This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum properties in the four-node network

Yanwen Liang1 College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China    Fengli Yan1 [email protected] College of Physics, Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050024, China    Ting Gao2 [email protected] School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
Abstract

There are different preparable quantum states in different network structures. The four nodes as a whole has two situations: one is the four nodes in a plane, the other is the four nodes in the space. In this paper, we obtain some properties of the quantum states that can be prepared in four-node network structures. These include the properties of entropy, entanglement measure, rank and multipartite entangled states. These properties also mean that the network structures impose some constraints on the states that can be prepared in a four-node quantum network. In order to obtain these properties we also define nn-partite mutual information of the quantum system, which satisfies symmetry requirement.

pacs:
03.67.Mn, 03.65.Ud, 03.67.-a

I Introduction

By using quantum network one can exchange corresponding quantum information on different nodes through quantum channels, such as quantum entanglement 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 and quantum key distribution 15 ; 115 . Therefore, quantum network plays an important role in the study of quantum correlation 9 ; 10 ; 11 . The great progress has been made in the research and application of quantum network structure and quantum entangled states prepared in the quantum network in both theory and experiment 12 ; 13 ; 14 ; 16 ; 17 ; 18 . Of course, the practical application of quantum network technologies may also affect the real life in the future.

In the network system, quantum states are distributed to different nodes 12 ; 13 . It is assumed that sources are independent in the quantum network. It means different sources are separable. However, different particles in the same source can be entangled 14 ; 15 , so there are a lot of situations. For example, one can has the situation in which a source can only generate two particle entangled states. Of course, there also exists the situation in which three particle entangled states can be produced by the source.

Apparently, the quantum system consisting of different number particles have many quantum network structures and a lots of different preparable states 16 ; 17 . This paper only studies several different quantum network structures of four nodes. The structure of four-node quantum network has two different situations: one is the network structure of four nodes in a plane, the other is the network structure of four nodes in the space. We assume that the sources do not intersect. Under the assumption of no intersection of sources, the four nodes in a plane have only one quadrangular network structure, while the four nodes in the space have two kinds of network structures. Different quantum states can be prepared in different network structures. Based on the pioneer work in three nodes 18 , we will mainly discuss the network structures in the above three special situations, and deduce some properties and constraints of the quantum states that can be prepared.

The paper is organized as follows. In section II we define nn-partite mutual information in quantum systems and obtain some properties of states prepared in a quadrangular network structure. The properties of quantum states prepared in two kinds of network structures with four nodes in the space are mainly investigated in section III. Among them, the two network structures of four nodes in the space with six sources, where each source generates the two-partite entangled state, and four sources, where every source produces three-partite entangled states are discussed respectively. A summary is given in section IV.

II Four nodes in a plane

Let us discuss the situation in which four nodes are in a plane. This network is called independent quadrangular network (IQN). As shown in Fig.1(a), it has four nodes, namely A, B, C, and D, which are formed by pairing of two particles in each of the four sources ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta} 19 . The states of two particles in each source are the two-partite entangled states 20 ; 21 ; 22 . ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta} is shared respectively by two nodes of A, B, C, and D. It means that each of the four nodes A, B, C, and D receives two particles. Exactly, A receives two particles respectively from the source ρα\rho_{\alpha} and ρβ\rho_{\beta}; B receives the two particles respectively from the source ρβ\rho_{\beta} and ργ\rho_{\gamma}; C receives two particles respectively from the source ργ\rho_{\gamma} and ρδ\rho_{\delta}; D receives two particles respectively from the source ρδ\rho_{\delta} and ρα\rho_{\alpha}. The two particles at the each node can be applied by a local unitary matrix. The four local unitary matrices are denoted by UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D} respectively.

Refer to caption
Figure 1: Quadrangular network. (a) An independent quadrangular network (IQN) in which each source is a two-partite entangled state. (b) A classically correlated quadrangular network (CQN) in which every source and every node are classically correlated by sharing the random variable λ\lambda. (c) The four-partite quantum states which can not be generated in IQN and CQN.

We use ΔIQN\Delta_{\mathrm{IQN}} to represent the set of quantum states that can be prepared in an independent quadrangular network structure shown in Fig.1(a). Obviously, the quantum state ρ\rho in the set ΔIQN\Delta_{\mathrm{IQN}} can be written as

ρ=(UAUBUCUD)(ραρβργρδ)(UAUBUCUD).\displaystyle\rho=(U_{A}\otimes U_{B}\otimes U_{C}\otimes U_{D})(\rho_{\alpha}\otimes\rho_{\beta}\otimes\rho_{\gamma}\otimes\rho_{\delta})(U_{A}^{{\dagger}}\otimes U_{B}^{{\dagger}}\otimes U_{C}^{{\dagger}}\otimes U_{D}^{{\dagger}}). (1)

Here, UAU_{A} only acts on the system consisting of a particle of ρα\rho_{\alpha} and a particle of ρδ\rho_{\delta}, it does not act on the other particles which are not at the node A at same time. Similarly, other unitary matrices cannot act on the states of ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta} at same time.

Next we will discuss Von Neumann entropy of the quantum states in the set ΔIQN\Delta_{\mathrm{IQN}}. In this paper, entropy refers to Von Neumann entropy.

Because entropy S(ρ)S(\rho) of quantum state ρ\rho is invariant under unitary transformation, and additive on tensor products, for the quantum states shown by Eq.(1), we have

S(ρ)=S(ρα)+S(ρβ)+S(ργ)+S(ρδ).S(\rho)=S(\rho_{\alpha})+S(\rho_{\beta})+S(\rho_{\gamma})+S(\rho_{\delta}).

The three-partite entropy is extended to

S(ABC)=S(trDρα)+S(ρβ)+S(ργ)+S(trDρδ),S(ABC)=S(\mathrm{tr}_{D}\rho_{\alpha})+S(\rho_{\beta})+S(\rho_{\gamma})+S(\mathrm{tr}_{D}\rho_{\delta}),

the two-partite entropy is extended to

S(AB)=S(trDρα)+S(ρβ)+S(trCργ),S(AB)=S(\mathrm{tr}_{D}\rho_{\alpha})+S(\rho_{\beta})+S(\mathrm{tr}_{C}\rho_{\gamma}),

the one-partite entropy is extended to

S(A)=S(trDρα)+S(trBρβ),S(A)=S(\mathrm{tr}_{D}\rho_{\alpha})+S(\mathrm{tr}_{B}\rho_{\beta}),

and similarly for others.

Based on entropy, one can study the mutual information of the quantum system. The two-partite quantum mutual information of a quantum system composed of X and Y is defined as

I2(X:Y)=S(X)S(X|Y)=S(X)+S(Y)S(XY),I_{2}(X:Y)=S(X)-S(X|Y)=S(X)+S(Y)-S(XY), (2)

where S(X|Y)S(X|Y) stands for conditional entropy and S(XY)S(XY) is the joint entropy. Three-partite quantum mutual information measuring the common information of subsystems X, Y, and Z, was defined as 18

I3(X:Y:Z)=I2(X:Y)+I2(X:Z)I2(X:YZ)=S(X)+S(Y)+S(Z)+S(XYZ)S(XY)S(XZ)S(YZ).I_{3}(X:Y:Z)=I_{2}(X:Y)+I_{2}(X:Z)-I_{2}(X:YZ)=S(X)+S(Y)+S(Z)+S(XYZ)-S(XY)-S(XZ)-S(YZ). (3)

We define four-partite quantum mutual information of the quantum system composed of T, X, Y, and Z as

I4(T:X:Y:Z)=I3(T:X:Y)+I3(T:X:Z)I3(T:X:YZ).\displaystyle I_{4}(T:X:Y:Z)=I_{3}(T:X:Y)+I_{3}(T:X:Z)-I_{3}(T:X:YZ). (4)

By substituting the formula of the three-partite quantum mutual information into the four-partite quantum mutual information, one can obtain

I4(A:B:C:D)=\displaystyle I_{4}(A:B:C:D)= S(A)+S(B)+S(C)+S(D)+S(ABC)+S(ABD)+S(BCD)+S(ACD)\displaystyle S(A)+S(B)+S(C)+S(D)+S(ABC)+S(ABD)+S(BCD)+S(ACD) (5)
S(AB)S(AC)S(AD)S(BC)S(BD)S(CD)S(ABCD)\displaystyle-S(AB)-S(AC)-S(AD)-S(BC)-S(BD)-S(CD)-S(ABCD)
=\displaystyle= x1x2,\displaystyle x_{1}-x_{2},

where

x1=S(A)+S(B)+S(C)+S(D)+S(ABC)+S(ABD)+S(BCD)+S(ACD),x_{1}=S(A)+S(B)+S(C)+S(D)+S(ABC)+S(ABD)+S(BCD)+S(ACD),

and

x2=S(AB)+S(AC)+S(AD)+S(BC)+S(BD)+S(CD)+S(ABCD).x_{2}=S(AB)+S(AC)+S(AD)+S(BC)+S(BD)+S(CD)+S(ABCD).

Obviously, the four-partite quantum mutual information is invariant under arbitrary permutation of the subsystems.

Furthermore, we define the nn-partite quantum mutual information of the system consisting of subsystems X1,X2,,XnX_{1},X_{2},\cdots,X_{n}. We use σX1X2Xn\sigma_{X_{1}X_{2}\cdots X_{n}} to express a quantum state of the system. We define the nn-partite quantum mutual information of the system as

In(X1:X2::Xn)=(1)11i=1nS(σXi)+(1)211i<jnS(σXiXj)+(1)311i<j<knS(σXiXjXk)+(1)411i<j<k<lnS(σXiXjXkXl)++(1)n1S(σX1X2Xn),\begin{array}[]{ll}I_{n}(X_{1}:X_{2}:\cdots:X_{n})=&(-1)^{1-1}\sum_{i=1}^{n}S(\sigma_{X_{i}})+(-1)^{2-1}\sum_{1\leq i<j\leq n}S(\sigma_{X_{i}X_{j}})+(-1)^{3-1}\sum_{1\leq i<j<k\leq n}S(\sigma_{X_{i}X_{j}X_{k}})\\ &+(-1)^{4-1}\sum_{1\leq i<j<k<l\leq n}S(\sigma_{X_{i}X_{j}X_{k}X_{l}})+\cdots+(-1)^{n-1}S(\sigma_{X_{1}X_{2}\cdots X_{n}}),\\ \end{array} (6)

where σXiXjXl=trXqXrXtσX1X2Xn\sigma_{X_{i}X_{j}\cdots X_{l}}=\mathrm{tr}_{X_{q}X_{r}\cdots X_{t}}\sigma_{X_{1}X_{2}\cdots X_{n}} is the reduced density matrix for the subsystems Xi,Xj,,XlX_{i},X_{j},\cdots,X_{l} and the set {q,r,,t}={1,2,,n}{i,j,,l}.\{q,r,\cdots,t\}=\{1,2,\cdots,n\}\setminus\{i,j,\cdots,l\}. Clearly, In(X1:X2::Xn)I_{n}(X_{1}:X_{2}:\cdots:X_{n}) is symmetry about the subsystems.

For the quantum states in the set IQN\triangle_{\mathrm{IQN}}, it is easy to obtain the following result.

Conclusion 1-1. I4(A:B:C:D)=0I_{4}(A:B:C:D)=0 for any ρIQN\rho\in\triangle_{\mathrm{IQN}}.

Now we discuss the effect of the local channels on the four-partite quantum mutual information. Suppose that there are three local channels ΛA\Lambda_{A}, ΛB\Lambda_{B}, and ΛC\Lambda_{C} acting on nodes A, B, and C respectively. The four-partite quantum mutual information of the quantum system is I4[(ΛAΛBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]. Here IDI_{D} is the identity operator on the node DD, and ρIQN\rho\in\triangle_{\mathrm{IQN}}.

Clearly, in this case for two particles in D we have S(D)=S(Dα)+S(Dδ)S(D)=S(D_{\alpha})+S(D_{\delta}). By considering the actions of the local quantum channels we can get

x1=\displaystyle x_{1}= S(AαAβ)+S(BβBγ)+S(CγCδ)+S(Dδ)+S(Dα)+S(AαAβBβBγCγCδ)\displaystyle S(A_{\alpha}A_{\beta})+S(B_{\beta}B_{\gamma})+S(C_{\gamma}C_{\delta})+S(D_{\delta})+S(D_{\alpha})+S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma}C_{\delta})
+S(AαAβDα)+S(CγCδDδ)+S(BβBγCγCδDδ)+S(Dα)\displaystyle+S(A_{\alpha}A_{\beta}D_{\alpha})+S(C_{\gamma}C_{\delta}D_{\delta})+S(B_{\beta}B_{\gamma}C_{\gamma}C_{\delta}D_{\delta})+S(D_{\alpha})
+S(AαAβBβBγDα)+S(Dδ),\displaystyle+S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}D_{\alpha})+S(D_{\delta}),
x2=\displaystyle x_{2}= S(AαAβBβBγ)+S(AαAβ)+S(CγCδ)+S(AαAβDα)+S(Dδ)\displaystyle S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma})+S(A_{\alpha}A_{\beta})+S(C_{\gamma}C_{\delta})+S(A_{\alpha}A_{\beta}D_{\alpha})+S(D_{\delta})
+S(BβBγCγCδ)+S(BβBγ)+S(Dα)+S(Dδ)+S(CγCδDδ)+S(Dα)\displaystyle+S(B_{\beta}B_{\gamma}C_{\gamma}C_{\delta})+S(B_{\beta}B_{\gamma})+S(D_{\alpha})+S(D_{\delta})+S(C_{\gamma}C_{\delta}D_{\delta})+S(D_{\alpha})
+S(DαAαAβBβBγCγCδDδ).\displaystyle+S(D_{\alpha}A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma}C_{\delta}D_{\delta}).

Therefore, we derive that

I4[(ΛAΛBΛCID)ρ]\displaystyle I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]
=\displaystyle= x1x2\displaystyle x_{1}-x_{2}
=\displaystyle= S(AαAβBβBγCγCδ)+S(AαAβBβBγDα)+S(BβBγCγCδDδ)\displaystyle S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma}C_{\delta})+S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}D_{\alpha})+S(B_{\beta}B_{\gamma}C_{\gamma}C_{\delta}D_{\delta})
S(AαAβBβBγ)S(BβBγCγCδ)S(AαAβBβBγCγCδDδDα).\displaystyle-S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma})-S(B_{\beta}B_{\gamma}C_{\gamma}C_{\delta})-S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma}C_{\delta}D_{\delta}D_{\alpha}).
=\displaystyle= S(ABC)+S(ABDα)+S(BCDδ)S(AB)S(BC)S(ABCDδDα).\displaystyle S(ABC)+S(ABD_{\alpha})+S(BCD_{\delta})-S(AB)-S(BC)-S(ABCD_{\delta}D_{\alpha}).

Hence, generally speaking, one can not determine whether I4I_{4} is larger than zero or not for the quantum state (ΛAΛBΛCID)ρ(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho.

However, for two adjacent local channels 24 ; 25 ; 26 , the four-partite quantum mutual information of the quantum system becomes I4[(ΛAΛBICID)ρ]I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes I_{C}\otimes I_{D})\rho]. For this case, one has

I4[(ΛAΛBICID)ρ]\displaystyle I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes I_{C}\otimes I_{D})\rho]
=\displaystyle= S(AαAβBβBγCγ)+S(AαAβBβBγDα)S(AαAβBβBγ)S(AαAβBβBγCγDα)\displaystyle S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma})+S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}D_{\alpha})-S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma})-S(A_{\alpha}A_{\beta}B_{\beta}B_{\gamma}C_{\gamma}D_{\alpha})
=\displaystyle= S(ABCγ)+S(ABDα)S(AB)S(ABCγDα).\displaystyle S(ABC_{\gamma})+S(ABD_{\alpha})-S(AB)-S(ABC_{\gamma}D_{\alpha}).

By using the strong subadditivity inequality

S(XY)+S(XZ)S(X)+S(XYZ)S(XY)+S(XZ)\geq S(X)+S(XYZ) (7)

for three quantum systems X,Y,Z,X,Y,Z, it is easy to obtain that the four-partite quantum mutual information of quantum system satisfies I4[(ΛAΛBICID)ρ]0I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes I_{C}\otimes I_{D})\rho]\geq 0.

For two non-adjacent local channels, the four-partite quantum mutual information of the quantum system turns out to be I4[(ΛAIBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes I_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]. In this case one can deduce

I4[(ΛAIBΛCID)ρ]=S(ABβDα)+S(BγCDδ)S(ABβDαBγCDδ).I_{4}[(\Lambda_{A}\otimes I_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]=S(AB_{\beta}D_{\alpha})+S(B_{\gamma}CD_{\delta})-S(AB_{\beta}D_{\alpha}B_{\gamma}CD_{\delta}). (8)

By the subadditivity inequality

S(X)+S(Y)S(XY)S(X)+S(Y)\geq S(XY) (9)

for two quantum systems X,YX,Y, we arrive at that the four-partite quantum mutual information of the quantum system I4[(ΛAIBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes I_{B}\otimes\Lambda_{C}\otimes I_{D})\rho] is still large than zero. Combining the above two cases we have the following result.

Conclusion 1-2. For any pair of local channels one finds that the four-partite quantum mutual information for the quantum states obtained by acting the pair of the local quantum channels on the quantum state in IQN\triangle_{\mathrm{IQN}} cannot be rendered negative.

Although in general we can not decide I4[(ΛAΛBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho] is large or not than zero, however, we have the following conclusion.

Conclusion 1-3. The four-partite quantum mutual information I4[(ΛAΛBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho] are bounded as

2I2(A:D)+2I2(B:D)+2I2(C:D)[I2(AB:D)+I2(BC:D)+I2(AC:D)]\displaystyle 2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)-[I_{2}(AB:D)+I_{2}(BC:D)+I_{2}(AC:D)]
\displaystyle\leq I4[(ΛAΛBΛCID)ρ]\displaystyle I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]
\displaystyle\leq I2(ABC:D)[I2(A:D)+I2(B:D)+I2(C:D)]\displaystyle I_{2}(ABC:D)-[I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)]

and

2I2(A:D)+2I2(B:D)+2I2(C:D)[I2(AB:D)+I2(BC:D)+I2(AC:D)]0,\displaystyle 2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)-[I_{2}(AB:D)+I_{2}(BC:D)+I_{2}(AC:D)]\leq 0, (11)
I2(ABC:D)[I2(A:D)+I2(B:D)+I2(C:D)]0.\displaystyle I_{2}(ABC:D)-[I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)]\geq 0. (12)

Here ρ\rho is a quantum state in the set ΔIQN\Delta_{\mathrm{IQN}}.

For detailed proof of above conclusion please refer to Appendix A.

As there exists quantum entanglement in Fig. 1, so the entanglement measure ε[σ]\varepsilon[\sigma] should be introduced. The entanglement measure should satisfy three requirements: (1) if the quantum state is separable, the entanglement measure will disappear; (2) under local operation and classical communication, the average entanglement measure does not increase; (3) under local unitary transformation, the entanglement measure does not change. For present situation, we also require that the entanglement measure is additive on tensor products, that is

ε[σ1σ2σ3σ4]=ε[σ1]+ε[σ2]+ε[σ3]+ε[σ4].\displaystyle\varepsilon[\sigma_{1}\otimes\sigma_{2}\otimes\sigma_{3}\otimes\sigma_{4}]=\varepsilon[\sigma_{1}]+\varepsilon[\sigma_{2}]+\varepsilon[\sigma_{3}]+\varepsilon[\sigma_{4}]. (13)

Furthermore, we require the entanglement measure satisfies the monogamy relation 23 ,

εT|X[σTX]+εT|Y[σTY]+εT|Z[σTZ]εT|XYZ[σTXYZ],\displaystyle\varepsilon_{T|X}[\sigma_{TX}]+\varepsilon_{T|Y}[\sigma_{TY}]+\varepsilon_{T|Z}[\sigma_{TZ}]\leq\varepsilon_{T|XYZ}[\sigma_{TXYZ}], (14)

where σTX=trYZσTXYZ\sigma_{TX}=\mathrm{tr}_{YZ}\sigma_{TXYZ}, σTY=trXZσTXYZ\sigma_{TY}=\mathrm{tr}_{XZ}\sigma_{TXYZ}. Clearly, not arbitrary entanglement measure meets the above requirements, however the squashed entanglement does 35 ; 36 .

For the quantum state (1), as the local unitary matrices do not change the entanglement between the parties, we have

εA|BCD=εAαAβ|BβBγCγCδDδDα=εAα|Dα+εAβ|Bβ=εA|D+εA|B,\varepsilon_{A|BCD}=\varepsilon_{A_{\alpha}A_{\beta}|B_{\beta}B_{\gamma}C_{\gamma}C_{\delta}D_{\delta}D_{\alpha}}=\varepsilon_{A_{\alpha}|D_{\alpha}}+\varepsilon_{A_{\beta}|B_{\beta}}=\varepsilon_{A|D}+\varepsilon_{A|B}, (15)

where AαA_{\alpha} stands for a particle that AA receives from ρα\rho_{\alpha}, similarly for others. Therefore for the entanglement measure ε[σ]\varepsilon[\sigma] satisfying the above requirements, we have the following conclusion.

Conclusion 1-4. For any ρIQN\rho\in\triangle_{\mathrm{IQN}}, εT|XYZ[ρ]=εT|X[trYZρ]+εT|Z[trXYρ]\varepsilon_{T|XYZ}[\rho]=\varepsilon_{T|X}[\mathrm{tr}_{YZ}\rho]+\varepsilon_{T|Z}[\mathrm{tr}_{XY}\rho] holds for all bipartitions, such as A|BCDA|BCD, B|ACDB|ACD, C|ABDC|ABD, and D|ABCD|ABC.

After that we discuss the ranks of the global state (1) and its marginals. Because the unitary matrices UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D} don’t change the rank of the global state, for all ρΔIQN\rho\in\Delta_{\mathrm{IQN}}, we have the rank of quantum state ρ\rho

rk(ρ)=rk(ρα)rk(ρβ)rk(ργ)rk(ρδ)=rαrβrγrδ,\mathrm{rk}(\rho)=\mathrm{rk}(\rho_{\alpha})\mathrm{rk}(\rho_{\beta})\mathrm{rk}(\rho_{\gamma})\mathrm{rk}(\rho_{\delta})=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta},

where rα=rk(ρα)r_{\alpha}=\mathrm{rk}(\rho_{\alpha}) is the rank of quantum state ρα\rho_{\alpha}, similarly for others. The rank of the local reduced state is

rk(trBCDρ)=rk(trDρα)rk(trBρβ)=rαArβA,\mathrm{rk}(\mathrm{tr}_{BCD}\rho)=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{B}\rho_{\beta})=r_{\alpha}^{A}r_{\beta}^{A},

the rank of the two-partite reduced state is

rk(trCDρ)=rk(trDρα)rk(trCDρβ)rk(trCργ)=rαArβrγB,\mathrm{rk}(\mathrm{tr}_{CD}\rho)=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{CD}\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{C}\rho_{\gamma})=r_{\alpha}^{A}r_{\beta}r_{\gamma}^{B},

the rank of the three-partite reduced state is

rk(trDρ)=rk(trDρα)rk(ρβ)rk(ργ)rk(trDρδ)=rαArβrγrδC.\mathrm{rk}(\mathrm{tr}_{D}\rho)=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha})\mathrm{rk}(\rho_{\beta})\mathrm{rk}(\rho_{\gamma})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\delta})=r_{\alpha}^{A}r_{\beta}r_{\gamma}r_{\delta}^{C}.

Here rαA=rk(trDρα)r_{\alpha}^{A}=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha}), similarly for others.

Then we arrive at

rk(ρ)=rαrβrγrδ,rk(trBCDρ)=rαArβA,rk(trCDAρ)=rβBrγB,rk(trDABρ)=rγCrδC,rk(trABCρ)=rαDrδD,rk(trCDρ)=rαArβrγB,rk(trCAρ)=rαDrβBrγBrδD,rk(trCBρ)=rαrβArδD,rk(trDAρ)=rβBrγrδC,rk(trDBρ)=rαArβArγCrδC,rk(trABρ)=rαDrγCrδ,rk(trAρ)=rαDrβBrγrδ,rk(trBρ)=rαrβArγCrδ,rk(trCρ)=rαrβrγBrδD,rk(trDρ)=rαArβrγrδC.\begin{array}[]{llllll}\mathrm{rk}(\rho)=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta},&&&\\ \mathrm{rk}(\mathrm{tr}_{BCD}\rho)=r_{\alpha}^{A}r_{\beta}^{A},&\quad\mathrm{rk}(\mathrm{tr}_{CDA}\rho)=r_{\beta}^{B}r_{\gamma}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{DAB}\rho)=r_{\gamma}^{C}r_{\delta}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{ABC}\rho)=r_{\alpha}^{D}r_{\delta}^{D},\\ \mathrm{rk}(\mathrm{tr}_{CD}\rho)=r_{\alpha}^{A}r_{\beta}r_{\gamma}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{CA}\rho)=r_{\alpha}^{D}r_{\beta}^{B}r_{\gamma}^{B}r_{\delta}^{D},&\quad\mathrm{rk}(\mathrm{tr}_{CB}\rho)=r_{\alpha}r_{\beta}^{A}r_{\delta}^{D},&\\ \mathrm{rk}(\mathrm{tr}_{DA}\rho)=r_{\beta}^{B}r_{\gamma}r_{\delta}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{DB}\rho)=r_{\alpha}^{A}r_{\beta}^{A}r_{\gamma}^{C}r_{\delta}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{AB}\rho)=r_{\alpha}^{D}r_{\gamma}^{C}r_{\delta},&\\ \mathrm{rk}(\mathrm{tr}_{A}\rho)=r_{\alpha}^{D}r_{\beta}^{B}r_{\gamma}r_{\delta},&\quad\mathrm{rk}(\mathrm{tr}_{B}\rho)=r_{\alpha}r_{\beta}^{A}r_{\gamma}^{C}r_{\delta},&\quad\mathrm{rk}(\mathrm{tr}_{C}\rho)=r_{\alpha}r_{\beta}r_{\gamma}^{B}r_{\delta}^{D},&\quad\mathrm{rk}(\mathrm{tr}_{D}\rho)=r_{\alpha}^{A}r_{\beta}r_{\gamma}r_{\delta}^{C}.\end{array} (16)

If the Hilbert space of every particle is d-dimensional, we have rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta} [1,d2]\in[1,d^{2}], rαAr_{\alpha}^{A}, rαDr_{\alpha}^{D}, rβAr_{\beta}^{A}, rβBr_{\beta}^{B}, rγBr_{\gamma}^{B}, rγCr_{\gamma}^{C}, rδCr_{\delta}^{C}, rδDr_{\delta}^{D} [1,d]\in[1,d]. Hence one has the conclusion as follows.

Conclusion 1-5. For ρIQN\rho\in\triangle_{\mathrm{IQN}} there exist integers rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta}[1,d2]\in[1,d^{2}], rαAr_{\alpha}^{A}, rαDr_{\alpha}^{D}, rβAr_{\beta}^{A}, rβBr_{\beta}^{B}, rγBr_{\gamma}^{B}, rγCr_{\gamma}^{C}, rδCr_{\delta}^{C}, rδDr_{\delta}^{D}[1,d]\in[1,d], which satisfy rank relationship Eq. (16).

Next we discuss the scenario where the four nodes and the four sources are classically correlated 18 . As shown in Fig. 1(b), we assume that every source and every node are correlated by sharing the random variable λ\lambda 18 . In this case, the quantum states are called classically correlated states, which read

ρ=\displaystyle\rho= dλp(λ)(UA(λ)UB(λ)UC(λ)UD(λ))(ρα(λ)ρβ(λ)ργ(λ)ρδ(λ)\displaystyle\int\texttt{d}\lambda p(\lambda)(U_{A}(\lambda)\otimes U_{B}(\lambda)\otimes U_{C}(\lambda)\otimes U_{D}(\lambda))(\rho_{\alpha}(\lambda)\otimes\rho_{\beta}(\lambda)\otimes\rho_{\gamma}(\lambda)\otimes\rho_{\delta}(\lambda) (17)
(UA(λ)UB(λ)UC(λ)UD(λ)).\displaystyle(U_{A}^{{\dagger}}(\lambda)\otimes U_{B}^{{\dagger}}(\lambda)\otimes U_{C}^{{\dagger}}(\lambda)\otimes U_{D}^{{\dagger}}(\lambda)).

Here p(λ)p(\lambda) is a probability distribution function of the random variable λ\lambda. We use CQN to denote this classically correlated quadrangular network, ΔCQN\Delta_{\mathrm{CQN}} to represent the set of quantum states that can be prepared in CQN. In other words, a quantum state ρΔCQN\rho\in\Delta_{\mathrm{CQN}} can be written as ρ=λpλρλ\rho=\sum_{\lambda}p_{\lambda}\rho_{\lambda}, where ρλΔIQN\rho_{\lambda}\in\Delta_{\mathrm{IQN}}, pλp_{\lambda} is a probability distribution.

Based on the properties of the ranks of quantum states, we will verify that there are no four-qubit genuine multipartite entangled states in the set ΔCQN\Delta_{\mathrm{CQN}}. Here four-qubit genuine multipartite entangled state refers to it can be embedded in larger dimensional systems. Evidently, if a four-qubit genuine multipartite entangled state is pure, then the rank of the global state ρ\rho is equal to 1 27 ; 28 ; 29 and it is entangled along every bipartition. Considering the Schmidt decomposition of the four-qubit genuine multipartite entangled state, one has that all single node reduced state has rank 2. However, as a matter of fact, when each source in the IQN is entangled among two partitions. According to the Schmidt decomposition, the rank of the reduced state of a particle in each source is 2. Therefore, in IQN as shown in Fig. 1(a), with sources which prepare 2-qubit entangled state, the local rank of the reduced state at each node is 4. So it is impossible to prepare four-qubit genuine multipartite entangled states in IQN. Similarly, we can show that the statement holds for other cases of resources. Furthermore, because four-qubit genuine entangled states need pure four-qubit genuine multipartite entangled states 30 , so it is also impossible to prepare four-qubit genuine multipartite entangled states in CQN. Hence we arrive at the following conclusion.

Conclusion 1-6. No four-qubit genuine multipartite entangled state can be prepared in IQN and CQN.

Fig. 1(c) shows the four-partite quantum states which can not be generated in IQN and CQN.

III Four nodes in the space

Clearly, four nodes in the space form a tetrahedron. By the assumption of no intersection of sources, in this case there are two different quantum network structures: one is the triangular cone network structure 1 with six two-partite sources as shown in Fig. 2(a); the other is the triangular cone network structure 2 with four three-partite sources as illustrated in Fig. 3(a).

We first study the triangular cone network structure 1. It has four nodes, namely A, B, C, and D. These four nodes are formed by pairs of two particles in each of the six sources ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, ρδ\rho_{\delta}, ρθ\rho_{\theta}, and ρτ\rho_{\tau}. Two particles in each source are in two-partite entangled states. ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, ρδ\rho_{\delta}, ρθ\rho_{\theta} and ρτ\rho_{\tau} are shared by {A,B}\{A,B\}, {B,D}\{B,D\}, {A,D}\{A,D\}, {A,C}\{A,C\}, {C,D}\{C,D\}, {B,C}\{B,C\}, respectively. Four nodes do not share common information. Each of four nodes A, B, C, and D receives three particles, for example, A{A} receives three particles from sources ρα\rho_{\alpha}, ργ\rho_{\gamma}, and ρδ\rho_{\delta}, similarly for others. One can apply a local unitary matrix to the three received particles. Four local unitary matrices are denoted by UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D} respectively. The global quantum state in an independent triangular cone network structure 1 (ITCN1) is denoted by ρ\rho. We use ΔITCN1\Delta_{\mathrm{ITCN1}} to represent the set of quantum states that can be prepared in ITCN1.

Refer to caption
Figure 2: Triangular cone network structure 1. (a) Independent triangular cone network structure 1 (ITCN1), where each of these sources is a two-partite entangled state. (b) Classically correlated triangular cone network structure 1 (CTCN1), where each source and each node are classically correlated by sharing the random variable λ\lambda. (c) The four-partite quantum states which can not be prepared in ITCN1 and CTCN1.

Apparently, the quantum states prepared in ITCN1 read

ρ=(UAUBUCUD)(ραρβργρδρθρτ)(UAUBUCUD).\rho=(U_{A}\otimes U_{B}\otimes U_{C}\otimes U_{D})(\rho_{\alpha}\otimes\rho_{\beta}\otimes\rho_{\gamma}\otimes\rho_{\delta}\otimes\rho_{\theta}\otimes\rho_{\tau})(U_{A}^{{\dagger}}\otimes U_{B}^{{\dagger}}\otimes U_{C}^{{\dagger}}\otimes U_{D}^{{\dagger}}). (18)

By using that entropy is invariant under unitary transformation, and for the tensor product state, entropy has additivity, we have the entropy of the quantum state (18)

S(ρ)=S(ρα)+S(ρβ)+S(ργ)+S(ρδ)+S(ρθ)+S(ρτ).S(\rho)=S(\rho_{\alpha})+S(\rho_{\beta})+S(\rho_{\gamma})+S(\rho_{\delta})+S(\rho_{\theta})+S(\rho_{\tau}).

The three-partite entropy, the two-partite entropy, the one-partite entropy are extended to

S(ABC)=S(ρα)+S(trDρβ)+S(trDργ)+S(ρδ)+S(trDρθ)+S(ρτ),S(ABC)=S(\rho_{\alpha})+S(\mathrm{tr}_{D}\rho_{\beta})+S(\mathrm{tr}_{D}\rho_{\gamma})+S(\rho_{\delta})+S(\mathrm{tr}_{D}\rho_{\theta})+S(\rho_{\tau}),
S(AB)=S(ρα)+S(trDρβ)+S(trDργ)+S(trCρδ)+S(trCρτ),S(AB)=S(\rho_{\alpha})+S(\mathrm{tr}_{D}\rho_{\beta})+S(\mathrm{tr}_{D}\rho_{\gamma})+S(\mathrm{tr}_{C}\rho_{\delta})+S(\mathrm{tr}_{C}\rho_{\tau}),
S(A)=S(trBρα)+S(trDργ)+S(trCρδ),S(A)=S(\mathrm{tr}_{B}\rho_{\alpha})+S(\mathrm{tr}_{D}\rho_{\gamma})+S(\mathrm{tr}_{C}\rho_{\delta}),

respectively, and similarly for the other cases. It is easy to obtain that I4(A:B:C:D)=0I_{4}(A:B:C:D)=0. Hence we have the following result.

Conclusion 2-1-1. For any ρITCN1\rho\in\triangle_{\mathrm{ITCN1}}, the four-partite quantum mutual information I4(A:B:C:D)I_{4}(A:B:C:D) of quantum state ρ\rho is zero.

Now we discuss entanglement measure. We require the entanglement measure ε\varepsilon satisfies the requirements stated in section II. It is easy to deduce

εA|BCD=εAαAγAδ|BαBβBτCδCθCτDβDγDθ=εAα|Bα+εAγ|Dγ+εAδ|Cδ=εA|B+εA|D+εA|C.\begin{array}[]{ll}\varepsilon_{A|BCD}&=\varepsilon_{A_{\alpha}A_{\gamma}A_{\delta}|B_{\alpha}B_{\beta}B_{\tau}C_{\delta}C_{\theta}C_{\tau}D_{\beta}D_{\gamma}D_{\theta}}=\varepsilon_{A_{\alpha}|B_{\alpha}}+\varepsilon_{A_{\gamma}|D_{\gamma}}+\varepsilon_{A_{\delta}|C_{\delta}}=\varepsilon_{A|B}+\varepsilon_{A|D}+\varepsilon_{A|C}.\\ \end{array} (19)

So the following result holds.

Conclusion 2-1-2. For any ρITCN1\rho\in\triangle_{\mathrm{ITCN1}}, we have that εT|XYZ[ρ]=εT|X[trYZρ]+εT|Y[trXZρ]+εT|Z[trXYρ]\varepsilon_{T|XYZ}[\rho]=\varepsilon_{T|X}[\mathrm{tr}_{YZ}\rho]+\varepsilon_{T|Y}[\mathrm{tr}_{XZ}\rho]+\varepsilon_{T|Z}[\mathrm{tr}_{XY}\rho], for all the bipartitions, such as A|BCDA|BCD, B|ACDB|ACD, C|ABDC|ABD, and D|ABCD|ABC.

Later on we turn our attention to the rank of the quantum states. Because the unitary matrices UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D} don’t change the rank of the whole quantum system, for all ρΔITCN1\rho\in\Delta_{\mathrm{ITCN1}}, we have the rank of the quantum state ρ\rho,

rk(ρ)=rk(ρα)rk(ρβ)rk(ργ)rk(ρδ)rk(ρθ)rk(ρτ)=rαrβrγrδrθrτ,\mathrm{rk}(\rho)=\mathrm{rk}(\rho_{\alpha})\mathrm{rk}(\rho_{\beta})\mathrm{rk}(\rho_{\gamma})\mathrm{rk}(\rho_{\delta})\mathrm{rk}(\rho_{\theta})\mathrm{rk}(\rho_{\tau})=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta}r_{\theta}r_{\tau},

the rank of the local reduced state trBCDρ\mathrm{tr}_{BCD}\rho is

rk(trBCDρ)=rk(trBρα)rk(trDργ)rk(trCρδ)=rαArγArδA,\mathrm{rk}(\mathrm{tr}_{BCD}\rho)=\mathrm{rk}(\mathrm{tr}_{B}\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\gamma})\mathrm{rk}(\mathrm{tr}_{C}\rho_{\delta})=r_{\alpha}^{A}r_{\gamma}^{A}r_{\delta}^{A},\\

the rank of the two-partite reduced state trCDρ\mathrm{tr}_{CD}\rho is

rk(trCDρ)=rk(ρα)rk(trDρβ)rk(trDργ)rk(trCρδ)rk(trCρτ)=rαrβBrγArδArτB,\mathrm{rk}(\mathrm{tr}_{CD}\rho)=\mathrm{rk}(\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\gamma})\mathrm{rk}(\mathrm{tr}_{C}\rho_{\delta})\mathrm{rk}(\mathrm{tr}_{C}\rho_{\tau})=r_{\alpha}r_{\beta}^{B}r_{\gamma}^{A}r_{\delta}^{A}r_{\tau}^{B},\\

the rank of the three-partite reduced state trDρ\mathrm{tr}_{D}\rho is

rk(trDρ)=rk(ρα)rk(trDρβ)rk(trDργ)rk(ρδ)rk(trDρθ)rk(ρτ)=rαrβBrγArδrθCrτ.\mathrm{rk}(\mathrm{tr}_{D}\rho)=\mathrm{rk}(\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\gamma})\mathrm{rk}(\rho_{\delta})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\theta})\mathrm{rk}(\rho_{\tau})=r_{\alpha}r_{\beta}^{B}r_{\gamma}^{A}r_{\delta}r_{\theta}^{C}r_{\tau}.\\

Here rαA=rk(trBρα)r_{\alpha}^{A}=\mathrm{rk}(\mathrm{tr}_{B}\rho_{\alpha}) stands for the rank of the quantum state trBρα\mathrm{tr}_{B}\rho_{\alpha}, similarly for the others.

Therefore we have

rk(ρ)=rαrβrγrδrθrτ,rk(trBCDρ)=rαArγArδA,rk(trCDAρ)=rαBrβBrτB,rk(trDABρ)=rδCrθCrτC,rk(trABCρ)=rβDrγDrθD,rk(trCDρ)=rαrβBrγArδArτB,rk(trCAρ)=rαBrβrγDrθDrτB,rk(trCBρ)=rαArβDrγrδArθD,rk(trDAρ)=rαBrβBrδCrθCrτ,rk(trDBρ)=rαArγArδrθCrτC,rk(trABρ)=rβDrγDrδCrθrτC,rk(trAρ)=rαBrβrγDrδCrθrτ,rk(trBρ)=rαArβDrγrδrθrτC,rk(trCρ)=rαrβrγrδArθDrτB,rk(trDρ)=rαrβBrγArδrθCrτ.\begin{array}[]{llll}\mathrm{rk}(\rho)=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta}r_{\theta}r_{\tau},&&&\\ \mathrm{rk}(\mathrm{tr}_{BCD}\rho)=r_{\alpha}^{A}r_{\gamma}^{A}r_{\delta}^{A},&\quad\mathrm{rk}(\mathrm{tr}_{CDA}\rho)=r_{\alpha}^{B}r_{\beta}^{B}r_{\tau}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{DAB}\rho)=r_{\delta}^{C}r_{\theta}^{C}r_{\tau}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{ABC}\rho)=r_{\beta}^{D}r_{\gamma}^{D}r_{\theta}^{D},\\ \mathrm{rk}(\mathrm{tr}_{CD}\rho)=r_{\alpha}r_{\beta}^{B}r_{\gamma}^{A}r_{\delta}^{A}r_{\tau}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{CA}\rho)=r_{\alpha}^{B}r_{\beta}r_{\gamma}^{D}r_{\theta}^{D}r_{\tau}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{CB}\rho)=r_{\alpha}^{A}r_{\beta}^{D}r_{\gamma}r_{\delta}^{A}r_{\theta}^{D},&\\ \mathrm{rk}(\mathrm{tr}_{DA}\rho)=r_{\alpha}^{B}r_{\beta}^{B}r_{\delta}^{C}r_{\theta}^{C}r_{\tau},&\quad\mathrm{rk}(\mathrm{tr}_{DB}\rho)=r_{\alpha}^{A}r_{\gamma}^{A}r_{\delta}r_{\theta}^{C}r_{\tau}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{AB}\rho)=r_{\beta}^{D}r_{\gamma}^{D}r_{\delta}^{C}r_{\theta}r_{\tau}^{C},&\\ \mathrm{rk}(\mathrm{tr}_{A}\rho)=r_{\alpha}^{B}r_{\beta}r_{\gamma}^{D}r_{\delta}^{C}r_{\theta}r_{\tau},&\quad\mathrm{rk}(\mathrm{tr}_{B}\rho)=r_{\alpha}^{A}r_{\beta}^{D}r_{\gamma}r_{\delta}r_{\theta}r_{\tau}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{C}\rho)=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta}^{A}r_{\theta}^{D}r_{\tau}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{D}\rho)=r_{\alpha}r_{\beta}^{B}r_{\gamma}^{A}r_{\delta}r_{\theta}^{C}r_{\tau}.\end{array} (20)

Suppose that the Hilbert space of single particle is d-dimensional. So rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta}, rθr_{\theta}, rτr_{\tau}[1,d2]\in[1,d^{2}], rαAr_{\alpha}^{A}, rαBr_{\alpha}^{B}, rβBr_{\beta}^{B}, rβDr_{\beta}^{D}, rγAr_{\gamma}^{A}, rγDr_{\gamma}^{D}, rδAr_{\delta}^{A}, rδCr_{\delta}^{C}, rθCr_{\theta}^{C}, rθDr_{\theta}^{D}, rτBr_{\tau}^{B}, rτCr_{\tau}^{C}[1,d]\in[1,d]. Thus we arrive at the following conclusion.

Conclusion 2-1-3. For ρITCN1\rho\in\triangle_{\mathrm{ITCN1}} there exist integers rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta}, rθr_{\theta}, rτr_{\tau}[1,d2]\in[1,d^{2}], rαAr_{\alpha}^{A}, rαBr_{\alpha}^{B}, rβBr_{\beta}^{B}, rβDr_{\beta}^{D}, rγAr_{\gamma}^{A}, rγDr_{\gamma}^{D}, rδAr_{\delta}^{A}, rδCr_{\delta}^{C}, rθCr_{\theta}^{C}, rθDr_{\theta}^{D}, rτBr_{\tau}^{B}, rτCr_{\tau}^{C}[1,d]\in[1,d], which satisfy Eq. (20).

After that we invistegate the situation where the four nodes and the six sources are classically correlated 18 . The classically correlated refers to that every source and every node are correlated by sharing the random variable λ\lambda. The classically correlated triangular cone network structure 1 is shown in Fig. 2(b). We use CTCN1 to denote this classically correlated triangular cone network, ΔCTCN1\Delta_{\mathrm{CTCN1}} to represent the set of quantum states that can be prepared in CTCN1. A quantum state ρΔCTCN1\rho\in\Delta_{\mathrm{CTCN1}} can be written as ρ=λpλρλ\rho=\sum_{\lambda}p_{\lambda}\rho_{\lambda}, where ρλΔITCN1\rho_{\lambda}\in\Delta_{\mathrm{ITCN1}}, pλp_{\lambda} is a probability distribution.

Next we will use the rank relationship to show that there exists no four-qubit genuine multipartite entangled state in the set ΔCTCN1\Delta_{\mathrm{CTCN1}}. First we consider the case that the four-qubit genuine multipartite entangled state is a pure state. Clearly, in this case, the rank of the four-qubit genuine multipartite entangled state is equal to 1 and it is entangled along every bipartition. By the Schmidt decomposition of the four-qubit genuine entangled state, we know that all single node reduced state has rank 2. However, in fact, when each source in the set {ρα,ρβ,ργ,ρθ,ρτ,ρδ}\{\rho_{\alpha},\rho_{\beta},\rho_{\gamma},\rho_{\theta},\rho_{\tau},\rho_{\delta}\} is entangled among two particles. According to the Schmidt decomposition, the rank of the reduced state of a particle in each source is 2, if source is in 2-qubit entangled state. For the network structure ITCN1 with six sources as shown in Fig. 2(a), the local rank of the reduced states of each node is 8. Therefore, it is impossible to prepare pure four-qubit genuine multipartite entangled state in ITCN1. Similarly, one can verify that the claim is true for the other cases of resources. Moreover, as four-qubit genuine multipartite entangled states need pure four-qubit genuine multipartite entangled states. So one can not prepare four-qubit genuine multipartite entangled states in CTCN1 also. Hence, we obtain the following result.

Conclusion 2-1-4. No four-qubit genuine multipartite entangled state can be prepared in ITCN1 and CTCN1.

The four-partite e quantum states which can not be generated in ITCN1 and CTCN1 is illustrated in Fig. 2(c).

Now let us consider the independent triangular cone network structure 2 (ITCN2). As shown in Fig. 3(a), it has four nodes, namely A, B, C, and D. These four nodes are formed by pairs of three particles in each of the four sources ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta}. Each source produces entangled three-partite quantum states. ρα\rho_{\alpha} is shared by A, B, and D, ρβ\rho_{\beta} is shared by A, B, and C, ργ\rho_{\gamma} is shared by A, C, and D, ρδ\rho_{\delta} is shared by B, C, and D. We assume that four nodes do not share common information. A receives three particles from source ρα\rho_{\alpha}, ργ\rho_{\gamma}, and ργ\rho_{\gamma}, B receives three particles from source ρα\rho_{\alpha}, ρβ\rho_{\beta}, and ρδ\rho_{\delta}, C receives three particles from source ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta}, D receives three particles from source ρα\rho_{\alpha}, ργ\rho_{\gamma}, and ρδ\rho_{\delta}. Each node can be applied a local unitary matrix to the three received particles. Four local unitary matrices are denoted by UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D}. We use ρ\rho to express the quantum state in ITCN2 and utilize ΔITCN2\Delta_{\mathrm{ITCN2}} to denote the set of quantum states that can be produced in ITCN2.

Refer to caption
Figure 3: Triangular cone network structure 2. (a) Independent triangular cone network structure 2 (ITCN2), where each of these sources is a three-partite entangled state. (b) Classically correlated triangular cone network structure 2 (CTCN2), where each source and each node are classically correlated by sharing the random variable λ\lambda. (c) Four-partite quantum states which can not be produced in ITCN2 and CTCN2.

Obviously, the quantum states ρ\rho can be expressed as

ρ=(UAUBUCUD)(ραρβργρδ)(UAUBUCUD).\rho=(U_{A}\otimes U_{B}\otimes U_{C}\otimes U_{D})(\rho_{\alpha}\otimes\rho_{\beta}\otimes\rho_{\gamma}\otimes\rho_{\delta})(U_{A}^{{\dagger}}\otimes U_{B}^{{\dagger}}\otimes U_{C}^{{\dagger}}\otimes U_{D}^{{\dagger}}). (21)

Because at each node the three particles are coming from different sources, so the unitary matrix at one node cannot act on the global quantum states ρα\rho_{\alpha}, ρβ\rho_{\beta}, ργ\rho_{\gamma}, and ρδ\rho_{\delta} at same time.

Evidently, we have that the entropy of quantum state (21)

S(ρ)=S(ρα)+S(ρβ)+S(ργ)+S(ρδ).S(\rho)=S(\rho_{\alpha})+S(\rho_{\beta})+S(\rho_{\gamma})+S(\rho_{\delta}).

The three-partite entropy is extended to

S(ABC)=S(trDρα)+S(ρβ)+S(trDργ)+S(trDρδ),S(ABC)=S(\mathrm{tr}_{D}\rho_{\alpha})+S(\rho_{\beta})+S(\mathrm{tr}_{D}\rho_{\gamma})+S(\mathrm{tr}_{D}\rho_{\delta}),

the two-partite entropy is extended to

S(AB)=S(trDρα)+S(trCρβ)+S(trCDργ)+S(trCDρδ),S(AB)=S(\mathrm{tr}_{D}\rho_{\alpha})+S(\mathrm{tr}_{C}\rho_{\beta})+S(\mathrm{tr}_{CD}\rho_{\gamma})+S(\mathrm{tr}_{CD}\rho_{\delta}),

the one-partite entropy is extended to

S(A)=S(trBDρα)+S(trBCρβ)+S(trCDργ).S(A)=S(\mathrm{tr}_{BD}\rho_{\alpha})+S(\mathrm{tr}_{BC}\rho_{\beta})+S(\mathrm{tr}_{CD}\rho_{\gamma}).

By calculating, one finds that for quantum state ρITCN2\rho\in\triangle_{\mathrm{ITCN2}}, I4(A:B:C:D)=0I_{4}(A:B:C:D)=0. This can be restated as the following conclusion.

Conclusion 2-2-1. The four-partite quantum mutual information I4(A:B:C:D)=0I_{4}(A:B:C:D)=0 for any ρITCN2\rho\in\triangle_{\mathrm{ITCN2}}.

Then we discuss the entanglement measure of the quantum states. For the entanglement measure ε\varepsilon which satisfies the requirements stated in section II, we can obtain

εA|BCD=εAαAβAγ|BαBβBδCβCγCδDαDγDδ=εAα|BαDα+εAβ|BβCβ+εAγ|CγDγ=εA|BD+εA|BC+εA|CD.\varepsilon_{A|BCD}=\varepsilon_{A_{\alpha}A_{\beta}A_{\gamma}|B_{\alpha}B_{\beta}B_{\delta}C_{\beta}C_{\gamma}C_{\delta}D_{\alpha}D_{\gamma}D_{\delta}}=\varepsilon_{A_{\alpha}|B_{\alpha}D_{\alpha}}+\varepsilon_{A_{\beta}|B_{\beta}C_{\beta}}+\varepsilon_{A_{\gamma}|C_{\gamma}D_{\gamma}}\\ =\varepsilon_{A|BD}+\varepsilon_{A|BC}+\varepsilon_{A|CD}. (22)

So we have the following result.

Conclusion 2-2-2. For any ρITCN2\rho\in\triangle_{\mathrm{ITCN2}}, we have that εT|XYZ[ρ]=εT|XY[trZρ]+εT|XZ[trYρ]+εT|YZ[trXρ]\varepsilon_{T|XYZ}[\rho]=\varepsilon_{T|XY}[\mathrm{tr}_{Z}\rho]+\varepsilon_{T|XZ}[\mathrm{tr}_{Y}\rho]+\varepsilon_{T|YZ}[\mathrm{tr}_{X}\rho], which holds for all the bipartitions, such as A|BCDA|BCD, B|ACDB|ACD, C|ABDC|ABD, and D|ABCD|ABC.

As the unitary matrices UAU_{A}, UBU_{B}, UCU_{C}, and UDU_{D} don’t change the rank of the whole quantum state, so for ρΔITCN2\rho\in\Delta_{\mathrm{ITCN2}}, we have the rank of quantum state ρ\rho

rk(ρ)=rk(ρα)rk(ρβ)rk(ργ)rk(ρδ).\mathrm{rk}(\rho)=\mathrm{rk}(\rho_{\alpha})\mathrm{rk}(\rho_{\beta})\mathrm{rk}(\rho_{\gamma})\mathrm{rk}(\rho_{\delta}).

The rank of the local reduced state is

rk(trBCDρ)=rk(trBDρα)rk(trBCρβ)rk(trCDργ)=rαArβArγA,\mathrm{rk}(\mathrm{tr}_{BCD}\rho)=\mathrm{rk}(\mathrm{tr}_{BD}\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{BC}\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{CD}\rho_{\gamma})=r_{\alpha}^{A}r_{\beta}^{A}r_{\gamma}^{A},\\

the rank of the two-partite reduced state is

rk(trCDρ)=rk(trDρα)rk(trCρβ)rk(trCDργ)rk(trCDρδ)=rαABrβABrγArδB,\mathrm{rk}(\mathrm{tr}_{CD}\rho)=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha})\mathrm{rk}(\mathrm{tr}_{C}\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{CD}\rho_{\gamma})\mathrm{rk}(\mathrm{tr}_{CD}\rho_{\delta})=r_{\alpha}^{AB}r_{\beta}^{AB}r_{\gamma}^{A}r_{\delta}^{B},\\

the rank of the three-partite reduced state is

rk(trDρ)=rk(trDρα)rk(ρβ)rk(trDργ)rk(trDρδ)=rαABrβrγACrδBC.\begin{split}\mathrm{rk}(\mathrm{tr}_{D}\rho)=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha})\mathrm{rk}(\rho_{\beta})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\gamma})\mathrm{rk}(\mathrm{tr}_{D}\rho_{\delta})=r_{\alpha}^{AB}r_{\beta}r_{\gamma}^{AC}r_{\delta}^{BC}.\end{split}

Here rαAB=rk(trDρα)r_{\alpha}^{AB}=\mathrm{rk}(\mathrm{tr}_{D}\rho_{\alpha}) is the rank of reduced quantum state trDρα\mathrm{tr}_{D}\rho_{\alpha}, similarly for the others. Therefore we have

rk(ρ)=rαrβrγrδ,rk(trBCDρ)=rαArβArγA,rk(trCDAρ)=rαBrβBrδB,rk(trDABρ)=rβCrγCrδC,rk(trABCρ)=rαDrγDrδD,rk(trCDρ)=rαABrβABrγArδB,rk(trCAρ)=rαBDrβBrγDrδBD,rk(trCBρ)=rαADrβArγADrδD,rk(trDAρ)=rαBrβBCrγCrδBC,rk(trDBρ)=rαArβACrγACrδC,rk(trABρ)=rαDrβCrγCDrδCD,rk(trAρ)=rαBDrβBCrγCDrδ,rk(trBρ)=rαADrβACrγrδCD,rk(trCρ)=rαrβABrγADrδBD,rk(trDρ)=rαABrβrγACrδBC.\begin{array}[]{llll}\mathrm{rk}(\rho)=r_{\alpha}r_{\beta}r_{\gamma}r_{\delta},&&&\\ \mathrm{rk}(\mathrm{tr}_{BCD}\rho)=r_{\alpha}^{A}r_{\beta}^{A}r_{\gamma}^{A},&\quad\mathrm{rk}(\mathrm{tr}_{CDA}\rho)=r_{\alpha}^{B}r_{\beta}^{B}r_{\delta}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{DAB}\rho)=r_{\beta}^{C}r_{\gamma}^{C}r_{\delta}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{ABC}\rho)=r_{\alpha}^{D}r_{\gamma}^{D}r_{\delta}^{D},\\ \mathrm{rk}(\mathrm{tr}_{CD}\rho)=r_{\alpha}^{AB}r_{\beta}^{AB}r_{\gamma}^{A}r_{\delta}^{B},&\quad\mathrm{rk}(\mathrm{tr}_{CA}\rho)=r_{\alpha}^{BD}r_{\beta}^{B}r_{\gamma}^{D}r_{\delta}^{BD},&\quad\mathrm{rk}(\mathrm{tr}_{CB}\rho)=r_{\alpha}^{AD}r_{\beta}^{A}r_{\gamma}^{AD}r_{\delta}^{D},&\\ \mathrm{rk}(\mathrm{tr}_{DA}\rho)=r_{\alpha}^{B}r_{\beta}^{BC}r_{\gamma}^{C}r_{\delta}^{BC},&\quad\mathrm{rk}(\mathrm{tr}_{DB}\rho)=r_{\alpha}^{A}r_{\beta}^{AC}r_{\gamma}^{AC}r_{\delta}^{C},&\quad\mathrm{rk}(\mathrm{tr}_{AB}\rho)=r_{\alpha}^{D}r_{\beta}^{C}r_{\gamma}^{CD}r_{\delta}^{CD},&\\ \mathrm{rk}(\mathrm{tr}_{A}\rho)=r_{\alpha}^{BD}r_{\beta}^{BC}r_{\gamma}^{CD}r_{\delta},&\quad\mathrm{rk}(\mathrm{tr}_{B}\rho)=r_{\alpha}^{AD}r_{\beta}^{AC}r_{\gamma}r_{\delta}^{CD},&\quad\mathrm{rk}(\mathrm{tr}_{C}\rho)=r_{\alpha}r_{\beta}^{AB}r_{\gamma}^{AD}r_{\delta}^{BD},&\quad\mathrm{rk}(\mathrm{tr}_{D}\rho)=r_{\alpha}^{AB}r_{\beta}r_{\gamma}^{AC}r_{\delta}^{BC}.\end{array} (23)

Assume that the Hilbert space of single particle is d-dimensional. So rαAr_{\alpha}^{A}, rαBr_{\alpha}^{B}, rαDr_{\alpha}^{D}, rβAr_{\beta}^{A}, rβBr_{\beta}^{B}, rβCr_{\beta}^{C}, rγAr_{\gamma}^{A}, rγCr_{\gamma}^{C}, rγDr_{\gamma}^{D}, rδBr_{\delta}^{B}, rδCr_{\delta}^{C}, rδDr_{\delta}^{D}[1,d]\in[1,d], rαABr_{\alpha}^{AB}, rαADr_{\alpha}^{AD}, rαBDr_{\alpha}^{BD}, rβABr_{\beta}^{AB}, rβACr_{\beta}^{AC}, rβBCr_{\beta}^{BC}, rγACr_{\gamma}^{AC}, rγADr_{\gamma}^{AD}, rγCDr_{\gamma}^{CD}, rδBCr_{\delta}^{BC}, rδBDr_{\delta}^{BD}, rδCDr_{\delta}^{CD}[1,d2]\in[1,d^{2}], and rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta}[1,d3]\in[1,d^{3}].

Conclusion 2-2-3. For ρITCN2\rho\in\triangle_{\mathrm{ITCN2}} there exist integers rαr_{\alpha}, rβr_{\beta}, rγr_{\gamma}, rδr_{\delta}[1,d3]\in[1,d^{3}], rαABr_{\alpha}^{AB}, rαADr_{\alpha}^{AD}, rαBDr_{\alpha}^{BD}, rβABr_{\beta}^{AB}, rβACr_{\beta}^{AC}, rβBCr_{\beta}^{BC}, rγACr_{\gamma}^{AC}, rγADr_{\gamma}^{AD}, rγCDr_{\gamma}^{CD}, rδBCr_{\delta}^{BC}, rδBDr_{\delta}^{BD}, rδCDr_{\delta}^{CD}[1,d2]\in[1,d^{2}], rαAr_{\alpha}^{A}, rαBr_{\alpha}^{B}, rαDr_{\alpha}^{D}, rβAr_{\beta}^{A}, rβBr_{\beta}^{B}, rβCr_{\beta}^{C}, rγAr_{\gamma}^{A}, rγCr_{\gamma}^{C}, rγDr_{\gamma}^{D}, rδBr_{\delta}^{B}, rδCr_{\delta}^{C}, rδDr_{\delta}^{D}[1,d]\in[1,d], which satisfy Eq. (23).

Similar to the case investigated in ITCN1 we can study the scenario where the four nodes and the four sources are classically correlated in ITCN2. If every source and every node are correlated by sharing the random variable λ\lambda, we call the quantum state prepared the classically correlated state as shown in Fig. 3(b). Let CTCN2 denote this classically correlated triangular cone network strcture 2, ΔCTCN2\Delta_{\texttt{CTCN2}} express the set of quantum states that can be produced in CTCN2. The classically correlated state ρΔCTCN2\rho\in\Delta_{\texttt{CTCN2}} reads ρ=λpλρλ\rho=\sum_{\lambda}p_{\lambda}\rho_{\lambda}, where ρλΔITCN2\rho_{\lambda}\in\Delta_{\mathrm{ITCN2}}, pλp_{\lambda} is a probability distribution.

Based on rank relationship we can demonstrate that there exists no four-qubit genuine multipartite entangled state in the set ΔCTCN2\Delta_{\mathrm{CTCN2}} also. First we assume four-qubit genuine multipartite entangled state is a pure state. It is easy to show that all single node reduced state has rank 2. However, when each source in the set {ρα,ρβ,ργ,ρδ}\{\rho_{\alpha},\rho_{\beta},\rho_{\gamma},\rho_{\delta}\} is entangled among three particles and it is entangled along every bipartition. Based on the Schmidt decomposition, the rank of the reduced state of one particle in each source is 2, if source is in 3-qubit entangled state. So the local rank of the reduced states of each node is 8. This shows that it is impossible to generate pure four-qubit genuine multipartite entangled states in ITCN2. Similarly, we can verify that the claim holds for other cases of resources. Moreover, as mixed four-qubit genuine multipartite entangled states require pure four-qubit genuine multipartite entangled states. So there exists no four-qubit genuine multipartite entangled state in the set ΔCTCN2\Delta_{\mathrm{CTCN2}}. That can be restated as the following result.

Conclusion 2-2-4. No four-qubit genuine multipartite entangled state can be prepared in ITCN2 and CTCN2.

Fig.3(c) shows the four-partite quantum states which can not be produced in ITCN2 and CTCN2.

IV Summary

We investigate the quantum states that can be prepared and the quantum states that cannot be prepared in three kinds of four-node network structures, including a four-node network structure in a plane and two four-node network structures in the space. The nn-partite mutual information of quantum system, which satisfies the symmetry requirement, is defined. We analyzed the properties of four-partite quantum mutual information of quantum states prepared in different network structures and the effect of the local channels on the four-partite quantum mutual information. The entanglement properties of the quantum states prepared in the four-node quantum network structures are discussed. The constraints on the rank of global state and the local ranks of the reduced states are deduced. We also prove that the four-qubit genuine multipartite entangled states can not be prepared classically in the four-node network structures. We hope that these results may be useful for the further study of quantum network.

Acknowledgements.
This work was supported by the National Natural Science Foundation of China under Grant No. 12071110, the Hebei Natural Science Foundation of China under Grant No. A2020205014, and funded by Science and Technology Project of Hebei Education Department under Grant Nos. ZD2020167, ZD2021066.

Appendix A The proof of conclusion 1-3

By Eq.(3), and according to Observation 4 of Ref.18 , for quantum state (ΛAΛBΛCID)ρ(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho, one gets

I3(A:B:D)=I2(AB:D)+I2(A:D)+I2(B:D)0,I_{3}(A:B:D)=-I_{2}(AB:D)+I_{2}(A:D)+I_{2}(B:D)\leq 0, (24)

where ρΔIQN\rho\in\Delta_{\mathrm{IQN}}, ΛA\Lambda_{A}, ΛB\Lambda_{B}, ΛC\Lambda_{C} are three local quantum channels, IDI_{D} is the identity operator. Similarly, we have

I3(B:C:D)=I2(BC:D)+I2(B:D)+I2(C:D)0,I_{3}(B:C:D)=-I_{2}(BC:D)+I_{2}(B:D)+I_{2}(C:D)\leq 0, (25)
I3(A:C:D)=I2(AC:D)+I2(A:D)+I2(C:D)0,I_{3}(A:C:D)=-I_{2}(AC:D)+I_{2}(A:D)+I_{2}(C:D)\leq 0, (26)
I3(AB:C:D)=I2(ABC:D)+I2(AB:D)+I2(C:D)0,\displaystyle I_{3}(AB:C:D)=-I_{2}(ABC:D)+I_{2}(AB:D)+I_{2}(C:D)\leq 0, (27)
I3(BC:A:D)=I2(ABC:D)+I2(BC:D)+I2(A:D)0.\displaystyle I_{3}(BC:A:D)=-I_{2}(ABC:D)+I_{2}(BC:D)+I_{2}(A:D)\leq 0. (28)

By summing the Eqs.(A1-A3), we have

I2(AB:D)I2(AC:D)I2(BC:D)+2I2(A:D)+2I2(B:D)+2I2(C:D)0.-I_{2}(AB:D)-I_{2}(AC:D)-I_{2}(BC:D)+2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)\leq 0. (29)

By summing the Eqs.(A1,A2, A4,A5), we have

I2(ABC:D)+I2(A:D)+I2(B:D)+I2(C:D)0.-I_{2}(ABC:D)+I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)\leq 0. (30)

By the definition of four-partite quantum mutual information for an arbitrary quantum state sharing by nodes A,B,C,DA,B,C,D one can rewrite Eq.(5) as

I4(A:B:C:D)=[S(ABC)+S(D)S(ABCD)]+[S(A)+S(D)S(AD)]+[S(B)+S(D)S(BD)]+[S(C)+S(D)S(CD)][S(AB)+S(D)S(ABD)][S(AC)+S(D)S(ACD)][S(BC)+S(D)S(BCD)]=I2(ABC:D)+I2(A:D)+I2(B:D)+I2(C:D)I2(AB:D)I2(AC:D)I2(BC:D).\begin{array}[]{lll}&&I_{4}(A:B:C:D)\\ &=&[S(ABC)+S(D)-S(ABCD)]+[S(A)+S(D)-S(AD)]\\ &&+[S(B)+S(D)-S(BD)]+[S(C)+S(D)-S(CD)]\\ &&-[S(AB)+S(D)-S(ABD)]-[S(AC)+S(D)-S(ACD)]\\ &&-[S(BC)+S(D)-S(BCD)]\\ &=&I_{2}(ABC:D)+I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)\\ &&-I_{2}(AB:D)-I_{2}(AC:D)-I_{2}(BC:D).\\ \end{array} (31)

So, for the four-partite quantum mutual information of the quantum state (ΛAΛBΛCID)ρ(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho, by using Eqs. (29,30,31), we have

I4[(ΛAΛBΛCID)ρ]=I2(ABC:D)+I2(A:D)+I2(B:D)+I2(C:D)I2(AB:D)I2(AC:D)I2(BC:D)I2(ABC:D)+I2(A:D)+I2(B:D)+I2(C:D)[2I2(A:D)+2I2(B:D)+2I2(C:D)]=I2(ABC:D)[I2(A:D)+I2(B:D)+I2(C:D)]\begin{array}[]{lll}&&I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]\\ &=&I_{2}(ABC:D)+I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)\\ &&-I_{2}(AB:D)-I_{2}(AC:D)-I_{2}(BC:D)\\ &\leq&I_{2}(ABC:D)+I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)\\ &&-[2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)]\\ &=&I_{2}(ABC:D)-[I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)]\\ \\ \end{array} (32)

and

I4[(ΛAΛBΛCID)ρ]=I2(ABC:D)+I2(A:D)+I2(B:D)+I2(C:D)I2(AB:D)I2(AC:D)I2(BC:D)2I2(A:D)+2I2(B:D)+2I2(C:D)[I2(AB:D)+I2(BC:D)+I2(AC:D)].\begin{array}[]{lll}&&I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]\\ &=&I_{2}(ABC:D)+I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)\\ &&-I_{2}(AB:D)-I_{2}(AC:D)-I_{2}(BC:D)\\ &\geq&2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)\\ &&-[I_{2}(AB:D)+I_{2}(BC:D)+I_{2}(AC:D)].\\ \end{array} (33)

Therefore, I4[(ΛAΛBΛCID)ρ]I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho] are bounded as follows

2I2(A:D)+2I2(B:D)+2I2(C:D)[I2(AB:D)+I2(BC:D)+I2(AC:D)]\displaystyle 2I_{2}(A:D)+2I_{2}(B:D)+2I_{2}(C:D)-[I_{2}(AB:D)+I_{2}(BC:D)+I_{2}(AC:D)]
\displaystyle\leq I4[(ΛAΛBΛCID)ρ]\displaystyle I_{4}[(\Lambda_{A}\otimes\Lambda_{B}\otimes\Lambda_{C}\otimes I_{D})\rho]
\displaystyle\leq I2(ABC:D)[I2(A:D)+I2(B:D)+I2(C:D)].\displaystyle I_{2}(ABC:D)-[I_{2}(A:D)+I_{2}(B:D)+I_{2}(C:D)].

References