This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.thanks: These authors contributed equally to this work.

Quantum simulation of topological zero modes on a 41-qubit superconducting processor

Yun-Hao Shi Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Beijing Academy of Quantum Information Sciences, Beijing 100193, China    Yu Liu Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Yu-Ran Zhang School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan    Zhongcheng Xiang Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Kaixuan Huang Beijing Academy of Quantum Information Sciences, Beijing 100193, China    Tao Liu School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China    Yong-Yi Wang Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Jia-Chi Zhang Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Cheng-Lin Deng Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Gui-Han Liang Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Zheng-Yang Mei Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Hao Li Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China    Tian-Ming Li Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Wei-Guo Ma Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Hao-Tian Liu Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Chi-Tong Chen Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Tong Liu Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Ye Tian Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China    Xiaohui Song Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China    S. P. Zhao Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China    Kai Xu [email protected] Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Beijing Academy of Quantum Information Sciences, Beijing 100193, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100049, China    Dongning Zheng [email protected] Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100049, China    Franco Nori [email protected] Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA    Heng Fan [email protected] Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Beijing Academy of Quantum Information Sciences, Beijing 100193, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100049, China Hefei National Laboratory, Hefei 230088, China
Abstract

Quantum simulation of different exotic topological phases of quantum matter on a noisy intermediate-scale quantum (NISQ) processor is attracting growing interest. Here, we develop a one-dimensional 43-qubit superconducting quantum processor, named as Chuang-tzu, to simulate and characterize emergent topological states. By engineering diagonal Aubry-Andr𝐞´\acute{\mathbf{e}}-Harper (AAH) models, we experimentally demonstrate the Hofstadter butterfly energy spectrum. Using Floquet engineering, we verify the existence of the topological zero modes in the commensurate off-diagonal AAH models, which have never been experimentally realized before. Remarkably, the qubit number over 40 in our quantum processor is large enough to capture the substantial topological features of a quantum system from its complex band structure, including Dirac points, the energy gap’s closing, the difference between even and odd number of sites, and the distinction between edge and bulk states. Our results establish a versatile hybrid quantum simulation approach to exploring quantum topological systems in the NISQ era.

The Aubry-Andre´\acute{\mathrm{e}}-Harper (AAH) model [1, 2] has been attracting considerable attention in various topics of condensed matter physics, including Hofstadter butterfly [3, 4], Anderson localization [5], quasicrystals [6], and topological phases of matter [7, 8]. The incommensurate diagonal AAH model describes a one-dimensional (1D) tight bonding lattice with quasi-periodic potential. In this model a localization transition is predicted [2], which has been observed experimentally [9, 10]. Moreover, the diagonal AAH model can be exactly mapped to the two-dimensional (2D) Hofstadter model [3], showing a 2D quantum Hall effect (QHE) with topologically protected edge states, which have been observed in experiments [6, 11]. The energy spectra of Bloch electrons in perpendicular magnetic fields versus the dimensional perpendicular magnetic field bb form the Hofstadter butterfly [3, 4], showing the splitting of energy bands for a specific value of bb. The Hofstadter butterfly energy spectrum has been measured in quasi-periodic lattices [12, 13, 14], superlattices [15, 16, 17], and Floquet dissipative quasicrystal [18]. A further generalization to commensurate off-diagonal AAH models, with the hopping amplitude being cosine-modulated commensurate with the lattice, indicates the existence of topological zero-energy edge states in the gapless regime [19]. The topological zero modes differ from the edge states in the 1D diagonal AAH models (similar to the quantum Hall edge) and have never been observed in experiments before.

Refer to caption
Figure 1: Device and pulse sequences. (a) Optical micrograph of the 43-qubit quantum chip. (b) Diagonal AAH model simulated by periodically tuning the qubit’s frequency and the pulse sequence for its band structure spectroscopy. (c) Off-diagonal AAH model engineered by Floquet engineering qubit’s frequency and the pulse sequence for its band structure spectroscopy.

Rapid developments in quantum techniques allow for programming non-trivial topological models and observing their topological states on quantum simulating platforms with a fast-growing number of qubits [20, 21, 11, 22]. Even without fault tolerance, the programmability of a noisy intermediate-scale quantum (NISQ) processor helps to explore various topological phases that are still challenging in real materials [23, 24, 25, 26, 27]. Here, we develop a 43-qubit superconducting quantum processor arranged in a 1D array, named as Chuang-tzu [Fig. 1(a)], to simulate the generalized 1D AAH model. The mean energy relaxation time and pure dephasing time of 41 qubits in our experiments are 21.0 and 1.2μ\mus, respectively. Since our processor is designed to fulfill the hard-core limit [28, 11], the effective Hamiltonian reads

H^0=j=1N1gj,j+1(a^ja^j+1+H.c.)+j=1Nωja^ja^j,\hat{H}_{0}=\sum_{j=1}^{N-1}g_{j,j+1}(\hat{a}^{\dagger}_{j}\hat{a}_{j+1}+\textrm{H.c.})+\sum_{j=1}^{N}\omega_{j}\hat{a}^{\dagger}_{j}\hat{a}_{j}, (1)

where a^\hat{a}^{{\dagger}} (a^\hat{a}) denotes the hard-core bosonic creation (annihilation) operator. In our sample, the frequency ωj\omega_{j} of each qubit QjQ_{j} is tunable, but the hopping strength gj,j+1g_{j,j+1} between nearest-neighbor (NN) QjQ_{j} and Qj+1Q_{j+1} cannot be tuned directly. Here we use the Floquet engineering technique as demonstrated in [29, 30, 31, 32, 33, 34, 35] to simulate the generalized 1D AAH model with a form

H^gAAH\displaystyle\hat{H}_{\mathrm{gAAH}} =\displaystyle= j=1N1u[1+λcos(2πbλj+φλ)](a^ja^j+1+H.c.)\displaystyle\sum_{j=1}^{N-1}u[1+\lambda\cos(2\pi b_{\lambda}j+\varphi_{\lambda})](\hat{a}^{\dagger}_{j}\hat{a}_{j+1}+\textrm{H.c.}) (2)
+j=1Nvcos(2πbvj+φv)a^ja^j,\displaystyle+\sum_{j=1}^{N}v\cos(2\pi b_{v}j+\varphi_{v})\hat{a}^{\dagger}_{j}\hat{a}_{j},

with λ=0\lambda\!=\!0 and v=0v\!=\!0 corresponding to the diagonal and off-diagonal AAH models, respectively. In our system, we can independently vary the effective on-site potential ωjeff\omega^{\textrm{eff}}_{j} and the effective hopping strength gj,j+1effg^{\textrm{eff}}_{j,j+1} by the rectangle flux bias and time-periodic driving on the Z control lines of qubits, respectively. The effective gj,j+1effg^{\textrm{eff}}_{j,j+1} can be adjusted from about 3.0-3.0 to 7.67.6MHz. Thus, the dynamics of the generalized AAH models are simulated with an approximately effective Hamiltonian using Floquet engineering, and our simulator behaves as a programmable hybrid analogue-digital quantum simulator from the viewpoint in [25]. Details of tuning hopping strength via Floquet engineering are discussed in [36].

Refer to caption
Figure 2: Hofstadter butterfly energy spectrum. By engineering various instances of AAH models, the energy spectrum of the Bloch electrons in perpendicular magnetic fields can be measured using band structure spectroscopy [12, 11]. Here we use N=41N=41 qubits to simulate the quasi-periodic lattice. (a) Experimentally measured squared FT magnitudes |χ~j|2|\widetilde{\chi}_{j}|^{2} when choosing a target qubit QjQ_{j}. (b)-(d) Experimental data of Ibvj|χ~j|2I_{b_{v}}\equiv\sum_{j}|\widetilde{\chi}_{j}|^{2} (b), the summation of the squared FT magnitudes, which is compared with the numerical data by simulating the dynamics of the system (c), and the theoretical prediction (d).

First, we engineer the diagonal AAH model [37, 38] with N=41N=41 qubits and measure the Hofstadter butterfly spectrum in the quasi-periodic lattices by setting λ=0\lambda=0 and tuning the on-site potential as vcos(2πbvj)v\cos(2\pi b_{v}j) with v/(2π)15.2v/(2\pi)\simeq 15.2MHz and φv=0\varphi_{v}=0 [Fig. 1(b)]. We simulate 121 instances of diagonal AAH chains when varying bvb_{v} from 0 to 1. Using the band structure spectroscopic technique [12, 11], we obtain the squared Fourier transformation (FT) magnitude |χ~j|2|\widetilde{\chi}_{j}|^{2} of the response function χj(t)σ^jx(t)+iσ^jy(t)\chi_{j}(t)\equiv\langle\hat{\sigma}_{j}^{x}(t)\rangle+i\langle\hat{\sigma}_{j}^{y}(t)\rangle, after preparing a selected qubit QjQ_{j} at |+j=(|0j+|1j)/2|+_{j}\rangle=(|0_{j}\rangle+|1_{j}\rangle)/\sqrt{2}. Figure 2(a) plots |χ~j|2|\widetilde{\chi}_{j}|^{2} for several selected qubits QjQ_{j}, and each of them only contains partial information about the energy spectrum. The summation of the squared FT magnitudes [Fig. 2(b)] of all chosen qubits Ibvj|χ~j|2I_{b_{v}}\equiv\sum_{j}|\widetilde{\chi}_{j}|^{2} clearly shows the Hofstadter butterfly energy spectrum, which agrees well with the numerical calculation by simulating the system’s dynamics [Fig. 2(c)] and the theoretical prediction [Fig. 2(d)]. Note that the fractal structure of “Hofstadter’s butterfly”, splitting of energy bands for several bvb_{v}, are clearly shown, which is attributed to the sufficiently large qubit number of our quantum processor [13]. In addition, the wing-like gaps emerge because of the topological feature of the diagonal AAH models, and the 2D integer QHE is characterized by the Chern number [39], which has been experimentally investigated in [11] for bv=1/3b_{v}={1}/{3}.

Refer to caption
Figure 3: Experimental characterization of the topological zero-energy edge modes in commensurate off-diagonal AAH models for π\pi-flux (bλ=1/2b_{\lambda}={1}/{2}). Band structure spectroscopy of off-diagonal AAH models with even number N=40N=40 (a) and odd number N=41N=41 (b) of sites, which are compared with the theoretical projected band structures (dashed curves). Here u/(2π)=4.78u/(2\pi)=4.78MHz and λ=0.4\lambda=0.4. Normalized squared FT magnitudes |χ~j|n.m.2|\widetilde{\chi}_{j}|_{\textrm{n.m.}}^{2} when choosing the leftmost qubit Q1 (c) and the rightmost qubit Q40 (d) as target qubits with N=40N=40. |χ~j|n.m.2|\widetilde{\chi}_{j}|_{\textrm{n.m.}}^{2} for boundary qubits Q1 (e) and Q41 (f) as target qubits with N=41N=41. (g–j) Time evolution of the excitation probability PjP_{j} during the QWs of a single excitation initially prepared at the boundary qubits (Q1Q_{1} or Q40Q_{40}) for φλ=0\varphi_{\lambda}=0 (g,h) and φλ=π\varphi_{\lambda}=\pi (i,j) with N=40N=40. (k–n) Time evolution of PjP_{j} during the QWs of a single excitation initially placed at the boundary qubits (Q1Q_{1} or Q41Q_{41}) for φλ=0\varphi_{\lambda}=0 (k,l) and φλ=π\varphi_{\lambda}=\pi (m,n) with N=41N=41.

Next, we perform a hybrid analogue-digital quantum simulation of the off-diagonal AAH models with v=0v=0 and λ0\lambda\neq 0 using Floquet engineering [30] [Fig. 1(c)], which show no QHE [19]. With the bulk-edge correspondence [40, 11], we characterize their topological zero-energy modes, of which the experimental observation is still absent. We first engineer the commensurate off-diagonal AAHs for bλ=1/2b_{\lambda}={1}/{2} that can be mapped to a 2D Hofstadter model with π\pi-flux per plaquette. We experimentally extract the band structures of the lattices with N=40N=40 (even) and 4141 (odd) sites by measuring IφλI_{\varphi_{\lambda}} for φλ[0,2π]\varphi_{\lambda}\in[0,2\pi] as shown in Fig. 3(a) and 3(b), respectively, which agrees well with the theoretical prediction (dashed curves). The measured gapless band structure clearly shows two Dirac points with a linear dispersion, which is similar to those observed in graphene [19]. On the lattice with N=40N=40 (even) sites, two topological zero modes appear for φλ(π/2,π/2)\varphi_{\lambda}\in(-{\pi}/{2},{\pi}/{2}) [Fig. 3(a)], while the topological zero edge mode exists for the whole parameter regime [Fig. 3(b)] with N=41N=41 (odd) sites. These exotic topological edge states are also verified from the experimentally measured squared FT magnitudes |χ~j|2|\widetilde{\chi}_{j}|^{2} for boundary qubits, as shown in Fig. 3(c–f). For even sites, the |χ~1|2|\widetilde{\chi}_{1}|^{2} [Fig. 3(c)] and |χ~40|2|\widetilde{\chi}_{40}|^{2} [Fig. 3(d)] for Q1Q_{1} and Q40Q_{40}, respectively, both contain information of topological zero edge states in the regime (π/2,π/2)(-{\pi}/{2},{\pi}/{2}). However, for odd sites, the |χ~1|2|\widetilde{\chi}_{1}|^{2} [Fig. 3(e)] for Q1Q_{1} shows left edge state for (π/2,π/2)(-{\pi}/{2},{\pi}/{2}) and the Q41Q_{41}’s |χ~41|2|\widetilde{\chi}_{41}|^{2} [Fig. 3(f)] implies the existence of the right edge mode for (π/2,3π/2)({\pi}/{2},{3\pi}/{2}). The small shift of the zero energy of the edge state is attributed to the existence of weak next-nearest-neighboring (NNN) hopping (with an average of about 0.70.7MHz) of our sample that slightly breaks the particle-hole symmetry, see details in [36]. Our experiments therefore verify the robustness of the topological zero-energy edge states in the commensurate off-diagonal AAH models.

Refer to caption
Figure 4: Band structure spectroscopy of generic commensurate off-diagonal AAH models with N=40N=40 for bλ=1/4b_{\lambda}={1}/{4}. (a) Experimental IφλI_{\varphi_{\lambda}} for λ=2\lambda=\sqrt{2} and u/(2π)=2.77u/(2\pi)=2.77MHz. The gap between two central bands closes, and no topological edge states between these two bands are observed. (b) Experimental IφλI_{\varphi_{\lambda}} for λ=1\lambda=1 and u/(2π)=3.35u/(2\pi)=3.35MHz. The two central bands are clearly observed gapped without edge modes in the regimes φλ(π/4,π/4)\varphi_{\lambda}\in(-{\pi}/{4},{\pi}/{4}) and (3π/4,5π/4)({3\pi}/{4},{5\pi}/{4}). (c) Normalized FT magnitudes of two boundary qubits (|χ~1|2+|χ~40|2)n.m.(|\widetilde{\chi}_{1}|^{2}+|\widetilde{\chi}_{40}|^{2})_{\textrm{n.m.}}, compared with the theoretical projected band structures (dashed curves). The topologically non-trivial zero-energy modes are observed between two central bands. (d) Four bulk qubits (j=13,15,26,32|χ~j|2)n.m.(\sum_{j=13,15,26,32}|\widetilde{\chi}_{j}|^{2})_{\textrm{n.m.}}, compared to the theoretical projected band structures (dashed curves). Four band crossing points are observed near φλ=π/4\varphi_{\lambda}={\pi}/{4}, 3π/4{3\pi}/{4}, 5π/4{5\pi}/{4}, and 7π/4{7\pi}/{4}.

Furthermore, the topological edge state can also be identified in real space by witnessing the localization of an edge excitation during its quantum walks (QWs) on the 1D qubit chain [29, 11], due to its main overlap with the edge state. We monitor the time evolution of the excitation probabilities PjP_{j} for all qubits during the QWs. For even sites, QWs of an excitation at either boundary qubit present localization for φλ=0\varphi_{\lambda}\!\!=\!\!0 [Fig. 3(g,h)] in the topological regime and dispersion for φλ=π\varphi_{\lambda}\!\!=\!\!\pi [Fig. 3(i,j)] in the trivial regime, respectively. In comparison, as shown in Fig. 3(k–n), the QWs of an excitation at Q1Q_{1} (Q41Q_{41}) shows localization (diffusion) for φλ=0\varphi_{\lambda}\!\!=\!\!0 and diffusion (localization) for φλ=π\varphi_{\lambda}\!=\!\pi. Thus, our experimental results assert that there always exists only one zero-energy mode localized at either edge in the commensurate off-diagonal AAH models for π\pi-flux with odd sites. Note that it is still challenging to observe these different behaviors of topological edge modes between even and odd sites in real materials or some other quantum simulating platforms without a fixed number of lattice sites. In our NISQ device, the individually addressable superconducting qubits assisted by Floquet engineering help to overcome these difficulties and show its potential for investigating various exotic topological phenomena.

As the π\pi-flux off-diagonal AAH model can be mapped to the Su-Schrieffer-Heeger (SSH) model [41], the off-diagonal AAH models as a new class of topological models are given by bλ=1/(2q)b_{\lambda}=1/(2q) with an integer q>1q>1 [19]. Here, we apply 40 qubits to experimentally investigate the generic off-diagonal AAH model for bλ=1/4b_{\lambda}={1}/{4} by tuning gj,j+1eff=u[1+λcos(2πbλj+φλ)]g_{j,j+1}^{\textrm{eff}}\!=\!u[1\!+\!\lambda\cos(2\pi b_{\lambda}j+\varphi_{\lambda})], with φλ\varphi_{\lambda} varying from 0 to 2π2\pi. This model has four energy bands, and the top and bottom bands are fully gapped, where the quantum Hall edge states are clearly exhibited from the measured band structure, see Fig. 4. By tuning λ=2\lambda\!=\!\sqrt{2}, we see that the central gap closes as theoretically predicted in [19], see Fig. 4(a), which is difficult to be realized with a small-scale quantum simulator. Then, we tune λ=1\lambda\!=\!1 and measure the band structure as shown in Fig. 4(b), where the central two bands are shown to have four band crossing points near φλ=π/4\varphi_{\lambda}\!=\!{\pi}/{4}, 3π/4{3\pi}/{4}, 5π/4{5\pi}/{4}, and 7π/4{7\pi}/{4}. Although the mid-gap is very small to observe, we can imply from the measured energy spectrum [Fig. 4(b)] that the central two bands are gapped in the regime (π/4,π/4)(-{\pi}/{4},{\pi}/{4}) and (3π/4,5π/4)({3\pi}/{4},{5\pi}/{4}); the topological edge states appear in the regime (π/4,3π/4)({\pi}/{4},{3\pi}/{4}) and (5π/4,7π/4)({5\pi}/{4},{7\pi}/{4}). To further analyze these two central bands, we separately study the edge and bulk states from the FT signals by only considering the boundary and bulk qubits, respectively. In Fig. 4(c), we plot the summation of the squared FT magnitudes of two boundary qubits Q1Q_{1} and Q40Q_{40} versus φλ\varphi_{\lambda}, which mainly shows the information for both the quantum Hall edges in the top and bottom gaps and the zero-energy edges between two central bands. We also illustrate in Fig. 4(d) the summed FT signals for selected bulk qubits Q13Q_{13}, Q15Q_{15}, Q26Q_{26}, and Q32Q_{32}, indicating the existence of four band crossing points. Note that the NNN hopping merely causes the shift of zero-energy edge states to mid-gap edges, which verifies the robustness of the topological properties of the commensurate off-diagonal AAH model.

In summary, we experimentally measure the celebrated Hofstadter butterfly energy spectra of up to 41 superconducting qubits and verify the existence of topological zero-energy edge modes in the gapless commensurate AAH models. We introduce multi-qubit Floquet engineering in superconducting circuits, which can be used to realize a wider range of models in condensed matter physics than AAH models, e.g., lattice gauge theories [42] and non-Hermitian systems [43]. In addition, we provide a general automatic calibration scheme for the devices with Floquet engineering (see details in [36]), which is also adaptable to other quantum simulating platforms. Our universal 1D hybrid analogue-digital quantum simulator shows the potential to use programmable NISQ device to investigate exotic topological phases of quantum matter that is still arduous to do in real materials.

Acknowledgements.
We thank S. K. Zhao for helpful discussions. This work was supported by the Synergetic Extreme Condition User Facility (SECUF). Devices were made at the Nanofabrication Facilities at Institute of Physics, CAS in Beijing. This work was supported by: the National Natural Science Foundation of China (Grant Nos. T2121001, 11934018, 12005155, 11904393, 92065114, 12204528, and 12274142), Key Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B0303030001, 2018B030326001), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000) and Beijing Natural Science Foundation (Grant No. Z200009), NTT Research, ARO (Grant No. W911NF-18-1-0358), JST (via the Q-LEAP, and the Moonshot R&D Grant No. JPMJMS2061), AOARD (Grant No. FA2386-20-1-4069), and FQXi (Grant No. FQXi-IAF19-06).

References

  • Harper [1955] P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London, Sect. A 68, 874 (1955).
  • Aubry and André [1980] S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc 3, 18 (1980).
  • Hofstadter [1976] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14, 2239 (1976).
  • Hatsugai and Kohmoto [1990] Y. Hatsugai and M. Kohmoto, Energy spectrum and the quantum Hall effect on the square lattice with next-nearest-neighbor hopping, Phys. Rev. B 42, 8282 (1990).
  • Anderson [1958] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
  • Kraus et al. [2012] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).
  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
  • Lahini et al. [2009] Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103, 013901 (2009).
  • Li et al. [2023] H. Li, Y.-Y. Wang, Y.-H. Shi, K. Huang, X. Song, G.-H. Liang, Z.-Y. Mei, B. Zhou, H. Zhang, J.-C. Zhang, S. Chen, S. P. Zhao, Y. Tian, Z.-Y. Yang, Z. Xiang, K. Xu, D. Zheng, and H. Fan, Observation of critical phase transition in a generalized Aubry-André-Harper model with superconducting circuits, npj Quantum Inform. 9, 40 (2023).
  • Xiang et al. [2022] Z.-C. Xiang, K. Huang, Y.-R. Zhang, T. Liu, Y.-H. Shi, C.-L. Deng, T. Liu, H. Li, G.-H. Liang, Z.-Y. Mei, H. Yu, G. Xue, Y. Tian, X. Song, Z.-B. Liu, K. Xu, D. Zheng, F. Nori, and H. Fan, Simulating Chern insulators on a superconducting quantum processor, arXiv:2207.11797  (2022).
  • Roushan et al. [2017] P. Roushan et al., Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science 358, 1175 (2017).
  • Ni et al. [2019] X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alù, E. Prodan, and A. B. Khanikaev, Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals, Commun. Phys. 2, 55 (2019).
  • Hangleiter et al. [2021] D. Hangleiter, I. Roth, J. Eisert, and P. Roushan, Precise Hamiltonian identification of a superconducting quantum processor, arXiv:2108.08319  (2021).
  • Dean et al. [2013] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature 497, 598 (2013).
  • Lu et al. [2021] X. Lu, B. Lian, G. Chaudhary, B. A. Piot, G. Romagnoli, K. Watanabe, T. Taniguchi, M. Poggio, A. H. MacDonald, B. A. Bernevig, and D. K. Efetov, Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle, PNAS 118, e2100006118 (2021).
  • Rozhkov et al. [2016] A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F. Nori, Electronic properties of graphene-based bilayer systems, Phys. Rep. 648, 1 (2016).
  • Weidemann et al. [2022] S. Weidemann, M. Kremer, S. Longhi, and A. Szameit, Topological triple phase transition in non-Hermitian Floquet quasicrystals, Nature 601, 354 (2022).
  • Ganeshan et al. [2013] S. Ganeshan, K. Sun, and S. Das Sarma, Topological zero-energy modes in gapless commensurate Aubry-André-Harper models, Phys. Rev. Lett. 110, 180403 (2013).
  • Semeghini et al. [2021] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. Wang T., D. Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar, A. Omran, S. Sachdev, A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin, Probing topological spin liquids on a programmable quantum simulator, Science 374, 1242 (2021).
  • Satzinger et al. [2021] K. J. Satzinger et al., Realizing topologically ordered states on a quantum processor, Science 374, 1237 (2021).
  • Mi et al. [2022] X. Mi et al., Noise-resilient edge modes on a chain of superconducting qubits, Science 378, 785 (2022).
  • Preskill [2018] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  • Georgescu et al. [2014] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
  • Daley et al. [2022] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller, Practical quantum advantage in quantum simulation, Nature 607, 667 (2022).
  • Leefmans et al. [2022] C. Leefmans, A. Dutt, J. Williams, L. Yuan, M. Parto, F. Nori, S. Fan, and A. Marandi, Topological dissipation in a time-multiplexed photonic resonator network, Nat. Phys. 18, 442 (2022).
  • Cheng et al. [2023] B. Cheng, X.-H. Deng, X. Gu, Y. He, G. Hu, P. Huang, J. Li, B.-C. Lin, D. Lu, Y. Lu, C. Qiu, H. Wang, T. Xin, S. Yu, M.-H. Yung, J. Zeng, S. Zhang, Y. Zhong, X. Peng, F. Nori, and D. Yu, Noisy intermediate-scale quantum computers, Front. Phys. 18, 21308 (2023).
  • Yan et al. [2019] Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364, 753 (2019).
  • Cai et al. [2019] W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P. Song, Z.-Y. Xue, Z.-q. Yin, S. Jia, and L. Sun, Observation of topological magnon insulator states in a superconducting circuit, Phys. Rev. Lett. 123, 080501 (2019).
  • Zhao et al. [2022] S. K. Zhao, Z.-Y. Ge, Z. Xiang, G. M. Xue, H. S. Yan, Z. T. Wang, Z. Wang, H. K. Xu, F. F. Su, Z. H. Yang, H. Zhang, Y.-R. Zhang, X.-Y. Guo, K. Xu, Y. Tian, H. F. Yu, D. N. Zheng, H. Fan, and S. P. Zhao, Probing operator spreading via Floquet engineering in a superconducting circuit, Phys. Rev. Lett. 129, 160602 (2022).
  • Denisov et al. [2014] S. Denisov, S. Flach, and P. Hänggi, Tunable transport with broken space-time symmetries, Phys. Rep. 538, 77 (2014).
  • Wu et al. [2018] Y. Wu, L.-P. Yang, M. Gong, Y. Zheng, H. Deng, Z. Yan, Y. Zhao, K. Huang, A. D. Castellano, W. J. Munro, K. Nemoto, D.-N. Zheng, C. P. Sun, Y.-x. Liu, X. Zhu, and L. Lu, An efficient and compact switch for quantum circuits, npj Quantum Inform. 4, 50 (2018).
  • Reagor et al. [2018] M. Reagor et al., Demonstration of universal parametric entangling gates on a multi-qubit lattice, Sci. Adv. 4, eaao360 (2018).
  • Lignier et al. [2007] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Arimondo, Dynamical control of matter-wave tunneling in periodic potentials, Phys. Rev. Lett. 99, 220403 (2007).
  • Eckardt [2017] A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices, Rev. Mod. Phys. 89, 011004 (2017).
  • [36] Supplementary Material is available at http://.
  • Satija and Naumis [2013] I. I. Satija and G. G. Naumis, Chern and Majorana modes of quasiperiodic systems, Phys. Rev. B 88, 054204 (2013).
  • DeGottardi et al. [2013] W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials, Phys. Rev. Lett. 110, 146404 (2013).
  • Thouless et al. [1982] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982).
  • Bansil et al. [2016] A. Bansil, H. Lin, and T. Das, Colloquium: Topological band theory, Rev. Mod. Phys. 88, 021004 (2016).
  • Su et al. [1979] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
  • Schweizer et al. [2019] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger, Floquet approach to 2\mathbb{Z}_{2} lattice gauge theories with ultracold atoms in optical lattices, Nat. Phys. 15, 1168 (2019).
  • Wu et al. [2019] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X. Rong, and J. Du, Observation of parity-time symmetry breaking in a single-spin system, Science 364, 878 (2019).