in\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})),

where we have used Figure 19(c) and the matrix (Tr𝔅ω(Cpos-sameover-to-higher)s1s2s3s4)=𝐂sameq(\mathrm{Tr}^{\omega}_{\mathfrak{B}}(C_{\text{pos-same}}^{\text{over-to-higher}})_{s_{1}s_{2}}^{s_{3}s_{4}})=\mathbf{C}_{\text{same}}^{q} from §5.2.2 as part of the computation for the matrix on the right, and where we have put (§6.1)

(A200D2E20G2H2I2)=def𝐑ω(W3,Z3,W1,Z1,X),(a3b3c30e3f300i3)=def𝐋ω(W1,Z1,W2,Z2,X)M3(𝒯3ω(𝔗)).\left(\begin{smallmatrix}A_{2}&0&0\\ D_{2}&E_{2}&0\\ G_{2}&H_{2}&I_{2}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{R}^{\omega}(W_{3},Z_{3},W_{1},Z_{1},X),\,\,\left(\begin{smallmatrix}a_{3}&b_{3}&c_{3}\\ 0&e_{3}&f_{3}\\ 0&0&i_{3}\end{smallmatrix}\right)\overset{\text{def}}{=}\mathbf{L}^{\omega}(W_{1},Z_{1},W_{2},Z_{2},X)\in\mathrm{M}_{3}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})).

See Appendix B for a computer check of the above equality of 32×323^{2}\times 3^{2} matrices in M32(𝒯3ω(𝔗))\mathrm{M}_{3^{2}}(\mathscr{T}_{3}^{\omega}(\mathfrak{T})) representing this oriented Move (IV) example. In Figures 35, 36, and 37 we prove the remaining oriented versions of Move (IV). (Note that Move (I.b) and Move (I.d), used here, are proved in §6.7.)

Refer to caption
Figure 34. One of the oriented versions of Move (IV).
Refer to caption
Figure 35. Move (IV.b) and its proof.
Refer to caption
Figure 36. Move (IV.c) and its proof.
Refer to caption
Figure 37. Move (IV.d) and its proof.

6.6. Move (V)

See Figure 38. This move is implied by the kink-removing skein relations appearing in Figure 3; see §5.4.1.

Refer to caption
Figure 38. Move (V), valid for either orientation.

6.7. Auxiliary moves

Move (I.b) and Move (I.d) were used to establish Moves (IV.c) and (IV.d). The proof of Move (I.b) is shown in Figure 39. Here \sim denotes an isotopy preserving good position. (See also the second to last paragraph of the proof of Lemma 24 in [BW11].) The proof of Move (I.d) is obtained from that of Move (I.b) by horizontal reflection.

Refer to caption
Figure 39. Move (I) and its proof, valid for either orientation.

Appendix A Proof of Proposition 30

This is an application of Theorem XIV.5.1 in [Kas95]. We will closely follow the definitions, notations, and conventions of [Kas95], informing otherwise. Essentially all of the following theory is standard. See, for instance, [Kas95, BG02, JS91, Maj95].

Our first goal is to define the ribbon category 𝒞V\mathcal{C}_{V} of interest. In particular, this requires defining the objects VV, morphisms f:UVf:U\to V, tensor products VWV\otimes W, tensor unit II, braiding morphisms cV,W:VWWVc_{V,W}:V\otimes W\to W\otimes V (see Remark 38), dual objects VV^{*}, left duality morphisms bV:IVVb_{V}:I\to V\otimes V^{*} and dV:VVId_{V}:V^{*}\otimes V\to I, twist morphisms θV:VV\theta_{V}:V\to V, and right duality morphisms bV:IVVb^{\prime}_{V}:I\to V^{*}\otimes V and dV:VVId^{\prime}_{V}:V\otimes V^{*}\to I. As above, fix nn\in\mathbb{Z}, n>1n>1, as well as qq and ω=q1/n2\omega=q^{1/n^{2}} in {0}\mathbb{C}-\left\{0\right\}. This section does not require a choice of square root ω1/2\omega^{1/2}; compare §5.2. All vector spaces are over \mathbb{C}.

A.1. Quantum special linear group H=SLnqH=\mathrm{SL}_{n}^{q}

The quantum matrix algebra Mnq\mathrm{M}_{n}^{q} is the quotient of the free algebra in generators (Tij)1i,jn(T_{i}^{j})_{1\leqslant i,j\leqslant n} by the relations

TimTik=qTikTim,TjmTim=qTimTjm,TimTjk=TjkTim,TjmTikTikTjm=(qq1)TimTjk,\displaystyle T_{i}^{m}T_{i}^{k}=qT_{i}^{k}T_{i}^{m},\,\,T_{j}^{m}T_{i}^{m}=qT_{i}^{m}T_{j}^{m},\,\,T_{i}^{m}T_{j}^{k}=T_{j}^{k}T_{i}^{m},\,\,T_{j}^{m}T_{i}^{k}-T_{i}^{k}T_{j}^{m}=(q-q^{-1})T_{i}^{m}T_{j}^{k},

for i<ji<j and k<mk<m (we think of lower indices indicating rows and upper indices columns). The quantum determinant DetqMnq\mathrm{Det}^{q}\in\mathrm{M}_{n}^{q} is (compare §3.4)

Detq=defσSn(q1)(σ)T1σ(1)T2σ(2)Tnσ(n).\mathrm{Det}^{q}\overset{\text{def}}{=}\sum_{\sigma\in S_{n}}(-q^{-1})^{\ell(\sigma)}T_{1}^{\sigma(1)}T_{2}^{\sigma(2)}\cdots T_{n}^{\sigma(n)}.

The quantum special linear group SLnq\mathrm{SL}_{n}^{q} is the quotient

H=defSLnq=defMnq/(Detq1).H\overset{\text{def}}{=}\mathrm{SL}_{n}^{q}\overset{\text{def}}{=}\mathrm{M}_{n}^{q}/(\mathrm{Det}^{q}-1).

The algebra HH is a Hopf algebra, meaning it is equipped with linear maps

μH:HHH,ηH:H,ΔH:HHH,ϵH:H,SH:HH,\mu_{H}:H\otimes H\to H,\,\,\eta_{H}:\mathbb{C}\to H,\,\,\Delta_{H}:H\to H\otimes H,\,\,\epsilon_{H}:H\to\mathbb{C},\,\,S_{H}:H\to H,

namely the product, unit, coproduct, counit, and antipode. Specifically, if δij\delta_{ij} denotes the Kronecker delta (equals 11 if i=ji=j and 0 else), then the coproduct ΔH\Delta_{H}, counit ϵH\epsilon_{H}, and antipode SHS_{H} are defined by (abusing notation by using the same symbol for elements of Mnq\mathrm{M}^{q}_{n} as their images in HH)

ΔH(Tij)=defk=1nTikTkj,ϵH(Tij)=defδij,SH(Tij)=def(q)jiAji,\Delta_{H}(T_{i}^{j})\overset{\text{def}}{=}\sum_{k=1}^{n}T_{i}^{k}\otimes T_{k}^{j},\,\,\epsilon_{H}(T_{i}^{j})\overset{\text{def}}{=}\delta_{ij},\,\,S_{H}(T_{i}^{j})\overset{\text{def}}{=}(-q)^{j-i}A_{j}^{i},

where the quantum minor AjiA_{j}^{i} is the quantum determinant of the subalgebra, isomorphic to Mn1q\mathrm{M}^{q}_{n-1}, of Mnq\mathrm{M}^{q}_{n} generated by the TkT_{k}^{\ell} with kjk\neq j and i\ell\neq i. (We write simply μH(xy)=xy\mu_{H}(x\otimes y)=xy and ηH(z)=z1H\eta_{H}(z)=z1_{H}.)

A.2. Braided tensor category HH-Comod\mathrm{Comod} of right HH-comodules

A.2.1. Right HH-comodules

A vector space VV is a right HH-comodule if it is equipped with a linear map ΔV:VVH\Delta_{V}:V\to V\otimes H, namely a (right) coaction, satisfying certain properties. The tensor product VWV\otimes W of two right HH-comodules is a right HH-comodule, with coaction

ΔVW(vw)=def(v),(w)vVwWvHwH.\Delta_{V\otimes W}(v\otimes w)\overset{\mathrm{def}}{=}\sum_{(v),(w)}v_{V}\otimes w_{W}\otimes v_{H}w_{H}.

Here, we have used Sweedler’s notation for the coactions ΔV\Delta_{V} and ΔW\Delta_{W}. The trivial right HH-comodule \mathbb{C} has coaction Δ(z)=z1H\Delta_{\mathbb{C}}(z)=z\otimes 1_{H}.

Let HH-Comod\mathrm{Comod} denote the tensor category whose objects VV are right HH-comodules, morphisms f:UVf:U\to V are homomorphisms of right HH-comodules, and with tensor products VWV\otimes W and tensor unit I=I=\mathbb{C} as above.

A.2.2. Braidings

The bialgebra HH is cobraided, meaning it is equipped with linear maps rH:HHr_{H}:H\otimes H\to\mathbb{C} and its inverse (with respect to the convolution operator \star defined in §A.3.2) r¯H:HH\overline{r}_{H}:H\otimes H\to\mathbb{C}, namely the universal RR-forms. Specifically, if Eij:HE_{i}^{j}:H\to\mathbb{C} is the linear map Eij(Tk)=δikδjE_{i}^{j}(T_{k}^{\ell})=\delta_{ik}\delta_{j\ell}, then

rH=defq1/n(1ijnEiiEjj+qi=1nEiiEii+(qq1)1i<jnEijEji),\displaystyle r_{H}\overset{\text{def}}{=}q^{-1/n}\left(\sum_{1\leqslant i\neq j\leqslant n}E_{i}^{i}\otimes E_{j}^{j}+q\sum_{i=1}^{n}E_{i}^{i}\otimes E_{i}^{i}+(q-q^{-1})\sum_{1\leqslant i<j\leqslant n}E_{i}^{j}\otimes E_{j}^{i}\right),
r¯H=defq+1/n(1ijnEiiEjj+q1i=1nEiiEii+(q1q)1i<jnEijEji).\displaystyle\overline{r}_{H}\overset{\text{def}}{=}q^{+1/n}\left(\sum_{1\leqslant i\neq j\leqslant n}E_{i}^{i}\otimes E_{j}^{j}+q^{-1}\sum_{i=1}^{n}E_{i}^{i}\otimes E_{i}^{i}+(q^{-1}-q)\sum_{1\leqslant i<j\leqslant n}E_{i}^{j}\otimes E_{j}^{i}\right).

Consequently, the tensor category HH-Comod\mathrm{Comod} of right HH-comodules is braided, with braiding morphisms cV,W:VWWVc_{V,W}:V\otimes W\to W\otimes V and inverse braidings c¯V,W:VWWV\overline{c}_{V,W}:V\otimes W\to W\otimes V (so, cV,W1=c¯W,Vc_{V,W}^{-1}=\overline{c}_{W,V}) defined by

cV,W(vw)=def(v),(w)(wWvV)rH(vHwH),c¯V,W(vw)=def(v),(w)(wWvV)r¯H(wHvH).c_{V,W}(v\otimes w)\overset{\text{def}}{=}\sum_{(v),(w)}(w_{W}\otimes v_{V})r_{H}(v_{H}\otimes w_{H}),\,\,\overline{c}_{V,W}(v\otimes w)\overset{\text{def}}{=}\sum_{(v),(w)}(w_{W}\otimes v_{V})\overline{r}_{H}(w_{H}\otimes v_{H}).
Remark 38.

By symmetry, one can just as well take the inverse braidings c¯V,W\overline{c}_{V,W} to be ‘the’ braidings for the category. For technical reasons, we will prefer this choice going forward. (Note that, in order to compute with c¯V,W\overline{c}_{V,W}, the formulas,

r¯(xyz)=(z)r¯(yz)r¯(xz′′),r¯(xyz)=(x)r¯(xy)r¯(x′′z),\overline{r}(xy\otimes z)=\sum_{(z)}\overline{r}(y\otimes z^{\prime})\overline{r}(x\otimes z^{\prime\prime}),\,\,\overline{r}(x\otimes yz)=\sum_{(x)}\overline{r}(x^{\prime}\otimes y)\overline{r}(x^{\prime\prime}\otimes z),

can be helpful, here using Sweedler’s notation for the coproduct ΔH\Delta_{H}.)

A.3. Ribbon sub-category HH-Comodf\mathrm{Comod}_{f} of finite-dimensional right HH-comodules

A.3.1. Left dualities

Let VV be a right HH-comodule of dimension N<N<\infty. The dual space V=Hom(V,)V^{*}=\mathrm{Hom}_{\mathbb{C}}(V,\mathbb{C}) is a right HH-comodule as follows. Choose a basis e1,e2,,eNe^{1},e^{2},\dots,e^{N} for VV with corresponding dual basis e1,e2,,eNe_{1}^{*},e_{2}^{*},\dots,e_{N}^{*} for VV^{*}. Let hijHh_{i}^{j}\in H for 1i,jN1\leqslant i,j\leqslant N satisfy

ΔV(ej)=k=1Nekhkj.\Delta_{V}(e^{j})=\sum_{k=1}^{N}e^{k}\otimes h_{k}^{j}.

The coaction ΔV:VVH\Delta_{V^{*}}:V^{*}\to V^{*}\otimes H is defined by

ΔV(ei)=defk=1NekSHhik.\Delta_{V^{*}}(e_{i}^{*})\overset{\text{def}}{=}\sum_{k=1}^{N}e_{k}^{*}\otimes S_{H}h_{i}^{k}.

Let HH-Comodf\mathrm{Comod}_{f} denote the braided sub-category of HH-Comod\mathrm{Comod} consisting of finite-dimensional right HH-comodules. Then HH-Comodf\mathrm{Comod}_{f} has left duality, the dual objects VV^{*} being defined as above, and with left duality morphisms bV:VVb_{V}:\mathbb{C}\to V\otimes V^{*} and dV:VVd_{V}:V^{*}\otimes V\to\mathbb{C} defined by

bV(1)=defνk=1Nekek,dV(eiej)=defν1δij.b_{V}(1)\overset{\text{def}}{=}\nu\sum_{k=1}^{N}e^{k}\otimes e^{*}_{k},\,\,d_{V}(e^{*}_{i}\otimes e^{j})\overset{\text{def}}{=}\nu^{-1}\delta_{ij}.

Here, ν\nu is a fixed complex duality parameter.

Remark 39.

One possible choice for the duality parameter is ν=1\nu=1. However, it is better for our purposes to take ν=q(1n)/2n=σ¯nq(n1)/2\nu=q^{(1-n)/2n}=\overline{\sigma}_{n}q^{(n-1)/2}, where σ¯n=q(1n2)/2n\overline{\sigma}_{n}=q^{(1-n^{2})/2n} is the square root of the (signed) coribbon element (Definition 24); see Lemma 41 and Remarks 29 and 42.

A.3.2. Twists

The following has been adapted to our purposes from [Kas95, Chapter XIV, Exercises 5-6].

The convolution operator :HHH\star:H^{*}\otimes H^{*}\to H^{*} on the dual space H=Hom(H,)H^{*}=\mathrm{Hom}_{\mathbb{C}}(H,\mathbb{C}) is defined by

(fg)(x)=def(x)f(x)g(x′′).(f\star g)(x)\overset{\mathrm{def}}{=}\sum_{(x)}f(x^{\prime})g(x^{\prime\prime}).

This operation makes HH^{*} into an algebra, with multiplicative unit 1H=ϵH1_{H^{*}}=\epsilon_{H} the counit for HH. Similarly, \star operates on (HH)=Hom(HH,)(H\otimes H)^{*}=\mathrm{Hom}_{\mathbb{C}}(H\otimes H,\mathbb{C}) by

(rs)(xy)=def(x),(y)r(xy)s(x′′y′′).(r\star s)(x\otimes y)\overset{\mathrm{def}}{=}\sum_{(x),(y)}r(x^{\prime}\otimes y^{\prime})s(x^{\prime\prime}\otimes y^{\prime\prime}).

The cobraided Hopf algebra HH is coribbon, meaning there exists an invertible central element ζH\zeta_{H} in HH^{*} such that

ζHμH=(rHτH,H)rH(ζHζH),ζH(1H)=1,ζHSH=ζH.\zeta_{H}\circ\mu_{H}=(r_{H}\circ\tau_{H,H})\star r_{H}\star(\zeta_{H}\otimes\zeta_{H}),\,\,\zeta_{H}(1_{H})=1,\,\,\zeta_{H}\circ S_{H}=\zeta_{H}.

Here, τH,H:HHHH\tau_{H,H}:H\otimes H\to H\otimes H is the swapping map xyyxx\otimes y\mapsto y\otimes x. Specifically, ζHH\zeta_{H}\in H^{*} and its convolution inverse ζ¯HH\overline{\zeta}_{H}\in H^{*} are defined by

ζH(Tij)=defζnδij,ζn=def(1)n1q(n21)/n(=(1)n1ωn(n21)),\displaystyle\zeta_{H}(T_{i}^{j})\overset{\text{def}}{=}\zeta_{n}\delta_{ij},\,\,\zeta_{n}\overset{\text{def}}{=}(-1)^{n-1}q^{(n^{2}-1)/n}\,\,\left(=(-1)^{n-1}\omega^{n(n^{2}-1)}\right),
ζ¯H(Tij)=defζ¯nδij,ζ¯n=def(1)n1q(1n2)/n(=(1)n1ωn(1n2)).\displaystyle\overline{\zeta}_{H}(T_{i}^{j})\overset{\text{def}}{=}\overline{\zeta}_{n}\delta_{ij},\,\,\overline{\zeta}_{n}\overset{\text{def}}{=}(-1)^{n-1}q^{(1-n^{2})/n}\,\,\left(=(-1)^{n-1}\omega^{n(1-n^{2})}\right).

Consequently, the braided category with left duality HH-Comodf\mathrm{Comod}_{f} of finite-dimensional right HH-comodules (with braidings c¯V,W\overline{c}_{V,W}, see Remark 38) is ribbon, with twist morphisms θV:VV\theta_{V}:V\to V defined by

θV(v)=def(v)vVζ¯H(vH).\theta_{V}(v)\overset{\text{def}}{=}\sum_{(v)}v_{V}\overline{\zeta}_{H}(v_{H}).
Remark 40.

Note that ζ¯n{0}\overline{\zeta}_{n}\in\mathbb{C}-\{0\} is what we previously called the ‘coribbon element’ in Definition 24; compare Remarks 29 and 39. We also refer to ζ¯HH\overline{\zeta}_{H}\in H^{*} as the coribbon element.

A.3.3. Right dualities

Moreover, the ribbon category HH-Comodf\mathrm{Comod}_{f} of finite-dimensional right HH-comodules (with braidings c¯V,W\overline{c}_{V,W}, see Remark 38) has right duality, with right duality morphisms bV:VVb^{\prime}_{V}:\mathbb{C}\to V^{*}\otimes V and dV:VVd^{\prime}_{V}:V\otimes V^{*}\to\mathbb{C} defined by

bV=def(idVθV)c¯V,VbV,dV=defdVc¯V,V(θVidV).b^{\prime}_{V}\overset{\text{def}}{=}(\mathrm{id}_{V^{*}}\otimes\theta_{V})\circ\overline{c}_{V,V^{*}}\circ b_{V},\,\,d^{\prime}_{V}\overset{\text{def}}{=}d_{V}\circ\overline{c}_{V,V^{*}}\circ(\theta_{V}\otimes\mathrm{id}_{V^{*}}).

A.4. Ribbon sub-category 𝒞V\mathcal{C}_{V} of HH-Comodf\mathrm{Comod}_{f} coming from the quantum row-space

A.4.1. Quantum row-space

The quantum row-space AA is the quotient of the free algebra in generators (ej)1jn(e^{j})_{1\leqslant j\leqslant n} by the relations ejei=qeieje^{j}e^{i}=qe^{i}e^{j} for j>ij>i. The (infinite-dimensional) algebra AA is a right HH-comodule (in fact, a right HH-comodule-algebra), with coaction ΔA:AAH\Delta_{A}:A\to A\otimes H defined by

ΔA(ej)=defk=1nekTkj.\Delta_{A}(e^{j})\overset{\text{def}}{=}\sum_{k=1}^{n}e^{k}\otimes T_{k}^{j}.

For each integer d0d\geqslant 0, let VdAV_{d}\subseteq A denote the (finite-dimensional) sub-space of AA consisting of homogeneous polynomials of degree dd. Then VdV_{d} is a right HH-sub-comodule of AA. For the remainder of this appendix, define VAV\subseteq A by

V=defV1=span(e1,e2,,en).V\overset{\text{def}}{=}V_{1}=\mathrm{span}_{\mathbb{C}}(e^{1},e^{2},\dots,e^{n}).

Let 𝒞V\mathcal{C}_{V} denote the ribbon sub-category of HH-Comodf\mathrm{Comod}_{f} generated by VV. In particular, objects of 𝒞V\mathcal{C}_{V} are finite tensor products of VV and its dual VV^{*}.

A.4.2. Morphism formulas

We will give explicit formulas for the braidings c¯V,W\overline{c}_{V,W} (see Remark 38), left dualities bVb_{V}, dVd_{V}, twists θV\theta_{V}, and right dualities bVb^{\prime}_{V}, dVd^{\prime}_{V}. Since we are working in the sub-category 𝒞V\mathcal{C}_{V}, it suffices to compute the formulas for VV and VV^{*}.

It can be shown that the braidings c¯V,V\overline{c}_{V,V}, c¯V,V\overline{c}_{V^{*},V^{*}}, c¯V,V\overline{c}_{V^{*},V} and c¯V,V\overline{c}_{V,V^{*}} are calculated by the same formulas as those provided in §5.2.2; see also Remark 29. The left dualities bV:VVb_{V}:\mathbb{C}\to V\otimes V^{*} and dV:VVd_{V}:V^{*}\otimes V\to\mathbb{C} are calculated by the formulas in §A.3.1, taking the symmetric duality parameter ν=q(1n)/2n=σ¯nq(n1)/2\nu=q^{(1-n)/2n}=\overline{\sigma}_{n}q^{(n-1)/2}; see Remark 39 and Lemma 41. The twists θV:VV\theta_{V}:V\to V and θV:VV\theta_{V^{*}}:V^{*}\to V^{*} can be computed by the formulas in §A.3.2 as

θV(ej)=ζ¯nej,θV(ei)=ζ¯nei.\theta_{V}(e^{j})=\overline{\zeta}_{n}e^{j},\,\,\theta_{V^{*}}(e^{*}_{i})=\overline{\zeta}_{n}e^{*}_{i}.

The right dualities bV:VVb^{\prime}_{V}:\mathbb{C}\to V^{*}\otimes V and dV:VVd^{\prime}_{V}:V\otimes V^{*}\to\mathbb{C} can be computed by the formulas in §A.3.3 as

bV(1)=(1)n1νk=1nq2kn1ekek,dV(eiej)=(1)n1ν1qn2i+1δij.b^{\prime}_{V}(1)=(-1)^{n-1}\nu\sum_{k=1}^{n}q^{2k-n-1}e^{*}_{k}\otimes e^{k},\,\,d^{\prime}_{V}(e^{i}\otimes e^{*}_{j})=(-1)^{n-1}\nu^{-1}q^{n-2i+1}\delta_{ij}.

A.4.3. Matrix formulas

We will make an observation for the duality morphisms similar to Fact 27. This will require our choice of the symmetric duality parameter ν=σ¯nq(n1)/2\nu=\overline{\sigma}_{n}q^{(n-1)/2}; see Remark 39.

Recall the matrix 𝐔q\mathbf{U}^{q} from §5.2.1. (See §5.1 for matrix conventions.) More generally, define for any scalar ν\nu a matrix 𝐔νq\mathbf{U}^{q}_{\nu} in Mn()\mathrm{M}_{n}(\mathbb{C}) by

(𝐔νq)ij=defν(q)inδi,nj+1.(\mathbf{U}^{q}_{\nu})_{i}^{j}\overset{\text{def}}{=}\nu(-q)^{i-n}\delta_{i,n-j+1}.

Note that the matrices 𝐔q=𝐔νq\mathbf{U}^{q}=\mathbf{U}^{q}_{\nu} agree for ν=σ¯nq(n1)/2\nu=\overline{\sigma}_{n}q^{(n-1)/2}. Similarly, define bV(ν)b_{V}(\nu), dV(ν)d_{V}(\nu), bV(ν)b^{\prime}_{V}(\nu), and dV(ν)d^{\prime}_{V}(\nu) for any scalar ν\nu to be the dualities defined in §A.3.1 and A.3.3 (see also §A.4.2). Recall from §5.2.2 the ordered bases βV,V\beta_{V^{*},V} and βV,V\beta_{V,V^{*}} of VVV^{*}\otimes V and VVV\otimes V^{*}. When written in terms of the basis βV,V\beta_{V,V^{*}} (and the basis {1}\left\{1\right\} of \mathbb{C}), the left duality bV(ν):VVb_{V}(\nu):\mathbb{C}\to V\otimes V^{*} becomes a n2×1n^{2}\times 1 matrix with coefficients [bV(ν)]ij1[b_{V}(\nu)]_{ij}^{1}. Similarly, when written in terms of these bases, the dualities dV(ν):VVd_{V}(\nu):V^{*}\otimes V\to\mathbb{C}, bV(ν):VVb^{\prime}_{V}(\nu):\mathbb{C}\to V^{*}\otimes V, and dV(ν):VVd^{\prime}_{V}(\nu):V\otimes V^{*}\to\mathbb{C} become 1×n21\times n^{2}, n2×1n^{2}\times 1, and 1×n21\times n^{2} matrices with coefficients [dV(ν)]1ij[d_{V}(\nu)]_{1}^{ij}, [bV(ν)]ij1[b^{\prime}_{V}(\nu)]_{ij}^{1}, and [dV(ν)]1ij[d^{\prime}_{V}(\nu)]_{1}^{ij}.

Lemma 41 (defining property of the symmetric duality parameter ν\nu).

The following equalities of matrix coefficients,

[bV(ν)]ij1=(𝐔νq)ji,[dV(ν)]1ij=((ζ¯n)1𝐔νq)ji,[bV(ν)]ij1=((𝐔νq)T)ij,[dV(ν)]1ij=((ζ¯n)1(𝐔νq)T)ij,\displaystyle[b^{\prime}_{V}(\nu)]^{1}_{ij}=(\mathbf{U}^{q}_{\nu})_{j}^{i},\,\,[d^{\prime}_{V}(\nu)]^{ij}_{1}=((\overline{\zeta}_{n})^{-1}\mathbf{U}^{q}_{\nu})_{j}^{i},\,\,[b_{V}(\nu)]^{1}_{ij}=((\mathbf{U}^{q}_{\nu})^{\mathrm{T}})_{i}^{j},\,\,[d_{V}(\nu)]^{ij}_{1}=((\overline{\zeta}_{n})^{-1}(\mathbf{U}^{q}_{\nu})^{\mathrm{T}})_{i}^{j},

hold if and only if ν=ν±=±σ¯nq(n1)/2\nu=\nu_{\pm}=\pm\overline{\sigma}_{n}q^{(n-1)/2}, where σ¯n=q(1n2)/2n\overline{\sigma}_{n}=q^{(1-n^{2})/2n}.

Proof.

We display the case of dV(ν)d^{\prime}_{V}(\nu). The other computations are similar. Put vij=(βV,V)ij=ei(q)njenj+1v_{ij}=(\beta_{V,V^{*}})_{ij}=e^{i}\otimes(-q)^{n-j}e^{*}_{n-j+1}. We calculate

[dV(ν)]1ij=dV(ν)(vij)=(q)njdV(ν)(eienj+1)=(q)nj(1)n1ν1qn2i+1δi,nj+1\displaystyle[d^{\prime}_{V}(\nu)]^{ij}_{1}=d^{\prime}_{V}(\nu)(v_{ij})=(-q)^{n-j}d^{\prime}_{V}(\nu)(e^{i}\otimes e^{*}_{n-j+1})=(-q)^{n-j}(-1)^{n-1}\nu^{-1}q^{n-2i+1}\delta_{i,n-j+1}
=(1)j1qnjν1q2jn1δi,nj+1=(1)j1qj1ν1δi,nj+1,\displaystyle=(-1)^{j-1}q^{n-j}\nu^{-1}q^{2j-n-1}\delta_{i,n-j+1}=(-1)^{j-1}q^{j-1}\nu^{-1}\delta_{i,n-j+1},

as well as

((ζ¯n)1𝐔νq)ji=(1)n1|ζ¯n|1ν(q)jnδj,ni+1=(1)j1qj1q1n|ζ¯n|1νδi,nj+1,\displaystyle((\overline{\zeta}_{n})^{-1}\mathbf{U}^{q}_{\nu})_{j}^{i}=(-1)^{n-1}\left|\overline{\zeta}_{n}\right|^{-1}\nu(-q)^{j-n}\delta_{j,n-i+1}=(-1)^{j-1}q^{j-1}q^{1-n}\left|\overline{\zeta}_{n}\right|^{-1}\nu\delta_{i,n-j+1},

where we define |ζ¯n|=+q(1n2)/n\left|\overline{\zeta}_{n}\right|=+q^{(1-n^{2})/n}. We gather

[dV(ν)]1ij=((ζ¯n)1𝐔νq)jiν1=q1n|ζ¯n|1ν±σ¯nq(n1)/2=ν.\displaystyle[d^{\prime}_{V}(\nu)]^{ij}_{1}=((\overline{\zeta}_{n})^{-1}\mathbf{U}^{q}_{\nu})_{j}^{i}\,\,\Leftrightarrow\,\,\nu^{-1}=q^{1-n}\left|\overline{\zeta}_{n}\right|^{-1}\nu\,\,\Leftrightarrow\,\,\pm\overline{\sigma}_{n}q^{(n-1)/2}=\nu.\qed
Remark 42.

Compare the four analogous matrix equations in §5.2.1; see Figures 17 and 18. We will see the reason for the transposition of the indices ii, jj in the first two equalities of Lemma 41 when we discuss diagrammatics below. Essentially, this is because the tails of the U-turns in Figure 17, corresponding (see §A.5 and A.6) to the morphisms bVb^{\prime}_{V} and dVd^{\prime}_{V}, are associated with the second tensor factor (measured from bottom to top). The opposite is true for the U-turns in Figure 18, corresponding to the morphisms bVb_{V} and dVd_{V}.

The sign ambiguity in Lemma 41 is resolved by our need for the matrix 𝐔q=𝐔ν+q\mathbf{U}^{q}=\mathbf{U}^{q}_{\nu_{+}}. Why, in §5.2.1, was the matrix 𝐔q\mathbf{U}^{q} preferred over 𝐔q=𝐔νq-\mathbf{U}^{q}=\mathbf{U}^{q}_{\nu_{-}}? For instance, this was required for the quantum trace to satisfy the local isotopy Move (II); see Figure 28 and Equation (IIII). (Assuming we ask for the local monodromy matrices to have positive entries.)

Note that the first equation in Lemma 41, for bV(ν)b^{\prime}_{V}(\nu), uniquely determines the value (including the sign) of the coribbon parameter ζ¯n\overline{\zeta}_{n} (see Remark 40), independent of ν\nu.

A.5. Category \mathcal{R} of ribbons and the Reshetikhin–Turaev functor FV:𝒞VF_{V}:\mathcal{R}\to\mathcal{C}_{V}

A.5.1. Category of ribbons

The universal ribbon category \mathcal{R}, also called the category of oriented ribbons, is defined exactly as in [Kas95, §XIV.5.1]. Roughly speaking, the objects are collections of oriented ribbon ends, and the morphisms are isotopy classes of oriented ribbons LL matching this end data. It is useful to, rather, think of ribbons as framed links, the link being the spine of the ribbon, and where the framing at a point on the link is normal to the tangent space of the ribbon at that point (in this way of thinking about the framing we differ from [Kas95], but it is immaterial mathematically, so long as we work with framed links rather than ribbons).

Ribbons live in the space 2×[0,1]\mathbb{R}^{2}\times[0,1] having the usual xx,yy,zz-coordinates. However, when drawing ribbon diagrams (which are, importantly, different from our previous pictures such as those appearing in Figures 17-21), the xx-coordinate is drawn on the page horizontally right, the zz-coordinate on the page vertically up, and the yy-coordinate into the page. By definition, the ribbon ends lying on the same boundary plane in 2×{0,1}\mathbb{R}^{2}\times\left\{0,1\right\} are required to have distinct xx-coordinates (and isotopy preserves this property). The coordinates x,y,zx,y,z are called ribbon coordinates.

Ribbon diagrams always represent ribbons LL with the blackboard framing, meaning the constant framing in the (0,1,0)(0,-1,0) direction, that is, out of the page toward the eye of the reader. Such a framing is always possible by introducing kinks into the ribbon. Here, a positive kink (Figure 3(a)) replaces a full right-handed twist, and a negative kink (Figure 3(b)) a full left-handed twist [Kas95, §X.8]. Note that ribbon ends lying on 2×{0,1}\mathbb{R}^{2}\times\left\{0,1\right\} are also required to have this blackboard framing.

A.5.2. Reshetikhin–Turaev functor

We will apply Theorem XIV.5.1 in [Kas95]. This says that there is a unique functor FVF_{V} from the category \mathcal{R} of ribbons to the ribbon category 𝒞V\mathcal{C}_{V}, which preserves the braiding, duality, and twist, and satisfies the property that a single downward-pointing (namely, negative zz direction) ribbon end (a distinguished object in \mathcal{R}) is mapped to VV. (Consequently, upward-pointing ribbon ends are mapped to VV^{*}.) In particular, FVF_{V} provides an isotopy invariant of stated oriented ribbons LL (see below).

Diagrammatically speaking, we use exactly the same conventions for displaying morphisms in the category 𝒞V\mathcal{C}_{V} as in [Kas95, Chapter XIV]. For example, in Figure 40 we show how the twist morphisms are displayed diagrammatically [Kas95, Chapters X.8 and XIV.5.1]; compare Figures 3(a)-3(b), as well as our calculations in §A.4.2. To help distinguish these ribbon diagrams from our previous pictures, as in Figures 17-21, we put a white arrow on the boundary axis ×{0}×{0}\mathbb{R}\times\left\{0\right\}\times\left\{0\right\} indicating the positive xx-direction.

Refer to caption
Figure 40. Ribbon diagrams for twist morphisms.

A.6. Alternative definition of the biangle quantum trace map

We will prove part (A) of Proposition 30. The strategy is to use the Reshetikhin–Turaev functor FVF_{V} to give an alternative definition of the quantum trace map Tr𝔅ω\mathrm{Tr}^{\omega}_{\mathfrak{B}} for a biangle 𝔅\mathfrak{B}, equivalent to the definition provided in §5.2. To do this, we need to be able to pass back and forth between the more symmetric topological setting of framed links KK in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1) (which comes without any preferred parametrization–see the beginning of §5.2), and the less symmetric categorical setting of framed links LL in 2×[0,1]\mathbb{R}^{2}\times[0,1] (where the parametrization matters–see, for example, Figure 40).

A.6.1. ‘Turning your head’

To pass between the two settings, we ‘turn our head’. That is, instead of viewing the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1) ‘from the top’ (as in Figures 17-21), instead we view it ‘from the side’. This can be done in two different ways, illustrated in Figure 41 (intuitively, from the perspective of Person G or that of Person D).

More precisely, let the thickened biangle 𝔅×(0,1)=[0,1]××(0,1)\mathfrak{B}\times(0,1)=[0,1]\times\mathbb{R}\times(0,1) have biangle coordinates X,Y,ZX,Y,Z with respect to a choice of parametrization 𝒫\mathscr{P} (intuitively, this choice is only to tell Person G and Person D where to stand, but the point is that where they stand does not matter, as they will see the same answer). For example, in the left hand side of Figure 41, the XX-coordinate is drawn on the page horizontally right, the YY-coordinate on the page vertically up, and the ZZ-coordinate out of the page toward the eye of the reader. Then, by Figure 41 and our discussion of ribbon coordinates in §A.5.1, if xGx_{\mathrm{G}}, yGy_{\mathrm{G}}, zGz_{\mathrm{G}} denote the ribbon coordinates from Person G’s perspective, the G-(ribbon) coordinate transformation φG:𝔅×(0,1)(0,1)××[0,1]2×[0,1]\varphi_{\mathrm{G}}:\mathfrak{B}\times(0,1)\overset{\sim}{\to}(0,1)\times\mathbb{R}\times[0,1]\hookrightarrow\mathbb{R}^{2}\times[0,1] is

φG(X,Y,Z)=def(xG,yG,zG)=def(+Z,+Y,1X).\varphi_{G}(X,Y,Z)\overset{\text{def}}{=}(x_{G},y_{G},z_{G})\overset{\text{def}}{=}(+Z,+Y,1-X).

Similarly, the D-(ribbon) coordinate transformation φD:𝔅×(0,1)(0,1)××[0,1]2×[0,1]\varphi_{\mathrm{D}}:\mathfrak{B}\times(0,1)\overset{\sim}{\to}(0,1)\times\mathbb{R}\times[0,1]\hookrightarrow\mathbb{R}^{2}\times[0,1] is

φD(X,Y,Z)=def(xD,yD,zD)=def(+Z,Y,+X).\varphi_{D}(X,Y,Z)\overset{\text{def}}{=}(x_{D},y_{D},z_{D})\overset{\text{def}}{=}(+Z,-Y,+X).

Note that from either perspective the positive xx-ribbon coordinate corresponds to the direction of increasing height in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1).

Refer to caption
Figure 41. Calculating the biangle quantum trace by ‘turning your head’. This can be done in two different ways, but if we choose the symmetric duality parameter ν=σ¯nq(n1)/2\nu=\overline{\sigma}_{n}q^{(n-1)/2}, depending on the square root of the (signed) coribbon element for the Hopf algebra H=SLnqH=\mathrm{SL}_{n}^{q}, then the result is independent of which perspective, that of Person G or Person D, is taken; see Lemma 41.

A.6.2. Definition via the Reshetikhin–Turaev functor: topological setup

Fix a stated framed oriented link (K,s)(K,s) in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1); see §4.2. Recall that by definition the framing on the boundary K\partial K points up in the vertical direction. That is, the framing vector is (X,Y,Z)=(0,0,1)(X,Y,Z)=(0,0,1) in biangle coordinates (§A.6.1); see the left hand side of Figure 41 where the ‘bullseyes’, indicating the tips of the framing vectors, point out of the page toward the eye of the reader. Recall that, by definition, elements of K\partial K lying on the same boundary component of 𝔅×(0,1)\mathfrak{B}\times(0,1) have distinct heights, namely, distinct Z-coordinates (Remark 20).

We now ‘turn our head’ as in §A.6.1, say from the perspective of Person G. More precisely, by applying the GG-coordinate transformation φG\varphi_{G} we obtain a link LG=φG(K)L_{G}=\varphi_{G}(K) in 2×[0,1]\mathbb{R}^{2}\times[0,1]. However, LGL_{G} is not yet a framed link, according to the definition in §A.5.1. Indeed, its framing vectors on the boundary 2×{0,1}\mathbb{R}^{2}\times\left\{0,1\right\} are all (xG,yG,zG)=(1,0,0)(x_{G},y_{G},z_{G})=(1,0,0) in ribbon coordinates. To fix this, we rotate each framing vector 90 degrees toward Person G, yielding an appropriate framing vector (xG,yG,zG)=(0,1,0).(x_{G},y_{G},z_{G})=(0,-1,0). We call the resulting framed link again LGL_{G}. Similarly, by this process we obtain a, possibly different, framed link LDL_{D} in 2×[0,1]\mathbb{R}^{2}\times[0,1] from Person D’s perspective; see Figure 41. We say that the new framed links LGL_{G} and LDL_{D} have been corrected.

Importantly, note that this process of correcting the framing may introduce a twist in the link. Indeed, as an example, on the right hand side of Figure 41 the framed link KK acquires a right-handed twist from Person D’s perspective. On the other hand, there is no twist from Person G’s perspective.

Note also that the distinct Z-coordinates condition for the link boundary K\partial K is consistent with the distinct xx-coordinates condition for LG\partial L_{G} and LD\partial L_{D} (see §A.5.1).

A.6.3. Definition via the Reshetikhin–Turaev functor: algebraic setup

From Person G’s perspective, let NGiN_{G}^{i} for i=0,1i=0,1 denote the number of points of the corrected framed link LGL_{G} lying on the boundary plane 2×{i}\mathbb{R}^{2}\times\left\{i\right\}. The framed link LGL_{G} comes with a pair of sequences VGi=((VGi)j)j=1,2,,NGiV_{G}^{i}=((V_{G}^{i})_{j})_{j=1,2,\dots,N_{G}^{i}} of vector spaces (VGi)j{V,V}(V_{G}^{i})_{j}\in\left\{V,V^{*}\right\}, where the sequence is ordered in the increasing xGx_{G}-direction; see §A.5.2. In other words, the sequences VGiV_{G}^{i} come from evaluating the Reshetikhin–Turaev functor FVF_{V} on the domain and codomain objects of the framed link LGL_{G} viewed as a morphism in the category of ribbons \mathcal{R}; see §A.5.1. Moreover, the evaluation of the functor FVF_{V} on the framed link LGL_{G} provides a linear map

FV(LG):j=1,2,,NG0(VG0)jj=1,2,,NG1(VG1)j.F_{V}(L_{G}):\bigotimes_{j=1,2,\dots,N_{G}^{0}}(V_{G}^{0})_{j}\to\bigotimes_{j=1,2,\dots,N_{G}^{1}}(V_{G}^{1})_{j}.

Similarly, define NDiN_{D}^{i} for i=0,1i=0,1, sequences (VDi)j=1,2,,NDi(V^{i}_{D})_{j=1,2,\dots,N_{D}^{i}} of vector spaces, and a linear map FV(LD)F_{V}(L_{D}) from Person D’s perspective.

For example, on the right hand side of Figure 41 we see VG1=((VG1)1,(VG1)2)=(V,V)V_{G}^{1}=((V_{G}^{1})_{1},(V_{G}^{1})_{2})=(V^{*},V) and, as a degenerate case, VG0=()V_{G}^{0}=(\mathbb{C}). The corresponding linear map is FV(LG)=bV:VVF_{V}(L_{G})=b^{\prime}_{V}:\mathbb{C}\to V^{*}\otimes V (see [Kas95, p.351]). On the other hand, from Person D’s perspective, VD1=()V_{D}^{1}=(\mathbb{C}) and VD0=((VD0)1,(VD0)2)=(V,V)V_{D}^{0}=((V_{D}^{0})_{1},(V_{D}^{0})_{2})=(V,V^{*}) and the corresponding linear map is FV(LD)=dV(θVidV):VVF_{V}(L_{D})=d^{\prime}_{V}\circ(\theta_{V}\otimes\mathrm{id}_{V}):V\otimes V^{*}\to\mathbb{C} (compare Figure 40).

Let viVv_{i}\in V be the basis vector vi=eiv_{i}=e^{i}. By abuse of notation, we also let vjVv_{j}\in V^{*} denote the covector (q)njenj+1(-q)^{n-j}e^{*}_{n-j+1}. Note that {vi}i=1,2,,n\left\{v_{i}\right\}_{i=1,2,\dots,n} provides an ordered basis for either VV or VV^{*}. From Person G’s perspective, say, we may then consider the basis β(VGi)\beta(V_{G}^{i}) for the tensor product j=1,2,,NGi(VGi)j\bigotimes_{j=1,2,\dots,N_{G}^{i}}(V_{G}^{i})_{j} defined by

β(VGi)j1j2jNGi=defvj1vj2vjNGi(j1,j2,,jNGi{1,2,,n}),\beta(V_{G}^{i})_{j_{1}j_{2}\cdots j_{N^{i}_{G}}}\overset{\text{def}}{=}v_{j_{1}}\otimes v_{j_{2}}\otimes\cdots\otimes v_{j_{N^{i}_{G}}}\,\,\left(j_{1},j_{2},\dots,j_{N^{i}_{G}}\in\left\{1,2,\dots,n\right\}\right),

ordered as in §5.1. Similarly, from Person D’s perspective, we define a basis β(VDi)\beta(V^{i}_{D}) for the tensor product j=1,2,,NDi(VDi)j\bigotimes_{j=1,2,\dots,N_{D}^{i}}(V_{D}^{i})_{j}. Note that this procedure recovers the familiar bases βV,V\beta_{V,V}, βV,V\beta_{V^{*},V^{*}}, βV,V\beta_{V^{*},V}, and βV,V\beta_{V,V^{*}} for VVV\otimes V, VVV^{*}\otimes V^{*}, VVV^{*}\otimes V, and VVV\otimes V^{*} used in §A.4.3 and §5.2.2.

A.6.4. Alternative definition of the SLn\mathrm{SL}_{n}-biangle quantum trace map via the Reshetikhin–Turaev functor

Recall that the framed link KK in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1) has in addition been equipped with a state ss, meaning that to each point of the boundary K\partial K is associated a state-number in {1,2,,n}\left\{1,2,\dots,n\right\}. From Person G’s perspective, say, mimicking the sequences VGi=((VGi)j)jV_{G}^{i}=((V_{G}^{i})_{j})_{j} we obtain a pair of sequences of state-numbers sGi=((sGi)j)j=1,2,,NGis_{G}^{i}=((s_{G}^{i})_{j})_{j=1,2,\dots,N_{G}^{i}} for i=0,1i=0,1. Similarly, from Person D’s perspective, we obtain a pair of state sequences sDis_{D}^{i}. Note sG0=sD1s^{0}_{G}=s^{1}_{D} and sG1=sD0s^{1}_{G}=s^{0}_{D}.

For example, on the right hand side of Figure 41 we see sG1=((sG1)1,(sG1)2)=(s2,s1)s_{G}^{1}=((s_{G}^{1})_{1},(s_{G}^{1})_{2})=(s_{2},s_{1}) and sG0=s_{G}^{0}=\varnothing from Person G’s perspective. We also see sD1=s_{D}^{1}=\varnothing and sD0=((sD0)1,(sD0)2)=(s2,s1)s_{D}^{0}=((s_{D}^{0})_{1},(s_{D}^{0})_{2})=(s_{2},s_{1}) from Person D’s perspective. (Here and in Figure 41, the names of the states s1,s2s_{1},s_{2} were arbitrary, taken from §5.2.1, and not intended to be ordered in any particular way.)

Definition 43.

Choose one of the two parametrizations 𝒫\mathscr{P} of the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1), as in §A.6.1. Given a stated framed oriented link (K,s)(K,s) in the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1), from Person G’s perspective (Figure 41) define the complex number Tr𝔅ω(K,s)=Tr𝔅ω(K,s)(𝒫)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)=\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)(\mathscr{P})\in\mathbb{C}, depending on the parametrization 𝒫\mathscr{P}, by

Tr𝔅ω(K,s)=def(Tr𝔅ω)G(K,s)=def[FV(LG)]i1i2iNG1j1j2jNG0,\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)\overset{\text{def}}{=}(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)\overset{\text{def}}{=}[F_{V}(L_{G})]_{i_{1}i_{2}\cdots i_{N^{1}_{G}}}^{j_{1}j_{2}\cdots j_{N^{0}_{G}}},

where [FV(LG)][F_{V}(L_{G})] denotes the matrix of the linear map FV(LG)F_{V}(L_{G}) written in the bases β(VG0)\beta(V^{0}_{G}) and β(VG1)\beta(V^{1}_{G}), and with the state-numbers ik=(sG1)ki_{k}=(s^{1}_{G})_{k} and jk=(sG0)kj_{k}=(s^{0}_{G})_{k}. In addition, define the number (also depending on 𝒫\mathscr{P})

(Tr𝔅ω)D(K,s)=def[FV(LD)]i1i2iND1j1j2jND0,(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s)\overset{\text{def}}{=}[F_{V}(L_{D})]_{i_{1}i_{2}\cdots i_{N^{1}_{D}}}^{j_{1}j_{2}\cdots j_{N^{0}_{D}}},

from Person D’s perspective (also Figure 41), where [FV(LD)][F_{V}(L_{D})] denotes the matrix of FV(LD)F_{V}(L_{D}) written in the bases β(VD0)\beta(V^{0}_{D}) and β(VD1)\beta(V^{1}_{D}), and with the states ik=(sD1)ki_{k}=(s^{1}_{D})_{k} and jk=(sD0)kj_{k}=(s^{0}_{D})_{k}.

A.6.5. Finishing the proof of Proposition 30

Lemma 44 (symmetry of the SLn\mathrm{SL}_{n}-biangle quantum trace map).

For a given parametrization 𝒫\mathscr{P} of 𝔅×(0,1)\mathfrak{B}\times(0,1), we have (Tr𝔅ω)G(K,s)=(Tr𝔅ω)D(K,s)(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s) for any stated framed oriented link (K,s)(K,s).

Proof.

As a first case, consider the stated link (K,s)(K,s) displayed in Figure 41 (and Figure 17(a)). In §A.6.3, we saw that FV(LG)=bV:VVF_{V}(L_{G})=b^{\prime}_{V}:\mathbb{C}\to V^{*}\otimes V and FV(LD)=dV(θVidV):VVF_{V}(L_{D})=d^{\prime}_{V}\circ(\theta_{V}\otimes\mathrm{id}_{V}):V\otimes V^{*}\to\mathbb{C}. By Lemma 41 and the formula for the twist θV\theta_{V} appearing in §A.4.2, we compute

(Tr𝔅ω)G(K,s)=[FV(LG)]s2s11=[bV]s2s11=(𝐔q)s1s2,(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)=[F_{V}(L_{G})]_{s_{2}s_{1}}^{1}=[b^{\prime}_{V}]_{s_{2}s_{1}}^{1}=(\mathbf{U}^{q})_{s_{1}}^{s_{2}},

and

(Tr𝔅ω)D(K,s)=[FV(LD)]1s2s1=[dV(θVidV)]1s2s1=ζ¯n[dV]1s2s1=ζ¯n(ζ¯n)1(𝐔q)s1s2=(𝐔q)s1s2,\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s)=[F_{V}(L_{D})]_{1}^{s_{2}s_{1}}=[d^{\prime}_{V}\circ(\theta_{V}\otimes\mathrm{id}_{V})]_{1}^{s_{2}s_{1}}=\overline{\zeta}_{n}[d^{\prime}_{V}]_{1}^{s_{2}s_{1}}=\overline{\zeta}_{n}(\overline{\zeta}_{n})^{-1}(\mathbf{U}^{q})_{s_{1}}^{s_{2}}=(\mathbf{U}^{q})_{s_{1}}^{s_{2}},

as desired. (Recall the topological discussion surrounding Figure 41, where it is important that we have chosen the symmetric duality parameter ν=σ¯nq(n1)/2\nu=\overline{\sigma}_{n}q^{(n-1)/2}.) The proof when the stated link (K,s)(K,s) is one of the three other kinds of U-turns (see Figures 17(b) and 18) is similar (two of these U-turns acquire left-handed twists in LDL_{D}).

Next, consider the stated link (K,s)(K,s) displayed in Figure 19(a). Note that no twists are introduced when either LGL_{G} or LDL_{D} are corrected, because their constituent arcs connect different boundary components of the thickened biangle. We compute

(Tr𝔅ω)G(K,s)=[FV(LG)]s3s4s1s2=[c¯V,V]s3s4s1s2=(𝐂sameq)s3s4s1s2,(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)=[F_{V}(L_{G})]_{s_{3}s_{4}}^{s_{1}s_{2}}=[\overline{c}_{V,V}]_{s_{3}s_{4}}^{s_{1}s_{2}}=(\mathbf{C}^{q}_{\mathrm{same}})_{s_{3}s_{4}}^{s_{1}s_{2}},

see [Kas95, p.341], Remark 38, and Fact 27, as well as

(Tr𝔅ω)D(K,s)=[FV(LD)]s1s2s3s4=[c¯V,V]s1s2s3s4=(𝐂sameq)s1s2s3s4=(𝐂sameq)s3s4s1s2,(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s)=[F_{V}(L_{D})]_{s_{1}s_{2}}^{s_{3}s_{4}}=[\overline{c}_{V^{*},V^{*}}]_{s_{1}s_{2}}^{s_{3}s_{4}}=(\mathbf{C}^{q}_{\mathrm{same}})_{s_{1}s_{2}}^{s_{3}s_{4}}=(\mathbf{C}^{q}_{\mathrm{same}})_{s_{3}s_{4}}^{s_{1}s_{2}},

see [Kas95, p.348] and Fact 27. The proofs for (K,s)(K,s) as in Figures 19(b), 19(c), and 19(d) are similar. For the other type of crossing, say, the stated link (K,s)(K,s) displayed in Figure 20(a), we compute in the same way

(Tr𝔅ω)G(K,s)=[FV(LG)]s3s4s1s2=[c¯V,V]s3s4s1s2=(𝐂oppq)s3s4s1s2\displaystyle(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)=[F_{V}(L_{G})]_{s_{3}s_{4}}^{s_{1}s_{2}}=[\overline{c}_{V,V^{*}}]_{s_{3}s_{4}}^{s_{1}s_{2}}=(\mathbf{C}^{q}_{\mathrm{opp}})_{s_{3}s_{4}}^{s_{1}s_{2}}
=(𝐂oppq)s1s2s3s4=[c¯V,V]s1s2s3s4=[FV(LD)]s1s2s3s4=(Tr𝔅ω)D(K,s).\displaystyle=(\mathbf{C}^{q}_{\mathrm{opp}})_{s_{1}s_{2}}^{s_{3}s_{4}}=[\overline{c}_{V,V^{*}}]_{s_{1}s_{2}}^{s_{3}s_{4}}=[F_{V}(L_{D})]_{s_{1}s_{2}}^{s_{3}s_{4}}=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s).

The proofs for (K,s)(K,s) as in Figures 20(b), 20(c), and 20(d) are similar, as well as for the trivial strand (possibly with twists), Figure 21.

The argument for a general stated link (K,s)(K,s) follows from the previous special cases, together with the fact that the Reshetikhin–Turaev functor FVF_{V} satisfies the State Sum Property (essentially by definition) and is an isotopy invariant. Put KK into a bridge position (§5.2.4) with respect to a partition 0=X0<X1<<Xp=10=X_{0}<X_{1}<\dots<X_{p}=1 in biangle-coordinates, call the resulting link KK^{\prime}. This determines bridge-positions for LGL^{\prime}_{G} and LDL^{\prime}_{D} with respect to partitions 0=(zG)0<(zG)1<<(zG)p=10=(z_{G})_{0}<(z_{G})_{1}<\dots<(z_{G})_{p}=1 and 0=(zD)0<(zD)1<<(zD)p=10=(z_{D})_{0}<(z_{D})_{1}<\dots<(z_{D})_{p}=1 in GG- and DD-coordinates. Let ((LG)i,(sG)i)((L^{\prime}_{G})_{i},(s_{G})_{i}) and ((LD)i,(sD)i)((L^{\prime}_{D})_{i},(s_{D})_{i}) be the corresponding restricted stated links in (0,1)××[(zG)i,(zG)i+1](0,1)\times\mathbb{R}\times[(z_{G})_{i},(z_{G})_{i+1}] and (0,1)××[(zD)i,(zD)i+1](0,1)\times\mathbb{R}\times[(z_{D})_{i},(z_{D})_{i+1}], where for the moment the states (sG)i(s_{G})_{i} and (sD)i(s_{D})_{i} are chosen arbitrarily on the internal boundaries zG=(zG)iz_{G}=(z_{G})_{i} and zD=(zD)iz_{D}=(z_{D})_{i} for 0<i<p0<i<p. Note that each component of (LG)i(L^{\prime}_{G})_{i} or (LD)i(L^{\prime}_{D})_{i} is either a U-turn, crossing, or trivial strand (possibly with twists) (we are abusing the word ‘component’ here, since we are considering a crossing to be a single component). Also, upon correction of LGL^{\prime}_{G} and LDL^{\prime}_{D}, no components of any (LG)i(L^{\prime}_{G})_{i} acquire twists, while all U-turn components (and no others) of the (LD)i(L^{\prime}_{D})_{i} acquire twists, which are right-handed (resp. left-handed) when the U-turn component of (LD)i(L^{\prime}_{D})_{i} has boundary with zDz_{D}-coordinate (zD)i(z_{D})_{i} (resp. (zD)i+1(z_{D})_{i+1}), namely, is a cap (resp. cup). By the coordinate transformation xG=xDx_{G}=x_{D}, yG=yDy_{G}=-y_{D}, zG=1zDz_{G}=1-z_{D}, the link (LG)i(L^{\prime}_{G})_{i} is related to the link (LD)p1i(L^{\prime}_{D})_{p-1-i} as follows: (1) as un-oriented links, they are the same, except cups (resp. caps) of the former flip to become caps (resp. cups) of the latter (with twists as described just above); (2) the orientations of U-turns, thought of as pointing along the positive or negative xx-direction, are preserved; (3) the orientations of same (resp. opposite) direction crossings are flipped (resp. preserved); and, (4) the orientations of trivial strands are flipped. Write (sG)i=(((sG)i)0,((sG)i)1)(s_{G})_{i}=(((s_{G})_{i})^{0},((s_{G})_{i})^{1}) (as in §A.6.4, note ((sG)0)0=sG0((s_{G})_{0})^{0}=s_{G}^{0} and ((sG)p1)1=sG1((s_{G})_{p-1})^{1}=s_{G}^{1}), and ((sG)i)j|((LG)i)k((s_{G})_{i})^{j}|_{((L^{\prime}_{G})_{i})_{k}} the restriction of these states to a component ((LG)i)k((L^{\prime}_{G})_{i})_{k} of (LG)i(L^{\prime}_{G})_{i}, and similarly for Person D. If it happens that ((sG)i)0=((sD)p1i)1((s_{G})_{i})^{0}=((s_{D})_{p-1-i})^{1} and ((sG)i)1=((sD)p1i)0((s_{G})_{i})^{1}=((s_{D})_{p-1-i})^{0}, then by the previous special cases we have

[FV((LG)i)]((sG)i)1((sG)i)0=k[FV(((LG)i)k)]((sG)i)1|((LG)i)k((sG)i)0|((LG)i)k=k[FV(((LD)p1i)k)]((sG)i)0|((LD)p1i)k((sG)i)1|((LD)p1i)k\displaystyle[F_{V}((L^{\prime}_{G})_{i})]_{((s_{G})_{i})^{1}}^{((s_{G})_{i})^{0}}=\prod_{k}[F_{V}(((L^{\prime}_{G})_{i})_{k})]_{((s_{G})_{i})^{1}|_{((L^{\prime}_{G})_{i})_{k}}}^{((s_{G})_{i})^{0}|_{((L^{\prime}_{G})_{i})_{k}}}=\prod_{k}[F_{V}(((L^{\prime}_{D})_{p-1-i})_{k})]_{((s_{G})_{i})^{0}|_{((L^{\prime}_{D})_{p-1-i})_{k}}}^{((s_{G})_{i})^{1}|_{((L^{\prime}_{D})_{p-1-i})_{k}}}
=[FV((LD)p1i)]((sG)i)0((sG)i)1=[FV((LD)p1i)]((sD)p1i)1((sD)p1i)0.\displaystyle=[F_{V}((L^{\prime}_{D})_{p-1-i})]_{((s_{G})_{i})^{0}}^{((s_{G})_{i})^{1}}=[F_{V}((L^{\prime}_{D})_{p-1-i})]_{((s_{D})_{p-1-i})^{1}}^{((s_{D})_{p-1-i})^{0}}.

Since sG0=sD1s^{0}_{G}=s^{1}_{D} and sG1=sD0s^{1}_{G}=s^{0}_{D}A.6.4), it follows by the State Sum Formula that

[FV(LG)]sG1sG0=compatible (sG)i[FV((LG)0)]((sG)0)1sG0[FV((LG)1)]((sG)1)1((sG)1)0[FV((LG)p1)]sG1((sG)p1)0\displaystyle[F_{V}(L^{\prime}_{G})]_{s_{G}^{1}}^{s_{G}^{0}}=\sum_{\text{compatible }(s_{G})_{i}}[F_{V}((L^{\prime}_{G})_{0})]_{((s_{G})_{0})^{1}}^{s_{G}^{0}}[F_{V}((L^{\prime}_{G})_{1})]_{((s_{G})_{1})^{1}}^{((s_{G})_{1})^{0}}\cdots[F_{V}((L^{\prime}_{G})_{p-1})]_{s_{G}^{1}}^{((s_{G})_{p-1})^{0}}
=compatible (sG)i[FV((LD)p1)]sG0((sG)0)1[FV((LD)p2)]((sG)1)0((sG)1)1[FV((LD)0)]((sG)p1)0sG1\displaystyle=\sum_{\text{compatible }(s_{G})_{i}}[F_{V}((L^{\prime}_{D})_{p-1})]_{s_{G}^{0}}^{((s_{G})_{0})^{1}}[F_{V}((L^{\prime}_{D})_{p-2})]_{((s_{G})_{1})^{0}}^{((s_{G})_{1})^{1}}\cdots[F_{V}((L^{\prime}_{D})_{0})]_{((s_{G})_{p-1})^{0}}^{s_{G}^{1}}
=compatible (sD)i[FV((LD)0)]((sD)0)1sD0[FV((LD)p2)]((sD)p2)1((sD)p2)0[FV((LD)p1)]sD1((sD)p1)0=[FV(LD)]sD1sD0.\displaystyle=\sum_{\text{compatible }(s_{D})_{i}}[F_{V}((L^{\prime}_{D})_{0})]_{((s_{D})_{0})^{1}}^{s_{D}^{0}}\cdots[F_{V}((L^{\prime}_{D})_{p-2})]_{((s_{D})_{p-2})^{1}}^{((s_{D})_{p-2})^{0}}[F_{V}((L^{\prime}_{D})_{p-1})]_{s_{D}^{1}}^{((s_{D})_{p-1})^{0}}=[F_{V}(L^{\prime}_{D})]_{s_{D}^{1}}^{s_{D}^{0}}.

Lastly, by isotopy invariance,

(Tr𝔅ω)G(K,s)=[FV(LG)]sG1sG0=[FV(LG)]sG1sG0=[FV(LD)]sD1sD0=[FV(LD)]sD1sD0=(Tr𝔅ω)D(K,s).(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)=[F_{V}(L_{G})]_{s_{G}^{1}}^{s_{G}^{0}}=[F_{V}(L^{\prime}_{G})]_{s_{G}^{1}}^{s_{G}^{0}}=[F_{V}(L^{\prime}_{D})]_{s_{D}^{1}}^{s_{D}^{0}}=[F_{V}(L_{D})]_{s_{D}^{1}}^{s_{D}^{0}}=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s).\qed
Proof of Proposition 30.

Let Tr𝔅ω(K,s)(𝒫)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)(\mathscr{P}) be defined as in Definition 43, depending on the parametrization 𝒫\mathscr{P} of the thickened biangle 𝔅×(0,1)\mathfrak{B}\times(0,1). We first argue that this is independent of the choice of 𝒫\mathscr{P}. Indeed, if 𝒫\mathscr{P}^{\prime} is the other parametrization, then

Tr𝔅ω(K,s)(𝒫)=(Tr𝔅ω)G(K,s)(𝒫)=(Tr𝔅ω)D(K,s)(𝒫)=(Tr𝔅ω)G(K,s)(𝒫)=Tr𝔅ω(K,s)(𝒫),\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)(\mathscr{P}^{\prime})=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)(\mathscr{P}^{\prime})=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{D}(K,s)(\mathscr{P})=(\mathrm{Tr}^{\omega}_{\mathfrak{B}})_{G}(K,s)(\mathscr{P})=\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s)(\mathscr{P}),

where the second equation is immediate from the definition, and the third equation is by Lemma 44.

It is then straightforward to check that Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s), so defined via the Reshetikhin–Turaev functor FVF_{V}, agrees with the definition given in §5.2 (this is, more or less, implicit in the proof of Lemma 44). In particular, since FVF_{V} is isotopy invariant, so is Tr𝔅ω(K,s)\mathrm{Tr}^{\omega}_{\mathfrak{B}}(K,s), which is what remained to be proved. ∎

Appendix B Computer calculations

In the Mathematica code appearing at the end of this article: section 2.1 verifies the claims for the local SL4\mathrm{SL}_{4} example of §3.5.2; section 2.2 verifies the claims for the local SL3\mathrm{SL}_{3} example of §3.5.1; section 3.2.1 verifies the claims for Moves (I), (I.b), (I.c), (I.d) of §6.2; section 3.2.2 verifies the claims for Moves (II), (II.b) of §6.3; section 3.2.3 verifies the claims for Move (III) of §6.4; and, section 3.2.4 verifies the claims for Move (IV) of §6.5.

References

  • [AK17] D. G. L. Allegretti and H. K. Kim. A duality map for quantum cluster varieties from surfaces. Adv. Math., 306:1164–1208, 2017.
  • [All19] D. G. L. Allegretti. Categorified canonical bases and framed BPS states. Selecta Math. (N.S.), 25:paper no. 69, 50 pp., 2019.
  • [BFKB99] D. Bullock, C. Frohman, and J. Kania-Bartoszyńska. Understanding the Kauffman bracket skein module. J. Knot Theory Ramifications, 8:265–277, 1999.
  • [BG93] I. Biswas and K. Guruprasad. Principal bundles on open surfaces and invariant functions on Lie groups. Internat. J. Math., 4:535–544, 1993.
  • [BG02] K. A. Brown and K. R. Goodearl. Lectures on algebraic quantum groups. Birkhäuser Verlag, Basel, 2002.
  • [BHMV95] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel. Topological quantum field theories derived from the Kauffman bracket. Topology, 34:883–927, 1995.
  • [Bon96] F. Bonahon. Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form. Ann. Fac. Sci. Toulouse Math. (6), 5:233–297, 1996.
  • [BW11] F. Bonahon and H. Wong. Quantum traces for representations of surface groups in SL2()\mathrm{SL}_{2}(\mathbb{C}). Geom. Topol., 15:1569–1615, 2011.
  • [BW16] F. Bonahon and H. Wong. Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations. Invent. Math., 204:195–243, 2016.
  • [CF99] L. O. Chekhov and V. V. Fock. A quantum Teichmüller space. Theoret. and Math. Phys., 120:1245–1259, 1999.
  • [CF00] L. O. Chekhov and V. V. Fock. Observables in 3D gravity and geodesic algebras. Czechoslovak J. Phys., 50:1201–1208, 2000.
  • [CKKO20] S. Y. Cho, H. Kim, H. K. Kim, and D. Oh. Laurent positivity of quantized canonical bases for quantum cluster varieties from surfaces. Comm. Math. Phys., 373:655–705, 2020.
  • [CKM14] S. Cautis, J. Kamnitzer, and S. Morrison. Webs and quantum skew Howe duality. Math. Ann., 360:351–390, 2014.
  • [CL22] F. Costantino and T. T. Q. Lê. Stated skein algebras of surfaces. J. Eur. Math. Soc. (JEMS), 24:4063–4142, 2022.
  • [CS23] L. O. Chekhov and M. Shapiro. Log-canonical coordinates for symplectic groupoid and cluster algebras. Int. Math. Res. Not. IMRN, 9565-9652, 2023.
  • [CTT20] A. Casella, D. Tate, and S. Tillmann. Moduli spaces of real projective structures on surfaces. Mathematical Society of Japan, Tokyo, 2020.
  • [Dou20] D. C. Douglas. Classical and quantum traces coming from SLn()\mathrm{SL}_{n}(\mathbb{C}) and Uq(𝔰𝔩n)\mathrm{U}_{q}(\mathfrak{sl}_{n}). PhD thesis, University of Southern California, 2020.
  • [Dou21] D. C. Douglas. Points of quantum SLn\mathrm{SL}_{n} coming from quantum snakes, to appear in Algebr. Geom. Topol. https://arxiv.org/abs/2103.04471, 2021.
  • [DS20] D. C. Douglas and Z. Sun. Tropical Fock-Goncharov coordinates for SL3\mathrm{SL}_{3}-webs on surfaces II: naturality. https://arxiv.org/abs/2012.14202, 2020.
  • [DS24] D. C. Douglas and Z. Sun. Tropical Fock-Goncharov coordinates for SL3\mathrm{SL}_{3}-webs on surfaces I: construction. Forum Math. Sigma, 12:paper no. e5, 55 pp., 2024.
  • [FG06a] V. V. Fock and A. B. Goncharov. Cluster 𝒳\mathscr{X}-varieties, amalgamation, and Poisson-Lie groups. In Algebraic geometry and number theory, volume 253 of Progr. Math., pages 27–68. Birkhäuser Boston, Boston, MA, 2006.
  • [FG06b] V. V. Fock and A. B. Goncharov. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci., 103:1–211, 2006.
  • [FG07a] V. V. Fock and A. B. Goncharov. Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory, 1:647–684, 2007.
  • [FG07b] V. V. Fock and A. B. Goncharov. Moduli spaces of convex projective structures on surfaces. Adv. Math., 208:249–273, 2007.
  • [FG09] V. V. Fock and A. B. Goncharov. Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér., 42:865–930, 2009.
  • [FKBL19] C. Frohman, J. Kania-Bartoszyńska, and T. T. Q. Lê. Unicity for representations of the Kauffman bracket skein algebra. Invent. Math., 215:609–650, 2019.
  • [Foc97] V. V. Fock. Dual Teichmüller spaces. https://arxiv.org/abs/dg-ga/9702018, 1997.
  • [FS22] C. Frohman and A. S. Sikora. SU(3)\mathrm{SU}(3)-skein algebras and webs on surfaces. Math. Z., 300:33–56, 2022.
  • [FWZ16] S. Fomin, L. Williams, and A. Zelevinsky. Introduction to cluster algebras. Chapters 1-3. https://arxiv.org/abs/1608.05735, 2016.
  • [FYH+85] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.), 12:239–246, 1985.
  • [FZ02] S. Fomin and A. Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15:497–529, 2002.
  • [Gab17] M. Gabella. Quantum holonomies from spectral networks and framed BPS states. Comm. Math. Phys., 351:563–598, 2017.
  • [GMN14] D. Gaiotto, G. W. Moore, and A. Neitzke. Spectral networks and snakes. Ann. Henri Poincaré, 15:61–141, 2014.
  • [Gol84] W. M. Goldman. The symplectic nature of fundamental groups of surfaces. Adv. Math., 54:200–225, 1984.
  • [Gol86] W. M. Goldman. Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math., 85:263–302, 1986.
  • [GS19] A. B. Goncharov and L. Shen. Quantum geometry of moduli spaces of local systems and representation theory. https://arxiv.org/abs/1904.10491, 2019.
  • [GSV09] M. Gekhtman, M. Shapiro, and A. Vainshtein. Poisson geometry of directed networks in a disk. Selecta Math. (N.S.), 15:61–103, 2009.
  • [Hig23] V. Higgins. Triangular decomposition of SL3\mathrm{SL}_{3} skein algebras. Quantum Topol., 14:1–63, 2023.
  • [Hit92] N. J. Hitchin. Lie groups and Teichmüller space. Topology, 31:449–473, 1992.
  • [HN16] L. Hollands and A. Neitzke. Spectral networks and Fenchel-Nielsen coordinates. Lett. Math. Phys., 106:811–877, 2016.
  • [IY23] T. Ishibashi and W. Yuasa. Skein and cluster algebras of unpunctured surfaces for 𝔰𝔩3\mathfrak{sl}_{3}. Math. Z., 303:paper no. 72, 60 pp., 2023.
  • [JS91] A. Joyal and R. Street. An introduction to Tannaka duality and quantum groups. In Category theory (Como, 1990), volume 1488 of Lecture Notes in Math., pages 413–492. Springer, Berlin, 1991.
  • [Kas95] C. Kassel. Quantum groups. Springer-Verlag, New York, 1995.
  • [Kas98] R. M. Kashaev. Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys., 43:105–115, 1998.
  • [Kim20] H. K. Kim. SL3\mathrm{SL}_{3}-laminations as bases for PGL3\mathrm{PGL}_{3} cluster varieties for surfaces, to appear in Mem. Amer. Math. Soc. https://arxiv.org/abs/2011.14765, 2020.
  • [Kim21] H. K. Kim. Naturality of SL3\mathrm{SL}_{3} quantum trace maps for surfaces. https://arxiv.org/abs/2104.06286, 2021.
  • [KLS23] H. K. Kim, T. T. Q. Lê, and M. Son. SL2\mathrm{SL}_{2} quantum trace in quantum Teichmüller theory via writhe. Algebr. Geom. Topol., 23:339–418, 2023.
  • [Kup96] G. Kuperberg. Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180:109–151, 1996.
  • [Lab06] F. Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math., 165:51–114, 2006.
  • [Lê18] T. T. Q. Lê. Triangular decomposition of skein algebras. Quantum Topol., 9:591–632, 2018.
  • [LS21] T. T. Q. Lê and A. S. Sikora. Stated SL(n)\mathrm{SL}(n)-skein modules and algebras. https://arxiv.org/abs/2201.00045, 2021.
  • [LY23] T. T. Q. Lê and T. Yu. Quantum traces for SLnSL_{n}-skein algebras. https://arxiv.org/abs/2303.08082, 2023.
  • [Maj95] S. Majid. Foundations of quantum group theory. Cambridge University Press, Cambridge, 1995.
  • [MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Third edition. Springer-Verlag, Berlin, 1994.
  • [NY20] A. Neitzke and F. Yan. qq-nonabelianization for line defects. J. High Energy Phys., paper no. 153, 65 pp., 2020.
  • [NY22] A. Neitzke and F. Yan. The quantum UV-IR map for line defects in 𝔤𝔩(3)\mathfrak{gl}(3)-type class SS theories. J. High Energy Phys., paper no. 81, 50 pp., 2022.
  • [Pro76] C. Procesi. The invariant theory of n×nn\times n matrices. Adv. Math., 19:306–381, 1976.
  • [Prz91] J. H. Przytycki. Skein modules of 3-manifolds. Bull. Polish Acad. Sci. Math., 39:91–100, 1991.
  • [PT87] J. H. Przytycki and P. Traczyk. Conway algebras and skein equivalence of links. Proc. Amer. Math. Soc., 100:744–748, 1987.
  • [RT90] N. Y. Reshetikhin and V. G. Turaev. Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys., 127:1–26, 1990.
  • [Sik01] A. S. Sikora. SLn\mathrm{SL}_{n}-character varieties as spaces of graphs. Trans. Amer. Math. Soc., 353:2773–2804, 2001.
  • [Sik05] A. S. Sikora. Skein theory for SU(n)\mathrm{SU}(n)-quantum invariants. Algebr. Geom. Topol., 5:865–897, 2005.
  • [SS17] G. Schrader and A. Shapiro. Continuous tensor categories from quantum groups I: algebraic aspects. https://arxiv.org/abs/1708.08107, 2017.
  • [SS19] G. Schrader and A. Shapiro. A cluster realization of Uq(𝔰𝔩n)U_{q}(\mathfrak{sl}_{n}) from quantum character varieties. Invent. Math., 216:799–846, 2019.
  • [Thu97] W. P. Thurston. Three-dimensional geometry and topology. Vol. 1. Princeton University Press, Princeton, NJ, 1997.
  • [Thu14] D. P. Thurston. Positive basis for surface skein algebras. Proc. Natl. Acad. Sci. USA, 111:9725–9732, 2014.
  • [Tur89] V. G. Turaev. Algebras of loops on surfaces, algebras of knots, and quantization. In Braid group, knot theory and statistical mechanics, volume 9 of Adv. Ser. Math. Phys., pages 59–95. World Sci. Publ., Teaneck, NJ, 1989.
  • [Wit89] E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys., 121:351–399, 1989.
\enddoc@text

See pages - of appendix-NEWEST