This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum Symmetry in multigraphs (part I)

Debashish Goswami Statistics and Mathematics Unit, Indian Statistical Institute
203, B.T. Road, Kolkata 700108, India
email: [email protected]
 and  Sk Asfaq Hossain Statistics and Mathematics Unit, Indian Statistical Institute
203, B.T. Road, Kolkata 700108, India
email: [email protected]
Abstract.

We introduce various notions of quantum symmetry in a directed or undirected multigraph with no isolated vertex and explore relations among them. If the multigraph is single edged (that is, a simple graph where loops are allowed), all our notions of quantum symmetry reduce to already existing notions of quantum symmetry provided by Bichon and Banica. Our constructions also show that any multigraph with at least two pairs of vertices with multiple edges among them possesses genuine quantum symmetry.

It is to be noted that Debashish Goswami is partially supported by J.C. Bose national fellowship awarded by D.S.T., Government of India.

1. Introduction

The idea of quantum groups was introduced by Drinfeld and Jimbo ([Drinfelprimed1987], [Drinfelprimed1989], [Jimbo1985]). It was done on an algebraic level where quantum groups were viewed as Hopf algebras typically arising as deformations of semisimple Lie algebras. The analytic version of quantum groups was first described by Woronowicz ([Woronowicz1987], [Woronowicz1998]) who formulated the notion of compact quantum group as a generalization of a compact topological group in the noncommutative realm.

Groups are often viewed as “symmetry objects”, in a similar way, quantum groups correspond to some kind of “generalized symmetry” of physical systems and mathematical structures. Indeed, the idea of a group acting on a space can be extended to the idea of a quantum group co-acting on a non commutative space (that is, possibly a non commutative C*algebra). The question of defining and finding “all quantum symmetries” arises naturally in this context. Study of quantum symmetry in analytic setting, that is, in the framework of compact quantum groups was started by Shuzhou Wang. In his seminal work [Wang1998], Wang introduced notion of quantum permutations (in the category of compact quantum groups) of nn objects and defined quantum permutation group Sn+S^{+}_{n} as the universal object in the category of all such quantum permutations. The quantum group Sn+S^{+}_{n} is indeed the compact quantum analogue of the standard permutation group SnS_{n} on nn elements.

Following the introduction of quantum automorphisms of a finite set, a logical progression led to an investigation of the concepts of quantum automorphisms of finite graphs and small metric spaces. In ([Bichon2003]), Bichon introduced a the notion of quantum automorphism in a finite directed single edged graph (V,E)(V,E) which was formulated in terms of simultaneous quantum permutations of both edge set EE and vertex set VV. These permutations were compatible through source and target maps of the directed graph. Here by single edged, we mean a simple graph where loops are allowed. A loop is an edge with a single endpoint vertex. Two years later, in [Banica2005] Banica gave a more general description of quantum symmetry in a single edged graph in terms of its adjacency matrix. Any quantum permutation of vertex set which commutes with the adjacency matrix is a quantum automorphism of the single edged graph in Banica’s sense. As there was absolutely no restriction on the entries of the adjacency matrix, this construction was generalised easily to produce quantum automorphisms in the context of weighted graphs and small metric spaces ([Banica2005a]). For a single edged graph (V,E)(V,E), the categories of quantum automorphisms described by Bichon and Banica will be denoted as 𝒟(V,E)Ban\mathcal{D}^{Ban}_{(V,E)} and 𝒟(V,E)Bic\mathcal{D}^{Bic}_{(V,E)} respectively. It turned out that 𝒟(V,E)Bic\mathcal{D}^{Bic}_{(V,E)} is always a full subcategory of 𝒟(V,E)Ban\mathcal{D}^{Ban}_{(V,E)}.

It is natural to ask whether Banica and Bichon’s notions of quantum automorphisms can be generalised in the context of multigraphs. A multigraph or a finite quiver (V,E)(V,E) consists of a finite vertex set VV and a finite edge set EE with source and target maps s:EVs:E\rightarrow V and t:EVt:E\rightarrow V. Classically an automorphism of a multigraph is pair (fV,fE)(f_{V},f_{E}) where fVf_{V} and fEf_{E} are permutations of vertex set and edge set respectively which are compatible via source and target maps ss and tt. In single edged case, the formulations of quantum symmetry were done in terms of permutation of vertices and adjacency relations between two vertices. Different technique needs to be adapted for multigraphs as an edge is not uniquely determined by the adjacency relations.

We have reformulated the notions of quantum symmetry in terms of “permutations” of edges instead of permutations of vertices which is useful in the context of multigraphs.

For a multigraph (V,E)(V,E), we have constructed three different categories 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)}, 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} and 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} consisting of compact quantum groups co-acting by preserving different levels of quantum symmetry in (V,E)(V,E). If (V,E)(V,E) is single edged, it turns out that 𝒞(V,E)Ban=𝒞(V,E)sym𝒟(V,E)Ban\mathcal{C}^{Ban}_{(V,E)}=\mathcal{C}^{sym}_{(V,E)}\cong\mathcal{D}^{Ban}_{(V,E)} and 𝒞(V,E)Bic𝒟(V,E)Bic\mathcal{C}^{Bic}_{(V,E)}\cong\mathcal{D}^{Bic}_{(V,E)}. For a multigraph (V,E)(V,E), we have the following :

𝒞(V,E)Bic𝒞(V,E)sym𝒞(V,E)Ban.\mathcal{C}^{Bic}_{(V,E)}\subseteq\mathcal{C}^{sym}_{(V,E)}\subseteq\mathcal{C}^{Ban}_{(V,E)}.

It can be easily seen that the categories 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} and 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)} admit universal objects namely Q(V,E)BicQ^{Bic}_{(V,E)} and Q(V,E)BanQ^{Ban}_{(V,E)}. However that is not the case for 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)}. It is still unclear whether for an arbitrary multigraph (V,E)(V,E), the category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} admits a universal object or not. The compact quantum group Q(V,E)BicQ^{Bic}_{(V,E)} is the quantum automorphism group of (V,E)(V,E) which is a quantum analogue of the classical automorphism group of (V,E)(V,E). On the other hand, Q(V,E)BanQ^{Ban}_{(V,E)} is too large to be called an automorphism group of (V,E)(V,E) and therefore will be referred to as universal quantum group associated with (V,E)(V,E). This is precisely the reason for considering a smaller category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} to make a true generalisation of Banica’s notion of quantum symmetry.

It is natural to ask for which class of multigraphs, the two categories 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} and 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} coincide. We have provided a necessary and sufficient condition in terms of weighted symmetry of the underlying weighted graph. We have shown that the categories 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} and 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} coincide if and only if Banica and Bichon’s notion of quantum symmetry coincide for the underlying weighted graph of (V,E)(V,E). For this class of multigraphs, the compact quantum group Q(V,E)BicQ^{Bic}_{(V,E)} does act as a universal object in 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)}. For uniform multigraphs, that is, a multigraph with either zero or fixed number of edges between two vertices, We have expressed Q(V,E)BicQ^{Bic}_{(V,E)} as free wreath product by quantum permutation groups ([Bichon2004], [Banica2007a]) where the co-action corresponding to the wreath product comes from a permutation of pairs of vertices induced by the weighted symmetry of the underlying single edged graph. This wreath product formula for Q(V,E)BicQ^{Bic}_{(V,E)} also emphasizes that any multigraph which have at least two pairs of vertices with multiple edges among them possesses genuine quantum symmetry.

There has been an extensive study of quantum symmetry in graph C* algebras in recent times (see [Banica2013],[Joardar2018], [Schmidt2018],[Brannan2022] and references therein). Following the line of [Schmidt2018] we have shown that our notions of quantum symmetry in multigraphs in fact lift to the level of graph C* algebras. Apart from mathematical structures, multigraphs are also important in many physical models such as lattices of atoms with double or triple bonds.

Now we briefly discuss layout of this paper. In section 2 we provide necessary prerequisites about graphs, compact quantum groups and co-actions of compact quantum groups on single edged graphs. We also introduce a set of important notations at the end of this section that we will be using throughout this article. In section 3, we observe equivalent descriptions of right and left equivariant bi-unitary co-representations on the edge space which essentially give us the formulas to capture permutations of the vertex set in terms of “permutation” of edges (see theorems 3.4, 3.5 and 3.6). Using these revelations, we introduce various notions of quantum symmetry in a multigraph. Various compact quantum groups associated with a multigraph are also described here (see definition 3.15). To overcome inadequacy of Q(V,E)BanQ^{Ban}_{(V,E)} to act as an automorphism group of the multigraph and make true generalisation of Banica’s notion of quantum symmetry we introduce the notion of “restricted orthogonality” (see definition 3.17) and explore its various consequences. One important consequence would be that any action satisfying “restricted orthogonality” preserves uniform components of a multigraph (see proposition 3.22). The wreath product formula related to the quantum automorphism group of a multigraph In Bichon’s sense is also described in this section. Section 5 is dedicated to quantum symmetry of graph C* algebras associated with multigraphs. In Section 5.2 we talk about “undirected” multigraphs and briefly discuss how our work in directed setting can be used to describe quantum symmetry in “undirected” multigraphs.

2. Preliminaries

2.1. Finite quivers or multigraphs:

We recall the notions of finite quivers and morphisms among them. For more details on quivers and path algebras see [Grigoryan2018].

Definition 2.1.

A finite quiver or a multigraph (V,E)(V,E) consists of a finite set of vertices VV and a finite set of edges EE with source and target maps s:EVs:E\rightarrow V and t:EVt:E\rightarrow V.

An edge τE\tau\in E is called a loop if s(τ)=t(τ)s(\tau)=t(\tau). We will denote LEL\subseteq E to be the set of all “loops” in (V,E).(V,E).

The adjacency matrix W=(Wji)i,jVW=(W^{i}_{j})_{i,j\in V} is given by Wji=|{τE|s(τ)=i,t(τ)=j}|W^{i}_{j}=|\{\tau\in E|s(\tau)=i,t(\tau)=j\}|. Here |.||.| denotes cardinality of a set.

Definition 2.2.

A multigraph (V,E)(V,E) is called a single edged graph if Wji=1W^{i}_{j}=1 or 0 for all i,jVi,j\in V. In case of a single edged graph, the edge set EE can be identified with a subset of V×VV\times V.

A weighted single edged graph (V,E,w)(V,E,w) is a single edged graph (V,E)(V,E) with a weight function w:Ew:E\rightarrow\mathbb{C} on the set of edges. In this case, the adjacency matrix is defined to be Wji=w((i,j))W^{i}_{j}=w((i,j)) if (i,j)E(i,j)\in E and 0 otherwise.

Definition 2.3.

For a multigraph (V,E)(V,E), the underlying single edged graph (V,E¯)(V,\overline{E}) is the single edged graph with same vertex set VV and a set of edges E¯\overline{E} given by,

E¯:={(i,j)V×V|Wji0}.\overline{E}:=\{(i,j)\in V\times V|W^{i}_{j}\neq 0\}.
Definition 2.4.

For a multigraph (V,E)(V,E), the underlying weighted single edged graph is the underlying single edged graph (V,E¯)(V,\overline{E}) with a weight function w:E¯w:\overline{E}\rightarrow\mathbb{C} defined by w((i,j))=|Eji|w((i,j))=|E^{i}_{j}|.

Morphisms of finite quivers or multigraphs:

We recall definition 2.3 from [Grigoryan2018]. For more detailed discussion on different automorphisms of a multigraph, see also [Gela1982].

Definition 2.5.

Let (V,E)(V,E) and (V,E)(V^{\prime},E^{\prime}) be two finite quivers or multigraphs with pairs of source and target maps given by (s,t)(s,t) and (s,t)(s^{\prime},t^{\prime}) respectively. A morphism of quivers f:(V,E)(V,E)f:(V,E)\rightarrow(V^{\prime},E^{\prime}) is a pair of maps (fV,fE)(f_{V},f_{E}) where fV:VVf_{V}:V\rightarrow V^{\prime} is a map of vertices and fE:EEf_{E}:E\rightarrow E^{\prime} is a map of edges satisfying,

fV(s(τ))=s(fE(τ))andfV(t(τ))=t(fE(τ))for allτE.f_{V}(s(\tau))=s^{\prime}(f_{E}(\tau))\quad\text{and}\quad f_{V}(t(\tau))=t^{\prime}(f_{E}(\tau))\quad\text{for all}\quad\tau\in E.

An automorphism of a finite quiver or a multigraph (V,E)(V,E) is an invertible morphism from (V,E)(V,E) to (V,E)(V,E). The collection of all such automorphisms is the classical automorphism group of (V,E)(V,E) and is denoted as G(V,E)autG^{aut}_{(V,E)}.

2.2. Compact quantum group:

We give a brief description of compact quantum groups and related concepts. For detailed discussion on quantum groups, see [Chari1995], [Maes1998], [Timmermann2008], [Neshveyev2013] and [Goswami2016]. All C* algebras here will be assumed to be unital and all tensor products will be minimal tensor product of C* algebras unless explicitly mentioned otherwise.

Definition 2.6.

A compact quantum group or a CQG (in short) is a pair (𝒜,Δ)(\mathcal{A},\Delta) where 𝒜\mathcal{A} is a unital C* algebra and Δ:𝒜𝒜𝒜\Delta:\mathcal{A}\rightarrow\mathcal{A}\otimes\mathcal{A} is a homomorphism of C* algebras satisfying the following conditions:

  1. (1)

    (Δid)Δ=(idΔ)Δ(\Delta\otimes id)\Delta=(id\otimes\Delta)\Delta (coassociativity).

  2. (2)

    Each of the linear spans of Δ(𝒜)(1𝒜)\Delta(\mathcal{A})(1\otimes\mathcal{A}) and Δ(𝒜)(𝒜1)\Delta(\mathcal{A})(\mathcal{A}\otimes 1) is norm-dense in 𝒜𝒜\mathcal{A}\otimes\mathcal{A}.

It is known that there exists a unique Haar state on a compact quantum group which is the non-commutative analogue of Haar measure on a classical compact group.

Definition 2.7.

The Haar state hh on a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) is the unique state on 𝒜\mathcal{A} which satisfies the following conditions:

(hid)Δ(a)=h(a)1𝒜and(idh)Δ(a)=h(a)1𝒜(h\otimes id)\Delta(a)=h(a)1_{\mathcal{A}}\quad\text{and}\quad(id\otimes h)\Delta(a)=h(a)1_{\mathcal{A}}

for all a𝒜a\in\mathcal{A}.

Definition 2.8.

A quantum group homomorphism Φ\Phi among two compact quantum groups (𝒜1,Δ1)(\mathcal{A}_{1},\Delta_{1}) and (𝒜2,Δ2)(\mathcal{A}_{2},\Delta_{2}) is a C* algebra homomorphism Φ:𝒜1𝒜2\Phi:\mathcal{A}_{1}\rightarrow\mathcal{A}_{2} satisfying the following condition:

(ΦΦ)Δ1=Δ2Φ.(\Phi\otimes\Phi)\circ\Delta_{1}=\Delta_{2}\circ\Phi.
Definition 2.9.

A Woronowicz C* subalgebra of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) is a C* subalgebra 𝒜\mathcal{A}^{\prime} such that (𝒜,Δ|𝒜)(\mathcal{A}^{\prime},\Delta|_{\mathcal{A}^{\prime}}) is a compact quantum group and the inclusion map i:𝒜𝒜i:\mathcal{A}^{\prime}\rightarrow\mathcal{A} is a homomorphism of compact quantum groups.

Definition 2.10.

A Woronowicz C* ideal of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) is a two sided C*ideal \mathcal{I} such that Δ()ker(ππ)\Delta(\mathcal{I})\subseteq ker(\pi\otimes\pi) where π\pi is the natural quotient map π:𝒜𝒜/\pi:\mathcal{A}\rightarrow\mathcal{A}/\mathcal{I}.

Proposition 2.11.

The quotient of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) by a Woronowicz C* ideal \mathcal{I} has a unique compact quantum group structure such that the quotient map π\pi is a homomorphism of compact quantum groups. More precisely, the co-product Δ~\tilde{\Delta} on 𝒜/\mathcal{A}/\mathcal{I} is given by,

Δ~(a+)=(ππ)Δ(a)\tilde{\Delta}(a+\mathcal{I})=(\pi\otimes\pi)\Delta(a)

where a𝒜a\in\mathcal{A}.

Definition 2.12.

A compact quantum group (𝒜,Δ)(\mathcal{A}^{\prime},\Delta^{\prime}) is said to be quantum subgroup of another compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) if there exists a Woronowicz C* ideal \mathcal{I} such that (𝒜,Δ)(𝒜,Δ)/(\mathcal{A}^{\prime},\Delta^{\prime})\cong(\mathcal{A},\Delta)/\mathcal{I}.

2.2.1. Co-actions and co-representations:

Definition 2.13.

Let HH be a finite dimensional Hilbert space and (𝒜,Δ)(\mathcal{A},\Delta) be a compact quantum group. We consider the Hilbert 𝒜\mathcal{A}-module H𝒜H\otimes\mathcal{A} with induced 𝒜\mathcal{A}-valued inner product from HH. A finite dimensional co-representation of (𝒜,Δ)(\mathcal{A},\Delta) on HH is a \mathbb{C}-linear map δ:HH𝒜\delta:H\rightarrow H\otimes\mathcal{A} such that δ~B(H)𝒜\tilde{\delta}\in B(H)\otimes\mathcal{A} given by δ~(ξa)=δ(ξ)a\tilde{\delta}(\xi\otimes a)=\delta(\xi)a (ξH\xi\in H,a𝒜a\in\mathcal{A}) satisfies the following condition:

(idΔ)δ~=δ~(12)δ~(13)(id\otimes\Delta)\tilde{\delta}=\tilde{\delta}_{(12)}\tilde{\delta}_{(13)}

where δ~(12)\tilde{\delta}_{(12)} and δ~(13)\tilde{\delta}_{(13)} are common leg notations defined in section 5 of [Maes1998].

Remark 2.14.

By choosing an orthonormal basis {e1,..,en}\{e_{1},..,e_{n}\} of HH we can identify HH with n\mathbb{C}^{n} and B(H)B(H) with Mn()M_{n}(\mathbb{C}). For a \mathbb{C}-linear map δ:HH𝒜\delta:H\rightarrow H\otimes\mathcal{A}, we define UδMn(𝒜)U^{\delta}\in M_{n}(\mathbb{\mathcal{A}}) by (Uδ)ij=<ei1𝒜,δ(ej)>𝒜(U^{\delta})_{ij}=<e_{i}\otimes 1_{\mathcal{A}},\delta(e_{j})>_{\mathcal{A}}. It is clear that δ\delta is uniquely determined by the matrix UδU^{\delta} and is a co-representation if and only if

Δ(Uijδ)=k=1nUikδUkjδ.\Delta(U^{\delta}_{ij})=\sum_{k=1}^{n}U^{\delta}_{ik}\otimes U^{\delta}_{kj}.

UδU^{\delta} is said to be the co-representation matrix of δ\delta. Later in this article we might also write the coefficients of a co-representation matrix as (Uδ)ji(U^{\delta})^{i}_{j} instead of (Uδ)ij(U^{\delta})_{ij} for notational ease and convenience.

A co-representation δ\delta is said to be non-degenerate if UδU^{\delta} is invertible in Mn(𝒜)M_{n}(\mathcal{A}) and unitary if the matrix UδU^{\delta} is unitary in Mn(𝒜)M_{n}(\mathcal{A}), that is, UδUδ=UδUδ=IdMn(𝒜)U^{\delta}{U^{\delta}}^{*}={U^{\delta}}^{*}U^{\delta}=Id_{M_{n}(\mathcal{A})}.

Definition 2.15.

For a finite dimensional co-representation δ\delta of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) the contragradient co-representation δ¯\overline{\delta} is defined by the co-representation matrix Uδ¯\overline{U^{\delta}}, where Uijδ¯=Uijδ\overline{U^{\delta}_{ij}}={U^{\delta}_{ij}}^{*}.

As we have identified co-representations with operator valued matrices and will be working only with finite dimensional co-representations, we will consider contragradient representation on the same finite dimensional Hilbert space instead of its dual.

It is known from representation theory of compact quantum groups that for a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta), there is a dense subalgebra 𝒜0\mathcal{A}_{0} generated by the matrix elements of its finite dimensional co-representations. This subalgebra 𝒜0\mathcal{A}_{0} with the co-product Δ|𝒜0\Delta|_{\mathcal{A}_{0}} is a Hopf * algebra in its own right and referred to as underlying Hopf * algebra of matrix elements of (𝒜,Δ)(\mathcal{A},\Delta). The Haar state hh is faithful on 𝒜0\mathcal{A}_{0} and is tracial if (𝒜,Δ)(\mathcal{A},\Delta) is a compact quantum group of Kac type (see proposition 1.7.9 in [Neshveyev2013] ).

Now we describe the notion of a co-action of a compact quantum group on a unital C* algebra.

Definition 2.16.

Let \mathcal{B} be a unital C* algebra. A co-action of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) on \mathcal{B} is a C* homomorphism α:𝒜\alpha:\mathcal{B}\rightarrow\mathcal{B}\otimes\mathcal{A} satisfying the following conditions:

  1. (1)

    (αid)α=(idΔ)α(\alpha\otimes id)\alpha=(id\otimes\Delta)\alpha.

  2. (2)

    Linear span of α()(1𝒜)\alpha(\mathcal{B})(1_{\mathcal{B}}\otimes\mathcal{A}) is norm-dense in 𝒜\mathcal{B}\otimes\mathcal{A}.

A co-action α\alpha is said to be faithful if there does not exist a proper Woronowicz C* algebra 𝒜\mathcal{A}^{\prime} of (𝒜,Δ)(\mathcal{A},\Delta) such that α\alpha is also a co-action of (𝒜,Δ|𝒜)(\mathcal{A}^{\prime},\Delta|_{\mathcal{A}^{\prime}}) on \mathcal{B}.

For a unital C* algebra \mathcal{B}, we consider the category of quantum transformation groups whose objects are compact quantum groups co-acting on \mathcal{B} and morphisms are quantum group homomorphisms intertwining such co-actions. The universal object in this category, if it exists (it might not, for example see [Wang1998] for example), is said to be quantum automorphism group of \mathcal{B}. The following proposition will be crucial to our constructions later on.

Proposition 2.17.

For a finite dimensional unitary co-representation δ:HH𝒜\delta:H\rightarrow H\otimes\mathcal{A} of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta), there is a co-action Adδ:B(H)B(H)𝒜Ad_{\delta}:B(H)\rightarrow B(H)\otimes\mathcal{A} of (𝒜,Δ)(\mathcal{A},\Delta) on the algebra B(H)B(H) (set of all bounded operators on a Hilbert space HH) which is given by,

Adδ(T)=δ~(T1𝒜)δ~whereTB(H).Ad_{\delta}(T)=\tilde{\delta}(T\otimes 1_{\mathcal{A}})\tilde{\delta}^{*}\quad\text{where}\quad T\in B(H).

The map AdδAd_{\delta} will be referred as the “co-action implemented by a unitary co-representation δ\delta”.

2.3. Quantum automorphisms of single edged (weighted or non-weighted) graphs:

There are two different existing notions of quantum symmetry in a simple graph, one was introduced by Bichon (see [Bichon2003]) and the other was introduced by Banica ([Banica2005],[Banica2007]). Before going to that, we recall the notion of quantum permutation group from [Wang1998].

Let XX be a finite set. For iXi\in X, let us denote the characteristic function on ii as χi\chi_{i}, that is, χi(j)=δi,j\chi_{i}(j)=\delta_{i,j} (δi,j=1\delta_{i,j}=1 if i=ji=j and 0 otherwise) for all jXj\in X. The function algebra on XX, that is, set of all functions from XX to \mathbb{C}, is the \mathbb{C}-linear span of the elements {χi|iX}\{\chi_{i}|i\in X\}. This function algebra will be treated as both an algebra (with multiplication given by, χi.χj=δi,j\chi_{i}.\chi_{j}=\delta_{i,j}) and a Hilbert space (with inner product given by, <χi,χj>=δi,j<\chi_{i},\chi_{j}>=\delta_{i,j}). We will denote this function algebra by C(X)C(X) when we will treat it as an algebra and L2(X)L^{2}(X) when we will treat it as a Hilbert space.

Definition 2.18.

Let Xn={1,2,..,n}X_{n}=\{1,2,..,n\} be a finite set. The quantum permutation group on nn elements, Sn+S^{+}_{n} is the universal C* algebra generated by the elements of the matrix (xij)i,j=1,..,n(x_{ij})_{i,j=1,..,n} satisfying the following relations:

  1. (1)

    xij2=xij=xij{x^{2}_{ij}}=x_{ij}={x_{ij}}^{*} for all i,j=1,..,ni,j=1,..,n.

  2. (2)

    i=1nxij=1=i=1nxji\sum_{i=1}^{n}x_{ij}=1=\sum_{i=1}^{n}{x_{ji}} for all j=1,..,nj=1,..,n.

The co-product Δn\Delta_{n} on Sn+S^{+}_{n} is given by Δn(xij)=k=1nxikxkj.\Delta_{n}(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj}.

The relations (1) and (2) listed in definition 2.18 will be referred to as quantum permutation relations. The quantum permutation group Sn+S^{+}_{n} is the universal object in the category of all compact quantum groups co-acting on C(Xn)C(X_{n}).

We introduce a notation which is standard in this context:

Notation 2.19.

Let XX be a finite set and α:C(X)C(X)𝒜\alpha:C(X)\rightarrow C(X)\otimes\mathcal{A} be a co-action of a compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) with co-representation matrix Q=(qij)i,jVQ=(q_{ij})_{i,j\in V}. Then we define α(2)=(ididm)(idΣ23id)(αα)\alpha^{(2)}=(id\otimes id\otimes m)(id\otimes\Sigma_{23}\otimes id)(\alpha\otimes\alpha) where mm is the multiplication map in 𝒜\mathcal{A} and Σ23\Sigma_{23} is the standard flip map on 2nd and 3rd coordinates of the tensor product. For i,j,k,lVi,j,k,l\in V, we observe that,

α(2)(χkχl)=i,jVχiχjqikqjl.\alpha^{(2)}(\chi_{k}\otimes\chi_{l})=\sum_{i,j\in V}\chi_{i}\otimes\chi_{j}\otimes q_{ik}q_{jl}.

It is easy to check using quantum permutation relations that α(2)\alpha^{(2)} is actually a unitary co-representation of (𝒜,Δ)(\mathcal{A},\Delta) on the Hilbert space L2(X)L2(X)L^{2}(X)\otimes L^{2}(X). Its contragradient co-representation α(2)¯\overline{\alpha^{(2)}} is also unitary.

We recall theorem 2.2 from [Banica2005].

Theorem 2.20.

Let α\alpha be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on C(Xn)C(X_{n}) with co-representation matrix Q=(qij)i,j=1,..,nQ=(q_{ij})_{i,j=1,..,n} and WMn()W\in M_{n}(\mathbb{C}) be a complex valued n×nn\times n matrix. Let us write W=cWcW=\sum_{c\in\mathbb{C}}W^{c} where Wijc=1W^{c}_{ij}=1 iff Wij=cW_{ij}=c and Wijc=0W^{c}_{ij}=0 otherwise. For cc\in\mathbb{C}, we consider the linear subspace KcK^{c} of L2(X)L2(X)L^{2}(X)\otimes L^{2}(X) defined by

Kc=linear span{χkχl|Wkl=c;k,lV}.K^{c}=\text{linear span}\{\chi_{k}\otimes\chi_{l}|W_{kl}=c;\>\>k,l\in V\}.

Then the following conditions are equivalent:

  1. (1)

    QW=WQQW=WQ.

  2. (2)

    α(2)(Kc)Kc𝒜\alpha^{(2)}(K^{c})\subseteq K^{c}\otimes\mathcal{A} for all cc\in\mathbb{C}.

  3. (3)

    QWc=WcQQW^{c}=W^{c}Q for all cc\in\mathbb{C}.

Now we recall the notions of quantum symmetry in a single edged graph given by Bichon ([Bichon2003]) and Banica ([Banica2005]).

Definition 2.21.

Let (V,E,w)(V,E,w) be a weighted single edged graph with its adjacency matrix WW. A co-action α:C(V)𝒜\alpha:C(V)\otimes\mathcal{A} of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on C(V)C(V) is said to preserve quantum symmetry of (V,E,w)(V,E,w) in Banica’s sense if any of the following equivalent statement holds:

  1. (1)

    QW=WQQW=WQ where QQ is the co-representation matrix of α\alpha.

  2. (2)

    For all cc\in\mathbb{C}, α(2)(L2(Ec))L2(Ec)𝒜\alpha^{(2)}(L^{2}(E^{c}))\subseteq L^{2}(E^{c})\otimes\mathcal{A} where

    Ec={(i,j)E|w((i,j))=c}.E^{c}=\{(i,j)\in E\>|\>w((i,j))=c\}.

Moreover, α\alpha is said to preserve quantum symmetry of (V,E)(V,E) in Bichon’s sense if α(2)\alpha^{(2)} is a co-action on the algebra C(E)C(E).

The categories 𝒟(V,E,w)Ban\mathcal{D}^{Ban}_{(V,E,w)} and 𝒟(V,E,w)Bic\mathcal{D}^{Bic}_{(V,E,w)} consisting of CQGs co-acting on (V,E,w)(V,E,w) preserving its quantum symmetry in Banica’s sense of Bichon’s sense respectively admit universal objects namely S(V,E,w)BanS^{Ban}_{(V,E,w)} and S(V,E,w)BicS^{Bic}_{(V,E,w)}. These are two different quantum automorphism groups of (V,E,w)(V,E,w).

2.4. Free wreath product by quantum permutation groups:

We recall the construction of free wreath product by quantum permutation groups formulated by Bichon in [Bichon2004]. Similar treatment also works if we consider any subgroup of a quantum permutation groups. (see [Banica2007a]).

Let (,Δ)(\mathcal{B},\Delta^{\prime}) be a quantum subgroup of Sn+S^{+}_{n} where Sn+S_{n}^{+} is the quantum permutation group on nn elements. Let (𝒜,Δ)(\mathcal{A},\Delta) be another compact quantum group. We consider 𝒜n\mathcal{A}^{*n} to be nn times free product of the C* algebra 𝒜\mathcal{A} with the canonical inclusion maps νi:𝒜𝒜n\nu_{i}:\mathcal{A}\rightarrow\mathcal{A}^{*n} where i=1,2,..,ni=1,2,..,n. The algebra 𝒜n\mathcal{A}^{*n} has a natural co-product structure coming from (𝒜,Δ)(\mathcal{A},\Delta) making it a compact quantum group (see [Wang1995]). We observe that, there is a natural co-action α:𝒜n𝒜n\alpha:\mathcal{A}^{*n}\rightarrow\mathcal{A}^{*n}\otimes\mathcal{B} of the CQG (,Δ)(\mathcal{B},\Delta^{\prime}) on the algebra 𝒜n\mathcal{A}^{*n}, which is given by,

(2.1) α(νi(a))=j=1nνj(a)xjiwherei=1,2,..,nanda𝒜.\alpha(\nu_{i}(a))=\sum_{j=1}^{n}\nu_{j}(a)\otimes x_{ji}\quad\text{where}\quad i=1,2,..,n\quad\text{and}\quad a\in\mathcal{A}.

Here (xij)i,j=1,..,n(x_{ij})_{i,j=1,..,n} is the matrix of canonical generators of \mathcal{B} satisfying quantum permutation relations.

Definition 2.22.

The free wreath product of (𝒜,Δ)(\mathcal{A},\Delta) by (,Δ)(\mathcal{B},\Delta^{\prime}) is the quotient of the C* algebra 𝒜n\mathcal{A}^{*n}*\mathcal{B} by a two sided C* ideal generated by the elements:

νi(a)xijxijνi(a),1i,jn,a𝒜.\nu_{i}(a)x_{ij}-x_{ij}\nu_{i}(a),\quad 1\leq i,j\leq n,\quad a\in\mathcal{A}.

The free wreath product of (𝒜,Δ)(\mathcal{A},\Delta) by (,Δ)(\mathcal{B},\Delta^{\prime}) will be denoted by 𝒜w\mathcal{A}*_{w}\mathcal{B}.

We recall theorem 3.2 from [Bichon2004] which describes the co-product structure on 𝒜w\mathcal{A}*_{w}\mathcal{B}.

Theorem 2.23.

There is a natural co-product structure Δw\Delta_{w} on 𝒜w\mathcal{A}*_{w}\mathcal{B} making it a compact quantum group. The co-product Δw\Delta_{w} satisfies:

Δw(xij)=k=1nxikxkj,Δw(νi(a))=k=1nνiνk(Δ(a))(xik1).\Delta_{w}(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj},\quad\Delta_{w}(\nu_{i}(a))=\sum_{k=1}^{n}\nu_{i}\otimes\nu_{k}(\Delta(a))(x_{ik}\otimes 1).

for all i,j=1,..,ni,j=1,..,n and a𝒜a\in\mathcal{A}.

As an immidiate application of the above construction in the theory of quantum symmetry in simple graphs we state theorem 4.2 from [Bichon2004] (see also theorem 7.1 from [Banica2007a]).

Theorem 2.24.

Let (V,E)(V,E) be a finite connected simple graph (without loops). Let us consider another simple graph (Vn,En)(V^{n},E^{n}) which is the disjoint union of nn copies of (V,E)(V,E). We have the following isomorphisms:

S(Vn,En)Bic\displaystyle S^{Bic}_{(V^{n},E^{n})} S(V,E)BicwSn+,\displaystyle\cong S^{Bic}_{(V,E)}\>*_{w}\>S^{+}_{n},
S(Vn,En)Ban\displaystyle S^{Ban}_{(V^{n},E^{n})} S(V,E)BanwSn+\displaystyle\cong S^{Ban}_{(V,E)}\>*_{w}\>S^{+}_{n}

where the underlying co-action of Sn+S^{+}_{n} is given in equation 2.1.

2.5. Setup and Notations:

We introduce some notations and conventions that we will use throughout the rest of this article. Let (V,E)(V,E) be a multigraph with source and target maps s:EVs:E\rightarrow V and t:EVt:E\rightarrow V. We further assume that there is no isolated vertex, that is, every vertex is either an initial or final vertex of some edge.

  1. (1)

    For i,jVi,j\in V, we denote the the subsets EiE^{i}, EjE_{j} and EjiE^{i}_{j} of EE by the following descriptions:

    Eji\displaystyle E^{i}_{j} :={τE|s(τ)=iandt(τ)=j};\displaystyle:=\{\tau\in E|s(\tau)=i\>\>\text{and}\>\>t(\tau)=j\};
    Ei\displaystyle E^{i} :={τE|s(τ)=i};Ej:={τE|t(τ)=j}.\displaystyle:=\{\tau\in E|s(\tau)=i\};\qquad E_{j}:=\{\tau\in E|t(\tau)=j\}.
  2. (2)

    Let us define the sets of initial and final vertices VsVV^{s}\subseteq V and VtVV^{t}\subseteq V by

    Vs=s(E)andVt=t(E).V^{s}=s(E)\quad\text{and}\quad V^{t}=t(E).

    As our graphs do not have any isolated vertex, it is clear that V=VsVtV=V^{s}\cup V^{t}.

  3. (3)

    There is a natural C(Vs)C(Vt)C(V^{s})-C(V^{t}) bimodule structure on L2(E)L^{2}(E) which is given by

    (2.2) χi.χτ=δi,s(τ)χτandχτ.χj=δt(τ),jχτ\chi_{i}.\chi_{\tau}=\delta_{i,s(\tau)}\chi_{\tau}\quad\text{and}\quad\chi_{\tau}.\chi_{j}=\delta_{t(\tau),j}\chi_{\tau}

    where iVs,jVti\in V^{s},j\in V^{t} and τE\tau\in E. The Hilbert space L2(E)L^{2}(E) can also be treated as a C(V)C(V)C(V)-C(V) bimodule with the same left and right module multiplication maps given by equations 2.2.

  4. (4)

    For τE\tau\in E, let pτp_{\tau} denote the orthogonal projection onto a subspace generated by χτ\chi_{\tau} in L2(E)L^{2}(E). We define two injective algebra maps S:C(Vs)B(L2(E))S:C(V^{s})\rightarrow B(L^{2}(E)) and T:C(Vt)B(L2(E))T:C(V^{t})\rightarrow B(L^{2}(E)) by

    S(χv)=τEvpτandT(χw)=τEwpτS(\chi_{v})=\sum_{\tau\in E^{v}}p_{\tau}\quad\text{and}\quad T(\chi_{w})=\sum_{\tau\in E_{w}}p_{\tau}

    for all vv in VsV^{s} and ww in VtV^{t}.

  5. (5)

    For i,jVi,j\in V with EjiϕE^{i}_{j}\neq\phi, let pijp_{ij} be the orthogonal projection onto a linear subspace in L2(E)L^{2}(E) generated by the elements {χτ|τEji}\{\chi_{\tau}|\tau\in E^{i}_{j}\}. Let us define the following subalgebras in B(L2(E))B(L^{2}(E)) by

    Mij:=pijB(L2(E))pijandDij:=pijDpijM_{ij}:=p_{ij}B(L^{2}(E))p_{ij}\quad\text{and}\quad D_{ij}:=p_{ij}Dp_{ij}

    where DD is the algebra of diagonal operators spanned by the elements {pτ|τE}\{p_{\tau}|\tau\in E\}.

3. Quantum symmetry in multigraphs

Let us fix a multigraph (V,E)(V,E) with source and target maps s:EVs:E\rightarrow V and t:EVt:E\rightarrow V and no isolated vertex.

Definition 3.1.

By a “bi-unitary” co-representation β\beta of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on a finite dimensional Hilbert space, we mean a unitary co-representation β\beta such that its contragradient β¯\overline{\beta} is also unitary.

We make some observations before moving to the main results.

Lemma 3.2.

Let FB(L2(E))F\in B(L^{2}(E)). Then,

  1. (1)

    FS(C(Vs))F\in S(C(V^{s})) if and only if the following holds:

    For τ,τ1,τ2E\tau,\tau_{1},\tau_{2}\in E, F(χτ)=cτχτF(\chi_{\tau})=c_{\tau}\chi_{\tau} for some cτc_{\tau}\in\mathbb{C} and cτ1=cτ2c_{\tau_{1}}=c_{\tau_{2}} whenever s(τ1)=s(τ2)s(\tau_{1})=s(\tau_{2}).

  2. (2)

    FT(C(Vt))F\in T(C(V^{t})) if and only if the following holds:

    For τ,τ1,τ2E\tau,\tau_{1},\tau_{2}\in E, F(χτ)=cτχτF(\chi_{\tau})=c_{\tau}\chi_{\tau} for some cτc_{\tau}\in\mathbb{C} and cτ1=cτ2c_{\tau_{1}}=c_{\tau_{2}} whenever t(τ1)=t(τ2)t(\tau_{1})=t(\tau_{2}).

Lemma 3.3.

Let {Ai|i=1,2,..,n}\{A_{i}|i=1,2,..,n\} be a finite set of operators on a Hilbert space and pp and qq be two projections.

  1. (1)

    If i=1nAiAi=p\sum_{i=1}^{n}A_{i}A^{*}_{i}=p, then pAi=AipA_{i}=A_{i}.

  2. (2)

    If i=1nAiAi=q\sum_{i=1}^{n}A^{*}_{i}A_{i}=q, then Aiq=AiA_{i}q=A_{i}.

Proof.

To prove (1), we observe that AiAipA_{i}A^{*}_{i}\leq p for all ii. It is enough to show that (1p)Ai=0\|(1-p)A_{i}\|=0 for all ii.

(1p)Ai2=(1p)AiAi(1p)(1p)p(1p)=0.\|(1-p)A_{i}\|^{2}=\|(1-p)A_{i}A^{*}_{i}(1-p)\|\leq\|(1-p)p(1-p)\|=0.

To prove (2), it is enough to observe that qAi=AiqA^{*}_{i}=A^{*}_{i} which we get by replacing AiA_{i} with AiA^{*}_{i} in the first identity. ∎

3.1. Left and right equivariant co-representations on L2(E)L^{2}(E):

Seeing L2(E)L^{2}(E) as a left C(Vs)C(V^{s}) module we formulate an equivalent criterion for left equivariant bi-unitary co-representations on L2(E)L^{2}(E).

Theorem 3.4.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a bi-unitary co-representation of a CQG (𝒜,Δ)(\mathcal{A},\Delta). Let AdβAd_{\beta} be the co-action on B(L2(E))B(L^{2}(E)) implemented by the unitary co-representation β\beta (see proposition 2.17). Then the following conditions are equivalent:

  1. (1)

    Adβ(S(C(Vs)))S(C(Vs))𝒜Ad_{\beta}(S(C(V^{s})))\subseteq S(C(V^{s}))\otimes\mathcal{A}.

  2. (2)

    There exists a co-action αs:C(Vs)C(Vs)𝒜\alpha_{s}:C(V^{s})\rightarrow C(V^{s})\otimes\mathcal{A} such that,

    αs(χi)β(χτ)=β(χi.χτ)\alpha_{s}(\chi_{i})\beta(\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau})

    for all iVsi\in V^{s} and τE\tau\in E.

Proof.

Let U=(uτσ)σ,τEU=(u^{\sigma}_{\tau})_{\sigma,\tau\in E} be the co-representation matrix of β\beta.
We make some observations first before proving the equivalence. Let us fix kVsk\in V^{s} and σ2E\sigma_{2}\in E. We observe that,

Adβ(S(χk))(χσ21)\displaystyle Ad_{\beta}(S(\chi_{k}))(\chi_{\sigma_{2}}\otimes 1) =Adβ(τEkpτ)(χσ21)\displaystyle=Ad_{\beta}(\sum_{\tau\in E^{k}}p_{\tau})(\chi_{\sigma_{2}}\otimes 1)
=β(τEkpτ1)(τEχτuτσ2)\displaystyle=\beta(\sum_{\tau\in E^{k}}p_{\tau}\otimes 1)(\sum_{\tau^{\prime}\in E}\chi_{\tau^{\prime}}\otimes{u^{\sigma_{2}}_{\tau^{\prime}}}^{*})
=σ1Eχσ1(τEkuτσ1uτσ2)\displaystyle=\sum_{\sigma_{1}\in E}\chi_{\sigma_{1}}\otimes(\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*})

Applying lemma 3.2 we get that, for all kVsk\in V^{s} and σ1,σ2E\sigma_{1},\sigma_{2}\in E

Adβ(S(C(Vs)))S(C(Vs))𝒜\displaystyle Ad_{\beta}(S(C(V^{s})))\subseteq S(C(V^{s}))\otimes\mathcal{A}\iff τEkuτσ1uτσ2=0ifσ1σ2\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*}=0\quad\text{if}\quad\sigma_{1}\neq\sigma_{2}
(3.1) and τEkuτσ1uτσ1=τEkuτσ2uτσ2ifs(σ1)=s(σ2).\displaystyle\sum_{\tau\in E^{k}}{u^{\sigma_{1}}_{\tau}u^{\sigma_{1}}_{\tau}}^{*}=\sum_{\tau\in E^{k}}{u^{\sigma_{2}}_{\tau}u^{\sigma_{2}}_{\tau}}^{*}\quad\text{if}\quad s(\sigma_{1})=s(\sigma_{2}).

Let αs:C(Vs)C(Vs)𝒜\alpha_{s}:C(V^{s})\rightarrow C(V^{s})\otimes\mathcal{A} be a co-action on C(Vs)C(V^{s}) with co-representation matrix (qji)i,jVs(q^{i}_{j})_{i,j\in V^{s}}. Let iVsi\in V^{s} and τE\tau\in E. We observe that

(3.2) αs(χi)β(χτ)=β(χi.χτ)qis(σ)uτσ=δi,s(τ)uτσ\alpha_{s}(\chi_{i})\beta(\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau})\iff q^{s(\sigma)}_{i}u^{\sigma}_{\tau}=\delta_{i,s(\tau)}u^{\sigma}_{\tau}

for all σE\sigma\in E.
Claim: (1)(2)(1)\implies(2).
From our assumption and observation 3.1 it follows that,

(3.3) Adβ(S(χk))(χσ21)=χσ2(τEkuτσ2uτσ2)for allkVs,σ2E.Ad_{\beta}(S(\chi_{k}))(\chi_{\sigma_{2}}\otimes 1)=\chi_{\sigma_{2}}\otimes(\sum_{\tau\in E^{k}}u^{\sigma_{2}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*})\quad\text{for all}\quad k\in V^{s},\sigma_{2}\in E.

For kVsk\in V^{s} and σ2E\sigma_{2}\in E, let us define

(3.4) τEkuτσ2uτσ2=qks(σ2).\sum_{\tau\in E^{k}}u^{\sigma_{2}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*}=q^{s(\sigma_{2})}_{k}.

From equation 3.3 we further observe that,

Adβ(S(χk))=σEpσqks(σ)=iVs(σEipσ)qki=iVsS(χi)qki.\displaystyle Ad_{\beta}(S(\chi_{k}))=\sum_{\sigma\in E}p_{\sigma}\otimes q^{s(\sigma)}_{k}=\sum_{i\in V^{s}}(\sum_{\sigma\in E^{i}}p_{\sigma})\otimes q^{i}_{k}=\sum_{i\in V^{s}}S(\chi_{i})\otimes q^{i}_{k}.

As C(Vs)S(C(Vs))C(V^{s})\cong S(C(V^{s})) as algebras and AdβAd_{\beta} is already a co-action on S(C(Vs))S(C(V^{s})), we define a quantum permutation αs:C(Vs)C(Vs)𝒜\alpha_{s}:C(V^{s})\rightarrow C(V^{s})\otimes\mathcal{A} by the following expression:

αs(χk)=iVsχiqkifor allkVs.\alpha_{s}(\chi_{k})=\sum_{i\in V^{s}}\chi_{i}\otimes q^{i}_{k}\quad\text{for all}\quad k\in V^{s}.

Let us now fix iVsi\in V^{s} and σ,τE\sigma,\tau\in E. From equation 3.4 and lemma 3.3 it follows that,

qis(σ)uτσ=qis(σ)(qs(τ)s(σ)uτσ)=δi,s(τ)uτσ.q^{s(\sigma)}_{i}u^{\sigma}_{\tau}=q^{s(\sigma)}_{i}(q^{s(\sigma)}_{s(\tau)}u^{\sigma}_{\tau})=\delta_{i,s(\tau)}u^{\sigma}_{\tau}.

Using observation 3.2 we conclude that (2) follows.

Claim:(2)(1)(2)\implies(1).
Let (qji)i,jVs(q^{i}_{j})_{i,j\in V^{s}} and (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} be co-representation matrices of αs\alpha_{s} and β\beta.
Let σ1,σ2E\sigma_{1},\sigma_{2}\in E and kVsk\in V^{s}. As β\beta is unitary, using observation 3.2 it follows that,

τEkuτσ1uτσ2=qks(σ1)(τEuτσ1uτσ2)qks(σ2)=δσ1,σ2qks(σ1)qks(σ2).\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*}=q^{s(\sigma_{1})}_{k}(\sum_{\tau\in E}u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*})q^{s(\sigma_{2})}_{k}=\delta_{\sigma_{1},\sigma_{2}}q^{s(\sigma_{1})}_{k}q^{s(\sigma_{2})}_{k}.

Hence we get,

τEkuτσ1uτσ2\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*} =0ifσ1σ2\displaystyle=0\quad\text{if}\quad\sigma_{1}\neq\sigma_{2}
andτEkuτσ1uτσ1\displaystyle\text{and}\quad\sum_{\tau\in E^{k}}{u^{\sigma_{1}}_{\tau}u^{\sigma_{1}}_{\tau}}^{*} =τEkuτσ2uτσ2ifs(σ1)=s(σ2).\displaystyle=\sum_{\tau\in E^{k}}{u^{\sigma_{2}}_{\tau}u^{\sigma_{2}}_{\tau}}^{*}\quad\text{if}\quad s(\sigma_{1})=s(\sigma_{2}).

Therefore (1) follows from observation 3.1. ∎

Seeing L2(E)L^{2}(E) as a right C(Vt)C(V^{t}) module we formulate a equivalent criterion for right equivariant bi-unitary co-representations on L2(E)L^{2}(E).

Theorem 3.5.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a bi-unitary co-representation of a CQG (𝒜,Δ)(\mathcal{A},\Delta). Let us consider the co-action Adβ¯Ad_{\overline{\beta}} on B(L2(E))B(L^{2}(E)) implemented by the unitary co-representation β¯\overline{\beta}. The following conditions are equivalent:

  1. (1)

    Adβ¯(T(C(Vt)))T(C(Vt))𝒜Ad_{\overline{\beta}}(T(C(V^{t})))\subseteq T(C(V^{t}))\otimes\mathcal{A}.

  2. (2)

    There exists a co-action αt:C(Vt)C(Vt)𝒜\alpha_{t}:C(V^{t})\rightarrow C(V^{t})\otimes\mathcal{A} such that,

    β(χτ)αt(χj)=β(χτ.χj)\beta(\chi_{\tau})\alpha_{t}(\chi_{j})=\beta(\chi_{\tau}.\chi_{j})

    for all jVtj\in V^{t} and τE\tau\in E.

Proof.

Using similar arguments as in the proof of theorem 3.4 for unitary co-representation β¯\overline{\beta}, theorem 3.5 follows. ∎

3.1.1. Induced permutations on VsV^{s} and VtV^{t}:

It is clear that the co-actions αs\alpha_{s} and αt\alpha_{t} satisfying (2) in theorem 3.4 and theorem 3.5 are essentially unique as they are completely determined by the bi-unitary co-representation β\beta. Given a bi-unitary co-representation β\beta satisfying (1) in theorem 3.4 and theorem 3.5, we will refer αs\alpha_{s} and αt\alpha_{t} as induced co-actions on C(Vs)C(V^{s}) and C(Vt)C(V^{t}). In terms of coefficients of co-representation matrices, we have the following:

(3.5) τEkuτσ1uτσ2=δσ1,σ2qks(σ1),\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}q^{s(\sigma_{1})}_{k},\quad andτEluτσ1uτσ2=δσ1,σ2rlt(σ1);\displaystyle\text{and}\quad\sum_{\tau\in E_{l}}u^{\sigma_{1}*}_{\tau}u^{\sigma_{2}}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}r^{t(\sigma_{1})}_{l};
(3.6) qis(σ)uτσ=δi,s(τ)uτσ\displaystyle q^{s(\sigma)}_{i}u^{\sigma}_{\tau}=\delta_{i,s(\tau)}u^{\sigma}_{\tau}\quad anduτσrjt(σ)=δt(τ),juτσ\displaystyle\text{and}\quad u^{\sigma}_{\tau}r^{t(\sigma)}_{j}=\delta_{t(\tau),j}u^{\sigma}_{\tau}

where (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E}, (qki)i,kVs(q^{i}_{k})_{i,k\in V^{s}}, (rlj)j,lVt(r^{j}_{l})_{j,l\in V^{t}} are co-representation matrices of β\beta, αs\alpha_{s} and αt\alpha_{t}.

3.2. Induced permutations on VsVtV^{s}\cap V^{t}:

It is not enough to only consider C(Vs)L2(E)C(Vt)C(V^{s})-L^{2}(E)-C(V^{t}) bimodule structure as there does exist non-isomorphic single edged graphs which have non-isomorphic quantum automorphism groups but isomorphic C(Vs)L2(E)C(Vt)C(V^{s})-L^{2}(E)-C(V^{t}) bimodule structure. See the graphs in figure 1 for example, where the left one does not have any quantum symmetry (in Banica’s sense) but the right one does have.

\bullet\bullet1122
\bullet\bullet\bullet\bullet22443311
Figure 1. Two graphs with isomorphic C(Vs)L2(E)C(Vt)C(V^{s})-L^{2}(E)-C(V^{t}) bimodule structure.

Continuing our investigations further, we found that it is important to consider right equivariance of αs\alpha_{s} and left equivariance of αt\alpha_{t} on the set of edges with at least one of their endpoints in VsVtV^{s}\cap V^{t}. We propose the following result:

Theorem 3.6.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a bi-unitary co-representation of a CQG (𝒜,Δ)(\mathcal{A},\Delta) such that the following conditions hold:

  1. (1)

    Adβ(S(C(Vs)))S(C(Vs))𝒜Ad_{\beta}(S(C(V^{s})))\subseteq S(C(V^{s}))\otimes\mathcal{A}.

  2. (2)

    Adβ¯(T(C(Vt)))T(C(Vt))𝒜Ad_{\overline{\beta}}(T(C(V^{t})))\subseteq T(C(V^{t}))\otimes\mathcal{A}.

Furthermore, we assume that the induced co-actions αs\alpha_{s} and αt\alpha_{t} (see subsection 3.1.1) both preserve C(VsVt)C(V^{s}\cap V^{t}), that is,

αs(C(VsVt))\displaystyle\alpha_{s}(C(V^{s}\cap V^{t})) C(VsVt)𝒜C(Vs)𝒜,\displaystyle\subseteq C(V^{s}\cap V^{t})\otimes\mathcal{A}\subseteq C(V^{s})\otimes\mathcal{A},
αt(C(VsVt))\displaystyle\alpha_{t}(C(V^{s}\cap V^{t})) C(VsVt)𝒜C(Vt)𝒜.\displaystyle\subseteq C(V^{s}\cap V^{t})\otimes\mathcal{A}\subseteq C(V^{t})\otimes\mathcal{A}.

Then the following conditions are equivalent:

  1. (1)

    αs|C(VsVt)=αt|C(VsVt)\alpha_{s}|_{C(V^{s}\cap V^{t})}=\alpha_{t}|_{C(V^{s}\cap V^{t})}.

  2. (2)

    For all jVsVtj\in V^{s}\cap V^{t} and τE\tau\in E,

    β(χτ)αs(χj)=β(χτ.χj).\beta(\chi_{\tau})\alpha_{s}(\chi_{j})=\beta(\chi_{\tau}.\chi_{j}).
  3. (3)

    For all iVsVti\in V^{s}\cap V^{t} and τE\tau\in E,

    αt(χi)β(χτ)=β(χi.χτ).\alpha_{t}(\chi_{i})\beta(\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau}).
Proof.

We define EVs,EVtEE_{V^{s}},E^{V^{t}}\subseteq E by

EVs={τE|t(τ)VsVt}andEVt={τE|s(τ)VsVt}.\displaystyle E_{V^{s}}=\{\tau\in E|t(\tau)\in V^{s}\cap V^{t}\}\quad\text{and}\quad E^{V^{t}}=\{\tau\in E|s(\tau)\in V^{s}\cap V^{t}\}.

We make some observations first. Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E}, (qjl)l,jVs(q^{l}_{j})_{l,j\in V^{s}} and (rik)k,iVt(r^{k}_{i})_{k,i\in V^{t}} be co-representation matrices of β\beta, αs\alpha_{s} and αt\alpha_{t} respectively. For τE\tau\in E and jVsVtj\in V^{s}\cap V^{t} we observe that,

β(χτ)αs(j)=(σEχσuτσ)(lVsVtχlqjl)=σEVsχσuτσqjt(σ).\displaystyle\beta(\chi_{\tau})\alpha_{s}(j)=(\sum_{\sigma\in E}\chi_{\sigma}\otimes u^{\sigma}_{\tau})(\sum_{l\in V^{s}\cap V^{t}}\chi_{l}\otimes q^{l}_{j})=\sum_{\sigma\in E_{V^{s}}}\chi_{\sigma}\otimes u^{\sigma}_{\tau}q^{t(\sigma)}_{j}.

Hence for all jVsVtj\in V^{s}\cap V^{t} and τE\tau\in E,

β(χτ)αs(j)=β(χτ.χj)\beta(\chi_{\tau})\alpha_{s}(j)=\beta(\chi_{\tau}.\chi_{j})

if and only if

β(L2(EVs))L2(EVs)𝒜and\displaystyle\beta(L^{2}(E_{V^{s}}))\subseteq L^{2}(E_{V^{s}})\otimes\mathcal{A}\quad\text{and}
(3.7) uτσqjt(σ)=δt(τ),juτσwheneverσEVs.\displaystyle u^{\sigma}_{\tau}q^{t(\sigma)}_{j}=\delta_{t(\tau),j}u^{\sigma}_{\tau}\quad\text{whenever}\quad\sigma\in E_{V^{s}}.

Similarly it also follows that, for all iVsVti\in V^{s}\cap V^{t} and τE\tau\in E

αt(χi)β(χτ)=β(χi.χτ)\alpha_{t}(\chi_{i})\beta(\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau})

if and only if

β(L2(EVt))L2(EVt)𝒜and\displaystyle\beta(L^{2}(E^{V^{t}}))\subseteq L^{2}(E^{V^{t}})\otimes\mathcal{A}\quad\text{and}
(3.8) ris(σ)uτσ=δi,s(τ)uτσwheneverσEVt.\displaystyle r^{s(\sigma)}_{i}u^{\sigma}_{\tau}=\delta_{i,s(\tau)}u^{\sigma}_{\tau}\quad\text{whenever}\quad\sigma\in E^{V^{t}}.

Now we proceed to prove our theorem.
Claim:(1)(2)(1)\implies(2);(1)(3)(1)\implies(3)
As αs|C(VsVt)=αt|C(VsVt)\alpha_{s}|_{C(V^{s}\cap V^{t})}=\alpha_{t}|_{C(V^{s}\cap V^{t})}, for iVsVti\in V^{s}\cap V^{t} we have,

qik\displaystyle q^{k}_{i} =rikwhenkVsVtand\displaystyle=r^{k}_{i}\quad\text{when}\quad k\in V^{s}\cap V^{t}\quad\text{and}
qik\displaystyle q^{k}_{i} =0=rilwhenkVsVt,lVtVs.\displaystyle=0=r^{l}_{i}\quad\text{when}\quad k\in V^{s}\setminus V^{t},l\in V^{t}\setminus V^{s}.

From above expressions, theorem 3.5 and theorem 3.4 it follows that, for σ,τE\sigma,\tau\in E,

uτσ\displaystyle u^{\sigma}_{\tau} =uτσrt(τ)t(σ)=0wheneverσEVsbutτEVs\displaystyle=u^{\sigma}_{\tau}r^{t(\sigma)}_{t(\tau)}=0\quad\text{whenever}\quad\sigma\notin E_{V^{s}}\quad\text{but}\quad\tau\in E_{V^{s}}
anduτσ\displaystyle\text{and}\quad u^{\sigma}_{\tau} =qs(τ)s(σ)uτσ=0wheneverσEVtbutτEVt.\displaystyle=q^{s(\sigma)}_{s(\tau)}u^{\sigma}_{\tau}=0\quad\text{whenever}\quad\sigma\notin E^{V^{t}}\quad\text{but}\quad\tau\in E^{V^{t}}.

Hence we have,

β(L2(EVs))L2(EVs)𝒜andβ(L2(EVt))L2(EVt)𝒜.\displaystyle\beta(L^{2}(E_{V^{s}}))\subseteq L^{2}(E_{V^{s}})\otimes\mathcal{A}\quad\text{and}\quad\beta(L^{2}(E^{V^{t}}))\subseteq L^{2}(E^{V^{t}})\otimes\mathcal{A}.

We further observe that for i,jVsVt,σ1EVsi,j\in V^{s}\cap V^{t},\sigma_{1}\in E_{V^{s}} and σ2EVt\sigma_{2}\in E^{V^{t}},

uτσ1qjt(σ1)=uτσ1rjt(σ1)=δj,t(τ)uτσ1andris(σ2)uτσ2=qis(σ2)uτσ2=δi,s(τ)uτσ2.\displaystyle u^{\sigma_{1}}_{\tau}q^{t(\sigma_{1})}_{j}=u^{\sigma_{1}}_{\tau}r^{t(\sigma_{1})}_{j}=\delta_{j,t(\tau)}u^{\sigma_{1}}_{\tau}\quad\text{and}\quad r^{s(\sigma_{2})}_{i}u^{\sigma_{2}}_{\tau}=q^{s(\sigma_{2})}_{i}u^{\sigma_{2}}_{\tau}=\delta_{i,s(\tau)}u^{\sigma_{2}}_{\tau}.

As our choice of i,j,σ1,σ2i,j,\sigma_{1},\sigma_{2} was arbitrary, from observations 3.7 and 3.8, (2) and (3) follow.
Claim:(2)(1)(2)\implies(1).
Let i,kVsVti,k\in V^{s}\cap V^{t} and σE\sigma\in E be such that t(σ)=kt(\sigma)=k. Using equations 3.5 and 3.7 we observe that,

(3.9) rik=τEiuτσuτσ=τEiuτσuτσqik=rikqikr^{k}_{i}=\sum_{\tau\in E_{i}}{u^{\sigma}_{\tau}}^{*}u^{\sigma}_{\tau}=\sum_{\tau\in E_{i}}{u^{\sigma}_{\tau}}^{*}u^{\sigma}_{\tau}q^{k}_{i}=r^{k}_{i}q^{k}_{i}

Hence it follows that,

(3.10) rikqikfor alli,kVsVt.r^{k}_{i}\leq q^{k}_{i}\quad\text{for all}\quad i,k\in V^{s}\cap V^{t}.

As coefficients of both matrices (qik)k,iVsVt(q^{k}_{i})_{k,i\in V^{s}\cap V^{t}} and (rik)k,iVsVt(r^{k}_{i})_{k,i\in V^{s}\cap V^{t}} satisfy quantum permutation relations it follows that, for iVsVti\in V^{s}\cap V^{t},

1=\displaystyle 1= kVsVtrikkVsVtqik=1\displaystyle\sum_{k\in V^{s}\cap V^{t}}r^{k}_{i}\leq\sum_{k\in V^{s}\cap V^{t}}q^{k}_{i}=1

As {rik|kVsVt}\{r^{k}_{i}\>|\>k\in V^{s}\cap V^{t}\} and {qik|kVsVt}\{q^{k}_{i}\>|\>k\in V^{s}\cap V^{t}\} both are sets of mutually orthogonal projections, we have

qik=rikfor alli,kVsVt.q^{k}_{i}=r^{k}_{i}\quad\text{for all}\quad i,k\in V^{s}\cap V^{t}.

Therefore (1) follows.
Claim:(3)(1)(3)\implies(1)
Let i,kVsVti,k\in V^{s}\cap V^{t} and σE\sigma\in E be such that s(σ)=ks(\sigma)=k. Using equations 3.5 and 3.8 we observe that,

qik=τEiuτσuτσ=rik(τEiuτσuτσ)=rikqik.q^{k}_{i}=\sum_{\tau\in E^{i}}u^{\sigma}_{\tau}u^{\sigma*}_{\tau}=r^{k}_{i}(\sum_{\tau\in E^{i}}u^{\sigma}_{\tau}u^{\sigma*}_{\tau})=r^{k}_{i}q^{k}_{i}.

hence it follows that,

qikrikfor alli,kVsVt.q^{k}_{i}\leq r^{k}_{i}\quad\text{for all}\quad i,k\in V^{s}\cap V^{t}.

Using similar arguments used in the previous case, (1) follows. ∎

3.3. Co-actions on a multigraph

In light of above discussions, we introduce the notion of quantum symmetry preserving co-action on a multigraph formulated in terms of bi-unitary maps.

Definition 3.7.

A compact quantum group (𝒜,Δ)(\mathcal{A},\Delta) is said to co-act on a multigraph (V,E)(V,E) preserving its quantum symmetry in Banica’s sense if there exists a bi-unitary co-representation β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} such that the following conditions hold:

  1. (1)

    Adβ(S(C(Vs)))S(C(Vs))𝒜Ad_{\beta}(S(C(V^{s})))\subseteq S(C(V^{s}))\otimes\mathcal{A}.

  2. (2)

    Adβ¯(T(C(Vt)))T(C(Vt))𝒜Ad_{\overline{\beta}}(T(C(V^{t})))\subseteq T(C(V^{t}))\otimes\mathcal{A}.

  3. (3)

    The induced co-actions αs\alpha_{s} and αt\alpha_{t} (see remark 3.1.1) preserve and agree on C(VsVt)C(V^{s}\cap V^{t}), that is,

    αs|C(VsVt)=αt|C(VsVt).\alpha_{s}|_{C(V^{s}\cap V^{t})}=\alpha_{t}|_{C(V^{s}\cap V^{t})}.
  4. (4)

    β\beta fixes the element ξ0:=τEχτL2(E)\xi_{0}:=\sum_{\tau\in E}\chi_{\tau}\in L^{2}(E), that is,

    β(ξ0)=ξ01𝒜.\beta(\xi_{0})=\xi_{0}\otimes 1_{\mathcal{A}}.

Moreover, if β\beta is a co-action on the algebra C(E)C(E), that is, a quantum permutation of the edge set EE, then we say that (𝒜,Δ)(\mathcal{A},\Delta) co-acts on (V,E)(V,E) preserving its quantum symmetry in Bichon’s sense.

Remark 3.8.

The reason we have used names of Banica and Bichon in definition 3.7 is because in the context of single edged graphs, above definition is an equivalent description of definition 2.21 (see remark 3.12 and proposition 3.13)

From condition (3) of definition 3.7 it follows that the co-actions αs\alpha_{s} and αt\alpha_{t} induce a co-action α:C(V)C(V)𝒜\alpha:C(V)\rightarrow C(V)\otimes\mathcal{A} by

α(χk)\displaystyle\alpha(\chi_{k}) =αs(χk)ifkVs,\displaystyle=\alpha_{s}(\chi_{k})\quad\text{if}\quad k\in V^{s},
=αt(χk)ifkVt.\displaystyle=\alpha_{t}(\chi_{k})\quad\text{if}\quad k\in V^{t}.

α\alpha is the required “permutation” of vertices derived from “permutation” of edges EE and will be referred as induced permutation on the set of vertices of (V,E)(V,E). In that case, as our next theorem states, we can now treat L2(E)L^{2}(E) as C(V)C(V)C(V)-C(V) bimodule instead of C(Vs)C(Vt)C(V^{s})-C(V^{t}) bimodule.

Theorem 3.9.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a bi-unitary co-representation and α:C(V)C(V)𝒜\alpha:C(V)\rightarrow C(V)\otimes\mathcal{A} be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta). The following are equivalent:

  1. (1)

    α(χi).β(χσ)=β(χi.χσ)\alpha(\chi_{i}).\beta(\chi_{\sigma})=\beta(\chi_{i}.\chi_{\sigma}) and β(χσ).α(χj)=β(χσ.χj)\beta(\chi_{\sigma}).\alpha(\chi_{j})=\beta(\chi_{\sigma}.\chi_{j}) for all iVs,jVt,σEi\in V^{s},j\in V^{t},\sigma\in E.

  2. (2)

    α(χi).β(χσ)=β(χi.χσ)\alpha(\chi_{i}).\beta(\chi_{\sigma})=\beta(\chi_{i}.\chi_{\sigma}) and β(χσ).α(χi)=β(χσ.χi)\beta(\chi_{\sigma}).\alpha(\chi_{i})=\beta(\chi_{\sigma}.\chi_{i}) for all iV,σEi\in V,\sigma\in E.

Proof.

Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} and (qji)i,jV(q^{i}_{j})_{i,j\in V} be the co-representation matrices of α\alpha and β\beta.

(1)(2)(1)\implies(2).
Let us consider σE,iVs\sigma\in E,i\in V^{s} and jVtj\in V^{t}. As β\beta is bi-unitary, we observe that,

qis(σ)\displaystyle q^{s(\sigma)}_{i} =qis(σ)(τEuτσuτσ)qis(σ)=τEiuτσuτσ;\displaystyle=q^{s(\sigma)}_{i}(\sum_{\tau\in E}u^{\sigma}_{\tau}u^{\sigma*}_{\tau})q^{s(\sigma)}_{i}=\sum_{\tau\in E^{i}}u^{\sigma}_{\tau}u^{\sigma*}_{\tau};
qjt(σ)\displaystyle q^{t(\sigma)}_{j} =qjt(σ)(τEuτσuτσ)qjt(σ)=τEjuτσuτσ.\displaystyle=q^{t(\sigma)}_{j}(\sum_{\tau\in E}u^{\sigma*}_{\tau}u^{\sigma}_{\tau})q^{t(\sigma)}_{j}=\sum_{\tau\in E_{j}}u^{\sigma*}_{\tau}u^{\sigma}_{\tau}.

We therefore have,

iVsqis(σ)=τEuτσuτσ=1andjVtqjt(σ)=τEuτσuτσ=1.\sum_{i\in V^{s}}q^{s(\sigma)}_{i}=\sum_{\tau\in E}u^{\sigma}_{\tau}u^{\sigma*}_{\tau}=1\quad\text{and}\quad\sum_{j\in V^{t}}q^{t(\sigma)}_{j}=\sum_{\tau\in E}u^{\sigma*}_{\tau}u^{\sigma}_{\tau}=1.

Hence for iVsi\notin V^{s} and jVtj\notin V^{t},

(3.11) qis(σ)=0andqjt(σ)=0.q^{s(\sigma)}_{i}=0\quad\text{and}\quad q^{t(\sigma)}_{j}=0.

From our assumption and the observation made above, it follows that, for all iVi\in V and σ,τE\sigma,\tau\in E,

qis(σ)uτσ\displaystyle q^{s(\sigma)}_{i}u^{\sigma}_{\tau} =δi,s(τ)uτσwheniVs;\displaystyle=\delta_{i,s(\tau)}u^{\sigma}_{\tau}\quad\text{when}\quad i\in V^{s};
=0\displaystyle=0
=δi,s(τ)uτσwheniVs.\displaystyle=\delta_{i,s(\tau)}u^{\sigma}_{\tau}\quad\text{when}\quad i\notin V^{s}.

Similar identities hold for the target case. Therefore (2) is true.
The converse (2)(1)(2)\implies(1) is obvious. ∎

From theorems 3.9, 3.4 and 3.5, we have the following characterisation of Banica’s notion of quantum symmetry (see definition 3.7).

Corollary 3.10.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a bi-unitary co-representation of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on L2(E)L^{2}(E). Then β\beta preserves quantum symmetry of (V,E)(V,E) in Banica’s sense if and only if the following conditions hold:

  1. (1)

    β(ξ0)=ξ01\beta(\xi_{0})=\xi_{0}\otimes 1 where ξ0=τVχτ\xi_{0}=\sum_{\tau\in V}\chi_{\tau}.

  2. (2)

    There exists an α:C(V)C(V)𝒜\alpha:C(V)\rightarrow C(V)\otimes\mathcal{A} such that for all iVi\in V and τE\tau\in E,

    α(χi).β(χτ)=β(χi.χτ)andβ(χτ).α(χi)=β(χτ.χi)\alpha(\chi_{i}).\beta(\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau})\quad\text{and}\quad\beta(\chi_{\tau}).\alpha(\chi_{i})=\beta(\chi_{\tau}.\chi_{i})

3.4. Some useful identities:

The next two results show that our notions of quantum symmetry in multigraphs is consistent with the picture of quantum symmetry in single edged graphs.

Proposition 3.11.

Let β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in Banica’s sense. Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} and (qji)i,jV(q^{i}_{j})_{i,j\in V} be the co-representation matrices of β\beta and induced co-action α\alpha on C(V)C(V). For i,j,k,lVi,j,k,l\in V with EjiϕE^{i}_{j}\neq\phi and ElkϕE^{k}_{l}\neq\phi, we have the following:

  1. (1)

    For any σEi,\sigma\in E^{i}, we have τEkuτσ=qki\sum_{\tau\in E^{k}}u^{\sigma}_{\tau}=q^{i}_{k}.

  2. (2)

    For any σEj\sigma\in E_{j}, we have τEluτσ=qlj\sum_{\tau\in E_{l}}u^{\sigma}_{\tau}=q^{j}_{l}.

  3. (3)

    For any σEji\sigma\in E^{i}_{j}, we have τElkuτσ=qkiqlj\sum_{\tau\in E^{k}_{l}}u^{\sigma}_{\tau}=q^{i}_{k}q^{j}_{l}.

As β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} is bi-unitary co-representation, by using antipode on the underlying Hopf* algebra of matrix elements of (𝒜,Δ)(\mathcal{A},\Delta), it follows that the above identities are true if we consider sum in upper indices instead of lower indices.

Proof.

From (4) of definition 3.7 we have,

σEuτσ=1=σEuστfor allτE.\sum_{\sigma\in E}u^{\sigma}_{\tau}=1=\sum_{\sigma\in E}u^{\tau}_{\sigma}\quad\text{for all}\quad\tau\in E.

For σEi\sigma\in E^{i}, using equation 3.6 we observe that,

qki=qki(τEuτσ)=τEkuτσ.q^{i}_{k}=q^{i}_{k}(\sum_{\tau\in E}u^{\sigma}_{\tau})=\sum_{\tau\in E^{k}}u^{\sigma}_{\tau}.

For σEj\sigma\in E_{j}, using equation 3.6 we observe that,

qlj=(τEuτσ)qlj=τEluτσ.q^{j}_{l}=(\sum_{\tau\in E}u^{\sigma}_{\tau})q^{j}_{l}=\sum_{\tau\in E_{l}}u^{\sigma}_{\tau}.

For σEji\sigma\in E^{i}_{j}, using equation 3.6 we note that,

qkiqlj=qki(τEuτσ)qlj=τElkuτσ.q^{i}_{k}q^{j}_{l}=q^{i}_{k}(\sum_{\tau\in E}u^{\sigma}_{\tau})q^{j}_{l}\\ =\sum_{\tau\in E^{k}_{l}}u^{\sigma}_{\tau}.

Remark 3.12.

If (V,E)(V,E) is a single edged graph, using (3) of proposition 3.11 it follows that β=α(2)\beta=\alpha^{(2)} where α\alpha is the induced permutation on the vertex set.

Moreover, if β\beta is a quantum permutation on the edge set EE that is, a co-action on (V,E)(V,E) preserving its quantum symmetry in Bichon’s sense, it follows that qkiq^{i}_{k} and qljq^{j}_{l} commute with each other whenever both EjiE^{i}_{j} and ElkE^{k}_{l} are nonempty.

Proposition 3.13.

Let β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) by preserving its quantum symmetry in Banica’s sense. The following identity holds:

QW=WQ.QW=WQ.

where Q=(qji)i,jVQ=(q^{i}_{j})_{i,j\in V} is the co-representation matrix of the induced co-action on C(V)C(V) and WW is the adjacency matrix of (V,E)(V,E).

Proof.

Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} be the co-representation matrix of β\beta.

Let us fix i,jVi,j\in V. If iVsi\notin V^{s} or jVtj\notin V^{t}, using equation 3.11 it follows that,

(QW)ji=0=(WQ)ji.(QW)^{i}_{j}=0=(WQ)^{i}_{j}.

Hence let us assume iVsi\in V^{s} and jVtj\in V^{t}. For each kVk\in V with Wjk0W^{k}_{j}\neq 0 we fix an element τk\tau_{k} in EjkE^{k}_{j}. In a similar way, for each kVk\in V with Wki0W^{i}_{k}\neq 0 we fix an element σk\sigma_{k} in EkiE^{i}_{k}. We observe that,

(QW)ji\displaystyle(QW)^{i}_{j} =kVqkiWjk=kVWjk0Wjk(σEiuτkσ)=kVWjk0(σEiτEjkuτσ)=σEiτEjuτσ;\displaystyle=\sum_{k\in V}q^{i}_{k}W^{k}_{j}=\sum_{\begin{subarray}{c}k\in V\\ W^{k}_{j}\neq 0\end{subarray}}W^{k}_{j}(\sum_{\sigma\in E^{i}}u^{\sigma}_{\tau_{k}})=\sum_{\begin{subarray}{c}k\in V\\ W^{k}_{j}\neq 0\end{subarray}}(\sum_{\begin{subarray}{c}\sigma\in E^{i}\\ \tau\in E^{k}_{j}\end{subarray}}u^{\sigma}_{\tau})=\sum_{\begin{subarray}{c}\sigma\in E^{i}\\ \tau\in E_{j}\end{subarray}}u^{\sigma}_{\tau};
(WQ)ji\displaystyle(WQ)^{i}_{j} =kVWkiqjk=kVWki0Wki(τEjuτσk)=kVWki0(σEkiτEjuτσ)=σEiτEjuτσ.\displaystyle=\sum_{k\in V}W^{i}_{k}q^{k}_{j}=\sum_{\begin{subarray}{c}k\in V\\ W^{i}_{k}\neq 0\end{subarray}}W^{i}_{k}(\sum_{\tau\in E_{j}}u^{\sigma_{k}}_{\tau})=\sum_{\begin{subarray}{c}k\in V\\ W^{i}_{k}\neq 0\end{subarray}}(\sum_{\begin{subarray}{c}\sigma\in E^{i}_{k}\\ \tau\in E_{j}\end{subarray}}u^{\sigma}_{\tau})=\sum_{\begin{subarray}{c}\sigma\in E^{i}\\ \tau\in E_{j}\end{subarray}}u^{\sigma}_{\tau}.

Hence our claim is proved. ∎

3.5. The categories 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)}, and 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)}:

Definition 3.14.

Let β\beta and β\beta^{\prime} be co-actions of two compact quantum groups (𝒜,Δ)(\mathcal{A},\Delta) and (𝒜,Δ)(\mathcal{A}^{\prime},\Delta^{\prime}) on (V,E)(V,E) which preserve its quantum symmetry in Banica’s sense. Then Φ:(𝒜,Δ)(𝒜,Δ)\Phi:(\mathcal{A},\Delta)\rightarrow(\mathcal{A}^{\prime},\Delta^{\prime}), a quantum group homomorphism, is said to intertwine β\beta and β\beta^{\prime} if the following diagram commutes:

L2(E){L^{2}(E)}L2(E)𝒜{L^{2}(E)\otimes\mathcal{A}^{\prime}}L2(E)𝒜{L^{2}(E)\otimes\mathcal{A}}β\scriptstyle{\beta^{\prime}}β\scriptstyle{\beta}idΦ\scriptstyle{id\otimes\Phi}

Let us consider the category 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)} whose objects are triplets (𝒜,Δ𝒜,β𝒜)(\mathcal{A},\Delta_{\mathcal{A}},\beta_{\mathcal{A}}) where β𝒜\beta_{\mathcal{A}} is a co-action of a CQG (𝒜,Δ𝒜)(\mathcal{A},\Delta_{\mathcal{A}}) on (V,E)(V,E) preserving its quantum symmetry in Banica’s sense. Morphisms in this category are quantum group homomorphisms intertwining two such co-actions.

Similarly, we consider the category 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} whose objects are compact quantum groups co-acting on (V,E)(V,E) preserving its quantum symmetry in Bichon’s sense and morphisms are quantum group homomorphisms intertwining two similar type co-actions.

Using standard techniques from the theory of compact quantum groups one can show that both these categories admit universal objects (for details, see [asfaq2023thesis]) namely Q(V,E)BanQ^{Ban}_{(V,E)} and Q(V,E)BicQ^{Bic}_{(V,E)}. Algebraic descriptions of these two CQGs are given below:

Definition 3.15.

The universal compact quantum group associated with a multigraph (V,E)(V,E), Q(V,E)BanQ^{Ban}_{(V,E)} is the universal C* algebra generated by the elements of the matrix (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} satisfying the following relations:

  1. (1)

    The matrices U:=(uτσ)σ,τEU:=(u^{\sigma}_{\tau})_{\sigma,\tau\in E} and U¯:=(uτσ)σ,τE\overline{U}:=(u^{\sigma*}_{\tau})_{\sigma,\tau\in E} are both unitary, that is,

    τEuτσ1uτσ2=δσ1,σ21\displaystyle\sum_{\tau\in E}u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}1\quad andτEuσ1τuσ2τ=δσ1,σ21;\displaystyle\text{and}\quad\sum_{\tau\in E}u^{\tau*}_{\sigma_{1}}u^{\tau}_{\sigma_{2}}=\delta_{\sigma_{1},\sigma_{2}}1;
    τEuτσ1uτσ2=δσ1,σ21\displaystyle\quad\sum_{\tau\in E}u^{\sigma_{1}*}_{\tau}u^{\sigma_{2}}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}1\quad andτEuσ1τuσ2τ=δσ1,σ21\displaystyle\text{and}\quad\sum_{\tau\in E}u^{\tau}_{\sigma_{1}}u^{\tau*}_{\sigma_{2}}=\delta_{\sigma_{1},\sigma_{2}}1

    for all σ1,σ2E\sigma_{1},\sigma_{2}\in E.

  2. (2)

    τEuτσ=1\sum_{\tau\in E}u^{\sigma}_{\tau}=1 for all σE\sigma\in E.

  3. (3)

    Let kVsk\in V^{s}. Then for all σ1,σ2E\sigma_{1},\sigma_{2}\in E,

    τEkuτσ1uτσ2\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau} =0ifσ1σ2;\displaystyle=0\quad\text{if}\quad\sigma_{1}\neq\sigma_{2};
    τEkuτσ1uτσ1\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}u^{\sigma_{1}*}_{\tau} =τEkuτσ2uτσ2ifs(σ1)=s(σ2).\displaystyle=\sum_{\tau\in E^{k}}u^{\sigma_{2}}_{\tau}u^{\sigma_{2}*}_{\tau}\quad\text{if}\quad s(\sigma_{1})=s(\sigma_{2}).
  4. (4)

    Let lVtl\in V^{t}. Then for all σ1,σ2E\sigma_{1},\sigma_{2}\in E,

    τEluτσ1uτσ2\displaystyle\sum_{\tau\in E_{l}}u^{\sigma_{1}*}_{\tau}u^{\sigma_{2}}_{\tau} =0ifσ1σ2;\displaystyle=0\quad\text{if}\quad\sigma_{1}\neq\sigma_{2};
    τEluτσ1uτσ1\displaystyle\sum_{\tau\in E_{l}}u^{\sigma_{1}*}_{\tau}u^{\sigma_{1}}_{\tau} =τEluτσ2uτσ2ift(σ1)=t(σ2).\displaystyle=\sum_{\tau\in E_{l}}u^{\sigma_{2}*}_{\tau}u^{\sigma_{2}}_{\tau}\quad\text{if}\quad t(\sigma_{1})=t(\sigma_{2}).
  5. (5)

    Let iVsVt,jVtVsi\in V^{s}\setminus V^{t},j\in V^{t}\setminus V^{s} and kVsVtk\in V^{s}\cap V^{t}. Then for all σ1Ei,σ2Ej,τ1Ek\sigma_{1}\in E^{i},\sigma_{2}\in E_{j},\tau_{1}\in E^{k} and τ2Ek\tau_{2}\in E_{k},

    uτ1σ1=0anduτ2σ2=0.u^{\sigma_{1}}_{\tau_{1}}=0\quad\text{and}\quad u^{\sigma_{2}}_{\tau_{2}}=0.
  6. (6)

    Let i,kVsVti,k\in V^{s}\cap V^{t}. Then for all σ1Ei\sigma_{1}\in E^{i} and σ2Ei\sigma_{2}\in E_{i},

    τEkuτσ1uτσ1=τEkuτσ2uτσ2.\displaystyle\sum_{\tau\in E^{k}}u^{\sigma_{1}}_{\tau}u^{\sigma_{1}*}_{\tau}=\sum_{\tau\in E_{k}}u^{\sigma_{2}*}_{\tau}u^{\sigma_{2}}_{\tau}.

The quantum automorphism group of (V,E)(V,E) in Bichon’s sense Q(V,E)BicQ^{Bic}_{(V,E)} is given by,

Q(V,E)Bic=Q(V,E)Ban/<uτσuτσ,uτσuτσ2>Q^{Bic}_{(V,E)}={\raisebox{1.99997pt}{$Q^{Ban}_{(V,E)}$}\left/\raisebox{-1.99997pt}{$<u^{\sigma}_{\tau}-u^{\sigma*}_{\tau},u^{\sigma}_{\tau}-u^{\sigma 2}_{\tau}>$}\right.}

where <uτσuτσ,uτσuτσ2><u^{\sigma}_{\tau}-u^{\sigma*}_{\tau},u^{\sigma}_{\tau}-u^{\sigma 2}_{\tau}> is a two sided C* ideal in Q(V,E)BanQ^{Ban}_{(V,E)} generated by the set of elements {uτσuτσ,uτσuτσ2|σ,τE}\{u^{\sigma}_{\tau}-u^{\sigma*}_{\tau},u^{\sigma}_{\tau}-u^{\sigma 2}_{\tau}|\sigma,\tau\in E\}.

Remark 3.16.

Abelianisation of the CQG Q(V,E)BicQ^{Bic}_{(V,E)} essentially gives us C(G(V,E)aut)C(G^{aut}_{(V,E)}) where G(V,E)autG^{aut}_{(V,E)} is the group of classical automorphisms of (V,E)(V,E) (see definition 2.5). However, abelianisation of Q(V,E)BanQ^{Ban}_{(V,E)} produces a group bigger than G(V,E)autG^{aut}_{(V,E)}, that is, the algebra C(G(V,E)aut)C(G^{aut}_{(V,E)}) is a proper quotient of abelianised Q(V,E)BanQ^{Ban}_{(V,E)} for any genuine multigraph (V,E)(V,E) (see example 1 in section 4).

3.6. Restricted orthogonality:

In order to capture only automorphisms in quantum sense and provide a true generalisation of Banica’s notion of quantum symmetry in the context of multigraphs, we consider a subcategory 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)} by imposing a further condition namely restricted orthogonality.

Definition 3.17.

Let β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in Banica’s sense. Then β\beta is said to preserve quantum symmetry of (V,E)(V,E) in our sense if the following holds:

(Adβ)klij(Dij)\displaystyle(Ad_{\beta})^{ij}_{kl}(D_{ij}) Dkl𝒜\displaystyle\subseteq D_{kl}\otimes\mathcal{A}
and(Adβ¯)klij(Dij)\displaystyle\text{and}\quad(Ad_{\overline{\beta}})^{ij}_{kl}(D_{ij}) Dkl𝒜.\displaystyle\subseteq D_{kl}\otimes\mathcal{A}.

for all i,j,k,lVi,j,k,l\in V with EjiϕE^{i}_{j}\neq\phi and ElkϕE^{k}_{l}\neq\phi. The maps (Adβ)klij:MijMkl𝒜(Ad_{\beta})^{ij}_{kl}:M_{ij}\rightarrow M_{kl}\otimes\mathcal{A} (similarly also (Adβ¯)klij(Ad_{\overline{\beta}})^{ij}_{kl}) are defined by,

(Adβ)klij(T)\displaystyle(Ad_{\beta})^{ij}_{kl}(T) =(pkl1)Adβ(T)(pkl1),TMij.\displaystyle=(p_{kl}\otimes 1)Ad_{\beta}(T)(p_{kl}\otimes 1),\quad T\in M_{ij}.

We have the following algebraic characterisation of restricted orthogonality.

Proposition 3.18.

Let β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) which preserves its quantum symmetry in Banica’s sense. Let i,j,k,lVi,j,k,l\in V be such that EjiϕE^{i}_{j}\neq\phi and ElkϕE^{k}_{l}\neq\phi. Then the following are equivalent:

  1. (1)

    (Adβ)ijkl(Dkl)Dij𝒜(Ad_{\beta})^{kl}_{ij}(D_{kl})\subseteq D_{ij}\otimes\mathcal{A} and (Adβ¯)ijkl(Dkl)Dij𝒜(Ad_{\overline{\beta}})^{kl}_{ij}(D_{kl})\subseteq D_{ij}\otimes\mathcal{A}.

  2. (2)

    For all σ1σ2Eji\sigma_{1}\neq\sigma_{2}\in E^{i}_{j} and τElk\tau\in E^{k}_{l},

    uτσ1uτσ2=0anduτσ1uτσ2=0u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*}=0\quad\text{and}\quad{u^{\sigma_{1}}_{\tau}}^{*}u^{\sigma_{2}}_{\tau}=0

    where (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} is the co-representation matrix of β\beta.

Proof.

We observe that, for any TMijT\in M_{ij}, TDijT\in D_{ij} if and only if {χσ|σEji}\{\chi_{\sigma}|\sigma\in E^{i}_{j}\} is a set of eigenvectors for TT.

Let us fix τElk\tau\in E^{k}_{l} and σ2Eji\sigma_{2}\in E^{i}_{j}. We observe the following identities:

(Adβ)ijkl(pτ)(χσ21)\displaystyle(Ad_{\beta})^{kl}_{ij}(p_{\tau})(\chi_{\sigma_{2}}\otimes 1) =σ1Ejiχσ1uτσ1uτσ2;\displaystyle=\sum_{\sigma_{1}\in E^{i}_{j}}\chi_{\sigma_{1}}\otimes u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}}_{\tau}}^{*};
(Adβ¯)ijkl(pτ)(χσ21)\displaystyle(Ad_{\overline{\beta}})^{kl}_{ij}(p_{\tau})(\chi_{\sigma_{2}}\otimes 1) =σ1Ejiχσ1uτσ1uτσ2.\displaystyle=\sum_{\sigma_{1}\in E^{i}_{j}}\chi_{\sigma_{1}}\otimes{u^{\sigma_{1}}_{\tau}}^{*}u^{\sigma_{2}}_{\tau}.

From the observation mentioned in the beginning of the proof, the equivalence follows. ∎

In the next proposition we see that our condition of “restricted orthogonality” can not be relaxed any further.

Proposition 3.19.

Let β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving quantum symmetry of (V,E)(V,E) in Banica’s sense. If β\beta satisfies “complete orthogonality” that is, either

Adβ(D)D𝒜orAdβ¯(D)D𝒜,Ad_{\beta}(D)\subseteq D\otimes\mathcal{A}\quad\text{or}\quad Ad_{\overline{\beta}}(D)\subseteq D\otimes\mathcal{A},

then β\beta is a quantum permutation on the edge set EE, that is, β\beta preserves quantum symmetry of (V,E)(V,E) in Bichon’s sense.

Proof.

We observe that, For TB(L2(E))T\in B(L^{2}(E)), TDT\in D if and only if {χτ|τE}\{\chi_{\tau}|\tau\in E\} is the complete set of eigenvectors of TT.
Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} be the co-representation matrix of β\beta. For τ,σ2E\tau,\sigma_{2}\in E, we note that,

Adβ(pτ)(χσ21)=β(pτ1)(τEχτuτσ2)=σ1Eχσ1uτσ1uτσ2.\displaystyle Ad_{\beta}(p_{\tau})(\chi_{\sigma_{2}}\otimes 1)=\beta(p_{\tau}\otimes 1)(\sum_{\tau^{\prime}\in E}\chi_{\tau^{\prime}}\otimes u^{\sigma_{2}*}_{\tau^{\prime}})=\sum_{\sigma_{1}\in E}\chi_{\sigma_{1}}\otimes u^{\sigma_{1}}_{\tau}{u^{\sigma_{2}*}_{\tau}}.

Using observation mentioned in the beginning we conclude that,

(3.12) Adβ(D)D𝒜uτσ1uτσ2=0whenσ1σ2.\displaystyle Ad_{\beta}(D)\subseteq D\otimes\mathcal{A}\iff u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau}=0\quad\text{when}\quad\sigma_{1}\neq\sigma_{2}.

Using observation 3.12 and the fact that each row and each column of the matrix (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} adds up to 11, it follows that,

uτσ1=uτσ1(σ2Euτσ2)=uτσ1uτσ1whereσ1,τE.\displaystyle u^{\sigma_{1}}_{\tau}=u^{\sigma_{1}}_{\tau}(\sum_{\sigma_{2}\in E}u^{\sigma_{2}*}_{\tau})=u^{\sigma_{1}}_{\tau}u^{\sigma_{1}*}_{\tau}\quad\text{where}\quad\sigma_{1},\tau\in E.

Using spectral calculus for normal operators, it follows that uτσ1u^{\sigma_{1}}_{\tau} is a projection making (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} a quantum permutation matrix. Therefore β\beta preserves quantum symmetry of (V,E)(V,E) in Bichon’s sense. The case when we consider β¯\overline{\beta} instead of β\beta can be dealt using similar arguments. ∎

The category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)}:

The category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} is a full subcategory of 𝒞(V,E)Ban\mathcal{C}^{Ban}_{(V,E)} whose objects are CQGs co-acting on (V,E)(V,E) preserving its quantum symmetry in our sense, that is, they satisfy “restricted orthogonality” and morphisms are quantum group homomorphisms intertwining similar type co-actions. As this new restriction does not behave well with the co-product of the ambient quantum group Q(V,E)BanQ^{Ban}_{(V,E)}, it is still not clear whether for an arbitrary multigraph, the category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} admits a universal object. However, under certain restrictions on the multigraph (V,E)(V,E), the mentioned category does admit a universal object which is a corollary to the theorem 3.20 in the next section. Moreover, theorem 3.20 also asserts that for any multigraph (V,E)(V,E), the universal commutative CQG in the category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} is nothing but C(G(V,E)aut)C(G^{aut}_{(V,E)}) where G(V,E)autG^{aut}_{(V,E)} is the group of classical automorphisms of (V,E)(V,E).

3.7. Consequences of restricted orthogonality:

Theorem 3.20.

Let β\beta be a co-action of the CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in our sense and α\alpha be the induced permutation on the set of vertices VV. The map β\beta is quantum permutation of the the edge set EE if and only if α(2)\alpha^{(2)} is a quantum permutation of the set E¯\overline{E} where (V,E¯,w)(V,\overline{E},w) is the underlying weighted single edged graph of (V,E)(V,E) (see definition 2.4).

Proof.

Throughout the proof, (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} will be the co-representation matrix of β\beta and (qji)i,jV(q^{i}_{j})_{i,j\in V} will be the co-representation matrix of the induced co-action α\alpha on C(V)C(V). From theorem 2.20 and proposition 3.13, it further follows that

α(2)(L2(E¯))L2(E¯)𝒜.\alpha^{(2)}(L^{2}(\overline{E}))\subseteq L^{2}(\overline{E})\otimes\mathcal{A}.

The co-representation matrix of the restricted action α(2)|L2(E¯)\alpha^{(2)}|_{L^{2}(\overline{E})} is given by

(qkiqlj)(i,j),(k,l)E¯.(q^{i}_{k}q^{j}_{l})_{(i,j),(k,l)\in\overline{E}}.

If α\alpha is a quantum permutation on the edge set EE, using (3) of proposition 3.11, it follows that the matrix (qkiqlj)(i,j),(k,l)E¯(q^{i}_{k}q^{j}_{l})_{(i,j),(k,l)\in\overline{E}} is a quantum permutation matrix making α(2)\alpha^{(2)} a quantum permutation of E¯\overline{E}.

Conversely, let us assume α(2)\alpha^{(2)} is a co-action on the algebra C(E¯)C(\overline{E}). For τEji\tau\in E^{i}_{j} and τElk\tau^{\prime}\in E^{k}_{l}, using proposition 3.11 and proposition 3.18 we observe the following relations:

σEjiuτσuτσ\displaystyle\sum_{\sigma\in E^{i}_{j}}{u^{\sigma}_{\tau^{\prime}}}^{*}u^{\sigma}_{\tau^{\prime}} =(σEjiuτσ)(σEjiuτσ)=qljqkiqlj=qljqki;\displaystyle=(\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}})^{*}(\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}})=q^{j}_{l}q^{i}_{k}q^{j}_{l}=q^{j}_{l}q^{i}_{k};
σEjiuτσuτσ\displaystyle\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}}{u^{\sigma}_{\tau^{\prime}}}^{*} =(σEjiuτσ)(σEjiuτσ)=qkiqljqki=qljqki.\displaystyle=(\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}})(\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}})^{*}=q^{i}_{k}q^{j}_{l}q^{i}_{k}=q^{j}_{l}q^{i}_{k}.

Using above identities it follows that,

uττuττuττ\displaystyle u^{\tau}_{\tau^{\prime}}{u^{\tau}_{\tau^{\prime}}}^{*}u^{\tau}_{\tau^{\prime}} =uττ(σEjiuτσuτσ)=uττ(qljqki)=uττ(σEjiuτσ)=uττuττ,\displaystyle=u^{\tau}_{\tau^{\prime}}(\sum_{\sigma\in E^{i}_{j}}{u^{\sigma}_{\tau^{\prime}}}^{*}u^{\sigma}_{\tau^{\prime}})=u^{\tau}_{\tau^{\prime}}(q^{j}_{l}q^{i}_{k})=u^{\tau}_{\tau^{\prime}}(\sum_{\sigma\in E^{i}_{j}}{u^{\sigma}_{\tau^{\prime}}}^{*})=u^{\tau}_{\tau^{\prime}}{u^{\tau}_{\tau^{\prime}}}^{*},
uττuττuττ\displaystyle\quad u^{\tau}_{\tau^{\prime}}{u^{\tau}_{\tau^{\prime}}}^{*}u^{\tau}_{\tau^{\prime}} =(σEjiuτσuτσ)uττ=(qljqki)uττ=(σEjiuτσ)uττ=uττuττ.\displaystyle=(\sum_{\sigma\in E^{i}_{j}}u^{\sigma}_{\tau^{\prime}}u^{\sigma*}_{\tau^{\prime}})u^{\tau}_{\tau^{\prime}}=(q^{j}_{l}q^{i}_{k})u^{\tau}_{\tau^{\prime}}=(\sum_{\sigma\in E^{i}_{j}}u^{\sigma*}_{\tau^{\prime}})u^{\tau}_{\tau^{\prime}}=u^{\tau*}_{\tau^{\prime}}u^{\tau}_{\tau^{\prime}}.

Therefore we have,

uττuττ=uττuττ=uττuττuττ.u^{\tau}_{\tau^{\prime}}{u^{\tau}_{\tau^{\prime}}}^{*}={u^{\tau}_{\tau^{\prime}}}^{*}u^{\tau}_{\tau^{\prime}}=u^{\tau}_{\tau^{\prime}}{u^{\tau}_{\tau^{\prime}}}^{*}u^{\tau}_{\tau^{\prime}}.

Using spectral calculus for normal operators, we conclude that uττu^{\tau}_{\tau^{\prime}} is a projection. As τ\tau and τ\tau^{\prime} were arbitrary, coefficients of the matrix (uττ)τ,τE(u^{\tau}_{\tau^{\prime}})_{\tau,\tau^{\prime}\in E} are projections. From (4) of definition 3.7 it further follows that coefficients of each row and each column add up to 11 making (uττ)τ,τE(u^{\tau}_{\tau^{\prime}})_{\tau,\tau^{\prime}\in E} a quantum permutation matrix and α\alpha a quantum permutation of the edge set EE. ∎

We have the following corollary of the above theorem which asserts universal object in 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} for a certain class of multigraphs.

Corollary 3.21.

For a multigraph (V,E)(V,E), the two categories 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} and 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)} coincide if and only if the categories 𝒟(V,E¯,w)Ban\mathcal{D}^{Ban}_{(V,\overline{E},w)} and 𝒟(V,E¯,w)Bic\mathcal{D}^{Bic}_{(V,\overline{E},w)} coincide where (V,E¯,w)(V,\overline{E},w) is the underlying weighted single edged graph of (V,E)(V,E) (see definition 2.4). For this class of multigraphs, the universal object in 𝒞(V,E)Bic\mathcal{C}^{Bic}_{(V,E)}, Q(V,E)BicQ^{Bic}_{(V,E)} is also universal in 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)}.

Proof.

Using proposition 3.13, we observe that, for any co-action on a multigraph (V,E)(V,E), the induced permutation on the vertex set always preserves the weighted symmetry of the underlying weighted graph (V,E¯,w)(V,\overline{E},w). In other words, the induced permutation on the vertex set is a member of 𝒟(V,E¯,w)Ban\mathcal{D}^{Ban}_{(V,\overline{E},w)}. The proof is straightforward using this observation and theorem 3.20. ∎

Before proceeding further, we describe the notion of uniform components of a multigraph. For a positive integer mm, a uniform multigraph of degree mm is a multigraph where |Eji|=0|E^{i}_{j}|=0 or mm for all i,jVi,j\in V. For a “non-uniform” multigraph (V,E)(V,E) and an integer mm, a unifrom component of degree mm is a multi-subgraph (Vm,Em)(V_{m},E_{m}) of (V,E)(V,E) where EmEE_{m}\subseteq E and VmVV_{m}\subseteq V are given by,

Em\displaystyle E_{m} ={τE|cardinality of the setEt(τ)s(τ)=m}\displaystyle=\{\tau\in E\>|\>\text{cardinality of the set}\>E^{s(\tau)}_{t(\tau)}=m\}
Vm\displaystyle V_{m} ={vV|v=s(τ)orv=t(τ)for someτEm}.\displaystyle=\{v\in V|v=s(\tau)\>\>\text{or}\>\>v=t(\tau)\>\>\text{for some}\>\>\tau\in E_{m}\}.

It is evident that, E=mEmE=\sqcup_{m}E_{m} and V=mVmV=\cup_{m}V_{m}. We will write

(V,E)=m(Vm,Em).(V,E)=\cup_{m}(V_{m},E_{m}).

By VmsV^{s}_{m} and VmtV^{t}_{m}, we will mean the sets of initial and final vertices of the multi-subgraph (Vm,Em)(V_{m},E_{m}). A multigraph having only one uniform component of degree mm, is said to be a uniform multigraph of degree mm.

In the next proposition, we will see that our co-actions preserve uniform components of a multigraph.

Proposition 3.22.

Let β:L2(E)L2(E)𝒜\beta:L^{2}(E)\rightarrow L^{2}(E)\otimes\mathcal{A} be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in our sense. For any mm\in\mathbb{N} with EmϕE_{m}\neq\phi, it follows that,

β(L2(Em))L2(Em)𝒜.\beta(L^{2}(E_{m}))\subseteq L^{2}(E_{m})\otimes\mathcal{A}.

Conversely, let {βm|m,Emϕ}\{\beta_{m}|m\in\mathbb{N},E_{m}\neq\phi\} be a family of co-actions preserving quantum symmetries (in our sense) of the uniform components (Vm,Em)(V_{m},E_{m})’s such that induced permutations on the set of vertices agree on the common regions, that is, for all mnm\neq n,

αm|C(VmVn)=αn|C(VmVn).\alpha_{m}|_{C(V_{m}\cap V_{n})}=\alpha_{n}|_{C(V_{m}\cap V_{n})}.

Then β=mβm\beta=\bigoplus_{m}\beta_{m} is a co-action on (V,E)(V,E) preserving its quantum symmetry (in our sense).

Proof.

Let (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} be the co-representation matrix of β\beta. Let i,j,k,lVi,j,k,l\in V be such that EjiE^{i}_{j} and ElkE^{k}_{l} are nonempty and |Eji||Elk||E^{i}_{j}|\neq|E^{k}_{l}|. It is enough to show that

(3.13) uτσ=0for allσEji,τElk.u^{\sigma}_{\tau}=0\quad\text{for all}\quad\sigma\in E^{i}_{j},\tau\in E^{k}_{l}.

Using propositions 3.11, 3.13 and 3.18 we observe that,

uτσ2=uτσuτσ=uτσ(σ1Ejiuτσ1)=uτσqkiqlj=0.\displaystyle\|u^{\sigma}_{\tau}\|^{2}=\|{u^{\sigma}_{\tau}}^{*}u^{\sigma}_{\tau}\|=\|{u^{\sigma}_{\tau}}^{*}(\sum_{\sigma_{1}\in E^{i}_{j}}u^{\sigma_{1}}_{\tau})\|=\|{u^{\sigma}_{\tau}}^{*}q^{i}_{k}q^{j}_{l}\|=0.

Conversely, the proof is done by using corollary 3.10 repeatedly. As αm|C(VmVn)=αn|C(VmVn)\alpha_{m}|_{C(V_{m}\cap V_{n})}=\alpha_{n}|_{C(V_{m}\cap V_{n})} for all mnm\neq n\in\mathbb{N}, there exists a co-action α:C(V)C(V)𝒜\alpha:C(V)\rightarrow C(V)\otimes\mathcal{A} such that,

α(χi)=αm(χi)whereiVm.\alpha(\chi_{i})=\alpha_{m}(\chi_{i})\quad\text{where}\quad i\in V_{m}.

Let (qki)i,kV(q^{i}_{k})_{i,k\in V} be the co-representation matrix of α\alpha. As we clearly have α(C(VmVn))C(VmVn)𝒜\alpha(C(V_{m}\cap V_{n}))\subseteq C(V_{m}\cap V_{n})\otimes\mathcal{A} for all mnm\neq n, it follows that,

(3.14) qik\displaystyle q^{k}_{i} =0whereiVmVnandkVmVn.\displaystyle=0\quad\text{where}\quad i\notin\ V_{m}\cap V_{n}\>\>\text{and}\>\>k\in V_{m}\cap V_{n}.

Let τEm\tau\in E_{m} and iVni\in V_{n} for some nonzero integers mm and nn such that mnm\neq n. We observe that if iVmVni\in V_{m}\cap V_{n} then

α(χi)β(χτ)=αm(χi)βm(χτ)=βm(χi.χτ)=β(χi.χτ)\alpha(\chi_{i})\beta(\chi_{\tau})=\alpha_{m}(\chi_{i})\beta_{m}(\chi_{\tau})=\beta_{m}(\chi_{i}.\chi_{\tau})=\beta(\chi_{i}.\chi_{\tau})

and if iVnVmi\in V_{n}\setminus V_{m}, then using equation 3.14 we observe that,

α(χi)β(χτ)\displaystyle\alpha(\chi_{i})\beta(\chi_{\tau}) =αn(χi)βm(χτ)\displaystyle=\alpha_{n}(\chi_{i})\beta_{m}(\chi_{\tau})
=(kVnkVmVnχkqik)(σEmχσuτσ)\displaystyle=(\sum_{\begin{subarray}{c}k\in V_{n}\\ k\notin V_{m}\cap V_{n}\end{subarray}}\chi_{k}\otimes q^{k}_{i})(\sum_{\sigma\in E_{m}}\chi_{\sigma}\otimes u^{\sigma}_{\tau})
=0(as χk.χσ=0 for all kVnVm)\displaystyle=0\quad(\text{as $\chi_{k}.\chi_{\sigma}=0$ for all $k\in V_{n}\setminus V_{m}$})
=β(χi.χτ).\displaystyle=\beta(\chi_{i}.\chi_{\tau}).

Using similar arguments, it also follows that,

β(χτ)α(χi)=β(χτ.χi)for alliV,τE.\beta(\chi_{\tau})\alpha(\chi_{i})=\beta(\chi_{\tau}.\chi_{i})\quad\text{for all}\quad i\in V,\tau\in E.

We further observe that,

β(τEχτ)=mEmϕβm(τEmχτ)=mEmϕτEmχτ1=τEχτ1.\beta(\sum_{\tau\in E}\chi_{\tau})=\sum_{\begin{subarray}{c}m\in\mathbb{N}\\ E_{m}\neq\phi\end{subarray}}\beta_{m}(\sum_{\tau\in E_{m}}\chi_{\tau})=\sum_{\begin{subarray}{c}m\in\mathbb{N}\\ E_{m}\neq\phi\end{subarray}}\sum_{\tau\in E_{m}}\chi_{\tau}\otimes 1=\sum_{\tau\in E}\chi_{\tau}\otimes 1.

Using corollary 3.10 it follows that β\beta is co-action on (V,E)(V,E) preserving its quantum symmetry in Banica’s sense. To show that β\beta satisfies “restricted orthogonality”, we first observe that co-representation matrix of β\beta is direct sum of co-representation matrices of βm\beta_{m}’s. As algebraic relations related to “restricted orthogonality” (see proposition 3.18) are satisfied by matrix coefficients of βm\beta_{m}’s it is easy to see that, same holds for the matrix coefficients of β\beta making it a quantum symmetry preserving co-action on (V,E)(V,E) in our sense. ∎

In light of above discussion, it is worthwhile to look more into co-actions on uniform multigraphs.

Co-actions on uniform multigraphs:

We start with the description of edge-labeling of a multigraph.

Definition 3.23.

Let (V,E)(V,E) be a multigraph. For each k,lVk,l\in V such that ElkϕE^{k}_{l}\neq\phi, let us consider a bijection μkl:{1,..,m}Elk\mu_{kl}:\{1,..,m\}\rightarrow E^{k}_{l} where |Elk|=m|E^{k}_{l}|=m. This set of bijections {μkl|Elkϕ}\{\mu_{kl}|E^{k}_{l}\neq\phi\} is said to be an edge-labeling of the multigraph (V,E)(V,E). Once an edge-labeling is fixed, any τE\tau\in E can be written as

τ=(k,l)rwheres(τ)=k,t(τ)=land  1r|Elk|.\tau=(k,l)r\quad\text{where}\quad s(\tau)=k,\>t(\tau)=l\>\>\text{and}\>\>1\leq r\leq|E^{k}_{l}|.
Remark 3.24.

This method of labeling the edges in a multigraph has been described as a representation of a multigraph in [asfaq2023thesis]. Despite the difference in terminology here and in [asfaq2023thesis], they necessarily mean the same thing.

For proceeding further we will be needing the following technical lemma:

Lemma 3.25.

Let {Ai|i=1,2,..,n}\{A_{i}|i=1,2,..,n\} be a set of positive operators on a Hilbert space HH such that AiAj=0A_{i}A_{j}=0 when iji\neq j. We define T=i=1nAiT=\sum_{i=1}^{n}A_{i}. For i{1,2,..,n}i\in\{1,2,..,n\}, let pip_{i} and PTP_{T} be range projections of AiA_{i} and TT, that is, orthogonal projections onto the closures of ranges of AiA_{i} and TT respectively. Then the following identities are true:

  1. (1)

    pipj=0whenijp_{i}p_{j}=0\quad\text{when}\quad i\neq j.

  2. (2)

    Ai=piT=Tpifor alli=1,2,..,n.A_{i}=p_{i}T=Tp_{i}\quad\text{for all}\quad i=1,2,..,n.

  3. (3)

    i=1npi=PT\sum_{i=1}^{n}p_{i}=P_{T}.

Proof.

To prove (1), we observe that, for ξ,ηH\xi,\eta\in H,

<Ai(ξ),Aj(η)>=<AjAi(ξ),η>=0forij.<A_{i}(\xi),A_{j}(\eta)>=<A_{j}A_{i}(\xi),\eta>=0\quad\text{for}\quad i\neq j.

Therefore range of pip_{i} is orthogonal to range of pjp_{j} whenever iji\neq j and (1) follows.

We further observe that,

piAj=pipjAj\displaystyle p_{i}A_{j}=p_{i}p_{j}A_{j} =0andAjpi=(piAj)=0whereij\displaystyle=0\quad\text{and}\quad A_{j}p_{i}={(p_{i}A_{j})}^{*}=0\quad\text{where}\quad i\neq j
and thereforepiT\displaystyle\text{and therefore}\quad p_{i}T =pi(j=1nAj)=piAi=Ai,\displaystyle=p_{i}(\sum_{j=1}^{n}A_{j})=p_{i}A_{i}=A_{i},
Tpi\displaystyle Tp_{i} =(j=1nAj)pi=Aipi=(piAi)=Ai.\displaystyle=(\sum_{j=1}^{n}A_{j})p_{i}=A_{i}p_{i}={(p_{i}A_{i})}^{*}=A_{i}.

Hence (2) is proved.

To prove claim (3), it is enough to observe that

Range(T)¯=i=1nRange(Ai)¯\overline{Range(T)}=\oplus_{i=1}^{n}\overline{Range(A_{i})}

where the direct sum is an orthogonal direct sum. ∎

Notation 3.26.

For a C* algebra 𝒜\mathcal{A}, let us denote its universal enveloping Von-Neumann algebra by 𝒜¯\overline{\mathcal{A}}.

For the rest of this subsection, we consider (V,E)(V,E) to be a uniform multigraph of degree mm with its edges labeled (see definition 3.23). There is a co-action β\beta of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in our sense. The matrices (u(k,l)s(i,j)r)(i,j)r,(k,l)sE(u^{(i,j)r}_{(k,l)s})_{(i,j)r,(k,l)s\in E} and (qji)i,jV(q^{i}_{j})_{i,j\in V} will be the co-representation matrices of β\beta and its induced permutation on the vertex set VV.

Proposition 3.27.

Let i,j,k,li,j,k,l be in VV such that EjiE^{i}_{j} and ElkE^{k}_{l} are nonempty. Then there exists a projection valued matrix (p(k,l)s(i,j)r)r,s=1,..,mMm()𝒜¯(p^{(i,j)r}_{(k,l)s})_{r,s=1,..,m}\in M_{m}(\mathbb{C})\otimes\overline{\mathcal{A}} such that the following holds:

u(k,l)s(i,j)ru(k,l)s(i,j)r=p(k,l)s(i,j)rqkiqljqki.u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}=p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}q^{i}_{k}.

Here p(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s}’s are the range projections of u(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s} satisfying the following “quantum permutation like relations”:

  1. (1)

    For r,rr,r^{\prime} and s{1,2,..,m},p(k,l)s(i,j)rp(k,l)s(i,j)r=δr,rp(k,l)s(i,j)rs\in\{1,2,..,m\},\>\>\>p^{(i,j)r}_{(k,l)s}p^{(i,j)r^{\prime}}_{(k,l)s}=\delta_{r,r^{\prime}}p^{(i,j)r}_{(k,l)s}.

  2. (2)

    For r,sr,s and s{1,2,..,m},p(k,l)s(i,j)rp(k,l)s(i,j)r=δs,sp(k,l)s(i,j)rs^{\prime}\in\{1,2,..,m\},\>\>\>p^{(i,j)r}_{(k,l)s}p^{(i,j)r}_{(k,l)s^{\prime}}=\delta_{s,s^{\prime}}p^{(i,j)r}_{(k,l)s}.

  3. (3)

    s=1mp(k,l)s(i,j)r=r=1mp(k,l)s(i,j)r=Pqkiqljqki\sum_{s=1}^{m}p^{(i,j)r}_{(k,l)s}=\sum_{r=1}^{m}p^{(i,j)r}_{(k,l)s}=P_{q^{i}_{k}q^{j}_{l}q^{i}_{k}} where PqkiqljqkiP_{q^{i}_{k}q^{j}_{l}q^{i}_{k}} is the range projection of qkiqljqkiq^{i}_{k}q^{j}_{l}q^{i}_{k}.

Proof.

Using proposition (3.11) and proposition (3.18) we observe that,

s=1mu(k,l)s(i,j)ru(k,l)s(i,j)r\displaystyle\sum_{s=1}^{m}u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*} =(s=1mu(k,l)s(i,j)r)(s=1mu(k,l)s(i,j)r)\displaystyle=(\sum_{s=1}^{m}u^{(i,j)r}_{(k,l)s})(\sum_{s=1}^{m}u^{(i,j)r}_{(k,l)s})^{*}
=qkiqlj(qkiqlj)=qkiqljqki.\displaystyle=q^{i}_{k}q^{j}_{l}{(q^{i}_{k}q^{j}_{l})}^{*}=q^{i}_{k}q^{j}_{l}q^{i}_{k}.

As u(k,l)s(i,j)ru(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}’s are positive operators, using (2) of lemma 3.25 we conclude that

u(k,l)s(i,j)ru(k,l)s(i,j)r=p(k,l)s(i,j)rqkiqljqkiu^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}=p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}q^{i}_{k}

where p(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s} is range projection of u(k,l)s(i,j)ru(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*} which is same as the range projection of u(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s}. The quantum permutation like relations among p(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s}’s follow from the “orthogonality relations” mentioned in (1) and (3) of lemma 3.25.

Proposition 3.28.

Let i,j,k,li,j,k,l be in VV such that EjiE^{i}_{j} and ElkE^{k}_{l} are nonempty. Then there exists a projection valued valued matrix (p^(k,l)s(i,j)r)r,s=1,..,mMm()𝒜¯(\hat{p}^{(i,j)r}_{(k,l)s})_{r,s=1,..,m}\in M_{m}(\mathbb{C})\otimes\overline{\mathcal{A}} such that the following holds:

u(k,l)s(i,j)ru(k,l)s(i,j)r=p^(k,l)s(i,j)rqljqkiqlj.u^{(i,j)r*}_{(k,l)s}u^{(i,j)r}_{(k,l)s}=\hat{p}^{(i,j)r}_{(k,l)s}q^{j}_{l}q^{i}_{k}q^{j}_{l}.

Here p^(k,l)s(i,j)r\hat{p}^{(i,j)r}_{(k,l)s}’s are the range projections of u(k,l)s(i,j)ru^{(i,j)r*}_{(k,l)s} satisfying the following quantum permutation like relations:

  1. (1)

    For r,rr,r^{\prime} and s{1,2,..,m},p^(k,l)s(i,j)rp^(k,l)s(i,j)r=δr,rp^(k,l)s(i,j)rs\in\{1,2,..,m\},\>\>\>\hat{p}^{(i,j)r}_{(k,l)s}\hat{p}^{(i,j)r^{\prime}}_{(k,l)s}=\delta_{r,r^{\prime}}\hat{p}^{(i,j)r}_{(k,l)s}.

  2. (2)

    For r,sr,s and s{1,2,..,m},p^(k,l)s(i,j)rp^(k,l)s(i,j)r=δs,sp^(k,l)s(i,j)rs^{\prime}\in\{1,2,..,m\},\>\>\>\hat{p}^{(i,j)r}_{(k,l)s}\hat{p}^{(i,j)r}_{(k,l)s^{\prime}}=\delta_{s,s^{\prime}}\hat{p}^{(i,j)r}_{(k,l)s}.

  3. (3)

    s=1mp^(k,l)s(i,j)r=r=1mp^(k,l)s(i,j)r=Pqljqkiqlj\sum_{s=1}^{m}\hat{p}^{(i,j)r}_{(k,l)s}=\sum_{r=1}^{m}\hat{p}^{(i,j)r}_{(k,l)s}=P_{q^{j}_{l}q^{i}_{k}q^{j}_{l}} where PqljqkiqljP_{q^{j}_{l}q^{i}_{k}q^{j}_{l}} is the range projection of qljqkiqljq^{j}_{l}q^{i}_{k}q^{j}_{l}.

Proof.

Using proposition 3.11 and proposition 3.18 we observe that,

s=1mu(k,l)s(i,j)ru(k,l)s(i,j)r\displaystyle\sum_{s=1}^{m}u^{(i,j)r*}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}} =(s=1mu(k,l)s(i,j)r)(s=1mu(k,l)s(i,j)r)\displaystyle=(\sum_{s=1}^{m}u^{(i,j)r}_{(k,l)s})^{*}(\sum_{s=1}^{m}u^{(i,j)r}_{(k,l)s})
=(qkiqlj)qkiqlj=qljqkiqlj.\displaystyle={(q^{i}_{k}q^{j}_{l})}^{*}q^{i}_{k}q^{j}_{l}=q^{j}_{l}q^{i}_{k}q^{j}_{l}.

The claims follow from lemma 3.25 as it did for proposition 3.27. ∎

Corollary 3.29.

Let i,j,k,l,r,si,j,k,l,r,s be as in proposition 3.27 or proposition 3.28. Then we have the following commutation relations:

  1. (1)

    p(k,l)s(i,j)rqkiqljqki=qkiqljqkip(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}q^{i}_{k}=q^{i}_{k}q^{j}_{l}q^{i}_{k}p^{(i,j)r}_{(k,l)s};

  2. (2)

    p^(k,l)s(i,j)rqljqkiqlj=qljqkiqljp^(k,l)s(i,j)r\hat{p}^{(i,j)r}_{(k,l)s}q^{j}_{l}q^{i}_{k}q^{j}_{l}=q^{j}_{l}q^{i}_{k}q^{j}_{l}\hat{p}^{(i,j)r}_{(k,l)s};

  3. (3)

    p(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)r=u(k,l)s(i,j)ru(k,l)s(i,j)r=u(k,l)s(i,j)ru(k,l)s(i,j)rp(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s}u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}=u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}=u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}p^{(i,j)r}_{(k,l)s};

  4. (4)

    p^(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)r=u(k,l)s(i,j)ru(k,l)s(i,j)r=u(k,l)s(i,j)ru(k,l)s(i,j)rp^(k,l)s(i,j)r.\hat{p}^{(i,j)r}_{(k,l)s}u^{(i,j)r*}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}=u^{(i,j)r*}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}=u^{(i,j)r*}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}\hat{p}^{(i,j)r}_{(k,l)s}.

Proof.

(1) and (3) are immediate from proposition 3.27, (2) and (4) are immediate from proposition 3.28. ∎

Proposition 3.30.

Let i,j,k,lVi,j,k,l\in V be such that EjiE^{i}_{j} and ElkE^{k}_{l} are nonempty and r,s{1,2,..,m}r,s\in\{1,2,..,m\}. Then we have the following:

u(k,l)s(i,j)r=p(k,l)s(i,j)rqkiqlj=qkiqljp^(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s}=p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}=q^{i}_{k}q^{j}_{l}\hat{p}^{(i,j)r}_{(k,l)s}

where p(k,l)s(i,j)rp^{(i,j)r}_{(k,l)s}’s are described in proposition 3.27 and p^(k,l)s(i,j)r\hat{p}^{(i,j)r}_{(k,l)s}’s are described in proposition 3.28.

Proof.

From proposition 3.11, proposition 3.27 and corollary 3.29 we observe that,

(u(k,l)s(i,j)rp(k,l)s(i,j)rqkiqlj)(u(k,l)s(i,j)rp(k,l)s(i,j)rqkiqlj)\displaystyle(u^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l})(u^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l})^{*}
=\displaystyle= u(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)rqljqkip(k,l)s(i,j)rp(k,l)s(i,j)rqkiqlju(k,l)s(i,j)r+p(k,l)s(i,j)rqkiqljqkip(k,l)s(i,j)r\displaystyle u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}-u^{(i,j)r}_{(k,l)s}q^{j}_{l}q^{i}_{k}p^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}{u^{(i,j)r}_{(k,l)s}}^{*}+p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}q^{i}_{k}p^{(i,j)r}_{(k,l)s}
=\displaystyle= u(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)r(r=1mu(k,l)s(i,j)r)p(k,l)s(i,j)rp(k,l)s(i,j)r(r=1mu(k,l)s(i,j)r)u(k,l)s(i,j)r\displaystyle u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}-u^{(i,j)r}_{(k,l)s}(\sum_{r^{\prime}=1}^{m}{u^{(i,j)r^{\prime}}_{(k,l)s}}^{*})p^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}(\sum_{r^{\prime}=1}^{m}u^{(i,j)r^{\prime}}_{(k,l)s}){u^{(i,j)r}_{(k,l)s}}^{*}
+u(k,l)s(i,j)ru(k,l)s(i,j)rp(k,l)s(i,j)r\displaystyle+u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}p^{(i,j)r}_{(k,l)s}
=\displaystyle= u(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)rp(k,l)s(i,j)rp(k,l)s(i,j)ru(k,l)s(i,j)ru(k,l)s(i,j)r+u(k,l)s(i,j)ru(k,l)s(i,j)rp(k,l)s(i,j)r\displaystyle u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}-u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}p^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}+u^{(i,j)r}_{(k,l)s}{u^{(i,j)r}_{(k,l)s}}^{*}p^{(i,j)r}_{(k,l)s}
=\displaystyle= 0.\displaystyle 0.

We conclude that

u(k,l)s(i,j)rp(k,l)s(i,j)rqkiqlj=0and henceu(k,l)s(i,j)r=p(k,l)s(i,j)rqkiqlj.u^{(i,j)r}_{(k,l)s}-p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}=0\quad\text{and hence}\quad u^{(i,j)r}_{(k,l)s}=p^{(i,j)r}_{(k,l)s}q^{i}_{k}q^{j}_{l}.

The second identity follows by using (2) and (4) of corollary 3.29 and similar computation as above. ∎

Remark 3.31.

If we consider β\beta to be a quantum permutation of the edge set EE, that is, a co-action on (V,E)(V,E) preserving its quantum symmetry in Bichon’s sense, it follows that u(k,l)s(i,j)r=p(k,l)s(i,j)r=p^(k,l)s(i,j)ru^{(i,j)r}_{(k,l)s}=p^{(i,j)r}_{(k,l)s}=\hat{p}^{(i,j)r}_{(k,l)s}.

3.8. Description of Q(V,E)BicQ^{Bic}_{(V,E)} for uniform multigraphs:

We introduce the following notations that we are going to use in this subsection.

Notation 3.32.

Let (V,E)(V,E) be a uniform multigraph of degree mm and n=|E¯|n=|\overline{E}| where (V,E¯)(V,\overline{E}) is the underlying single edged graph of (V,E)(V,E). We consider nn times free product of the quantum permutation group Sm+S^{+}_{m}. We write the canonical inclusion maps of the free product Sm+n{S^{+}_{m}}^{*n} as ν(i,j):Sm+Sm+n\nu_{(i,j)}:S^{+}_{m}\rightarrow{S^{+}_{m}}^{*n} where (i,j)E¯(i,j)\in\overline{E}. Let (Psr)r,s=1,..,m(P^{r}_{s})_{r,s=1,..,m} be the matrix of generators of Sm+S^{+}_{m} satisfying quantum permutation relations. We will write,

Ps(i,j)r=ν(i,j)(Psr)where(i,j)E¯andr,s=1,2,..,m.P^{(i,j)r}_{s}=\nu_{(i,j)}(P^{r}_{s})\quad\text{where}\quad(i,j)\in\overline{E}\quad\text{and}\quad r,s=1,2,..,m.
Theorem 3.33.

Let (V,E)(V,E) be a uniform multigraph of degree mm. There is a natural co-action of Q(V,E¯)BicQ^{Bic}_{(V,\overline{E})} on the algebra Sm+n{S^{+}_{m}}^{*n} which is given by

(3.15) α(ν(k,l)(a))=(i,j)E¯ν(i,j)(a)xkixlj,(k,l)E¯,aSm+.\alpha(\nu_{(k,l)}(a))=\sum_{(i,j)\in\overline{E}}\nu_{(i,j)}(a)\otimes x^{i}_{k}x^{j}_{l},\quad(k,l)\in\overline{E},a\in S^{+}_{m}.

where (xji)i,jV(x^{i}_{j})_{i,j\in V} is the co-representation matrix of the induced co-action of Q(V,E¯)BicQ^{Bic}_{(V,\overline{E})} on C(V)C(V). It follows that, with respect to the co-action α\alpha,

Q(V,E)BicSm+wQ(V,E¯)Bic.Q^{Bic}_{(V,E)}\cong S^{+}_{m}*_{w}Q^{Bic}_{(V,\overline{E})}.
Proof.

We fix an edge-labeling of the multigraph (V,E)(V,E) (see definition 3.23). The quantum automorphism group Q(V,E¯)BicQ^{Bic}_{(V,\overline{E})} is generated by coefficients of the quantum permutation matrix (xji)i,jV(x^{i}_{j})_{i,j\in V} where (V,E¯)(V,\overline{E}) is the underlying single edged graph of (V,E)(V,E). As xkix^{i}_{k} and xljx^{j}_{l} commute with each other for all (i,j),(k,l)E¯(i,j),(k,l)\in\overline{E}, it follows that α\alpha is a co-action of Q(V,E¯)BicQ^{Bic}_{(V,\overline{E})} on the C* algebra Sm+n{S^{+}_{m}}^{*n}.

We observe that there is a co-action γ\gamma of Sm+wQ(V,E¯)BicS^{+}_{m}*_{w}Q^{Bic}_{(V,\overline{E})} on the multigraph (V,E)(V,E) which preserves its quantum symmetry in Bichon’s sense. We define γ:C(E)C(E)(Sm+wQ(V,E¯)Bic)\gamma:C(E)\rightarrow C(E)\otimes(S^{+}_{m}*_{w}Q^{Bic}_{(V,\overline{E})}) to be,

(3.16) γ(χ(k,l)s)=r=1(i,j)E¯mχ(i,j)rPs(i,j)rxkixlj;(k,l)E¯ands=1,2,..,m.\gamma(\chi_{(k,l)s})=\sum^{m}_{\begin{subarray}{c}r=1\\ (i,j)\in\overline{E}\end{subarray}}\chi_{(i,j)r}\otimes P^{(i,j)r}_{s}x^{i}_{k}x^{j}_{l};\quad(k,l)\in\overline{E}\>\>\text{and}\>\>s=1,2,..,m.

By universality of Q(V,E)BicQ^{Bic}_{(V,E)}, we have a quantum group homomorphism Φ:Q(V,E)BicSm+wQ(V,E¯)Bic\Phi:Q^{Bic}_{(V,E)}\rightarrow S^{+}_{m}*_{w}Q^{Bic}_{(V,\overline{E})} satisfying

Φ(u(k,l)s(i,j)r)=Ps(i,j)rxkixljwhere(i,j),(k,l)E¯andr,s=1,2,..,m.\Phi(u^{(i,j)r}_{(k,l)s})=P^{(i,j)r}_{s}x^{i}_{k}x^{j}_{l}\quad\text{where}\quad(i,j),(k,l)\in\overline{E}\quad\text{and}\quad r,s=1,2,..,m.

Let us denote (qji)i,jV(q^{i}_{j})_{i,j\in V} to be the co-representation matrix of the induced co-action of Q(V,E)BicQ^{Bic}_{(V,E)} on C(V)C(V). Now we construct the inverse of Φ\Phi to show that it is in fact an isomorphism of compact quantum groups.

For (i,j)E¯(i,j)\in\overline{E} and r,s{1,2,..,m}r,s\in\{1,2,..,m\} we define,

Rs(i,j)r=(k,l)E¯u(k,l)s(i,j)r.R^{(i,j)r}_{s}=\sum_{(k,l)\in\overline{E}}u^{(i,j)r}_{(k,l)s}.

We proceed through following claims.

Claim 1: Let (i,j)E¯(i,j)\in\overline{E}. The coefficients of the matrix (Rs(i,j)r)r,s=1,..,m(R^{(i,j)r}_{s})_{r,s=1,..,m} satisfy quantum permutation relations.

We observe that,

Rs(i,j)r2=\displaystyle{R^{(i,j)r}_{s}}^{2}= Rs(i,j)r=Rs(i,j)r\displaystyle R^{(i,j)r}_{s}={R^{(i,j)r}_{s}}^{*}
andr=1mRs(i,j)r=r=1(k,l)E¯mu(k,l)s(i,j)r=\displaystyle\text{and}\quad\sum_{r=1}^{m}R^{(i,j)r}_{s}=\sum_{\begin{subarray}{c}r=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}u^{(i,j)r}_{(k,l)s}= (k,l)E¯qkiqlj=1=s=1(k,l)E¯mu(k,l)s(i,j)r=s=1mRs(i,j)r.\displaystyle\sum_{(k,l)\in\overline{E}}q^{i}_{k}q^{j}_{l}=1=\sum_{\begin{subarray}{c}s=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}u^{(i,j)r}_{(k,l)s}=\sum_{s=1}^{m}R^{(i,j)r}_{s}.

Claim 2: For (i,j),(k,l)E¯(i,j),(k,l)\in\overline{E} and r,s{1,2,..,m}r,s\in\{1,2,..,m\}, we have the following relations:

u(k,l)s(i,j)r=Rs(i,j)rqkiqljandRs(i,j)rqkiqlj=qkiqljRs(i,j)r.u^{(i,j)r}_{(k,l)s}=R^{(i,j)r}_{s}q^{i}_{k}q^{j}_{l}\quad\text{and}\quad R^{(i,j)r}_{s}q^{i}_{k}q^{j}_{l}=q^{i}_{k}q^{j}_{l}R^{(i,j)r}_{s}.

We observe that,

Rs(i,j)rqkiqlj\displaystyle R^{(i,j)r}_{s}q^{i}_{k}q^{j}_{l} =((k,l)E¯u(k,l)s(i,j)r)(s=1mu(k,l)s(i,j)r)=u(k,l)s(i,j)r,\displaystyle=(\sum_{(k^{\prime},l^{\prime})\in\overline{E}}u^{(i,j)r}_{(k^{\prime},l^{\prime})s})(\sum_{s^{\prime}=1}^{m}u^{(i,j)r}_{(k,l)s^{\prime}})=u^{(i,j)r}_{(k,l)s},
qkiqljRs(i,j)r\displaystyle q^{i}_{k}q^{j}_{l}R^{(i,j)r}_{s} =(s=1mu(k,l)s(i,j)r)((k,l)E¯u(k,l)s(i,j)r)=u(k,l)s(i,j)r.\displaystyle=(\sum_{s^{\prime}=1}^{m}u^{(i,j)r}_{(k,l)s^{\prime}})(\sum_{(k^{\prime},l^{\prime})\in\overline{E}}u^{(i,j)r}_{(k^{\prime},l^{\prime})s})=u^{(i,j)r}_{(k,l)s}.

Hence claim 2 follows.

Claim 3: Let ΔBic\Delta_{Bic} denote the co-product on Q(V,E)BicQ^{Bic}_{(V,E)}. The co-product identities in theorem 2.23 hold, that is,

ΔBic(qji)\displaystyle\Delta_{Bic}(q^{i}_{j}) =kVqkiqjk\displaystyle=\sum_{k\in V}q^{i}_{k}\otimes q^{k}_{j}
andΔBic(Rs(i,j)r)\displaystyle\text{and}\quad\Delta_{Bic}(R^{(i,j)r}_{s}) =s=1(k,l)E¯m(Rs(i,j)rRs(k,l)s)(qkiqlj1).\displaystyle=\sum_{\begin{subarray}{c}s^{\prime}=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}(R^{(i,j)r}_{s^{\prime}}\otimes R^{(k,l)s^{\prime}}_{s})(q^{i}_{k}q^{j}_{l}\otimes 1).

The first identity is immediate. To prove the second one we observe that,

ΔBic(Rs(i,j)r)=ΔBic((k,l)E¯u(k,l)s(i,j)r)\displaystyle\Delta_{Bic}(R^{(i,j)r}_{s})=\Delta_{Bic}(\sum_{(k^{\prime},l^{\prime})\in\overline{E}}u^{(i,j)r}_{(k^{\prime},l^{\prime})s}) =(k,l)E¯(s=1(k,l)E¯mu(k,l)s(i,j)ru(k,l)s(k,l)s)\displaystyle=\sum_{(k^{\prime},l^{\prime})\in\overline{E}}(\sum_{\begin{subarray}{c}s^{\prime}=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}u^{(i,j)r}_{(k,l)s^{\prime}}\otimes u^{(k,l)s^{\prime}}_{(k^{\prime},l^{\prime})s})
=s=1(k,l)E¯mRs(i,j)rqkiqlj((k,l)E¯u(k,l)s(k,l)s)\displaystyle=\sum_{\begin{subarray}{c}s^{\prime}=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}R^{(i,j)r}_{s^{\prime}}q^{i}_{k}q^{j}_{l}\otimes(\sum_{(k^{\prime},l^{\prime})\in\overline{E}}u^{(k,l)s^{\prime}}_{(k^{\prime},l^{\prime})s})
=s=1(k,l)E¯mRs(i,j)rqkiqljRs(k,l)s.\displaystyle=\sum_{\begin{subarray}{c}s^{\prime}=1\\ (k,l)\in\overline{E}\end{subarray}}^{m}R^{(i,j)r}_{s^{\prime}}q^{i}_{k}q^{j}_{l}\otimes R^{(k,l)s^{\prime}}_{s}.

Hence the second identity in claim 3 follows.

Using claim 1, claim 2, claim 3 and universality of free wreath product we get a surjective quantum group homomorphism Ψ:Sm+wQ(V,E¯)BicQ(V,E)Bic\Psi:S^{+}_{m}*_{w}Q^{Bic}_{(V,\overline{E})}\rightarrow Q^{Bic}_{(V,E)} such that the following hold:

Ψ(xji)=qjiandΨ(Ps(i,j)r)=Rs(i,j)r\Psi(x^{i}_{j})=q^{i}_{j}\quad\text{and}\quad\Psi(P^{(i^{\prime},j^{\prime})r}_{s})=R^{(i^{\prime},j^{\prime})r}_{s}

where i,jVi,j\in V,(i,j)E¯(i^{\prime},j^{\prime})\in\overline{E} and r,s=1,2,..,mr,s=1,2,..,m.

It is clear that Φ\Phi and Ψ\Psi are inverses of each other as it is such on the set of generators. Hence theorem 3.33 is proved. ∎

4. Examples and computations

In this section we compute quantum automorphism groups of a few selected multigraphs.

Example 1:

\bullet

aa

Figure 2. A multigraph with nn loops on a single vertex

Let us consider the multigraph in figure 2 where the vertex set has a single element aa and edge set EE has nn number of loops, that is, nn number of edges with single endpoint vertex aa. The universal CQG associated with (V,E)(V,E), Q(V,E)BanQ^{Ban}_{(V,E)} is the universal C* algebra generated by coefficients of the matrix (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} satisfying the following relations:

τEuτσ1uτσ2=δσ1,σ21,\displaystyle\sum_{\tau\in E}u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}1, τEuτσ1uτσ2=δσ1,σ21,\displaystyle\quad\sum_{\tau\in E}u^{\sigma_{1}*}_{\tau}u^{\sigma_{2}}_{\tau}=\delta_{\sigma_{1},\sigma_{2}}1,
τEuσ1τuσ2τ=δσ1,σ21,\displaystyle\sum_{\tau\in E}u^{\tau}_{\sigma_{1}}u^{\tau*}_{\sigma_{2}}=\delta_{\sigma_{1},\sigma_{2}}1, τEuσ1τuσ2τ=δσ1,σ21,\displaystyle\quad\sum_{\tau\in E}u^{\tau*}_{\sigma_{1}}u^{\tau}_{\sigma_{2}}=\delta_{\sigma_{1},\sigma_{2}}1,
andτEuτσ1\displaystyle\text{and}\quad\sum_{\tau\in E}u^{\sigma_{1}}_{\tau} =1\displaystyle=1

where σ1,σ2E\sigma_{1},\sigma_{2}\in E.

From corollary 3.21, it follows that the category 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} admits universal object which is Q(V,E)BicQ^{Bic}_{(V,E)}. Moreover, from theorem 3.33 it follows that Q(V,E)Bic=Sn+Q^{Bic}_{(V,E)}=S^{+}_{n} where Sn+S^{+}_{n} is the quantum permutation group on n elements.

Example 2:

\bullet\bulletaabb
Figure 3. A multigraph with two vertices and 2n2n number of edges.

We consider the multigraph (V,E)(V,E) in figure 3. The vertex set has two elements aa and bb, edge set EE consists of nn edges from aa to bb and nn edges from bb to a.a. Let us fix an edge-labeling for (V,E)(V,E) (see definition 3.23). Using corollary 3.21 it follows that, 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} admits universal object which is Q(V,E)BicQ^{Bic}_{(V,E)}. The quantum automorphism group of the underlying single edged graph Q(V,E¯)BanQ^{Ban}_{(V,\overline{E})} is C(2)C(\mathbb{Z}_{2}) and is generated by the coefficients of the following matrix:

[q1q1qq]\begin{bmatrix}q&1-q\\ 1-q&q\par\end{bmatrix}

where qq is a projection. Let (u(k,l)s(i,j)r)(i,j)r,(k,l)sE(u^{(i,j)r}_{(k,l)s})_{(i,j)r,(k,l)s\in E} be the matrix of canonical generators of Q(V,E)BicQ^{Bic}_{(V,E)}. For r,s=1,..,nr,s=1,..,n let us define,

Ps(a,b)r=u(a,b)s(a,b)r+u(b,a)s(a,b)randPs(b,a)r=u(b,a)s(b,a)r+u(a,b)s(b,a)rP^{(a,b)r}_{s}=u^{(a,b)r}_{(a,b)s}+u^{(a,b)r}_{(b,a)s}\quad\text{and}\quad P^{(b,a)r}_{s}=u^{(b,a)r}_{(b,a)s}+u^{(b,a)r}_{(a,b)s}

We observe that,

  1. (1)

    The matrices (Ps(a,b)r)r,s=1,..,n(P^{(a,b)r}_{s})_{r,s=1,..,n} and (Ps(b,a)r)r,s=1,..,n(P^{(b,a)r}_{s})_{r,s=1,..,n} are quantum permutation matrices.

  2. (2)

    Ps(a.b)rP^{(a.b)r}_{s} and Ps(b,a)rP^{(b,a)r}_{s} commute with qq for all r,s=1,..,nr,s=1,..,n.

Therefore we have,

Q(V,E)Bic=C{Ps(a.b)r,Ps(b,a)r,q|r,s=1,..,n}=(Sn+Sn+)C(2)Q^{Bic}_{(V,E)}=C^{*}\{P^{(a.b)r}_{s},P^{(b,a)r}_{s},q\>|\>r,s=1,..,n\}=(S^{+}_{n}*S^{+}_{n})\otimes C(\mathbb{Z}_{2})

Moreover. the co-product ΔBic\Delta_{Bic} on Q(V,E)BicQ^{Bic}_{(V,E)} is given by,

ΔBic(q)\displaystyle\Delta_{Bic}(q) =qq+(1q)(1q)\displaystyle=q\otimes q+(1-q)\otimes(1-q)
ΔBic(Ps(a,b)r)\displaystyle\Delta_{Bic}(P^{(a,b)r}_{s}) =s=1nPs(a,b)rqPs(a,b)s+Ps(a,b)r(1q)Ps(b,a)s\displaystyle=\sum^{n}_{s^{\prime}=1}P^{(a,b)r}_{s}q\otimes P^{(a,b)s^{\prime}}_{s}+P^{(a,b)r}_{s}(1-q)\otimes P^{(b,a)s^{\prime}}_{s}
ΔBic(Ps(b,a)r)\displaystyle\Delta_{Bic}(P^{(b,a)r}_{s}) =s=1nPs(b,a)rqPs(b,a)s+Ps(b,a)r(1q)Ps(a,b)s.\displaystyle=\sum^{n}_{s^{\prime}=1}P^{(b,a)r}_{s}q\otimes P^{(b,a)s^{\prime}}_{s}+P^{(b,a)r}_{s}(1-q)\otimes P^{(a,b)s^{\prime}}_{s}.

Example 3:

\bullet\bullet\bulletbbccaa
Figure 4. A multigraph version of a triangle with nn edges between two vertices.

We consider the multigraph (V,E)(V,E) in figure 4 where there are three vertices a,b,ca,b,c and nn edges from aa to bb, bb to cc and cc to aa respectively. We fix an edge-labeling for (V,E)(V,E) (see definition 3.23). From corollary 3.21 it follows that 𝒞(V,E)sym\mathcal{C}^{sym}_{(V,E)} admits universal object which is Q(V,E)BicQ^{Bic}_{(V,E)}. If (V,E¯)(V,\overline{E}) is the underlying single edged graph of (V,E)(V,E), then it follows that Q(V,E¯)BanQ^{Ban}_{(V,\overline{E})}, which is C(3)C(\mathbb{Z}_{3}), is generated by coefficients of the matrix,

(q1q2q3q3q1q2q2q3q1)\begin{pmatrix}q_{1}&q_{2}&q_{3}\\ q_{3}&q_{1}&q_{2}\\ q_{2}&q_{3}&q_{1}\end{pmatrix}

where q1,q2,q3q_{1},q_{2},q_{3} are mutually orthogonal projections and q1+q2+q3=1q_{1}+q_{2}+q_{3}=1.

Let (u(k,l)s(i,j)r)(i,j)r,(k,l)sE(u^{(i,j)r}_{(k,l)s})_{(i,j)r,(k,l)s\in E} be the matrix of canonical generators of Q(V,E)BicQ^{Bic}_{(V,E)}. For (i,j)E¯(i,j)\in\overline{E} and r,s{1,2,..,n}r,s\in\{1,2,..,n\}, let us define,

Ps(i,j)r=(k,l)E¯u(k,l)s(i,j)r.P^{(i,j)r}_{s}=\sum_{(k,l)\in\overline{E}}u^{(i,j)r}_{(k,l)s}.

The quantum automorphism group Q(V,E)BicQ^{Bic}_{(V,E)} is generated by the following set of generators:

(i,j)E¯{Ps(i,j)r|r,s=1,2,..,n}{q1,q2,q3}\cup_{(i,j)\in\overline{E}}\{P^{(i,j)r}_{s}|r,s=1,2,..,n\}\cup\{q_{1},q_{2},q_{3}\}

such that the following conditions hold:

  1. (1)

    q1,q2q_{1},q_{2} and q3q_{3} are mutually orthogonal projections such that q1+q2+q3=1q_{1}+q_{2}+q_{3}=1.

  2. (2)

    For each (i,j)E¯(i,j)\in\overline{E}, the matrix (Ps(i,j)r)r,s=1,2,..,n(P^{(i,j)r}_{s})_{r,s=1,2,..,n} is a quantum permutation matrix.

  3. (3)

    Ps(i,j)rP^{(i,j)r}_{s} commutes with qkq_{k} for all k=1,2,3;(i,j)E¯;r,s=1,2,..,nk=1,2,3;(i,j)\in\overline{E};r,s=1,2,..,n.

It is clear that as an algebra Q(V,E)BicQ^{Bic}_{(V,E)} is (Sn+Sn+Sn+)C(3)(S^{+}_{n}*S^{+}_{n}*S^{+}_{n})\otimes C(\mathbb{Z}_{3}). Moreover the co-product ΔBic\Delta_{Bic} on Q(V,E)BicQ^{Bic}_{(V,E)} is given by

ΔBic(q1)=q1q1+q2q3+q3q2,ΔBic(q2)=q3q3+q1q2+q2q1,\displaystyle\Delta_{Bic}(q_{1})=q_{1}\otimes q_{1}+q_{2}\otimes q_{3}+q_{3}\otimes q_{2},\quad\Delta_{Bic}(q_{2})=q_{3}\otimes q_{3}+q_{1}\otimes q_{2}+q_{2}\otimes q_{1},
ΔBic(q3)=q2q2+q1q3+q3q1;\displaystyle\qquad\qquad\qquad\qquad\Delta_{Bic}(q_{3})=q_{2}\otimes q_{2}+q_{1}\otimes q_{3}+q_{3}\otimes q_{1};
ΔBic(Ps(a,b)r)=s=1n(Ps(a,b)rq1Ps(a,b)s)+(Ps(a,b)rq2Ps(b,c)s)+(Ps(a,b)rq3Ps(c,a)s),\displaystyle\Delta_{Bic}(P^{(a,b)r}_{s})=\sum^{n}_{s^{\prime}=1}(P^{(a,b)r}_{s^{\prime}}q_{1}\otimes P^{(a,b)s^{\prime}}_{s})+(P^{(a,b)r}_{s^{\prime}}q_{2}\otimes P^{(b,c)s^{\prime}}_{s})+(P^{(a,b)r}_{s^{\prime}}q_{3}\otimes P^{(c,a)s^{\prime}}_{s}),
ΔBic(Ps(b,c)r)=s=1n(Ps(b,c)rq1Ps(b,c)s)+(Ps(b,c)rq2Ps(c,a)s)+(Ps(b,c)rq3Ps(a,b)s),\displaystyle\Delta_{Bic}(P^{(b,c)r}_{s})=\sum^{n}_{s^{\prime}=1}(P^{(b,c)r}_{s^{\prime}}q_{1}\otimes P^{(b,c)s^{\prime}}_{s})+(P^{(b,c)r}_{s^{\prime}}q_{2}\otimes P^{(c,a)s^{\prime}}_{s})+(P^{(b,c)r}_{s^{\prime}}q_{3}\otimes P^{(a,b)s^{\prime}}_{s}),
ΔBic(Ps(c,a)r)=s=1n(Ps(c,a)rq1Ps(c,a)s)+(Ps(c,a)rq2Ps(a,b)s)+(Ps(c,a)rq3Ps(b,c)s).\displaystyle\Delta_{Bic}(P^{(c,a)r}_{s})=\sum^{n}_{s^{\prime}=1}(P^{(c,a)r}_{s^{\prime}}q_{1}\otimes P^{(c,a)s^{\prime}}_{s})+(P^{(c,a)r}_{s^{\prime}}q_{2}\otimes P^{(a,b)s^{\prime}}_{s})+(P^{(c,a)r}_{s^{\prime}}q_{3}\otimes P^{(b,c)s^{\prime}}_{s}).

5. Applications

5.1. Quantum symmetry of graph C* algebras:

In the context of quantum symmetry, graph C* algebras are interesting objects to study as they are mostly infinite dimensional although function algebras associated with graphs are not. In this subsection, we will see that our notions of quantum symmetry in multigraphs lift to the level of graph C* algebras. We start by recalling the definition of a graph C* algebra associated with a multigraph (V,E)(V,E). For more details, see [Raeburn2005], [Brannan2022], [Pask2006] and references within.

Definition 5.1.

For a finite multigraph Γ=(V,E)\Gamma=(V,E) the graph C* algebra C(Γ)C^{*}(\Gamma) is the universal C*algebra generated by a set of partial isometries {sτ|τE}\{s_{\tau}|\tau\in E\} and a set of mutually orthogonal projections {pi|iV}\{p_{i}|i\in V\} satisfying the following relations among them:

  1. (1)

    sτsτ=pt(τ)s^{*}_{\tau}s_{\tau}=p_{t(\tau)} for all τE\tau\in E where t:EVt:E\rightarrow V is the target map of Γ\Gamma.

  2. (2)

    τEisτsτ=pi\sum_{\tau\in E^{i}}s_{\tau}s^{*}_{\tau}=p_{i} for all iVsi\in V^{s} where VsV^{s} is the set of initial vertices in Γ\Gamma.

We have the following properties of graph C* algebras (subsection 2.1 of [Pask2006]).

  1. (1)

    iVpi=1\sum_{i\in V}p_{i}=1 in C(Γ)C^{*}(\Gamma).

  2. (2)

    For any iVsi\in V^{s}, {sτsτ|τEi}\{s_{\tau}s^{*}_{\tau}|\tau\in E^{i}\} is a set of mutually orthogonal projections and sτ1sτ2=0s^{*}_{\tau_{1}}s_{\tau_{2}}=0 for all τ1τ2E\tau_{1}\neq\tau_{2}\in E.

We will be generalising the main result in [Schmidt2018] in our framework of quantum symmetry in multigraphs using similar arguments.

Theorem 5.2.

Let Γ=(V,E)\Gamma=(V,E) be a multigraph and β\beta be a co-action of a CQG (𝒜,Δ)(\mathcal{A},\Delta) on (V,E)(V,E) preserving its quantum symmetry in Banica’s sense (see definition 3.7). Then β\beta induces a co-action β:C(Γ)C(Γ)𝒜\beta^{\prime}:C^{*}(\Gamma)\rightarrow C^{*}(\Gamma)\otimes\mathcal{A} satisfying,

β(pi)\displaystyle\beta^{\prime}(p_{i}) =kVpkqik,\displaystyle=\sum_{k\in V}p_{k}\otimes q^{k}_{i},
β(sτ)\displaystyle\beta^{\prime}(s_{\tau}) =σEsσuτσ\displaystyle=\sum_{\sigma\in E}s_{\sigma}\otimes u^{\sigma}_{\tau}

where (uτσ)σ,τE(u^{\sigma}_{\tau})_{\sigma,\tau\in E} and (qik)k,iV(q^{k}_{i})_{k,i\in V} are the co-representation matrices of β\beta and its induced co-action α\alpha on C(V)C(V).

Proof.

For τE,iV\tau\in E,i\in V, let us define Sτ,PvC(Γ)𝒜S_{\tau},P_{v}\in C^{*}(\Gamma)\otimes\mathcal{A} by

Sτ=σEsσuτσandPi=kVpkqik.\displaystyle S_{\tau}=\sum_{\sigma\in E}s_{\sigma}\otimes u^{\sigma}_{\tau}\quad\text{and}\quad P_{i}=\sum_{k\in V}p_{k}\otimes q^{k}_{i}.

For i,jVi,j\in V, we observe that,

PiPj=kVpkqikqjk=δi,jkVpkqik=δi,jPi.P_{i}P_{j}=\sum_{k\in V}p_{k}\otimes q^{k}_{i}q^{k}_{j}=\delta_{i,j}\sum_{k\in V}p_{k}\otimes q^{k}_{i}=\delta_{i,j}P_{i}.

Hence {Pi|iV}\{P_{i}|i\in V\} is a set of mutually orthogonal projections in C(Γ)𝒜C^{*}(\Gamma)\otimes\mathcal{A}. Using properties of C(Γ)C^{*}(\Gamma), we observe that, for τE\tau\in E,

SτSτ=σ1,σ2Esσ1sσ2uτσ1uτσ2=σEsσsσuτσuτσ\displaystyle S^{*}_{\tau}S_{\tau}=\sum_{\sigma_{1},\sigma_{2}\in E}s^{*}_{\sigma_{1}}s_{\sigma_{2}}\otimes u^{\sigma_{1}*}_{\tau}u^{\sigma_{2}}_{\tau}=\sum_{\sigma\in E}s^{*}_{\sigma}s_{\sigma}\otimes u^{\sigma*}_{\tau}u^{\sigma}_{\tau} =σEpt(σ)uτσuτσ\displaystyle=\sum_{\sigma\in E}p_{t(\sigma)}\otimes u^{\sigma*}_{\tau}u^{\sigma}_{\tau}
=kVtpkσEkuτσuτσ\displaystyle=\sum_{k\in V^{t}}p_{k}\otimes\sum_{\sigma\in E_{k}}u^{\sigma*}_{\tau}u^{\sigma}_{\tau}
=kVpkqt(τ)k=Pt(τ).\displaystyle=\sum_{k\in V}p_{k}\otimes q^{k}_{t(\tau)}=P_{t(\tau)}.

For iVsi\in V^{s}, it further follows that,

τEiSτSτ=σ1,σ2Esσ1sσ2τEiuτσ1uτσ2\displaystyle\sum_{\tau\in E^{i}}S_{\tau}S^{*}_{\tau}=\sum_{\sigma_{1},\sigma_{2}\in E}s_{\sigma_{1}}s^{*}_{\sigma_{2}}\otimes\sum_{\tau\in E^{i}}u^{\sigma_{1}}_{\tau}u^{\sigma_{2}*}_{\tau} =σ1,σ2Esσ1sσ2δσ1,σ2qis(σ1)\displaystyle=\sum_{\sigma_{1},\sigma_{2}\in E}s_{\sigma_{1}}s^{*}_{\sigma_{2}}\otimes\delta_{\sigma_{1},\sigma_{2}}q^{s(\sigma_{1})}_{i}
=kVs(σEksσsσ)qik\displaystyle=\sum_{k\in V^{s}}(\sum_{\sigma\in E^{k}}s_{\sigma}s^{*}_{\sigma})\otimes q^{k}_{i}
=kVpkqik=Pi.\displaystyle=\sum_{k\in V}p_{k}\otimes q^{k}_{i}=P_{i}.

By universality of C(Γ)C^{*}(\Gamma), there exists a C* algebra homomorphism β:C(Γ)C(Γ)𝒜\beta^{\prime}:C^{*}(\Gamma)\rightarrow C^{*}(\Gamma)\otimes\mathcal{A} such that,

β(sτ)=Sτandβ(pi)=Pi\beta^{\prime}(s_{\tau})=S_{\tau}\quad\text{and}\quad\beta^{\prime}(p_{i})=P_{i}

for all τE\tau\in E and iVi\in V. It remains to show that β\beta^{\prime} is in fact a co-action of (𝒜,Δ)(\mathcal{A},\Delta) on C(Γ)C^{*}(\Gamma). The co-product identity holds as it is easy to check that on the set of generators of C(Γ)C^{*}(\Gamma). Let us define

𝒮=linear spanβ(C(Γ))(1𝒜)C(Γ)𝒜.\mathcal{S}=\text{linear span}\>\beta^{\prime}(C^{*}(\Gamma))(1\otimes\mathcal{A})\subseteq C^{*}(\Gamma)\otimes\mathcal{A}.

To conclude that β\beta^{\prime} is a co-action, it is enough to show that 𝒮\mathcal{S} is norm-dense in C(Γ)𝒜C^{*}(\Gamma)\otimes\mathcal{A}. We proceed through following claims:

Claim 1: pi1,sτ1,sτ1𝒮p_{i}\otimes 1,s_{\tau}\otimes 1,s^{*}_{\tau}\otimes 1\in\mathcal{S} for all iV,τEi\in V,\tau\in E.

Let iV,τEi\in V,\tau\in E. We observe that,

jVβ(pj)(1qji)\displaystyle\sum_{j\in V}\beta^{\prime}(p_{j})(1\otimes q^{i}_{j}) =lVpl(jVqjlqji)=pijVqji=pi1,\displaystyle=\sum_{l\in V}p_{l}\otimes(\sum_{j\in V}q^{l}_{j}q^{i}_{j})=p_{i}\otimes\sum_{j\in V}q^{i}_{j}=p_{i}\otimes 1,
σEβ(sσ)(1uστ)\displaystyle\sum_{\sigma\in E}\beta^{\prime}(s_{\sigma})(1\otimes u^{\tau*}_{\sigma}) =σEsσ(σEuσσuστ)=sτ1,\displaystyle=\sum_{\sigma^{\prime}\in E}s_{\sigma^{\prime}}\otimes(\sum_{\sigma\in E}u^{\sigma^{\prime}}_{\sigma}u^{\tau*}_{\sigma})=s_{\tau}\otimes 1,
σEβ(sσ)(1uστ)\displaystyle\sum_{\sigma\in E}\beta^{\prime}(s^{*}_{\sigma})(1\otimes u^{\tau}_{\sigma}) =σEsσ(σEuσσuστ)=sτ1.\displaystyle=\sum_{\sigma^{\prime}\in E}s^{*}_{\sigma^{\prime}}\otimes(\sum_{\sigma\in E}u^{\sigma^{\prime}*}_{\sigma}u^{\tau}_{\sigma})=s^{*}_{\tau}\otimes 1.

In the above computation we have used the fact that β\beta and β¯\overline{\beta} both are unitary co-representations on L2(E)L^{2}(E). As all the elements mentioned in the left are in 𝒮\mathcal{S}, claim 1 follows.

Claim 2: If x1,y1𝒮x\otimes 1,y\otimes 1\in\mathcal{S}, then xy1𝒮xy\otimes 1\in\mathcal{S}.

Let us assume that,

x1=i=1nβ(ei)(1fi)andy1=j=1mβ(gj)(1hj)x\otimes 1=\sum_{i=1}^{n}\beta^{\prime}(e_{i})(1\otimes f_{i})\quad\text{and}\quad y\otimes 1=\sum_{j=1}^{m}\beta^{\prime}(g_{j})(1\otimes h_{j})

where ei,gjC(Γ)e_{i},g_{j}\in C^{*}(\Gamma) and fi,hj𝒜f_{i},h_{j}\in\mathcal{A} for all i,ji,j. We observe that,

xy1=iβ(ei)(1fi)(y1)\displaystyle xy\otimes 1=\sum_{i}\beta^{\prime}(e_{i})(1\otimes f_{i})(y\otimes 1) =iβ(ei)(y1)(1fi)\displaystyle=\sum_{i}\beta^{\prime}(e_{i})(y\otimes 1)(1\otimes f_{i})
=i,jβ(ei)β(gj)(1gj)(1fi)\displaystyle=\sum_{i,j}\beta^{\prime}(e_{i})\beta^{\prime}(g_{j})(1\otimes g_{j})(1\otimes f_{i})
=i,jβ(eigj)(1gjfi)𝒮.\displaystyle=\sum_{i,j}\beta^{\prime}(e_{i}g_{j})(1\otimes g_{j}f_{i})\>\>\in\mathcal{S}.

Hence claim 2 follows.

From claim 1 and claim 2 it is clear that,

C(Γ)1norm closure of𝒮.C^{*}(\Gamma)\otimes 1\subseteq\text{norm closure of}\>\>\mathcal{S}.

As for any T𝒮T\in\mathcal{S} and x𝒜x\in\mathcal{A}, T(1x)T(1\otimes x) is also in 𝒮\mathcal{S}, we conclude that,

C(Γ)𝒜norm closure of𝒮.C^{*}(\Gamma)\otimes\mathcal{A}\subseteq\text{norm closure of}\>\>\mathcal{S}.

Hence our theorem is proved. ∎

5.2. Quantum symmetry in undirected multigraphs:

An undirected multigraph consists of an edge set EE, a set of vertices VV and a range map r:E{{i,j}|i,jV}r:E\rightarrow\{\{i,j\}\>|\>i,j\in V\} where {.,.}\{.,.\} is an unordered pair of vertices. In our context we describe undirected multigraph as a “doubly directed” multigraph with an inversion map which identifies two oppositely directed edges to produce an undirected edge.

Definition 5.3.

A “doubly directed” multigraph (V,E)(V,E) is a multigraph whose adjacency matrix is symmetric, that is, |Eji|=|Eij||E^{i}_{j}|=|E^{j}_{i}| for all i,jVi,j\in V. An undirected multigraph (V,E,j)(V,E,j) is a “doubly directed” (V,E)(V,E) with an inversion map j:EEj:E\rightarrow E satisfying the following conditions:

  1. (1)

    j2=idEj^{2}=id_{E}.

  2. (2)

    For all σE\sigma\in E, j(σ)=σj(\sigma)=\sigma if s(σ)=t(σ)s(\sigma)=t(\sigma).

  3. (3)

    For all σE\sigma\in E

    s(j(σ))=t(σ)andt(j(σ))=s(σ).\quad s(j(\sigma))=t(\sigma)\quad\text{and}\quad t(j(\sigma))=s(\sigma).

The inversion map jj in an undirected multigraph (V,E,j)(V,E,j) induces a linear map J:L2(E)L2(E)J:L^{2}(E)\rightarrow L^{2}(E) on vector space level. Any quantum symmetry preserving co-action β\beta on an undirected multigraph (V,E,j)(V,E,j) can be described as a quantum symmetry preserving co-action on the doubly directed multigraph (V,E)(V,E) such that the linear map JJ intertwines β\beta and its contragradient β¯\overline{\beta}, that is,

βJ=(Jid)β¯\beta\circ J=(J\otimes id)\circ\overline{\beta}

It is also enough to start with only a unitary co-representation instead of a bi-unitary one because any unitary satisfying the intertwinement condition mentioned above is essentially a bi-unitary map. We encourage the reader to look into section 4.6 of [asfaq2023thesis] for more discussions about quantum symmetry of undirected multigraphs. In theorem 4.6.11 of [asfaq2023thesis] we have shown that a quantum symmetry preserving co-action on a directed multigraph do arise from a co-action on the underlying undirected multigraph preserving the set of “directed” edges. This is also a classical phenomena which demonstrates consistency between our different constructions in the quantum case.

References