This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Quantum Phases of Self-Bound Droplets of Bose-Bose Mixtures

Junqiao Pan CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China    Su Yi [email protected] CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China    Tao Shi [email protected] CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract

We systematically investigate the ground-state properties of self-bound droplets of quasi-two-dimensional binary Bose gases by using the Gaussian state theory. We find that quantum droplets consists two macroscopic squeezed phases and a macroscopic coherent phase. We map out the phase diagram and determine all phase boundaries via both numerical and nearly analytical methods. In particular, we find three easily accessible signatures for the quantum phases and the stablization mechanism of the self-bound droplets by precisely measuring their radial size. Our studies indicate that binary droplets represent an ideal platform for in-depth investigations of the quantum nature of the droplet state.

Introduction.—Quantum droplets in both dipolar Kadau et al. (2016); Schmitt et al. (2016); Chomaz et al. (2016); Böttcher et al. (2019a) and binary condensates Cabrera et al. (2018); Cheiney et al. (2018); Semeghini et al. (2018); D’Errico et al. (2019); Burchianti et al. (2020) represent a new state of matter emerging in the mean-field unstable regime. They have attracted great interests in studying their fascinating properties, such as self-bound feature Schmitt et al. (2016); Chomaz et al. (2016); Cabrera et al. (2018); Semeghini et al. (2018), collective excitations Natale et al. (2019); Tanzi et al. (2019a), soliton to droplet transition Cheiney et al. (2018), droplet-droplet collision Ferioli et al. (2019), supersolid states Böttcher et al. (2019b); Tanzi et al. (2019b); Chomaz et al. (2019), Goldstone mode Guo et al. (2019), and so forth (see recent reviews Luo et al. (2021); Böettcher et al. (2021); Guo and Pfau (2021) and references therein). A widely adopted treatment for droplet states is the extend Gross-Pitaevskii equation (EGPE) which perturbatively incorporates quantum fluctuation into the Gross-Pitaevskii equation in terms of the Lee-Huang-Yang correction Lee et al. (1957); Schützhold et al. (2006); Lima and Pelster (2011, 2012); Petrov (2015). Although EGPE has provided satisfactory explanations to experimental observations, there are still discrepancies with experimental measurements Cabrera et al. (2018); Böttcher et al. (2019a); Böettcher et al. (2021).

Theoretical methods beyond EGPE have also been employed to study different aspects of the droplet states Saito (2016); Macia et al. (2016); Cinti et al. (2017); Bombin et al. (2017); Cikojević et al. (2019); Ota and Astrakharchik (2020); Boudjemâa and Guebli (2020); Hu et al. (2020); Hu and Liu (2020); Gu and Yin (2020). Among them, we studied the dipolar droplets using the Gaussian-state theory (GST) in which quantum fluctuation is included in a self-consistent manner Wang et al. (2020). Compared to other theoretical approaches beyond the EGPE theory, GST is computationally efficient and can be applied to realistic systems with large number of atoms. Interestingly, we found that, besides coherent state, dipolar droplets also contained two new macroscopic squeezed phases which were characterized by large second-order correlation and asymmetric atom-number distribution (AND), in striking contrast with those of the coherent-state-based droplets Wang et al. (2020); Shi et al. (2019). Whereas the asymmetric AND was experimentally observed Schmitt et al. (2016); Böttcher et al. (2019a), verifying the predication on the second-order correlation function requires further experiments beyond simple density measurements.

In this Letter, we study the quantum phases of self-bound droplets in quasi-two-dimensional (quasi-2D) binary condensates. Although this system has same quantum phases as those in dipolar droplets, here we discover three readily accessible signatures for the determination of the quantum states and the stablization mechanisms. Specifically, due to the multiple quantum phases containing in the droplet states, the radial size (σ\sigma) versus atom number (NN) curve is of W shape, as opposed to the V-shaped curve expected for single quantum phase. Therefore, the observation of double dips on the σ\sigma-NN curve may rule out the pure coherent explanation of the droplet state. Moreover, the critical atom number (CAN), i.e., the minimal number of atoms required for forming a self-bound state, is determined by the quantum states of the condensate and its precise measurement of the CAN allows us to distinguish squeezed state from coherent one. Finally, the dip atom number (DAN), i.e., the atom number at the dip of the σ\sigma-NN curve, depends on both quantum phase and stabilization mechanism, which makes it a quantitative criterion for stability mechanism.

Formulation.—We consider a ultracold gas of NN K39{}^{39}\text{K} atoms with NN_{\uparrow} atoms being in the hyperfine state ||F,mF=|1,1\left|\uparrow\right\rangle\equiv\left|F,m_{F}\right\rangle=\left|1,-1\right\rangle and NN_{\downarrow} in ||1,0\left|\downarrow\right\rangle\equiv\left|1,0\right\rangle. The total Hamiltonian of the system,

H=H0+H2B+H3B,H=H_{0}+H_{2B}+H_{3B},

consists of the single-, two-, and three-particle terms. In second-quantized form, the single-particle part reads

H0=α𝑑𝐫ψ^α(𝐫)hαψ^α(𝐫),\displaystyle H_{0}=\sum_{\alpha}\int d\mathbf{r}\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})h_{\alpha}\hat{\psi}_{\alpha}(\mathbf{r}), (1)

where ψ^α(𝐫)\hat{\psi}_{\alpha}\left(\mathbf{r}\right) (α=,\alpha=\uparrow,\downarrow) are the field operators and hα=22/(2M)μαh_{\alpha}=-\hbar^{2}\nabla^{2}/(2M)-\mu_{\alpha} with MM being the mass of the atoms and μα\mu_{\alpha} the chemical potential introduced to fixed the atom number in the α\alphath component. The two-body (2B) interaction Hamiltonian takes the form

H2B=αβgαβ2𝑑𝐫ψ^α(𝐫)ψ^β(𝐫)ψ^β(𝐫)ψ^α(𝐫),H_{2B}=\sum_{\alpha\beta}\frac{g_{\alpha\beta}}{2}\int d\mathbf{r}\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\hat{\psi}_{\beta}(\mathbf{r})\hat{\psi}_{\alpha}(\mathbf{r}), (2)

where gαβ=4π2aαβ/Mg_{\alpha\beta}=4\pi\hbar^{2}a_{\alpha\beta}/M characterize the 2B interaction strengths with aαβa_{\alpha\beta} being scattering length between components α\alpha and β\beta. The scattering lengths are tunable through Feshbach resonance and for scenario of interest to quantum droplets, the intra- and inter-species scattering lengths satisfy a,a>0a_{\uparrow\uparrow},a_{\downarrow\downarrow}>0 and a<0a_{\uparrow\downarrow}<0, respectively. Finally, the three-body (3B) interaction Hamiltonian can be expressed as

H3B=g33!αβγ𝑑𝐫ψ^α(𝐫)ψ^β(𝐫)ψ^γ(𝐫)ψ^γ(𝐫)ψ^β(𝐫)ψ^α(𝐫),\displaystyle H_{3B}=\frac{g_{3}}{3!}\sum_{\alpha\beta\gamma}\int d\mathbf{r}\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\hat{\psi}_{\gamma}(\mathbf{r})\hat{\psi}_{\beta}(\mathbf{r})\hat{\psi}_{\alpha}(\mathbf{r}), (3)

where g3g_{3} is the 3B coupling constant which, for simplicity, is assumed to be independent of the spin components. Moreover, since we are only interested in the ground states of the system, we assume that g3g_{3} is real and positive. The value of g3g_{3} shall be determined by fitting the experimental data.

We study self-bound droplet states using the GST. Specifically, we assume that the many-body wave function of a binary gas adopts the variational ansatz Shi et al. (2018, 2019); Guaita et al. (2019)

|ΨGS=eΨ^(𝐫)Σz(𝐫,𝐫)Φ(𝐫)eiΨ^(𝐫)ξ(𝐫,𝐫)Ψ^(𝐫)/2|0,|\Psi_{\rm GS}\rangle=e^{\hat{\Psi}^{\dagger}(\mathbf{r})\Sigma^{z}(\mathbf{r},\mathbf{r}^{\prime})\Phi(\mathbf{r}^{\prime})}e^{i\hat{\Psi}^{\dagger}(\mathbf{r})\xi(\mathbf{r},\mathbf{r}^{\prime})\hat{\Psi}(\mathbf{r}^{\prime})/2}|0\rangle, (4)

where Ψ^(𝐫)(ψ^(𝐫)ψ^(𝐫))\hat{\Psi}(\mathbf{r})\equiv\begin{pmatrix}\hat{\psi}(\mathbf{r})\\ \hat{\psi}^{\dagger}(\mathbf{r})\end{pmatrix} with ψ^(𝐫)=(ψ^(𝐫)ψ^(𝐫))\hat{\psi}(\mathbf{r})=\begin{pmatrix}\hat{\psi}_{\uparrow}(\mathbf{r})\\ \hat{\psi}_{\downarrow}(\mathbf{r})\end{pmatrix} is the field operator expressed in the Nambu basis,

Σz(𝐫,𝐫)=(I2δ(𝐫𝐫)00I2δ(𝐫𝐫))\displaystyle\Sigma^{z}(\mathbf{r},\mathbf{r}^{\prime})=\begin{pmatrix}I_{2}\otimes\delta(\mathbf{r}-\mathbf{r}^{\prime})&0\\ 0&-I_{2}\otimes\delta(\mathbf{r}-\mathbf{r}^{\prime})\end{pmatrix} (5)

with I2I_{2} being a 2×22\times 2 identity matrix in the spin space, Φ(𝐫)=Ψ^(𝐫)=(ϕ(c)ϕ(c))\Phi(\mathbf{r})=\langle\hat{\Psi}(\mathbf{r})\rangle=\begin{pmatrix}\phi^{(c)}\\ \phi^{(c)*}\end{pmatrix} with ϕ(c)=(ϕ(c)ϕ(c))\phi^{(c)}=\begin{pmatrix}\phi^{(c)}_{\uparrow}\\ \phi^{(c)}_{\downarrow}\end{pmatrix} is the variational parameter describing the coherent part of the condensates, and ξ(𝐫,𝐫)\xi(\mathbf{r},\mathbf{r}^{\prime}) is the variational parameter that characterizes the squeezed part of the condensate. The ground state wave function can be found by minimizing energy E0=ΨGS|H|ΨGSE_{0}=\left\langle\Psi_{\rm GS}\right|H\left|\Psi_{\rm GS}\right\rangle through imaginary-time evolution Shi et al. (2018, 2019); SM .

Physically, it is more convenient to factorize the Gaussian state wave function into a multimode squeezed coherent state Wang et al. (2020); SM , i.e.,

|ΨGS=eN(c)(c^c^)i=1e12ξi(s^i2s^i2)|0,\left|\Psi_{\rm GS}\right\rangle=e^{\sqrt{N^{(c)}}\left(\hat{c}^{\dagger}-\hat{c}\right)}\prod^{\infty}_{i=1}e^{\frac{1}{2}\xi_{i}\left(\hat{s}^{\dagger 2}_{i}-\hat{s}^{2}_{i}\right)}\left|0\right\rangle, (6)

where N(c)=𝑑𝐫[ϕ(c)(𝐫)]ϕ(c)(𝐫)N^{(c)}=\int d\mathbf{r}\left[\phi^{(c)}(\mathbf{r})\right]^{\dagger}\phi^{(c)}(\mathbf{r}) is the atom number in the coherent mode and c^=𝑑𝐫[ϕ¯(c)(𝐫)]ψ^(𝐫)\hat{c}=\int d\mathbf{r}\left[\bar{\phi}^{(c)}(\mathbf{r})\right]^{\dagger}\hat{\psi}(\mathbf{r}) with ϕ¯(c)(𝐫)=ϕ(c)(𝐫)/N(c)\bar{\phi}^{(c)}(\mathbf{r})=\phi^{(c)}(\mathbf{r})/\sqrt{N^{(c)}} being the normalized mode function for the coherent component. In the squeezing operators, s^i=𝑑𝐫[ϕ¯i(s)(𝐫)]ψ^(𝐫)\hat{s}_{i}=\int d\mathbf{r}\left[\bar{\phi}_{i}^{(s)}(\mathbf{r})\right]^{\dagger}\hat{\psi}(\mathbf{r}) is the annihilation operator for the iith squeezed mode ϕ¯i(s)(ϕi,(s)ϕi,(s))\bar{\phi}^{(s)}_{i}\equiv\begin{pmatrix}{\phi}^{(s)}_{i,\uparrow}\\ {\phi}^{(s)}_{i,\downarrow}\end{pmatrix} that satisfy 𝑑𝐫[ϕ¯i(s)(𝐫)]ϕ¯j(s)(𝐫)=δij\int d\mathbf{r}\left[\bar{\phi}_{i}^{(s)}({\mathbf{r}})\right]^{\dagger}\bar{\phi}^{(s)}_{j}({\mathbf{r}})=\delta_{ij}. Furthermore, sinhξi=Ni(s)\sinh\xi_{i}=\sqrt{N^{(s)}_{i}} with Ni(s)N_{i}^{(s)} being the occupation number in the iith squeezed mode. The total number of atoms in the squeezed modes is N(s)=iNi(s)N^{(s)}=\sum_{i}N^{(s)}_{i} and the total squeezed density is n(s)(𝐫)=iNi(s)|ϕ¯i(s)(𝐫)|2n^{(s)}({\mathbf{r}})=\sum_{i}N_{i}^{(s)}|\bar{\phi}_{i}^{(s)}({\mathbf{r}})|^{2}. For convenience, it is always assumed that Ni(s)N^{(s)}_{i} are sorted in descending order with respect to the index ii. Mode jj is notably populated if Nj(s)/N(s)0.1%N^{(s)}_{j}/N^{(s)}\geq 0.1\% Wang et al. (2020).

In the main text, we focus on the self-bound droplets in quasi-2D geometry achieved by imposing a harmonic confinement, Vz(z)=Mωz2z2/2V_{z}(z)=M\omega_{z}^{2}z^{2}/2, along the zz axis Cabrera et al. (2018). When ωz\omega_{z} is sufficiently large, the motion of atoms along the zz direction is frozen to the ground state of Vz(z)V_{z}(z). In additioin, we always fix the atom number ratio between two components at N/N=a/aN_{\uparrow}/N_{\downarrow}=\sqrt{a_{\downarrow\downarrow}/a_{\uparrow\uparrow}} by following the experiments Cabrera et al. (2018); Semeghini et al. (2018). Numerical results can be conveniently checked using the virial relation, Ek+E2B+2E3B=0E_{k}+E_{2B}+2E_{3B}=0, where EkE_{k}, E2BE_{2B}, and E3BE_{3B} are kinetic, 2B, and 3B energies, respectively SM . We point out that results for 3D droplets are presented in the Supplemental Material SM .

Refer to caption
Figure 1: (color online). (a) Radial size versus reduced scattering length for N=1.5×104N=1.5\times 10^{4}. Solid line is computed using the GST with g3=6.65×1039m6/sg_{3}=6.65\times 10^{-39}\hbar{\rm m}^{6}/{\rm s}. Empty circles with error bars and dashed line (both are extracted from Ref. Cabrera et al. (2018)) represent the experimental data and the EGPE result, respectively. (b) and (c) show radial size as functions of atom number for various magnetic fields. Empty circles (extracted from Ref. Cabrera et al. (2018)) are experimental data. More comparisons between the numerically computed radial size and the experimental data can be found in the Supplemental Material SM .

Three-body coupling strength.—Let us first fix the value of g3g_{3} for K atom. Previously, g3g_{3} of Dy atom was determined by fitting the AND of the droplet states Wang et al. (2020). Here we instead determine g3g_{3} by fitting the radial size σ\sigma of the quasi-2D droplets. Following the experiment Cabrera et al. (2018), we extract σ\sigma by fitting the total density with a two-dimensional Gaussian. In Fig. 1(a), we plot the radial size σ\sigma as a function of the effective scattering length δaa+aa\delta a\equiv a_{\uparrow\downarrow}+\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}} (or, equivalently, the magnetic field BB) computed with g3=6.65×1039m6/sg_{3}=6.65\times 10^{-39}\hbar{\rm m}^{6}/{\rm s}. Good agreement between the numerical and the experimental results is achieved. We point out that varying the value of g3g_{3} does not change the shape of the red line; it only shifts the red line vertically. Therefore, to achieve better agreement for the fitting, one may have to make g3g_{3} spin dependent.

To further demonstrate the validity of the fitted g3g_{3}, we show, in Fig. 1(b) and (c), the NN dependence of σGST\sigma_{\rm GST} under different magnetic fields. As can be seen, although discrepancies exist at small NN, good agreements are still achieved for large NN. Particularly, the main feature of the experimental results is captured by the numerical simulations (see below for details). Hereafter, we shall always use the fitted g3g_{3} for all numerical results presented below.

Refer to caption
Figure 2: (color online). Phase diagram. (a) Distribution of the coherent fraction fcf_{c} on the (δa,N)(\delta a,N) parameter plane. Markers \triangle, \diamondsuit, and \bigtriangledown denote numerical results for CAN, SVS-to-SCS transition boundary, and SCS-to-CS transition boundary, respectively. The solid and dash-dotted lines show the corresponding analytic results. Empty circles (\ocircle) with error bar are experimental data for CAN Cabrera et al. (2018). (b)-(d) demonstrate the number of the notably-populated squeezed modes 𝒮\mathcal{S}, the distribution of the peak density npn_{p} (units of m3{\rm m}^{-3}), and the radial size σGST\sigma_{\rm GST} (units of μm\mu{\rm m}) on the (δa,N)(\delta a,N) parameter plane, respectively.

Phase diagram.—Given that N/N=a/aN_{\uparrow}/N_{\downarrow}=\sqrt{a_{\downarrow\downarrow}/a_{\uparrow\uparrow}}, it is found numerically that the coherent and squeezed modes satisfy ϕ(c)(𝐫)/ϕ(c)(𝐫)=N/N\phi^{(c)}_{\uparrow}({\mathbf{r}})/\phi^{(c)}_{\downarrow}({\mathbf{r}})=\sqrt{N_{\uparrow}/N_{\downarrow}} and ϕi,(s)(𝐫)/ϕi,(s)(𝐫)=N/N\phi^{(s)}_{i,\uparrow}({\mathbf{r}})/\phi^{(s)}_{i,\downarrow}({\mathbf{r}})=\sqrt{N_{\uparrow}/N_{\downarrow}} for any ii, respectively. As a result, Nα(c)/NαN^{(c)}_{\alpha}/N_{\alpha} is independent of the spin component α\alpha, which allows us to define the coherent fraction as fcN(c)/Nf_{c}\equiv N^{(c)}/N to characterize the property of the condensate, instead of considering the coherent fraction of individual spin component.

Figure 2(a) shows the distribution of fcf_{c} on the (δa,N)(\delta a,N) parameter plane. Similar to dipolar droplets Wang et al. (2020), there are four distinct regions: expanding gas (EG), squeezed-vacuum state (SVS), squeezed-coherent state (SCS), and coherent state (CS). The EG region lies below the CAN (solid line or \triangle), in which the attractive two-body interaction is insufficient for the gas to form a self-bound state. Both SVS and SCS phases contain a single squeezed mode except SCS phase also consists of a coherent component. The SVS-to-SCS transition (dash-dotted line or \diamondsuit) breaks the Z2 symmetry of the condensate and is a third-order phase transition. The CS phase is dominated by the coherent component with fc>0.75f_{c}>0.75 and the SCS-to-CS transition is of first order. Interestingly, as shown by the solid and the dash-dotted lines, the boundaries for the self-bound state and the SVS-to-SCS transition can be found nearly analytically with high accuracy SM . We may also determine the boundary of SCS-to-CS transition by analyzing the stability of Bogliubov excitation in the CS phase SM .

The phase diagram is most conveniently reproduced by plotting the number of the notably-populated squeezed modes 𝒮\mathcal{S}. As shown in Fig. 2(b), both SVS and SCS phases are featured by single squeezed mode; while CS phase may contains a large number of squeezed modes even if the squeezed component becomes negligibly small. Physically, squeezing in SVS and SCS phases are macroscopic quantum state originating from two-body attraction Shi et al. (2019); Wang et al. (2020); while squeezing in CS phase represents quantum depletion induced by 3B repulsion Wang et al. (2020). Similar to dipolar droplets, the presence of squeezing also significantly modifies the AND of these quantum states SM . The properties of these quantum phases can be further explored by examining the peak density npn_{p} and the radial size σGST\sigma_{\rm GST} as plotted in Fig. 2(c) and (d), respectively. Among them, σGST\sigma_{\rm GST} exhibits visible difference as compared to the distributions of other quantities.

Radial size.—To explore the properties of σGST\sigma_{\rm GST}, we plot the NN dependence of σGST\sigma_{\rm GST} for δa=3.062a0\delta a=-3.062a_{0} in Fig. 3. As a comparison, the radial size numerically computed via EGPE, σEGPE\sigma_{\rm EGPE}, is also plotted. Surprisingly, σGST\sigma_{\rm GST} is W-shaped function of NN, in striking contrast to the V-shaped σEGPE\sigma_{\rm EGPE}. To understand its origin, we note that the total energy per atom can be expressed as SM

ε0=E0(σ)N1σ2g~2Nσ2+g~νNν1σ2(ν1)(for ν>2),\displaystyle\varepsilon_{0}=\frac{E_{0}(\sigma)}{N}\propto\frac{1}{\sigma^{2}}-\frac{\tilde{g}_{2}N}{\sigma^{2}}+\frac{\tilde{g}_{\nu}N^{\nu-1}}{\sigma^{2(\nu-1)}}\quad\mbox{(for $\nu>2$)}, (7)

where E0=Ek+E2B+E3BE_{0}=E_{k}+E_{2B}+E_{3B} are the total energy. On the right hand side, the first term is the kinetic energy, the second term is contributed by the 2B interaction, and the last term is the energy associated with the stabilization force, i.e., ν=3\nu=3 for 3B repulsion and 5/25/2 for quantum fluctuation. Furthermore, g~2(>0)\tilde{g}_{2}\,(>0) and g~ν(>0)\tilde{g}_{\nu}\,(>0) are reduced interaction parameters (RIPs). From Eq. (7), the equilibrium size can be immediately found to be

σ=N[(ν1)g~νNg~2N1]1/[2(ν2)](for N>1/g~2),\displaystyle\sigma=\sqrt{N}\left[\frac{(\nu-1)\tilde{g}_{\nu}N}{\tilde{g}_{2}N-1}\right]^{1/[2(\nu-2)]}\quad\mbox{(for $N>1/\tilde{g}_{2}$)}, (8)

which is a V-shaped function of NN. More specifically, σ\sigma diverges as NN approaches the CAN

Ncri1g~2,\displaystyle N_{\rm cri}\equiv\frac{1}{\tilde{g}_{2}}, (9)

grows asymptotically as σN[(ν1)g~ν/g~2]1/[2(ν2)]\sigma\approx\sqrt{N}\left[(\nu-1)\tilde{g}_{\nu}/\tilde{g}_{2}\right]^{1/[2(\nu-2)]} for large NN, and reaches its minimal value at the DAN

Ndipν1(ν2)g~2.\displaystyle N_{\rm dip}\equiv\frac{\nu-1}{(\nu-2)\tilde{g}_{2}}. (10)

In contrast, we note that the peak density, npN/σ2={(g~2N1)/[(ν1)g~νN]}1/(ν2)n_{p}\propto N/\sigma^{2}=\left\{(\tilde{g}_{2}N-1)/[(\nu-1)\tilde{g}_{\nu}N]\right\}^{1/(\nu-2)}, is always a monotonically increasing function of NN and converges to a constant proportional to {g~2/[(ν1)g~ν]}1/(ν2)\left\{\tilde{g}_{2}/[(\nu-1)\tilde{g}_{\nu}]\right\}^{1/(\nu-2)} for large NN. It is worthwhile to point out that σ(N)\sigma(N) depends not only on the stabilization mechanism through ν\nu but also on the many-body wave function via the RIPs (g~2,g~ν)(\tilde{g}_{2},\tilde{g}_{\nu}) SM .

Refer to caption
Figure 3: (color online). Radial size versus mean atom number for δa=3.062a0\delta a=-3.062a_{0}. Vertical dotted lines mark the locations of two phase transitions.

To carry out quantitative comparisons, we assume that all density profiles are Gaussian functions. Then for pure squeezed and coherent states with 3B interaction, we obtain the RIPs (g~2(s),g~3(s))(\tilde{g}_{2}^{(s)},\tilde{g}_{3}^{(s)}) and (g~2(c),g~3(c))(\tilde{g}_{2}^{(c)},\tilde{g}_{3}^{(c)}), respectively, satisfying g~2(s)=3g~2(c)\tilde{g}_{2}^{(s)}=3\tilde{g}_{2}^{(c)} and g~3(s)=15g~3(c)\tilde{g}_{3}^{(s)}=15\tilde{g}_{3}^{(c)} SM ; Wang et al. (2020). In addition, for the coherent-state-based EGPE theory, the RIPs are (g~2(c),g~5/2(c))(\tilde{g}_{2}^{(c)},\tilde{g}_{5/2}^{(c)}) SM . Correspondingly, we plot σν(c,s)(N)\sigma_{\nu}^{(c,s)}(N) using Eq. (8) in Fig. 3, where the subscript denotes the stabilization mechanism and the superscript denotes the quantum states. As can be seen, σ3(s)\sigma_{3}^{(s)} agrees very well with σGST\sigma_{\rm GST} around the left dip where the condensate is a SVS. This agreement also indicates that the density profile of a SVS is well approximated by a Gaussian function. Around the right dip, the quantum state of the condensate is more complicated than a pure coherent state. Therefore, σ3(c)\sigma_{3}^{(c)} only exhibits rough agreement with σGST\sigma_{\rm GST} for large NN where the quantum state is dominated by coherent component. Still, the remaining discrepancy can be explained as the density profile of the coherent state is significantly deviated from a Gaussian function SM . As to σ5/2(c)\sigma_{5/2}^{({c})}, it agree well with σEGPE\sigma_{\rm EGPE}, which confirms the variational calculation. One should note that, although σ5/2(c)\sigma_{5/2}^{(c)} and σ3(c)\sigma_{3}^{(c)} have the same CANs, they define different DANs.

It is now clear that the W-shaped σGST\sigma_{\rm GST} stems from the multiple quantum phases in the self-bound droplets. Remarkably, this feature can be vaguely seen in the experimental data Cabrera et al. (2018). In fact, as shown in Fig. 1(b) and (c), after the completion of the left dip, the experimental data of the radial size starts to decrease again as one further increases NN. Since radial size will eventually grow as N\sqrt{N} in the liquid phase, the drop after the first dip then signals the existence of the second dip and, consequently, the W shape. As the coherent-state-based EGPE theory only predicts a V-shaped radial size curve, a clear observation of the double dips may qualitatively exclude the EGPE explanation of the droplet states.

More interestingly, variational analyses can even lead to quantitative criteria for quantum phases and stabilization mechanisms. To see this, let us examine NcriN_{\rm cri}, the CAN extracted analytically from Eq. (8). At first sight, it is surprised that NcriN_{\rm cri} is independent of g~ν\tilde{g}_{\nu}. This can be understood as follows. Because εk\varepsilon_{k} and ε2B\varepsilon_{2B} have the same power dependence on σ\sigma, the 2B attraction can be canceled out exactly by the kinetic energy when N=NcriN=N_{\rm cri}. Then, in the absence of stabilization force, a self-bound state can be of arbitrary radial size. Once the stabilization force is turned on, in order to have a self-bound state of the same atom number, the radial size of the droplet has to be infinite to make the repulsive interaction energy vanish. This universality of NcriN_{\rm cri} is highly nontrivial as it allows our theory to be examined by experimental data regardless of the accuracy of the fitted g3g_{3}. We point out that the above analysis is not applicable in 3D geometry where a self-bound droplet always has a finite size SM .

Still, the CAN depends on the quantum state of the condensate through the RIP g~2\tilde{g}_{2}. Then corresponding to the pure squeezed and coherent states, we have distinct CANs Ncri(s)N_{\rm cri}^{(s)} and Ncri(c)N_{\rm cri}^{(c)} which satisfy Ncri(c)=3Ncri(s)N_{\rm cri}^{(c)}=3N_{\rm cri}^{(s)}. The precise measurements of CAN can therefore be used to distinguish the quantum state of the condensates. In Fig. 2(a), we show the experimentally measured CAN versus the reduced scattering length. From the rightmost three data points, it seems that the quantum state at the self-bound boundary is coherent state; while the quantum state for the other three data point is unclear. However, after carefully examining these data, we find that high precision measurements are still needed to accurately determine the quantum phase SM . In fact, to precisely determine CAN, the experimental data should be fitted using proper curves corresponding to appropriate stabilization mechanisms. In particular, the experimental data should be of V shape close to the self-bound boundary.

Finally, we note that even the stabilization mechanism can be identified using DAN NdipN_{\rm dip}, a quantity depending on ν\nu. From Eq. (10), it is clear that, corresponding to three σν(c,s)(N)\sigma_{\nu}^{(c,s)}(N), there are three distinct DANs that satisfy Ndip,3(c)=3Ndip,3(s)N_{{\rm dip},3}^{(c)}=3N_{{\rm dip},3}^{(s)} and Ndip,5/2(c)=(9/2)Ndip,3(s)N_{{\rm dip},5/2}^{(c)}=(9/2)N_{{\rm dip},3}^{(s)}, where Ndip,3(s)=2/g~2(s)N_{{\rm dip},3}^{(s)}=2/\tilde{g}_{2}^{(s)}. Therefore, precise measurement of DAN allows us to distinguish not only the quantum phase but also the stabilization mechanism. Moreover, NdipN_{\rm dip} is also independent of g~ν\tilde{g}_{\nu}, which makes the determination of the stabilization mechanism independent of the fitting of g3g_{3}.

Conclusion.—We have provided a detailed phase diagram for self-bound droplets of quasi-2D binary condensates beyond the coherent-state based mean field theory. Among all quantum phases, SVS and SCS are two macroscopic quantum squeezed states that demand experimental verification. More importantly, other than measuring AND or second-order correlation function, we have found three easily accessible experimental signatures: i) the observation of the double dips on the σ(N)\sigma(N) curve rule out the explanations of the liquid droplets based on single quantum state; ii) the precise measurements of NcriN_{\rm cri} or NdipN_{\rm dip} further allow us to distinguish the squeezed and the coherent states; iii) we may even determine the stabilization mechanism from NdipN_{\rm dip}. More remarkably, both NcriN_{\rm cri} and NdipN_{\rm dip} are independent of the strength of the stabilization force, which makes the comparison between the theoretical and the experimental results immune to any unknown parameters.

Acknowledgement.—We thank enlightening discussions with H. Hu, X.-J. Liu, C. R. Cabrera, C. Navarrete-Benlloch, T. Pfau, and H. P. Buechler. This work was supported by National Key Research and Development Program of China (Grant No. 2017YFA0304501), by the NSFC (Grants No. 11974363, and No. 12047503), by the Strategic Priority Research Program of CAS (Grant No. XDB28000000), and by the Open Project of Shenzhen Institute of Quantum Science and Engineering (Grant No. SIQSE202006).

References

Supplemental Material

In the Supplemental Material, we present the derivation for the imaginary-time evolution in Gaussian-state theory (Sec. SM-I), the atom number distribution of a Gaussian state (Sec. SM-II), the virial relation (Sec. SM-III), the density profile (Sec. SM-IV), the boundary of the SVS-to-SCS transition (Sec. SM-V), the boundary of the SCS-to-CS transition (Sec. SM-VI), the variational analysis for radial size (Sec. SM-VII), and the main properties of the 3D droplets (Sec. SM-VIII).

SM-I Imaginary-time Evolution

Here we show the details of how to use the imaginary-time evolution to get the Gaussian mean-field ground state. To this end, we assume that the many-body wave function of a binary gas adopts the variational ansatz Shi2018_SM ; Shi2019_SM ; Tommaso_SM ; Wang2020_SM

|ΨGS=eΨ^(𝐫)Σz(𝐫,𝐫)Φ(𝐫)eiΨ^(𝐫)ξ(𝐫,𝐫)Ψ^(𝐫)/2|0,|\Psi_{\rm GS}\rangle=e^{\hat{\Psi}^{\dagger}(\mathbf{r})\Sigma^{z}(\mathbf{r},\mathbf{r}^{\prime})\Phi(\mathbf{r}^{\prime})}e^{i\hat{\Psi}^{\dagger}(\mathbf{r})\xi(\mathbf{r},\mathbf{r}^{\prime})\hat{\Psi}(\mathbf{r}^{\prime})/2}|0\rangle, (SM1)

where Ψ^(𝐫)(ψ^(𝐫)ψ^(𝐫))\hat{\Psi}(\mathbf{r})\equiv\begin{pmatrix}\hat{\psi}(\mathbf{r})\\ \hat{\psi}^{\dagger}(\mathbf{r})\end{pmatrix} with ψ^(𝐫)=(ψ^(𝐫)ψ^(𝐫))\hat{\psi}(\mathbf{r})=\begin{pmatrix}\hat{\psi}_{\uparrow}(\mathbf{r})\\ \hat{\psi}_{\downarrow}(\mathbf{r})\end{pmatrix} is the field operator expressed in the Nambu basis,

Σz(𝐫,𝐫)=(I2δ(𝐫𝐫)00I2δ(𝐫𝐫))\displaystyle\Sigma^{z}(\mathbf{r},\mathbf{r}^{\prime})=\begin{pmatrix}I_{2}\otimes\delta(\mathbf{r}-\mathbf{r}^{\prime})&0\\ 0&-I_{2}\otimes\delta(\mathbf{r}-\mathbf{r}^{\prime})\end{pmatrix} (SM2)

with I2I_{2} being a 2×22\times 2 identity matrix in the spin space, Φ(𝐫)=Ψ^(𝐫)=(ϕ(c)ϕ(c))\Phi(\mathbf{r})=\langle\hat{\Psi}(\mathbf{r})\rangle=\begin{pmatrix}\phi^{(c)}\\ \phi^{(c)*}\end{pmatrix} with ϕ(c)=(ϕ(c)ϕ(c))\phi^{(c)}=\begin{pmatrix}\phi^{(c)}_{\uparrow}\\ \phi^{(c)}_{\downarrow}\end{pmatrix} is the variational parameter describing the coherent part of the condensates, and ξ(𝐫,𝐫)\xi(\mathbf{r},\mathbf{r}^{\prime}) is the variational parameter that characterizes the squeezed part of the condensate. We point out that the multiplication in the exponents in Eq. (SM1) represent short-hand notations which can be computed by first performing the matrix multiplications in the Nambu space and then integrating over the repeated spatial coordinates. As an example, we have

Ψ^(𝐫)Σz(𝐫,𝐫)Φ(𝐫)=α𝑑𝐫𝑑𝐫[ψ^α(𝐫)δ(𝐫𝐫)ϕα(c)(𝐫)ψ^α(𝐫)δ(𝐫𝐫)ϕα(c)(𝐫)].\displaystyle\hat{\Psi}^{\dagger}(\mathbf{r})\Sigma^{z}(\mathbf{r},\mathbf{r}^{\prime})\Phi(\mathbf{r}^{\prime})=\sum_{\alpha}\int d\mathbf{r}d\mathbf{r}^{\prime}\left[\hat{\psi}_{\alpha}^{\dagger}(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}^{\prime})\phi^{(c)}_{\alpha}(\mathbf{r}^{\prime})-\hat{\psi}_{\alpha}(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}^{\prime})\phi^{(c)\ast}_{\alpha}(\mathbf{r}^{\prime})\right]. (SM3)

It should be noted that there exists a gauge redundancy in ξ(𝐫,𝐫)\xi\left(\mathbf{r},\mathbf{r}^{\prime}\right) Shi2018_SM ; Shi2019_SM . Namely, different ξ\xi ’s may lead to the same Gaussian state. To remove this redundancy, we introduce the covariance matrix

Γ(𝐫,𝐫)(Γ11(𝐫,𝐫)Γ12(𝐫,𝐫)Γ21(𝐫,𝐫)Γ22(𝐫,𝐫))={δΨ^(𝐫),δΨ^(𝐫)},\displaystyle\Gamma(\mathbf{r},\mathbf{r}^{\prime})\equiv\begin{pmatrix}\Gamma_{11}(\mathbf{r},\mathbf{r}^{\prime})&\Gamma_{12}(\mathbf{r},\mathbf{r}^{\prime})\\ \Gamma_{21}(\mathbf{r},\mathbf{r}^{\prime})&\Gamma_{22}(\mathbf{r},\mathbf{r}^{\prime})\end{pmatrix}=\langle\{\delta\hat{\Psi}(\mathbf{r}),\delta\hat{\Psi}^{\dagger}(\mathbf{r}^{\prime})\}\rangle,

where δΨ^=Ψ^Φ\delta\hat{\Psi}=\hat{\Psi}-\Phi is the fluctuation and {,}\{,\} here denotes the anticommutator of the vectorial operator where in detail

Γ11(𝐫,𝐫)=({δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)})\displaystyle\Gamma_{11}(\mathbf{r},\mathbf{r}^{\prime})=\begin{pmatrix}\langle\{\delta\hat{\psi}^{\dagger}_{\uparrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\uparrow}({\mathbf{r}})\}\rangle&\langle\{\delta\hat{\psi}^{\dagger}_{\uparrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\downarrow}({\mathbf{r}})\}\rangle\\ \langle\{\delta\hat{\psi}^{\dagger}_{\downarrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\uparrow}({\mathbf{r}})\}\rangle&\langle\{\delta\hat{\psi}^{\dagger}_{\downarrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\downarrow}({\mathbf{r}})\}\rangle\end{pmatrix} (SM4)

and

Γ12(𝐫,𝐫)=({δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)}{δψ^(𝐫),δψ^(𝐫)})\displaystyle\Gamma_{12}(\mathbf{r},\mathbf{r}^{\prime})=\begin{pmatrix}\langle\{\delta\hat{\psi}_{\uparrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\uparrow}({\mathbf{r}})\}\rangle&\langle\{\delta\hat{\psi}_{\uparrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\downarrow}({\mathbf{r}})\}\rangle\\ \langle\{\delta\hat{\psi}_{\downarrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\uparrow}({\mathbf{r}})\}\rangle&\langle\{\delta\hat{\psi}_{\downarrow}({\mathbf{r}}^{\prime}),\delta\hat{\psi}_{\downarrow}({\mathbf{r}})\}\rangle\end{pmatrix} (SM5)

and Γ21=Γ12\Gamma_{21}=\Gamma_{12}^{\dagger}, Γ22=Γ11T\Gamma_{22}=\Gamma_{11}^{T}. It can be shown that Γ\Gamma and ξ\xi are connected through Γ=SS\Gamma=SS^{\dagger}, where S=eiΣzξS=e^{i\Sigma^{z}\xi} is a symplectic matrix satisfying SΣzS=ΣzS\Sigma^{z}S^{\dagger}=\Sigma^{z}. So it is convenient to take the elements of ϕ(c)(𝐫)\phi^{(c)}({\mathbf{r}}) and Γ(𝐫,𝐫)\Gamma(\mathbf{r},\mathbf{r}^{\prime}) as variational parameters.

To proceed further, we substitute the expansion ψ(𝐫)=ϕ(c)(𝐫)+δψ(𝐫)\psi(\mathbf{r})=\phi^{(c)}(\mathbf{r})+\delta\psi(\mathbf{r}) into the Hamiltonian HH defined in main text, which leads to single-particle Hamiltonian

H0=α=,𝑑𝐫(ϕα(c)(𝐫)hαϕα(c)(𝐫)+δψ^α(𝐫)hαϕ(c)(𝐫)+ϕα(c)(𝐫)hαδψ^α(𝐫)+δψ^α(𝐫)hαδψ^α(𝐫))\displaystyle H_{0}=\sum_{\alpha=\uparrow,\downarrow}\int d\mathbf{r}\left(\phi^{(c)}_{\alpha}(\mathbf{r})^{\dagger}h_{\alpha}\phi^{(c)}_{\alpha}(\mathbf{r})+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})h_{\alpha}\phi^{(c)}(\mathbf{r})+\phi^{(c)}_{\alpha}(\mathbf{r})^{\dagger}h_{\alpha}\delta\hat{\psi}_{\alpha}(\mathbf{r})+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})h_{\alpha}\delta\hat{\psi}_{\alpha}(\mathbf{r})\right) (SM6)

two-body interaction Hamiltonian

H2B\displaystyle H_{2B} =α,β=,gαβ2d𝐫[|ϕα(c)(𝐫)|2|ϕβ(c)(𝐫)|2+(2δψ^α(𝐫)ϕα(c)(𝐫)|ϕβ(c)(𝐫)|2+δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)\displaystyle=\sum_{\alpha,\beta=\uparrow,\downarrow}\frac{g_{\alpha\beta}}{2}\int d\mathbf{r}\left[|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}+\left(2\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})\right.\right.
+2δψ^α(𝐫)δψ^β(𝐫)δψ^β(𝐫)ϕα(c)(𝐫)+H.c.)+2δψ^α(𝐫)δψ^α(𝐫)|ϕ(c)β(𝐫)|2+2δψ^α(𝐫)δψ^β(𝐫)ϕ(c)β(𝐫)ϕ(c)α(𝐫)\displaystyle\quad+2\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})+H.c.\Big{)}+2\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}+2\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\phi^{(c)\ast}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})
+δψ^α(𝐫)δψ^β(𝐫)δψ^β(𝐫)δψ^α(𝐫)]\displaystyle\quad+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\Big{]} (SM7)

and three-body interaction Hamiltonian H3BH_{3B}

H3B\displaystyle H_{3B} =g33!α,β,γ=,d𝐫[|ϕα(c)(𝐫)|2|ϕβ(c)(𝐫)|2|ϕγ(c)(𝐫)|2+(3δψ^α(𝐫)ϕα(c)(𝐫)|ϕβ(c)(𝐫)|2|ϕγ(c)(𝐫)|2\displaystyle=\frac{g_{3}}{3!}\sum_{\alpha,\beta,\gamma=\uparrow,\downarrow}\int d\mathbf{r}\left[|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}+\left(3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}\right.\right.
+3δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)|ϕγ(c)(𝐫)|2+3δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)|ϕγ(c)(𝐫)|2\displaystyle\quad+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\phi^{(c)\ast}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}
+δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)ϕγ(c)(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)+6δψ^α(𝐫)δψ^β(𝐫)δψ^α(𝐫)ϕβ(c)(𝐫)|ϕγ(c)(𝐫)|2\displaystyle\quad+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\phi^{(c)}_{\gamma}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})+6\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}
+3δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)ϕγ(c)(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)+3δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)\displaystyle\quad+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\phi^{(c)\ast}_{\gamma}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})
+3δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)δψ^β(𝐫)ϕα(c)(𝐫)+H.c.)+3δψ^α(𝐫)δψ^α(𝐫)|ϕ(c)β(𝐫)|2|ϕ(c)γ(𝐫)|2\displaystyle\quad+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})+H.c.\Big{)}+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}
+3δψ^α(𝐫)δψ^β(𝐫)δψ^β(𝐫)δψ^α(𝐫)|ϕγ(c)(𝐫)|2+6δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^β(𝐫)ϕγ(c)(𝐫)ϕα(c)(𝐫)\displaystyle\quad+3\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}+6\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\phi^{(c)\ast}_{\gamma}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})
+δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)δψ^β(𝐫)δψ^α(𝐫)]\displaystyle\quad+\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\Big{]} (SM8)

After applying the Wick’s theorem with respect to the Gaussian state |ΨGS,|\Psi_{\rm{GS}}\rangle, we obtain the mean-field Hamiltonian

HMF=E0+(δψ^η+ηδψ^)+12:δΨ^δΨ^:,\displaystyle H_{\rm{MF}}=E_{0}+(\delta\hat{\psi}^{\dagger}\eta+\eta^{\ast}\delta\hat{\psi})+\frac{1}{2}:\delta\hat{\Psi}^{\dagger}\mathcal{H}\delta\hat{\Psi}:, (SM9)

where :O^:\mathopen{:}\hat{O}\mathclose{:} denotes the normal-ordered operator defined with respect to the Gaussian state, E0ΨGS|H|ΨGSE_{0}\equiv\left\langle\Psi_{\rm GS}\right|H\left|\Psi_{\rm GS}\right\rangle is the expectation value of the Hamiltonian and is composed of the kinetic energy

Ek=α=,𝑑𝐫(ϕα(c)(𝐫)hαϕα(c)(𝐫)+δψ^α(𝐫)hαδψ^α(𝐫)),\displaystyle E_{k}=\sum_{\alpha=\uparrow,\downarrow}\int d\mathbf{r}\left(\phi^{(c)\ast}_{\alpha}(\mathbf{r})h_{\alpha}\phi^{(c)}_{\alpha}(\mathbf{r})+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})h_{\alpha}\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle\right), (SM10)

the two-body interaction energy

E2B\displaystyle E_{2B} =α,β=,gαβ2d𝐫[|ϕα(c)(𝐫)|2|ϕβ(c)(𝐫)|2+2Re(δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫))+|δψ^α(𝐫)δψ^β(𝐫)|2\displaystyle=\sum_{\alpha,\beta=\uparrow,\downarrow}\frac{g_{\alpha\beta}}{2}\int d\mathbf{r}\left[|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}+2\rm{Re}\left(\langle\delta\hat{\psi}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\phi^{(c)\ast}_{\beta}(\mathbf{r})\phi^{(c)\ast}_{\alpha}(\mathbf{r})\right)+|\langle\delta\hat{\psi}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle|^{2}\right.
+(2|ϕα(c)(𝐫)|2+δψ^α(𝐫)δψ^α(𝐫))δψ^β(𝐫)δψ^β(𝐫)+(2ϕα(c)(𝐫)ϕβ(c)(r)+δψ^α(𝐫)δψ^β(𝐫))δψ^β(𝐫)δψ^α(𝐫)],\displaystyle\quad\left.+\left(2|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle\right)\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle+\left(2\phi^{(c)\ast}_{\alpha}(\mathbf{r})\phi^{(c)}_{\beta}(\mathbf{}r)+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\right)\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle\right], (SM11)

and the tree-body interaction energy

E3B\displaystyle E_{3B} =g33!α,β,γ=,d𝐫[|ϕα(c)(𝐫)|2|ϕβ(c)(𝐫)|2|ϕγ(c)(𝐫)|2+6Re(δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)|ϕγ(c)(𝐫)|2)\displaystyle=\frac{g_{3}}{3!}\sum_{\alpha,\beta,\gamma=\uparrow,\downarrow}\int d\mathbf{r}\left[|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}+6\rm{Re}\left(\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\rangle\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}\right)\right.
+6δψ^α(𝐫)δψ^β(𝐫)ϕβ(c)(𝐫)ϕα(c)(𝐫)|ϕγ(c)(𝐫)|2+3δψ^α(𝐫)δψ^α(𝐫)|ϕβ(c)(𝐫)|2|ϕγ(c)(𝐫)|2\displaystyle\quad+6\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\phi^{(c)\ast}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}+3\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle|\phi^{(c)}_{\beta}(\mathbf{r})|^{2}|\phi^{(c)}_{\gamma}(\mathbf{r})|^{2}
+2δψ^α(𝐫)δψ^β(𝐫)(δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)+2δψ^α(𝐫)δψ^γ(𝐫)δψ^β(𝐫)δψ^γ(𝐫))\displaystyle\quad+2\langle\delta\hat{\psi}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\left(\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle+2\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle\right)
+6Re(ϕβ(c)(𝐫)ϕα(c)(𝐫)(δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)+2δψ^α(𝐫)δψ^γ(𝐫)δψ^β(𝐫)δψ^γ(𝐫)))\displaystyle\quad+6\rm{Re}\left(\phi^{(c)}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})\left(\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle+2\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle\right)\right)
+(3|ϕα(c)(𝐫)|2+δψ^α(𝐫)δψ^α(𝐫))(|δψ^β(𝐫)δψ^γ(𝐫)|2+δψ^γ(𝐫)δψ^γ(𝐫)δψ^β(𝐫)δψ^β(𝐫)\displaystyle\quad+\left(3|\phi^{(c)}_{\alpha}(\mathbf{r})|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle\right)\left(|\langle\delta\hat{\psi}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\right.
+|δψ^γ(𝐫)δψ^β(𝐫)|2)+2(3ϕβ(c)(𝐫)ϕα(c)(𝐫)+δψ^β(𝐫)δψ^α(𝐫))(δψ^α(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)δψ^β(𝐫)\displaystyle\quad+|\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle|^{2}\Big{)}+2\left(3\phi^{(c)\ast}_{\beta}(\mathbf{r})\phi^{(c)}_{\alpha}(\mathbf{r})+\langle\delta\hat{\psi}^{\dagger}_{\beta}(\mathbf{r})\delta\hat{\psi}_{\alpha}(\mathbf{r})\rangle\right)\left(\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\rangle\langle\delta\hat{\psi}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\right.
+δψ^α(𝐫)δψ^γ(𝐫)δψ^γ(𝐫)δψ^β(𝐫)+δψ^α(𝐫)δψ^β(𝐫)δψ^γ(𝐫)δψ^γ(𝐫))].\displaystyle\quad+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle+\langle\delta\hat{\psi}^{\dagger}_{\alpha}(\mathbf{r})\delta\hat{\psi}_{\beta}(\mathbf{r})\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}(\mathbf{r})\delta\hat{\psi}_{\gamma}(\mathbf{r})\rangle\Big{)}\Big{]}. (SM12)

The linear driving term η=(ηη)\eta=\begin{pmatrix}\eta_{\uparrow}\\ \eta_{\downarrow}\end{pmatrix} is composed of

ηα\displaystyle\eta_{\alpha} =hαϕα(c)+β=gαβ((|ϕβ(c)|2+δψ^βδψ^β)ϕα(c)+δψ^αδψ^βϕβ(c)+δψ^βδψ^αϕβ(c))\displaystyle=h_{\alpha}\phi^{(c)}_{\alpha}+\sum_{\beta=\uparrow\downarrow}g_{\alpha\beta}\left(\left(|\phi^{(c)}_{\beta}|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\beta}\rangle\right)\phi^{(c)}_{\alpha}+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\beta}\rangle\phi^{(c)\ast}_{\beta}+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\alpha}\rangle\phi^{(c)}_{\beta}\right)
+g32β,γ=,[(|ϕβ(c)|2|ϕγ(c)|2+2Re(δψ^βδψ^γϕγ(c)ϕβ(c))+2δψ^γδψ^βϕβ(c)ϕγ(c)+2δψ^βδψ^β|ϕγ(c)|2\displaystyle\quad+\frac{g_{3}}{2}\sum_{\beta,\gamma=\uparrow,\downarrow}\left[\left(|\phi^{(c)}_{\beta}|^{2}|\phi^{(c)}_{\gamma}|^{2}+2\rm{Re}\left(\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}^{\dagger}_{\gamma}\rangle\phi^{(c)}_{\gamma}\phi^{(c)}_{\beta}\right)+2\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\beta}\rangle\phi^{(c)\ast}_{\beta}\phi^{(c)}_{\gamma}+2\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\beta}\rangle|\phi^{(c)}_{\gamma}|^{2}\right.\right.
+|δψ^βδψ^γ|2+δψ^γδψ^γδψ^βδψ^β+|δψ^γδψ^β|2)ϕ(c)α+2(δψ^αδψ^β|ϕγ(c)|2+δψ^αδψ^βδψ^γδψ^γ\displaystyle\quad+|\langle\delta\hat{\psi}_{\beta}\delta\hat{\psi}_{\gamma}\rangle|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\beta}\rangle+|\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\beta}\rangle|^{2}\Big{)}\phi^{(c)}_{\alpha}+2\left(\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\beta}\rangle|\phi^{(c)}_{\gamma}|^{2}+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\beta}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\right.
+δψ^γδψ^βδψ^γδψ^α+δψ^γδψ^αδψ^γδψ^β)ϕ(c)β+2(δψ^βδψ^α|ϕγ(c)|2+δψ^βδψ^γδψ^γδψ^α\displaystyle\quad+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\beta}\rangle\langle\delta\hat{\psi}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle\langle\delta\hat{\psi}_{\gamma}\delta\hat{\psi}_{\beta}\rangle\Big{)}\phi^{(c)\ast}_{\beta}+2\left(\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\alpha}\rangle|\phi^{(c)}_{\gamma}|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}^{\dagger}_{\gamma}\rangle\langle\delta\hat{\psi}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle\right.
+δψ^βδψ^γδψ^γδψ^α+δψ^βδψ^αδψ^γδψ^γ)ϕβ(c)].\displaystyle\quad+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\alpha}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\Big{)}\phi^{(c)}_{\beta}\Big{]}. (SM13)

The matrix elements of =(ΔΔ)\mathcal{H}=\begin{pmatrix}\mathcal{E}&\Delta\\ \Delta^{\dagger}&\mathcal{E}^{\ast}\end{pmatrix} are defined as =()\mathcal{E}=\begin{pmatrix}\mathcal{E}_{\uparrow\uparrow}&\mathcal{E}_{\uparrow\downarrow}\\ \mathcal{E}_{\downarrow\uparrow}&\mathcal{E}_{\downarrow\downarrow}\end{pmatrix} and Δ=(ΔΔΔΔ)\Delta=\begin{pmatrix}\Delta_{\uparrow\uparrow}&\Delta_{\uparrow\downarrow}\\ \Delta_{\downarrow\uparrow}&\Delta_{\downarrow\downarrow}\end{pmatrix}, where

αβ\displaystyle\mathcal{E}_{\alpha\beta} =γ=,[hα+gαγ(|ϕγ(c)|2+δψ^γδψ^γ)]δαβ+gαβ(ϕα(c)ϕβ(c)+δψ^βδψ^α)\displaystyle=\sum_{\gamma=\uparrow,\downarrow}\left[h_{\alpha}+g_{\alpha\gamma}\left(|\phi^{(c)}_{\gamma}|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\right)\right]\delta_{\alpha\beta}+g_{\alpha\beta}\left(\phi^{(c)}_{\alpha}\phi^{(c)\ast}_{\beta}+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\alpha}\rangle\right)
+g33!γ=,[γ=,(12|ϕγ(c)|2|ϕγ(c)|2+|ϕγ(c)|2δψ^γδψ^γ+ϕγ(c)ϕγ(c)δψ^γδψ^γ\displaystyle\quad+\frac{g_{3}}{3!}\sum_{\gamma=\uparrow,\downarrow}\left[\sum_{\gamma^{\prime}=\uparrow,\downarrow}\left(\frac{1}{2}|\phi^{(c)}_{\gamma}|^{2}|\phi^{(c)}_{\gamma^{\prime}}|^{2}+|\phi^{(c)}_{\gamma}|^{2}\langle\delta\hat{\psi}^{\dagger}_{\gamma^{\prime}}\delta\hat{\psi}_{\gamma^{\prime}}\rangle+\phi^{(c)\ast}_{\gamma^{\prime}}\phi^{(c)}_{\gamma}\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma^{\prime}}\rangle\right.\right.
+Re(ϕγ(c)ϕγ(c)δψ^γδψ^γ)+12(δψ^γδψ^γδψ^γδψ^γ+δψ^γδψ^γδψ^γδψ^γ\displaystyle\quad+\rm{Re}\left(\phi^{(c)\ast}_{\gamma}\phi^{(c)\ast}_{\gamma^{\prime}}\langle\delta\hat{\psi}_{\gamma^{\prime}}\delta\hat{\psi}_{\gamma}\rangle\right)+\frac{1}{2}\left(\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma^{\prime}}\delta\hat{\psi}_{\gamma^{\prime}}\rangle+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma^{\prime}}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma^{\prime}}\delta\hat{\psi}_{\gamma}\rangle\right.
+δψ^γδψ^γδψ^γδψ^γ))δαβ+(|ϕγ(c)|2+δψ^γδψ^γ)(ϕα(c)ϕβ(c)+δψ^βδψ^α)\displaystyle\quad+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}^{\dagger}_{\gamma^{\prime}}\rangle\langle\delta\hat{\psi}_{\gamma^{\prime}}\delta\hat{\psi}_{\gamma}\rangle\Big{)}\Big{)}\delta_{\alpha\beta}+\left(|\phi^{(c)}_{\gamma}|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\right)\left(\phi^{(c)}_{\alpha}\phi^{(c)\ast}_{\beta}+\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\alpha}\rangle\right)
+ϕγ(c)ϕβ(c)δψ^γδψ^α+ϕα(c)ϕγ(c)δψ^βδψ^γ+ϕα(c)ϕγ(c)δψ^γδψ^β+ϕγ(c)ϕβ(c)δψ^γδψ^α\displaystyle\quad+\phi^{(c)}_{\gamma}\phi^{(c)\ast}_{\beta}\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle+\phi^{(c)}_{\alpha}\phi^{(c)\ast}_{\gamma}\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\gamma}\rangle+\phi^{(c)}_{\alpha}\phi^{(c)}_{\gamma}\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}^{\dagger}_{\beta}\rangle+\phi^{(c)\ast}_{\gamma}\phi^{(c)\ast}_{\beta}\langle\delta\hat{\psi}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle
+δψ^γδψ^αδψ^βδψ^γ+δψ^αδψ^γδψ^γδψ^β]\displaystyle\quad+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle\langle\delta\hat{\psi}^{\dagger}_{\beta}\delta\hat{\psi}_{\gamma}\rangle+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}^{\dagger}_{\beta}\rangle\Bigg{]} (SM14)

and

Δαβ\displaystyle\Delta_{\alpha\beta} =gαβ(ϕα(c)ϕβ(c)+δψ^αδψ^β)+g3γ=,[(|ϕγ(c)|2+δψ^γδψ^γ)(ϕα(c)ϕβ(c)+δψ^αδψ^β)\displaystyle=g_{\alpha\beta}\left(\phi^{(c)}_{\alpha}\phi^{(c)}_{\beta}+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\beta}\rangle\right)+g_{3}\sum_{\gamma=\uparrow,\downarrow}\left[\left(|\phi^{(c)}_{\gamma}|^{2}+\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\gamma}\rangle\right)\left(\phi^{(c)}_{\alpha}\phi^{(c)}_{\beta}+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\beta}\rangle\right)\right.
+ϕβ(c)ϕγ(c)δψ^γδψ^α+ϕα(c)ϕγ(c)δψ^γδψ^β+δψ^αδψ^γϕγ(c)ϕβ(c)+δψ^βδψ^γϕγ(c)ϕα(c)\displaystyle\quad+\phi^{(c)}_{\beta}\phi^{(c)}_{\gamma}\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle+\phi^{(c)}_{\alpha}\phi^{(c)}_{\gamma}\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\beta}\rangle+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\gamma}\rangle\phi^{(c)\ast}_{\gamma}\phi^{(c)}_{\beta}+\langle\delta\hat{\psi}_{\beta}\delta\hat{\psi}_{\gamma}\rangle\phi^{(c)\ast}_{\gamma}\phi^{(c)}_{\alpha}
+δψ^αδψ^γδψ^γδψ^β+δψ^βδψ^γδψ^γδψ^α].\displaystyle\quad+\langle\delta\hat{\psi}_{\alpha}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\beta}\rangle+\langle\delta\hat{\psi}_{\beta}\delta\hat{\psi}_{\gamma}\rangle\langle\delta\hat{\psi}^{\dagger}_{\gamma}\delta\hat{\psi}_{\alpha}\rangle\Big{]}. (SM15)

Based on the GST, the ground-state solutions, ϕ(c)(𝐫)\phi^{(c)}({\mathbf{r}}) and Γ(𝐫,𝐫)\Gamma({\mathbf{r}},{\mathbf{r}}^{\prime}), can be obtained by numerically evolving the imaginary-time equations of motion Shi2018_SM ; Shi2019_SM ,

τΦ\displaystyle\partial_{\tau}\Phi =Γ(ηη),\displaystyle=-\Gamma\begin{pmatrix}\eta\\ \eta^{\ast}\end{pmatrix}, (SM16a)
τΓ\displaystyle\partial_{\tau}\Gamma =ΣzΣzΓΓ,\displaystyle=\Sigma^{z}\mathcal{H}\Sigma^{z}-\Gamma\mathcal{H}\Gamma, (SM16b)

which converge when the imaginary time τ\tau is sufficiently large.

SM-II Atom-number distribution

Refer to caption
Figure SM1: (color online). Atom number distributions P(n)P(n) for the states with mean atom numbers (from left to right) N=6.9×103N=6.9\times 10^{3}, 3×1043\times 10^{4}, and 10510^{5}. The yy axis of the blue line (red lines) is on the left (right). The inset shows the coherent fraction as a function of mean atom number where the markers denote the mean atom numbers used to plot P(n)P(n)’s. The reduced scattering length is δa=3.062a0\delta a=-3.062a_{0}.

Following the approach used in dipolar droplets Wang2020_SM , here we derive the atom-number distribution of a Gaussian state describing a binary condensate. To this end, we expand the coherent mode c^\hat{c} in terms of the squeezed modes as

c^=i=1αis^i+αc^\displaystyle\hat{c}=\sum_{i=1}^{\infty}\alpha_{i}\hat{s}_{i}+\alpha_{\perp}\hat{c}_{\perp} (SM17)

where αi=𝑑𝐫[ϕ¯i(s)(𝐫)]ϕ¯(c)(𝐫)\alpha_{i}=\int d\mathbf{r}\left[\bar{\phi}_{i}^{(s)}(\mathbf{r})\right]^{\dagger}\bar{\phi}^{(c)}(\mathbf{r}), α2=1i|αi|2\alpha_{\perp}^{2}=1-\sum_{i}\left|\alpha_{i}\right|^{2}, and c^\hat{c}_{\perp} represents the mode that is perpendicular to all s^i\hat{s}_{i}. The Gaussian state wave function can now be expressed as

|ΨGS\displaystyle\left|\Psi_{\mathrm{GS}}\right\rangle =eN(c)α(c^c^)i=1eN(c)(αis^iαis^i)e12ξi(s^i2s^i2)|0.\displaystyle=e^{\sqrt{N^{(c)}}\alpha_{\perp}\left(\hat{c}_{\perp}^{\dagger}-\hat{c}_{\perp}\right)}\prod^{\infty}_{i=1}e^{\sqrt{N^{(c)}}\left(\alpha_{i}\hat{s}_{i}^{\dagger}-\alpha_{i}^{*}\hat{s}_{i}\right)}e^{\frac{1}{2}\xi_{i}\left(\hat{s}^{\dagger 2}_{i}-\hat{s}^{2}_{i}\right)}\left|0\right\rangle. (SM18)

The AND for mode c^\hat{c}_{\perp} is

p()=eN(c)|α|2(N(c)|α|2)/!p_{\perp}(\ell)=e^{-N^{(c)}\left|\alpha_{\perp}\right|^{2}}\left(N^{(c)}\left|\alpha_{\perp}\right|^{2}\right)^{\ell}/\ell!

and that for mode s^i\hat{s}_{i} is Knight2005_SM

pi()=\displaystyle p_{i}(\ell)= (12tanhξi)!coshξi|H[γi(sinh2ξi)1/2]|2exp[N(c)|αi|2N(c)2(αi2+αi2)tanhξi],\displaystyle\frac{\left(\frac{1}{2}\tanh\xi_{i}\right)^{\ell}}{\ell!\cosh\xi_{i}}\left|H_{\ell}\left[\gamma_{i}\left(\sinh 2\xi_{i}\right)^{-1/2}\right]\right|^{2}\exp\left[-N^{(c)}\left|\alpha_{i}\right|^{2}-\frac{N^{(c)}}{2}\left(\alpha_{i}^{*2}+\alpha_{i}^{2}\right)\tanh\xi_{i}\right], (SM19)

where γi=N(c)αicoshξi+N(c)αisinhξi\gamma_{i}=\sqrt{N^{(c)}}\alpha_{i}\cosh\xi_{i}+\sqrt{N^{(c)}}\alpha_{i}^{*}\sinh\xi_{i} and H(x)H_{\ell}(x) are Hermite polynomials. The AND of |ΨGS\left|\Psi_{\mathrm{GS}}\right\rangle can then be expressed into a recursive form as follows. Let Pi(n)P_{i}(n) denote the AND of the state containing first ii squeezed modes, the AND containing first i+1i+1 squeezed modes can then be expressed as

Pi+1(n)==0nPi(n)pi+1()\displaystyle P_{i+1}(n)=\sum_{\ell=0}^{n}P_{i}(n-\ell)p_{i+1}(\ell) (SM20)

where P0(n)p(n)P_{0}(n)\equiv p_{\perp}(n). Applying this equation successively will eventually leads to the total AND P(n)P(n).

Figure SM1 shows three typical ANDs corresponding to states in SVS, SCS, and CS phases. Due to the squeezing, P(n)P(n) is asymmetric with a long tail at the large nn side, which was observed in dipolar droplet experiments asypnd-1 ; asypnd-2 . However, as fcf_{c} increases, P(n)P(n) becomes more symmetric. Other features of the AND include that P(n)P(n) has a peak at nN(c)n\approx N^{(c)} and the mean value of atom number is

nnP(n)=N(c)+N(s)=N.\sum_{n}nP(n)=N^{(c)}+N^{(s)}=N.

SM-III Virial Relation

Refer to caption
Figure SM2: (color online). εk\varepsilon_{k}, ε2B\varepsilon_{2B}, and ε3B\varepsilon_{3B} as functions of NN for δa=3.062a0\delta a=-3.062a_{0}. Energy is in units of 2/(ML2)\hbar^{2}/(ML^{2}) with L=6μmL=6\,\mu{\rm m}. Vertical dotted lines mark the locations of two phase transitions.

Here we derive a virial relation among different contributions to the total energy Stringari_SM . To this end, we shall make use of the fact that different spin component share same normalized density profile. Hence we can use ϕ¯(c)(𝐫)\bar{\phi}^{(c)}(\mathbf{r}) to represent the normalized mode function for the coherent component and for iith squeezed mode the normalized mode functions are ϕ¯i(s)(𝐫)\bar{\phi}^{(s)}_{i}(\mathbf{r}). If total energy E0=Ek+E2B+E3BE_{0}=E_{k}+E_{2B}+E_{3B} is stationary for any variation of ϕ¯(c)(𝐫)\bar{\phi}^{(c)}(\mathbf{r}) and ϕ¯i(s)(𝐫)\bar{\phi}^{(s)}_{i}(\mathbf{r}) around the ground state solution, we can choose scaling transformations of the form ϕ(x,y)(1+λ)1/2ϕ[(1+λ)x,y]\phi(x,y)\rightarrow(1+\lambda)^{1/2}\phi[(1+\lambda)x,y] and insert kinetic energy, 2B and 3B interaction energies, we have

δEk=\displaystyle\delta E_{k}= [(1+λ)21]Ekx\displaystyle[(1+\lambda)^{2}-1]E^{x}_{k}
δE2B=\displaystyle\delta E_{2B}= λE2B\displaystyle\lambda E_{2B}
δE3B=\displaystyle\delta E_{3B}= [(1+λ)21]E3B,\displaystyle[(1+\lambda)^{2}-1]E_{3B}, (SM21)

where

Ekx=12M𝑑𝐫(N(c)ϕ¯(c)(𝐫)2x2ϕ¯(c)(𝐫)+iNi(s)ϕ¯i(s)(𝐫)2x2ϕ¯i(s)(𝐫)).\displaystyle E^{x}_{k}=-\frac{1}{2M}\int d\mathbf{r}\left(N^{(c)}\bar{\phi}^{(c)\ast}(\mathbf{r})\frac{\partial^{2}}{\partial x^{2}}\bar{\phi}^{(c)}(\mathbf{r})+\sum_{i}N^{(s)}_{i}\bar{\phi}^{(s)\ast}_{i}(\mathbf{r})\frac{\partial^{2}}{\partial x^{2}}\bar{\phi}^{(s)}_{i}(\mathbf{r})\right). (SM22)

By imposing the energy variation δE0=δEk+δE2B+δE3B\delta E_{0}=\delta E_{k}+\delta E_{2B}+\delta E_{3B} to vanish at first order in λ\lambda we can find

2Ekx+E2B+2E3B=0.\displaystyle 2E^{x}_{k}+E_{2B}+2E_{3B}=0. (SM23)

Analogous expressions can be obtained by impose same scaling transform in yy directions. By summing over the xx and the yy directions, we can find the virial relation

Ek+E2B+2E3B=0\displaystyle E_{k}+E_{2B}+2E_{3B}=0 (SM24)

for our two-dimensional system.

In Fig. SM2, we plot the NN dependence of the energies, where εk=Ek/N\varepsilon_{k}=E_{k}/N, ε2B=E2B/N\varepsilon_{2B}=E_{2B}/N, and ε3B=E3B/N\varepsilon_{3B}=E_{3B}/N. As can be seen, unlike ε2B\varepsilon_{2B} and ε3B\varepsilon_{3B} which are monotonic functions of NN, the variation of εk\varepsilon_{k} is negatively correlated to that of the radial size σGST\sigma_{\rm GST} because εk1/σGST2\varepsilon_{k}\propto 1/\sigma_{\rm GST}^{2}. Furthermore, the phase transitions can also be visualized from the behavior of the energies. In particular, it appears that the SVS-to-SCS transition occurs when εk=ε3B\varepsilon_{k}=\varepsilon_{3B}, which will be proven analytically in Sec. SM-V.

SM-IV density profile

Refer to caption
Figure SM3: (color online). Normalized density profiles of the coherent (a) and the squeezed atoms (b) with δa=3.062a0\delta a=-3.062a_{0} and N=9.5×103N=9.5\times 10^{3} (\ocircle), 2.5×1042.5\times 10^{4} (\diamondsuit), 3.7×1043.7\times 10^{4} (\triangle), 4.2×1044.2\times 10^{4} (\bigtriangledown), and 9×1049\times 10^{4} (\square). Insets in (a) and (b) show the NN dependence of w(c)w^{(c)} and w(s)w^{(s)}, respectively. Vertical dotted lines mark the locations of two phase transitions. Symbols on w(c,s)w^{(c,s)} mark the NN values used to plot the corresponding density profiles.

Here we present the normalized density profiles of the coherent and the squeezed atoms, i.e., n¯(c)(ρ)=|ϕ¯(c)(ρ)|2\bar{n}^{(c)}(\rho)=|\bar{\phi}^{(c)}(\rho)|^{2} and n¯(s)(ρ)=n(s)(ρ)/N(s)\bar{n}^{(s)}(\rho)=n^{(s)}(\rho)/N^{(s)}, here ρ=x2+y2\rho=\sqrt{x^{2}+y^{2}} and we have used the fact that both n¯(c)\bar{n}^{(c)} and n¯(s)\bar{n}^{(s)} are axially symmetric. For convenience, we introduce the width of the coherent/squeezed atoms

w(c,s)=[𝑑x𝑑yρ2n¯(c.s)(x,y)]1/2w^{(c,s)}=\left[\int dxdy\rho^{2}\bar{n}^{(c.s)}(x,y)\right]^{1/2}

to characterize the geometry of the states. Clearly, w(c,s)w^{(c,s)} are better defined than the radial size when n¯(c,s)(ρ)\bar{n}^{(c,s)}(\rho) deviate significantly from Gaussian function.

In Fig. SM3, we plot n¯(c,s)(ρ)\bar{n}^{(c,s)}(\rho) for various NN’s in SCS and CS phases. Immediately to the right of the SVS-to-SCS transition, e.g. N=9.5×103N=9.5\times 10^{3}, it is found that n¯(c)\bar{n}^{(c)} is identical to n¯(s)\bar{n}^{(s)}. This observation is understandable as the coherent atoms originates from the three-body repulsion which is simply proportional to n¯(s)\bar{n}^{(s)} when N(c)N^{(c)} is essentially zero. When NN is further increased, n¯(c)(ρ)\bar{n}^{(c)}(\rho) changes in according with the size of the coherent part as shown in Fig. SM3(a). Particularly, in the large NN limit, the top of n¯(c)(ρ)\bar{n}^{(c)}(\rho) becomes flatted and significantly deviates from a Gaussian function, which is in consistent to the liquid nature of the condensate. As to the profiles of the squeezed atoms, n¯(s)(ρ=0)\bar{n}^{(s)}(\rho=0) continuously decreases with NN such that n¯(s)(ρ)\bar{n}^{(s)}(\rho) is no longer a monotonic decreasing function of ρ\rho in the CS phase, which further demonstrates the squeezing here is quantum depletion due to the three-body repulsion.

SM-V SVS-to-SCS transition

Here we derive the equation describing the boundary between the SVS and the SCS phases. To this end, we note that the 2B and 3B interaction energies for a SCS are, respectively,

E2B\displaystyle E_{2B} =4π2δaMaa(a+a)2𝑑𝐫[N(c)2|ϕ¯(c)(𝐫)|4+6N(c)N(s)|ϕ¯(c)(𝐫)|2|ϕ¯(s)(𝐫)|2+3N(s)2|ϕ¯(s)(𝐫)|4],\displaystyle=\frac{4\pi\hbar^{2}\delta a}{M}\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}\int d\mathbf{r}\left[N^{(c)2}|\bar{\phi}^{(c)}(\mathbf{r})|^{4}+6N^{(c)}N^{(s)}|\bar{\phi}^{(c)}(\mathbf{r})|^{2}|\bar{\phi}^{(s)}(\mathbf{r})|^{2}+3N^{(s)2}|\bar{\phi}^{(s)}(\mathbf{r})|^{4}\right],
E3B\displaystyle E_{3B} =g33!d𝐫[N(c)3|ϕ¯(c)(𝐫)|6+15N(c)2N(s)|ϕ¯(c)(𝐫)|4|ϕ¯(s)(𝐫)|2+45N(c)N(s)2|ϕ¯(c)(𝐫)|2|ϕ¯(s)(𝐫)|4\displaystyle=\frac{g_{3}}{3!}\int d\mathbf{r}\left[N^{(c)3}|\bar{\phi}^{(c)}(\mathbf{r})|^{6}+15N^{(c)2}N^{(s)}|\bar{\phi}^{(c)}(\mathbf{r})|^{4}|\bar{\phi}^{(s)}(\mathbf{r})|^{2}+45N^{(c)}N^{(s)2}|\bar{\phi}^{(c)}(\mathbf{r})|^{2}|\bar{\phi}^{(s)}(\mathbf{r})|^{4}\right.
+15N(s)3|ϕ¯(s)(𝐫)|6].\displaystyle\quad\qquad\qquad\left.+15N^{(s)3}|\bar{\phi}^{(s)}(\mathbf{r})|^{6}\right]. (SM25)

In the vicinity of the SVS-to-SCS transition, the squeezed and the coherent modes have the same density profile (see the main text for details), i.e., n¯(𝐫)n¯(s)(𝐫)=n¯(c)(𝐫)\bar{n}({\mathbf{r}})\equiv\bar{n}^{(s)}({\mathbf{r}})=\bar{n}^{(c)}({\mathbf{r}}). Then, the interaction energies reduce to

E2B\displaystyle E_{2B} =ω2B(N(c)2+6N(c)N(s)+3N(s)2),\displaystyle=\omega_{2B}\left(N^{(c)2}+6N^{(c)}N^{(s)}+3N^{(s)2}\right),
E3B\displaystyle E_{3B} =ω3B(N(c)3+15N(c)2N(s)+45N(c)N(s)2+15N(s)3),\displaystyle=\omega_{3B}\left(N^{(c)3}+15N^{(c)2}N^{(s)}+45N^{(c)}N^{(s)2}+15N^{(s)3}\right), (SM26)

where

ω2B=4π2δaMaa(a+a)2𝑑𝐫n¯2(𝐫) and ω3B=g33!𝑑𝐫n¯3(𝐫).\displaystyle\omega_{2\rm{B}}=\frac{4\pi\hbar^{2}\delta a}{M}\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}\int d\mathbf{r}\bar{n}^{2}(\mathbf{r})\quad\mbox{ and }\quad\omega_{3\rm{B}}=\frac{g_{3}}{3!}\int d\mathbf{r}\bar{n}^{3}(\mathbf{r}). (SM27)

To find the phase boundary, we consider a pure squeezed state with all NN atoms occupying the squeezed mode. The total energy is then

E0(N)=εkN+3ω2BN2+15ω3BN3.\displaystyle E_{0}(N)=\varepsilon_{k}N+3\omega_{2B}N^{2}+15\omega_{3B}N^{3}. (SM28)

Now, we add δN\delta N atom to the condensate. If all newly added atoms go to the squeezed mode, we have

E0(SVS)(N+δN)=εk(N+δN)+3ω2B(N+δN)2+15ω3B(N+δN)3;\displaystyle E_{0}^{({\rm SVS})}(N+\delta N)=\varepsilon_{k}(N+\delta N)+3\omega_{2B}(N+\delta N)^{2}+15\omega_{3B}(N+\delta N)^{3}; (SM29)

while if all newly added atoms go to the coherent mode, we have

E0(SCS)(N+δN)=εk(N+δN)+ω2B(3N2+6NδN+δN2)+ω3B(15N3+45N2δN+15NδN2+δN3).\displaystyle E_{0}^{({\rm SCS})}(N+\delta N)=\varepsilon_{k}(N+\delta N)+\omega_{2B}(3N^{2}+6N\delta N+\delta N^{2})+\omega_{3B}(15N^{3}+45N^{2}\delta N+15N\delta N^{2}+\delta N^{3}). (SM30)

If the transition happens at NN, we must have E0(SCS)(N+δN)<E0(SVS)(N+δN)E_{0}^{({\rm SCS})}(N+\delta N)<E_{0}^{({\rm SVS})}(N+\delta N), which, to the second order in δN\delta N, leads to

ω2B<15ω3BN.-\omega_{2B}<15\omega_{3B}N.

This result says that the atom number at the third order phase transition, N3N_{3}^{*}, satisfies ω2B=15ω3BN3-\omega_{2B}=15\omega_{3B}N_{3}^{*}. Making use of Eq. (SM28), we prove E2B=3E3B-E_{2B}=3E_{3B} and, subsequently,

Ek=E3BE_{k}=E_{3B}

on the boundary of the SVS-to-SCS transition. Finally, combined with the virial relation and Eq. (LABEL:engsize), we obtain

N3rd=3g~2(s).\displaystyle N_{\rm 3rd}^{*}=\frac{3}{\tilde{g}_{2}^{(s)}}. (SM31)

SM-VI SCS-to-CS transition

In this section, we derived a criterion for the first-order SCS-to-CS transition based on the stability of Bogoliubov excitation in the the presence of 3B interactions. Specifically, in the CS phase, we may neglect the contributions from terms δψ^(𝐫)δψ^(𝐫)\langle\delta\hat{\psi}^{\dagger}(\mathbf{r}^{\prime})\delta\hat{\psi}(\mathbf{r})\rangle and δψ^(𝐫)δψ^(𝐫)\langle\delta\hat{\psi}(\mathbf{r}^{\prime})\delta\hat{\psi}(\mathbf{r})\rangle such that Eqs. (SM13)-(SM15) reduce to

ηα\displaystyle\eta_{\alpha} =(hα+βgαβ|ϕβ(c)(x,y)|2+g32β,γ|ϕβ(c)(x,y)|2|ϕγ(c)(x,y)|2)ϕα(c)(x,y)\displaystyle=\left(h^{\prime}_{\alpha}+\sum_{\beta}g^{\prime}_{\alpha\beta}|\phi^{(c)}_{\beta}(x,y)|^{2}+\frac{g^{\prime}_{3}}{2}\sum_{\beta,\gamma}|\phi^{(c)}_{\beta}(x,y)|^{2}|\phi^{(c)}_{\gamma}(x,y)|^{2}\right)\phi^{(c)}_{\alpha}(x,y)
αβ\displaystyle\mathcal{E}_{\alpha\beta} =(hα+γgαγ|ϕγ(c)(x,y)|2)δαβ+gαβϕα(c)(x,y)ϕβ(c)(x,y)\displaystyle=\left(h^{\prime}_{\alpha}+\sum_{\gamma}g^{\prime}_{\alpha\gamma}|\phi^{(c)}_{\gamma}(x,y)|^{2}\right)\delta_{\alpha\beta}+g^{\prime}_{\alpha\beta}\phi^{(c)}_{\alpha}(x,y)\phi^{(c)\ast}_{\beta}(x,y)
+g3γ(γ12|ϕγ(c)(x,y)|2|ϕγ(c)(x,y)|2δαβ+|ϕγ(c)(x,y)|2ϕα(c)(x,y)ϕβ(c)(x,y))\displaystyle\quad+g^{\prime}_{3}\sum_{\gamma}\left(\sum_{\gamma^{\prime}}\frac{1}{2}|\phi^{(c)}_{\gamma}(x,y)|^{2}|\phi^{(c)}_{\gamma^{\prime}}(x,y)|^{2}\delta_{\alpha\beta}+|\phi^{(c)}_{\gamma}(x,y)|^{2}\phi^{(c)}_{\alpha}(x,y)\phi^{(c)\ast}_{\beta}(x,y)\right)
Δαβ\displaystyle\Delta_{\alpha\beta} =gαβϕα(c)(x,y)ϕβ(c)(x,y)+g3γ|ϕγ(c)(x,y)|2ϕα(c)(x,y)ϕβ(c)(x,y),\displaystyle=g^{\prime}_{\alpha\beta}\phi^{(c)}_{\alpha}(x,y)\phi^{(c)}_{\beta}(x,y)+g^{\prime}_{3}\sum_{\gamma}|\phi^{(c)}_{\gamma}(x,y)|^{2}\phi^{(c)}_{\alpha}(x,y)\phi^{(c)}_{\beta}(x,y), (SM32)

where hα=2(x2+y2)/(2M)μαh^{\prime}_{\alpha}=-\hbar^{2}(\partial_{x}^{2}+\partial_{y}^{2})/(2M)-\mu_{\alpha} is the single particle term and gαβ=gαβ/(2πaz)g_{\alpha\beta}^{\prime}=g_{\alpha\beta}/(\sqrt{2\pi}a_{z}) and g3=g3/(3πaz2)g_{3}^{\prime}=g_{3}/(\sqrt{3}\pi a_{z}^{2}) are the interaction parameters of quasi-2D system. Meanwhile, the covariance matrix Γ\Gamma reduces to a unit matrix. As a result, the steady-state condition τΦ=0\partial_{\tau}\Phi=0 leads to the Gross-Pitaevskii equations

(hα+βgαβ|ϕβ(c)(x,y)|2+g32β,γ|ϕβ(c)(x,y)|2|ϕγ(c)(x,y)|2)ϕα(c)(x,y)=0.\displaystyle\left(h^{\prime}_{\alpha}+\sum_{\beta}g^{\prime}_{\alpha\beta}|\phi^{(c)}_{\beta}(x,y)|^{2}+\frac{g^{\prime}_{3}}{2}\sum_{\beta,\gamma}|\phi^{(c)}_{\beta}(x,y)|^{2}|\phi^{(c)}_{\gamma}(x,y)|^{2}\right)\phi^{(c)}_{\alpha}(x,y)=0. (SM33)

For simplicity, we consider a homogeneous gas. The chemical potentials can then be solved to be

μα=βgαβnβ+g32β,γnβnγ,\displaystyle\mu_{\alpha}=\sum_{\beta}g^{\prime}_{\alpha\beta}n_{\beta}+\frac{g^{\prime}_{3}}{2}\sum_{\beta,\gamma}n_{\beta}n_{\gamma}, (SM34)

where nα=|ϕα(c)|2n_{\alpha}=|\phi^{(c)}_{\alpha}|^{2} is the density of α\alphath component.

Refer to caption
Figure SM4: (color online). Peak condensate density npn_{p} as a function of atom number NN for δa=3.062a0\delta a=-3.062a_{0}. The dashed line marks the critical condensate density n1n_{1}^{*}. The vertical dotted line denotes the boundary between the SCS and the CS phases.

In the momentum space, the mean-field Hamiltonian becomes

HMF=E0+k12:δΨ^kkδΨ^k:\displaystyle H_{\mathrm{MF}}=E_{0}+\sum_{k}\frac{1}{2}:\delta\hat{\Psi}^{\dagger}_{k}\mathcal{H}_{k}\delta\hat{\Psi}_{k}: (SM35)

where δΨ^k\delta\hat{\Psi}_{k} is the Fourier transform of the fluctuation operator δΨ^\delta\hat{\Psi} and k=(kΔkΔkkT)\mathcal{H}_{k}=\begin{pmatrix}\mathcal{E}_{k}&\Delta_{k}\\ \Delta^{\dagger}_{k}&\mathcal{E}^{T}_{k}\end{pmatrix} with

k=(ϵk+(g+g3βnβ)n(g+g3βnβ)nn(g+g3βnβ)nnϵk+(g+g3βnβ)n)\displaystyle\mathcal{E}_{k}=\begin{pmatrix}\epsilon_{k}+(g^{\prime}_{\uparrow\uparrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})n_{\uparrow}&(g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})\sqrt{n_{\uparrow}n_{\downarrow}}\\ (g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})\sqrt{n_{\uparrow}n_{\downarrow}}&\epsilon_{k}+(g^{\prime}_{\downarrow\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})n_{\downarrow}\end{pmatrix} (SM36)

and

Δk=((g+g3βnβ)n(g+g3βnβ)nn(g+g3βnβ)nn(g,+g3βnβ)n).\displaystyle\Delta_{k}=\begin{pmatrix}(g^{\prime}_{\uparrow\uparrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})n_{\uparrow}&(g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})\sqrt{n_{\uparrow}n_{\downarrow}}\\ (g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})\sqrt{n_{\uparrow}n_{\downarrow}}&(g^{\prime}_{\downarrow,\downarrow}+g^{\prime}_{3}\sum_{\beta}n_{\beta})n_{\downarrow}\end{pmatrix}. (SM37)

Here ϵk=2k2/(2M)\epsilon_{k}=\hbar^{2}k^{2}/(2M). After diagonalizing k\mathcal{H}_{k}, we obtain the Bogoliubov excitation spectra

ξ±2(k)=12[ξ2+ξ2±(ξ2ξ2)2+16(g+g3nt)2nnεk2]\displaystyle\xi_{\pm}^{2}(k)=\frac{1}{2}\left[\xi_{\uparrow}^{2}+\xi_{\downarrow}^{2}\pm\sqrt{(\xi_{\uparrow}^{2}-\xi_{\downarrow}^{2})^{2}+16(g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}n_{t})^{2}n_{\uparrow}n_{\downarrow}\varepsilon_{k}^{2}}\,\right] (SM38)

where nt=n+nn_{t}=n_{\uparrow}+n_{\downarrow} is the total condensate density, and

ξα2=ϵk[ϵk+2(gαα+g3nt)nα]\displaystyle\xi_{\alpha}^{2}=\epsilon_{k}\left[\epsilon_{k}+2(g^{\prime}_{\alpha\alpha}+g^{\prime}_{3}n_{t})n_{\alpha}\right] (SM39)

are the familiar quasiparticle energies in a single-component condensate of spin-α\alpha atoms. Apparently, the CS phase becomes unstable when quasiparticle energy in the lower branch is imaginary, i.e.,

(ξ2+ξ2)2<(ξ2ξ2)2+16(g+g3nt)2nnϵk2.\displaystyle(\xi_{\uparrow}^{2}+\xi_{\downarrow}^{2})^{2}<(\xi_{\uparrow}^{2}-\xi_{\downarrow}^{2})^{2}+16(g^{\prime}_{\uparrow\downarrow}+g^{\prime}_{3}n_{t})^{2}n_{\uparrow}n_{\downarrow}\epsilon^{2}_{k}. (SM40)

After some straightforward calculations, we find

nt<n1st3π2azg34π2Ma2aa(a+a2a),\displaystyle n_{t}<n_{\rm 1st}^{*}\equiv\sqrt{\frac{3\pi}{2}}\frac{a_{z}}{g_{3}}\frac{4\pi\hbar^{2}}{M}\frac{a^{2}_{\uparrow\downarrow}-a_{\uparrow\uparrow}a_{\downarrow\downarrow}}{(a_{\uparrow\uparrow}+a_{\downarrow\downarrow}-2a_{\uparrow\downarrow})}, (SM41)

which can be interpreted as the criterion for the CS-to-SCS transition. In Fig. SM4, we plot the numerically obtained peak condensate density npn_{p} as a function of NN. As can be seen, the boundary for the SCS-to-CS transition determined with the criterion np=n1stn_{p}=n_{\rm 1st}^{*} is in good agreement with numerical result.

SM-VII Variational analysis for radial size

Let ϕ¯(𝐫)\bar{\phi}({\mathbf{r}}) be a normalized mode function, the kinetic energy and the two-body interaction energies can be generally expressed as

Ek\displaystyle E_{k} =2N2M𝑑𝐫ϕ¯(𝐫)2ϕ¯(𝐫),\displaystyle=-\frac{\hbar^{2}N}{2M}\int d{\mathbf{r}}\bar{\phi}^{\ast}({\mathbf{r}})\nabla^{2}\bar{\phi}({\mathbf{r}}), (SM42)
E2B\displaystyle E_{2B} =g2N2𝑑𝐫|ϕ¯(𝐫)|4.\displaystyle=g_{2}^{\prime}N^{2}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{4}. (SM43)

We further assume that the energy associated with the stabilization force is

EνB=gνNν𝑑𝐫|ϕ¯(𝐫)|2ν(for ν>2).\displaystyle E_{\nu B}=g_{\nu}^{\prime}N^{\nu}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{2\nu}\qquad(\mbox{for $\nu>2$}). (SM44)

To proceed, we assume that the mode function adopts a Gaussian form, i.e.,

ϕ¯(𝐫)=1πσe(x2+y2)/(2σ2)1(πaz)1/2ez2/(2az2)\displaystyle\bar{\phi}({\mathbf{r}})=\frac{1}{\sqrt{\pi}\sigma}e^{-(x^{2}+y^{2})/(2\sigma^{2})}\frac{1}{(\sqrt{\pi}a_{z})^{1/2}}e^{-z^{2}/(2a_{z}^{2})} (SM45)

where az=/(Mωz)a_{z}=\sqrt{\hbar/(M\omega_{z})} is the width of the axial harmonic oscillator. The total energy of the self-bound droplets can then be expressed as

ε0=22M(1σ2g~2Nσ2+g~νNν1σ2(ν1)).\displaystyle\varepsilon_{0}=\frac{\hbar^{2}}{2M}\left(\frac{1}{\sigma^{2}}-\tilde{g}_{2}\frac{N}{\sigma^{2}}+\tilde{g}_{\nu}\frac{N^{\nu-1}}{\sigma^{2(\nu-1)}}\right). (SM46)
Refer to caption
Figure SM5: (color online). Radial size σ\sigma versus atom number NN for various magnetic fields. Solid line is computed using the GST with g3=6.65×1039m6/sg_{3}=6.65\times 10^{-39}\hbar{\rm m}^{6}/{\rm s}. Empty circles are experimental data extracted from Ref. Cabrera_SM .

To derive the reduced interaction parameters g~2(c,s)\tilde{g}_{2}^{(c,s)} and g~ν(c,s)\tilde{g}_{\nu}^{(c,s)}, we first consider a pure coherent state for which the two-body and the thee-body interactions are

E2B(c)\displaystyle E_{2B}^{(c)} =4π2δaMaa(a+a)2N2𝑑𝐫|ϕ¯(𝐫)|4,\displaystyle=\frac{4\pi\hbar^{2}\delta a}{M}\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}N^{2}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{4},
E3B(c)\displaystyle E_{3B}^{(c)} =g33!N3𝑑𝐫|ϕ¯(𝐫)|6.\displaystyle=\frac{g_{3}}{3!}N^{3}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{6}.

The reduced interaction parameters can be evaluated to be

g~2(c)\displaystyle\tilde{g}^{(c)}_{2} =42πaa(a+a)2|δa|az,\displaystyle=\frac{4}{\sqrt{2\pi}}\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}\frac{|\delta a|}{a_{z}},
g~3(c)\displaystyle\tilde{g}^{(c)}_{3} =Mg393π32az2.\displaystyle=\frac{Mg_{3}}{9\sqrt{3}\pi^{3}\hbar^{2}a_{z}^{2}}. (SM47)

Next, for single-mode squeezed vacuum state, we have

E2B(s)\displaystyle E_{2B}^{(s)} =34π2δaMaa(a+a)2N2𝑑𝐫|ϕ¯(𝐫)|4,\displaystyle=3\frac{4\pi\hbar^{2}\delta a}{M}\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}N^{2}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{4},
E3B(s)\displaystyle E_{3B}^{(s)} =15g33!N3𝑑𝐫|ϕ¯(𝐫)|6.\displaystyle=\frac{15g_{3}}{3!}N^{3}\int d{\mathbf{r}}|\bar{\phi}({\mathbf{r}})|^{6}.

which lead to g~2(s)=3g~2(c)\tilde{g}^{(s)}_{2}=3\tilde{g}^{(c)}_{2} and g~3(s)=15g~3(c)\tilde{g}^{(s)}_{3}=15\tilde{g}^{(c)}_{3}. Finally, for the EGPE theory Petrov2015_SM , g~5/2(c)\tilde{g}_{5/2}^{(c)} can be similarly evaluated as

g~5/2(c)=102475π(aa1+a/a)5/22/5az3/2π3/4f(a2aa,aa)\displaystyle\tilde{g}_{5/2}^{(c)}=\frac{1024}{75\pi}\left(\frac{\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{1+\sqrt{a_{\downarrow\downarrow}/a_{\uparrow\uparrow}}}\right)^{5/2}\frac{\sqrt{2/5}}{a^{3/2}_{z}\pi^{3/4}}f\left(\frac{a^{2}_{\uparrow\downarrow}}{a_{\uparrow\uparrow}a_{\downarrow\downarrow}},\sqrt{\frac{a_{\downarrow\downarrow}}{a_{\uparrow\uparrow}}}\right) (SM48)

where

f(x,y)=η=±1142(1+y+η(1y)2+4xy)5/2.\displaystyle f(x,y)=\sum_{\eta=\pm 1}\frac{1}{4\sqrt{2}}\left(1+y+\eta\sqrt{(1-y)^{2}+4xy}\right)^{5/2}. (SM49)

In Fig. SM5, we compare, the numerically computed σGST\sigma_{\rm GST} curves with experimental data Cabrera_SM not shown in the main text. Apparently, some data do not have the signature V shape close to the critical atom number for the self-bound droplet. Therefore, high precision data for radial size are still needed.

Refer to caption
Figure SM6: (color online). (a) σr\sigma_{r}, σr(s)\sigma_{r}^{(s)}, and σr(c)\sigma_{r}^{(c)} versus NN. (b) εk\varepsilon_{k}, ε2B\varepsilon_{2B}, and ε3B\varepsilon_{3B} as functions of NN. Here the ss-wave scattering length is fixed at δa=3.062a0\delta a=-3.062a_{0} and energy is in units of 2/(ML2)\hbar^{2}/(ML^{2}) with L=6μmL=6\,\mu{\rm m}. From left to right, two vertical dotted lines mark the critical atom numbers for the third- and the first-order phase transitions, respectively.

SM-VIII Three-Dimensional Self-bound Droplets

For three-dimensional (3D) gases, the properties of the self-bound droplet states Semeghini2018_SM can be studied similarly using the Gaussian-state theory. Here we also obtain SVS, SCS, and CS phases as those found in two-dimensional droplets. Figure SM6(a) shows the typical behavior of the radial size σr\sigma_{r} as a function atom number NN. Apparently, σr(N)\sigma_{r}(N) also possesses a double-dip structure. In addition, the SVS-to-SCS and the SCS-to-CS transitions are of third and first order, respectively.

Analytically, we may also carry out similar analyses to those in two-dimensional gases. Here, we only present the main results for 3D binary droplets. The virial relation in 3D takes the form

2Ek+3E2B+6E3B=0.\displaystyle 2E_{k}+3E_{2B}+6E_{3B}=0. (SM50)

With the assumption of a Gaussian mode function

ϕ¯(𝐫)=1(πσ)3/2er2/(2σ2)\displaystyle\bar{\phi}({\mathbf{r}})=\frac{1}{\left(\sqrt{\pi}\sigma\right)^{3/2}}e^{-r^{2}/(2\sigma^{2})} (SM51)

with σr\sigma_{r} being the radial size, the energy per atom can then be expressed as

ε0=324M(1σ2g~2Nσ3+g~3N2σ6),\displaystyle\varepsilon_{0}=\frac{3\hbar^{2}}{4M}\left(\frac{1}{\sigma^{2}}-\tilde{g}_{2}\frac{N}{\sigma^{3}}+\tilde{g}_{3}\frac{N^{2}}{\sigma^{6}}\right), (SM52)

where the reduced interaction parameters depend on the quantum phases of the condensate. Specifically, for SVS, g~2\tilde{g}_{2} and g~3\tilde{g}_{3} becomes

g~2(s)=82π|δa|aa(a+a)2andg~3(s)=10M93π32g3,\displaystyle\tilde{g}_{2}^{(s)}=\frac{8}{\sqrt{2\pi}}\frac{|\delta a|\sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}}{(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{2}}\quad\mbox{and}\quad\tilde{g}_{3}^{(s)}=\frac{10M}{9\sqrt{3}\pi^{3}\hbar^{2}}g_{3}, (SM53)

respectively. And similar to the 2D case, g~2(c)=g~2(s)/3\tilde{g}_{2}^{(c)}=\tilde{g}_{2}^{(s)}/3 and g~3(c)=g~3(s)/15\tilde{g}_{3}^{(c)}=\tilde{g}_{3}^{(s)}/15 for CS.

The equilibrium radial size is the solution of equation ε0/σr=0\partial\varepsilon_{0}/\partial\sigma_{r}=0 that satisfies 2ε0/σr2>0\partial^{2}\varepsilon_{0}/\partial\sigma_{r}^{2}>0. In Fig. SM6, we plot the equilibrium radial sizes σr(s)(N)\sigma_{r}^{(s)}(N) and σr(c)(N)\sigma_{r}^{(c)}(N) obtained with the reduced interactions parameters (g~2(s),g~3(s))(\tilde{g}_{2}^{(s)},\tilde{g}_{3}^{(s)}) and (g~2(c),g~3(c))(\tilde{g}_{2}^{(c)},\tilde{g}_{3}^{(c)}), respectively. As can be seen, they are in rough agreement with the numerical results at SVS and CS regimes. In particular, the critical atom number of the self-bound droplet is determined by the equations: ε0/σr=0\partial\varepsilon_{0}/\partial\sigma_{r}=0 and 2ε0/σr2=0\partial^{2}\varepsilon_{0}/\partial\sigma_{r}^{2}=0, which leads to Ncri=64g~3/(27g~22)N_{\rm cri}=64\sqrt{\tilde{g}_{3}}/(27\tilde{g}^{2}_{2}). We then find two critical atom numbers

Ncri(s)=2π(a+a)481aaδa210Mg33π32andNcri(c)=2π(a+a)49aaδa22Mg333π32\displaystyle N_{\rm cri}^{(s)}=\frac{2\pi(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{4}}{81a_{\uparrow\uparrow}a_{\downarrow\downarrow}\delta a^{2}}\sqrt{\frac{10Mg_{3}}{\sqrt{3}\pi^{3}\hbar^{2}}}\quad\mbox{and}\quad N_{\rm cri}^{(c)}=\frac{2\pi(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{4}}{9a_{\uparrow\uparrow}a_{\downarrow\downarrow}\delta a^{2}}\sqrt{\frac{2Mg_{3}}{3\sqrt{3}\pi^{3}\hbar^{2}}} (SM54)

for SVS and CS phases, respectively.

In Fig. SM6, we plot the energy contributions as a function of NN. It can be analytically shown that the SVS-to-SCS transition occurs when 2Ek=|E2B|2E_{k}=|E_{2B}| or at

N3rd=4g~223g~32=π(a+a)48aaδa25Mg333π32.\displaystyle N^{*}_{\rm 3rd}=\frac{4}{\tilde{g}^{2}_{2}}\sqrt{\frac{3\tilde{g}_{3}}{2}}=\frac{\pi(\sqrt{a_{\uparrow\uparrow}}+\sqrt{a_{\downarrow\downarrow}})^{4}}{8a_{\uparrow\uparrow}a_{\downarrow\downarrow}\delta a^{2}}\sqrt{\frac{5Mg_{3}}{3\sqrt{3}\pi^{3}\hbar^{2}}}. (SM55)

Finally, for the SCS-to-CS transition, the phase boundary is located at roughly

n1st=1g34π2Ma2aa(a+a2a,).\displaystyle n_{\rm 1st}^{*}=\frac{1}{g_{3}}\frac{4\pi\hbar^{2}}{M}\frac{a^{2}_{\uparrow\downarrow}-a_{\uparrow\uparrow}a_{\downarrow\downarrow}}{(a_{\uparrow\uparrow}+a_{\downarrow\downarrow}-2a_{\uparrow,\downarrow})}. (SM56)

Again, as shown in Fig. SM7, it can be verified that the phase boundary given by the criterion np=n1stn_{p}=n_{\rm 1st}^{*} is in good agreement with the numerical result.

Refer to caption
Figure SM7: (color online). Peak condensate density npn_{p} as a function of atom number NN for δa=3.062a0\delta a=-3.062a_{0}. The dashed line marks the critical condensate density n1n_{1}^{*}. The vertical dotted line denotes the boundary between the SCS and the CS phases.

References

  • (1) T. Shi, E. Demler, and J. I. Cirac, Ann. Phys. (N Y) 390, 245 (2018).
  • (2) T. Shi, J. Pan, and S. Yi, arXiv:1909.02432 (2019).
  • (3) T. Guaita, L. Hackl, T. Shi, C. Hubig, E. Demler, and J. I. Cirac, Phys. Rev. B 100, 094529 (2019).
  • (4) Y. Wang, L. Guo, S. Yi, and T. Shi, Phys. Rev. Research 2, 043074 (2020).
  • (5) See, e.g., C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
  • (6) M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T. Pfau, Nature 539, 259 (2016).
  • (7) F. Böttcher, M. Wenzel, J.-N. Schmidt, M. Guo, T. Langen, I. Ferrier-Barbut, T. Pfau, R. Bombín, J. SánchezBaena, J. Boronat, and F. Mazzanti, Phys. Rev. Research 1, 033088 (2019).
  • (8) F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
  • (9) D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
  • (10) Cabrera, CR and Tanzi, L and Sanz, J and Naylor, B and Thomas, P and Cheiney, P and Tarruell, L, Science 359, 301 (2018)
  • (11) G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Phys. Rev. Lett. 120, 235301 (2018).